Codeurs absolus KBD / KRD avec interface *PROFIBUS-DP* Supplément : KRD 10941

KRD 11109 BF

03 / 2003

Manuel d'utilisation

Sommaire

1. Généralités	3
2. Remarques pour l'installation du PROFIBUS-DP - RS 485	3
2.1 Raccordement d'un codeur avec connecteur RS	4
2.2 Raccordement d'un codeur avec boîtier de raccordement	4
3. Fonction de configuration (DDLM_Chk_Cfg)	6
4. Fonction Data Exchange (DDLM_Data_Exchange)	7
4.1 Valeur instantanée de la position (Input-Data)	7
4.2 Fixer la valeur de référence (Output-Data)	7
5. Paramètres de programmation pour les codeurs de classe 1 et 2 (DDLM_Set_Prm) /4/	9
5.1 Définition des paramètres de programmation	10
5.2 Indications sur l'information de vitesse de rotation	10
6. Messages de diagnostic (DDLM_Slave_Diag)	13
6.1 Information de diagnostic standard (Octets 1-6):	13
6.2 Diagnostic afférent aux appareils	13
6.2.1 Diagnostic spécifique au fabricant (Octet 60-63)	14
6.2.2 Exemple de message de diagnostic	14
7. Simatic Step7	16
7.1 Raccordement du codeur Profibus TWK	16
7.1.1 Installation du fichier GSD	16
7.1.2 Installation du symbole du codeur TWK	16
7.1.3 Sélection du codeur TWK dans le catalogue du matériel de Step7	16
7.1.4 Configuration du codeur	16
7.1.5 Attribuer une adresse Profibus	17
7.1.6 Attribution des adresses Entrée/Sortie (Adresses S7)	
7.1.7 Parametrage du codeur	
7.1.8 Attribution de l'adresse de diagnostic	
7.2 Aunoution de l'adresse du participant pour le modèle de codeur avec connecteur	
7.31 Le proiet TWKDPCI 1	20
7.3.2 Le Projet TWKDPCL2	
7.3.3 Installation des programmes d'exemples	
7.3.4 Explications pour les programmes d'exemples	22
8. Bibliographie	23
Notions de codeurs	23
COPYRIGHT: The Operating Instructions TZY 11109	
is owned by TWK-ELEKTRONIK GMBH and is	
protected by copyright laws and international treaty provisions.	
© 2003 by TWK-ELEKTRONIK GMBH	
POB 10 50 63 ■ 40041 Düsseldorf ■ Germany	
Tel. +49/211/63 20 67 ■ Fax +49/211/63 77 05	

e-mail: info@twk.de ■ internet: www.twk.de

1. Généralités

Les codeurs absolus KBD/ KRD sont des développements dans la continuité de la spécialisation bus de terrain Profibus-DP-V0 de la société TWK.

Notre expérience avec les modèles CRD sous Profibus, permet de proposer un nouveau produit sur une base éprouvée avec de nouvelles fonctionnalités. Les nouveaux modèles permettent une résolution plus importantes (max. 16 Bit sur 360°), des messages de diagnostic abrégés et en option une information de vitesse. Le modèle KBD est le codeur monotour (max. 16 Bit) et le modèle KRD est le codeur multitours (max. 28 Bit). Les caractéristiques techniques sont détaillées sur la fiche technique 10941.

Ce manuel d'utilisation traite dans sa première partie les bases pour la compréhension de l'installation d'un codeur absolu sous PROFIBUS DP, et dans la deuxième partie l'installation sous Siemens - Step 7 - ainsi que des programmes d'exemples.

Pour des informations complémentaires et plus amples sur le réseau PROFIBUS, veillez vous rapprocher de l'organisation des utilisateurs Profibus PNO (www.profibus.com).

2. Remarques pour l'installation du PROFIBUS-DP - RS 485

Caractéristiques essentielles de la technique de transmission du RS-485 /2/:

Topologie du réseau	bus linéaire, résistances de terminaison du bus les lignes d'embranchement ne sont autorisées que lors de vitesses de transmission < 1,5 MBit/s
Ligne	câble blindé, torsadé
Nombre de stations	32 stations dans chaque segment sans Repeater avec Repeaters : jusqu'à 126
Mode de raccordement	variantes réalisées dans la série des modèles KBD / KRD : connecteur rond RS 25 12 broches boîtier de raccordement SUB D 9 broches ou autres, sur demande (plan de connexion selon /1/)

Longueur de transmission en fonction de la vitesse de transmission pour câble de type A									
Vitesse de transmission [kBit/s] 9,6			19,2	93,75	187,5	500	1.500	12.000	
Longueur de transmission en [m] 12		1200	1200	1200	1000	400	200	100	
Spécifications du câble résistance des ondes : de type A capacité :			1351 < 30 p	65 Ω F/m					

capacité :	< 30 pF/m
résistance du circuit :	110 Ω/km
diamètre du fil :	0,64 mm
coupe transversale du fil :	> 0,34 mm ²

voir également :	Installation Guideline for PROFIBUS -FMS/DP (Nr. 2.111 - PNO)
	Implementation Guide DIN 19245 (Nr. 2.041)

2.1 Raccordement d'un codeur avec connecteur RS

Le raccordement pour le connecteur RS 12 broches (attention : numérotation des pins dans le sens des aiguilles d'une montre en regardant le côté de contact de la douille, codeur : douille) est conforme au Profibus Profile for Encoders /1/.

Les résistances de terminaison du bus doivent être réalisées en externe dans le contre connecteur ou dans la partie électronique suivante. Pour le réglage de l'adresse voir chapitre 7.2.

A la livraison, chaque codeur avec connecteur RS a l'adresse par défaut 123. Il est possible via le DP-Master de modifier l'adresse d'un DP-Slave. La nouvelle adresse doit être comprise entre 1 et 126 (DDLM_Set_Slave_Add).

Le boîtier de raccordement installé dans PROFIBUS a trois presses étoupes répartis de la façon suivante :

- D PG 7: alimentation du codeur (24 VDC +/-)
- D PG 9: Bus In (Receive/Transmit-Data A,B)
- D PG 9: Bus Out (Receive/Transmit-Data A',B')

Le codeur est raccordé grâce au connecteur SUB D 15 broches. En cas d'erreur le codeur peut facilement être changé. Pour séparer le boîtier de raccordement du codeur il faut simplement dévisser les 2 vis de fixation. (Attention : étanchéité assurée par un joint torique)

L'adressage des stations/participants est effectué grâce au commutateur DIP dans le boîtier. La valeur doit être comprise entre 1 et 126 (adresse par défaut : 123). L'adresse ne peut pas être modifiée via le service DDLM_Set_Slave_Add (Attention : le fichier GSD doit correspondre au modèle du codeur).

Commutateur DIP - Adressage et Résistances de terminaison du bus

Voies	12	3 4	5	6	7	8	9	10
ON = 1	LSB				MSB		Résistances de to	erminaison
OFF = 0	Adresse comprise entre 1 et 126			n.c.	pas de résistance	e de terminaison		
	(123: adre	esse par	défa	ult)				

Commutateur DIP

A l'arrière du boîtier de raccordement se trouvent les LEDs d'état suivantes :

LEDs d'état (boîtier de raccordement)

	UB	SRD	С	Err				
Configuration erronée	X	X		X				
Paramètres irrecevables	X		X	X				
Erreur de code (voir bytes de	X			X				
diagnostic 62 - 63)								
Configuration de l'appareil classe	X	X						
1 o.k.								
Configuration de l'appareil classe	X	X	X					
2 o.k.								
UB = tension d'alimentation, SRD = transfert de données, C = classe,								
Err = erreur								

3. Fonction de configuration (DDLM_Chk_Cfg)

Avec PROFIBUS-DP les codeurs absolus sont classifiés de la façon suivante :

Codeur à fonctionnalités classe 1

Classe 1 - Les appareils se distinguent par le fait que seule la valeur de la position (16 Bit ou 32 Bit) du codeur est transmise via le bus. Il n'en résulte aucun paramétrage du codeur. On différencie les configurations D0 et D1. La configuration D0 contient le format de données 1 Word Input, Consistency et D1 contient 2 Word Input, Consistency.

Codeur à fonctionnalités classe 2

Classe 2 - Les appareils se distinguent par le fait qu'ils sont paramétrables via le bus. On différencie les configurations F0 et F1. La configuration F0 contient le format de données 1 Word Input, Consistency et F1 contient 2 Word Input, Consistency. Dans le cadre des évolutions du codeur, une information de vitesse est disponible en option. Cette configuration F3 contient 4 Word Input-Data et 4 Word Output-Data. Les fonctionnalités de la classe 2 restent valables en configuration F3.

Configuration function (DDLM_Chk_Cfg)									
Selection	Class	Data	Identifier	Comment	Assignment Octet-				
			byte		No. and MSB/LSB				
					Octet 1/Bit 63: MSB				
32 Bit In/		64 Bit		KRD,	Octet 4/Bit 32: LSB				
Out and 32	2		E3	Velocity	Position value				
Bit Velocity	-	doto	13	signal	Octet 5/Bit 31: MSB				
		Gata		optional	Octet 8/Bit 0: LSB				
					Velocity signal				
Class 2 32 Bit In/ Out	2	32 Bit In/ Output data	F1	KRD	Octet 1/Bit 7: MSB Octet 4/Bit 0: LSB				
		40 Dit In/							
Class 2 16	2	16 Bit In/	F0	KRD/ KBD	Octet 1/Bit 7: MSB				
Bit In/ Out		Output data			Octet 2/Bit 0: LSB				
Class 1 32	4	32 Bit Input	D1	KBD	Octet 1/Bit 7: MSB				
Bit In		data	וט	KKD	Octet 4/Bit 0: LSB				
Class 1 16	1	16 Bit Input	DO		Octet 1/Bit 7: MSB				
Bit In		data	50		Octet 2/Bit 0: LSB				

4. Fonction Data Exchange (DDLM_Data_Exchange)

Les données Input sont des données qui sont envoyées par les appareils périphériques au maître ou dans le bus. La valeur de référence (voir ci-dessous) sert ici d'exemple de données Output.

4.1 Valeur instantanée de la position (Input-Data)

L'affichage de la valeur instantanée de la position a lieu dans le format 16, 32 ou 64 Bit (données Input), voir également indicatif du codeur.

Valeur instantanée de la position (DDLM_Data_Exchange) en format 16 Bit (Identifier byte F0/D0)

Input-Data						
Octet	1	2				
Bit	(MSB) 15 - 8	7 - 0 (LSB)				
Data	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰				
	Valeur de position					

Valeur instantanée de la position (DDLM_Data_Exchange) en format 32 Bit (Identifier byte F1/D1)

Input-Data								
Octet	1	2	3	4				
Bit	(MSB) 31 - 24	23 - 16	15 - 8	7 - 0 (LSB)				
Data	2 ³¹ - 2 ²⁴	2 ²³ -2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰				
	Valeur de position							

Valeur instantanée de la position (DDLM_Data_Exchange) en format 64 Bit (Identifier byte F3)

Input-Data									
Octet	1	2	3	4	5	6	7	8	
Bit	63 - 56	55 - 48	47 - 40	39 - 32	31 - 24	23 - 16	15 - 8	7 - 0	
Data	2 ⁶³ - 2 ⁵⁶	2 ⁵⁵ -2 ⁴⁸	2 ⁴⁷ - 2 ⁴⁰	2 ³⁹ - 2 ³²	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰	
	MSB			LSB	MSB			LSB	
	Valeur de position					Signal de vitesse			

4.2 Fixer la valeur de référence (Output-Data)

La fonction "fixer la valeur de référence" devrait avoir lieu seulement lors de l'arrêt complet de l'axe du codeur !

Pour ajuster les valeurs de position de la machine à la position absolue du codeur, il est parfois indispensable de fixer la valeur de référence. La valeur de référence est la valeur de position affichée au point de référence. Le codeur TWK à fonctionnalité classe 2 offre la possibilité de fixer la valeur de référence.

L'utilisateur doit prendre en compte que la valeur de référence doit être comprise dans la plage de la résolution totale. Ceci est à prendre en considération lors de la modification de la résolution totale.

La valeur de référence (code binaire) est transmise dans le mode Data-Exchange via l'installation du Bit 31 (format de données 32 Bit), du Bit 15 (format de données 16 Bit) ou du Bit 63 (format de données 64 Bit).

Les exemples suivants se réfèrent au format de données 32 Bit.

Fixer la valeur de référence (DDLM_Data_Exchange)

Output-Data					
Octet	1		2	3	4
Bit	31	(MSB)30 - 24	23 - 16	15 - 8	7 - 0 (LSB)
Data	1/0	2 ³⁰ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰
	Preset Control	ence			

Exemple : Fixer la valeur de référence (valeur Preset)

Output-Data							
Octet	1		2	3	4		
Bit	31	30 - 0		Į			
Data	1	1 00.0000.0000.0000.0000.0000.100					
	Preset Control	Valeur d	e référenc	e: 8			

Après réception de ce message le codeur calcule une valeur Offset (issue de l'actuelle valeur instantanée de position et de la valeur de référence).

Lorsque la valeur de position affichée est identique à la valeur de référence, le maître peut rendre au Bit 31 sa valeur initiale, puisque le mode Preset est terminé. Les diagrammes concernant le Timing sont présentés dans la documentation spécifique TY. Après avoir ramené le Bit 31 à la valeur zéro le codeur travaille en mode operating normal.

La valeur Offset est enregistrée dans les données de diagnostic et peut être lue même en cas de coupure de secteur ou de redémarrage (voir aussi les messages de diagnostic chapitre 6).

5. Paramètres de programmation pour les codeurs de classe 1 et 2 (DDLM_Set_Prm) /4/

Les données des paramètres se composent de données spécifiques au bus et de données spécifiques au DP-Slave.

données spécifiques au bus :	Octets 1-7	Octet 1 - Etat de station Octet 2 - WD_Fact_1 Octet 3 - WD_Fact_2 Octet 4 - Min. Station Delay Responder (min T _{SDR}) Octet 5 - Ident_Number : 19 Octet 6 - Ident_Number : 62H Octet 7 - Group Ident
données spécifiques au DP-Slave :	Octets 8-9 Octets 8-29	codeur classe 1 (2 Byte User_Prm_Data) codeur classe 2 (22 Byte User_Prm_Data)

description voir ci-dessous

Paramètres programmables (DDLM_Set_Prm)									
Octet Nummer	Paramètres	Données	Classe	Remarque					
9 / Bit 0	Code sequence/ Evolution du code	0: CW: Increasing clockwise 1: CCW: Increasing counter clockwise	1,2						
	Class 2 functionality/	0: not supported							
9 / Bit 1	Fonctionnalités classe 2	1: supported	1,2						
9 / Bit 2	Commissioning diagnostic control / Routine de diagnostic	0: not supported	option						
0 / Pit 4	Scaling function status/	0: disabled	2						
57 Dit 4	l'échelle	1: enabled	2						
	Velocity upit/ Upité du	0: Steps/ 10ms							
9 / Bit 6	signal de vitesse	1: Steps/ 100ms	2	option					
	Short diagnostic: 16 Byte/	0: not supported							
9 / Bit 7	Diagnostic abrégé: 16 Byte	1: supported	2						
10(MSB) - 13(LSB)	Singleturn resolution/ Résolution sur 360°	1 to 65536 steps/revolution	2						
14(MSB) - 17(LSB)	Total measuring steps/ Résolution totale	KRD: 1 to 268.435.456 steps KBD: 1 to 65536 steps	2						
18 - 29									

Remarque : il faut prendre en compte le fait que, dans le codeur, le calcul du nombre de tours est effectué à la puissance 2. Indépendamment de cette exigeance, l'utilisateur peut programmer la résolution et la résolution totale souhaitées selon les applications. Le codeur, en calculant, utilise si nécéssaire le nombre à la puissance 2 supérieur le plus proche. Les valeurs sont alors considérées et affichées comme étant la résolution réelle et la résolution totale réelle.

Exemple :	Résolution totale souhaitée Résolution souhaitée	:	20480 4096
	Nombre de tours souhaité	:	5
	Calcul interne du codeur Résolution totale réelle Résolution réelle	:	32768 4096
	Nombre de tours calculé	:	8

(Attention : la remarque ci-dessus est à prendre en compte lors de fonctionnements irréversibles. Dans l'exemple proposé, la position 0 n'est donc atteinte qu'après 32767 pas et non, comme souhaité, après 20479 pas.)

5.1 Définition des paramètres de programmation

Paramètres opérationnels (installation du mode de fonctionnement du codeur)

	Evolution du code :	définit dans quel sens de rotation la valeur de position correspond à une valeur croissante (en regardant du côté de l'axe).						
			CW - sens de	es aiguilles d'un	e montre		CCW - sens contraire des aiguilles d'une montre	
	Classe 2 :	sert à	différencier les	s codeurs de fo	nctionnalité	classe 1	ou classe 2	
			Classe 1 : Classe 2 :	évolution du co contient la fond fonction de pro	ode, débloca ctionnalité cl ogrammatior	ages des asse 1 i (voir ci	s fonctionnalités classe 2 i-dessous)	
•	Routine de diagnostic :	perme Lorsqu fonctio Un dia constr	t un contrôle e le des erreurs inne lors de ch ignostic compl ucteur).	xtensif de tous sont constatée naque mise en et se fait dans l	les composa s, elles sont route et ne d les bytes de	ants du c affichée doit pas diagnos	codeur et de leur parfait fonctionnement. es grâce au bit d'alarme. La routine être enclenchée séparément. stic 62-63 (voir diagnostic spécifique au	
•	Fonction de mise à l'échelle :	débloc Cette t et de l Après	que le paramét fonction est eff a résolution to avoir activé ce	rage de la résc fective seuleme tale. ttle fonction, la v	olution et de ent lors de la valeur de po	la résol modific sition es	ution totale. ation des paramètres de la résolution st calculée à nouveau puis affichée.	
	Signal de vitesse :	le sign	al de vitesse e	est traité de faço	on détaillé d	ans le c	hapitre 5.2.	
	Diagnostic abrégé :	développé afin d'être compatible avec les systèmes d'acquisitions ne pouvant traiter 63 bytes d diagnostic, d'où une abréviation sur 16 Bytes.						

5.2 Indications sur l'information de vitesse de rotation

Données générales pour la configuration F3 :

- Données de position et de vitesse
- 64 Bit In/Out Data
- ensemble des fonctionnalités de la classe 2 disponibles (voir également configuration F1)
- vitesse d'actualisation de la valeur de position env. 700 µs
- temps de validation de la valeur de référence env. 3 s
- l'information de vitesse est uniquement transmise lorsqu'un bloc de paramètres valide a été programmé.

Le calcul du signal de vitesse est fait indépendamment des paramètres de résolution programmés! Pour le calcul sont utilisées les valeurs des positions au temps t1 et t1+x. x étant le paramètre "Velocity Unit" correspondant à la base de temps (2 possibilités).

Velocity Unit	Base de temps
Steps/10 ms	1 ms
Steps/100 ms	10 ms

Le signal de vitesse transmis est la moyenne arithmétique de 16 valeurs mesurées. La vitesse calculée est transmise pour la base de temps T = 1 ms tous les 16 ms et pour T = 10 ms tous les 160 ms.

Calcul de la vitesse de rotation :

Réglage: Velocity Unit = Steps/100 ms Vitesse [min⁻¹] = Valeur affichée x 10 x 60 / 65536

Vitesse de rotation	Valeur affichée [hex]
4000 min-1	6AAAA
3000 min-1	50000
2000 min-1	35555
1000 min-1	1ΑΑΑΑ
500 min-1	D555
100 min-1	2AAA
10 min-1	444

Réglage: Velocity Unit = Steps/10 ms Vitesse [min⁻¹] = Valeur affichée x 100 x 60 / 65536

Vitesse de rotation	Valeur affichée [hex]
4000 min-1	АААА
3000 min-1	8000
2000 min-1	5555
1000 min-1	2AAA
500 min-1	1555
100 min-1	444
10 min-1	6D

Overflow = 8888 8888 (valeur 32-Bit) pour des vitesses ≥ 4000 min⁻¹

Accès aux données E/S du codeur

Un format de 8 Byte pour les données E/S n'est pas disponible dans les automates tel que le S7 de chez Siemens. Il faut donc pour la configuration F3 (8 Byte en données entrants et 8 Byte en données sortants) utiliser les fonctions systèmes SFC14 et SFC15 pour leur lecture. Elles sont disponibles dans les automates et peuvent être appelées par les blocs OB, FB et FC.

Il faut transmettre en tant que paramètre, à côté du Enable-Merker (dans ce cas : TrueFlag) et d'une variable pour le retours de la valeur (dans ce cas : RetVal), dans la configuration Hardware une adresse E/S (dans ce cas : 90_{dez} soit 5A_{hex}).

Les données entrants sont alors disponibles à l'entrée «RECORD» du SFC14. Les données sortants doivent être transmises à l'entrée «RECORD» du SFC15. Le paramètre RECORD est de type Any-Pointer pour un Array de grandeur 8 Byte.

Si un Pointer est ici donné à l'adresse E/S, les données seront disponibles dans la périphérie E/S sous cette adresse. Elles sont également visibles dans le tableau des variables sous cette adresse.

6. Messages de diagnostic (DDLM_Slave_Diag)

6.1 Information de diagnostic standard (Octets 1-6):

Description détaillée voir DIN 19245-3 /4/

(Remarque : Octets 5,6 : indicatif du fabricant : 1963H)

L'indicatif du fabricant est déposé à la PNO et identifie le participant en tant que codeur TWK.

6.2 Diagnostic afférent aux appareils

Le DP-Slave peut déposer ses diagnostics spécifiques dans la plage allant de l'Octet 7 à max. 244 (selon standard /4/).

Informations de diagnostic (DDLM_Slave_Diag)							
Numéro Octet de diagnostic	Paramètre	Données	Classe du codeur				
8	Message d'alarme	4: erreur de mémoire	1,2				
		0: évolution du code					
		1: fonctionnalités classe 2					
0	Modo do fonctionnomont	2: routine de diagnostic	1.2				
9		3: fonction de mise à l'échelle	1,2				
		6: unité pour le signal de vitesse					
		7: diagnostic abrégé 16 Byte					
10	Type de codeur	01 hex: codeur absolu multitours	1,2				
11(MSB) - 14 (LSB)	Résolution	1 à 65536 (360°)	1, 2				
15 (MSB) - 16 (LSB)	Plage de mesure	1 - 4096 tours	1, 2				
Fin des données de di	agnostic pour la classe 1 et	le diagnostic abrégé	•				
17	Messages d'alarme		2				
17	supplémentaires		2				
18 - 10	Messages d'alarme	4: erreur de mémoire	2				
10 - 13	supportés		2				
20 -21	Messages de mise en garde		2				
22 - 23	Messages de mise en garde		2				
22 20	supportés		2				
24 - 25	Version Profile	par ex. : 01.00	2				
26 - 27	Version Software	par ex. : 01.00	2				
28 - 31	Temps de fonctionnement	FFFF FFFFhex	2				
32 - 35	Valeur d'offset	00FF 230Fhex	2				
36 - 39	Valeur d'offset du fabricant	non supporté	2				
40(MSB) - 43(LSB)	Résolution (360°)	1 - 65.536	2				
44(MSB) - 47(LSB)	Résolution totale	1 - 268.435.456 pas	2				
48 - 57	Numéro de série	2A2A2A2A2A2A2A2A2A2A hex	2				
58 - 59	Réservé	00 00 hex	2				
60 - 63	Diagnostic spécifique au	voir chapitre 6.2.1	2				
00 00	fabricant		<u> </u>				

Numéro d'octet	Bit	Définition	Remarque	Moyen éventuel de
	-			suppression de l'erreur
60	0-7	Réservé		
61	0-7	Réservé		
	0	ErrEE	Erreur EEPROM	Reset codeur
	1	ErrMSA	Erreur MSA	Reset codeur
	2	ErrXRAM	Erreur de la RAM externe	Reset codeur
62	3	ErrExp	Erreur dans le boîtier de	Reset codeur
			raccordement	
	4	IniFlg	Réinitialisation EEPROM	
	5-7	Réservé		
	0	ErrCRCO	Erreur CRC0	Nouvelle programmation et
				remise en route du codeur
	1	ErrCRC1	Erreur CRC1	Nouvelle programmation et
				remise en route du codeur
	2	ErrPar	Mauvaise valeur pour le	Nouvelle programmation
			nombre de tours	
63	3	ErrSkal	Erreur de mise à l'échelle	
	4	ErrMem	Erreur code ROM	Reset codeur
	5	ErrInt	Erreur interne	Reset codeur
	6	ErrPre	Erreur valeur de référence	Entrée de la valeur Preset*
				comprise entre 0 et le
				nombre de tour total - 1
	7	ErrStat	Commande de	Commande de
			communication inconnue	communication correcte

6.2.1 Diagnostic spécifique au fabricant (Octet 60-63)

* Pour corriger une valeur de Preset erronée il faut d'abord mettre à zéro le Preset-Control-Bit 31 avant d'entrer une valeur correcte (voir chapitre 4.2).

6.2.2 Exemple de message de diagnostic

Diagnostic au format hexadécimal															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	0C	00	02	19	63	39	00	02	01	00	01	00	00	10	00
00	00	10	00	00	00	00	01	00	01	00	FF	FF	FF	FF	0B
27	EA	D4	00	00	00	00	00	01	00	00	10	00	00	00	2A
2A	2A	2A	2A	2A	2A	2A	2A	2A	00	00	00	00	00	00	
	stic au 1 00 00 27 2A	stic au form 1 2 00 0C 00 00 27 EA 2A 2A	1 2 3 00 0C 00 00 00 10 27 EA D4 2A 2A 2A	au format hexadé 1 2 3 4 00 0C 00 02 00 0C 00 02 00 00 10 00 27 EA D4 00 2A 2A 2A 2A 2A	au format hexadécima 1 2 3 4 5 00 0C 00 02 19 00 00 10 00 00 27 EA D4 00 00 2A 2A 2A 2A 2A	Stic au format hexadécimal 1 2 3 4 5 6 00 0C 00 02 19 63 00 0C 00 02 19 63 00 00 10 00 00 00 27 EA D4 00 00 00 2A 2A 2A 2A 2A 2A 2A	Stic au format hexadécimal 1 2 3 4 5 6 7 00 0C 00 02 19 63 39 00 0C 00 02 19 63 39 00 00 10 00 00 00 00 27 EA D4 00 00 00 00 2A 2A 2A 2A 2A 2A 2A	1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 00 0C 00 02 19 63 39 00 00 0C 00 00 00 00 01 27 27 EA D4 00 00 00 00 00 2A 2A 2A 2A 2A 2A 2A 2A	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 00 0C 00 02 19 63 39 00 02 00 0C 00 02 19 63 39 00 02 00 00 10 00 00 00 01 00 27 EA D4 00 00 00 00 01 01 2A 2A 2A 2A 2A 2A 2A 2A 2A	1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 0C 00 02 19 63 39 00 02 01 00 0C 00 02 19 63 39 00 02 01 00 00 10 00 00 00 01 00 01 27 EA D4 00 00 00 00 01 00 2A 2A 2A 2A 2A 2A 2A 2A 2A 00	1 2 3 4 5 6 7 8 9 10 11 0 0C 00 02 19 63 39 00 02 01 00 00 0C 00 02 19 63 39 00 02 01 00 00 00 10 00 00 00 01 00 01 00 27 EA D4 00 00 00 00 00 01 00 00 2A 2A 2A 2A 2A 2A 2A 2A 2A 00 00	Stic au format hexadécimal 1 2 3 4 5 6 7 8 9 10 11 12 0 0C 00 02 19 63 39 00 02 01 00 01 00 0C 00 02 19 63 39 00 02 01 00 01 00 00 10 00 00 00 01 00 01 00 FF 27 EA D4 00 00 00 00 01 00 00 10 2A 2A 2A 2A 2A 2A 2A 2A 2A 00 00 00	Stic au format hexadécimal 1 2 3 4 5 6 7 8 9 10 11 12 13 0 0C 00 02 19 63 39 00 02 01 00 01 00 00 0C 00 02 19 63 39 00 02 01 00 01 00 00 00 10 00 00 00 01 00 01 00 01 00 27 EA D4 00 00 00 00 01 00 01 00 10 00 2A 2A 2A 2A 2A 2A 2A 2A 00 <	stic au format hexadécimal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 00 0C 00 02 19 63 39 00 02 01 00 01 00 00 00 0C 00 02 19 63 39 00 02 01 00 01 00 00 00 00 10 00 00 00 01 00 01 00 01 00 00 00 00 10 00 00 00 00 01 00 01 00 00 00 00 00 10 00 00 00 00 00 01 00 00 10 00 00 00 27 EA D4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	Stic au format hexadécimal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0C 00 02 19 63 39 00 02 01 00 01 00 00 10 00 0C 00 02 19 63 39 00 02 01 00 01 00 00 10 00 0C 00 00 00 01 00 01 00 01 00 00 10 00 0C 10 00 00 00 01 00 01 00 01 00 10 10 00 00 10 00 00 00 01 00 00 10 00 00 00 00 27 EA D4 00 00 00 00 01 00 00 00 00 00 00 00 00 00

Numéro d'octet	Paramètre	Données		Remarque		
		01	00 hex			
		02	0C hex	Surveillance des accès activée (Bit 2 mis		
				sur 1)		
1 - 6	Informations de diagnostic	03	00 hex	,		
	standards	04	02 hex	Paramétrage par le maître avec l'adresse		
				02		
		05 - 06	1963 hex	Numéro d'identification KBD/ KRD		
7	Headerbyte agrandi	39 hex		63 Bytes de diagnostic		
8	Messages d'alarme	00 hex		Pas d'alarme		
		0A hex		CW, classe 2, diagnostic : non, mise à		
9	Mode de fonctionnement			l'échelle : oui, unité du signal de vitesse :		
				steps/ 10ms, pas de diagnostic abrégé		
10	Type de codeur	01 hex		Codeur absolu multitours		
11 - 14	Résolution	10000 hex		10000 hex		65536 pas / tour
15 - 16	Plage de mesure	1000 hex		4096 tours		
17	Messages d'alarme	00 hex		Pas d'alarme		
17	supplémentaires					
18-19	Messages d'alarme	0010 hex		Erreur de mémoire supporté		
10 10	supportés					
20-21	Messages de mise en	0000 hex		Non supporté		
2021	garde					
22-23	Messages de mise en	0000 hex		Non supporté		
	garde supportés					
24-25	Version Profile	01.00		Version hardware 1.00		
26-27	Version Software	01.00		Version software 1.00		
28-31	Temps de fonctionnement	FFFFFFF I	nex			
32-35	Valeur d'offset	0B27EAD4 h	nex	Valeur d'offset		
36-39	Valeur d'offset du fabricant	00000000 hex		Non supporté		
40-43	Résolution	00010000 hex		65536 pas / tour		
44-47	Résolution totale	10000000 he	ex .	268.435.456 pas		
48-57	Numéro de série	2A2A2A2A2	A2A2A2A2A2A hex			
58-59	Réservé	0000 hex				
60-63	Diagnostic spécifique au fabricant	00000000 hex		Pas d'erreur		

7. Simatic Step7

Ce chapitre explique le procédé à suivre pour raccorder codeur TWK dans le Profibus d'un automate S7 de chez Siemens, ainsi que le fonctionnement et l'utilisation des programmes servant d'exemples pour Step7. La version 5.0 de Step 7 a servi de base à cette documentation.

7.1 Raccordement du codeur Profibus TWK

Conditions préalables : la configuration du matériel est conforme à la structure de votre automate et vous avez installé un sousréseau Profibus.

7.1.1 Installation du fichier GSD

- Fermer tous les projets de la configuration du matériel.
- Insérer la disquette livrée par TWK dans le lecteur.
- Sélectionner dans la configuration du matériel sous le menu Outils, Installer nouvelles GSD.
- Sélectionner le fichier GSD correspondant à votre codeur : Modèle avec boîtier de raccordement : Modèle avec connecteur :
 par exemple KBDL16.GSD, KRDL28.GSD par exemple KBDZ16.GSD, KRDZ28.GSD
- Actualiser le catalogue du matériel de Step7 via Actualiser le catalogue dans le menu Outils.

7.1.2 Installation du symbole du codeur TWK

Grâce à l'installation du symbole du codeur TWK dans la configuration du matériel votre codeur prend l'apparence du codeur TWK. Cela est cependant insignifiant pour la fonction du codeur.

Pour installer le symbole (Bitmap) copiez les fichiers KBD_L_an.BMP ou KBD_Z_an.BMP (KRD_L_an.BMP ou KRD_Z_an.BMP) de A:\Bitmaps\ dans le registre C:\Siemens\Step7\S7Data\NSBMP\ (dans le cas où C: est votre lecteur S7). Les symboles apparaissent seulement après la remise en route du gestionnaire de projets Simatic.

7.1.3 Sélection du codeur TWK dans le catalogue du matériel de Step7

- Après avoir ouvert le catalogue du matériel vous trouvez, sous Profibus-DP, Autres appareils de terrain, Fiche d'identité les codeurs Profibus TWK comme : TWK KBD/L - 16 Bit

тwк	KRD/Z	-	28	Bit.	
TWK	KRD/L	-	28	Bit	
TWK	KBD/Z	-	16	Bit	
IWK	KBD/L	-	16	Bit	

- Ouvrez votre projet, sélectionnez le bus et raccordez le codeur au bus en cliquant deux fois sur la ligne correspondante dans le catalogue du matériel (par ex. : TWK KBD/L - 16 Bit).

7.1.4 Configuration du codeur

Après la sélection du type de codeur adéquat dans le catalogue du matériel la boîte de dialogue suivante apparaît pour déterminer la fonctionnalité du codeur et la résolution. Choisir selon vos exigeances la fonctionnalité classe1 ou classe 2 et la résolution 16, 32 ou 64 Bit. (voir chapitre 3)

Choisir la configuration voulue	×
32 Bit In/Out 32 Bit Velocity Class 2 32 Bit In/Out Class 2 16 Bit In/Out Class 1 32 Bit In Class 1 16 Bit In	*
र	×
(OK Annuler	Aide

7.1.5 Attribuer une adresse Profibus

Lorsque vous avez choisi votre	Propriétés - Interface PROFIBUS TWK KRD/Z - Vel	×
configuration, la boîte de dialogue suivante apparaît, dans laquelle vous devez indiquer l'adresse Profibus attribuée au codeur. Pour les programmes d'exemples choi- sissez s'il vous plaît l'adresse 123 pour le premier codeur et l'adresse 122 pour le second	Général Paramètres Adresse : 123 Vitesse de transmission :1,5 Mbits/s	
Remarque :	Sous-réseau :	
L'adresse Profibus du codeur est attribuée pour le modèle à boîtier de raccordement via le commu-tateur Dip (voir chapitre 2.2) et pour le modèle à connecteur via le logiciel (voir chapitre 7.2).	Non connecté Nouveau PROFIBUS(1) 1,5 Mbits/s Propriétés Effacer	
Sélectionnez dans la zone Sous-réseau votre projet Profibus et quittez la boîte de dialogue avec OK.		
	OK Annuler Aide	

Le codeur apparaît alors en tant que participant dans votre réseau Profibus. Selon la configuration et l'adresse vous pourriez obtenir la boîte de dialogue suivante :

La valeur pour **Module/Identification DP** résulte de la configuration choisie. Les valeurs pour l'adresse E/S sont des adresses par défaut qui varient selon la commande.

TVVK_

7.1.6 Attribution des adresses Entrée/ Sortie (Adresses S7)

En cliquant deux fois sur la ligne "Emplacement 0" vous accédez à la fenêtre Propriétés de l'esclave **DP** avec les zones Adresse /Identification et Paramétrer. Dans la Adresse/ zone Identification il faut attribuer sous "Sortie" (seulement pour les codeurs de classe 2) et "Entrée" sous les adresses du codeur grâce auxquelles le codeur doit être identifié dans le S7. Les autres données de cette zone ne doivent pas être modifiées. L'illustration suivante montre cette zone en prenant pour exemple un codeur de classe 2 avec une résolution de 32 Bit. Pour le programme d'exemple, entrez, s'il vous plaît, pour la sortie et l'entrée l'adresse 100

7.1.7 Paramétrage du codeur

Dans la zone "Paramétrer" il est possible de déterminer les caractéristiques du codeur. Dans l'exemple ci-dessous il s'agit des paramètres d'un esclave de classe 2. Dans le cas d'un esclave de classe 1, seul le paramètre Code sequence peut être modifié (voir chapitre 5).

7.	Simatic	Step7
••	Omatio	otopi

Propriétés de l'esclave DP	×
Adresse/Identification Paramètres	
Type d'entrée/de sortie : Entrée/sortie	<u>S</u> aisie directe
Adresse : Longueur : Unité : Début : 100 4 ▲ Fin : 107	Cohérence assurée par : Longueur totale
Mémoire image :	
Entrée	
Adresse : Longueur Unité : Début : 100 4 - Mots Fin : 263	Cohérence assurée par : Longueur totale
Mémoire image : 🔤 🔤	
Données spécifiques <u>f</u> abricant : 14 octets max. hexa, séparés par des virgules ou espaces)	
OK	Annuler Aide

Paramètres	Valeur
🔄 🔄 Paramètres station	
🖕 🔄 Paramètres spécifiques à l'appareil	
–🗐 Code sequence	Increasing clockwise
—III Class 2 functionality	Supported
— Commissioning diagnostics	Not supported
— 🗐 Scaling function status	Disabled
–∭ Velocity unit	Steps/10 ms
–) Short diagnostic 16 Byte	Not supported
— 🗐 Singleturn resolution	65536
Le Total measuring steps	268435456
🗗 🔄 Paramétrage Hex	
– User_Prm_Data (0 à 7)	00,02,00,01,00,00,10,00
– User_Prm_Data (8 à 15)	00,00,00,00,00,00,00
└─ User_Prm_Data (16 à 21)	00,00,00,00,00

7.1.8 Attribution de l'adresse de diagnostic

L'attribution de l'adresse de diagnostic est seulement nécessaire si, au sein du programme S7, les fonctions de diagnostic spécifiques à Profibus sont utilisées.

Afin de pouvoir accéder à la zone de diagnotic du codeur au sein du programme S7, il est nécessaire d'attribuer au codeur une adresse de diagnostic S7 spécifique. Cette dernière peut être comprise dans toute la plage périphérique de la commande. Elle ne peut donc pas prendre les valeurs des adresses Entrée/Sortie.

La fenêtre **Propriétés de l'esclave DP** avec la zone **Fiche d'identité** apparaît en cliquant deux fois sur le symbole du codeur.

Pour le programme d'exemple veuillez attribuer au premier codeur l'adresse de diagnostic 200 et pour le second 202.

Après la confirmation avec OK le codeur est configuré et paramétré.

La configuration du matériel peut être à présent traduite et transmise au S7.

7.2 Attribution de l'adresse du participant pour le modèle de codeur avec connecteur

Une attribution de l'adresse du modèle de codeur avec connecteur sous S7 est possible grâce à une carte MPI compatible avec le Protocole Profibus de chez Siemens (par ex. : CP5611).

Les conditions d'attribution d'une nouvelle adresse selon Siemens sont les suivantes :

1. Aucun maître DP n'est connecté au réseau PROFIBUS.

2. Le réseau PROFIBUS doit comporter au moins un esclave DP.

3. Vous avez déjà directement attribué une adresse PROFIBUS à chaque esclave du réseau PROFIBUS (soit à l'aide du logiciel, par connexion directe de la PG et de l'esclave DP, soit en positionnant les commutateurs de l'esclave; puisque l'attribution de l'adresse dépend de l'esclave DP, veuillez consulter à ce sujet le manuel de l'esclave).

4. Vous avez connecté la console de programmation au réseau PROFIBUS à l'aide d'un cable de branchement (voir le manuel relatif au système maître).

(voir l'aide en ligne sous Système cible, Attribuer adresse PROFIBUS dans le gestionnaire de projets Simatic)

C'est à dire : si le codeur n'est pas le seul esclave connecté à la carte MPI/Profibus alors tous les esclaves se trouvant dans le bus doivent posséder une adresse unique (une adresse ne peut être attribuée qu'une seule fois) et le Master (CPU-S7) doit être séparé du bus. Par exemple : il n'est pas possible d'introduire dans le bus deux codeurs ayant la même adresse 123 et d'attribuer ensuite une nouvelle adresse à l'un des codeurs. Si le codeur - dont l'adresse doit être changée - a déjà été membre du bus auparavant, il faut couper son alimentation avant de lui attribuer une nouvelle adresse.

L'attribution d'une nouvelle adresse a lieu dans le gestionnaire de projets Simatic sous "**Système cible, Attribuer adresse Profibus**". Si le codeur est connecté à l'aide d'un câble de branchement MPI/Profibus de votre console de programmation, vous obtenez la fenêtre suivante :

7. Simatic Step7

Propriétés de l'esclave	e DP	×
Général		
Module		
Référence :		Fichier GSD/de type : KRDZ28V.GSD
Famille :	Codeur	
Type:	TWK KRD/Z - Vel	
<u>D</u> ésignation :	TWK KRD/Z · Vel	
Adresses		Partenaire/Réseau maître
Adresse diagnostic :	200	PROFIBUS 123
Prise en charge de S	YNC/FREEZE	
SYNC	EREEZE	Sur <u>v</u> eillance du temps de réponse
C <u>o</u> mmentaire :		
		<u>^</u>
		-
OK		Annuler Aide

La boîte de dialogue illustrée ci-dessus montre l'adresse du codeur en cours et vous demande d'indiquer la nouvelle adresse PROFIBUS. Confirmez avec la touche **Valider**, ainsi la nouvelle adresse reste en mémoire dans le codeur même en cas de coupure de secteur. La boîte de dialogue montre alors la nouvelle adresse comme adresse en cours.

Propriétés de l'esclave DP	2	<
Général		
Propriétés - Interface PROFIBUS TWK KRD/Z - Vel	2	×
Grénéral Paramètres		
Adresse : IBE 💌		
Vitesse de transmission :1,5 Mbits/s		
Sous-réseau :		I
Non connecté PRI/TERUSION 1.5 Mblez/e	Nouvenu	I
	Propriétés	I
	Eller I	I
	Fuenes.	I
		I
		I
		I
		I
ОК	Annuler Aide	

7.3 Programmes d'exemples

Sur la disquette livrée par TWK se trouvent dans le chemin \S7_BSP\ plusieurs fichiers d'archives de S7. Ces fichiers contiennent des programmes d'exemple pour S7 conçus par TWK pour l'emploi du codeur TWK avec Profibus. Les programmes ont été écrits pour une CPU 315-2DP fonctionnant de telle manière qu'aucun autre appareil périphérique soit nécessaire en dehors du codeur.

Sur la disquette se trouvent un projet pour codeur de fonctionnalité classe 1 et un projet pour codeur de fonctionnalité de classe 2. Chaque projet contient plusieurs dossiers avec des programmes pour différentes possibilités d'utilisation. Dans les dossiers des programmes se trouvent les dossiers standards "sources" et "blocs".

Les exemples de TWK contiennent uniquement des blocs qui ont été réalisés avec l'éditeur CONT/LIST/LOG. Le langage utilisé est LOG. Les blocs mettent à la disposition de l'utilisateur de nombreux documents et commentaires du réseau.

TWK ne garantit d'aucune façon le fonctionnement de ces programmes dans des appareils ou commandes de clients.

Programmes dans les fichiers d'archives :

-	TWKDPCL1.ARJ :	projet de classe 1 avec les dossiers des programmes Diag1, Diag2, Istwert, commentaire en
		allemand
		mariet de aleger o even les descions des margementes Dis et Dis et let Defet et let vert esperant

- TWKDPCL2.ARJ : projet de classe 2 avec les dossiers des programmes Diag1, Diag2, IstRef et Istwert, commentaire en allemand
- DP_C1_GB.ARJ : projet de classe 1 avec les dossiers des programme Diag1, Diag2, Istwert, commentaire en anglais
 DP_C2_GB.ARJ : projet de classe 2 avec les dossiers des programmes Diag1, Diag2, IstRef et Istwert, commentaire en anglais

7.3.1 Le projet TWKDPCL1

L'illustration suivante montre un dossier de programme du projet de classe 1 :

- TWKDPCL1
- 🗄 🗊 Istwert

Programme Istwert : il comprend uniquement un OB1 et montre comment accéder à la valeur de la position instantanée du codeur au sein du programme S7.

Programme Diag1: il contient en plus du programme valeur instantanée la fonction traitement d'erreur pour un codeur de classe 1. Il comprend aussi entre autre le bloc OB86 pour la reconnaissance d'une défaillance d'un codeur et le bloc OB82 pour la reconnaissance d'une demande de diagnostic du codeur. La fonction système de Step 7 SFC13 est utilisée pour lire la plage de diagnostic. (La plage de diagnostic du codeur de classe 1s'étend sur 16 octets. Voir chapitre 6)

Programm Diag2: il comprend la même fonctionnalité que Diag1mais pour deux codeurs

A l'intérieur de chacun de ces programmes il est possible de choisir entre les fonctions pour l'entrée d'un codeur 16 ou 32 Bit. Pour se faire la fonction 16 ou 32 Bit est affectée d'un signal "1" (mémento un, M 0.1) à l'entrée EN et la fonction non-utilisée est affectée du signal "0" (mémento zéro, M 0.0).

7.3.2 Le Projet TWKDPCL2

Il contient les dossiers de programmes suivant :

- - 🗄 💼 Istwert

Programme Istwert : identique à celui de classe1

Programme IstRef: il contient la lecture de la valeur de position instantanée ainsi que la commande possible dans la fonctionnalité classe 2 "fixer la valeur de référence"

Programme Diag1: il contient comme le Diag1 du projet de classe 1 le traitement d'erreur d'un codeur de classe 2. La plage de diagnostic s'étend sur 63 octets.

Programm Diag2: c'est également la variante de Diag1 avec deux codeurs.

7.3.3 Installation des programmes d'exemples

Conditions :

- Vous avez créé un projet et vous y avez introduit une commande avec la configuration de son matériel.

Cela pourrait ressembler au schéma suivant :

Vous avez, dans la configuration du matériel, connecté un ou deux codeurs au sous-réseau PROFIBUS avec les attributions suivantes (voir chapitre 7.1).

Premier codeur :	Adresse Profibus : 123 Entrées/Sorties : à partir de l'adresse 100 Adresse de diagnostic : 200
Eventuellement second codeur :	Adresse Profibus : 122 Entrées/Sorties : à partir de l'adresse 110 Adresse de diagnostic : 202

Installation:

- Sélectionnez dans le gestionnaire de projets Simatic Fichier, Désarchiver. Modifiez le type de fichier en *.arj et sélectionnez sur la disquette jointe dans le registre \S7_BSP\ le projet de classe 1 ou de classe 2.
- Dans la boîte de dialogue suivante indiquez votre registre de projet (normalement S7proj).
- La validation avec **OK** entraîne le démarrage du programme de désarchivage. Lorsque ce dernier est terminé vous trouvez dans votre registre de projet S7 le projet d'exemple TWK que vous avez choisi.
- Si vous sélectionnez à présent Fichier, Ouvrir, Projet, vous obtenez une liste des projets contenus dans votre système.
 Dans le cas où le projet d'exemple ne serait pas encore présent, sélectionnez Rechercher et cherchez le fichier TWKDPCL1.s7p (ou TWKDPCL2.s7p) dans le projet d'exemple TWK.
- Ouvrez le projet d'exemple, si bien que vous avez maintenant ouvert votre propre projet et le projet d'exemple. Vous pourriez alors obtenir le schéma illustré à la page suivante.
- Sélectionnez un des dossiers du programme S7 du projet d'exemple de TWK (Diag1, Diag2, IstRef ou Istwert). voir aussi chapitre 7.3.1)

- Copiez tous les blocs des classeurs des blocs du dossier des programmes choisi (par exemple : Diag1du TWKDPCL2) dans les classeurs des blocs encore vides de votre propre projet (par exemple : Programme S7 (1) de DP_CLAS2).
 (Remarque : chaque classeur de bloc, même vide, contient au moins un OB1, ce dernier est évidemment vide et peut être remplacé.)
- Si vous avez installé un codeur 16-Bit classe 2 et choisi le programme IstRef ou Diag1/2, vous devez pour fixer la valeur de référence , dans OB1 activer FB10 en mettant l'entrée EN sur M 0.1 et désactiver FB11 en mettant l'entrée EN sur M0.0.
- Remplacez éventuellement les messages M 1.0 "acquitter" et M 10.0 (et M 10.1 pour deux codeurs) "détermination de la valeur de référence" par vos propres signaux.
- Transférez tous les blocs dans la commande.
- Appelez maintenant OB1 dans la vue en ligne et activez **Test**, **Visualiser** pour pouvoir voir sur l'écran les valeurs actuelles du codeur.
- Uniquement pour les programmes IstRef et Diag1/2 : entrez une valeur de référence avec le double mot de données 0 dans DB100 (pour le deuxième codeur : le double mot de donnée 8 dans DB100) et fixez la à l'aide du mémento M 10.0 (/ M 10.1). Si la valeur de référence n'est pas comprise dans la plage de mesure paramétrée du codeur, alors le message d'erreur correspondant est créé dans OB1.

7.3.4 Explications pour les programmes d'exemples

Dans chaque dossier des programmes se trouve un tableau de symboles qui contient toutes les **variables globales** de la configuration maximale (Projet classe 2, Programme Diag2).

Les paragraphes suivant expliquent la structure du programme de cette configuration maximale. Avec les données de référence on obtient l'illustration suivante : (le nom symbolique se trouve toujours entre parenthèses).

□ S7-Programm □ 0B1 < maximal: 30> □ 0B100(ReferenzData) [26] □ FB10(SetRef16), DB10(SetRef16_IDB1) [28] □ FB11(SetRef32), DB11(SetRef32_IDB1) [30] □ FB11(SetRef32), DB21(SetRef32_IDB2) [30] □ DB120(FaultDB) [26] □ DB121(EncoderFaultDB) [26] □ FB13(ReadDiag32), DB13(ReadDiag32_IDB1)	Programme cyclique : - lecture des valeur instantanée - détermination de la valeur de référence (seulement classe 2) pour 16- Bit (FB10) ou 32-Bit (FB11) - Messages d'erreur des blocs OB82 et OB 86
	OB82 va s'exécuter, aussitôt qu'un esclave DP exige un diagnostic (lors de l'arrivée ou du départ d'un événement). Les données de diagnostics sont apportées par FB13/ SFC13 dans OB82. Les erreurs sont répertoriées dans OB1.
□ DB121(EncoderFaultDB) [30] □ □ 0B86 <maximal: 32=""> □ FC16(SearchSlave) [32] □ FC16(SearchSlave) [32]</maximal:>	OB86 est appelé par le système entre autre lors de la défaillance d'un esclave DP(par ex. coupure de courant)(lors de l'arrivée ou du départ d'un événement). Le codeur défaillant est constaté dans FC16 et montré dans OB1.

La plage de diagnostic du codeur défaillant est toujours entièrement lue par la fonction du système SFC13 (16 Octets pour la classe 1 et 63 Octets pour la classe 2). OB82 délivre l'adresse de cet esclave dans ses données locales.

Seuls les bits de message d'erreur spécifiques au fabricant sont exploités et, parmi ces derniers, seuls ceux qui peuvent apparaître en mode Data Exchange (fonctionnement normal du bus). Les erreurs qui apparaissent uniquement lors du démarrage du bus ne peuvent pas être détectées par OB82. Dans ce cas de figure les messages d'erreur doivent être lus par la fonction du Step 7 **HW Config Online**.

8. Bibliographie

- /1/ PROFIBUS Profile for Encoders Order No. 3.062
 1997, PROFIBUS Nutzerorganisation e. V. Haid-und-Neu-Str. 7
 D-76131 Karlsruhe
- PROFIBUS
 Technische Kurzbeschreibung
 Version: April 1997
 PROFIBUS Nutzerorganisation
- /3/ DIN 19245 Teil 1 PROFIBUS Process Field Bus Technique de transmission, Protocole d'accès au Bus et protocole de transmission, Interface de service pour couche d'application, Management
- /4/ DIN 19245 Teil 3 PROFIBUS Process Field Bus Périphérie décentrée (DP)
- /5/ SIEMENS SINEC L2 SPC 3 Siemens PROFIBUS Controller Descriptif d'utilisation Numéro de commande : 6ES7 195-0BD00-8AA0

Notions de codeurs

Paramètres :	Explication
Résolution - Pas/360° :	La résolution indique le nombre de pas par tour (360°).
Plage de mesure :	Indique le nombre maximal de tour. L'indication du nombre de tour doit être un nombre à la puissance 2.
Nombre de tour total :	Il est calculé de la façon suivante : Nombre de tour total = Résolution x Plage de mesure
Evolution du code :	Indique dans quel sens de rotation le code correspond à une valeur croissante. On différencie : CW - clockwise, sens des aiguilles d'une montre CCW - counter clockwise, sens contraire des aiguilles d'une montre (vue face à l'axe)
Valeur de référence :	Valeur qui apparaît comme valeur instantanée après avoir activé la fonction Preset.