
129-04 
 

1

  
Abstract--The Resource Description Framework (RDF) was 

designed to enable machines to understand the semantic of 
encoded data. There exist different ways how to understand, use 
and maintain context information with it. In this paper we will 
look at the benefits this could bring for intelligent systems and 
will present the applications RDF-Source related Storage System 
(RDF-S3) and easy RQL (eRQL) that are build to support its 
users with different context information for a better 
understanding of the data. 
 

Index Terms—knowledge representation, semantic networks, 
truth maintenance, artificial intelligence 

I. INTRODUCTION 

NE mandatory objective for intelligent systems is that 
they interact with their environment. This means they 

receive inputs and react the way they are programmed and/or 
trained. Depending on the system the range for input is either 
very limited, or the context of the data needs to exist or be 
included to the input too. This can be compared with human 
interaction, e.g., one friend says to another: "Yesterday our 
team won 2:0!" The two friends probably know which sport 
and team they are talking about, since they know each other. 
An intelligent system (IS) would need to know these context 
information too, to be able to process such an input the right 
way. There are different ways to enable an IS to understand 
the context and the given input. There are artificial 
intelligence approaches trying to extract the semantic from the 
human language. Another approach is to already encode the 
input and its context information in a way that the semantic 
behind it can be retrieved by the IS. This is the one that will 
be concentrated on in this paper. The World Wide Web 
Consortium (W3C) worked out the Resource Description 
Framework (RDF) and the Web Ontology Language (OWL) 
for exactly this reason, to enable machines to understand the 
semantic behind the data. The emergence of RDF is expected 
to enable metadata interoperability across different 
communities and applications by supporting common 
conventions on metadata syntax, structure, and semantics. 
RDF data can be regarded as a set of little sentences, each 
having a subject, a predicate and an object. These sentences 
are also called (RDF-) statements or triples. A set of RDF 

 
Manuscript received September 7, 2004.  
Karsten Tolle is with the Databases and Information Systems (DBIS), 

Johann Wolfgang Goethe-University of Frankfurt, Robert-Mayer-Strasse 11-
15, D-60325 Frankfurt, Germany (e-mail: tolle@dbis.informatik.uni-
frankfurt.de).  

triples can also be represented as a graph, whereby the 
subjects and objects are the nodes and the predicates are 
directed edges pointing form the subject to the object.  

One central term of this paper is context. There is no clear 
and universally accepted definition for context within 
knowledge bases and therefore not within RDF. An overview 
of existing interpretations can be found in [1]. For RDF I see 
three different situations where the term context is used. I 
therefore split context into subparts. First, the context given 
by the surrounding graph, I call this internal context. The 
second situation I call the external context, like source 
information, time of accessing the source, etc. Including this 
information into the RDF model can result in confusion and 
will result in untrustworthy data. Third, the context used to 
identify triples for a clear and easier handling of sets of triples, 
e.g., to merge/unmerge graphs or to set access privileges.  

I worked out a storage system for RDF data called RDF-S3 
(RDF-Source related Storage System) and a query language 
on top called eRQL (easy RDF Query Language). One of the 
peculiarities of it is the ability to store and provide context 
information. RDF-S3 stores external context information, as a 
minimum the URI of the source used to load the RDF data. 
This enables the system to allow deletions and updates of 
single documents that had been entered before. This external 
context information can be retrieved and used by eRQL. E.g., 
queries can be restricted to run only on defined sources and it 
is possible to exclude some which are be not relevant or 
untrustworthy sources before the execution. In addition eRQL 
provides the ability to view results inside their internal 
context. More precisely the surrounding graph up to a range 
defined by the query will be included to each triple fitting the 
query. This provides a better understanding of the returned 
results.  

An IS working on RDF data could benefit from adopting 
RDF-S3 and eRQL. This can be demonstrated by the previous 
example of the two friends talking about their team. With 
RDF-S3 all input data will be stored together with the 
information where the data came from. This means if the 
context information which team and sports a person is talking 
about is not included to the input, it can be tried to infer this 
information from previous inputs of that person. In case it can 
not be inferred this way, so, there is no other chance than to 
ask the person as we would do in a human to human 
conversation. 

You will find a brief introduction to RDF capturing the 
needed parts for this paper in section II. In section III the 
definition for context in the range of RDF is further discussed 

Understanding data by their context using RDF 
Karsten TOLLE, Database and Informationssystems, Johann Wolfgang Goethe-Universität Frankfurt 

am Main (Germany) 

O



129-04 
 

2

and existing approaches how to handle context in RDF are 
analyzed. This is followed by some ideas how an IS could 
benefit from these approaches and the use of RDF in section 
IV. The section V then describes RDF-S3 and eRQL in more 
detail, that can be used as a basis for an IS knowledge base. 
Finally you can find some conclusions and future work in 
section VI.  

II. BRIEF INTRODUCTION TO RDF 
In this section I will describe those parts of RDF you will 

need to understand the ideas of the paper. Of course I will stay 
on a very abstract level. To get a more detailed introduction 
please have a look at the RDF Primer [4].  

RDF data can be regarded as a set of little sentences, each 
having a subject, a predicate and an object (SPO). These 
sentences are also called (RDF-) statements or triples. A set of 
RDF triples can be represented as a graph, whereby the 
subjects and objects are the nodes and the predicates (also 
called properties) are directed edges pointing form the subject 
to the object. In RDF everything is a resource, meaning it can 
be identified by a Uniform Resource Identifier (URI). The 
only exception are native values, called literals, like integers 
or strings. The literals can only appear in the object part of a 
triple.  

RDF comes with a set of predefined predicates and some 
classes that can be used to categorize resources. To extend 
this vocabulary RDF Schema (RDF/S) can be used to declare 
and define further properties and classes. RDF/S is using RDF 
triples to build up these new vocabularies. In that sense RDF 
and RDF/S are self-contained. Both are so strong related 
which means when talking about RDF we normally mean 
RDF together with RDF/S. 

An RDF graph can be transformed into an RDF/XML 
representation for exchange purposes. This is the normal 
encoding you will encounter RDF data in the Web. Those 
RDF/XML files can then point to external vocabularies, also 
called namespaces, to reuse them. When building the graph of 
an RDF/XML file, you will need to include the graph of the 
namespaces into it. 

For this paper also the RDF construct of an reified 
statement is important. A reified statement identifies one 
triple, so that assertion can be made about it. It can for 
example be used for indirect speech. Suppose we have the 
sentence: "Julia said she likes ballet. ", you can build: "Astrid 
said that Julia said she likes ballet. " Note: To build a reified 
statement, it is worth to point to the subject, the predicate and 
object of the triple. This means you need three additional 
triples in the graph (in reality you will need four, since the 
node identifying the triple must be instantiated to the class 
rdf:Statement). 

When you have an RDF graph given, you can try to infer 
from it additional information or test if given facts are valid 
within the graph. A more precise description how this can be 
done can be found in [2]. 

III. CONTEXT WITHIN THE SEMANTIC WEB COMMUNITY 

We can find a common definition for context in 
dictionaries, e.g., in [11] we can read as a definition for 
context: "The part of a text or statement that surrounds a 
particular word or passage and determines its meaning. The 
circumstances in which an event occurs; a setting." However, 
there is no clear and universally accepted definition for 
context in the area of knowledge base systems and therefore 
also none in the Semantic Web community. An overview of 
existing interpretations of the term context in the area of 
knowledge base systems can be found at [1]. This section first 
gives an overview of existing approaches and will then give 
my conclusion which approach should be used. 

A. Existing approaches 
For RDF and therefore for the Semantic Web, we can find a 

list of approaches how to deal with context information: 
reified statements, Quadruples (Quads), Named Graphs and 
Triples Plus Context Node. These approaches are introduced 
below. 

1. Reified statements – using reified statements, you can 
identify single statements and assert additional information to 
it. Graham Klyne describes in [3] how reified statements 
combined with containers can be used for more complex 
context handling. This approach stays completely in the 
existing RDF model. All information can be handled therefore 
by existing RDF tools and there is no semantic extension 
needed. However, converting a triple into an reified statement 
needs four additional triples. This results in a blow-up of 
triples. This can be tried to be compensated, but the resulting 
graph will get rather complicated and therefore also its 
handling. Already Graham Klyne used in [3] an abbreviated 
form to write reified statements using quadruples. 

2. Quadruples (Quads) – this approach is discussed in [8]. It 
extends the RDF triples by a forth component. A Quad is 
therefore a four-tuple <C, S, P, O> (the order here is not 
important) where C is a context and S, P and O are the triple 
components of RDF. The C is used to group triples and can be 
used as a normal resource to make statements about these 
groups. This means it can be used also as a subject (S) or an 
object (O). In some cases the C can have a null value. Here an 
example: 
[_:cxt _:Julia ex:likes ex:Ballet] 
[_:cxt _:Julia ex:daughterOf _:Astrid] 
[null _:cxt ex: loadedBy “Karsten”] 
[null _:cxt ex: loadingDate “20.10.2004”] 

These statements assert that, the facts "Julia likes Ballet" and 
"Julia is the daughter of Astrid" are both loaded by "Karsten 
Tolle" on date "October 20 2004". 

The drawbacks here is that by extending the RDF model, 
existing RDF tools can not handle quads. Additionally the 
semantic of the context part is not defined, it is just introduced 
as context. This is very flexible but might cause confusion too. 

3. Named Graphs – are a reformulation of quads. A more 
detailed description can be found in [9] or [10]. With Named 
Graphs the RDF triples are grouped to sets (called graphs) and 
named by a global name (URI) or an anonymous node. Again 



129-04 
 

3

the graph names can be used as a subject or object part of the 
RDF triples to make assertions to the whole graph. Using the 
TriG [6] syntax the upper example can be translated into the 
following Named Graph: 
_:G1 (_:Julia ex:likes ex:Ballet. 

 _:Julia ex:daughterOf _:Astrid.) 
_:G2 (_:G1 ex:loadedBy “Karsten”. 

 _:G1 ex:loadingDate “20.10.2004”.) 
As a difference to the quads, Named Graphs are coming 

with a clearer interpretation. In [10] we can read: 
We do not directly semantically interpret Named Graphs; 

however an RDF(S) interpretation I (as in [2]) conforms with 
a set of Named Graphs N when: 

For every Named Graph ng ∈ N, we have I(name(ng)) = ng 
Additional they state in [10] that Named Graphs are 

downward compatible with RDF. 
4. Triple Plus Context Node – as in Quads a Triple Plus 

Context Node is a four-tuple <C, S, P, O>. The difference to 
the quads is that the context node C is semantically separated 
from the RDF part, meaning you can not make an assertion to 
all statements having the same C part inside the SPO part. By 
leaving the RDF part and the C part separate it is easy to fade 
out the C to return to the pure RDF model. The semantic 
definition of the context node here also depends on the 
application. It can be used for grouping or identifying 
statements for merging, unmerging, update reasons or to 
determine the source URL of the triples. By the separation of 
the C part from the SPO part, the examples given for the 
Quads and Named Graphs, can not be represented using only 
Triples Plus Context Nodes. However, by identifying and 
grouping the triples by the context node, the assertions can be 
made outside in a separate model.  

 
As a bottom-line we see that all four approaches are 

actually very close to each other, Named Graphs are a 
reformulation of Quads, reified statements can be written by 
quadruples and Triples Plus Context Nodes can be viewed as 
a subset of Quads having higher restrictions on using the 
context part. 

B. Which approach to choose? 
To find a solution which approach to choose, we need to 

clarify the term context. My proposal for the dilemma of 
having no common accepted definition for it, is to break it 
down into subparts. In [5] I differentiated context into a) 
internal context, defined as the surrounding RDF graph for 
one or a set of triples, b) external context, like source 
information, time of loading, etc. and c) further context 
usages, e.g. for access privileges or more easy handling of sets 
of triples like merging or unmerging them.  

Depending on the context type you want to express, also the 
needed features are different. The external and further context 
is context on another semantic level than the data themselves. 
It is therefore useful to be able to differentiate between the 
data and the context information. This is in particular 
important when trust or confidence of the data is needed. In 
the first three approaches this differentiation is not possible, 

the main goal for these approaches is a better handling for the 
internal context. The Triple Plus Context Node approach is the 
only one that allows this differentiation, whereby it has the 
drawback of the low expressiveness for the internal context.  

This means for dealing with internal context one should 
choose one of the first three, whereby the Named Graphs are 
coming with an easy handling and a clearer interpretation. For 
external context one should use Triples Plus Context Node. 
The question remains, what to do if both, internal and external 
context is important. In such cases, since the first approach 
using reified statements stays inside the RDF model, it can be 
combined with the Triple Plus Context Node approach. 
Anyway, the mentioned drawbacks of reified statements 
remain. A combination of Quads or Named Graphs with the 
Triples Plus Context Nodes could result in a quintuple <EC, 
IC, S, P, O> having an external context node EC and an 
internal context node IC. Note that the additional information 
that will be made about the external context (like when the 
information was stored and by whom) is not included to the 
quintuple. As a conclusion I would say that there currently is 
no approach that captures all needed features. Since the 
underlying model also should not get to complicated –  
otherwise it will not be used –  I would vote for an 
coexistence of different approaches. So, for each application 
the more fitting one can be chosen, combined or extended.   

C. Some additional note on internal and external context 
It is worth to mention that the internal context may differ 

from situation to situation. Suppose a knowledge base 
containing hundreds of RDF files. This results in a big RDF 
graph, where the single files might affect each other. This 
means loading or deleting a file might change the internal 
context of others. The same is true about namespaces. It is 
stated that namespaces should not be changed and that a new 
URL should be used to update a namespace, but reality has 
shown that namespace changes are done frequently. In 
addition it is possible to extend schemas and continue 
describing their elements elsewhere. In [7] we requested to 
avoid this and in the meantime the RDF and RDF Schema 
namespaces have been changed accordingly, but it is still 
possible. 

For the external context we have a different situation. The 
external context will not differ over time once a file is loaded 
into a repository. Of course it might be that the original file 
will be updated or its URL is changed, but this does not affect 
the repository. The external context can be viewed as 
metadata for the given RDF information, which means it is 
located on a separate level. 

IV. BRINGING TOGETHER THE SEMANTIC WEB AND IS 
Coming from the Semantic Web area, I first want to clarify 

my understanding of an Intelligent System (IS): An IS is a 
system that interacts with its environment and learns during 
its existence, so that it reaches certain objectives more often. 
However, this might not be a complete definition for all areas 
related to IS, but to follow this paper it should be reasonable.  



129-04 
 

4

Let us think of an IS containing a knowledge base using 
RDF, to keep the information it collects from outside and the 
external context information (where did the information came 
from, when, under which circumstances, etc.). I assume here 
that the knowledge base is just used to store the data and not 
to manipulate them. Coming back to the introducing example 
of two friends talking to each other and let one of them be our 
IS. In case we take the complete knowledge base of the IS to 
infer information from it, it can result in an overkill of 
information. The same is true for human interaction, you 
know more than one sport and your friend probably too, 
anyway, you both know by context what was mend. The 
question is now, which kind of context is important to solve 
our problem, internal or external context? I believe both, 
whereby the external context is the important in first place to 
find the relevant information. The internal context is then 
important to find the correct results within this relevant 
information  and to be able to interpret them. 

For example, the external context can be used to focus on 
the information that has been entered by our friend into the IS. 
Additionally, just the information entered during the last time 
could be taken into account. An aspect we so fare did not 
looked at, could be the information about the surrounding 
environment. Sitting in a baseball stadium of course can have 
an impact and would belong to the external context too. One 
could then only take those information into account that have 
been entered by the friend during a similar situation. 

When we want to build an RDF knowledge base that can be 
used for an IS, it is therefore important to handle the external 
context information. To provide confidential information and 
an easy handling, it is also needed to separate these 
information form the data themselves. The only approach 
supporting this differentiation is the Triple Plus Context Node. 
Note that additional information as we can find in the Quads 
or Named Graph example in the section above, like who and 
on which date loaded something into the repository, needs to 
be stored separately. With RDF-S3, that will be described in 
the next section, we build a basis that can be viewed as a 
starting point to realize such an RDF knowledge base. 

The internal context is essential for the interpretation of 
given data and therefore also important for an IS. Suppose the 
query: What is the width of this bridge? The IS would first of 
all needs to find out which bridge we are talking about. In 
case it figure it out, it might return the result "42". Now 
having this result in return, we are forced to interpret it. 42 
meter, 42 feet, 42 something and how did the system figured it 
out? A more precise response could be: There is a Web page 
at xyz written by Michael Paul Thoma, stating that the width 
of the Golden Gate Bridge is 90 and its height is 746 and all 
units are in feet. There is additional another page at opq 
stating the width of it is 42. As you can see by this response, 
we might get useful extra information, in this case the units. 
We also can get information that might enable us to choose 
between different contra dictionary answers 90 or 42. In those 
cases the combination of internal and external context is 
important so solve the contra diction. Of course there might be 

information returned that is not relevant at all, we did not 
asked for the height of the bridge. Anyway, also this 
information might be useful, since it is related to the subject, 
but there is the danger of having so many additional 
information that the real answer is overseen. This means we 
need a flexible way how to increase or decrease the size for 
the internal context. eRQL for this reason supports this by a 
flexible way to include surrounding information depending on 
its distance to the result. Of course there is some potential for 
more sophisticated approaches depending on the application 
and the underlying RDF vocabulary. 

V. DETAILS ON RDF-S3 AND ERQL 
In this section the two applications RDF-S3, eRQL and 

their fundamental ideas are described. Both, RDF-S3 and 
eRQL are implemented as 100% pure Java™ open source 
applications1. They where developed and tested using IBM 
DB2 Universal Database v8.1 (ESE) underneath but should 
run also with other relational databases that support foreign 
keys and nested queries (just pointing this out since MySQL 
4.0 does not support nested queries). 

A. RDF-Source related Storage System (RDF-S3) 
For each RDF statement stored via RDF-S3, the system also 

stores the URL of the file used to enter it. This means it 
generates Triples Plus Context Nodes that will be stored, 
whereby the context node is semantically fixed to the source 
information (URL) the triple came from. Additionally, the 
time of loading the file is kept too. With these two information 
the deletion or update of single already entered sources can be 
performed. RDF-S3 has an extra GUI to perform updates and 
deletions easily. The system can be extended to store 
additional external context information too, but since it 
depends on the application which external context information 
are needed, those two are the only one supported out of the 
box. RDF-S3 comes with an easy to handle graphical user 
interface as shown in Fig. 1. It allows the settings for the 
database connection, the definition of the input file or files, 
output options, validation options, etc. The system is based on 
the ICS-FORTH Validating RDF Parser (VRP). This allows 
additional semantic validation that can be done to ensure a 
higher data quality. 

The storage information about how many different kinds of 
RDF constructs have been stored and the needed time for it 
can be saved in an output file. The information can either be 
encoded as a plain file using delimiters to separate the entries 
or as an RDF/XML file. The idea of this file is to serve as 
basis to test the storage performance of the system for the 
different RDF constructs.  

The internal storage structure of RDF-S3 combines the two 
current storage approaches Generic Representation and the 
Schema specific Representation by redundant storage2. 
 

1 RDF-S3 (including eRQL) can be downloaded at: 
www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/RDFS3/. 

2 In contrast to the SpecRepr, RDF-S3 so far does not differ between 
schema and meta-schema level. 



129-04 
 

5

1) Generic Representation 
The Generic Representation (GenRepr) can be simplified as 

storing all triples in one table having three rows for the three 
parts of a triple. This approach is very easy to understand. 
When the queries stay on the statement level, e.g., give me all 
statements containing a specific resource, this approach works 
perfect. But the drawbacks of it is getting obvious when the 
queries getting more complex and include schema 
information, e.g., give me all statements of a specific class. 
For such queries the system needs to create a self join, which 
results in a performance overkill [12].  

 

Fig. 1.  Screenshot of the RDF-S3 GUI version 1.6. 

2) Schema Specific Representation 
The Schema specific Representation (SpecRepr) results in a 

complex set of tables. This approach also includes a layer 
structure to distinguish between meta information, schema 
information and the data themselves. By entering new schema 
information you also need to enter new tables. This results in 
an increasing number of database objects (tables) the database 
management system needs to handle3. In the end we can think 
of this representation as a presorting of the triples. Therefore, 
the query performance for queries over schema information is 
better for the SpecRepr compared to the GenRepr. See [12] 
for more details and examples. But for queries on the 
statement level you might need to scan nearly all existing 
tables. 

 
By the combination of these two representations a query 

system on top can choose which representation fits best the 
needs of the single queries. Statement level queries can be 
evaluated on the table for the GenRepr and schema queries 
could be made on the tables used for the SpecRepr. 

B. easy RDF Query Language  
The easy RDF Query Language (eRQL) was historically 

constructed as a wrapper for RQL [13] that uses a SQL like 

 
3 Depending on the DBMS the existence of to many tables reduces the 

performance. 

syntax and can therefore not serve as an end-user query 
language for information portals etc. This changed with the 
evolution of RDF-S3 and eRQL. eRQL now is working 
directly on top of RDF-S3.  

The main goal of eRQL is to be simple enough to be used 
without any knowledge of the underlying ontology used to 
describe the data. Also the query syntax itself should be 
intuitive. This goal is reached by being close to the syntax of 
Google. By simply entering keywords that can be combined 
by AND or OR, queries can be performed. As a result for these 
queries you would get those triples in return, that contain the 
given word as either subject, predicate or object. By putting a 
keyword into quotation marks, the request is restricted to 
literals. The matching triples are called direct hits. One 
peculiarity of eRQL is to return not only the triples fitting the 
request, but also those surrounding them (called 
PointOfInterest Mode – POI Mode). This way eRQL includes 
internal context information to the result. Therefore, a better 
understanding of the result can be reached as described in 
section IV. The distance how much of the surrounding graph 
should be returned can be defined by the number of leading ~ 
signs. The default is already one, meaning if you enter the 
query "bridges", the system will search for all direct hits. For 
each of them, the system will then will include those triples 
that are connected to them to the result. For a query with a 
distance of zero, the query needs to be enclosed by brackets 
"[...]". The result then only contains the single direct hits 
(called Statement Mode).  

Since RDF-S3 stores also the source information of the 
triples, this knowledge can be used too. With the so called 
Document Mode in eRQL single or a group of sources can be 
either left out or a query can be restricted to them. The syntax 
for the document mode is: "<query; source_list; restrict>". 
The query can be any valid eRQL query, the source_list is a 
list of source URLs separated by comma and restrict is either 
0 to leave out the defined sources or 1 to restrict the query to 
them. As an abbreviation the sources in the source_list can 
also be identified by internal IDs, that must be retrieved from 
the database before. Therefore, a valid query could look like: 
"<bridges; 5,6; 0>". This would execute the query "bridges" 
on all stored information except those that comes from the 
sources internally identified by 5 and 6. 

In addition to this functionality eRQL in the meantime also 
supports the most RQL schema functions to get a quick 
overview of the underlying ontology. A complete list of 
functions and further possibilities supported by eRQL can be 
found in the appendix. These functions are splitted into 
general schema functions that do not need an input and 
schema functions on resources that will need an eRQL query 
as input parameter, like domain(query), that will return the 
domain definitions of the properties fitting the given query. 

As RDF-S3 also the implementation of eRQL comes with 
an graphical user interface shown in Fig. 2. It includes the 
settings for the database connection and also the mapping 
from source URLs to the internal used IDs to abbreviate them 
in the document mode.  



129-04 
 

6

The result that will be returned depends on the query. 
General schema functions will return lists of found resources. 
Results for schema functions on resources will list the 
resources together with the resource they belong to, e.g., the 
query domain(father) will list all properties fitting the query 
"father" together with their defined rdfs:domain classes.  

In case of triples being returned, they are grouped by the 
POIs they belong to. Triples always returned including their 
source information. For schema functions the source 
information is only included when the document mode was 
activated. 

To work with the returned eRQL results there is either the 
possibility to reuse the internal Java classes or to store the 
results in an RDF format using a vocabulary given by the 
application. As in RDF-S3 the result also includes the 
processing time for the query. 

 

Fig. 2.  Screenshot of the eRQL implementation GUI version 1.6. 

VI. CONCLUSION 
The external context can be used for an IS to reduce the 

knowledge base that is needed to answer a given question. 
This is not only important to minimize the response time, but 
also to blend out possible wrong answers. Depending on the 
person you talk to "our team" can have a different semantic 
meaning. For a confidential handling it is important to be able 
to differentiate between the information and their external 
context information coming with it. RDF-S3 supports this 
differentiation by storing the data as Triples Plus Context 
Nodes. With the introduced eRQL the external context 
information can be accessed and used inside the queries. It 
therefore allows the needed reduction of the knowledge base. 
In addition eRQL provides the ability to include internal 
context information as defined in the query to the result. The 
results are therefore more expressive and can be understood 
without generating additional queries. 

What is currently missing for RDF-S3 and the 
implementation of eRQL is a full performance test and 
evaluation, to compare it with other existing tools and to find 
the bottlenecks in the implementation. A first step in this 
direction is done by the systems to provide the storage and 

retrieval time as a feedback.  

APPENDIX 

A. Short description of the current eRQL syntax 
POI Query or POI Mode: one-word-query – will return all 

stored triples, where the given query word is contained by 
either part of the triple. The surrounding graph with a distance 
of 1 is included to the result. A cumulative usage of ‘~’ can be 
used to increase the distance. Wildcards "*" and "?" can be 
used, whereby "*" stands for any string and "?" for exact one 
character. 

Resource Query : res(one-word-query) – as the POI Query 
but will ignore literals as object part.  

Literal Query : "query_string" – as the POI Query but 
concentrates on literals in the object part only. The 
query_string can contain spaces.   

Statement Mode : [query] – concentrates on the direct hits, 
there is no surrounding graph included.  

Document Mode: <query; source_list; restrict> – restrict 
can be either 0 or 1, in case of 1 the query is only executed on 
the given sources, in case of 0 these sources are left out. 

TABLE I 
Overview of schema functions on resources supported by 

eRQL. 
Syntax Description 

directInstancesOf(q), di(q), 
dI(q) 

Will return all direct instances 
for the classes fitting the query 
q. 

domain(q), d(q), D(q) Will return the defined domain 
classes for the properties 
fitting the query q. 

instancesOf(q), i(q), I(q) Will return all instances 
(including the instances of 
subclasses) for the classes 
fitting the query q. 

range(q), r(q), R(q) Will return the defined range 
classes for the properties 
fitting the query q. 

subClassOf(q), subc(q), 
subC(q) 

Will return all sub classes of 
the classes fitting the query q. 

subPropertyOf(q), subp(q), 
subP(q) 

Will return all sub properties 
of the properties fitting the 
query q. 

superClassOf(q), superc(q), 
superC(q) 

Will return all super classes of 
the classes fitting the query q. 

superPropertyOf(q), subp(q), 
subP(q) 

Will return all super properties 
of the properties fitting the 
query q. 

 



129-04 
 

7

With the version 1.6 of RDF-S3 and eRQL also schema 
functions are supported. The schema functions can be 
separated into general function that do not need an input and 
functions on resources that will need a query as input to find 
fitting resources. Whereas the POI Mode does not work for 
schema functions, meaning there will be no surrounding graph 
be returned, the Document Mode is compatible with schema 
functions. A list and short description of all currently 
supported schema functions can be found in Table I and Table 
II. 

TABLE II 
Overview of general schema function supported by eRQL. 

Syntax Description 
classes(), c(), C() Will return all defined classes. 
container(), con(), CON() Will return all defined 

containers. 
literals(), l(), L() Will return all used literals. 
properties(), p(), P() Will return all defined 

properties. 
reifiedStatements(), rs(), 
RS() 

Will return all defined reified 
statements. 

triples(), t(), T() Will return all triples. 
 

ACKNOWLEDGMENT 
I want to thank Vassilis Christophides (ICS-FORTH) who 

started my interest on RDF in 1999 and for the successful 
cooperation during the years after. Thanks to Fabian 
Wleklinski for his work on eRQL and to IBM (laboratory in 
Böblingen) for supporting me in scope of the IBM Scholar 
Program. 

REFERENCES 
[1] Bob Jansen: Context: A real problem for large and shareable knowledge 

bases, Building/Sharing Very Large Knowledge Bases (KBKS'93), 
Tokyo, December 1993 

[2] Patrick Hayes and Brian McBride: RDF Semantics, W3C 
Recommendation, Feb. 2004 

[3] Contexts for RDF Information Modelling, Graham Klyne, 
http://www.ninebynine.org/RDFNotes/RDFContexts.html 

[4] RDF Primer, W3C Recommendation, Feb. 2004 
[5] Karsten Tolle and Fabian Wleklinski: Trust and context using the RDF-

Source related Storage System (RDF-S3) and easy RQL (eRQL), 
Berliner XML Tage 2004 

[6] Chris Bizer: The TriG Syntax, Working Draft, online at: 
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/ 

[7] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis and K. 
Tolle, The ICS-FORTH RDFSuite: Managing Voluminous RDF 
Description Bases, 2nd International Workshop on the Semantic Web, in 
conjunction with Tenth International World Wide Web Conference 
(WWW10), Hongkong, May 2001  

[8] Robert MacGregor, In-Young Ko: Representing Contextualized Data 
using Semantic Web Tools, International Workshop on Practical and 
Scalable Semantic Systems (PSSS1) October 2003 

[9] Jeremy J. Carroll, Patrick Stickler: RDF Triples in XML. Extreme 
Markup Languages 2004, in Montréal Canada. 

[10] Jeremy J. Carroll, Christian Bizer, Patrick Hayes and Patrick Stickler: 
Named Graphs, Provenance and Trust, HP internal report HPL-2004-57, 
May 2004 

[11] The American Heritage Dictionary of the English Language, Fourth 
Edition 2000, Houghton Mifflin Company 

[12] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis: On 
Storing Voluminous RDF Descriptions: The case of Web Portal 
Catalogs, 4th International Workshop on the Web and Databases 
(WebDB'01), May 24-25, 2001. 

[13] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. 
Plexousakis, M. Scholl, K. Tolle: Querying the Semantic Web with 
RQL, Computer Networks and ISDN Systems Journal, Vol. 42(5), 
August 2003 


