
Pattern Hatching

VISITOR in Frameworks
John Vlissides
C++ Report, November/December 1999

 1999 by John Vlissides. All rights reserved.

I really like the design story until you get to the visitor—I’d just never use VISITOR for this
in a real design. The VISITOR dependency limitation is just too drastic. I think it is a nice
Gedankenexperiment, but I think it is almost “unethical” to suggest this as a solution in
an article.... By the way, in my recent pattern talk I list my bottom-ten patterns, and VISI-

TOR is at the very bottom.

A grim assessment from none other than Erich Gamma. What’s got his goat is the VISITOR pattern’s role in
TOOLED COMPOSITE, a compound design pattern I described last time.1 TOOLED COMPOSITE supports direct-
manipulation in applications as varied as music editors, schematic capture systems, user interface builders,
and project management systems. It lets you define graphical objects (shapes) that users manipulate through
an extensible set of tools, potentially with unique manipulation behavior for every shape-tool combination.

The “design story” that Erich mentions centers on a drawing editor I used to illustrate TOOLED COMPOSITE.
I wanted a simple example of the pattern, and you might say a basic drawing editor is the “hello world” of
direct manipulation. That’s because it manipulates the most primitive of graphical objects—simple geomet-
ric shapes like lines, circles, and polygons, plus text—in the most prosaic ways: creating them, moving
them, deforming them, and not much else. Applications like music editors and schematic capture systems
define more specialized shapes and tools.

ToolEditor

SelectTool CreationTool Shape
prototype

Text Line GroupCommand

AddShapeCmd

State:Context
State
Visitor

ConcreteState
ConcreteVisitor

ConcreteState
ConcreteVisitor
Protot yp e:Client

Com p osite:Com p onent
Protot yp e
Visitor:Element

Command

ConcreteCommand

Leaf
ConcreteProtot yp e
Visitor:ConcreteElement

Com p osite
Visitor:ConcreteElement

Figure 1: Summary of TOOLED COMPOSITE structure in drawing application

Figure 1 shows the structure of the drawing editor classes that arose from TOOL COMPOSITE and its con-
stituent patterns:

• The COMPOSITE pattern furnished the recursive shape structure that users manipulate with tools;

2 VISITOR in Frameworks

“Pattern Hatching” C++ Report November/December 1999

• STATE keeps track of the current tool;

• PROTOTYPE lets one creation tool class create any kind of shape;

• COMMAND specifies the potentially undoable effects of wielding a tool; and

• VISITOR implements how tools affect shapes during direct manipulation.

Erich’s beef
The bugaboo in this example is the application of VISITOR. TOOLED COMPOSITE uses VISITOR to address
the “m x n problem”—m tools and n shapes may produce upwards of m x n different direct manipulation
behaviors. If you’re averse to defining a similar number of classes to house these behaviors (I am), then
you’ve got this problem. Observe that the manipulation code to execute depends on two types: the type of
tool, and the type of shape. This is the classic double-dispatch problem, and VISITOR is tailor-made to it.

The troubles start when we look at the C++ code that VISITOR yields. There’s nothing extraordinary about
the code except for a couple of application-specific tweaks: I renamed “YLVLW” operations “PDQLSXODWH,”
and I made them return a command that implements the undoable result of the manipulation. I also added a
catch-all operation2 to allow for extension should one define new 6KDSH subclasses. All rather innocuous, it
seemed to me.

But Erich thought otherwise. When an expert framework designer sees code like

FODVV 7RRO ^

�� ���

YLUWXDO &RPPDQG PDQLSXODWH �6KDSH� �� FDWFK�DOO

^ UHWXUQ �� `

YLUWXDO &RPPDQG PDQLSXODWH �7H[W W�

^ UHWXUQ PDQLSXODWH��6KDSH� W�� `

YLUWXDO &RPPDQG PDQLSXODWH �/LQH O�

^ UHWXUQ PDQLSXODWH��6KDSH� O�� `

�� HWF� IRU UHPDLQLQJ 6KDSH VXEFODVVHV

`�

an alarm goes off. Deep in said expert’s brain is the sense that a framework interface shouldn’t refer to con-
crete subclasses. He or she may not know it, but such references violate “The Dependency Inversion
Principle” (DIP),3 one of many useful aphorisms from our own Bob Martin. DIP states:

1. High-level modules should not depend on low-level modules. Both should depend on abstractions.

2. Abstractions should not depend on details. Details should depend on abstractions.

DIP may sound like didactic hooey, but there’s excellent basis for it, particularly in frameworks. If anything
in a framework should be rock-stable, it’s the interfaces it defines. Yet an interface that includes names of
concrete classes will almost certainly need modification when someone defines new subclasses. And if
there’s one thing you do with framework interfaces, it’s implement them in new subclasses.

A framework that violates DIP makes its designer look dippy indeed. So imagine the scorn to be heaped on
the pattern writer whose handiwork incites such folly.

Erich’s assessment seems pretty charitable now, n’est-ce pas?

“This ain’t no steenking framework!”
In the interest of saving face, I could claim that my drawing editor—and by implication, any use of TOOLED

COMPOSITE—isn’t meant as a framework; it’s just a one-off application. That may be true, but it’s cold

VISITOR in Frameworks 3

“Pattern Hatching” C++ Report November/December 1999

comfort considering the severe limits it would impute to the pattern’s applicability. Besides, the implemen-
tation would still violate DIP. If I were really desperate, I’d blame the problem on strong type checking and
sing the praises of Smalltalk, where the problem goes away. You’re reading C++ Report, however, so I
don’t think that’s an option, desperate or no.

But that’s all hypothetical, of course, because there’s good justification for applying VISITOR: How else can
we address the m x n behavior problem without proliferating classes? At the end of the day, double dispatch
offers a solution that’s hard to beat, at least in principle. The real issue lies in how we implement double
dispatch (and thus VISITOR) in a single-dispatch language like C++.

The implementation described in Design Patterns4 works fine if you never extend the Element hierarchy,
which corresponds to the 6KDSH hierarchy here. But that’s hardly realistic even in one-off applications, let
alone frameworks. That’s the age-old problem with VISITOR: its brittleness in the face of a changing Ele-
ment hierarchy.

Catch-all to the rescue—sort of
In Pattern Hatching I introduce the catch-all operation. I explain how it gives you a place to put code for
new Element subclasses as they arise, without changing the Visitor interface.

Let’s say I want to define three new 6KDSH subclasses: 6WDU, 0RRQ, and +HDUW. I need to implement spe-
cial manipulation behavior for each of them, but I don’t want to change the Tool interface. Instead, I change
the catch-all for any 7RRO subclasses that should manipulate these new subclasses specially. A good exam-
ple of such a class is &UHDWLRQ7RRO, which if you recall is the tool for creating shapes. Here’s its new
catch-all implementation:

&RPPDQG &UHDWLRQ7RRO��PDQLSXODWH �6KDSH V� ^

6KDSH QHZ6KDSH ��

LI �6WDU VWDU G\QDPLFBFDVW�6WDU!�V�� ^

�� FRGH IRU FUHDWLQJ D VWDU E\ GLUHFW PDQLSXODWLRQ

�� DQG DVVLJQLQJ LW WR QHZ6KDSH

` HOVH LI �0RRQ PRRQ G\QDPLFBFDVW�0RRQ!�V�� ^

�� FRGH IRU FUHDWLQJ D PRRQ E\ GLUHFW PDQLSXODWLRQ

�� DQG DVVLJQLQJ LW WR QHZ6KDSH

` HOVH LI �+HDUW KHDUW G\QDPLFBFDVW�+HDUW!�V�� ^

�� FRGH IRU FUHDWLQJ D KHDUW E\ GLUHFW PDQLSXODWLRQ

�� DQG DVVLJQLQJ LW WR QHZ6KDSH

`

UHWXUQ QHZ $GG6KDSH&PG�QHZ6KDSH��

`

Note that I’ve changed existing code here, namely the &UHDWLRQ7RRO class. Presumably its PDQLSX�

ODWH�6KDSH� function didn’t even exist before I added the new 6KDSH subclasses (&UHDWLRQ7RRO could
have inherited the default catch-all from 7RRO). If I don’t want to change existing code, I can always sub-
class &UHDWLRQ7RRO and put the new catch-all behavior in the subclass.

So the catch-all saves us from changing the 7RRO interface to support stars, moons, and hearts. Great. But
haven’t we made a Faustian bargain in the process, what with all those dynamic casts and everything?

The answer is a qualified “yes.” The catch-all approach remains viable only so long as we don’t define new
Element subclasses very often. That’s a reasonable assumption, for example, in designs that favor composi-
tion over subclassing, which we should aspire to anyway.5 When that’s not a reasonable assumption,
however, then we seem to have a compelling argument against VISITOR. To the framework designer who
needs the double dispatch prowess of VISITOR but doesn’t want to violate DIP in the deal, that’s bad news.

Or is it?

4 VISITOR in Frameworks

“Pattern Hatching” C++ Report November/December 1999

Staggering VISITOR
As I’ve said, the challenge here isn’t to eliminate VISITOR; it’s to implement it more flexibly in C++.

The secret is in committing to an application-specific Visitor interface as deeply in the Visitor class hierar-
chy as possible. Vanilla VISITOR prescribes one and only one Visitor interface way up at the top of the
hierarchy, in the base class. Instead, we will defer adding YLVLW operations as long as possible.

ElementB

accept(Visitor)

ConcreteVisitor2

visit(ElementA)
visit(ElementB)
visit(ElementC)

ConcreteVisitor1

visit(ElementA)
visit(ElementB)
visit(ElementC)

Visitor

visit(ElementA)
visit(ElementB)
visit(ElementC)

ElementA

accept(Visitor)

ElementC

accept(Visitor)

Element

accept(Visitor)

v.visit(this)

Figure 2: Vanilla VISITOR structure

Figure 2 depicts the standard VISITOR structure as described in Design Patterns. Notice how many different
Visitor interfaces there are (i.e., just one) and where it’s declared (i.e., up in the Visitor base class). Declar-
ing the sole Visitor interface in the base class essentially bars that class from membership in a DIP-
respecting framework.

What to do? See Figure 3, in which I’ve done two simple but crucial things:

1. All application-specific Visitor operations are moved out of the base class.

2. New AppVisitor and AppElement abstract classes bridge the gap between application-specific
VISITOR classes and the framework’s incarnation of the pattern.

ConcreteVisitor1

visit(AppElementA)
visit(AppElementB)
visit(AppElementC)

AppElementB

accept(AppVisitor)

AppElementC

accept(AppVisitor)

v.visit(this)

AppElementA

accept(AppVisitor)

Element

accept(Visitor)

Visitor

visit(Element) // framework catch-all

AppVisitor

visit(Element)
visit(AppElementA)
visit(AppElementB)
visit(AppElementC)

ConcreteVisitor1

visit(AppElementA)
visit(AppElementB)
visit(AppElementC)

AppElement

accept(AppVisitor)

// application catch-all

framework

application

Figure 3: Staggered VISITOR structure

VISITOR in Frameworks 5

“Pattern Hatching” C++ Report November/December 1999

It’s easy to see how I did #1, but what good are those new abstract classes? Basically, they allow the
framework to do the VISITOR thing—namely, to include code like this:

(OHPHQW HOHPHQW�

9LVLWRU YLVLWRU�

�� ���

HOHPHQW�!DFFHSW�YLVLWRU��

If we were to turn the drawing editor into a framework, then any client—whether an application or part of
the framework itself—can use any tool on any shape, including yet-to-be-defined tools and shapes:

6KDSH VKDSH�

7RRO WRRO�

�� ���

VKDSH�!DFFHSW�WRRO��

The framework needn’t refer to concrete classes in either its interfaces or its implementation, thus abiding
by DIP. Moreover, application code needn’t revert to tag-and-case-statement-style dispatch in the catch-all.
Staggering application-specific Visitor interfaces down the class hierarchy greatly reduces our reliance on
type tests.

To see how, look at a C++ implementation of the operation marked “application catch-all” in Figure 3:

YRLG $SS9LVLWRU��YLVLW �(OHPHQW H� ^

$SS(OHPHQW DH�

LI �DH G\QDPLFBFDVW�$SS(OHPHQW!�H�� ^

DH�!DFFHSW�WKLV�� �� LPSOHPHQWHG LQ D FRQFUHWH

�� $SS(OHPHQW VXEFODVV

`

`

Clearly, $SS9LVLWRU’s catch-all tests the type of its element argument only to see if its application-specific
Visitor interface is appropriate for the element. If so, then $SS9LVLWRU puts that interface to work.

That’s where we encounter the application-specific $SS(OHPHQW��DFFHSW�$SS9LVLWRU	� operation. It’s
intent is the same as a base-class DFFHSW, except that it’s declared in $SS(OHPHQW, not the (OHPHQW base
class; and its parameter is a reference to an $SS9LVLWRU, not the base 9LVLWRU class. Hence $SS(OHPHQW
doesn’t override (OHPHQW��DFFHSW; it introduces an entirely separate function with the same name. It is
this DFFHSW that $SS(OHPHQW’s subclasses override.

Back to the drawing board
Let’s see how staggering VISITOR might work in the drawing editor example. I can define 6KDSH and 7RRO
abstract base classes for the framework like so:

FODVV 6KDSH ^

SXEOLF�

YLUWXDO a6KDSH�� ��

�� ���

YLUWXDO &RPPDQG DFFHSW �7RRO	 W� ^ UHWXUQ W�PDQLSXODWH�WKLV�� `

`�

FODVV 7RRO ^

SXEOLF�

YLUWXDO a7RRO�� ��

YLUWXDO &RPPDQG PDQLSXODWH �6KDSH� ^ `� �� IUDPHZRUN FDWFK�DOO

`�

6 VISITOR in Frameworks

“Pattern Hatching” C++ Report November/December 1999

Were I elitist enough, I could stop there and relegate all other shape and tool implementations to the hapless
application programmer. Fortunately, many graphical editors would benefit from a small set of framework-
supplied shapes and tools—like for example the ones in our drawing editor: Line, Scribble, Rectangle, El-
lipse, Polygon, and Text shapes; and Creation, Select, Rotate, Reshape, and Connect tools.

To accommodate these, let’s equip the framework with predefined shapes and tools that follow the stag-
gered approach. First the extended base classes:

FODVV 3UHGHILQHG6KDSH � SXEOLF 6KDSH ^

SXEOLF�

YLUWXDO a3UHGHILQHG6KDSH�� ��

YLUWXDO &RPPDQG DFFHSW �7RRO	 W� ^ UHWXUQ W�PDQLSXODWH�WKLV�� `

YLUWXDO &RPPDQG DFFHSW �3UHGHILQHG7RRO	 SW�

^ UHWXUQ SW�PDQLSXODWH�WKLV�� `

`�

FODVV 3UHGHILQHG7RRO � SXEOLF 7RRO ^

SXEOLF�

YLUWXDO a3UHGHILQHG7RRO�� ��

�� ���

YLUWXDO &RPPDQG PDQLSXODWH�6KDSH�� �� FDWFK�DOO IRU

�� SUHGHILQHG VKDSHV

YLUWXDO &RPPDQG PDQLSXODWH�7H[W��

YLUWXDO &RPPDQG PDQLSXODWH�/LQH��

�� HWF� IRU DOO SUHGHILQHG VKDSHV

`�

The catch-all’s implementation reflects the implementation of $SS9LVLWRU��YLVLW:

&RPPDQG 3UHGHILQHG7RRO��PDQLSXODWH �6KDSH V� ^

&RPPDQG FPG ��

LI �3UHGHILQHG6KDSH SV G\QDPLFBFDVW�3UHGHILQHG6KDSH!�V�� ^

FPG SV�!DFFHSW�WKLV��

`

UHWXUQ FPG�

`

All the concrete 6KDSH and 7RRO classes of the example drawing editor can now be derived from 3UHGH�

ILQHG6KDSH and 3UHGHILQHG7RRO.

Where do I put default behavior?
Defining concrete subclasses of 3UHGHILQHG6KDSH and 3UHGHILQHG7RRO is easy—just do what you’d do
in a normal, brittle implementation of VISITOR. There are however a couple of interesting twists regarding
default behavior.

Consider a &UHDWLRQ7RRO subclass for creating shapes by direct manipulation. This is one of those tools
that most graphical editors need, so it would be nice if the framework came with one predefined. Here’s one
way to do it:

FODVV &UHDWLRQ7RRO � SXEOLF 3UHGHILQHG7RRO ^

SXEOLF�

�� ���

YLUWXDO &RPPDQG PDQLSXODWH�6KDSH��

VISITOR in Frameworks 7

“Pattern Hatching” C++ Report November/December 1999

YLUWXDO &RPPDQG PDQLSXODWH�7H[W��

YLUWXDO &RPPDQG PDQLSXODWH�/LQH��

�� HWF� IRU DOO SUHGHILQHG VKDSHV

`�

Why am I redeclaring the catch-all? Because I’m going to extend it with special default behavior:

&RPPDQG &UHDWLRQ7RRO��PDQLSXODWH �6KDSH V� ^

&RPPDQG FPG 3UHGHILQHG7RRO��PDQLSXODWH�V��

LI ��FPG� ^ �� LPSOLHV V LV QRW D 3UHGHILQHG6KDSH

FPG GHIDXOW0DQLSXODWH�V��

`

UHWXUQ FPG�

`

I’ve introduced &UHDWLRQ7RRO��GHIDXOW0DQLSXODWH, a protected helper function that encapsulates the
default manipulation behavior. The default behavior can’t be terribly specific to the shape, since we don’t
know what kind of shape we’re dealing with at this point. But everybody knows all shapes can draw and
translate themselves. So GHIDXOW0DQLSXODWH could simply tell its 6KDSH argument to draw itself re-
peatedly, translating it to track the current mouse location, until the user up-clicks. Then
GHIDXOW0DQLSXODWH would copy the shape, wrap the copy in an $GG6KDSH&PG command, and finally
return that command.

Fine and dandy, but the astute among you may have noticed a rather nefarious problem here: What if
6KDSH V is in fact a pointer to a 3UHGHILQHG6KDSH, but it’s a subclass thereof defined after 3UHGH�
ILQHG7RRO? In other words, what if someone extends the 3UHGHILQHG6KDSH subhierarchy after the fact?

This echoes our original extensibility problem with vanilla VISITOR, which gave rise to the vanilla catch-all
approach. It’s a bit more of a problem here, because we have the added danger of infinite recursion.

You heard me right. Consider the following sequence of operations:

1. A client calls DFFHSW�7RRO	� on a newly derived subclass of 3UHGHILQHG6KDSH—a subclass
that doesn’t appear in 3UHGHILQHG7RRO’s interface. Call this subclass 1HZ3UHGHILQHG6KDSH.
The parameter passed is a &UHDWLRQ7RRO object.

2. DFFHSW dutifully calls PDQLSXODWH�WKLV� on the &UHDWLRQ7RRO object, which resolves to the
&UHDWLRQ7RRO��PDQLSXODWH�6KDSH� operation I just described.

3. The first thing &UHDWLRQ7RRO��PDQLSXODWH does is call the superclass operation 3UHGH�

ILQHG7RRO��PDQLSXODWH�6KDSH�, passing a pointer to the 1HZ3UHGHILQHG6KDSH instance.

4. If you look at the implementation of 3UHGHILQHG7RRO��PDQLSXODWH�6KDSH� given earlier,
you’ll see that the first action of consequence is a dynamic cast to a 3UHGHILQHG6KDSH. 1HZ�
3UHGHILQHG6KDSH is in fact a 3UHGHILQHG6KDSH, so this cast will succeed.

5. Having ascertained that the shape is a 3UHGHILQHG6KDSH, 3UHGHILQHG7RRO��PDQLSXODWH
calls DFFHSW on the 3UHGHILQHG6KDSH with WKLV (i.e., the &UHDWLRQ7RRO itself) as a parame-
ter.

6. Since there’s no corresponding PDQLSXODWH�1HZ3UHGHILQHG6KDSH� operation defined for
3UHGHILQHG7RROs, the call to PDQLSXODWH resolves statically to the catch-all PDQLSX�

ODWH�6KDSH�, which will be called on the &UHDWLRQ7RRO object.

Notice how step #6 leaves us at step #3, hence the infinite recursion. Ouch.

Fortunately the solution is simple, and it too echoes what has gone before. What we’re missing is a catch-
all specific to 3UHGHILQHG6KDSH:

&RPPDQG 3UHGHILQHG7RRO��PDQLSXODWH �3UHGHILQHG6KDSH SV� ^

UHWXUQ GHIDXOW0DQLSXODWH�SV��

`

8 VISITOR in Frameworks

“Pattern Hatching” C++ Report November/December 1999

This catch-all breaks the infinite recursion at step #6, because the call to PDQLSXODWH will now resolve to
this more specific function. I call it the “extension catch-all,” and it works identically to the original catch-
all described in Pattern Hatching: you override the extension catch-all to handle late-coming subclasses of
3UHGHILQHG6KDSH—that is, if there aren’t too many of them. It also provides a place to put the functional-
ity of GHIDXOW0DQLSXODWH, thereby saving you a member function if you so choose.

Just as it’s a good idea in vanilla VISITOR to include a conventional catch-all to handle extensions to the
Element hierarchy, in the staggered approach it behooves one to include an extension catch-all for every
group of extensions.

Application-specific shapes and tools
If an application defines entirely new shapes (like stars, moons, and hearts), and they should exhibit unique
manipulation behavior during creation, then you apply the whole approach again. First, introduce new $SS�

6KDSH and $SS7RRO subclasses from which to derive the new, application-specific shapes and the tools that
work on them:

FODVV $SS6KDSH � SXEOLF 6KDSH ^

SXEOLF�

YLUWXDO a$SS6KDSH�� ��

YLUWXDO &RPPDQG DFFHSW �7RRO	 W� ^ UHWXUQ W�PDQLSXODWH�WKLV�� `

YLUWXDO &RPPDQG DFFHSW �$SS7RRO	 DW�

^ UHWXUQ DW�PDQLSXODWH�WKLV�� `

`�

FODVV $SS7RRO � SXEOLF 7RRO ^

SXEOLF�

YLUWXDO a$SS7RRO�� ��

YLUWXDO &RPPDQG PDQLSXODWH�6KDSH��

YLUWXDO &RPPDQG PDQLSXODWH�$SS6KDSH�� �� H[WHQVLRQ FDWFK�DOO

YLUWXDO &RPPDQG PDQLSXODWH�6WDU��

YLUWXDO &RPPDQG PDQLSXODWH�0RRQ��

YLUWXDO &RPPDQG PDQLSXODWH�+HDUW��

`�

$SS7RRO’s catch-all would look like this:

&RPPDQG $SS7RRO��PDQLSXODWH �6KDSH V� ^

$SS6KDSH DV�

&RPPDQG FPG ��

LI �DV G\QDPLFBFDVW�$SS6KDSH!�V�� ^

FPG DV�!DFFHSW�WKLV��

`

UHWXUQ FPG�

`

A subclass of $SS7RRO can now define different, specialized tool behavior for stars, moons, and hearts—
nothing new about that. But in this case we’re gonna be especially demanding: we want to extend the capa-
bilities of a predefined tool, &UHDWLRQ7RRO. In other words, we want to reuse &UHDWLRQ7RRO.

This is one of those rare instances in which multiple implementation inheritance pulls its own weight:

FODVV $SS&UHDWLRQ7RRO � SXEOLF $SS7RRO� SXEOLF &UHDWLRQ7RRO ^

SXEOLF�

�� ���

XVLQJ $SS7RRO��PDQLSXODWH�

XVLQJ &UHDWLRQ7RRO��PDQLSXODWH�

VISITOR in Frameworks 9

“Pattern Hatching” C++ Report November/December 1999

YLUWXDO &RPPDQG PDQLSXODWH�6KDSH��

YLUWXDO &RPPDQG PDQLSXODWH�6WDU��

YLUWXDO &RPPDQG PDQLSXODWH�0RRQ��

YLUWXDO &RPPDQG PDQLSXODWH�+HDUW��

`�

The XVLQJ declarations bring the $SS7RRO and &UHDWLRQ7RRO functions into $SS&UHDWLRQ7RRO, saving
us the chore of redefining them manually. The last three PDQLSXODWH operations implement specialized
manipulation behavior for creating stars, moons, and hearts, respectively.

That leaves the framework catch-all, which both superclasses define. And that means we have to disam-
biguate it in $SS&UHDWLRQ7RRO.

As in most things object-oriented, specific behavior outranks general behavior. First the catch-all will do a
dynamic cast akin to the one in 3UHGHILQHG7RRO’s catch-all, except it’ll be casting to $SS6KDSH, not
3UHGHILQHG6KDSH. If that cast fails, then it’ll try casting to a 3UHGHILQHG6KDSH. If that fails,
$SS&UHDWLRQ7RRO will finally revert to the default &UHDWLRQ7RRO behavior:

&RPPDQG $SS&UHDWLRQ7RRO��PDQLSXODWH �6KDSH V� ^

&RPPDQG FPG ��

LI �$SS6KDSH DV G\QDPLFBFDVW�$SS6KDSH!�V�� ^

FPG DV�!DFFHSW�WKLV��

` HOVH LI �3UHGHILQHG6KDSH SV G\QDPLFBFDVW�3UHGHILQHG6KDSH!�V�� ^

FPG SV�!DFFHSW�WKLV��

` HOVH ^

FPG GHIDXOW0DQLSXODWH�V��

`

UHWXUQ FPG�

`

Epilogue
Compared to the conventional VISITOR implementation, the overhead of the staggered approach amounts to
twice the number of DFFHSW and YLVLW operations plus one dynamic cast.* Contrast that with a conven-
tional catch-all implementation, where you have an DFFHSW-YLVLW pair plus dynamic casts proportional to
the number of application-specific ConcreteElement classes. Staggering application-specific Visitor inter-
faces lets you extend the Element hierarchy in arbitrarily large chunks with only constant overhead.

These three implementation approaches define a spectrum of trade-offs between static type safety and Con-
creteElement extensibility. Conventional VISITOR gives you full static type safety but no way to define new
ConcreteElement subclasses. Pattern Hatching’s catch-all approach gives you full extensibility but no static
type checking for new ConcreteElement subclasses. The staggered approach falls in-between, close to con-
ventional VISITOR regarding type safety but close to the catch-all with respect to extensibility—the best of
both worlds. But it’s the most complex of the lot by a wide margin.†

* $SS&UHDWLRQ7RRO adds another dynamic cast, the result of having combined two tools with multiple
inheritance. Cute as that example may be, it probably isn’t representative given the stigma attached to deriv-
ing from concrete classes.6
† Bob Martin describes an implementation variation called “Acyclic Visitor.”7 It is similar to the staggered
approach except that dynamic casting occurs in DFFHSW rather than YLVLW operations. Such placement has
undesirable consequences on maintainability, as I describe in Pattern Hatching.8

10 VISITOR in Frameworks

“Pattern Hatching” C++ Report November/December 1999

This whole scenario demonstrates how important it is to keep the design pattern distinct from its implemen-
tation. VISITOR addresses three separate but related problems:

1. You want polymorphic behavior, but it must exist outside the class hierarchy to which it logically
belongs.

2. You want to avoid scattering polymorphic behavior throughout a class hierarchy.

3. You need double dispatch semantics, as in the m x n problem addressed here.

These problems have importance on a conceptual level quite apart from how their solution is implemented.
VISITOR characterizes them and offers a solution in terms of common object-oriented language facilities. In
our context, the most relevant is the m x n problem. It’s a pity that double dispatch is so tough to implement
extensibly in single-dispatch languages, but that fact invalidates neither the problem nor the pattern.

The staggered VISITOR approach I’ve described takes us up a notch or two in the flexibility department,
with incremental added cost. Still, the ultimate solution may lie outside C++. Programming language makes
all the difference, generally speaking, and I’ll bet implementing VISITOR in a language that supports double
dispatch (such as CLOS) can simplify things a lot further, with even greater flexibility. That could make
Erich’s concerns vanishingly small indeed.

Have a safe and joyous Y2K!

Acknowledgments
Thanks to Andrei Alexandrescu, Brad Appleton, Dave Ehnebuske, Ralph Johnson, Scott Johnston, and
Scott Meyers for the sanity checks.

References

1 Vlissides, J. TOOLED COMPOSITE. C++ Report, September 1999, pp. 43–47.
2 Vlissides, J. Pattern Hatching: Design Patterns Applied, Addison–Wesley, Reading, MA, 1998, pp. 36,
81–84.
3 Martin, R. The Dependency Inversion Principle. C++ Report, June 1996, pp. 61–66.
4 Gamma, E., et al. Design Patterns, Addison–Wesley, Reading, MA, 1995.
5 Ibid, p. 20.
6 Meyers, S. More Effective C++, Addison–Wesley, Reading, MA, 1996, pp. 258–270.
7 Martin, R. “Acyclic Visitor,” in Pattern Languages of Program Design 3, R. Martin, et al., eds., Addison–
Wesley, Reading, MA, 1998, pp. 93–103.
8 Pattern Hatching, pp. 83–84.

