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Abstract

The collaborative safemos project has investigated the formal

development of embedded systems from speci�cation through to a

real-time programming language, compilation to object code and

the formal design (and even automatic compilation) of a hardware

machine to execute that code. The project has used Occam and the
Transputer as an inspiration for its investigations, with real-time ex-

tensions where required. HOL has been used for mechanical veri�ca-

tion where appropriate. A close liaison with the related collaborative
European ESPRIT ProCoS project has been maintained to ensure

that research on both projects is coordinated. This paper gives an

overview of the work of the project with particular regard to the
mathematical techniques used for the speci�cation and veri�cation

process.

1 Background

In the last decade, the use of software in safety-critical systems has in-

creased by around two orders of magnitude. However current widely used

development techniques are still sadly lacking in their ability to avoid the

occurrence of errors in such systems. Formal mathematically based meth-

ods provide one means to avoid the introduction of errors into systems

at the design stage by increasing the preciseness of descriptions earlier on

in the process and allowing the possibility of proven transformations and

relationships between the speci�cation and implementation of a system.

There is currently great interest in both academic and industrial circles

in the issues involved in the use of formal methods but the techniques still

need further investigation and promulgation to make their widespread use
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a reality [12, 13]. A number of safety-related standards, are currently being

introduced and the recommendations in these could well have a signi�cant

impact on the use of formal methods in the development of safety-critical

systems. Many standards in this area are now mentioning formal methods

as one option to improve the correctness of safety-related software [5]. A

few, such as the UK MoD 00-55 draft standard [41], even mandate the

use of formal methods although there is still much debate and industrial

resistance.

This provides the setting into which the research work brie
y presented

in this paper is intended to �t in years to come. Here we concentrate

on an overview of mathematical techniques used by the safemos project

intended to aid formal development of software and hardware for embedded

high integrity systems.

2 Project Overview

The collaborative UK IED (Information Engineering Directorate) safemos

project (1989{1993) has investigated techniques to aid the formal veri�ca-

tion of mixed hardware/software systems. Aspects of system speci�cation

and veri�cation from an abstract formal description of the system down

to the underlying hardware have been addressed, with particular regard to

real-time issues.

The project was in
uenced and inspired by the simplicity of the Occam

programming language [36], with its well established formal underpinning

of the process algebra CSP (Communicating Sequential Processes) [31] and

a wealth of algebraic laws [47] to aid formal transformation of programs. In

addition, the Transputer microprocessor developed by Inmos [37] provides

a platform for the implementation of Occam programs.

The HOL (Higher Order Logic) [20, 18, 52] theorem proving system was

used to perform machine-checked proofs. The HOL system provides an

LCF-style theorem proving environment [21, 45] and supports a version of

classical higher-order logic based on Church's formulation of simple type

theory [2, 16]. HOL includes ML as a metalanguage: the ML language was

originally developed as part of LCF, but is now an independent program-

ming language in its own right [40]. It is an eager-evaluation functional

language with a polymorphic type discipline.

Some use of the formal notation Z has been made on the project. Z

is based on Zermelo-Fraenkel set theory and �rst order predicate calculus

[50], with the addition of the schema `box' notation to aid the structuring

of the large amount of detailed mathematics that is necessary to specify

systems of a realistic size. An advantage of a formal notation like Z is

that it has been accepted for international standardisation by ISO which is

likely to lead to wider industrial acceptance [14]. Industrial practitioners

are often reluctant to use raw mathematics and standardisation is a major
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contributor to aiding its in�ltration in certain sectors such as those involved

with safety-critical systems [12].

The work described here has been undertaken by the following industrial

and academic partners in the UK:

� Inmos Limited, Bristol;

� SRI International Cambridge Computer Science Research Centre;

� Oxford University Computing Laboratory, Programming Research

Group;

� University of Cambridge, Computer Laboratory.

The project has aimed to address some of the problems facing the de-

signers and users of microprocessors and micro-controllers that are arising

as the complexity and power of these devices increase. Microprocessors are

being used to perform increasingly complex tasks; as a result the ability

to ensure correct design by traditional design techniques, centered around

experimental testing, is becoming problematic.

The use of formal design methods seems to o�er a way out of this situ-

ation by providing a design methodology which prevents the introduction

of errors into designs through the rigorous use of proof techniques to val-

idate designs against speci�cations. The results of the safemos project

aim to demonstrate the feasibility of these methods for real-time control

systems. In the future, such real-time controllers will increasingly consist

of processors running embedded programs along with specialised interface

hardware. Thus the project has addressed the problem of verifying both

hardware and software.

2.1 Goals

The original three goals of the project, started in 1989, were [48]:

1. to demonstrate that it is feasible and commercially advantageous to

verify systems containing both hardware and software by machine

checked formal proof;

2. to develop the methodology and tools needed for performing such

veri�cations and for estimating their costs;

3. to gain improved scienti�c understanding of the practical use of ex-

isting formal methods and tools, including HOL [20], Z [51] and CSP

[31].

These goals have been addressed by designing an Occam-like real-time

language, a program veri�er for that language, a veri�able Transputer-like

processor design and a veri�ed translator to compile the real-time language

into the processor instruction set. A simple demonstrator example has been

undertaken show how a program can be veri�ed to meet a speci�cation.

A major research challenge was the co-ordination of the diverse formal

proofs needed for diverse system veri�cation within a coherent and uni-
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form framework. The aim of the safemos project has thus been to develop

formal methods for reasoning about Occam-like programs running on a

Transputer-like processor, in the CSP tradition. While perfect compatibil-

ity between di�erent components is very hard to achieve on a collaborative

project at geographically separate sites, particularly one undertaking re-

search, the early selection of an existing, and real, language and processor,

together with the use of a single mechanical veri�cation support tool, has

prevented any site from becoming too devolved in their work. The follow-

ing sections outline some of the most important work areas undertaken on

the project.

Other related work is being carried out elsewhere, most notably, on the

European collaborative ESPRIT Basic Research ProCoS project [8, 9],

and at CLInc, a company in the US largely dedicated to the development

and use of the Boyer-Moore theorem prover [17, 42]. Contact has been

maintained with both these e�orts; in particular, the ProCoS project is

also studying Occam-like languages and Transputer-like machines, so work

on both projects is directed towards a common goal. However on the

safemos project there is a greater concentration on mechanically assisted

proofs centred around a single tool, namely HOL, and a more balanced

study of hardware as well as software veri�cation issues.

2.2 The SAFEMOS Tower

In designing a system, a number of di�erent levels of abstraction must

normally be considered. For example, a designer must transform a (pos-

sibly non-executable) speci�cation into an implementation in the form of

an executable program; a compiler must automatically convert a high-level

program into low-level object code; and the underlying hardware must cor-

rectly execute that code using simple logic gates and latches (for example).

The transformations should ideally be error-free and techniques to avoid

the introduction of errors during this process are obviously desirable. The

use of formal methods is one such technique since they reduce the ambigu-

ity in the process, help to increase human understanding and allow formal

proofs, reasoning and even calculation to be undertaken. Mechanical sup-

port for the process reduces the chance of human error which is highly

likely in all but the simplest endeavours.

The safemos project has considered such transformations and mecha-

nisation at a number of di�erent levels:

� System speci�cation: State-transition Assertions (STA), outlined in

section 3, and Timed Transition Systems [28], described in [23].

� Compilation using an Occam-like sequential programming language

and Transputer-like processor: Interval semantics based on Interval

Temporal Logic (ITL) [22, 24, 43].

� Microprocessor design: Incremental framework using Higher-Order
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Logic (HOL) [20].

� Hardware compilation: A novel re�nement algebra approach via a

normal form as outlined in section 9, allowing the possibility of hard-

ware/software co-design.

In an ideal world, di�erent levels of abstraction would interface together

to form a seamless `tower' of design descriptions. Each level moves towards

the �nal implementation by being assigned a semantics that is equivalent

or `better' than the previous level w.r.t. some re�nement ordering. (Here,

`better' means being more deterministic and/or terminating more often.)

This ideal has yet to be fully achieved in practice although the work of the

related ProCoS project continues to strive for this goal.

A uniform proof environment, namely HOL (Higher-Order Logic), has

been used for the mechanisation of proofs on the project, and the adoption

of a common tool helps in the linking of di�erent levels of abstraction. This

has been the experience of the CLInc e�ort [17], as previous mentioned,

who use the Boyer-Moore theorem prover for proofs of a number of related

levels in both software and hardware.

The rest of the paper provides details of speci�c aspects of the work of

the project.

3 State Transition Assertions

A graphical state-transition approach to specifying hard real-time reactive

systems has been developed [19]. This is re�ned to a formal notation based

on sentences called State Transition Assertions (STAs). These have a set-

theoretic semantics that can be used to justify various laws, which combine

aspects of Interval Temporal Logic (ITL) [22, 24, 43] and and Hoare Logic

[30]. The semantics of programs can also be represented by sets of STAs,

and then veri�cation is performed by using laws to combine the STAs from

the program to obtain the speci�cation.

3.1 Hard real-time

Hard real-time systems are required to meet explicit timing constraints,

such as responding to an input within 100 milliseconds of a change. The

temporal requirements are an essential part of the required behaviour, not

just a desirable property as in the case of soft real-time systems. The work

aims to combine hardware and software veri�cation techniques to produce a

formal method for hard real-time programming. In this method, programs

are re�ned from speci�cations consisting of a kind of state transition dia-

gram. These diagrams have a precise semantics and the veri�cation that

programs implement them is by machine checked formal proof.

A key element of the method is that the program semantics used for

veri�cation is determined by what happens when the compiled program

runs on the processor being used. This is achieved by de�ning the semantics
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via the compiler and processor speci�cation.

3.2 Method

This work provides a possible foundation of a formal method for developing

hard real-time programs. In summary, the method is as follows:

1. Write the speci�cation using annotated state-transition diagrams and

interpret them as sets of state transition assertions (STAs).

2. Develop a program by identifying nodes in the diagram with sets of

processor states.

3. Verify the program by showing that its transitions (which are mechan-

ically derived from the compiler and processor speci�cation) entail the

required transitions using laws for combining STAs.

Speci�cations are formalised as predicates on machines. A typical spec-

i�cation involves a number of transitions between wait states. These can

be represented using a state transition assertion (STA), that combines as-

pects of the `leads-to' and `until' operators of temporal logic. The general

form of an STA is:

M j=
Q

A�!B
P

where:

� M : inputs ! state ! state is a machine;

� A : state ! bool is called the state precondition;

� B : state ! bool is called the state postcondition;

� P : seq inputs ! bool is called the input precondition;

� Q : seq state ! bool is called the output postcondition.

(bool represents Boolean values.)

The intuition behind state transition assertions is as follows: if M is in

a state satisfying A and a sequence of inputs arrives that satis�es P , then

a state satisfying B will be reached and the sequence of intermediate states

will satisfy Q .

A simple example of a multiplier program has been used to demonstrate

the technique, mechanically checked using HOL, and is presented in [7].

4 Real-time Programming Language

The safemos programming language, SAFE, is a real-time sequential im-

perative language with input and output constructs and with deadline con-

straints. The syntax of SAFE processes is given by the followingBNF, where
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p is a process, e an expression, b a Boolean, x a variable and t a time.

p ::= SKIP j STOP j x :=t e j READt x1 x2 j WRITEt x e j
p1 ; p2 j IFt1;t2 b p1 p2 j WHILEt1;t2 b p j LOCAL x p

This syntax has been formally represented in HOL as a recursive type def-

inition.

The process SKIP does nothing and terminates immediately. STOP holds

the execution forever. The assignment, x :=t e, assigns the expression e
to the variable x , and takes at most t time units to complete. Input and

output are also time-bounded. The input process, READt x1 x2, assigns the

current input on port x1 to variable x2, and the output process, WRITEt x e,

outputs the expression e on port x . Input and output in SAFE are memory-

mapped; that is, the input and output constructs are simply assignments

to I/O registers and do not perform synchronisation. Synchronisation may

be achieved by means of protocols implemented in SAFE [15].

Sequential composition, p1 ; p2, does not introduce any time overhead.

For the conditional, IFt1;t2 b p1 p2, no more than t1 time units may be used

in testing the Boolean expression b, and no more than t2 units following the

termination of either p1 or p2. The loop, WHILEt1;t2 b p, is a conventional

while loop in which at most t1 time units may be used for testing the

condition b, and at most t2 units for reinitiating the loop. Finally, the

construct LOCAL x p makes the variable x local to process p. A very similar

real-time language has also been developed on the ProCoS project [25].

We assume here that time constraints are measured in machine cycles

but, in general, any appropriate time units could be used { even real time,

given a suitable mapping between states and real times.1 Whether or not a

particular time constraint can be achieved in reality obviously depends on

the complexity of the expression and on the underlying architecture. The

constraints are therefore checked by the compiler; values that are too small

are rejected.

5 Interval Semantics

We have de�ned the formal semantics of SAFE in HOL. It is a model-based

semantics based on ITL, which captures timing properties in a natural

way and also permits a uniform treatment of programming and assembly

language constructs. This facilitates compiler veri�cation.

Each SAFE process is identi�ed with a predicate on intervals, as de-

scribed below. An interval is a non-empty sequence of states and may

be either �nite or in�nite; its length represents the number of time steps

between start and �nish.

In the HOL de�nitions below � stands for a (�nite or in�nite) interval;

1We assume that a program necessarily executes in a sequence of discrete steps.



8 Towards Veri�ed Systems: The SAFEMOS Project

len � for its length; init � and last � for the initial and �nal states of

�; and pfx i � and sfx i � for the ith pre�x and ith su�x subinterval,

respectively. Let us also write Mp p for the meaning of a process p, and

Me e and Mb b to denote the meanings of expression e and Boolean b,

respectively.

The process SKIP is identi�ed with the predicate Skip, which is true on

any zero-length interval.

Mp SKIP�
def
= Skip�

where

Skip�
def
= (len (�) = 0)

The process STOP never terminates and keeps the internal state, i.e. the set

V of program variables and output ports, stable (constant).

Mp STOP�
def
= len (�) = 1 ^ StbV�

where

StbE �
def
= 8 e 2 E ; 8 n � �n (e) = �0(e)

The assignment process must satisfy the appropriate timing constraint, in

addition to assigning the value of an expression to a variable. It also carries

the unspoken assumption that the part of the internal state not explicitly

changed remains constant.

Mp (x :=t e)�
def
= (x :=0;t (Me e))�

where

x :=t1;t2 e �
def
= (last �)x = e(init �) ^

(t1 � len � � t2) ^
(Stb (V� fxg)�)

Input and output are special forms of assignment.

Assignment is easily generalised to sequences of variables and expres-

sions, and a delay, then, is just an assignment with null arguments:

Dly t1;t2

def
= hi :=t1;t2 hi

The sequential composition of two processes is true on an interval if it

can be chopped into two subintervals, such that the �rst process holds on

the pre�x and the second on the corresponding su�x. Alternatively, the
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�rst process may be non-terminating.

Mp (p1 ; p2)�
def
= (Mp p1 ; Mp p2)�

where

(p1 ; p2)(�)
def
= p1(�) ^ len (�) = 1 _
9 i � p1(pfx i �) ^ p2(sfx i �)

The time-bounded conditional is de�ned in terms of a simple conditional

with appropriate delays inserted.

Mp (IFt1;t2 b p1 p2)�
def
=

((Dly 0;t1 ; p1 ; Dly 0;t2) < b > (Dly 0;t1 ; p2 ; Dly 0;t2))�

where

(p1 < b > p2)�
def
= (b(init �) ) p1 �) ^ (:b(init �) ) p2 �)

A simple loop predicate may be de�ned in the conventional way as the

least �xed point of the function �X � (p ;X ) < b > Skip.

Loop b p
def
= FIX (�X � (p ;X ) < b > Skip)

where FIX F denotes the least �xed point of a function F under the re�ne-

ment ordering de�ned by w, where

p1 w p2
def
= 8� � p1 � ) p2 �

Using the choice operator, the least �xed point may be de�ned non-constr-

uctively in HOL and, when F is continuous, the �xed point may be proved

equivalent to a limit of an approximating chain in the standard way. Since

all SAFE constructs are continuous, the loop is indeed equal to the limit of

iteration, as desired, and this has been veri�ed using HOL.

The time-bounded while loop is constructed from the simple loop and

appropriate delays.

Mp (WHILEt1;t2 b p)�
def
= (Loop b (Dly 1;t1 ; p ; Dly 0;t2) ; Dly 1;t1)�

Note that the evaluation delay is of minimum length 1. This constraint

avoids the possibility of having a non-terminating zero-length loop and is

similar to the so-called `non-Zeno' condition.

5.1 Algebraic laws

A library of algebraic laws which are generally useful in proofs concerning

the programming language has been formulated and proved correct. Below

are a few examples of such laws.
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The empty interval Skip is `better' (w.r.t. the re�nement ordering rela-

tion v) than an interval during which an expression E must remain stable:

Skip w StbE

The conjunction of two stability constraints is equivalent to a single con-

straint on the union of the arguments:

Stb (E1 [ E2) = StbE1 ^ StbE2

The conjunction of a stable interval distributes through the sequential com-

position of two programs:

(p1 ; p2) ^ StbE = (p1 ^ StbE ) ; (p2 ^ StbE )

An empty interval sequentially composed before or after a program is in-

distinguishable from the original program:

p ; Skip = p = Skip ; p

Sequential composition is associative:

p1 ; (p2 ; p3) = (p1 ; p2) ; p3

All of these and many other laws have been formally derived in HOL from

the interval semantics described above. See [7] for further details.

The law (actually a \law schema") for composing assignments is more

complex than might initially be expected because of the need to treat both

I/O and internal variables in a consistent way. However, a function has

been implemented in HOL to take care of the complexity and automatically

compose assignments using this law. The function is perfectly rigorous; it

formally proves the required result. For example, given the composition

x :=t1;t2 m ; y :=t3;t4 x +n, the function will prove the theorem (assuming

x 6= y):

x :=t1;t2 m ; y :=t3;t4 x + n w x ; y :=t1+t3;t2+t4 m; m + n

The function may fail if the �nal values of the variables on the left of the

assignment are indeterminate. If r is an input port, it will not reduce the

composition x :=t1;t2 e ; y :=t3;t4 r without further information about the

input value.

These laws allow proofs about the compiler speci�cation to be con-

ducted at a higher level than would otherwise be the case by remaining in

the framework of the programming language itself where possible. They

could also be used for other purposes (e.g. program transformation for op-

timisation).
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6 Assembly Language

The machine has three registers, A, B, and C, a program pointer, P, and an

addressable memory. An instruction ins has the e�ect of an assignment in

which the machine state becomes some function of the old state.

state :=T (ins) f (state)

Thus, the meaning Mi ins of an instruction ins may be de�ned in terms

of the interval semantics above.

For example, the LDC instruction pushes a constant w onto the three-

register stack:

Mi (LDC w)
def
= A; B; C; P :=T (LDC ) w ; A; B; P + 1

The JMP instruction performs a jump by updating the program counter

relation to the location after the instruction:

Mi (JMP w)
def
= A; B; C; P :=T (JMP ) A; B; C; P + w + 1

ADD (for example) is a two-operand instruction that pops the two input

values o� the register stack (i.e. from registers A and B) and pushes the

result back onto the stack (i.e., into register A):

Mi ADD
def
= A; B; P :=T (ADD ) A + B; C; P + 1

All the instructions for the machine have been speci�ed in this manner [7].

Note that we ignore the variable length of optimised Transputer instruc-

tions for simplicity, but this has been handled elsewhere [3, 11, 34].

The behaviour of an assembly language program stored between loca-

tions n1 and n2 in ROM is just the combined e�ect of running the sequence

of instructions between these locations:

Run ROM n1 n2
def
= Loop (n1 � P < n2) (Mi (ROM (P)))

6.1 Z semantics

A machine semantics for a subset of the Transputer instruction set at the

bit-level has also been speci�ed using the formal Z notation [3, 51]. Z is

more readable that HOL since it is designed for this purpose, so a Z speci-

�cation was produced as an experiment in producing a formal description

that is readable enough to be used as documentation for a suitably trained

engineer. For example, the state may be recorded in a schema box as

follows:
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State
A; B; C : Value
P : Address
ROM ; RAM : Address 7! Value
clock : N

domROM \ domRAM = ;

The address space of the program memory (ROM ) and data memory (RAM )

at modelled as partial functions and their domains must not overlap. The

number of clock cycles since initialisation is also recorded as a natural num-

ber. During a change of state the program in ROM remains the same and

an instruction always takes a non-zero number of clock cycles to execute:

�State
State
State0

cycles : N1

ROM 0 = ROM

clock 0 = clock + cycles

Schemas may be `included' within other schemas and the after state is

indicated by dashed variables by convention. The LDC instruction may

then be speci�ed as follows:

LDC
�State
w : Value

(LDC ;w) = M (ROM (P))

(A0; B0; C0; P0) = (w ; A; B; P+1)

RAM 0 = RAM

cycles = T (LDC )

M and T are functions that decode a binary opcode and return the timing

for an instruction respectively. Note that LDC does not update the RAM

contents.

Such a speci�cation could be of use to a microprocessor designer, acting

as the speci�cation of the processor to be implemented. More recently we

have investigated the embedding of Z within HOL which enables the e�cient

mechanisation of proofs about Z speci�cations [10].
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7 Compiler Speci�cation

A compiler can be speci�ed as a relation de�ned recursively over the syntax

of commands and expressions.:

Cp q S n1 n2 ROM

The relation is true if the instruction store ROM contains the compiled code

for the process q starting at location n1 up to (but not including) location

n2 under the symbol table S . We de�ne the constraints on this relation for

each high-level program construct. For example, SKIP may be implemented

by simply making the �nish address n2 of the matching object code the

same as the start address n1:

Cp SKIP S n1 n2 ROM
def
= n2 = n1

Sequential composition is implemented by placing the respective object

code segments for the two compiled sub-programs contiguously together in

the ROM :

Cp (p1 ; p2) S n1 n2 ROM
def
=

9 n � Cp p1 S n1 (n1 + n) ROM ^ C p p2 S (n1 + n) n2 ROM

n is the o�set from the beginning of the code of the location at which the

two pieces of object code abut and is existentially quanti�ed so that it is

not directly visible in the combined object code.

Similar constraints have been formulated for all the program constructs

and the compilation relation may be `executed' (by theorem proving) in

HOL to obtain the compiled code. Details are to be found in [7]. For

those instructions that have time constraints, the total time required for

the relevant sequence of instructions is checked. If this exceeds the bound,

the compilation relation is false and the code fails to compile.

7.1 Correctness of compilation

The compilation of a process is correct if the behaviour of the compiled

code is an implementation of the program behaviour. If the code for q
is compiled in ROM between n1 and n2 using a symbol table S , then the

execution of the instruction between n1 and n2 implements the behaviour

of q under the data representation � S :

8 S n1 n2 ROM � Cp p S n1 n2 ROM )
(P :=0;0

_n1 ; Run ROM n1 n2 w (Mp p) � (� S ) ; P :=0;0
_n2)

The compilation scheme speci�ed for the SAFE language has been me-

chanically proved correct w.r.t. this correctness criterion using algebraic
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laws as previously described within the HOL theorem prover. The approach

for the veri�cation draws on the ideas of Hoare [32]. A similar approach

has been adopted by the ProCoS project, although there the proofs have

largely been undertake by hand only [34].

Here we have presented a simple unoptimised compilation scheme which

is desirable in a high integrity system to avoid errors. However optimisa-

tion is important in general and more e�cient compilation strategies may

be attempted in a similar setting by adding further allowed compilation

relations (even including extra program constructs and machine instruc-

tions) without necessarily invalidating those that have already been proved

correct [26].

7.2 Rapid prototype compilation

It is relatively straightforward to produce a compiler which matches a com-

pilation scheme such as that presented here very directly using a logic pro-

gramming language like Prolog [4]. The formal compilation description for

each programming construct may be implemented as a Horn Clause. For

example, the clauses for SKIP and sequential composition may be imple-

mented as follows in Prolog:

cp(skip,S,N1,N2,ROM) :- N2=N1.

cp(P1;P2,S,N1,N2,ROM) :-

cp(P1,S,N1,N1plusN,ROM), cp(P2,S,N1plusN,N2,ROM).

What is more, it is even possible to produce a decompiler which takes the

object code (and the symbol table if available) and produces a matching

high-level program for non-optimised code [6]. This could be useful in

the veri�cation and checking of safety-critical code where optimisation is

normal avoided anyway. A logic program speci�es a relation in general

so such a program may also be used as a compiler checker taking a given

program, symbol table and matching object code and checking that they

are compatible with a formally speci�ed and proven compiling relation.

Tools to help verify termination and the validity of the omission of the

occurs-check for Prolog implementations for such prototype compilers have

been produced elsewhere [38].

8 Microprocessor Design

A machine code program must be executed on some underlying hardware,

normally based around a microprocessor in embedded real-time systems.

Important considerations for the microprocessor design are that it should

be predictable and extensible, and the mathematical models used must

support these aims.

Predictable performance is important for hard real-time applications

and this goal is met by using a synchronous memory, and by using models
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incorporating explicit time for the basic components. This means that the

performance of the processor can be calculated in units corresponding to

the period of the underlying synchronous clock. For example, a loadable

register is de�ned in HOL as:

LOAD_REG(in:time->*, load, out)
def
=

(8 t. out (t+1) = (load t => in t | out t))

The explicit timing information at the lowest level is then propagated up

through the higher levels yielding hard real-time information at these levels.

8.1 Support for incremental design

The goal of an extensible design is supported by the incremental framework

developed and used in the safemos project [29]. This builds on the idea

in [53] for a general framework supporting the formal speci�cation and

veri�cation of a range of processors. To support formal methods during

the design process the models and techniques allow partial speci�cation,

extensions to a design and incremental veri�cation of a design. The main

elements of the framework are:

� uniform hierarchy of computation models;

� use of generic arguments;

� veri�cation template;

� the use of incremental models and techniques.

The hierarchy of computation models follows the idea of a hierarchy of

interpreters in [1], where an instruction at each level is interpreted by exe-

cuting a series of instructions at a lower level, and these instructions are in

turn executed by an interpreter at the next lower level. Generic arguments

represent certain aspects of a design which can remain unspeci�ed and be

parameters of the design. For example, rather than specifying a 16-bit pro-

cessor, the word size may be supplied as a parameter of the design; then a

generic n-bit processor may be veri�ed instead.

Having a general hierarchical model of computation such as an inter-

preter means that templates for specifying the instructions and interpreter

can be provided; these encapsulate in a general theorem the combination of

individual instruction correctness results at one level to derive correctness

of the interpreter at the next higher level. To support 
exibility in the

speci�cation and veri�cation of the design, incremental models have been

introduced replacing the previous functional interpreter models.

8.2 Relational interpreter framework

The basic model of system behaviour is a transition system where the next

state is derived from the current state and environment (inputs). In a re-
lational interpreter the e�ect of a certain transition can be de�ned as a

predicate on the next state and the present state and environment. The
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behaviour of a transition system can be speci�ed by the desired proper-

ties given as a set of (tag, predicate) pairs, and a selection function that

indicates whether a particular property tag is chosen by a state and envi-

ronment. The transition system for a certain set of properties must ensure

that whenever the state and environment select a transition in the set then

all predicates for the indicated transition must hold on the next state and

the current state and environment. The de�nition in HOL is:2

TRANSITION_SYS(is_selected,prop_list)s e
def
=

(8t.
let a_tag = "tag. is_selected(tag,s t,e t)

in

(8prop.
prop MEM prop_list ^ (FST prop = a_tag) =)
SND prop(s(t + 1),s t,e t)))

The de�nition of TRANSITION_SYS gives an incremental model since more

items can be incrementally added to the property list parameter as the

speci�cation is extended with more behaviour.

In addition to the speci�cation of the microprocessor as relational in-

terpreter using TRANSITION_SYS, an incremental model for the machine

microcode has been devised. This allows the derivation of the following

result:

ALL_UNIQUE (APPEND mcode1 mcode2) =)
ROM(addr,out)(APPEND mcode1 mcode2) =)
ROM(addr,out)mcode1

This states that subject to the condition ALL_UNIQUE which demands that

no entries clash, a microcode ROM extended with the microcode set mcode2

allows only behaviour which is compatible with the original set mcode1.

8.3 Veri�cation

The relational interpreter framework and incremental implementationmod-

els have been developed in the context of doing a simple processor design

[29]. As described in section 6, the state consists of a tuple of program

counter P, three-element stack (A,B,C) and memory ROM, and there is an ex-

ternal signals environment represented by a variable env. For example, the

semantics for the LDC instruction presented in section 6 can be described

in HOL as follows:

2Note that a MEM list is true if a is a member of list list; FST and SND access the

�rst and second elements of a tuple. is selected(tag,s t,e t) is true at time t, if tag

is selected in state s t and environment e t. " is Hilbert's choice operator in HOL. If
a unique tag is chosen then the term "tag. is selected(tag,st,env) (i.e. choose the

tag such that . . .) evaluates to this tag.
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LDC_SEM gen_rep ((P',A',B',C',ROM'),(P,A,B,C,ROM),env) =

(let instr = ROM((ADDR_FN gen_rep)P)

in

let w = (ARG_FN rep)instr

in

((P' = (ADD1 gen_rep)P) ^
(A' = w) ^ (B' = A) ^ (C' = B) ^ (ROM' = ROM)))

where gen_rep contains the generic parameters of the design.

A simple microcoded machine has been designed to implement a com-

plete instruction set [29], and has been shown to correctly implement a

relational interpreter for the desired instructions.3 The HOL description

takes the following form:

(MICRO_MC MLIST_A gen_rep) =)
TRANSITION_SYS

(IS_SELECT gen_rep,

[LDC_op, LDC_SEM gen_rep;

JMP_op, JMP_SEM gen_rep;

ADD_op, ADD_SEM gen_rep;

. . . ])

((SIG_TUP5(PC,A,B,C,mem)) o

(Temp_Abs(� t. mp_index t = 0)))

(e o (Temp_Abs(� t. mp_index t = 0)))

The microcoded machine is described by MICRO_MC and is parameterised

by the microcode MLIST_A. This means that the incremental models of the

implementation and abstract machine can be used in tandem. The machine

speci�cation can be extended by adding more instructions to the property

list argument of TRANSITION_SYS, and the microcode can be extended to

implement these instructions thus extending the microcode parameter of

MICRO_MC. The use of incremental models means that just these extensions

need be veri�ed, the previous results being inherited, and the new system

can be veri�ed in an e�cient manner.

8.4 Inmos processor

In addition to the simple processor for the restricted machine instruction

set, a more realistic processor for an enlarged instruction set has been

designed and veri�ed using HOL by David Shepherd at Inmos [7]. This

was an important part of the project to demonstrate the usefulness of the

formal methods developed by the more academic partners in an industrial

setting. Inmos have been enthusiastic protagonists of formal methods: in

the past they have won a UK Queen's Award for Technological Achievement

3This result is subject to the synchronisation condition as described in [29].



18 Towards Veri�ed Systems: The SAFEMOS Project

jointly with Oxford University for their work on formally developing the

microcode for the 
oating point unit of the T800 Transputer [49] and more

recently they have applied formal techniques to critical parts of the T9000

Transputer such as the pipeline architecture and the associated virtual

channel processor [39, 46]. The Inmos design produced on the safemos

project is intended to be realistic in performance and complexity, as well

as predictable and extensible.

The mathematical models underlying the Inmos processor are based on

those described for the simple processor presented here, and thus support

a generic, incremental approach to design speci�cation and veri�cation. In

addition, there is an emphasis on automated proof using HOL which has

resulted in the architectural approach employing generic parameters and a

microcode veri�cation tool as described in [7].

9 Normal Form and Hardware Compilation

An alternative and novel approach to the implementation of a program on a

microprocessor is to compile the program directly into hardware [44]. This

technique was not foreseen at the start of the project, and as such is more

speculative than the work presented in previous sections, but is presented

here because we believe this will be an important development for the

future. It has been made possible in a practical sense for small programs

(such as those found in embedded systems) by the fast developing and

exciting technology of Field Programmable Gate Arrays (FPGAs) which

allows the con�guration of a hardware circuit to be de�ned by binary code

in a memory in a similar manner to more conventional object code.

The project has investigated an approach to such compilation via a

normal form [35] which uses a very restricted subset of the high-level pro-

gramming language being compiled. This splits the compilation process in

two which both simpli�ed the individual transformations between the levels

and allows the possibility of compiling the normal form to either hardware

or software or even a combination of the two.

A normal form program comprises three sequential programs where the

�rst one designates the initial control state of the circuit normally taken

from the environment (an assumption), and the last one the �nal state

normally returned back to the environment (an assertion). The middle

one is a loop with a multiple assignment as its body which speci�es state

change of the circuit during execution.

N (n1; n2; K ; C ; V )
def
=

LOCAL c (c :=0 n1 ;

WHILE (c 2 K ) (c; v :=1 C (c); V (c)) ;

(c = n2)?)

n1 indicates the starting control state, n2 indicates the �nishing control
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state, K is a set of possible control states, C a K -indexed family of ex-

pressions describing the next control state and V a K -indexed family of

expressions specifying the new value of data path v . In a circuit, con-

trol states are normally recorded in wires, possibly connected to latches,

whereas in a microprocessor this information is typically recorded by a

special register known as the program counter.

9.1 Normal form reduction theorems

As in section 7, each high-level programming construct must be handled.

As before the �nishing control state should be the same as the starting

control state for SKIP and there is no change of state of the variables in

the program:

SKIP v N (n; n; ;; ;; ;)

Typically, the low-level implementation for this would be a single wire

labelled by n, taking no time to `execute'.

For assignment, the control 
ow is recorded by the C parameter and

the new state of the data is recorded by the V parameter. Let t � 1:

v :=t e v N (n1; n2; fn1g; fn1 7! n2g; fn1 7! eg)

In a clocked hardware implementation, t would indicate the number of

clock cycles used to perform the update and the state would be held in a

number of latches. A minimum of one clock cycle is required to allow time

for the evaluation of the expression e in case this has changed during the

previous cycle.

The composition of two circuits already in valid normal form is imple-

mented by taking the union of the K , C and V parameters. The control

states in the two circuits must be suitably disjoint. If K1 \ K2 = ; and

n2 =2 K1:

N (n1; n; K1; C1; V 1) ; N (n; n2; K2; C2; V 2)

v N (n1; n2; K1 [K2; C1 [C2; V 1 [V 2)

The intermediate control state n is e�ectively absorbed by the circuit.

Typically this would be implemented as an internal wire in the circuit

directly connecting the output control state of the �rst circuit to the input

control state of the second one.

A more complete set of theorems for a simple sequential programming

language may be found in [27]. A pleasing feature of the approach if

mapped to synchronous clocked circuits is that the timing properties of

programs are very simple. For example, it is possible to execute all assign-

ment statements in a single clock cycle (if made long enough to accom-

modate the slowest expression or control state to be evaluated) and for all
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control constructs to e�ectively take no clock cycles since control states are

determined in parallel to other computation during each clock cycle [44].

Hardware compilation is an active area of research in which we foresee

much possible progress, the fusion of mathematical techniques with the

practical concerns of engineers, and also an increased potential and desire

for hardware/software co-design. The natural parallelism of hardware can

be exploited to the full. Many algorithms which would be too slow if

implemented using a microprocessor but are too expensive or would be too

in
exible if implemented in custom hardware could bene�t from such an

approach. In addition, the number of levels of abstraction to be handled is

reduced, thus helping to decrease the overall possibility for error.

10 Conclusion

This paper has brie
y presented a number of approaches investigated by

the safemos project to aid the veri�cation of mixed hardware/software

systems, especially considering real-time aspects where possible and appro-

priate. Most of the areas covered are elaborated further in a forthcoming

book [7] and other papers referenced here.

A number of formalisms were investigated of the project and not all

the parts presented are connected in a satisfactory way. Further work to

unify the approaches at di�erent levels of abstraction is certainly required.

For example, both HOL and Z were used on the project but the use of

HOL was prevalent because of the desire to mechanise proofs. There is now

more support for the mechanisation of proofs in Z [10] so were the project

to have started today, more use of Z might have been possible with the

same goals of mechanisation in mind.

Whilst the safemos project has now formally �nished, further collabo-

rative work on the support of Z using HOL has continued [10] and the re-

lated ProCoS project continues to aim for the goal of connecting di�erent

levels of abstraction in the development process in a mathematical manner.

In particular, the approach presented in section 9 looks like a promising

one for the development of a provably correct combined hardware/software

compiler, thus helping to straddle the development of hardware and soft-

ware in a uni�ed framework.
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