Vermont Recipes—Introduction

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 9, 2001 - 6:00 AM
Introduction NEXT >

Vermont Recipes is a cookbook for devel oping Macintosh computer
applicationsin the Mac OS X Cocoa environment using the Objective-C
programming language. It takes a practical, no-nonsense, hands-on, step-
by-step approach, walking you through the details of building a Cocoa
application from start to finish. It explainsin detail what the code is
doing and why it works, but it offers a minimum of theory about the
language or the Cocoa frameworks—for that, you are encouraged to read
Apple'sMac OS X Developer Documentation. Vermont Recipes places a

¥ decided emphasis on getting an application to work correctly as quickly
|| aspossible.

1| The current version of Vermont Recipesis written for Mac OS X 10.0,

which was released on March 24, 2001 and has been updated with minor
 bug fixes and feature enhancements several times since then. To make
use of the Cookbook to create an application, you must install the Mac
OS X Developer Tools, which have also been updated since March 24.

If you studied the previous version of Vermont Recipes, which was written for Mac OS X Public Beta,
thereislittle to gain by going through the first three Recipes again. There have been very few changesto
the code of the Vermont Recipes application, which are listed on the Errata and Updates page. Although
this version of Vermont Recipes does walk the reader through many of the improvements that have been
made to Apple's Developer Toolsin Mac OS X 10.0, you can learn about these changes by starting with
Recipe 4 and following as they become available.

Vermont Recipesis aimed at reasonably experienced programmers who are Cocoa beginners. It assumes a
solid grounding in the C programming language and some experience with object-oriented programming
concepts. No prior experience with Cocoa's predecessors, NextStep, OpenStep, and Rhapsody, is

http://www.stepwise.com/Articles/VermontRecipes/ (1 of 14) [9/10/2001 8:44:32 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://developer.apple.com/techpubs/macosx/macosx.html
http://www.apple.com/macosx/

Vermont Recipes—Introduction

necessary. Only alimited exposure to the Objective-C extensions to C is required, along with a modest
awareness of the workings of Apple's Mac OS X development tools, Interface Builder and Project Builder.
If you already know C and have some understanding of object-oriented programming, the only preparation
you should undertake is alittle reading: Inside Mac OS X: System Overview for essential background

information on the architecture of the Mac OS X operating system; Inside Mac OS X: Object-Oriented
Programming and the Objective-C Language, Apple's Objective-C documentation; and Apple's devel oper
tools documentation relating to Interface Builder and Project Builder. All of these materials are available

on your computer once you install the Developer Tools CD. Y ou will then be ready to start cooking with
Vermont Recipes.

How To navigate Vermont Recipes

Every page in Vermont Recipes contains navigation bars near the top and bottom. On the
left end of anavigation bar are links taking you back up the site hierarchy from the page
you are viewing. Using these links, you can aways return immediately to the first page of
the Recipe you are reading, the detailed Table of Contents, and this Introduction. On the
right end of a navigation bar are links taking you "BACK" to the previous page and
forward to the "NEXT" page in sequence.

How to read Vermont Recipes off line

If you prefer to work off line, you can download Vermont Recipes as a Portable Document
Format (PDF) file and read it using the free Adobe Acrobat Reader. This PDF file contains

the entire Cookbook and is rather large. Y ou can download a smaller PDF file containing
an individual Recipe at the first page of each Recipe.

Return to the Stepwise site at www.stepwise.comVArticles/\VVer montRecipes/ from time to
time to check for new and updated Vermont Recipes pages. Every page's last modification
date appears near the top. The PDF files are synchronized with the web site within afew
days of every change.

Errata

From time to time, errors will be discovered in Vermont Recipes. Errors are fixed

promptly when discovered, and the relevant text and code is revised. To assist those who
relied on earlier versions, an Errata and Updates page is provided which lists all
substantive code errors, their corrections, and the date of the correction. If you consult the
Errata and Updates page online occasionally, you will be able to keep your code up to date
with the latest fixes. (Corrections to typographical errorsin text are not listed.)

http://www.stepwise.com/Articles/VermontRecipes/ (2 of 14) [9/10/2001 8:44:32 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/SystemOverview.pdf
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/ObjC.pdf
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/ObjC.pdf
http://developer.apple.com/tools/interfacebuilder/
http://developer.apple.com/tools/projectbuilder/
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes.pdf
http://www.adobe.com/products/acrobat/readstep2.html

Vermont Recipes—Introduction

. Tableof Contents

. Errataand Updates

. Recipe 1: A ssimple, multi-document, multi-window application
. Recipe 2: User controls—Buttons

. Recipe 3: User controls—Sliders

. Recipe 4: User controls—Text fields (sheets)

. Recipe5: User controls—Text fields (formatters)

. PRl
S Ly .-:IH.’E. A (F PR

ULV VL ILY

The emphasis here is on code. Vermont Recipesis not atutorial on how
to use Interface Builder or Project Builder, although the steps necessary
to create an application are detailed in Step 2 of the first Recipe with
enough particularity to get you started. Nor does it explain Objective-C
syntax, except for an occasional brief discussion of important features of
the language in the Cocoa context, such as categories and protocols.
Instead, it is a collection of simple, do-it-yourself Recipes—not much
more than commented and organized code snippets—to guide you through the process of creating classes
and subclasses, objects, outlets, and actions.

Each Recipe is accompanied by downloadable project source files so you can follow along if you prefer
not to type the code yourself. Declarations and definitions in the source files are annotated with references
to the Recipes and Steps where they are described; if you are a nonlinear thinker, you can start with the
source files and look up the explanations in the Cookbook.

Thereisno "right" way to design or code a Cocoa application. Vermont Recipes takes an approach that
works, that isrelatively easy to learn, that is consistent and therefore easy to maintain and enhance, and
that is sufficiently general to be easily adapted to a variety of scenarios. It attempts to conform as much as
possible to conventional practices and nomenclature. The application you will build here is a so-called
document-based application using Cocoa's AppKit and Foundation frameworks, which givesit the
flexibility and capability to serve asamodel for the widest variety of applications.

Most importantly, Vermont Recipes was begun while | was learning Cocoa through careful study of
Apple's documentation and sampl e applications, online assistance from the NextStep, OpenStep,
Rhapsody, and Cocoa developer community, and trial and error. It therefore covers ground that | know,
from personal experience, would otherwise be confusing and frustrating to a Cocoa beginner. It also
benefits from the years of experience of Scott Anguish and the Stepwise team, who have graciously
reviewed and commented on the code and this text. My thanks go to Scott and the team for helping to
make this tutorial conform as closely as possible to established Cocoa techniques. Any errors are mine
alone.

Why Cocoa?

Appleis understandably emphasizing Carbon development as Mac OS X isbeing rolled out, in order to

http://www.stepwise.com/Articles/VermontRecipes/ (3 of 14) [9/10/2001 8:44:32 AM]

http://www.stepwise.com/

Vermont Recipes—Introduction

encourage rapid migration of existing applications from Mac OS 9 to Mac OS X. The Carbon application
environment allows those having alongstanding investment in knowledge of the Mac OS toolbox to bring
their applicationsto Mac OS X easily while maintaining compatibility with Mac OS 8 and 9.

But Cocoa has been positioned as what might be called the "real” Mac OS X for the future. Apple has
repeatedly urged developers of new Mac OS X applications to develop them using the Cocoa frameworks,
and Apple's recommendation has grown stronger with the rollout of Mac OS X 10.0. These are mature and
powerful application frameworks based on ten years or more of NextStep and OpenStep experience. They
incorporate, or soon will incorporate, al of the new functionality and interface of Mac OS X. Furthermore,
with Cocoa you can have it both ways: all of the Carbon APIs can be called from within a Cocoa
application. Finally, experienced devel opers report that the Cocoa frameworks reduce devel opment time
by avery substantial factor. In short, it is faster and easier to develop new applications in Cocoa, with no
loss of power or flexibility.

Why Objective-C?

Y ou can use Java 2 for Cocoa development, but many Cocoa devel opers prefer Objective-C. Javais not,
any more than Objective-C, an answer for those who need to devel op desktop applicationsin a cross-
platform environment, because the Cocoa frameworks are not cross-platform. Furthermore, while Appleis
working hard to improve its performance, knowledgeable devel opers continue to express concern about
Java's speed in a desktop environment. Apple is nevertheless doing a good job of implementing ailmost all
of Objective-C's unique featuresin Java, and it has marketed Cocoa as a powerful Java platform. Java may
be an attractive language for Cocoa devel opment, especially for those who already know it, and especially
for those doing web application development with WebObjects 5, which is based on Java.

Vermont Recipes is based solely on Objective-C. Objective-C isasurprisingly easy language to learn if
you already know C. A widely-repeated rule of thumb is that a C programmer can learn the Objective-C
extensionsin aday or two. Choosing to develop Cocoa applications in Objective-C may therefore be
motivated by nothing more than the wish to avoid the substantial investment of time required to learn a
fundamentally new language like Java. There are much more substantial reasons to use Objective-C,
however. In particular, Objective-C's dynamic object-oriented extensions to standard C are flexible and
powerful, making it possible to design applications in ways that are difficult or impossible using more
traditional languages.

Naming conventions

Vermont Recipes attempts to follow the naming conventions of Objective-C as they have grown up around
NextStep and its successors. Some of these conventions are actually required in order to take advantage of
built-in features of the Cocoa development environment. Others are work habits that have become more or
less generally accepted in the Objective-C and Cocoa communities because they make it easier to read
other developers code. The following are only the most common rules, collected from miscellaneous
postings to the Cocoa mailing lists. They appear in no particular order.

http://www.stepwise.com/Articles/VermontRecipes/ (4 of 14) [9/10/2001 8:44:32 AM]

Vermont Recipes—Introduction

. Give an accessor method the same name as the variable it accesses. For example, method nmy Nane
to get variable my Nane.

. Give amethod that sets a variable a name beginning with "set" followed by the name of the
variable with an initial capita letter. For example, method set MyNane: to set variable my Name.

. Start method names with alowercase letter. For example, i ni t .

. Start class names with an uppercase letter. For example, MyDocunent .

. Prefix exported variables, notification names and the like with two or three distinctive letters
defined for the bundle, to avoid contaminating the global name space. For example, VR for
Vermont Recipes, NS in most of the Apple Cocoa classes, EOfor Enterprise Objects classes, and
WO for Web Objects classes.

Apple reservesto itself the use of aleading underscore character when naming private methods and
exported functions. If developers were also to use this naming convention, they would risk unknowingly
overriding private methods in Apple's frameworks.

A note about Interface Builder and Project Builder

A Cocoa beginner may perceive Interface Builder to be nothing more than an interactive graphical user
interface design tool and Project Builder to be the real tool for building an application. This perception
would be inaccurate, but in Vermont Recipes you will nevertheless be taught to start the application
development process by using Project Builder to create a new project and to write its code. Interface
Builder will be used here mainly as atool to design and build the graphical user interface, but not to
generate significant amounts of code. Interface Builder's Read Files command will be used periodically to
update the internals of the Interface Builder nib files whenever outlets and actions have been added,
deleted or modified in the source code. But Interface Builder's Create Files command will be used rarely,
and then generally only for prototyping a new class.

Eventually, greater integration of these tools will alow you to use Interface Builder more heavily, not just
to design and build the user interface, but also to generate and update the code for classes, outlets, actions
and other items, automatically. For now, in the current version, you are cautioned not to use the Create
Files command when your project already contains source code, because it may overwrite your existing
files.

Y ou will nevertheless discover that the nib files generated by Interface Builder are an integral and
necessary part of a Cocoa application. A nib file describes an application's user interface more
comprehensively than would a simple design tool. Interface Builder allows you, for example, to use
intuitive graphical techniques to tell your code which user controls are connected to specific instance
variables, or "outlets," in your code, and which methods, or "actions,” in your code are triggered by
specific user controls. A nib file is more than a collection of generated code to be compiled with your
application code; it is, in fact, an archived set of classes, instantiated objects and connections that a Cocoa
application loads and runs. In thisway, Interface Builder allows you to write code that is more completely
divorced from a specific user interface, and therefore more portable and adaptable to new interfaces. You

http://www.stepwise.com/Articles/VermontRecipes/ (5 of 14) [9/10/2001 8:44:32 AM]

Vermont Recipes—Introduction

can use Interface Builder, for example, to alter the user interface of a compiled application and,
conversely, to prototype and test a user interface without compiling an application.

The Vermont Recipes application specification

Because the target audience of Vermont Recipesis adiverse group of
programmers who plan to pursue awide variety of projects, the subject of
the Cookbook is a generic application implementing all of
the features that are typically found in many applications !
and utilities. These include multiple documents and ‘~
windows, all manner of user controls, menus, tabbed views, | Mac
and drawers, and standard Macintosh techniques such as
drag-and-drop editing. It will not be a focused, topical
application designed to serve any particular purpose, such asamusic
notation tool or a checkbook balancing application. Instead, it will serve
simply as a showcase for common user interface devices, demonstrating
not only how to build them but aso how they work when completed. In

thisway, it is hoped that programmers will find information here that they can profitably use in their own
applications, even though the Vermont Recipes application itself won't actually "do" anything at all.

JI_.-' ."-.l .
Built for Mac OS X

The application is therefore specified, in broad strokes, as follows: It alows multiple documents to be
open simultaneously. Each document can be saved separately with its own settings using a common file
format. Each document is represented by a standard main window containing several tabbed views
showcasing various categories of user controls, with additional slide-out drawers for ancillary controls.
Each document also allows additional windows to be opened, to provide, for example, alarge, scrollable
space for typing text. Astime goes by, the application will acquire additional features, such as afull-blown
Help system, and it will become scriptable and "speakable.” In short, if you're planning to create asimple,
multi-document, multi-window application, the Vermont Recipes application will provide a usable model.

Y ou, too, can tell the world your product runs on Mac OS X! The art work, licensing requirements, and
guidelines for use of the "Built for Mac OS X" badge are available on the ADC Software Licensing web

site. Please note that this badge cannot be used for products that launch the Classic environment.

Mac and the Mac Logo are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.
The "Built for Mac OS X" graphic and the Mac Badge are trademarks of Apple Computer, Inc., used under
license.

Installing the downloadable project files

Each Recipe includes alink to the full project files up to that point in downloadable form, in case you do
not want to type the code as you read through the cookbook. To use the project files, you must have
installed the Mac OS X Developer Tools CD, which isincluded with the Mac OS X product when
purchased as a separate product.

http://www.stepwise.com/Articles/VermontRecipes/ (6 of 14) [9/10/2001 8:44:32 AM]

http://developer.apple.com/mkt/swl/agreements.html#macosx

Vermont Recipes—Introduction

The download isin the form of a standard Macintosh single-fork disk image file. After downloading it,
you will find afilein your download folder or on the desktop named, for example,

Ver nont Reci pesl. dng. If it does not mount automatically asadisk in Mac OS X and open, just
double-click the image file to mount it and double-click the mounted disk icon to open it. Then drag the
Ver nont Reci pes folder that it containsto the place where you keep your development files (for
example, in your home Docunent s folder).

NOTE: To mount the disk image, you may have to drag the image file to the Mac OS X version of Disk
Copy if thisisthe first time you have used that utility. If you double-click the image file, instead, it may be
opened by the Mac OS 9 version of Disk Copy and refuse to install. The Mac OS X version of Disk Copy
isfoundinthe/ Applications/ Utilities folder. Oncetheimageis mounted, you will find it

either on your desktop or by clicking the Computer button in a Finder window.

Information resources

After installing the Mac OS X Developer Tools CD, you will find agreat deal of information about
developing Cocoa applicationsin the Devel oper folder, at the root level of your Mac OS X disk, and in
Apple Help. You should read almost al of it, including especially the Release Notes and the AppKit and
Foundation frameworks documentation. In particular, you are strongly advised to read the documentation
for the Cocoa NSDocunent and NSW ndowCont r ol | er classes before beginning.

Specific references will be given in a"Documentation” section in some of these pages, as may be
appropriate to the topic at hand. Most refer to files installed with the Developer Tools CD. Astime goes
by, the files installed with the Developer Tools CD will become obsolete, so be sure to check the Apple
Computer sites listed below for updates from time to time.

Asyou work through each of the specific Steps in these Recipes, it is very important that you read the
relevant AppKit and Foundation developer documentation for the classes, protocols, methods, and
functions used in each Step. These Vermont Recipes are not much more than step-by-step "how-to"
instructions, with little explanation, because the devel oper documentation already provides thorough
explanations. The easiest way to get into the developer documentation is to go to the Cocoa page in the
Developer Help Center in the Apple Help Center; click on Application Kit or Foundation under "Objective-
C Framework Reference” in the Reference Documentation section. The same material is organized more
topically in the specific references listed at the bottom of the same page, which are also available in

/Devel oper/Documentation/Cocoa/ TasksAndConcepts/ProgrammingTopics on your computer. Don't

forget to check the Apple Computer sites occasionally for updates.

It can also be helpful to examine the AppKit and Foundation framework header files, which arein some
cases commented to provide information not contained in the developer documentation. The header files
are in /SystenvLibrary/Framewor ks/AppKit.framewor k/Headers and Foundation.framewor k/Headers.

http://www.stepwise.com/Articles/VermontRecipes/ (7 of 14) [9/10/2001 8:44:32 AM]

Vermont Recipes—Introduction

Cocoa books are already beginning to appear. The first out of the gate was Learning Cocoa (O'Reilly,
2001) by Apple Computer, which is an updated and expanded version of earlier Next documentation and
tutorials, extensively illustrated. This book is highly recommended for its introduction to Objective-C, its
lessons on how to use Project Builder and Interface Builder, and its thorough explanation of the relatively
simple example applications described in the book. At least three other books on Cocoa development are
planned for publication during 2001, two of them written by former NextStep and OpenStep developers
with extensive experience and likely to appeal to a more advanced audience.

Cocoatraining for developersis available from Apple and from third parties. Apple offers afive-day
AppleiServices Cocoa Development program. Aaron Hillegass, who worked at Apple Computer, Inc. and
NeXT Software, Inc. as the senior trainer and curriculum devel oper, offers a multi-day training program
through his Big Nerd Ranch in Asheville, NC.

Information about Cocoa development is proliferating on the web. These are afew sites of general interest:
Apple Computer sites

Mac OS X Development, Apple Computer, Inc.

The starting point for Apple's Mac OS X devel oper offerings.

Mac OS X Developer Documentation, Apple Computer, Inc.

A table of contentsfor Apple's Mac OS X developer documentation, including Cocoa. Many
items found here are also on the Mac OS X Developer Tools CD, but newer versions will
appear on the web site over time.

Developer Essentials, Apple Computer, Inc.

Captures in one place, for those new to Mac OS X development, all of the basic links
relating to software development on Mac OS X, including the latest volumes of Inside Mac
OSX.

Cocoa Developer Documentation, Apple Computer, Inc.

A table of contents for Apple's Cocoa documentation. The What's New page is updated only

occasionally and is not currently a useful page for keeping up to date with the current state
of Apple's Cocoa documentation.

Sample Code, Apple Computer, Inc.

http://www.stepwise.com/Articles/VermontRecipes/ (8 of 14) [9/10/2001 8:44:32 AM]

http://www.oreilly.com/catalog/learncocoa/
http://www.apple.com/iservices/technicaltraining/cocoadev.html
http://www.bignerdranch.com/
http://developer.apple.com/macosx/
http://developer.apple.com/techpubs/macosx/macosx.html
http://developer.apple.com/techpubs/macosx/SystemOverview/devessentials.html
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html
http://developer.apple.com/techpubs/macosx/Cocoa/SiteInfo/WhatsNew.html
http://developer.apple.com/samplecode/

Vermont Recipes—Introduction

The entry point for Apple's offerings of sample code, including small example applications.
A number of Cocoa code examples have been posted; expect many more in the days, weeks
and months to come. A button is provided to filter the sample code for those relating to
Cocoa.

Inside Mac OS X: Aqua Human Interface Guidelines, Apple Computer, Inc.

The official guide to graphical user interface design conventions for Mac OS X, frequently
updated in these revolutionary times. Y our application is not truly aMac OS X application
if it does not conform to these Guidelines.

Third-party Cocoa developer sites

Stepwise, Scott Anguish

A highly technical and very sophisticated site maintained by along-time NextStep
developer, containing contributions from many others. Besides hosting Vermont Recipes,
Stepwiseisfull of learned and useful articles about NextStep, OpenStep, Rhapsody, and
Cocoa development, including Scott's well-known tutorial based on an earlier version of
Cocoa, HTM L Editor.

A Cocoa FAQ has been started on Stepwise. Send submissions to cocoa-fag@stepwise.com.

The Omni Group

A Cocoa community-oriented site for sample code, mailing lists, and other devel oper
resources, as well as a number of mature Cocoa frameworks available for free subject to

license terms, from along-time publisher of NextStep, OpenStep, Rhapsody and Cocoa
applications.

Stone's Throws, Andrew Stone

NextStep, OpenStep, Rhapsody and Cocoa tutorials and sample code, from along-time
devel oper.

Cocoa Dev Central, Erik Barzeski and others

Tutorials, tips, news, links and other information for new Cocoa devel opers.

CocoaDev, Steven Frank

http://www.stepwise.com/Articles/VermontRecipes/ (9 of 14) [9/10/2001 8:44:32 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html
http://www.stepwise.com/
http://www.stepwise.com/Articles/Technical/HTMLEditor/index.html
http://www.stepwise.com/FAQ/
mailto:cocoa-faq@stepwise.com
http://www.omnigroup.com/community/
http://www.stone.com/dev/
http://www.cocoadevcentral.com/
http://www.panic.com/~stevenf/wiki/

Vermont Recipes—Introduction

A collection of links to Cocoa developer resources, plus user-contributed sample code.
Cocoa tutorials
See also the Apple and third-party developer sites, above.

DISCOVERING OPENSTEP: A Developer Tutorial (Rhapsody Developer Release), Apple Computer,
Inc.

Apple's excellent Rhapsody tutorial, still relevant, and still the best place to learn how to use
Interface Builder and Project Builder if you haven't yet bought the new O'Reilly book
mentioned above.

Programming With Cocoa, Mike Beam

A series of articles for beginners at the O'Reilly Mac DevCenter site.

Cocoa Dev Central Tutorias, Erik Barzeski and others

A collection of small tutorials on miscellaneous tasks.

Programming Mac OS X with Objective-C and Cocoa, Steven Frank

A Cocoatutoria by abeginner, for beginners, currently based on Developer Preview 4.
Cocoa links

Native OS X Applications—Cocoa Frameworks, Jeff Biggus

Linksto Cocoa and other frameworks.

Native OS X Applications—Cocoa Source Code, Jeff Biggus

Linksto Cocoa applications offered with downl oadable source code.

Cocoa Programming Examples and Source Code, MacTelligence

Cocoa-related links, including some not in thislist.

Cocoa (and older) sample code

http://www.stepwise.com/Articles/VermontRecipes/ (10 of 14) [9/10/2001 8:44:32 AM]

http://developer.apple.com/techpubs/macosx/Legacy/DeveloperTutorial/
http://www.oreillynet.com/pub/ct/37
http://www.cocoadevcentral.com/tutorials/
http://www.panic.com/~stevenf/cocoadev/
http://osx.hyperjeff.net/cgi-bin/hyperjeff/osx/osxSearch.pl?name=framework
http://osx.hyperjeff.net/Apps/CocoaSource.html
http://www.mactelligence.com/info/CocoaLinks.tpl

Vermont Recipes—Introduction

Not all of these sites contain examples that work under Mac OS X. See also the Apple and third-party
developer sites, and be sure to check the Cocoa Links section, above, for additional sample code not listed
here. A listing here is not a guarantee of good code; use at your own risk!

OSX Quickies, Chuck Bennett

Currently holds his code to emulate the old NextStep sndplay program that lets you play
sounds from the command line.

Examples, Mmalcolm Crawford

Downloadable Cocoa code snippets by awell-known figure in the Cocoa community who is
currently teaching Cocoato Apple Computer employees in Cupertino.

Mike's Free Stuff, Mike Ferris

Downloadable OpenStep, Rhapsody, and Cocoa examples from the head of Apple's
developer tools group. It includes MOKit 2.6, aframework recently updated for Mac OS X
10.0 containing several useful classes that augment the Cocoa frameworks. Paraphrasing the
author, it includes aregular expression object, an NSFor mat t er subclass that uses regular
expressions to validate strings, and a set of objects for implementing text completion. It also
serves as an example of how to construct and distribute aframework. TextExtras, based on
MOKit, uses the input manager bundle loading mechanism in Cocoato get itself loaded into
al Cocoa applications; once loaded, it adds many cool features to the Cocoa text system.

CocoaSampleCode, contributed by many, collected by Steven Frank

A collection of Cocoa sample code contributed by many. This site, run by Steven Frank,
allows users to add contributions directly.

BigShow, Aaron Hillegass
BigShow is an XML -based presentation tool with available source code.
GraphicKit, John HOrnkvist

"A comprehensive framework for graphics under Cocoa. It fillsagap in the application kit
by providing a highly optimized yet flexible base for applications that need to display
structured graphics. The GraphicKit is areimplementation of the display enginein
MagnaCharta, and has been designed for Mac OS X." AppleScript is supported. Currently in
beta. License required.

http://www.stepwise.com/Articles/VermontRecipes/ (11 of 14) [9/10/2001 8:44:32 AM]

http://www.powerguardian.com/osx/
http://www.mmalc.com/examples/
http://www.lorax.com/FreeStuff/FreeStuff.html
http://www.lorax.com/FreeStuff/MOKit.html
http://www.lorax.com/FreeStuff/TextExtras.html
http://www.panic.com/~stevenf/wiki/index.pl?CocoaSampleCode
http://www.bignerdranch.com/who.html
http://www.toastedmarshmallow.com/Frameworks/GraphicKit/index.html

Vermont Recipes—Introduction

Mac OS X Rhapsody examples, Gerard Iglesias

Rhapsody example code.

Mac OS X Cocoa CoreAudio demo, James McCartney

A simple sinewave oscillator controlled by GUI sliders, showing how to get audio out of
Mac OS X in asfew lines as possible.

babe the blue 0sx..., Sebastian Mecklenburg

A simple NSFor mat t er subclassto check validity of characters asthey are typed, and a
macro. More is promised.

Programming Page, Andreas Monitzer

Downloadable Cocoa examples.

Mac OS X (Server) Apps, Mulle kybernetiK

Downloadable Cocoa applications with source code.
epicware, Eric Peyton
Downloadable Cocoa applications with source code.

Mac OS X - Programming Examples, Raphael Sebbe

Several Cocoa examples from an enthusiastic recent computer science graduate.

Cocoa examples by request, Frederic Stark

A few Cocoa examples, with an offer to write what you want.

Basic Cocoa Document Based Apps, Daniel Staudigel

Sample document-based application code examples, including an NSTableView example.

Cocoa Objective-C on Mac OS X, Sven Van Caekenberghe

http://www.stepwise.com/Articles/VermontRecipes/ (12 of 14) [9/10/2001 8:44:32 AM]

http://homepage.mac.com/gerard_iglesias/
http://www.audiosynth.com/sinewavedemo.html
http://sebi.cyte.de/programm/macten.html
http://members.blackbox.net/a/programs/
http://www.mulle-kybernetik.com/
http://www.epicware.com/
http://raphaelsebbe.multimania.com/
http://www.chez.com/fstark/cocoa/examples/index.html
http://homepage.mac.com/dstaudigel
http://homepage.mac.com/svc/cocoa-objc-mac-os-x/index.html

Vermont Recipes—Introduction
Downloadable Cocoa examples.

MiscKit, Don Y acktman and others

Free objects and other reusable software, contributed by many. Don announced at the
WWDC 2001 Stepwise Birds of a Feather session that this venerable framework is being
revived for Mac OS X 10.0.

Objective-C

The Objective-C FAQ

Frequently asked questions covering Objective-C on all platforms, downloadable via ftp,
updated monthly.

The Objective-C newsgroup

An active newsgroup for discussion of Objective-C issues on all platforms.

Objective-C: Documentation

Links and information about programming with Objective-C.

Optimizing Objective-C Code

A series of technical articles on how to take advantage of the innards of Objective-C to
improve efficiency.

NeXTstep, OpenStep, and GNUstep

NeXTstep 3.3 Developer Documentation Manuals

Cocoas father. Getting pretty old, but still interesting and relevant.

OpenStep Specification

Cocoas uncle. From 1994, when the OpenStep APl was made public under license.

GNUstep

http://www.stepwise.com/Articles/VermontRecipes/ (13 of 14) [9/10/2001 8:44:32 AM]

http://www.misckit.com/index.html
ftp://rtfm.mit.edu/pub/faqs/computer-lang/Objective-C/faq
news:comp.lang.objective-c
http://www.slip.net/~dekorte/Objective-C/Documentation/Index.html
http://www.mulle-kybernetik.com/opti-1.html
http://www.channelu.com/NeXT/NeXTStep/3.3/nd/
http://www.gnustep.org/GNUOpenStep/OpenStepSpec/OpenStepSpec.html
http://www.gnustep.org/

Vermont Recipes—Introduction

Cocoads brother. The home of an active OpenStep-derived development project similar to
Cocoa.

About the author

Bill Cheeseman isaretired Boston lawyer of some notoriety (did you read or see"A Civil Action"?) now
living in Quechee, Vermont. He first experienced the joy of computing when, in 1964, his Harvard
roommate was programming the PDP-1 at the Cambridge Electron Accelerator in Fortran, and they played
the original Space War daily for ayear. He began writing programs himself in the mid-1970s, first on the
HP-25 programmable calculator, followed by the HP-41C. As a member of the national HP-41C users
group, he wrote the first compiler of undocumented HP-41C commands. He subsequently programmed
extensively in AppleSoft Basic, UCSD Pascal, Modula-2 and 6502 assembler on the Apple][and Apple
/le, Business Basic and UCSD Pascal on the Apple///, and awide variety of languages, including Basic,
Pascal, Object Pascal, Modula-2, C and C++, on along succession of Macintosh computers. Heis well
known in the AppleScript community as webmaster of The A ppleScript Sourcebook. Having retired from

the practice of law at the end of 1999, he is now beginning the new millennium with a second career,
programming full-time in Objective-C in the Cocoa environment of Mac OS X.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/introduction.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/ (14 of 14) [9/10/2001 8:44:32 AM]

http://www.applescriptsourcebook.com/

Vermont Recipes—Contents

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 9, 2001 - 6:00 AM
Introduction > Contents < BACK | NEXT >

Contents

. Introduction

o Introduction

o Why Cocoa?

o Why Objective-C?

o Naming conventions

oA note about Interface Builder and Project Builder
o The Vermont Recipes application specification

o Installing the downloadable project files

o Information resources

o About the author

. Table of Contents

. Errata and Updates

Notes

o The Modd-View-Controller paradigm
o QOutlets and actions

http://www.stepwise.com/Articles/VermontRecipes/contents.html (1 of 6) [9/10/2001 8:44:39 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Contents

o Tabviews

o Thewindow controller class

o The document class

o TheFile's Owner

o Datarepresentation and model classes

o Object initialization and the designated initializer
o Dictionaries

o Delegation

o Notifications

o Categories

. Recipe 1. A simple, multi-document, multi-window
application

> Step 1: Create the project using Project Builder

- Step 2: Design and build the graphical user interface using Interface
Builder

« 2.1 Create the main document window
« 2.2 Add atab view and user controls to the main document window
« 2.3 Create a subclass of the window controller class
» 2.4 Confirm that you have a subclass of the document class
» 2.5 Designate the owner of the nib file
« 2.6 Create outlets, actions, and connections
« 2.6.1 Create an action
« 2.6.2 Create outlets and connections
= 2.6.2.1 An outlet from the window controller to the document
= 2.6.2.2 An outlet from the window controller to a user control
« 2.6.3 Connect other outlets
« 2.7 Createthe sourcefiles
« 2.8 Mergethe sourcefilesinto the project

- Step 3: Set up the project source files using Project Builder
« 3.1 Set up the project target and resources
» 3.1.1 Set up the Application Settings
« 3.1.2SetuplnfoPlist.strings
« 31.3SetupCredits.rtf

http://www.stepwise.com/Articles/VermontRecipes/contents.html (2 of 6) [9/10/2001 8:44:39 AM]

Vermont Recipes—Contents

« 3.14SetuplLocalizabl e.strings
3.2 Import the Cocoa umbrella framework
« 3.3 Replace the window routines provided by the Project Builder template
3.4 Implement the user control outlet created in Interface Builder
3.5 Set up amodel classto hold the application's data
» 3.5.1 Create anew model class using Project Builder
« 3.5.2 Initialize the model object
« 3.5.3 Enable a document to instantiate a model object and accessits data
« 3.5.4 Define adatavariable in the model object
« 3.5.5 Link the window controller to the model object
« 3.6 Implement the action created in Interface Builder

- Step 4: Provide for data storage and retrieval
« 4.1 Initialize the data
4.2 Implement the stub methods for data representation
« 4.2.1 Convert the document's internal data to its external storage

representation
« 4.2.2 Convert the document's stored data to its live internal representation

« 4.2.3 Implement the model object's data conversion methods
« 4.3 Display the document's data

Step 5: Implement Undo and Redo
» 5.1 Register data changes with the document's undo manager
» 5.2 Set the undo and redo menu item titles with localized strings
« 5.3 Update the user interface

O

- Step 6: Review the behavior of the Save and Revert menu items

- Step 7: Make the Revert menu item work

O

Step 8: Add application and document icons
» Step 9: Revise the menu bar

» Conclusion

. Recipe 2: User controls—Buttons

http://www.stepwise.com/Articles/VermontRecipes/contents.html (3 of 6) [9/10/2001 8:44:39 AM]

Vermont Recipes—Contents

i

O

O

Step 1. Prepare the project for Recipe 2
Step 2: A better way to handle data initialization

Step 3. Checkboxes (switch buttons) in a borderless group box

« Highlights:
« Using a mixed-state checkbox
« Using an Objective-C category to enhance a built-in Cocoa class

Step 4. Checkboxes (switch buttons) in a bordered group box

« Highlights:
= Using acontrol as agroup box title
=« Disabling and enabling controls

Step 5: A radio button cluster

« Highlights:
« Using tags and an enumeration type to manage a radio button cluster

Step 6: A pop-up menu button

« Highlights:
« Using an index and an enumeration type to manage a pop-up menu button

Step 7: A pull-down menu button

« Highlights:
=« Issuing commands from menu items in a pull-down menu button

Step 8: Bevel buttons to navigate atab view

« Highlights:
« Placing an image and text on a bevel button
« Creating a navigation button that appears on every tab view item in atab view
« Using a delegate method to disable navigation buttons when the first or last
tab view itemis selected

. Recipe 3: User controls—Sliders

0

Step 1. A simple slider
« Highlights:
= Adding atab view item using Interface Builder
= Presenting a simple document-modal sheet

http://www.stepwise.com/Articles/VermontRecipes/contents.html (4 of 6) [9/10/2001 8:44:39 AM]

Vermont Recipes—Contents

« UsingtheNSStringl ocalizedStri ngWthFor mat : class method to
concatenate strings and to format numbers using localized formatting
conventions

- Step 2: A dlider with an interactive text field
« Highlights:

« Setting an editable text field from a dlider's value continuously as the dlider is
dragged

« Setting adlider from an editable text field

« UsingtheNSStringl ocalizedStri ngWt hFor mat : class method to
format numbers using localized formatting conventions

« Using an NSFor mat t er object to constrain text entry to a floating-point
value within a predefined range

- Step 3: A dlider with push buttons
« Highlights:
« Setting a dider from push buttons
« Setting a static text field from a slider's value continuously as the dlider is
dragged

. Recipe 4: User controls—Text fields (sheets)

O

Step 1: A better way to save documents

« Highlights:
» Saving adocument in XML format
« Automatically preserving old versions as backup files

- Step 2: A complex, interactive document-modal sheet to deal with an

invalid text field entry
« Highlights:
= Moving atab view item to a new position in atab view
« Usingthe NSAl ert () function to catch configuration errors at run time
= Internationalizing a sheet

Step 3: A generic document-modal sheet to prevent deletion from atext
field
« Highlights:
= Intercepting an attempt to commit a change to atext field

O

- Step 4: Preventing tab view navigation while an illegal text entry is
pending

http://www.stepwise.com/Articles/VermontRecipes/contents.html (5 of 6) [9/10/2001 8:44:39 AM]

Vermont Recipes—Contents

« Highlights:

Human interface considerations relating to invalid text field entries

. Recipe 5: User controls—Text fields (formatters)

- Step 1: On-the-fly input filtering for integers
« Highlights:

Memory management for instance variables that hold value objects

Writing a custom formatter by subclassing NSNumberFormatter

Limiting typing in atext field to a specific set of characters (filtering for
numeric digits)

Setting the tab order among text fieldsin awindow or pane

Preventing tabbing among text fields from registering with the undo manager

- Step 2: On-the-fly input filtering and formatting for decimal values
« Highlights:

Obtaining localized user default values from NSUserDefaults

Creating and using a custom character set for membership testing

Limiting typing in atext field to positive decimal values (filtering for numeric
digits plus alocalized decimal separator)

Creating and using a scanner to remove unwanted characters from a string
Formatting atext field on the fly by inserting thousands separators
automatically and adjusting the insertion point

Recognizing a control character or function key typed on the keyboard

- Step 3: A complete custom formatter for conventional North American

telephone numbers
« Highlights:
« Writing a custom formatter by subclassing NSFormatter
« Giving aformatter access to the user control to which it is attached

Vermont Recipes

http://www.stepwise.com/Articles/VermontRecipes/contents.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents

< BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/contents.html (6 of 6) [9/10/2001 8:44:39 AM]

Vermont Recipes—Errata and Updates

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 7, 2001 - 11:30 AM
Errata and Updates < BACK | NEXT >

Errata and Updates

This page lists al significant corrections and changes that have been made to the published code of the
Vermont Recipes application. If you built an earlier version, you can look here to find changesto correct it
and bring it up to date.

Vermont Recipes for Mac OS X 10.0

The Vermont Recipes application as described in Recipes 1-3 was updated in a few respects on June 20,
2001 to accommodate changesin Mac OS X 10.0 over Mac OS X Public Beta. Thelist below isin
Recipe/Step/instruction order. In addition, the inevitable errors are being reported and fixed.

. Recipel, Step 4.2.1, instruction 3. and Step 4.2.2, instruction 3., June 20, 2001. The Public Beta

version of the application used ASCII encoding when converting and restoring data to save and
retrieve it from persistent storage, intheconvert For St or age andr est or eFr ontSt or age
methodsin MyDocunent . m Mac OS X 10.0 uses UTF8 encoding for property lists. Vermont
Recipe's datais saved as a property list, so we have changed to UTF8 encoding, passing
NSUTF8St r i ngEncodi ng astheencodi ng parameter to NSString'sdat aUsi ngEncodi ng
andi ni t Wt hDat a: encodi ng: methods.

. Recipel, Step 5.2, instruction 1., August 4, 2001. In the first code snippet, the two instructions to
localization contractors were reversed, and the error existed in the downloadable project files as
well. The appliation nevertheless functioned correctly. The Local i zabl e. stri ngs filewas
correct.

. Recipe 2, Step 4, instruction 2.f., August 7, 2001. In the implementation of the
recent RockAct i on: method, the " Set Recent Hits" string erroneously had a capitalized "1" in

http://www.stepwise.com/Articles/VermontRecipes/errata.html (1 of 3) [9/10/2001 8:44:55 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Errata and Updates

"Hits." The application functioned correctly, but localization might not have worked correctly.

. Recipe 2, Step 4, instruction 2.i., August 7, 2001. Ther est or eFr onDi cti onar y: method of

MySet t i ngs. merroneously used ther ecent RockVal ueKey to obtain the value. It should
usether ockVal ueKey. The error caused the application to malfunction, restoring the user
interface incorrectly when reading afile from disk (the Allow Rock checkbox would appear to have
the same value as the Recent Hits checkbox, even if it had been saved with a different value).

. Recipe 2, Step 5, instruction 2.i. and Step 6, instruction 2.i., June 20, 2001. The Public Betaversion
of Vermont Recipes|eft it as an exercise for the reader to implement categories on NSString to
save and retrieve custom VRPar t y and VRSt at e enumeration constants as strings instead of
integers to improve the human readability of the documents. In the current version, we still leave it
as an exercise for the reader, but you can now find the actual code in the
NSStri ng+VRStringUtilities filesand callsto the new methods in the Persistent storage
section of MySetti ngs. m

Vermont Recipes for Mac OS X Public Beta

A number of errorsin the code of the original Mac OS X Public Betaversion of the Vermont Recipes
application were published, as noted below. Thelist below isin Recipe/Step/instruction order.

. Recipel, Step 3.5.1, instruction 6. December 31, 2000. The earlier instruction to place the

MySet t i ngs header and source filesin the Resour ces folder was erroneous. The Cl asses
folder was intended. Vermont Recipes nevertheless functioned correctly.

. Recipel, Step 4.2.3, instruction 2. December 31, 2000. In earlier versions of MySet t i ngs. m the
convert ToDi cti onary: method incorrectly read the my CheckboxVal ue variable directly
instead of invoking its accessor method. Vermont Recipes nevertheless functioned correctly. The
corrected code is as follows:

- (void)convert ToDi ctionary: (NSMut abl eDi cti onary
*)dictionary {

[dictionary set Qbject:[NSString
stringWthFormat: @ %", [self nyCheckboxVal ue]]
f or Key: nyCheckboxVal ueKey] ;

}

. Recipel, Step 5.1, instructions 3. and 4. December 31, 2000. In earlier versions of

MyW ndowCont r ol | er. h,thewi ndowW | | Ret ur nUndoManager : delegate method
incorrectly omitted itssender parameter. The corrected code is asfollows:

http://www.stepwise.com/Articles/VermontRecipes/errata.html (2 of 3) [9/10/2001 8:44:55 AM]

Vermont Recipes—Errata and Updates

- (NSUndoManager
*)wi ndowW | | Ret ur nUndoManager : (NSW ndow *) sender ;

The method is aso corrected in MyW ndowCont r ol | er . m Vermont Recipes nevertheless
functioned correctly, although the delegate method was not invoked.

. Recipel, Step 5.2, instruction 2. December 31, 2000. In earlier versions of the

Local i zabl e. st ri ngs file, the comments to the Undo and Redo menu item names for the
my Checkbox control did not match the comments in the invocations of the

NSLocal i zedSt ri ng: method in nyCheckboxActi on: in MyW ndowControl | er. m
and the comments were reversed in the source file. Vermont Recipes neverthel ess functioned
correctly. Y ou can correct this minor issue by referring to the corrected comments in instruction 2.
A similar correction was made in Recipe 1, Step 6, although the method discussed thereis not in

fact used in the application (it is commented out).

. Recipel, Step 5.3, instruction 6. December 31, 2000. In earlier versions of

MyW ndowCont r ol | er. mtheupdat eMyCheckbox: notification method was registered as
an observer with the notification center in the window controller'si ni t method. Registering in the
i ni t method involved a subtle error, sincethe[sel f nySet ti ngs] object passed asthe

obj ect parameter in the registration method had not yet been created and was therefore passed as
ni | . Vermont Recipes nevertheless functioned correctly, but it would not have functioned correctly
later, when text fields are added to the application. The notification is now registered with the
notification center in the window controller'swi ndowDi dLoad method.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/errata.htmi
Copyright © 2001 Bill Cheeseman. All rights reserved.

Errata and Updates < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/errata.html (3 of 3) [9/10/2001 8:44:55 AM]

Vermont Recipes—Recipe 1

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 4:.00 PM
Introduction > Contents > Recipe 1 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Download the project files for Recipe 1 as a disk image and install them

Download a PDF version of Recipe 1

In the first Recipe, you will start by creating a new project in Project Builder, setting up the initial source
files, nib files, and resources, as well as the correct folder structure for your project. Y ou will then turn to
Interface Builder to begin laying out the basic features of the application's graphical user interface. Finaly,
you will return to Project Builder to write code to compl ete the implementation of your initial user
interface and to begin implementing the substantive functions of the application. When you have
completed Recipe 1, you will have aworking Cocoa application, with its own icons, double-clickable in
the Finder and complete with an about box, support for multiple documents and windows, a tabbed view
with user controls, multiple undo and redo, and the ability to save, open and revert documents.

The Vermont Recipes application is a document-based application relying on the Cocoa A pplication Kit
framework. Like most Cocoa document-based applications, it adopts the so-called Model-View-Controller
paradigm (MV C), which originated in the Small Talk language from which the Objective-C extensions to
C were derived. Thisis main-stream Cocoa application design, embodying the approach recommended by
Applefor typical Cocoa applications and accounting for much of the ssmplicity and efficiency of Cocoa
development. If you haven't done so already, be sure to read about MV C in Apple's Application Design for
Scripting, Documents, and Undo, a document installed on your computer at

/Devel oper/Documentation/Cocoa/ProgrammingTopics/AppDesign in both PDF and html format or
downloadable as a PDF file.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l.html (1 of 3) [9/10/2001 8:45:05 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes1.dmg
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes1.pdf
http://developer.apple.com/techpubs/macosx/System/Documentation/Developer/Cocoa/ProgrammingTopics/AppDesign/AppDesign.pdf

Vermont Recipes—Recipe 1

A note about the M odel-View-Controller paradigm

In the MV C paradigm, the "model" is where the application's data resides, including
behaviors relating directly to the data. It is represented in a Cocoa application by one or
more model objects, which are usually designed to be as independent of all other aspects
of the application as possible. In particular, the code for the model should be completely
Independent of the user interface, having no knowledge of how any item of datain the
model is represented on the screen. The NSDocument class, which you will subclass for
the Vermont Recipes application, usually serves to manage these model objects and should
not be thought of as amodel, itself. The Cocoa frameworks, particularly NSDocument,
already do much of the work for you, such as providing save and open sheets and the
underpinnings of multiple undo and redo. Y ou will be able to focus on writing the code
that implements the application's unique data structures.

The "view" iswhere the graphical user interface exists. Most classes in the Cocoa AppKit
are view classes, and they do most of the work of drawing and manipulating windows,
panels and user controls for you. Y ou will add views to the application using Interface
Builder, requiring relatively little coding in Project Builder. What little code you might
write for the views will be completely independent of the model's data structures, having
no knowledge of how the data represented by aview is structured or where it exists.

The "controller" acts as an intermediary between the model and the view, allowing the
application to maintain a complete separation between data and user interface. It is
represented in Cocoa by the NSWindowController class, which you will subclass for
Vermont Recipes and instantiate once for each window that the user opens. The
application's views tell the window controller that the user has done something, and the
window controller in turn tells the model to adjust its data accordingly. When the model's
datais modified—for example, by an AppleScript command or the user's choosing the
Undo or Redo menu item—it notifies the window controller, which in turn tells the
affected views to update their visual state. The controller is where you must do most of
your coding, since the interaction between the application’'s data and its user interfaceis
unique and cannot be anticipated in the Cocoa frameworks. A simple Cocoa application
can be written without subclassing NSWindowController, but the greater complexity of
Vermont Recipes requires you to customize it.

There can be many controllersin a Cocoa application, and they aren't always identified by
the term "controller" in the class name. For example, as suggested above, NSDocument
can be thought of as a controller responsible for managing a document's model objects.
Another that you may encounter in your reading is the built-in NSDocumentController
class, which, among other things, manages some aspects of a document's relationship with
the file system. Don't let these naming issues confuse you, but focus instead on the role
that the Cocoa classes play in the overall structure of an application.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l1/recipe01.html (2 of 3) [9/10/2001 8:45:05 AM]

Vermont Recipes—Recipe 1

Screenshot 1: The Vermont Recipes 1 application

e O S0 W Y indew ¢

Vermont Recipes 1
A Cocoa Cockbook

r‘l"tﬁ Boxes m

] Checkbox

S TN RO RN IO RO O N RO RO RO O T RO RO O RO O RO O N RO O T OO RO RO OV N RO OO RO RO O RO O O IO RO N R

e —

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1/recipeOl1.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Atrticles/VermontRecipes/recipe01/recipe0l1.html (3 of 3) [9/10/2001 8:45:05 AM]

Vermont Recipes—Recipe 1, Step 2.1

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.1 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder

The name of Interface Builder, commonly referred to as"IB," suggests that it isatool for building, not just
designing, agraphical user interface (GUI). It is both, and much more. In the course of designing the GUI
for the Vermont Recipes application, you will see that the nib file built by Interface Builder contains a
significant amount of information that will be used by the application at run time. Unlike many GUI

design utilities, which generate uncompiled code, and unlike ResEdit in the classic Mac OS, in which you
create layout templates, Interface Builder allows you to create classes and objects and to archive them for
loading directly into your application at run time.

Documentation

The best place to begin reading about Interface Builder isin IB Help in the Developer
Help Center in the Apple Help Center. Also read the latest Interface Builder release notes,
which appear automatically when you launch Interface Builder. Both IB Help and the
release notes are available directly from Interface Builder's Help menu.

An example project with which to practice your skillsis found on your computer at
/Devel oper/Documentation/Devel oper Tool 1 nterfaceBuilder. Learning Cocoa (O'Reilly,

2001) contains extensive instruction on the use of Interface Builder in the context of this
example.

The old NextStep/OpenStep Tools & Technigques Book contains detailed step-by-step
instructions for using Interface Builder that are still valuable. The book is on your
computer at

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (1 of 9) [9/10/2001 8:45:14 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://www.oreilly.com/catalog/learncocoa/

Vermont Recipes—Recipe 1, Step 2.1

/Devel oper/Documentati on/Cocoa/DevEnvGuide/Book/Tool s& TechniquesBook. pdf.

For general information about Interface Builder and other devel oper tools, read Devel oper
Tools Overview at /Devel oper/Documentation/Devel oper Tools/DevTool sOverview.html. A
convenient roadmap appears at /Devel oper/Documentati on/Devel oper Tool s/devtool s.html.

Y ou can see some of the information contained in a nib file even now, after just setting up a Cocoa
document-based application. Launch PropertyListEditor, in /Developer/Applications/, and use it to open
thecl asses. ni b component of MyDocunent . ni b, whichisintheEngl i sh. | pr oj subfolder of
the project bundle. Y ou will see an expandable outline showing the Cocoa classes and related information
already known to the nib file ssimply from setting up the project files. Y ou will add more information to the
nib file in this Step, but much of the information in a finished Cocoa nib file will be in the form of
archived Cocoa classes that are not in XML format and cannot be read using PropertyListEditor.

When you reach the point of writing code for the application, you will discover why the nib file's internal
information is important. Many seemingly essential itemswill be missing from the Project Builder source
files. For example, some instance variables will be declared in code, referring to user control objects, yet
there will appear to be no code telling the application which user control is pointed to by any of the
instance variables. Similarly, some methods will be implemented in code, apparently telling the
application what actions to take when particular user controls have been clicked, yet there will appear to
be no code telling the application which action method will be invoked by any of the controls.

The missing items are supplied by Interface Builder's nib files, which the application will open whenitis
launched. Asyou design the GUI for the application, you create "outlets’ and "actions" and connect them
to appropriate objects using Interface Builder. Outlets are Interface Builder-speak for instance variables
that can be connected to objects in the nib file—you use Interface Builder to draw a connection from an
object containing an outlet to the associated user control, then specify which of the object's instance
variables to connect. Actions are Interface Builder's term for action methods—again, you use Interface
Builder to draw a connection from a user control to the target object that implements the control's action
method, then specify which of the target's action methods is to be invoked when the user clicks that
control. Cocoawill automatically invoke the correct method at run time whenever the user clicks the
control, with little or no further coding on your part.

Asyou use Interface Builder to create these outlets, actions, and connections, the information is stored in
thenib file. The nib fileisan integral part of the application, and the informationinitisused at run timeto
pull everything together.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (2 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

A note about outlets and actions

You will seein this Step that Interface Builder relies to some extent on an electrical
metaphor. Objects have "outlets,” and you plug other objects into them by stringing wires
between objects having outlets and the objects that are to be plugged into them. Interface
Builder even uses alittle electric outlet symbol to identify outlets.

In programmer's terms, an outlet is an instance variable declared in a class interface.
Typically, adocument class or awindow controller class declares numerous outlets
identifying other objects with which it needs to communicate, including not only user
control objects but any kind of object.

In Sep 2.6.1, you will see how you can also wire user interface objects with a sort of

control circuit, connecting each user control object to a specific action method in atarget
object, to be invoked when the user control is turned on or off. Thisimplements what is
known in computer science circles as the target-action design pattern, a pattern that lies at
the heart of Cocoa's design. Typically, auser control is connected to an action method
implemented in a controller object.

In thisway, Interface Builder allows you to divorce your user interface code from your
substantive code to a much greater extent than is true of other programming environments.
One of Interface Builder's functionsisto let your application know at run time what is
connected to what, so that you don't have to lock this information into your code at
compile time. Interface Builder is much more than its name suggests.

2.1 Create the main document window

It is convenient next to design and build the essential elements of the user interface for the application's
main document window. To start, you must create the window and connect its wiring.

1. In Project Builder, expand the Resources folder in the left pane of the project window and double-
click MyDocunent . ni b. Interface Builder launches and opens the nib file. Alternatively, you can
launch Interface Builder and use it to open the nib file.

Two windows and a palette appear: the main Interface Builder window, entitled
"MyDocument.nib," which initially contains the File's Owner, First Responder, and Window icons;
the main document window, initially called "Window" and containing a string reading ™Y our
document contents here;" and the Cocoa objects palette, also know as the objects window, from
which you will drag various user controls to the main document window. The palette is hidden
whenever you bring another application to the front.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (3 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

A second pal ette appears when you choose Tools > Show Info. This"Info" palette, also known as
the "Inspector", changes its content when you select different windows or user controlsin Interface
Builder. Y ou use the Info palette for many purposes, including to set a user control's default
properties or attributes and to select targets for a variety of connections. Like the objects palette, it
is hidden whenever you bring another application to the front.

Y ou can change Interface Builder's preferences so that the Info pal ette opens automatically when
the application is launched, and so that the objects palette and the Info pal ette appear as utility
windows.

In case you're wondering, "nib" is said to stand for "NextStep Interface Builder."

2. Explore the default instances and classes that have been set up for you. The full meaning of what
you find will become clear later.

a. Choose tools > Show Info with the main document window selected. In the Window Info
palette, use the pop-up menu at the top to select the Connections pane, if necessary, and
click the delegate connection at the bottom. A line appears, extending from the main
document window's title bar to the File's Owner icon in the MyDocunent . ni b window.
This indicates that the Window object delegates some of its functionality to your
MyDocunent . ni b file'sowner. You will find the file's owner in amoment. Delegation is
an important Cocoa concept; you will learn more about it | ater.

b. Click the File's Owner icon inthe MyDocunment . ni b window. The line disappears and the
Info palette automatically switches to the File's Owner Info palette.

c. Click thewi ndow connection in the connections area at the bottom of the Connections pane
of the File's Owner Info palette. A line appears, extending from the File's Owner icon to the
main document window's title bar. This indicates that the default file's owner in your project
(whatever it is) has an outlet, or instance variable, called w ndow, and that it points to an
NSWindow object called "Window."

d. Choose Attributes or Custom Class in the pop-up menu at the top of the File's Owner Info
palette. A list of all available classes appears, with MyDocument selected at the top. This
indicates that the "file's owner" of MyDocunent . ni b isaclass called "MyDocument."

You know it is asubclass of some other class, because it does not contain the "NS" prefix
that identifies most built-in Cocoa classes. In fact, it is a subclass of the Cocoa NSDocument
class, and it isdeclared in the MyDocunent . h header file that you created using Project
Builder in Sep 1.

According to an Apple insider, the original prefix for NextStep classeswas "NX." Thiswas

changed to "NS," for NextStep, when the Foundation framework was made available, before
the OpenStep protocols were released. Now, of course, it stands for the core Cocoa

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (4 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

frameworks, Foundation and AppKit. A prefix of some sort is recommended for all classes
in publicly-distributed frameworks, in order to minimize the chance of globa namespace
collisions.

e. Click the Classestab inthe MyDocunent . ni b window. An outlinelist of al available
classes appears. Most of them are dimmed, indicating that they are built-in Cocoa classes
that you cannot edit.

f. Scroll down until the MyDocument class comes into view, if necessary. Thisisthe same
MyDocument class you encountered in the File's Owner Info palette in instruction d., above,
where you learned that it is the file's owner. It is black, indicating that it is a custom class
that you can edit.

A shortcut to find a classin the Classes pane isto double-click the classsicon in the
Instances pane of the main Interface Builder window. Try it. The window automatically
switches to the Classes pane and shows the MyDocument class sel ected.

g. Click the MyDocument class in the Classes pane to select it, if necessary, then choose
Classes > Edit Class. The MyDocument class entry in the outline expands to show two
sublists, called Outlets and Actions, respectively. The dimmed entry under Outlets indicates
that the MyDocument class, which you know isthe file's owner, declares a default outlet
called wi ndow. Thisisthe same window you encountered in the File's Owner Info palette
in instruction c., above, where you learned that it is connected to the Window object. Return
to the full list of classes by clicking the disclosure triangle in the line above MyDocument to
collapse the outline.

A shortcut to see a class's outlets and actionsis to click the outlet or the action button to the
right of the class name in the Classes pane.

h. Click the Instances tab in the MyDocunent . ni b window. The absence of a MyDocument
icon in the Instances pane indicates that the custom MyDocument class has not been
instantiated. Thisis asit should be, because you want documents to be instantiated only
when, for example, the user chooses File > New or File > Open while the application is
running. For now, just remember that this is the way you can examine classes in your
application even though they have not been instantiated.

I. Tovisit thefinal stop in your introductory Interface Builder tour, look at the little buttons
that appear at the top of the vertical scroll bar in the MyDocunent . ni b window when the
Instances pane is showing. The top button is the Icon Mode button. The second button is the
Outline Mode button. Click the Outline Mode button. Y ou see alist naming the three objects
whose icons you saw while in Icon Mode. Click the disclosure triangle to the left of the
"NSWindow (Window)" entry. Y ou see the one NSTextField object currently showingin
the document's main window, together with its contents (Y our document contents here").

L ater, after you add more user controls, you will see them in the expanded outline, as well.
Next, click one of the wedges that are enabled in the right pane of the MyDocunent . ni b

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (5 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

window. Lines appear showing all of the incoming and outgoing outlets relating to that
object. Return now to the Instances pane of the window in preparation for the next
Instruction.

3. The Vermont Recipes application specification tells you that the application's main document

windows will have drawers. Because of this, you must alter MyDocunent . ni b sothat it hasa
window with adrawer, rather than the simple window provided by the Cocoa Document-based
Application template's nib file. For the time being, you will leave the original Window object in the
nib file to remind you of its connections, some of which must be duplicated in the new window
object you will now create. Y ou will not actually create the drawer until alater Recipe, but you can
avoid alot of extrawork at that time if you set the stage for it now.

If you plan to build an application based on Vermont Recipes but using a simple document window
without drawers, just skip the instructions here that relate to creating a window with drawers.
Everything in Vermont Recipes relating to the Parent Window will work the same way in asimple
window.

a. At thetop of the objects palette, click the icon for the Windows palette in order to show its
pane. Move the slider control to bring itsicon into view, if necessary. The Windows palette
icon portrays an empty window with atitle bar and standard title bar buttons; it is the fourth
icon from the left in abasic Developer Tools installation that does not include custom
pal ettes.

If in doubt about which icon represents the palette you want, just hold the mouse pointer
over an icon for amoment. A Help tag appears displaying its name. Then you can move the
mouse pointer from icon to icon without pausing, in order to see the Help tag for each in
turn.

b. Drag the icon representing awindow with an open drawer and drop it into the
MyDocunent . ni b window. Three new icons appear: an "NSDrawer" icon, a
"DrawContentView" icon, and a"Parent Window" icon. A new, empty window entitled
"Window" and a new panel entitled "DrawContentView" also appear on the desktop.

C. You can determine which window or panel is associated with which icon in the
MyDocunent . ni b window by double-clicking an icon to bring its associated desktop
window or panel to the front.

d. Using thistechnique, bring the Parent Window to the front. It is alittle too small for your
purposes, so drag the lower right corner to make it about an inch wider and taller.

4. Explore the new objects you just created.

a. Click the NSDrawer object icon to select it. In the NSDrawer Info palette's Connections
pane, you see that two outlets, cont ent Vi ewand par ent W ndow, are already

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (6 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

connected, the former to an NSView object and the latter to an NSWindow object.

b. Click thecont ent Vi ew connection in the connections area at the bottom of the
NSDrawer Info palette. A line appears, extending from the NSDrawer icon to the
DrawContentView icon in the MyDocunent . ni b window. Thisindicatesthat it isthe
content areato which the outlet is connected; drawers do not, of course, have title bars.

c. Click the par ent W ndow outlet connection in the NSDrawer Info palette. A line appears,
extending from the NSDrawer icon to the title bar of the Parent Window.

d. The DrawContentView and Parent Window icons have no connections at this point,
although they do have outlets. Y ou saw above that the original window had a connection
from its delegate outlet to the MyDocument class, but you will not duplicate that connection
in the parent window because you will create a different delegate connection in alater Step.

5. To be consistent with Aqua human interface guidelines, a new, untitled window should open when
the application is launched and, of course, whenever the user opens a new document. An untitled
window should also open when the application is aready running and is brought to the front, for
example, by clicking itsicon in the Dock, unless awindow owned by the application is already
open (whether or not minimized). Now is a good time to take care of this detail. Click the new
Parent Window icon inthe MyDocunent . ni b window to select it, then select the Attributes
panel of the Window Info palette from the pop-up menu at the top. Click the Visible at launch time
checkbox. A check mark appears.

This Interface Builder attribute setting will cause Cocoa to show the main document window
automatically every time a new document is created and loads its nib file. If you did not check this
setting in Interface Builder, you would have to invoke a method somewhere in your source filesto
show the window. Eventually, you may discover that it is preferable to do it in code, anyway, for
better control over the time when the new window opens or to provide a user preference setting to
turn this feature off. For awindow that has complex content, using the attribute setting in Interface
Builder may allow the user to see the contents as they update, instead of presenting them all at
once, fully configured, for a more polished appearance. For now, however, setting an attribute in
Interface Builder is a convenient means to set default application behavior without writing code,
and you will use it frequently while creating Cocoa applications.

Notice that this attribute only tells a newly opened document and nib file to show its main window.
If you wonder how the new document itself gets created when the application isfirst launched,
examine the documentation for the NSDocumentController class, where you will learn that this
behavior is hard-wired in Cocoa. One of the conveniences of Cocoa is that standard Macintosh
behavior like thisis often provided automatically by built-in Cocoa classes and methods. There are
usually other methods, parameters and Interface Builder attributes available to modify the standard
behavior, if desired.

In general, the Info palettesin Interface Builder give you alot of control over initial attributes of
objects without requiring you to set them explicitly in code. For example, if you switch to the Size

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (7 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

pane of the Window Info palette, you see that you can set the initial size and location of the
window, minimum and maximum size constraints, and how controls within the window respond to
resizing the window. Y ou will explore these and other important attributes in later Recipes.

6. Y ou must change the connection between the file's owner and its window object, becauseit is
currently a connection to the original simple window created by the Cocoa Document-based
Application template. Y ou will soon discard this simple window.

a. Click the File's Owner icon to select it, then choose the Connections pane of the File's
Owner Info palette from the pop-up menu at the top.

b. Click thewi ndow connection in the connections area at the bottom of the File's Owner Info
palette. You see, as before, that itswi ndow outlet is connected to thetitle bar of the original
window. The Disconnect button is enabled.

c. Click the Disconnect button. The connection is broken.

d. Hold down the Control key and drag from the File's Owner icon to the Parent Window icon
inthe MyDocunent . ni b window. A lineis drawn from the File's Owner icon to the
Parent Window icon as you drag. When you let up the mouse button, thewi ndow outlet in
the connections area of the File's Owner Info palette is selected, and the Connect button is
enabled.

e. Click the Connect button. The new connection appears in the connections area at the bottom
of the File's Owner Info palette. Click in ablank area of the MyDocunent . ni b window to
make the line disappear, if necessary, then click the File's Owner icon again and click the
new connection again in the File's Owner Info palette. Thistime, aline appears from the
File's Owner icon to the title bar of the window associated with the Parent Window icon.

7. Now you can delete the original Window object provided by the Cocoa Document-based
Application template. Click the Window icon (not the Parent Window icon) in the
MyDocunent . ni b window to select it, then choose Edit > Delete or hit the Delete key. The
Window icon and the original main document window disappear. No confirmation dialog was
presented to let you cancel this action, but you can undo it by choosing Edit > Undo Delete.

8. Save your work in the nib file by choosing File > Save.

In the next Step, you will insert some text, atab view and a checkbox user control into the parent window
and set them up.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeOl1_step02_01.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.1 < BACK | NEXT >

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (8 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.1

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_01.html (9 of 9) [9/10/2001 8:45:14 AM]

Vermont Recipes—Recipe 1, Step 2.2

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.2 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder

2.2 Add atab view and user controls to the main document window

The application specification tells you that the application's main document window will contain atab
view, to permit the user to switch among multiple panes within the one window. The window also needs
severa controlsto let the user edit the document's settings and data. In this Step, you will create some
static text in the upper left corner of the main document window to identify the document, atab view
filling most of the rest of the window, and a single user control, a checkbox, in the second pane. In |ater
Steps you will add additional tabbed panes and user controls using the same techniques.

A note about tab views

Tab views have become a common element of Macintosh user interface design. They are
particularly suitablein Mac OS X, because Mac OS X places increased emphasis on
minimizing the multi-windowed desktop clutter characteristic of Mac OS 9 and earlier.
Using tab views s an intuitive and efficient way to increase the amount of information that
can usefully be contained within a single window.

It is somewhat easier to include atab view at the outset than it isto add one later, so you
will start by creating atab view here. Y ou will discover that using atab view adds almost
no complexity to a Cocoa application's code, because the built-in NSTabView and
NSTabViewltem Cocoa classes do almost all of the work. In fact, the application's code
would be almost identical in an application free of tab views.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_02.html (1 of 5) [9/10/2001 8:45:20 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.2

Part of the reason for thisis that a Cocoa document window without atab view is not
without any view at all. In fact, thereisan implicit view in every window to hold its
contents. That implicit content view performs many of the functions that an explicit tab
view or other view performs, particularly with respect to embedded user controls.

Start where you left off in Sep 2.1. Launch Interface Builder and open MyDocunent . ni b, if necessary.

1. Inthe MyDocunent . ni b window, double-click the Parent Window icon. The empty document
window associated with the Parent Window icon comes to the front.

2. The main document window needs some static text to tell the user what it is.

a. Inthe objects palette, select the Views palette. Itsicon portrays a push button and a text field
containing the word "Text"; it is the second icon from the left in abasic Developer Tools
installation without custom pal ettes.

b. Drag the "Message Text" NSTextField icon from the palette and drop it in the upper left
corner of the empty main document window. When you drag it near enough to the upper |eft
corner, vertical and horizontal guidelines appear. Drop it while the guidelines are visible to
ensure that it is placed in accordance with Aqua Human Interface Guidelines. Thisisan
ordinary NSTextField view with its font and font size preset to comply with Aqua human
interface guidelines for message text, but it is also suitable asis for the use you will make of
it here. It is surrounded by selection knobs indicating that the NSTextField object is selected
and can be resized or dragged to a new position.

C. You must edit the text field's content. If the text field has become desel ected because you
clicked outside of it after dropping it in the window, reselect it by clicking the text once.
Then select the text within the text field ("Message Text") for editing by double-clicking to
highlight it. Type Ver nont Recipes 1, My First Cocoa Application over
the selected text. If the text field does not expand to accommodate the new contents as you
type, you may have to drag one of its selection knobs to enlarge it.

Suppose you now decide the name is alittle trite. Select the text for editing again, if
necessary, and delete everything after "Vermont Recipes 1". If the field does not contract
after you delete the text, you can resize the field again manually by dragging any of its
knobs while the field (not its text) is selected.

As an dlternative to resizing a user control by dragging its selection handles, you can resize
it to precisely contain its content by choosing Layout > Size to Fit while either the field or
the content is selected. Try this now, after changing the control for testing purposes. Y ou see
the border and handles demarking the object move until they just fit around the text. Click
on an empty area of the window to deselect the NSTextField object.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_02.html (2 of 5) [9/10/2001 8:45:20 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html

Vermont Recipes—Recipe 1, Step 2.2

d. If you wereto reposition the text field, perhaps on the theory that it serves as a sort of logo
for this document and therefore need not comply with the Aqua human interface guidelines
for user controls, you would simply click the text to reselect the field (not its content) and
drag it to itsfinal location near the upper left corner of the window. Y ou can click and drag
in one motion.

e. Next, examine its attributes. While the NSTextField object is selected, click the
NSTextField Info palette to bring it to the front, then select the Atttributes pane using the
pop-up menu at the top. Make sure the Editable and Sel ectable checkboxes in the Options
area are unchecked, since this text should not be changed by the user and there is no need to
allow the user to select and copy it.

f. Using the techniques you just learned in instructions a.-e., above, use the "Informational
Text" icon in the Views palette to create another static text field immediately below the first,
and editittoread A Cocoa Cookbook. Drag as necessary to position it close beneath
"Vermont Recipes 1," relying on the guidelines for its exact position. To center it beneath
"Vermont Recipes 1," select the top text field, Shift-click the bottom text field to add it to
the selection, and choose Layout > Alignment > Align Vertical Centers. Don't forget to
choose the Attributes pane of the NSTextField Info palette while the lower text field aloneis
selected and change its attributes to the same settings you used in instruction e., above.

3. Itisnow timeto install atab view in the Parent Window.

If you plan to adapt the Vermont Recipes approach to an application that does not utilize tab views,
just skip the instructions that relate to tab views. Almost everything else in Vermont Recipes will
remain applicable, without change.

a. Inthe objects palette, select the Tabulation Views palette. Itsicon portrays an empty,
scrollable table view with two column headings; it is the sixth icon from the left in abasic
Developer Tools installation.

b. Drag the NSTabView icon from the palette and drop it in the main document window
immediately below the text fields you just added. Resize the tab view by dragging its bottom
right selection knob almost to the bottom of the window and to a spot about one inch from
the window's right edge. Guidelines will appear to help you place it, but in this case you
should ignore the vertical guideline on the right because you want to leave room to add user
controls near the right edge of the window later.

c. Thereare currently two tabs on the tab view, each representing a separate pane, or tab view
item object, within the tab view object. Neither tab has the title you want. To change the text
of atab'stitle, start by clicking once anywhere in the tab view to select it, then double-click
anywhere in the tab view to select the pane, or tab view item, having a highlighted tab; a
broad border in your highlight color appears around the tab view, superimposed on its
selection knobs. Then, if thefirst tab is not highlighted, click once on the first tab to select

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_02.html (3 of 5) [9/10/2001 8:45:20 AM]

Vermont Recipes—Recipe 1, Step 2.2

the tab view item associated with it. Finally, double-click on the text in the first tab to create
atext entry areawhere you can typeitstitle. Type Text Boxes. Then deselect the text
entry area by hitting the Enter key or clicking outside of the tab view. The tab widens
automatically to fit the text.

Y ou encountered the requirement to select a control first and then separately double-click to
select its content for editing once before, in instruction 2.c., above. In afuture version of
Interface Builder, you will not have to go through this somewhat |aborious process.

d. Using the technique you just learned in instruction c., above, type But t ons on the second
tab. Leave the Buttons tab highlighted for the next instruction.

4. Assume the application specification requires that the main document window contain a switch, or
checkbox, user control.

a. Select the second pane, or tab view item object, in the main document window's tab view, if
necessary, by double-clicking anywhere in the tab view to select the pane area and clicking
the second tab to select the Buttons pane. It isimportant that the desired tab view item
object remain selected as you carry out thisinstruction 4 (the entire tab view should be
surrounded by a broad line in your highlight color, indicating that atab view itemis
selected, and the correct tab should be highlighted). Otherwise, the checkbox control will
land in the tab view when you drag and drop it from the objects palette, instead of landing in
the desired tab view item, and it will remain visible when you switch to a different pane.

b. Select the Views palette.

c. Drag the Switch NSButton object icon from the Views palette and drop it into the Buttons
pane in the main document window's tab view, first making sure that the Buttons pane, or
tab view item, is still selected (it has abroad line around it). Place it near the upper |eft
corner of the tab view item, where the guidelines indicate.

d. You must edit the control's label. Instead of using the double-click technique you learned in
Instruction 2.c., above, you can instead, if you prefer, use the NSButton Info palette as an
aternative meansto edit the label. While the Switch control is selected, click the NSButton
Info palette to bring it to the front. In the Attributes pane, edit the Title (" Switch") to read
Checkbox. When you tab or click out of the Title field or hit the Enter key, the label of the
checkbox in the main document window changes to " Checkbox". If the control does not
enlarge automatically to show the new titlein its entirety, choose Layout > Sizeto Fit while
the control is selected.

e. Help tags, sometimes called Tool tips, are cool. With the Checkbox control selected, select
the Help pane of the NSButton Info palette. In the Tool Tip box, type Toggl e Checkbox
and hit the Enter key. Y ou will provide additional help in alater Recipe.

5. You can test the document window at any time to be sure the controls are working. Choose File >

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_02.html (4 of 5) [9/10/2001 8:45:20 AM]

Vermont Recipes—Recipe 1, Step 2.2

Test Interface. The Interface Builder windows and pal ette disappear, |eaving only your document's
main window, asif you were actually running the completed application. Click once in the main
document window to make sureit is frontmost. Click on the two tabs alternately to see that one and
then the other pane appears, with only the Buttons pane showing the Checkbox control. (If both
panes show the control, you neglected to keep the Buttons pane sel ected when you dragged the
Switch control to it in instruction 4.c., above.) Click repeatedly on the Checkbox control in the
Buttons pane to see that a check mark appears and disappears. Leave the mouse pointer over the
Checkbox control for amoment to see that the Help tag appears; when you move the pointer away,
the Help tag slowly fades away. To return to Interface Builder, choose Interface Builder > Quit
Interface Builder to terminate the interface testing mode. The Interface Builder windows and

pal ette reappear.

6. Save your work in the nib file by choosing File > Save.

In the next Step, you will use Interface Builder to create a window controller classto act as an
intermediary between the application's data and its user interface.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l_step02_02.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.2 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_02.html (5 of 5) [9/10/2001 8:45:20 AM]

Vermont Recipes—Recipe 1, Step 2.3

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.3 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder

2.3 Create a subclass of the window controller class

Y ou know from the Vermont Recipes application specification that this application will allow many

documents to be open at once, each supporting more than one kind of window. Each kind of window will
have its own nib file archiving its unique set of user controls and connections, such as the main window
you created in Sep 2.1. According to the Cocoa documentation for document-based applications, you will

need awindow controller for each kind of window the application’'s documents can create. Since these
window controllers will perform many functions unique to the Vermont Recipes application, you should
subclass NSWindowController once for each kind of window. In this Step, you will create an
NSWindowController subclass for the application's main window.

A note about the window controller class

In a document-based Cocoa application using the MV C paradigm, the window controller
classis especially important. Before proceeding with this Step, be sure to read the
NSDocument and NSWindowController class reference documents in the Developer Help
Center, and pay particular attention to the Document-Based Application Architecture
section of the NSDocument class reference. See the following note on Documentation to
learn how to find Cocoa class reference documents.

In asense, the window controller is the least standardized of the model, view, and
controller classes, because it must tell the model and the views how to perform the unique
functions of the application and keep them synchronized. It manages a window of the

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_03.html (1 of 4) [9/10/2001 8:45:26 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.3

document on behalf of the document. A model class representing the application's data
should know nothing about the graphical user interface, and the view classes, such as
windows, tab views and user controls, should know nothing about the specific data that
they represent. Y ou don't have to subclass NSWindowController for avery smple
application, but you usually do for area world application.

Only the controller class knows how the model and the views interact. The document tells
the controller when data has changed (perhaps the user has reverted to the document's
saved state or chosen Undo or Redo), and the controller then tells the views to change state
to reflect the new data. Similarly, the viewstell the controller when the user has changed
the state of a user control (perhaps the user has clicked on a checkbox control), and the
controller then tells the model to update its data stores accordingly. For these reasons, you
will likely write much more custom code for the controller than you do for the model or
the views.

Modern computer science offers many reasons why an application’s data and user interface
should be factored out into separate classes in this fashion. It has mostly to do with
keeping concepts clear and easing maintenance and upgrades.

But there are also specific reasons relating to the way the Macintosh works. In particular,
the graphical user interface is not the only user interface of most Macintosh applications.
Thereis also a scripting interface. Using AppleScript, a user can command an application
to alter its data without touching a user control. In doing so, AppleScript does not need to
know anything about the graphical user interface but can communicate directly with the
document's model objects. By keeping the model separate from the views and relying on
the controller to mediate between them, Cocoa's AppKit is able to give you AppleScript
support almost for free. Just as the user's reverting a document to its saved state causes the
model to tell the window controller to update any affected views, so a script's ateration of
the model's data al so, by invoking the same methods, causes the document to tell the
window controller to update any affected views.

In addition, in the Cocoa environment, many classes perform their work by invoking so-
called "delegate methods," which you as application designer can choose to implement or
not to implement in your own subclasses. Thisis one of the waysin which Cocoais able
to provide so much precoded functionality while preserving the flexibility to let the
application designer create unique applications. Y our NSW ndowCont r ol | er subclass
Isone class that plays an important role as a delegate in the Cocoa scheme of things, as
you will see.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_03.html (2 of 4) [9/10/2001 8:45:26 AM]

Vermont Recipes—Recipe 1, Step 2.3

Documentation

The Developer Help Center in the Apple Help Center is a convenient place to read the
detailed class reference documentation that is provided with the Developer Tools, such as
the NSDocument class reference referred to in the previous Note. In the Developer Help
Center, click on Cocoa, then click either on Application Kit or Foundation to find an index
of all of the class references. Don't overlook the function, protocol and other references
near the bottom.

The class reference documents are an extremely important source of information about the
proper way to use the Cocoa classes. Along with the comments often included in the class
header files, the class reference documents may be the only source of information
available to guide you in designing and coding important features of a Cocoa application.
Y ou should not use any features of a Cocoa class without first becoming familiar with its
class reference and, in many cases, its header file.

The class reference documents can also be found on your computer both in HTML and
PDF format. The actual location of aclass reference is deep in the System Library's

Fr amewor ks folder. The current documentation for an AppK:it class, for example, is
located in the most recent subfolder of the Ver si ons folder in AppKi t . f r amewor k;
at thiswriting, that is the C subfolder. Y ou can be assured of reading the most recent
version by opening the Cur r ent subfolder, at the same level, which is actualy a
symbolic link to the most recent subfolder. Within the most recent subfolder, the header
filesarein the Header s folder and the class reference documents are located deep in the
Resour ces folder, inthe Docunent at i on subfolder of the Engl i sh. | pr oj folder.
The path to the HTML version of the current NSDocument class reference at this writing,
for example, isthe following:

/Systemy/Library/Framewor ks/AppKit.framewor k/\VVer sions/C/Resour ces/English.l proj/
Documentation/Reference/Obj-C_classic/Classes/NSDocument.html

A much more convenient shortcut to find the HTML and PDF versions of the class
reference documentsis this:

/Devel oper/Documentati on/Cocoa/Refer ence/ ApplicationKit/Obj-C_classic/

Start where you left off in Sep 2.2. Launch Interface Builder and open MyDocunent . ni b, if necessary.

1. Inthe MyDocunent . ni b window, select the Classes tab. An outline list view of all available
classes appears.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_03.html (3 of 4) [9/10/2001 8:45:26 AM]

Vermont Recipes—Recipe 1, Step 2.3

2. Scroll to the bottom of thelist, if necessary, and click once on the NSWindowController classto
select it. The line on which NSWindowController appearsis highlighted.

3. Choose Classes > Subclass. A new subclass named "MyWindowController" appears on anew line,
indented under NSWindowController. Itstext is black, not gray, to indicate that it is a custom class
which you can edit, and it is selected.

4. Y ou can rename the MyWindowController subclass by double-clicking its name and typing over it.
But "MyWindowController" is perfectly descriptive, so accept it asis. If itstext is selected for
editing, hit the Enter key to deselect it.

5. At this point in the process of creating a new subclassin Interface Builder, it is possible to
instantiate an object based on the new subclass. However, you should not instantiate the
MyWindowController subclass at thistime, because thisis to be a multi-window, multi-document
application. You will instead want a new instance of the window controller to be created
programmatically when a new, empty document is created when the application is launched and
again each time the user requests a new document at run time. Later, in Sep 3.3, you will write

code so that your application can create window controller instances at appropriate times.

Interface Builder neverthel ess needs to know about the class because later, when the time comes to
define connections among MywindowController, its main window, and its window's user controls,
you must be able to designate the MyWindowController subclass as the "owner" of

MyDocunent . ni b. The File's Owner icon in Interface Builder is a sort of proxy or stand-in for a
classthat is not yet instantiated, allowing you to use Interface Builder to create connections
between that class and other objects.

6. Save your work in the nib file by choosing File > Save.

In the next Step, you will use Interface Builder to confirm that your nib file already has a document class.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe0l1_step02_03.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.3 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_03.html (4 of 4) [9/10/2001 8:45:26 AM]

Vermont Recipes—Recipe 1, Step 2.4

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.4 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder
2.4 Confirm that you have a subclass of the document class

The user's work in your application's main document window must eventually be saved to nonvolatile, or
persistent, storage, such as a hard disk, so that it can be recovered and used at a later time or by other
users. Live datais maintained in an application'sinternal data structuresin RAM while auser is editing it,
and it is saved to storage in a specific file format periodically and when the associated document is closed.
The word "document” is used to refer both to the file on disk and to its live data representation in RAM.
"Document” in this sense is not to be confused with the NSDocument class, which is a controller rather
than arepository of data.

According to the Cocoa documentation, a subclass of Cocoa's NSDocument classis required so that a new
instance of it can be created with appropriate elements and attributes whenever the user creates a new
document or opens an existing document from storage. The document subclass has already been provided
to you in the Cocoa Document-based Application template files MyDocunent . h and MyDocunment . m
asyou saw in Sep 1, but it must have a corresponding entry in MyDocunent . ni b so that appropriate

outlets can be created.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_04.html (1 of 3) [9/10/2001 8:45:31 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.4

A note about the document class

Every document-based Cocoa application must subclass NSDocument. As was mentioned
in Sep 2.3, the document subclass controls the application’'s data model. It is considered a

controller classin the MV C paradigm. Y ou must subclass NSDocument, among other
reasons, to provide access to data variables in model objects that hold your document's
data, to provide accessor methods to enable other objects to get and set the data values,

and to provide methods to tell the window controller when the data has changed so that the
interface can be updated. Y our document subclass usually does all this by controlling

other model objects that you create and link to the document. The document is also the
primary entry point for scripting.

Cocoa a'so has an NSDocumentController class, but it is almost never necessary to
subclass it. NSDocumentController handles document-related behaviors that are common
to all document-based applications, such as opening documents when needed and
reporting on various properties of the application. WWhen customization of
NSDocumentController isrequired, it is usually preferable to use an application delegate.

Start where you left off in Sep 2.3. Launch Interface Builder and open MyDocunent . ni b, if necessary.

1. Inthe MyDocunent . ni b window, select the Classes tab. An outline list view of all available
classes appears.

2. The Cocoa Document-based A pplication template has aready provided you with an NSDocument
subclass named "MyDocument.” Scroll about a quarter of the way down the Classes outline view
until you find the MyDocument class, indented under the NSDocunment superclass.

Y ou should not instantiate the MyDocument class in Interface Builder, because a new instance of
the document must be created each time the user requests a new document at run time in amulti-
document application. Cocoawill create a connection between the new document and its associated
window controller so that your window controller can talk to the document, for example, to set or
get the data it controls.

3. If you wanted to rename it, you could now double-click the name of the MyDocument class to
select it for editing, and rename it by typing. However, giving it the same name as the header and
source fileswill avoid confusion, so you should leave it as you found it.

4. Save your work in the nib file by choosing File > Save.

In the next Step, you will use Interface Builder to designate the owner of the nib file.

Vermont Recipes

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_04.html (2 of 3) [9/10/2001 8:45:31 AM]

Vermont Recipes—Recipe 1, Step 2.4

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeO0l1_step02_04.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.4 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_04.html (3 of 3) [9/10/2001 8:45:31 AM]

Vermont Recipes—Recipe 1, Step 2.5

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.5 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder

2.5 Designate the owner of the nib file

MyDocunent . ni b needs an "owner" to take responsibility for loading it into memory when a document
and its main window are opened. The Cocoa Document-based A pplication template includes a nib file that
makes the MyDocument subclass the default owner of MyDocunent . ni b, because the templateis
designed for a simple application having only one kind of document represented in asingle kind of
window. However, the Cocoa documentation indicates that you should normally create multiple
MyWindowController subclasses in cases where a document will have multiple kinds of windows, or
where you need to customize the built-in behavior of NSWindowController. It is convenient to make the
MyWindowController subclass the owner of MyDocunent . ni b in such an application, to facilitate a
one-to-one correspondence between the main document window and its unique window controller. Later,
when you create other kinds of windows for the document, each will be given its own nib file and another
unigue window controller to manage it.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_05.html (1 of 2) [9/10/2001 8:45:35 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.5

A note about the File's Owner

The File's Owner icon in Interface Builder isa"proxy" for whatever object owns the nib
file representing the window.

A proxy is used because in a document-based application the nib file's owner cannot be
instantiated in the nib file, which is created while you are designing the application. As
discussed in Sep 2.3, the document and its windows must instead be instantiated
programmatically at run time, when a new document is created. The owner of the nib file
must exist in memory before it can load the nib file. The owner isin this sense external to
the nib file that archives the window class.

However, ameans of communication between the owner and the window defined in the
nib file must be provided when you design the application. The File's Owner standsin for
the owning object for this purpose, that is, to enable you to draw the necessary connections
between it and other objects when you are designing the program.

Start where you left off in Sep 2.4. Launch Interface Builder and open MyDocunent . ni b, if necessary.

1. Click the File's Owner icon in the Instances pane of the MyDocunent . ni b window once to select
it. The File's Owner Info palette appears.

2. Select the Attributes pane of the File's Owner Info palette. The MyDocument class is aready
selected as the default owner. Click on MyWindowController, just below MyDocument in the
Classlist, to select MyWindowController as the new owner of MyDocunent . ni b. If an aert
appears, warning you that this step will break existing connections, click the OK button because
you want to break any existing connections between objectsin MyDocunent . ni b and its default
owner, MyDocument.

3. Save your work in the nib file by choosing File > Save.

In the next Step, you will use Interface Builder to create outlets and actions and connect them to objects.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe01_step02_05.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.5 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_05.html (2 of 2) [9/10/2001 8:45:35 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 3.5 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 3: Set up the project source files using Project Builder

3.5 Set up a model class to hold the application's data

In Sep 2.6.1., you used Interface Builder to create an action to be invoked every time the user clicks on

the checkbox. When you subsequently used Interface Builder's Classes > Create Files... command to
generate the source files for the project, it created a stub method for this action in MyWindowController.
Interface Builder left it to you to provide the code to make this stub method work, however. Since the
user's clicking on the checkbox should initiate a change in the state of the application that the application
will remember, you must provide some architecture that the application can use to store data. In short, you
are now forced to decide on a data representation for the application.

Thisisavery big step, and it will take you on along digression before you can finally return to implement
the action method in Sep 3.6. Decisions you make now about how to represent settings and other datain
the application will have a significant effect on the ease with which additional settings can be implemented
and on the efficiency of the application itself. In normal software development, thisis one of the most
important elements of the application specification. A lot of false starts are avoided during coding if you
have settled in advance on a data representation that will meet all of the application's eventual needs.

In general, the MV C paradigm contemplates that an application’s data will be encapsulated in one or more
separate model objects, each devoted solely to the representation and behavior of the application's data or
some subset of it. You will therefore now create a separate class to hold the data value that is set and reset
from time to time when the user clicks the checkbox control. This new class can be given any name. Y ou
will call it MySettings, here, implying that this model object will hold basic application settings. In later
recipes, you will add variables to it, and you will create additional model objects to hold other subsets of

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe0l1_step03_05.html (1 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

application data.

Y ou will create asimple Boolean variable in the MySettings model object to hold the checkbox data value,
along with afew methods by which other objects, such as the window controller, can access it. In the
course of doing this, you will have to arrange to instantiate and initialize the new model object. Then, in
the remainder of Recipe 1, you will implement all the additional elements of the application needed to
make this design work, such asfinaly filling in the action method, and writing routines to undo and redo
changes to the checkbox value, to save the state of the checkbox value to disk and read it back in, and to
revert a changed checkbox valueto its saved state. L ater, in Recipe 2, you will add additional user controls
using the same approach.

A note about data representation and model classes

The cardinal rule of data representation in document-based Cocoa application
development is that you should represent the datain a model object.

Among other things, this means that you should not write an application in such away that
it depends upon the current visual state of a user control as arecord of the state of the
application's data. It may seem that reliance on whether, for example, a checkbox is
checked or not is the most efficient way to know whether the setting represented by the
checkbox istrue or false. After al, Cocoa aready contains routines that allow you to read
the current visual state of the checkbox, so why not keep things ssmple by taking
advantage of work already done? Indeed, conventional Mac applications sometimes use
this technique, at least temporarily while, for example, adialog is being presented for user
interaction.

The chief practical problem with such a shortcut isthat atypical application has many
interfaces, several of which may independently have the ability to change the state of the
setting reflected by the checkbox. For example, you may want to add a menu command as
an alternative interface to let the user change the underlying data. Or you may (as you
should) include AppleScript support in your application, and a user may run a script that
changes the data. In either of these cases, you would have to write additional code to
change the visual state of the checkbox to reflect the data change made by the menu
command or the AppleScript command. The AppleScript issueis particularly serious,
since scripts often want to access an application's data without having to waste time
dealing with its graphical user interface.

Centralizing the representation of the data in one place makesit far easier to keep all these
interfaces synchronized. It even makes it easier to add new functionality like saving and
reading the data, undo and redo, and revert. It also pays dividends in code maintenance in
the future, when you might want to add entirely new functionality related to the existing
data or to add completely different data sets with their own functionality.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_05.html (2 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

Note that the document object in Cocoa is not a model object, as you might think. Instead,
the document object is a controller object devoted to controlling the application's datain a
larger sense. For example, you will shortly place the application’s generic, abstracted
methods for storing and retrieving data into the document object, MyDocument. Not all
controllers in Cocoa include "controller" in their names, although you might think that the
function of NSDocument would have been clearer if it were named "NSDataController."
Also, don't be confused by the fact that there is a separate classin Cocoa called
NSDocumentController; that, too, is a controller class, but it controls documents within
the context of an application, for example, the opening and closing of documents.

Y ou should not, therefore, as you might initially assume, place specific data definitions
and accessor methods in the document class, but instead in a separate class or classes
devoted specifically to that purpose. You will now deal with the details of how individual
data items are represented in the application by creating this new model class.

Launch Project Builder and open the project, if necessary.
3.5.1 Create a new model class using Project Builder

In Step 1 and Sep 2, you created files for two new classes, first, MyDocument from a Project Builder
template while creating a new project and, second, MyWindowController as afile created by Interface
Builder. Now, you will create afile for a new class from scratch in Project Builder. The processis very
similar to what you did in Siep 3.1.4 to createthe Local i zabl e. st ri ngs file.

1. Choose File> New File... in Project Builder.
2. Select the Objective-C Class template under the "Cocoa" heading and click the Next button.
3. Set the name of thefileto MySet t i ngs. mand check the checkbox to also create "MySettings.h".

4. Click the "set..." button to open a navigation sheet and, if necessary, click on the Vermont Recipes
1 folder to set the new files' location to the Vermont Recipes 1 project folder, and click the Choose
button.

5. Click the Finish button.

6. Inthe Groups & Files pane, drag the new MySet ti ngs. h and MySet t i ngs. mfileiconsinto
the Classes folder, if necessary.

7. Click MySet ti ngs. h to bring the new header file into the right pane and, if you wish, type over
the comments at the top provided by the template to identify thisasa"// Vermont Recipes 1" file.
Do the samewith MySet t i ngs. m

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe01_step03_05.html (3 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html
8. InMySet ti ngs. h, replace "#import <Foundation/Foundation.h>" with the following:
#i nport <Cocoa/ Cocoa. h>

9. Choose File > Save.
3.5.2 Initialize the model object

Like most new objects, a MySettings object requires initialization beyond what is provided by the
NSObject class from which it inherits. It will have two initialization methods, one of which will be its so-
called "designated initializer," the initializer that should normally be invoked when a new MySettings
object is created. It is common for Objective-C classes to have more than one intializer, although the basic
I ni t method is aways provided as away to initialize values to default values such asni | . Itisagood
ideato get object initialization routines in place early in the process of writing a new class.

A note about object initialization and the designated initializer

Initialization of Cocoa objects is governed by awell-defined programming convention that
all Cocoa applications must follow. The convention is best described in the class
documentation for NSObject, afundamental class declared in the Foundation framework,
In the section documenting NSODbject'si ni t method; you are urged to read it. Since most
Cocoa classes inherit from NSObject (and most of those that don't nevertheless guarantee
to follow the NSObject protocol), reliance upon this convention isimplicit throughout the
Cocoa frameworks. If your application doesn't honor this convention, it probably won't
work.

NSObject'si ni t method does nothing except returnsel f . Thisi ni t method is
available in every object that inherits from NSObject. Most such classes override the

I ni t method, or provide one or more substitutes, to do additional initialization. Because
there can be many intermediate classes in the inheritance chain, a convention is needed to
ensure that an appropriate initialization method of every object in the chain is called when
anew object of any classis created. If initialization fails, a class's initialization method
must release the object and return nil to signal failure.

In order to assure that the initialization methods of classes intermediate between NSODbject
and the class are called, one of the initialization methods of the class must begin by
Invoking an appropriate initialization method of itsimmediate super class. Thisisthe
designated initializer. If that initializer returns avalid reference to the new object (as
opposed to ni | , indicating failure somewhere up the chain), then the new object knows
that all classes above it in the chain have been successfully initialized, and it can go ahead
with initialization of its own variables.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_05.html (4 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

The designated initializer for MySettings will be used by the document object that creates a settings object
to passin areference to the document's self. Thisis acommon technique in Objective-C and other object-

Other initializers are often provided in custom classes for special purposes. Each of them
must call the class's designated initializer, directly or indirectly, through a message to
sel f, passing default values to its arguments. This guarantees that the variables of the
class areinitialized to default values and that all intermediate classes higher in the
hierarchy are initialized, and it avoids circular initialization references.

Typically, aclass that inherits directly or indirectly from NSObject declaresani ni t
method as well as alternative, more complicated initialization methods that take arguments
to set theinitial values of variables declared in the class. The initialization method that
takes the most arguments—that is, that is capable of most completely setting up the initial
state of the object—is usually the designated initializer. In most circumstances, an
application will find it convenient to initialize a new instance of the class by calling the
designated initializer. It is the developer's obligation to identify the designated initializer
by a comment in the header file, so that clients of the class can know which initialization
method to call.

oriented languages, to give a newly created object the ability to communicate back to the object that

created it. You will seelater that this back reference is needed, among other things, so that the settings
object can tell the document object that created it that some data has changed, and the document object can
then pass the news along to the window controller and, eventually, to affected user controls. Y ou will also

learn that a link from MySettings to MyDocument is needed so that the settings object can share the
document object's undo manager.

1.

In the header file MySet t i ngs. h, add the following instance variables between the braces after

@nterface MySettings:

@rivate
MyDocunent *myDocunent ;

Before@ nt erf ace MySetti ngs, add this:

@l ass MyDocunent ;

Thisis needed so the compiler will know you intended to use the MyDocument type in the header

and didn't just do so by mistake.

Add the following method declaration after the @ nt er f ace MySet ti ngs block :

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe01_step03_05.html (5 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

[/ Initialization

- (id)initWthDocunment: (MyDocunent *)docunent; //
designated initializer

A simplei ni t method will be defined shortly in the source file, but in accordance with our
practice it is not declared here, in the header file, because it is an override method. The

i ni t Wt hDocunent : method is acustom method and must be declared. It could have been
written with the same name, i ni t : . Thiswould not make it an "overloaded" method in the sense
used in other programming languages, because, athough it would have the same name as the first,

I nit,itwouldadd a parameter, indicated by the colon. Objective-C would recognize that they are
two separate methods by the presence or absence of the parameter. It is customary in Cocoa,
however, for separate initialization methods to be given different names. Usually, additional
initialization methods are named "initWith" followed by a name suggesting the additional
parameter's type, here, "Document”.

This method is called a"designated initializer," which means that other objects should normally
call it when instantiating a MySettings object. It is guaranteed to call the initialization methods of
al classes from which it inherits. In this way, a newly-created MySettings object will always be
correctly set up and will always have the information it needs to locate its associated document. As
amatter of practice, you should always include a comment indicating which method is the
designated initializer.

4. Inthe sourcefile MySet t i ngs. m add the following initialization methods after
@ npl enent ati on MySetti ngs:

[/1nitialization

- (1d)init {
return [self initWthDocunent:nil];

}
- (i1d)initWthDocunent: (MyDocunent *)docunent {
if (self = [super init]) {
myDocunent = docunent;
}
return self;
}

Thesmplei ni t method invokes the designated initializer, passing ni | asits parameter. The
designated initializer will be invoked by the document object when it instantiates a new settings
object and initializes it by passing in the document object.

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe01_step03_05.html (6 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

This method utilizes the standard Objective-C technique that you first saw in Step 3.3 for
initializing a subclass of another class. Notice again the tricky test in the first line.

5. Inthe header file MySet t i ngs. h, add the following accessor method declaration, after the
Initialization section:

/1l Accessor nethods and conveni ences

- (MyDocunent *)nmyDocunent ;
6. Inthe sourcefile MySet t i ngs. m add the following accessor method definition:

/!l Accessor nethods and conveni ences

- (MyDocunent *)nmyDocunment {
return nyDocunent,

7. InMySet ti ngs. m aso add the following after #i nport "MSetti ngs. h", sothat it will
compile:

#i nport " MyDocunent. h"

3.5.3 Enable a document to instantiate a model object and access its data

MySettingsis now a declared classin the project, but nobody yet instantiates an object of thisclass. A
MySettings object will serve strictly to hold and manipul ate data associated with the document, so a
document object is the obvious candidate to fill thisrole. Every document will have one and only one
associated MySettings object, and the MySettings object will exist for the life of the document.

Y ou will therefore arrange for MyDocument to instantiate a My Settings object immediately when any
document is instantiated, and to release the MySettings object when its associated document is rel eased.

Y ou will create an instance variable and accessor method in MyDocument so that the document can access
Its settings.

1. You must create an instance variable in MyDocument to hold a MySettings object. In

MyDocunent . h, add the following within the curly bracesinthe @ nt er f ace MyDocunent
block:

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe01_step03_05.html (7 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

@rivate
MySettings *nmySettings;

2. To prevent the compiler from complaining about an unknown MySettings type, add the following
above @ nt erf ace MyDocunent :

@l ass MySetti ngs;

3. Add the following method declaration after @ nt er f ace MyDocunent :

/1l Accessor nethods and conveni ences

- (MySettings *)mySettings;

Youdonot needaset MySet ti ngs: method, because a MySettings object will be instantiated
only once, in MyDocument's initialization method, and you don't want to invite anybody else to
instantiate a MySettings object.

4. Still inthe header file MyDocunent . h, you may declareani ni t method after @ nt er f ace
My Docunent —but only do thisif you feel a need to declare override methods that are commonly
overridden, anyway:

- (id)init:

5. Inthe source file MyDocunent . m add the following definition to initialize the document object
by setting itsny Set t i ngs instance variable:

[/l Initialization
- (id)init {
i f (self = [super init]) {

nmySettings = [[MySettings all ocWthZone: [sel f
zone]] initWthDocunent:self];

}

return self;

This method again utilizes the standard Objective-C technique that you first saw in Step 3.3 for

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe01_step03_05.html (8 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

initializing a subclass of another class. Notice again the tricky test in the first line.

Its allocation of the MySettings object utilizes the standard Objective-C technique, which you have
also seen before, for allocating memory for a new object in the application's zone and initializing it,
al inoneline. Asnoted in Sep 3.5.2, above, thisinvokes the settings object's designated initializer

to passin areference to the document.

6. Immediately following, add the following deal | oc method overridein MyDocunent . m

- (void)deal l oc {
[[self nySettings] rel ease];
[super deall oc];

It isagenera rule of Cocoa programming that any object you allocate by calling al | oc or

al | ocWt hZone: must be explicitly released by you when it is no longer needed. The nuances
of thisimportant and complex subject will be left for later. In the meantime, you have just made
sure that your document releases its associated settings object when the document itself is
deallocated. Because only one settings object is created by each document, this takes care of the
issue.

Y ou encountered this issue previously, in Step 3.3, when you arranged for the document to release

itswindow controller immediately after creating it. There, however, the window controller
continued to live because it was added to the document's array of window controllers, which would
eventually take care of releasing it for you when the document is closed. Here, your MySettings
object is a custom object entirely under your control, and you therefore release it only when the
document itself is being deallocated.

7. In MyDocunent . m add the implementation of the mySettings accessor method:

/| Accessor nethods and conveni ences

- (MySettings *)nySettings {
return nySettings;

8. To prevent the linker from complaining when it finds invocations of methods from My Settings, add
the following after #i nport " MyDocunent . h":

#i nport "MySettings.h"

http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe01_step03_05.html (9 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

3.5.4 Define a data variable in the model object

Recall that Interface Builder has already supplied the declaration and definition of the

nmyCheckboxAct i on: method in MyWindowController, complete with the | BAct i on type
specification so that it will be recognized as an action method if you later read the header file back into
Interface Builder. You will fill in the missing contents of the action method's definition shortly. In order to
do that, you must first implement a variable to hold the data, as well as accessors to set it and get it.

1. Inthe header file MySet t i ngs. h, declare avariable to hold the value represented by the
checkbox control. Insert the following, withinthe @ nt erf ace MySet ti ngs block (that is,
between the curly braces), after the declaration of the myDocument instance variable:

BOCOL nyCheckboxVal ue;

In areal application, this variable would be named to describe the item whose on/off or true/false
state it records, such asspeechEnabl ed ori sEnr ol | ed.

2. Declare accessor methods and conveniencesin the header file MySet t | ngs. h to set and read the
value of the variable. Add these lines at the end of the Accessor methods and conveniences section:

- (voi d) set MyCheckboxVal ue: (BOOL) val ue;
- (BOQL) nyCheckboxVal ue;
- (voi d)toggl eMyCheckboxVal ue;

3. Switch to the source file My Set t i ngs. mand implement the accessor methods by adding these
lines at the end of the Accessor methods and conveniences section:

(voi d) set MyCheckboxVal ue: (BOOL) val ue {
myCheckboxVal ue = val ue;

}
- (BOQL) nyCheckboxVal ue {
return nyCheckboxVal ue;
}
- (void)toggl eMyCheckboxVal ue {
[sel f set MyCheckboxVal ue: ([sel f nyCheckboxVal ue] ?
NO : YES)];
}

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_05.html (10 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

Thelast of these, t oggl eMyCheckboxVal ue, isared herring. It illustrates how a programmer
might initially think to implement a convenience method using the C ternary operator to set the
value of nyCheckboxVal ue to thereverse of its current value. In amoment, in Sep 3.6, you

will have second thoughts and eliminate this ill-considered method.

Thet oggl eMyCheckboxVal ue method could have been written to obtain the value of the
variable directly for ssmplicity, asfollows: nyCheckboxVal ue = (nyCheckboxVal ue ?
NO : YES); . Although different programmers might make different decisions on this point,
Vermont Recipes will not use this shorter technique, accessing variables instead through accessor
methods. Asyou will seelater, this decision will make it much easier to implement undo and redo
and to add AppleScript functionality, and Cocoa applications therefore generally use accessor
methods. (The parentheses around the C ternary operator are not required by C or Objective-C
syntax. They areincluded here, as elsewhere in Vermont Recipesin avariety of contexts, only
because it makes the code easier to read.)

Now, any objects that may need to obtain the data val ue associated with the checkbox user control can
invoke the MySettings accessor method my CheckboxVal ue, and they can set the value by invoking
set MyCheckboxVal ue: .

3.5.5 Link the window controller to the model object

Thereis still something missing. Theset MyCheckboxVal ue: and myCheckboxVal ue methods are
located in the MySettings class where the instance variable holding the data is located, but the action
method that will invoke this method to set the data value is located in the MyWindowController object.
These two objects do not yet know how to talk to one another. Y ou must supply this final missing link
now.

1. Thefirst step isto link MyWindowController to MySettings. Thiswill be done indirectly, through
the document object acting as an intermediary. This illustrates what was meant when we said
earlier that the document object is a controller of the model object that holds the data.

a. Inthe header file MyW ndowCont r ol | er . h, add the following method declaration at the
top of the Accessor methods and conveniences section:

- (MySettings *)nmySettings;

b. Also add the following above @ nt er f ace MyW ndowCont r ol | er, so the compiler
will recognize that you meant to use the My Set t i ngs type for the return value of the
nmySet t i ngs method:

@l ass MySetti ngs;

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_05.html (11 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

c. Inthe source file MW ndowCont r ol | er . m define the new mySettings accessor method
by adding the following at the top of the Accessor methods and conveniences section:

- (MySettings *)nmySettings {
return [[self docunent] nySettings];

Notice that this accessor method does not return an instance variable that was declared in the
same object, as you have seen done until now. Instead, it simply invokes its associated
document'smy Set t i ngs accessor method, completing a chain of links from
MyWindowController through MyDocument to MySettings. You learned in Sep 2.6.2.1

that Cocoa's NSDocument class already declares an accessor method, docunent , whichis
how the first link of this chain was established. Declaring accessor methods as chained links
in this fashion is very common in Cocoa.

There are at least two other ways in which you could have given MyWindowController
access to the My Settings object.

For one, you could have declared any Set t i ngs instance variable in
MyWindowController, as you did in MyDocument, and set it to the value of the document's
link to MySettings. However, this would require setting aside additional memory for the
Instance variable, which might grow out of hand if you were to follow this practice routinely
in alarge application. In general, it is recommended that intermediate instance variables like
this be avoided whenever possible.

As asecond alternative, you could have dispensed with the accessor method and simply
used chained references through the document object every time MyWindowControl ler
needs access to a MySettings value. However, the window controller will eventually acquire
jursisdiction over alot of additional user controls, and you would have to invoke something
like[[[sel f docunment] nySettings] nyCheckboxVal ue] for each of them.
The shorter form of reference allowed by the accessor method in MyWindowController,
[[self nySettings] myCheckboxVal ue],isamoreconvenient shortcut. It will
also make it easier to change the relationship between the document object and the settings
object, if that should prove necessary in the future, by changing only one statement in
MyWindowController.m instead of changing code throughout the file.

2. InMyW ndowCont r ol | er . m add the following line after #i nport
MyW ndowControl | er. h:

#i nport "MySettings. h"

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_05.html (12 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step03_05.html

Without this, the compiler will complain that MyWindowController doesn't understand the
nySet ti ngs command.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeOl1_step03_05.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 3.5 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_05.html (13 of 13) [9/10/2001 8:45:46 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 1, 2001 - 6:00 PM
Introduction > Contents > Recipe 1 > Step 4.2 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 4: Provide for data storage and retrieval
4.2 Implement the stub methods for data representation

My Docunent . mincludes two stub methods provided by the Cocoa Document-based Application
template relating to storing data and reading it back from storage. One,

dat aRepr esent ati onOf Type: , converts your application's datafrom itslive, internal format or
representation into an NSData object suitable for storage. It returns the NSData object, which issimply a
byte stream (a string of characters), and Cocoa then storesit for you. The second,

| oadDat aRepr esent at i on: of Type: , reads data from storage as a byte stream and convertsit back
to your document's internal storage representation in RAM. Y ou must implement both methods by
providing statements that accomplish the data conversion based on the application’s data structures.

Y ou will implement these methods in such away that a document is saved in property list format. Any
application that knows how to parse property list files, such as Apple's PropertyListEditor, will be able to
read thefile.

The methods you will write here are suitable for storing and retrieving individual items of data represented
as C datatypes, such asthe Boolean variable my CheckboxVal ue. In alater Recipe, you will learn about
other ways to store and retrieve data, for example, in formal XML format in Recipe 4, Sep 1, and to tell

objects such as MySettings to archive and unarchive themselves as objects.

Be forewarned that the code in this Step is dense. It merits close study because, among other things, it is
your first exposure to the Cocoa dictionary class, which is used frequently throughout Cocoa. It
implements the key-value technology to which you have aready been exposed.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (1 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html
Launch Project Builder and open the project, if necessary.
4.2.1 Convert the document's internal data to its external storage representation

1. Inthe header file MyDocunent . h, add declarations before @nd for two subroutines, as follows:

/| Persistent storage
/1l Saving information to persistent storage

- (NSDat a *)convert For St or age;
- (NSDi ctionary *)setupD ctionaryFronvenory;

2. Switch to the source file MyDocunent . mand replace the stub method
dat aRepr esent at i onOf Type: with the following definition:

/| Persistent storage
/'l Saving information to persistent storage

- (NSDat a *)dat aRepresentati onO Type: (NSString *)type {
I f ([type isEqual ToString: nyDocunent Type]) {
return [self convert For Storage];
} else {
return nil;
}

You will definethe myDocunent Type variable shortly.

3. InMyDocunent . m define the two methods whose interface you declared in instruction 2., above,
immediately following dat aRepr esent at i onOf Type: .

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (2 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html

- (NSDat a *)convert For St orage {
NSDi cti onary *dictionary = [self

set upDi cti onar yFr onVenory] ;
NSString *string = [dictionary description];
return [string

dat aUsi ngEncodi ng: NSUTF8St ri ngEncodi ng] ;

}

- (NSDi ctionary *)setupDi ctionaryFronmVenory ({
NSMut abl eDi ctionary *dictionary =
[NSMut abl eDi cti onary dictionary];
[dictionary set Qbject:NSStringFronC ass([self
cl ass]) forKey: nyDocunent C assKey] ;
[dictionary set Object:[NSString
stringWthFormat: @ %", current MyDocunent Ver si on]
f or Key: nyDocunent Ver si onKey] ;
[[self nySettings] convertToDi ctionary:dictionary];
return dictionary;

These routines also contain some variables you have not yet defined.

Thereisalot going on here. Y ou are urged, as always, to read the documentation for each of the
Cocoa methods invoked in these subroutines. The key point is that the

set upDi cti onar yFr omvenor y method uses key-value pairs to set up a Cocoa-standard
temporary mutable dictionary representing the document object's datain memory, as an
intermediate representation before streaming it to persistent storage.

A note about dictionaries

Temporary "dictionary" objects are used frequently in the Cocoa frameworks and
in Cocoa applications as afast, efficient, and standardized way to encapsul ate data
and make it available to the application.

A dictionary is acollection of key-value pairs. The keys are usually strings that
label the corresponding values, and they are often kept in variablesin arunning
application, for easy use. In the dictionary, the keys are organized into a hash table
for fast lookup of the matched values. Some aspects of this key-value pair
technique are based on Apple-patented technology.

A dictionary's keys are arbitrary values, unique within any one dictionary. Unlike
an array's indices, adictionary's keys are constant; they do not change value as

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (3 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html

entries are added or removed.

The valuesin adictionary are unordered. Unlike a set's members, adictionary's
values are always associated with a matching key.

A number of convenient methods are provided in NSDictionary and
NSMutableDictionary for managing dictionaries, freeing you from the tribulations
of hash tables. The most frequently-used methods may be those for adding an entry
to adictionary, set Cbj ect : f or Key: , and for retrieving avaue from a
dictionary, obj ect For Key: . Another often-used method isdescri pti on,
which returns the entire dictionary as a string formatted as a property list.
NSDictionary, like many collection classes in Cocoa, aso implements methods to
write its contents to persistent storage and read them back.

Theset upDi cti onar yFr omVenor y method returns the dictionary, which is used in turn by
theconvert For St or age method to generate an NSString object that isimmediately converted
to an NSData object—that is, a byte stream—suitable for writing to disk. In the previous version of
the Vermont Recipes application, the conversion to an NSData object was accomplished using
ASCII encoding; in the present version, it is done using UTF8 encoding to match Cocoa's recent
change to that encoding for property lists. The application’'s override of the NSDocument

dat aRepr esent ati onOf Type: method then returns this byte stream to Cocoa, which writes
it to persistent storage for you.

Inset upDi cti onar yFronmMVenor y, you invoke NSDictionary'sset Qbj ect : f or Key:
method, aworkhorse that you will use frequently in Cocoa programming. Here, the first two
invocations add strings to the dictionary that identify the class of the object whose dataisto be
written to storage and an integer defining the version of the document format being used. The latter
will come in handy if you revise the format and wish to provide for backwards compatibility.

Finally, you passthe dictionary toaconver t ToDi cti onary: method yet to be written in
My Settings, where another value will be added to the dictionary before returning it to you here.
Y ou will write that method in Sep 4.2.3, below, where you will invoke

set Cbj ect : f or Key: for athird time. That method will initially represent the value of the

my CheckboxVal ue variable as adictionary entry and pass the dictionary back to the document
here. The important point, however, is that later, when you add additional variablesto the

My Settings object, you will simply add them to the dictionary that MySettings returns to the
document object initsconver t ToDi cti onary: method, without having to make any changes
to the document object. In other words, by setting up the document's storage routinesin this
fashion, you have isolated the internals of the MySettings data representation so successfully that
the document object needn't know about them.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (4 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html

4. Define the new variables referenced in instructions 2. and 3., above, by inserting the following in
MyDocunent . mat thetop of the Persistent Storage section:

/'l Keys and val ues for dictionary

NSStri ng *nyDocunent Type = @ Vernont Reci pes 1 Docunent
Format " ;

static NSString *myDocunent Cl asskKey = @C ass";
static NSString *myDocunent Ver si onKey = @ Ver si on";
static int current M/Docunent Version = 1;

The myDocunment Type variable must be assigned the same string that you entered as the
CFBundl eTypeNane inthefirst element of the CFBundl eDocunent Types array in the
target's Application Settingsin Sep 3.1.1.

4.2.2 Convert the document's stored data to its live internal representation

1. Inthe header file MyDocunent . h, add declarations before @nd for two subroutines, as follows:

/1l Loading information from persistent storage

- (voi d)restoreFronttorage: (NSDat a *) dat a;

- (NSDi ctionary *)setupD ctionaryFrontt orage: (NSDat a
*) dat a;

2. Switch to the source file MyDocunent . mand replace the stub method
| oadDat aRepr esent ati on: of Type: with the following:

/'l Loading information from persistent storage

- (BOOL) | oadDat aRepr esent ati on: (NSDat a *) dat a
of Type: (NSString *)type {
If ([type isEqual ToString: nyDocunment Type]) {
[sel f restoreFronttorage: dat aj ;
return YES;
} else {
return NG,

}

3. InMyDocunent . m add the two methods whose declarations you added in instruction 2, above,

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (5 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html

immediately following:

- (void)restoreFrontt orage: (NSData *)data {
NSDi ctionary *dictionary = [self

set upDi cti onar yFr onfSt or age: dat aj ;
[[sel f nySettings]

restoreFronDi ctionary: dictionary];

}

- (NSDi ctionary *)setupD ctionaryFrontt orage: (NSDat a
*)data {
NSString *string = [[NSString all ocWthZone: [self
zone]] initWthData: dat a
encodi ng: NSUTF8St ri ngEncodi ng] ;
NSDi ctionary *dictionary = [string propertylList];
[string rel ease];
return dictionary;

Ther est or eFr onst or age: method invokes the MySettings object's

rest oreFronDi cti onary: method, which you will write shortly. The MySettings

rest oreFronDi cti onary: method playsasimilar role to that played by the

convert ToDi cti onary: methodinvokedinset upDi cti onaryFrom\Venory in Sep
4.2.1, above. It allows the MySettings object to take a dictionary, which was just read from
persistent memory as a byte stream and converted to a dictionary by

set upDi cti onar yFr ontt or age: , and convert it into the form required by the data variables
in MySettings. Again, the document's data storage routines do not need to know anything about the
data format implemented in MySettings.

4.2.3 Implement the model object's data conversion methods

1. Inthe MySet ti ngs. h header file, insert the following declarations:

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (6 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html
/| Persistent storage
/1l Saving information to persistent storage:

- (void)convertToDi cti onary: (NSWut abl eDi cti onary
*)dictionary;

/1 Loading information from persistent storage:

- (void)restoreFronDictionary: (NSDi cti onary
*)dictionary;

2. Inthe MySet t i ngs. msourcefile, insert the following definitions:

/| Persistent storage
/'l Keys and val ues for dictionary

static NSString *nyCheckboxVal uekey =
@ MyCheckboxVal ue";

/'l Saving information to persistent storage:

- (void)convertToDi ctionary: (NSMut abl eDi cti onary
*)dictionary {

[dictionary set Object:[NSString
stringWthFormat: @%", nyCheckboxVal ue]
f or Key: nyCheckboxVal ueKey] ;

}

/'l Loading information from persistent storage:

- (void)restoreFronDi ctionary: (NSDi ctionary
*)dictionary {

myCheckboxVal ue = (BOOL)[[dictionary
obj ect For Key: myCheckboxVal ueKey] i nt Val ue];

}

The Boolean values for the checkbox setting are converted to stringsin

convert ToDi cti onary:, sincethey will be stored as a byte stream. Thisis
accomplished here by using another workhorse Cocoa method, st ri ngW t hFor mat : . It
uses standard C printf codes to convert values, here taking the Boolean value in the

my CheckboxVal ue variable and converting it to a string representation of an integer. In
ther est or eFr onDi cti onar y: method, the reverseis done, taking the integer value of

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (7 of 8) [9/10/2001 8:45:53 AM]

http://www.stepwise.com/Articles/\V ermontReci pes/recipe01/recipe01_step04_02.html

the string and casting it to a Boolean value. In Recipe 2 and following, you will add many
similar statements to this method to convert other data values to string format for storage.
Note that any datathat is already in string format does not have to be converted using the
stringWt hFor mat : method but can instead be installed directly into the dictionary.
Note also that it is not necessary to populate a dictionary with string values; you can also use
values consisting of Cocoa objects. Y ou use strings here because of the ease with which it
allows you to stream the dictionary to disk as an NSData object and because, later, in Recipe

4, Sep 1, it will make it easy to write an AppleScript to read the file,

Notice that the myCheckboxVal ue variable is set directly in

rest oreFronDi cti onary: , rather than by calling its accessor method,

set MyCheckboxVal ue: . Thisis consistent with the temporary device you employed in
Sep 4.1, using direct access to the variable for initialization, because reading data from disk
isaform of initialization whether it happens because the user chose File > Open... or File >
Revert. As an initialization operation, it should not be registered with the document's undo
manager. Asyou will learn in Sep 5.1, the accessor method will register changes with the
undo manager, so that method isnot used hereinr est or eFronDi cti onary: . Still
later, in Recipe 2, Sep 2, you will usetheset MyCheckboxVal ue: accessor method

here, after al, employing a better technique to avoid registering with the undo manager.

These two methods belong in the MySettings object, a model object, because they involve
direct manipulation of the object'sinternal data structures. The outside world, including the
document object, should know nothing of these internal data structures. All the document
needs to know is that they return or accept a dictionary, which the document can store or
retrieve without knowing its contents. As you add more data variables to MySettings, you
will ssimply add lines to these two methods to convert the individual variables to and from
the dictionary object, without having to make any changes to the document object.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeO0l1_step04_02.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 4.2 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_02.html (8 of 8) [9/10/2001 8:45:53 AM]

Vermont Recipes—Recipe 1, Step 5.1

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 5.1 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 5: Implement Undo and Redo

In Step 4, you wrote methods to convert the document's internal data to a representation suitable for

storage. However, the application does not yet have a means to know when the document needs to be
saved, because it cannot tell when the document has been altered. Y ou need to add routines to enable the
Revert menu item when a document has been modified, and also to cause an alert to be shown if the user
attempts to close a document that has been modified.

In Cocoa, you can keep track of document changes explicitly, but it will be accomplished for you
automatically if you implement the Cocoa AppKit's built-in undo and redo capability. The undo manager
necessarily tracks changes made by the user, and Cocoa therefore uses this information to implement the
proper menu and closing behaviors for you. Undo and redo support should be part of every Macintosh
application, so you will now take advantage of this labor-saving feature by implementing it and, asaside
effect, you will be able to dispense with tracking document changes yourself.

The basic operating principle behind Cocoa's undo and redo support is that changes to the application's
state initiated by the user, especially changes to a document's data, should be registered or recorded with
the appropriate undo manager object. The undo manager can automatically revert or restore the change
later, when the user chooses Undo or Redo from the Edit menu, by using information provided at the time
of registration or recording.

It normally makes sense to register a change to a document's data in a so-called "primitive" method which,
likeset MyCheckboxVal ue: in MySettings, performs the operation by directly altering an instance
variable. Every other method that invokes the primitive method will thereby gain the benefit of Cocoa's
undo and redo support. As noted previously, every operation that changes the value of the variable should

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_01.html (1 of 5) [9/10/2001 8:46:00 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 5.1

do so through this primitive method, except that initialization operations should not be undoable and
therefore require special attention.

So-called "extended" methods, which invoke a primitive method to effect a change indirectly, should not
register with the undo manager because the primitive method will do it for them. An example of an
extended method ist oggl eMyCheckboxVal ue, from Sep 3.5, which invoked

set MyCheckboxVal ue: todo itswork and therefore would not have needed to register with the undo
manager itself.

Also, recall from Sep 4.1 that initialization of an instance variable should not register with the undo
manager. Y ou can safely implement undo registration in a primitive method because, in Recipe 1, you
awaysinitialize variables directly instead of calling the primitive method. An example of thisis opening a
document or reverting to its saved state, which are forms of initialization. For this reason, the

| oadDat aRepr esent at i on: of Type: method that you wrote in Sep 4.2.2 did not call the primitive
accessor method but instead set the variable directly. Later, in Recipe 2, Step 2, you will use another
technique to avoid registration with the undo manager, and you will then be able to use the primitive
accessor method to set data variables even during initialization.

At this point, the only action you need to deal with for undo and redo is the user's clicking the checkbox to
change the nyCheckboxVal ue variable. This change isimplemented by the

set MyCheckboxVal ue: method in MySettings. Therefore, you should implement undo and redo in
that method.

After you have implemented undo and redo for the document's data, you will attend to the wording of the
Undo and Redo menu items and consider how the application should update its user interface to remain
synchronized with the changed data.

5.1 Register data changes with the document's undo manager

Launch Project Builder and open the project, if necessary.

1. Inthesourcefile MySet t i ngs. m changetheset MyCheckboxVal ue: primitive accessor
method to the following:

- (voi d) set MyCheckboxVal ue: (BOOL) val ue {
[[[sel f undoManager]

prepareWt hl nvocati onTar get: sel]

set MyCheckboxVal ue: nyCheckboxVal ue] ;
myCheckboxVal ue = val ue;

}

The invocation of the undo manager'spr epar eW t hl nvocat i onTar get : method causes the

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_01.html (2 of 5) [9/10/2001 8:46:00 AM]

Vermont Recipes—Recipe 1, Step 5.1

document to create an undo manager object "lazily," if one does not already exist. The statement
records, or savesin memory, theset MyCheckboxVal ue: method, asif it were being called
now using the current state of the my CheckboxVal ue variable; that is, its state before the user
clicked on the control. This recorded version of the call will automatically be played back from the
undo manager's undo stack when the user chooses Undo from the Edit menu, in order to restore the
variable to this recorded value. At the same time, it will record a new undo action, with the old
value, and place it on the undo manager's redo stack. Cocoa will play this back from the redo stack
when the user chooses Redo.

2. MySettings does not have away to talk to the undo manager, so you must add one. The undo
manager will be associated with the document object, so you will create a chained accessor method
just asyou did in Step 3.5.5 to enable the window manager to access the MySettings object. In the

header file MySet t i ngs. h, add this declaration in the Accessor methods and conveniences
section after the myDocunent accessor method:

- (NSUndoManager *)undoManager ;

In the sourcefile MySet t i ngs. m add this definition in the Accessor methods and conveniences
section after the my Docunent accessor method:

- (NSUndoManager *)undoManager {
return [[self nmyDocunent] undoManager];

3. The application must know how to locate the relevant undo manager stack when the user chooses
the Undo or Redo menu item. Cocoa handles this by walking the responder chain from the current
first responder. It is possible that it will encounter an undo manager object before reaching the top;
for example, one might have been implemented in a custom view object that handles undo and redo
commands itself. If it reaches the window object at the top of the chain without encountering an
undo manager object, it asks the window object's delegate for a reference to an undo manager
object. If adelegate exists that implementsthew ndowW | | Ret ur nUndoManager : delegate
method, Cocoa callsit. If noneisfound, the window creates its own undo manager and uses that.
Here, the name of this method indicates that the window manager is about to return an undo
manager to the application (i.e., it "will" do so). By implementing the delegate method in your
window controller, you alter Cocoa's default behavior by causing the window to return an undo
manager of your choosing instead of returning the undo manager it would otherwise create itself.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_01.html (3 of 5) [9/10/2001 8:46:00 AM]

Vermont Recipes—Recipe 1, Step 5.1

A note about delegation

Cocoa makes heavy use of delegation as a means for one object to carry out actions
or respond to events on behalf of another object. Thisis an important factor in the
power and flexibility of Cocoa, since it allows a simple Cocoa application to
behave appropriately, while at the same time allowing Cocoa devel opers to create
more complex applications by altering chosen aspects of default Cocoa behavior. It
Is often easier to implement a del egate method in a delegate classthanitisto
subclass a Cocoa class.

An object that can hand off some of its responsibilities to a delegate always
includes a standardized mechanism to appoint a delegate, the set Del egat e:
method. This sets up an instance variable that gives the delegator the ability to talk
to the delegate. Typically, a developer of a new class uses Interface Builder to
connect the delegate to the delegator's delegate outlet.

The developer of aclass that can appoint a delegate tries to anticipate al events
that could usefully be handled by a delegate and declares for each such event a so-
called "delegate method." When arelevant event occurs at run time, the delegating
object first checks to see whether a delegate has been appointed and, if so, whether
the delegate implements the delegate method; if so, it calls the delegate method as
implemented by the delegate.

The developer of aclass that might want to react to an event considers whether an
object exists that calls appropriate delegate methods in connection with the event.
If so, the devel oper implements the delegate method in the delegate class. The
delegate method will be called automatically by the delegator when the triggering
event occurs.

Many delegate methods in Cocoa use "will," "should," or "did" in their names. By
convention, a"will" delegate method is invoked by the delegator when the event is
about to be handled; the delegate's implementation of the delegate method can
cause the delegator to do something beforehand. A "should" delegate method is
also invoked by the delegator before the event is handled; the delegate's
implementation can, however, prevent anything from happening in response to the
event as well as altering what would normally happen. A "did" delegate method is
invoked by the delegator just after the event has been handled.

Y ou, too, can write classes that employ delegates. Designing appropriate delegate
methods may seem like ablack art, but it smply requires a good class structure
design and an understanding of how delegates could make use of it.
Implementation istrivial; just check that a delegate has been appointed and has
implemented a particular delegate method before calling it.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05 01.html (4 of 5) [9/10/2001 8:46:00 AM]

Vermont Recipes—Recipe 1, Step 5.1

Documentation

To understand what delegation is all about, read Delegating Authority - Cocoa
Delegation and Notification, a 1999 article on the Stepwise site by Erik Buck.

Recall that MyWindowController was designated as the window's delegate in Interface Builder, in
Sep 2.6.3. In document-based applications, the document is supposed to handle al of its undo
chores, and the window controller therefore should return the document's undo manager. To ensure
that the application finds the document's undo or redo stack at this point, add the following delegate
method to the source file my W ndowCont r ol | er . m after the Accessor methods and
conveniences section.

/1 Undo nmanagenent

- (NSUndoManager
*Iw ndowW | | Ret ur nUndoManager : (NSW ndow *) w ndow {
return [[self docunent] undoManager];

}

It is not necessary to declare this method in the header file MyW ndowCont r ol | er . h, because
it is a delegate method.

4. Y ou should clear the undo and redo stacks for the document when it is saved because, in the
Vermont Recipes application, saving a document is regarded as committing all changes. Y ou could
write an application to allow undo beyond the last save, asis done, for example, in Project Builder.
But that is a complication you don't need, here. Add the following line just beforer et ur n
[sel f convert For St or age] ; inthedat aRepr esent ati onOf Type: method inthe
source file MyDocument.m:

[[sel f undoManager] renoveAll Acti ons];

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe0l1_step05_ 01.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 5.1 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_01.html (5 of 5) [9/10/2001 8:46:00 AM]

http://www.stepwise.com/Articles/Technical/2000-03-03.01.html
http://www.stepwise.com/Articles/Technical/2000-03-03.01.html

Vermont Recipes—Recipe 1, Step 5.3

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 1, 2001 - 6:00 PM
Introduction > Contents > Recipe 1 > Step 5.3 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 5: Implement Undo and Redo
5.3 Update the user interface

Finally, undoing and redoing changes to the application's datais al well and good, but the user interface
needs to be updated, aswell. In this Step you will devise a means by which the MySettings model object
can let the window controller know that the user interface needs to be updated to reflect the new state of

the data.

The Sketch example application supplied by Apple deals with this problem by brute force. If applied here,
that technigue would require every primitive method that changes a data value, such as

Set MyCheckboxVal ue: in MySettings, to invoke a custom method, called something like

I nval i dat eDat a. This method in turn would invoke a custom window controller method, called
something likei nval i dat eUl , to instruct all of the window's user controls to change state to match the
new state of the document's data.

There is a serious problem with this brute force solution, if it were applied here. It would require the
window controller to update every user control in the window, even though the user had only undone or
redone a change to a single data value. While thisis not a problem for awindow containing only one or a
few user controls, it could introduce a noticeable delay if the window contained many complex controls.
Also, it would result in a user control being updated twice when clicked; once, when the user clicks the
control, then again, whenthei nval i dat eDat a method isinvoked and in turn invokes

I nval i dat eUl to update the user control.

There are at least two available techniques to solve these problems. One is to have the window controller's

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_03.html (1 of 7) [9/10/2001 8:46:07 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 5.3

action method pass to the model object's Set MyCheckboxVal ue: method the selector for a specific
method to update the visible state of the my Checkbox user control. The Set MyCheckboxVal ue:
method would then invoke that selector using the NSObject protocol's per f or nSel ect or : method to
update the user control. Although the window controller's action method already knows how to update its
user control, the point is that this process would aso be registered with the undo manager, to be played
back when the user chooses Undo or Redo.

Here, however, you will use another important Cocoa technique, notifications, instead. Every primitive
document method that changes a data value, such as Set MyCheckboxVal ue: , will post a notification
describing the change to the default notification center. The notification center will in turn immediately
broadcast that notification to any other object that has registered to receive it. The MyWindowController
object will register to receive such a notification for every user control it manages. When it receives such a
notification, it will invoke a method to update the specific user control whose associated data value
triggered the notification. This process will also be registered with the undo manager, so the same
notification will be broadcast again when the user chooses Undo or Redo. As aresult, the model object
will not need an outlet to the window controller object, and when the window object receives a notification
because Undo or Redo was chosen, the one, and only the one, user control will be updated. As a bonus,
any other object in the application can register to receive notification when a specific data item changes,
and take action accordingly, without requiring any further changes to the model object's code.

A note about notifications

The Cocoa AppKit creates by default a notification center, which an application object can
use to broadcast notifications to any other objects that register to receive them.

The notification technique differs from delegation in several respects and is useful in
different situations. For one thing, multiple objects can register to receive asingle
broadcast notification; that is, an object can have many observers, whereas it can have
only one delegate. Notifications are therefore useful when an object does something that
affects the application in away that many other objects need to know about and respond
to—for example, to synchronize their state with that of the sending object.

For another, notification does not require the notifier to know anything about the observer,
or even that there are any observers, and an observer need not know anything about the
notifier. They only need to share knowledge of the existence and nature of the notification
mechanism. This makes notification a more flexible technique than delegation. For
example, a developer can add new functionality to an application without altering the
notifier in any way, or even knowing anything about it. It is not necessary for an observer
to have access to a notifier through an instance variable or accessor method, as a delegate
must in order to become the notifier's delegate; it is necessary only to register with the
notification center to observe the notification. Optionally, notifications can include
information about the notifying object that observers can use to understand the notification
In greater detail.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_03.html (2 of 7) [9/10/2001 8:46:07 AM]

Vermont Recipes—Recipe 1, Step 5.3

A limitation of notificationsisthat, unlike delegates, an observer cannot interfere in any
way with the notifying object. The observer cannot, for example, prevent the event that is
the subject of the notification from happening, as some del egate methods can.

There is some processing overhead associated with notifications, but in general they are
very efficient and can be used in most situations without concern for performance.

Documentation

To understand what notification is all about, read Delegating Authority - Cocoa
Delegation and Notification, a 1999 article on the Stepwise site by Erik Buck.

In either case, you will solve the problem of redundant updating of a user control when auser clicksit by
the ssimple expedient of testing its state first. If its state already corresponds to its associated data value, the
window controller will not let it update. Thiswill save whatever time would have been required to redraw
the control on the screen.

1. Notifications are recognized by name or by the object from which they originated, or by both. It is
customary to assign the name to an external variable in the originating class and to use the variable
in every classwhere it is needed. The variable name should be given a unique prefix to avoid
contamination of the global namespace; here, we use "VR" for "Vermont Recipes'. In the header
fileMySet ti ngs. h, after @nd, declare the following external variable:

extern NSString *VRMyCheckboxVal ueChangedNoti fi cati on;

2. Inthe sourcefile MySet t i ngs. m define the variable as follows, before @ npl enent at i on
MySet ti ngs:

NSSt ri ng *VRMyCheckboxVal ueChangedNoti fication =
@ MyCheckboxVal ue Changed Notification";

3. Inthesourcefile MySet t i ngs. m insert the following at the end of the
set MyCheckboxVal ue: accessor method:

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_03.html (3 of 7) [9/10/2001 8:46:07 AM]

http://www.stepwise.com/Articles/Technical/2000-03-03.01.html
http://www.stepwise.com/Articles/Technical/2000-03-03.01.html

Vermont Recipes—Recipe 1, Step 5.3

[[NSNot i ficationCenter defaultCenter]
post Noti fi cati onNanme: VRMyCheckboxVal ueChangedNoti fi cati on
obj ect:sel f];

4. In the header file myW ndowCont r ol | er . h, declare these two methods before the Action
methods section:

/1l Interface managenent
/'l Generic view updaters

- (voi d) updat eCheckbox: (NSButton *)contr ol
setting: (BOOL) val ue;

/'l Specific view updaters (from notifications)

- (voi d)updat eMyCheckbox: (NSNot i fi cation
*)notification;

5. Inthe source file MW ndowCont r ol | er . m define these two methods as follows before the
Action methods section:

/1l Interface managenent
/'l Generic view updaters

- (voi d) updat eCheckbox: (NSButton *)contr ol
setting: (BOOL) val ue {
if (value !'= [control state]) {
[control setState:(value ? NSOnState :
NSO f State)];

}
}

/1 Specific view updaters (fromnotifications)
- (voi d)updat eMyCheckbox: (NSNoti fication *)notification
{

[sel f updat eCheckbox: [sel f nmyCheckbox]
setting:[[self nySettings] myCheckboxVal ue]];

}

Theupdat eMyCheckbox: method is specific to this one checkbox; it will be invoked by the

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_ 03.html (4 of 7) [9/10/2001 8:46:07 AM]

Vermont Recipes—Recipe 1, Step 5.3

notification that you are about to register with the default notification center. The

updat eCheckbox: setti ng: method isgeneric; it may eventually be called by many specific

checkbox controls, passing in the control and its underlying data setting for each distinct control, as
isdoneinupdat eMyCheckbox: . It will also be called in instruction 7, below, when the window
first loads for a new or opened document, and in Step 7, when the user reverts the document to its

saved state.

Note that the specific updat eMyCheckbox: method fetched the setting parameter from the
model object. It would have been possible to include this information in the notification itself,
freeing the window controller from the necessity of looking up the setting in the document object.
Including information in anotification is in many circumstances preferred, in order to maintain a
full separation between the object originating the notification and an object receiving it. Here,
however, it is the window controller's primary function to talk to the model object, so thereis no
harm in looking the value up. This does, however, limit the ability of other classes to use the
notification; they must know about the model object, as MyWindowController does.

Don't be concerned about the apparent mixing of integer, Boolean and enumeration datatypesin
theupdat eCheckbox: setti ng: method. It iscommon in Cocoa programming to treat
Boolean values as integers whenever this promotes convenience, and the same goes for
enumeration types, which are, of course, implemented as integers. The NSButton class reference
document is explicit about thisin the case of theset St at e: method, saying "Although using the
enumerated constants is preferred, value can also be an integer. If the cell has two states, zerois
treated as NSOff State, and a non-zero value is treated as NSOnState. If the cell has three states,
zero istreated as NSOff State; a negative value, as NSMixedState; and a positive value, as
NSOnState." We cast theset t i ng parameter to a Boolean value here only to capture the
traditional notion that a two-state checkbox is either on or off, true or false; Cocoa allows a
checkbox to assume only these two states by default. Y ou will learn how to implement mixed-state
(or three-state) checkboxes in Recipe 2, Sep 3, instruction 4, wherethe set t i ng parameter will

be cast to an integer value to allow the use of three states.

6. All that isleft isto register the window controller as an observer of the notification with the default
notification center. Thisis done by inserting the following statement in thew ndowDi dLoad
override method of the source file MyW ndowCont r ol | er . m as shown below.

[[NSNoti ficationCenter defaultCenter] addQobserver: self
sel ector: @el ect or (updat eMyCheckbox:)

nanme: VRMW CheckboxVal ueChangedNoti fi cati on object:[self
nySettings]];

Y ou might have been tempted to register the window controller as an observer in the
MyWindowController i ni t method, instead, but this would involve a subtle error, common
among Cocoa beginners. Sincethe[sel f nySetti ngs] object passed asthe obj ect

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_03.html (5 of 7) [9/10/2001 8:46:07 AM]

Vermont Recipes—Recipe 1, Step 5.3

parameter in the registration method would not yet have been created at the time when the window
controller is being initialized, it would have been passed asni | . Vermont Recipes would appear to
function correctly for the time being. However, it would not have functioned correctly later, when
additional controls will be added to the application, and it would have been very difficult to debug
the problem. To avoid errors, the window controller must be registered with the notification center
in the window controller'sw ndowDi dLoad method, after the MySettings object has been created
and initialized and can therefore be passed to the notification center.

It isimportant to understand exactly why you should not register observers of data changesin the
window controller'si ni t method. Y ou want your notifications to go only to the update method in
the particular instance of MyWindowController that is associated with this MySettings object and
its window, not is some other instance representing a different document. If you were to register
your observer in the window controller'si ni t method, the MySettings object would not yet have
been created and you would therefore have passed ni | intheobj ect parameter. Asthe
NSNotificationCenter documentation notes, this causes the notification to be broadcast too widely.
If the notification were broadcast to al instances of MyWindowController, then the same user
control in every open window would update, potentially causing pending edits in those windows to
be aborted and reverted to their origina values behind the user's back. In general, you have to be
very careful what you do in your window controller'si ni t method, because many objects aren't
yet in existence when it isinvoked. For example, objects instantiated in the nib file do not yet exist.
For this reason, many operations must be deferred to the awak Fr onNi b method declared in the
NSNibAwaking informal protocol, or to an override of NSDocument's

wi ndowCont rol | er Di dLoadNi b: method or, in a document-based application like Vermont
Recipes, to an override of NSwWindowController'swi ndowDi dLoad method.

Back ininstruction 6 of Step 3.3, you removed MyWindowController from the list of notification
center observers when MyWindowController was deallocated, without understanding why. Now
you know: here you have added MyWindowController to the list of observers, and removing it later
IS anecessary part of the object's cleanup process.

7. Finaly, you will recognize that the statement within the new updat eCheckbox: methodin
MyW ndowCont r ol | er . misidentical in effect to a statement you inserted in
wi ndowDi dLoad in Sep 4.3. Therefore, since you now have a method that performs this
function, you should revisewi ndowDi dLoad to invoke the new method, for the sake of
efficiency and easy maintenance. Replace the second line of wi ndowDi dLoad with the
following:

[sel f updat eCheckbox:[self mnmyCheckbox] setting:[[self
nmySet tings] nyCheckboxVal ue]];

The cumulative effect of the code you wrote in this Step is that, whenever an item of datain the
application is changed by any operation, including an undo or redo operation, the window controller gets

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_03.html (6 of 7) [9/10/2001 8:46:07 AM]

Vermont Recipes—Recipe 1, Step 5.3

wind of it and updates the associated user control to match. Thisis all managed in such away that the
model object does not have to know what user interface objects exist, or even that awindow controller
exists. You could take this same model object, unchanged, and tack a completely different user interface
onto it.

That's all thereisto implementing undo and redo support in the application. If you compile, link and test
the application now, try clicking several times in succession on the checkbox control. Then try undoing
these changes from the Edit menu. Y ou will discover that you can repeatedly undo the changes until the
Undo menu item finally dims. Thisis because Cocoa implements unlimited undo by default; it lets you
undo each of your clicks until the control finally revertsto its original state. At that point, you can also
choose the Redo menu item repeatedly until all of the undos have been reversed and the Redo menu item
finally dims.

Best of al, by implementing undo and redo, the application automatically gained the ability to know when
a document has been modified and needs to be saved. Y ou can test this by clicking the checkbox in the
window to change its state, then closing the window. A sheet will open, advising you that the document
has been modified and asking you whether to saveit. If you cancel and choose Edit > Undo, you will be
able to close the document without seeing this sheet, because the document will know that the document is
no longer modified from its previously-saved state.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe0l1_step05_ 03.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 5.3 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_03.html (7 of 7) [9/10/2001 8:46:07 AM]

Vermont Recipes—Recipe 2, Step 3

114 > Coll

Articles - News - Softrak - Site Map - Status - Comments

Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM

Introduction > Contents > Recipe 2 > Step 3 < BACK | NEXT >

Recipe 2: User controls—Buttons

Step 3: Checkboxes (switch buttons) in a borderless group box

. Highlights:
o Using a mixed-state checkbox

o Using an Objective-C category to enhance a built-in Cocoa class Pegs for Tots:

The checkbox you implemented in Recipe 1 is sometimes known as atwo-state checkbox V] Triangle
or switch button. It can be either on (checked) or off (unchecked, or empty). You are also] Square

able to create mixed-state checkboxes. They have the familiar checked and unchecked 7] Round
states, but they also have an indeterminate or mixed state indicated by a dash inside the
checkbox. The Mac OS 8 Human Interface Guidelines (which are inherited by Aqua (=] Select All

except as revised in the Agua Human Interface Guidelines) describe a mixed-state
checkbox as follows:

There isamixed state for checkboxes, which shows that a selected range of items has somein
the on state and some in the off state. For example, atext formatting checkbox for bold text
would be in the mixed state if atext selection contained both bold and non-bold text.

The guidelines go on to remind us that

Checkboxes differ from radio buttons in that they are independent of each other, even when they
offer related options. Any number of checkboxes can be on, off, or mixed at the same time.

For purposes of demonstrating how to implement a mixed-state checkbox, you will create three independent
but related two-state checkboxes in atitled group box, and the box will contain a fourth, mixed-state checkbox
at the bottom that can be used to turn all three of the two-state checkboxes on or off at once. The mixed-state
checkbox will assume the mixed state when one or more, but not al, of the other three checkboxes have been
turned on separately, but the user cannot create a mixed state by clicking on this checkbox.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (1 of 24) [9/10/2001 8:46:25 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://developer.apple.com/techpubs/mac/pdf/HIGOS8Guidelines.pdf
http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-15.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-15.html

Vermont Recipes—Recipe 2, Step 3

The checkboxes in this Recipe will be grouped because all of them relate to a single subject, but the group will
not contain avisible border. The Aqua Human Interface Guidelines recommend that bordered group boxes be
used sparingly, if at al, expressing a preference for the use of "white space" to separate a group of related
controls visibly from other interface items and groups. This differs from the classic interface guidelines, which
encouraged use of enclosing borders to group related items. In Mac OS X, the trend is to retreat from the
overly busy user interfaces that have become common in classic applications. In this step, you will use
Interface Builder to group the checkboxes in abox because thisis convenient for the devel oper, but you will
make the border invisible in order to comply with the guidelines. In Sep 4 you will implement asimilar group

of checkboxes using avisible bordered box, which is still permitted by the guidelines when it serves usability.

Adding anew control and its associated data variable to an application can be a surprisingly tedious affair, as
you will discover in this Step. There are a great many details to take care of. However, the object-oriented
structure of a Cocoa application allows the process to be organized into afixed set of steps, no matter what
kind of user control isinvolved. This allows the process to be routinized to reduce the chance of errors. In this
way, features like multiple undo and redo and data storage are taken care of easily. Before turning to the
details, here is a checklist of what must be done.

. UselInterface Builder to draw the control, then turn to Project Builder to code it

. User control outlet variable and accessors. Add an outlet variable and accessor methods to the
window controller, so the state of the control can be accessed

. Datavariable and accessors. Add a data variable and accessor methods to the model object, so the
value represented by the control can be accessed; the set ...accessor method will also register a data
change with the undo manager and post a notification to indicate that the data has changed

. Noatification variable. Declare a notification variable in the model object, so the model object can
notify the window controller when the data changes

. GUI update method. Add a method to the window controller to update the visible state of the control
In response to notification that the data has changed

. Notification observer. Register the window controller as a notification observer, so it will receive
notification that the data has changed

. Action method. Add an action method to the window controller to change the data in the model object
when the user clicks the control

. Localizablestrings. Updatethe Local i zabl e. st ri ngs file with the new undo and redo menu
names

. Initialization. Initialize the data variable in the model object to a default value, if desired

. Data storage. Add keys and revise methods in the model object to save and retrieve the data to and
from persistent storage

. GUI update method invocation. Add an invocation of the control updater to the window controller's
updat eW ndow method

. InInterface Builder, read in the filesin order to capture the new outlet and action, then connect them
with the control and set any required delegate connections

It took all of Recipe 1 to cover these steps for the Checkbox control, along with the basics of creating an
application. Here, you will do it for the new mixed-state checkbox and its associated two-state checkboxesin a
single Step. Thisroad map will serve you well in Steps to come, where you will create many more controls.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (2 of 24) [9/10/2001 8:46:25 AM]

Vermont Recipes—Recipe 2, Step 3

After working through this roadmap in detail here, the instructions in subsequent Steps can be shortened in
order to help you focus on what is unique about each control.

The routine steps needed to implement these controls are covered in instructions 1. and 2., below. The
interesting material—the methods to update the mixed-state checkbox and its action method, and aforay into
the land of categories—is covered in instructions 3. and following.

1. Use Interface Builder to create several new checkboxes grouped in abox, using the techniques you
learned in Recipe 1, Sep 2.2. When you are done with thisinstruction 1, the group should look like that

shown in Screenshot 2-2.

a. Open MyDocunent . ni b inInterface Builder and select the Buttons tab view item, if
necessary. Remember that the Buttons tab view item must have a broad line around it, so that
controls dropped into it from the palette land on the tab view item and don't fall through into the
underlying tab view. Y ou can verify that the tab view item is selected by checking the Info
palette, which should show the NSTabViewltem Info palette, not the NSTabView Info palette.

b. From the Views palette, drag three Switch controls onto the Buttons pane and line them up
vertically some distance beneath the existing Checkbox control. Ignore the Aqua guideline
showing the proper distance below the existing Checkbox control, because you are going to
group the three new checkboxes separately, but line al three of them to the left guideline as a
convenient way to align them vertically. If necessary, you can select all three of the new
checkboxes, then align them vertically by using the Layout > Alignment > Align Left Edges
menu item.

c. Rename the three new switches Tr i angl e, Squar e, and Round, respectively.

d. From the Views palette, drag another checkbox onto the Buttons pane, then position it a greater
distance below the first three switches than the guideline suggests. Rename it Sel ect Al | .

e. From the Views palette, drag the horizontal line below the box icon onto the Buttons pane,
placing it between the top three buttons and the bottom button to serve as adivider. Now you can
use the horizontal guidelines to move the divider and the checkbox below it to their proper
vertical positions.

f. Select all four new switches and the divider, then choose Layout > Group in Box. A box with
selection handles appears, surrounding the selected items by a distance dictated by the Aqua
guides. Change the title of the box to Pegs for Tot s: (with atrailing colon because the box
will be made invisible for this group).

Y ou could have created the box by dragging the box icon from the Views palette onto the
Buttons pane, then manually repositioning and resizing it to surround the controls. But the Group
in Box command is more convenient because it does the positioning and spacing for you, and it
allows you to drag the box and its contents as a group without first making sure you have
selected al of them. More importantly, it lets you take advantage of the convenient sizing and
spacing tools provided by the NSBox Info palette. Y ou can drag the box and its contained items

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (3 of 24) [9/10/2001 8:46:25 AM]

Vermont Recipes—Recipe 2, Step 3

now to see that Aqua guides suggest positioning the new checkboxes relative to the existing
Checkbox control based on the position of the visible border of the NSBox object.

However, this group box is specified to be borderless, so, in the Attributes pane of the NSBox
Info palette, click the button designating a borderless group box. If you watch closely, you see
that the individual items within the box move apart slightly. Now drag the box and the items
within it, and note that the Aqua guides suggest a dlightly different position relative to the
existing Checkbox control. This results in placing the group box title too close to the Checkbox
control, considering that this group isto be separate, so drag it a pleasant distance further below
the Checkbox control. The Aqua Human Interface Guidelines give you flexibility in the use of
white space to separate groups of related controls.

g. If you were to reposition the items manually, you would discover avariety of potentially useful
tools. Experiment as follows:

i. Select the three topmost checkboxes in the group, then choose the Tools > Alignment...
command to open the Alignment palette. In this palette, you can use the top left button to
align the left edges again, if necessary. Then use the bottom right button to spread them
out or close them up vertically with appropriate spacing—say, 7 pixels for switches, to
achieve the recommended 20-pixel spacing between the baselines of their titles. Finaly,
adjust the vertical position of the divider so that it is, say, 8 pixels below the "Round"
switch, and move the Select All switch so that it is, say, 8 pixels below the divider.

li. 1f you don't like the resulting appearance, drag the checkboxes and the divider
individually within the group box. Y ou notice that Aqua guides appear, suggesting
internal placements for items within the group box.

iii. Click one of the checkboxes, then hold down the Option key as you drag over an adjacent
control. Y ou see arrows showing the exact number of pixels between them.

iv. Select the group box and use the Layout > Size to Fit command to shrink the box around
the controls. Y ou see that all of the controls close up and the border shrinks around them.
The result is not pretty. It appears that thisis command is designed to shrink the
arrangement to the smallest possible size without overlap, rather than to comply with
guidelines.

v. Turn to the NSBox Info palette and see what tools it offers to change the spacing and
appearance of the group box. In Mac OS X 10.0, the only choice for the group titleisto
have atitle or not have atitle. Y ou can use the Format menu to change the font and style,
but the Aqua Human Interface Guidelines do not offer any encouragement to depart from
the defaults. Y ou have a choice of three Box Type buttons, but for this Step we have
specified borderless.

Y ou have probably by now thoroughly messed up the spacing and position of the group box and
itsitems. The easiest way to restore them isto start with the topmost item in the group box and
drag each in turn to the position indicated by the Aqua guides.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (4 of 24) [9/10/2001 8:46:25 AM]

Vermont Recipes—Recipe 2, Step 3

Examine the Aqua Human Interface Guidelines book to satisfy yourself that you have complied
with its arrangement, sizing and spacing recommendations. One issue to note is that Mac OS X
favors a center-biased dialog layout; at the end of this Step you will adjust the horizontal
placement of itemsin the window to comply with this recommendation.

2. Use Project Builder to write the code required to make the three new two-state checkboxes work, and to
implement the simpler features of the fourth, mixed-state checkbox. The Triangle, Square and Round
checkboxes will be coded exactly as the Checkbox control was coded, each acting independently of the
other to set an associated variable in the MySettings model object.

The mixed-state Select All checkbox will have new functionality, setting or clearing all of the other
checkboxes when it is checked or unchecked. It will in turn be checked, cleared or left in the mixed
state, as appropriate, when any of the other checkboxes is checked or unchecked. Y ou will defer the
more interesting code involving the mixed-state checkbox to instruction 3, below.

a. User control outlet variable and accessor s. Each of the four new checkboxes will be
represented by an outlet variable in MyWindowController, so that the window controller can tell
the controls to change their visible state when the data changes or obtain the state when that
information is needed. In Recipe 1, Step 2.6.2.2, you were able to create an outlet for the
Checkbox control in Interface Builder. You can't do it that way here, because the
MyWindowController files already exist; if you tried to use Interface Builder's Create Files...
command now, you would overwrite them. Y ou must therefore create the outlets in code,
following the model of Recipe 1, Sep 3.4.

In the header file MyW ndowCont r ol | er . h, declare four new outlets after the
my Checkbox declaration, asfollows:

/1 Pegs switch button group

| BQut | et NSButton *triangl ePegsCheckbox;
| BQut | et NSButton *squarePegsCheckbox;

| BQutl et NSButton *roundPegsCheckbox;

| BQut | et NSButton *al | PegsCheckbox;

Still in MyW ndowCont r ol | er . h, also declare accessors for the outlets after the
my Checkbox accessor, as follows:

/'l Pegs switch button group

- (NSButton *)triangl ePegsCheckbox;
- (NSButton *)squarePegsCheckbox;

- (NSButton *)roundPegsCheckbox;

- (NSButton *)all PegsCheckbox;

Turn to the source file MW ndowCont r ol | er . mand define the accessors after the
my Checkbox accessor, asfollows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (5 of 24) [9/10/2001 8:46:25 AM]

http://developer.apple.com/techpubs/macosx/System/Documentation/Developer/SystemOverview/AquaGuidelines.pdf

Vermont Recipes—Recipe 2, Step 3

/'l Pegs switch button group

(NSButton *)triangl ePegsCheckbox {
return triangl ePegsCheckbox;

(NSBut t on *) squar ePegsCheckbox {
return squar ePegsCheckbox;

(NSButt on *)roundPegsCheckbox {
return roundPegsCheckbox;

(NSButton *)al | PegsCheckbox {
return al | PegsCheckbox;

Now that you've goneto al that trouble, let it be said that using accessors to get user controls
may be overkill. Everybody recommends using accessors for data variables in your model object,
but the justifications for doing so don't necessarily extend to user controls. The implementation
of user controls, unlike your application's data structures, is pretty much built into Cocoa. It is
unlikely to change in ways that you would want to hide from your header files. Y our code would
be simpler if you just accessed user controls by their instance variables directly. Nevertheless, on
the theory that tutorial code should be conservative, you will continue to use accessors for user
controls throughout Vermont Recipes. It may even turn out that there is a payoff down theline, if
we think about automating the GUI of Vermont Recipes using A ppleScript.

b. Data variable and accessors. Three of the new checkboxes require corresponding variablesin
MySettings to hold the data they represent. The fourth checkbox is used only to affect or reflect
the state of the other three as a group, so it does not require an independent data variable. You
can determine the state of the three as a group by testing all of them at once, and this avoids the
risk that afourth variable to track the state of the group might get out of sync.

Y ou will now create the three new data variables in MySettings, along with their accessors,
following the model of Recipe 1, Step 3.5.4. You will include in the set ... methods the undo

manager and notification center statements that were taught in Recipe 1, Step 5.1 and Recipe 1,
Sep 5.3, in order to ensure that changing the values of these data variables will be undoable and
will be reflected in the graphical user interface.

In the header file My Set t i ngs. h, declare three new variables after the my CheckboxVal ue
variable, asfollows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (6 of 24) [9/10/2001 8:46:25 AM]

Vermont Recipes—Recipe 2, Step 3

/'l Pegs

BOOL tri angl ePegsVal ue;
BOCOL squar ePegsVal ue;
BOOL r oundPegsVal ue;

In MySet ti ngs. h, also declare the corresponding accessor methods after the
my CheckboxVal ue accessors, asfollows:

/'l Pegs

- (voi d)set Tri angl ePegsVal ue: (BOOL) val ue;
- (BOQL) tri angl ePegsVal ue;

- (voi d) set Squar ePegsVal ue: (BOOL) val ue;
- (BOQL) squar ePegsVal ue;

- (voi d) set RoundPegsVal ue: (BOOL) val ue;
- (BOQL) r oundPegsVal ue;

Turn to the source file My Set t i ngs. mand define the accessor methods after the
my CheckboxVal ue accessors, asfollows:

/'l Pegs

- (void)setTri angl ePegsVal ue: (BOOL) val ue {

[[[sel f undoManager] prepareWthlnvocationTarget: self]
set Tri angl ePegsVal ue: tri angl ePegsVal ue] ;

tri angl ePegsVal ue = val ue;

[[NSNoti ficati onCenter defaultCenter]
post Noti fi cati onNanme: VRTri angl ePegsVal ueChangedNoti fi cati on
obj ect:self];

}

(BOOL) tri angl ePegsVal ue {
return triangl ePegsVal ue;

(voi d) set Squar ePegsVal ue: (BOOL) val ue {
[[[sel f undoManager] prepareWthlnvocationTarget: self]
set Squar ePegsVal ue: squar ePegsVal ue] ;
squar ePegsVal ue = val ue;
[[NSNoti ficati onCenter defaultCenter]
post Noti fi cati onName: VRSquar ePegsVal ueChangedNoti fi cati on
obj ect:self];

}

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (7 of 24) [9/10/2001 8:46:25 AM]

Vermont Recipes—Recipe 2, Step 3

- (BOQL) squar ePegsVal ue {
return squar ePegsVal ue;
}

- (voi d) set RoundPegsVal ue: (BOOL) val ue {

[[[sel f undoManager] prepareWthlnvocationTarget: self]
set RoundPegsVal ue: r oundPegsVal ue] ;

roundPegsVal ue = val ue;

[[NSNoti ficati onCenter defaultCenter]
post Noti fi cati onName: VRRoundPegsVal ueChangedNoti fi cati on
obj ect:self];

}

- (BOQL) roundPegsVal ue {
return roundPegsVal ue;

c. Notification variable. Return to the header file MySet t i ngs. h, at the bottom, to declare the
notification variables used in the set ...methods in order to cause the window controller to
update the graphical user interface when the data is changed, as follows:

/'l Pegs

extern NSString

*VRTri angl ePegsVal ueChangedNot i fi cati on;

extern NSString *VRSquar ePegsVal ueChangedNoti fi cati on;
extern NSString *VRRoundPegsVal ueChangedNoti fi cati on;

Turn back to the source file MySet t i ngs. m near the top, to define the notification variables,
asfollows:

/'l Pegs

NSString *VRTri angl ePegsVal ueChangedNoti fication =
@ Tri angl ePegsVal ue Changed Notification";

NSSt ri ng *VRSquar ePegsVal ueChangedNoti fication =

@ Squar ePegsVal ue Changed Notification";

NSStri ng *VRRoundPegsVal ueChangedNoti fication =

@ RoundPegsVal ue Changed Notification";

d. GUI update method. Go now to the header file MyW ndowCont r ol | er . h to declare
methods to update the graphical user interface in response to these notifications, after
updat eMyCheckbox: intheSpecific vi ew updat er s section, asfollows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (8 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

/'l Pegs

- (voi d)updat eTri angl ePegsCheckbox: (NSNoti fi cati on
*)notification;

- (voi d)updat eSquar ePegsCheckbox: (NSNoti fi cation
*)notification;

- (voi d) updat eRoundPegsCheckbox: (NSNoti fi cati on
*)notification;

In the source file MyW ndowCont r ol | er . m define these specific update methods, after
updat eMyCheckbox: intheSpecific vi ew updat er s section, asfollows:

/'l Pegs

- (voi d) updat eTri angl ePegsCheckbox: (NSNot i fi cati on
*)notification {

[sel f updat eCheckbox: [self triangl ePegsCheckbox]
setting:[[self nySettings] triangl ePegsVal ue]];

}

- (voi d)updat eSquar ePegsCheckbox: (NSNoti fi cation
*)notification {

[sel f updat eCheckbox: [sel f squar ePegsCheckbox]
setting:[[self nySettings] squarePegsVal ue]];

}

- (voi d) updat eRoundPegsCheckbox: (NSNot i fi cati on
*)notification {

[sel f updat eCheckbox:[sel f roundPegsCheckbox]
setting:[[self nySettings] roundPegsVal ue]];

}

It is not necessary to declare a new generic checkbox updater for these three update methods,
because they call the generic checkbox updater you created in Recipe 1, Step 5.3. That generic

method handles two-state checkboxes, and that's what these checkboxes are.

Notice, however, that you have not implemented an update method for the Select All checkbox.
Y ou will have to do so, obviously, but you will defer thistask for now. The Select All checkbox
updater will require more careful thought, because it must reflect the state of all three of the new
data variables in combination. Among other things, it must be able to display the dash that
characterizes a mixed-state checkbox. To do this, you will have to write a new generic update
method to handle mixed-state checkboxes. Y ou will return to thisissue later in this Step, in
instruction 4.

e. Notification observer. Now register the window controller as a notification observer of the

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (9 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

notifications that will trigger these updaters, by inserting the following statementsin the
regi sterNotificationQoservers method of the sourcefile
MyW ndowCont r ol | er . m after the existing registration:

/'l Pegs

[[NSNoti ficati onCenter defaultCenter] addOoserver:self
sel ector: @el ect or (updat eTri angl ePegsCheckbox:)

name: VRTr i angl ePegsVal ueChangedNoti fi cati on
object:[self nySettings]];

[[NSNoti ficati onCenter defaultCenter] addOobserver:self
sel ect or: @el ect or (updat eSquar ePegsCheckbox:)

name: VRSquar ePegsVal ueChangedNoti ficati on object:[self
nmySettings]];

[[NSNoti ficati onCenter defaultCenter] addOoserver:self
sel ector: @el ect or (updat eRoundPegsCheckbox:)

name: VRRoundPegsVal ueChangedNoti fication object:[self
nmySettings]];

f. Action method. Next, you must add action methods that will be triggered when the user checks
or unchecks any of the new controls, in order to update the data variables on the model of Recipe
1, Step 3.6. Again, because the files already exist, you cannot create stubs for these action
methods in Interface Builder, as you did for the my Checkbox action method in Recipe 1, Sep
2.6.1, for fear that the Create Files... command will overwrite your code files. In the header file

MyW ndowCont r ol | er . h, after the existing myCheckboxAct i on: method at the end,
add the following:

/'l Pegs

- (I BAction)triangl ePegsAction: (id)sender;
- (I BActi on) squar ePegsActi on: (i d)sender;

- (I BActi on) roundPegsActi on: (i d)sender;

In the source file MW ndowCont r ol | er . m define these action methods, after the existing
myCheckboxAct i on: method at the end, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (10 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

/'l Pegs

- (IBAction)triangl ePegsAction: (id)sender {
[[sel f nmySettings] setTriangl ePegsVal ue: ([sender
state] == NSOnState)];
i f ([sender state] == NSOnState) {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set Tri angl e Pegs",
@ Name of undo/redo nmenu item after Triangl e checkbox
control was set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@d ear Triangle
Pegs", @ Nane of undo/redo nenu item after Triangle
checkbox control was cleared")];

}
}
- (I BActi on) squar ePegsAction: (i d)sender {

[[sel f nmySettings] setSquarePegsVal ue: ([sender
state] == NSOnState)];

I f ([sender state] == NSOnState) {
[[[sel f docunment] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set Square Pegs",
@ Nanme of undo/redo nenu item after Square checkbox
control was set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ C ear Square Pegs",
@ Nanme of undo/redo nenu item after Square checkbox
control was cleared")];

}
}
- (I BActi on)roundPegsActi on: (i d)sender {

[[sel f nySettings] setRoundPegsVal ue: ([sender
state] == NSOnState)];

I f ([sender state] == NSOnState) {
[[[sel f docunent] undoManager]
set Acti onName: NSLocal i zedStri ng(@ Set Round Pegs",
@ Nanme of undo/redo nenu item after Round checkbox
control was set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ d ear Round Pegs",
@ Nane of undo/redo nenu item after Round checkbox

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (11 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

control was cleared")];

}
}

Notice that you have not implemented an action method for the Select All checkbox. Y ou will
defer this, too, to instruction 3. It will require more careful thought, because it must change the
state of all three of the new data variables in combination.

g. Localizable.strings. When you add user controls you generally also add action methods, and
action methods generally name undo and redo menu items. These are strings that must be
localizable. So don't forget to update the Local i zabl e. stri ngs file by adding all of the
localizable strings used here (" Set Triangle Pegs' and so on), along with their comments. Follow
the model of the localized strings you added to the filein Recipe 1, Step 5.2 for the Checkbox

control.

h. Initialization. In Recipe 1, Sep 4.1, you initialized the value of the myCheckboxVal ue
variableto YES. Just to assist in testing, you will now set the value of thet ri angl esVal ue
variableto YES, aswell. You will not initialize the other new data variables, and Objective-C
will therefore initialize them to the default value NO. Some programmers prefer to initialize
valuesto 0 or equivaent explicitly, for the sake of clarity. Y ou won't do that here because you
can in fact rely on Objective-C to do this for you, and in any event you will implement afull-
blown preferences system in alater Recipe.

In the sourcefile MySet t i ngs. m add thislinetothei ni t Wt hDocunent : method, after
theinitialization of myCheckboxVal ue:

[sel f set Tri angl ePegsVal ue: YES] ;

There is something new you can do in this connection. Return to Interface Builder, select the
Triangle checkbox and, in the Options area of the NSButton Info pal ette's Attributes pane, check
the Selected checkbox. A check will appear in the Triangle switch. Now, when the application
launches and a document opens, the Triangle checkbox will appear in its default on state without
delay or flicker because the nib file and the default data value are the same. Aslong asyou'rein
Interface Builder, you might as well do the same with the Checkbox switch from Recipe 1, since
itisasoinitialized to YES.

i. Data storage. You must attend to persistent storage of the new data variables. Thanksto the
architecture you have set up for thisin MySettings, the task is extremely easy. These are dll
Boolean values, and your code is essentially identical to that used to save and load the Boolean
value of the myCheckBoxVal ue variablein Recipe 1, Sep 4.2.3.

At the end of this Step, however, you will return to this code and improveit. To preview the
change, notice that the Boolean values for these variables are saved asintegers: 1 for YES and O
for NO. In the event you ever examine Vermont Recipes documents using a utility that can read

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (12 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

property lists, it may be difficult to distinguish actual integer valuesin the file (which may have
values much higher than 1 or 0) from Booleans masquerading as integers. In instruction 7.,
below, you will learn aremarkably convenient way to save Booleans as " YES" or "NO" strings,

improving the human readability of your documents. But, for the moment, go ahead and do it the
old way.

In the source file My Set t i ngs. m define these keysin the Keys and values for dictionary
subsection of the Persistent storage section:

/'l Pegs

static NSString *triangl ePegsVal ueKey =
@ Tri angl ePegsVal ue";

static NSString *squarePegsVal ueKey =

@ Squar ePegsVal ue";

static NSString *roundPegsVal uekKey =

@ RoundPegsVal ue";

Immediately after that, add these lines at the end of theconvert ToDi cti onary: method:

/'l Pegs

[dictionary setCbject:[NSString
stringWthFormat: @ %", triangl ePegsVal ue]
f or Key: tri angl ePegsVal ueKey] ;

[dictionary setCbject:[NSString
stringWthFormat: @ %", squarePegsVal ue]

f or Key: squar ePegsVal ueKey] ;

[dictionary set(Cbject:[NSString
stringWthFormat: @ %", roundPegsVal ue]

f or Key: r oundPegsVal ueKey] ;

And add these lines near the end of ther est or eFr onDi cti onary: method. Take careto
place them inside the bracketing callsto[[sel f undoManager]

di sabl eUndoRegi stration] and[[sel f undoManager]

enabl eUndoRegi stration]:

/'l Pegs

[sel f setTriangl ePegsVal ue: [[dictionary

obj ect For Key: tri angl ePegsVal ueKey] i ntVal ue]];
[sel f set Squar ePegsVal ue: [[di ctionary

obj ect For Key: squar ePegsVal ueKey] i nt Val ue]];

[sel f set RoundPegsVal ue: [[dictionary

obj ect For Key: roundPegsVal ueKey] i ntVal ue]];

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (13 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

J. GUI update method invocation. Finally, add callsto the user control update methods to the
window controller, so that the controls will be drawn to correctly reflect the data when the
document is created or opened. In MyW ndowCont r ol | er . m add the following calls at the
end of theupdat eW ndow method:

/'l Pegs

[sel f updat eTri angl ePegsCheckbox: nil];
[sel f updat eSquar ePegsCheckbox: nil];

[sel f updat eRoundPegsCheckbox: nil];

Y ou will have to come back to these two methods in a moment to update the
al | PegsCheckbox contral, too.

3. You have left until the end the most interesting parts of this Step, implementing the method to update a
mixed-state checkbox and implementing its action method. Y ou will tackle the action method first,
becauseitis easier.

In the header file MyW ndowCont r ol | er . h, declare the action method as follows, at the end of the
file:

- (I BAction)all PegsAction: (id)sender;
Then, in the source file MW ndowCont r ol | er . m defineit at the end of thefile, asfollows:

- (I'BAction)all PegsAction: (id)sender {
I nt newSt at e;

I f ([sender state] == NSM xedState) {
[sender set State: NSOnSt at e] ;
}

newSt ate = [sender state];

[[sel f nmySettings] setTriangl ePegsVal ue: newSt at e]j ;
[[sel f nmySettings] setSquarePegsVal ue: newst at e] ;
[[sel f nmySettings] setRoundPegsVal ue: newSt at €] ;

If (newState == NSOnState) {
[[[sel f docunment] undoManager]
set Acti onNane: NSLocal i zedString(@ Set Al Pegs", @ Nane of
undo/redo nmenu itemafter Select Al checkbox control was
set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedString(@C ear Al Pegs", @ Nane

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (14 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

of undo/redo nenu item after Sel ect Al checkbox control
was cleared")];

}
}

There are some subtleties here. When a user clicks a control, Cocoa updates the control's state before
invoking its action method. Thus, when the action method is called, it has access to the new state of the
control (sender). In the case of a mixed-state checkbox, the default progression of states as the user
clicksthe control repeatedly isfrom NSOnSt at e to NSOF f St at e to NSM xedSt at e then back to
NSOnSt at e, and so on. While you want this checkbox to be able to display the mixed state when you
click other associated checkboxes so as to |eave some on and some off, it makes no senseto alow the
user to select the mixed state by clicking on the mixed-state checkbox. Therefore, this action method
first reads the new state of the control, then forcesit to NSOnSt at e if its new state is found to be
NSM xedSt at e.

The action method then saves the control's new (possibly altered) state in the newSt at e local variable,
in order to use it to set the new value of al three of the other switchesto match. A variableis prudent to
preserve the new state, because the actual state of the switch may change in response to the notification
which each of the other three checkboxes issues in turn when its state is changed by this action method.
The details of this are discussed in instruction 4, below.

When the user clickstheal | PegsCheckbox control, therefore, the action method tells the model
object to set the three associated data variables, t r i angl ePegsVal ue, squar ePegsVal ue and
r oundPegsVal ue, to match the new on or off state of the control, all at once. Each of thethree set ...
methods invoked here automatically sends a notification that its associated data val ue has changed, and
the corresponding checkbox view updaters are already registered to receive those notifications. They
will therefore update the three controls' visible states automatically. The Undo/Redo menu item will
read either "Set All Pegs' or "Clear All Pegs," as appropriate. Note that the last point confirms the
wisdom of your decision in Recipe 1, Sep 5.2 to follow Apple's recommendation that you set the name
of the Undo/Redo menu item in the action method instead of the set ...accessor method; if you did this
inthe set ... method, instead, the view would not have been updated here.

Before you go on, don't forget to add two new strings from this action method to the
Local i zabl e. st ri ngs file, on the model of those you added in instruction 2.g., above.

4. Now for the update method.

a. Designing a generic method to update the appearance of a mixed-state control issimple, so you
will do that first.

In the header file MyW ndowCont r ol | er . h, declare the generic method as follows after
updat eCheckbox: :

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (15 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

- (voi d) updat eM xedCheckbox: (NSButton *)contr ol
setting: (int)val ue;

In the source file MyW ndowCont r ol | er . m define the generic method as follows after
updat eCheckbox: :

- (voi d) updat eM xedCheckbox: (NSButton *)contr ol
setting: (int)value {
If (value !'= [control state]) {
[control setState:val uej;

}

Thisis so simple because theval ue passed intheset t i ng parameter will always be one of
NSOnSt at e, NSO f St at e, or NSM xedSt at e or their integer equivalents (O for
NSO f St at e, positive for NSOnSt at e, and negative for NSM xedSt at e).

b. The implementation of the specific method to update this particular mixed-state checkbox is
more complex. It must get the values of the three associated data variables, then set the control's
visible state to one of three values depending on whether all are YES, al are NO, or some are
YES and others NO. Y ou will obtain the desired state in a separate utility method, because this
information has to be gathered in more than one place.

In the header file MyW ndowCont r ol | er . h, declare the utility method as follows, after
updat eRoundPegsCheckbox: at the end of the Specific view updaters section:

- (int)want Al | PegsCheckboxSt at e;

In the source file MW ndowCont r ol | er . m define the utility method as follows after
updat eRoundPegsCheckbox: attheend of the Speci fi c vi ew updat er s section:

- (i nt)want Al | PegsCheckboxState {
if ([[self nySettings] triangl ePegsVal ue] == YES
&% [[sel f nySettings] squarePegsVal ue] == YES &&
[[sel f nySettings] roundPegsVal ue] == YES) {
return NSOnSt at e;

}
else if ([[self nySettings] triangl ePegsVal ue] ==
NO && [[sel f nySettings] squarePegsVal ue] == NO &&
[[sel f nmySettings] roundPegsVal ue] == NO ({
return NSO f St at e;
}

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (16 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

el se {
return NSM xedSt at e;
}

c. Now you are ready to write the specific updater method. In the header file
MyW ndowCont r ol | er . h, declare the specific method as follows after
want Al | PegsCheckboxSt at e:

- (voi d) updat eAl | PegsCheckbox: (NSNot i fi cati on
*)notification;

In the source file MyW ndowCont r ol | er . m define the specific method as follows after
want Al | PegsCheckboxSt at e:

- (voi d) updat eAl | PegsCheckbox: (NSNoti fi cation
*Ynotification {

[sel f updat eM xedCheckbox: [sel f al | PegsCheckbox]
setting:[self want Al | PegsCheckboxState]];

}

d. You now face atough question: How doesthe updat eAl | PegsCheckbox: method get
invoked? The answer is simple, when you think it through. The Select All switch must
potentially be updated to reflect the state of the three data values as a group whenever any one of
them is changed. Y ou have already provided for notifications to be broadcast whenever any one
of them is changed. Therefore, a straightforward solution is to have the
updat eAl | PegsCheckbox: method respond to al of these notifications. To do this, the
updat eAl | PegsCheckbox: method must be registered to receive notifications from any of
them. It is permissible to have more than one method in a class receive the same notification. In
the source file MW ndowCont r ol | er . m add the following linesto the
regi sterNotificati onCbservers method, following the other notification
registrations:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (17 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

[[NSNoti ficationCenter defaultCenter] addObserver: self
sel ector: @el ect or (updat eAl | PegsCheckbox:)

nane: VRTr i angl ePegsVal ueChangedNoti fi cati on
object:[self nmySettings]];

[[NSNoti ficati onCenter defaultCenter] addOoserver:self
sel ector: @el ect or (updat eAl | PegsCheckbox:)

name: VRSquar ePegsVal ueChangedNoti fi cati on obj ect:[self
nmySettings]];

[[NSNoti ficati onCenter defaultCenter] addOobserver:self
sel ect or: @el ect or (updat eAl | PegsCheckbox:)

name: VRRoundPegsVal ueChangedNot i fi cati on object:[self
mySettings]];

e. Thissolution, however, raises a new issue when the user checks or unchecks the mixed-state
switch itself. In this case, theal | PegsAct i on: action method invokes all three of the data
accessor methods in order to change their values. An issue arises because the three accessor
methods in turn post three separate notifications that their values have changed, so that the
visible states of the three controls will update. Unfortunately, the
updat eAl | PegsCheckbox: notification method also executes three times in succession
because it, too, is observing these notifications. It doesn't need to be called at all in this case,
because the mixed-state switch was updated by Cocoa when the user clicked on it. These three
redundant calls do not cause a significant delay in Vermont Recipes, where only three accessor
methods are invoked, but a better solution might be required if alarger number of user controls
were at issue. You should fix thisissue now, so it doesn't come back to bite you later if you
revise this part of the interface.

The smplest solution is to create a state variable in MyWindowController and test it in the
updat eAl | PegsCheckbox: notification method. It can be areusable variable, availableto
any routine, liketheal | PegsAct i on: method, that controls the state of other checkboxesin a
group. In outline, thisis the strategy: Name the state variable cont r ol Updat i ngDi sabl ed.
Intheal | PegsActi on: action method, call adi sabl eCont r ol Updat i ng: method at
the beginning to temporarily disable processing of the notification, and call its sister method
enabl eCont r ol Updat i ng at the end of the action method to reenable processing of the
notification. The notification will still be broadcast so that the other three checkboxes in the
group can update, but when the notification is received by the updat eAl | PegsCheckbox:
notification method, nothing will happen.

Some programmers will be quite uncomfortable with the use of a state variable in the window
controller for this purpose, but there is no obvious way to avoid it here. The notifications must be
posted by the data accessor methods so that their associated controls will be updated, and the

al | PegsCheckbox updater must be registered as an observer of that notification to update
itself in cases when the user clicked on one of the other checkboxes in the group. Cocoa does not
provide a built-in means to suspend registration of notification observers on a per-selector basis,
S0 you have to resort to a state variable to jury-rig your own routine to disable the effect of the
notification on this one selector temporarily. It may be a good ideato mark this section to be

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (18 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

revisited later in case better ideas come to mind.

In the header file MyW ndowCont r ol | er . h, declare the state variable after the existing outlet
declarations:

NSControl *control Updati ngDi sabl ed,;

Thisvariableistyped to hold an NSCont r ol object, so that any method testing its value can
determine whether a specific user control's updating has been disabled. A ni | value will
indicate that no control's updating is currently disabled. The variable need not be initialized
explicitly, because Objective-C will initialize it to ni | , which should be the default value.

Also declare its accessor methods in the header file MyW ndowCont r ol | er . h, at the end of
the Accessor methods and conveniences section:

- (voi d)set Cont rol Updati ngDi sabl ed: (NSControl *)val ue;
- (NSControl *)control Updati ngDi sabl ed;

In the source file MyW ndowCont r ol | er . m define the accessor methods at the end of the
Accessor net hods and conveni ences section:

- (voi d) set Cont rol Updat i nghi sabl ed: (NSControl *)val ue
{

}

- (NSControl *)control Updati ngD sabl ed {
return control Updati ngDi sabl ed,;

contr ol Updat i nghi sabl ed = val ue;

Now, in the header file MW ndowCont r ol | er . h, declaredi sabl eCont r ol Updat i ng:
and enabl eCont r ol Updat i ng, the methods that will be invoked in one or more action
methods, as shown below, at thetop of thel nt er f ace managenent section. You create and
use these two additional methods in case a better way to disable and enable control updating is
found later. If so, you will be able to redefine these methods and eliminate the state variable and
Its accessors.

/[l View update utilities

- (voi d)di sabl eContr ol Updati ng: (NSControl *)control;
- (voi d) enabl eCont r ol Updat i ng;

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (19 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

Define these two methodsin MyW ndowCont r ol | er . m asfollows:

/1 View update utilities

(voi d) di sabl eControl Updati ng: (NSControl *)control {
[sel f set Control Updati ngD sabl ed: control];

(voi d) enabl eCont r ol Updati ng {
[sel f set Control Updati ngDi sabl ed: nil];

Intheal | PegsActi on: action method in MyW ndowCont r ol | er . m invoke these two
methods to bracket the calls to the data accessor methods for the other three checkboxesin the
group, so that this section of the action method reads as follows:

[sel f di sabl eControl Updati ng: sender] ;

[[sel f nySettings] setTriangl ePegsVal ue: newSt at €] ;
[[sel f nmySettings] setSquarePegsVal ue: newst at e] ;
[[sel f nmySettings] setRoundPegsVal ue: newsSt at €] ;

[sel f enabl eContr ol Updati ng];

Finaly, rewritetheupdat eAl | PegsCheckbox: notification method in
MyW ndowCont r ol | er . mto test the state of the new state variable, like this:

- (voi d) updat eAl | PegsCheckbox: (NSNoti fi cati on
*Ynotification {
if ([self control Updati ngDi sabled] !'= [self
al | PegsCheckbox]) {
[sel f updat eM xedCheckbox: [sel f
al | PegsCheckbox] setting:[self
want Al | PegsCheckboxSt at e]] ;

}
}

5. The graphical user interface must be updated when a document is created or opened. As noted in
instruction 2.j., above, you must therefore update the visible state of the al | PegsCheckbox control.
In MW ndowCont r ol | er . m add the following call at the end of the updat eW ndow method:

[sel f updat eAl | PegsCheckbox: nil];

6. Inaddition, you must set up the al | PegsCheckbox control to serve as a mixed-state checkbox. By

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (20 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

default, checkboxes are two-state; in response to an attempt to set the state of a two-state checkbox to
the mixed state, it displays as checked, which is not what you want here. Y ou will set up the

al | PegsCheckbox control as a mixed-state checkbox inthewi ndowDi dLoad method instead of
the window controller'si ni t method, because you can't be sure the checkbox is ready to be set up at
initialization time. Add the following line just after the call to super inthewi ndowbi dLoad method
of MW ndowControl | er. m

[[sel f al | PegsCheckbox] setAl |l owsM xedSt at e: YES] ;

7. Thereisone other thing you should do here, in anticipation of adding a number of additional user
controls as the Vermont Recipes application grows in size and functionality. Many of the controlsin
this or any other application are used to set Boolean values, and those Boolean values need to be saved
and retrieved from persistent storage. Initially, you wrote your storage routines so that they save
Booleans as integers. As previewed in instruction 2.i, above, however, it may be more convenient to
save them as human-readable "YES" and "NO' strings. This requires changing the
convert ToDi ctionary: andrest oreFronDi cti onary: methodsin MySettings so that they
work with strings representing Boolean values.

While this could be easily enough done by changing the code in those two methods, you will use a
much cleverer and ultimately more efficient technique here, implementing an Objective-C category.

Y ou will create anew header file and a new source file declaring the category VRStringUtilities, which
will add two new methods to Cocoa's built-in NSString class, one of them a class method that returns an
NSString object equivalent to a Boolean value passed to it as a parameter, and the other an instance
method that returns a C Boolean value equivalent to its string value. Once this category is available,
your MySettings class can import it and call the two new methods as if they were built-in NSString
methods.

A note about categories

Categories are a powerful feature of the Objective-C language. Categories allow you to
extend and enhance the functionality of any other class, even if you don't have access to
its source code, by adding or overriding methods already implemented in the class.
When all you want to do is add a few methods to an existing class, categories may be a
good substitute for subclassing the original class. New methods implemented in a
category become available to all classes that import the category, and they are
indistinguishable at run time from methods implemented in the original class. Y ou can
add both class methods and instance methods in a category.

Categories are often declared and defined within header and source files for other
custom classes, usually because the new methods in the category relate to the classin
whose filesit is declared. Multiple categories can even be declared on the original class
simply as a device to break the class into convenient topical sections. Categories can
also be used to break a single classinto separate files to make it easier to manage; thisis
particularly convenient for managing alarge, complex class.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (21 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

Y ou can also declare a category in afile of its own. For example, the category on
NSString that you will create here is declared in separate header and source files, which
could serve as the beginnings of areusable custom string library for your private use.

a. First, you must create the two new files. Y ou have done this before severa times, by now, so the
details needn't be belabored. In summary, choose File > New File... in Project Builder to create
the source and header files for the new category, and name them
NSString+VRStringUtilities.handNSString+VRStringUtilities. m
respectively.

b. These are rather specialized files, so it might be useful to create a subgroup called " Categories'
in the Groups & Files pane in the project window to hold these and any other categories you
might create. Select the Classes group, then choose Project > New Group. A new folder icon
appears nested under the Classes folder icon. Name the new subgroup Cat egor i es, then drag
the two new filesinto it (the actual fileswill remain at the root level of your project folder in the
Finder).

C. INNSString+VRStringUtilities. h, makesuretheimport directive imports
<Cocoa/ Cocoa. h>.

d. Theinterface declaration should be changedtoread @ nt er f ace NSStri ng
(VRStringUtilities).Thisspecifiesthat you have created the category VRStringUtilities
adding functionality to the NSString class. Y ou cannot declare new instance variablesin a
category, so there are no curly braces.

e. Declare the two new NSString methods, following the model of a number of existing NSString
methods, as shown below. Notice that the first is a class method, like other NSString
stringWth. .. methods, asdenoted by the leading plus sign.

+ (id)stringWthBool : (BOCL) val ue;
- (BOQL) bool Val ue;

f. INNSString+VRStringUtilities. mchangetheimplementation declaration to read
@ npl enentation NSString (VRStringUtilities).

g. Define the two new NSString methods as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (22 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

+ (id)stringWthBool : (BOCOL) val ue {
return [NSString stringWthString: (value) ? @ YES"

: @NO'[;
}
- (BOQL) bool Vval ue {
return ([self isEqual ToString: @VYES']) ? YES : NO
}

h. Itisthat easy to add functionality to any existing class, even without having accessto its source
code. This new NSString functionality will be available to you everywhere in Vermont Recipes
that you choose to import the category. Here, you want to use the new methods in MySettings, so
add the following line to the source file My Set t i ngs. mafter the existing import statements:

#inmport "NSString+VRStringUtilities.h"

i. Now all that remainsis to use the new methods. In MySet t i ngs. m return to the
convert ToDi cti onary: method and replace the statements you added in instruction 2.i.,

above, with the following:

[dictionary set(Cbject:[NSString stringWthBool:[self
tri angl ePegsVal ue]] forKey:triangl ePegsVal ueKey] ;
[dictionary set(Cbject:[NSString stringWthBool:[self
squar ePegsVal ue]] forKey: squar ePegsVal ueKey] ;
[dictionary setCbject:[NSString stringWthBool:[self
roundPegsVal ue]] forKey:roundPegsVal ueKey] ;

And replace the lines you added at the end of ther est or eFr onDi cti onary: method with
the following:

[sel f setTriangl ePegsVal ue:[[dictionary

obj ect For Key: tri angl ePegsVal ueKey] bool Val ue]];
[sel f set Squar ePegsVal ue: [[di ctionary

obj ect For Key: squar ePegsVal ueKey] bool Val ue]];

[sel f set RoundPegsVal ue: [[dictionary

obj ect For Key: r oundPegsVal ueKey] bool Val ue]];

J. Asan exercise, change the statements that save and retrieve the ny CheckBoxVal ue variable
in the same way.

8. Before you can run the revised application, you must inform the nib file of the new outlets and actions
you have created in the code files, then connect them to the new checkboxes.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (23 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 2, Step 3

a. InInterface Builder, select the Classes tab in the nib file window, then choose Classes > Read
File.... In theresulting dialog, select the two Vermont Recipes 2 header filesin which you have
created outlets or actions, MySet t i ngs. h and MyW ndowCont r ol | er. h, then click the
Parse button.

b. Select the Instances tab and Control-drag from the File's Owner icon to each of the four new
checkboxes in turn and, each time, click its outlet name then click the Connect button in the
Connections pane of the File's Owner Info palette.

c. Control drag from each of the four new checkboxes to the File's Owner icon in turn and, each
time, click the target in the left pane and the appropriate action in the right pane of the Outlets
area of the Connections pane of the NSButton Info palette, then click the Connect button.

9. Compile and run the application to test the interactions among the four new checkboxes. Explore how
undo and redo work, and make sure changes can be saved to disk, restored, and reverted properly.

Also, launch the PropertyListEditor application that comes with Cocoa, open afile saved by Vermont
Recipes, and verify that the Boolean values appear as"YES" and "NO' strings.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 2 > Step 3 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step03.html (24 of 24) [9/10/2001 8:46:26 AM]

Vermont Recipes—Recipe 1, Step 1

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 1 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application
Step 1: Create the project using Project Builder

Project Builder, commonly referred to as "PB," isthe Mac OS X Integrated Development Environment
(IDE) supplied by Apple for building Cocoa applications.

Documentation

The best place to begin reading about Project Builder is PBOverview, a very brief
welcome note on your computer at

/Devel oper/Documentati on/Rel easeNotes/PBOver view.html. (Later, you will also want to
read Project Builder Build Settings at

/Devel oper/Documentation/Rel easeNotes/PBBuUi | dSettings.html, but for now it isfar too
advanced to be of any useto you.)

Also read Project Builder Help in the Developer Help Center in the Apple Help Center,
and read the Project Builder Release Notes that appear automatically in the main pane
when you launch Project Builder. These and severa other documents relating to the use of
Project Builder are available directly from Project Builder's Help menu. Example projects
with which to practice your skills are found on your computer at

/Devel oper/Documentation/Devel oper Tool §/ProjectBuilder. Learning Cocoa (O'Rellly,
2001) contains extensive instruction on the use of Project Builder in the context of these
examples.

For afuller understanding of Project Builder, you should read the old NextStep/OpenStep
Tools & Techniques Book. It contains very detailed step-by-step instructions on the use of

http://www.stepwise.com/Articles/VermontRecipes/recipe0l1/recipe01_step01.html (1 of 3) [9/10/2001 8:46:32 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://www.oreilly.com/catalog/learncocoa/

Vermont Recipes—Recipe 1, Step 1

Project Builder that are still useful. The book is on your computer at
/Devel oper/Documentation/Cocoa/ DevEnvGui de/Book/ Tool s& TechniquesBook. pdf.

For general information about Project Builder and other devel oper tools, read Devel oper
Tools Overview at /Devel oper/Documentation/Devel oper Tools/DevTool sOverview.html. A
convenient roadmap appears at /Devel oper/Documentati on/Devel oper Tools/devtool s.html.

Thefirst step in developing a Cocoa application typically isto set up the project files.

1. Launch Project Builder.

2. Choose File> New Project.... The New Project Assistant opens, listing alarge number of
templates with which you can start to develop an application, bundle, framework, kernel extension,
or tool using the Cocoa, Java, or Carbon frameworks, or, for atool, C++.

3. Inthe New Project Assistant, click the Cocoa Document-based Application template, under the
Application heading, to select it. The Next button is enabled.

4. Click the Next button. The next panel of the New Project Assistant appears, in which you can name
the project and specify its location. The current user's home directory is provided as the default
location.

5. TypeVer nont Reci pes 1 intheProject Name text box.

6. Click the Set... button to set the project's location, which may be easier for you than typing it. A
sheet is presented in which you can navigate to any folder. Select the folder where you keep
development projects (your home Documents folder is preselected for you), and click Choose. The
sheet closes and the Finish button in the New Project Assistant is enabled.

7. Click the Finish button. The New Project Assistant closes and, after a pause, your project window
opensin Project Builder under the name Ver nont Reci pes 1. pbproj.

8. Click the disclosure triangle next to the Classes folder icon in the Groups & Files pane of the
project window, on the left, to expand it and see that the Classes topic holds two source files,
MyDocunent . h and MyDocunent . m Drag the border between the left and right panes to the
right to see the full file names, if necessary. These files were created for you by Project Builder.
They are templates containing code to get you started on your new Cocoa document-based
application.

9. To seethetext of the template header file, click MyDocunent . h onceto select it. The text of the
header file appearsin the main pane of the project window, if your Project Builder preferences
have been left at their default values.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step0l.html (2 of 3) [9/10/2001 8:46:32 AM]

Vermont Recipes—Recipe 1, Step 1

10. To seethetext of the template source file, double-click MyDocunent . m Thetext of the source
file appears in a new window. Opening separate windows by double-clicking the file name allows
you to view multiple files side-by-side and to drag text among them. If you like, you can set a
Project Builder preference so that source files always open in separate windows. Close the
MyDocunent . mwindow for now.

11. Click the disclosure triangle next to the Resources folder icon to see that it contains several items,
including one called MyDocunent . ni b. MyDocunent . ni b isthenib file you will work with
in Interface Builder in Sep 2 of this Recipe. Click the other disclosure triangles to see what they
contain. The mai n. mfilein Other Sources contains a standard C main function, which you will
rarely need to modify for a Cocoa application. The Frameworks group contains a link to the Cocoa
umbrellaframework and to the Foundation and AppKit frameworks; you may add other
frameworks hereif your application requires them. The Products group is where your built
application will reside, if your Project Builder preferences have been left at their default values.

12. Bring the Finder to the front and open the Ver nont Reci pes 1 folder to examine its contents.
Thisisthe standard folder structure created for you by the Project Builder Cocoa Document-based
Application template. In addition to the two MyDocument files and the mai n. mfile, you see an
Engl i sh. | proj folder where nib files and other localizable information is kept. Y ou also see
the project fileitself, Ver nont Reci pes 1. pbproj . Thisisactualy abundlie; you can
examine its constituent parts by choosing the contextual menu's Show Package Contents command.
Notice that the folder structure in the Finder bears no relationship to the folder structure in the
Groups & Files pane of the project window. The Groups & Files pane can be reorganized in any
way you find convenient, without moving any of the files or foldersin the Finder.

Y ou could rename My Docunent . h, MyDocunent . mand MyDocunent . ni b at this point, if you like.
However, the remainder of this Recipe refers to them by these names, so you will be able to follow aong

more easily if you leave them asthey are. If you want to rename them anyway, click on one of them in the
Groups & Files pane of the project window and choose Project > Rename to select its text for editing. You
must use a menu command to enable editing of group (folder) and file namesin the left pane of the project
window, because, as you learned in instruction 10, above, double-clicking opens the file in a new window.

Y ou will defer further setup of the project for now and turn directly to interface design.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe0l1_step0l.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 1 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step0l.html (3 of 3) [9/10/2001 8:46:32 AM]

Vermont Recipes—Recipe 1, Step 2.6

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.6 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder
2.6 Create outlets, actions, and connections

The application needs to know how the various objects and classes you have created relate to one another,
so that one object can send messages to another at run time. In this Step, you will create an "action” to be
invoked by your Checkbox user control; and you will create "outlets" in some of the objects to designate
other objects to which they can talk.

Start where you left off in Sep 2.5. Launch Interface Builder and open MyDocunent . ni b, if necessary.
2.6.1 Create an action

An action, asyou learned in Sep 2.1, can be viewed as a message sent by a user control to atarget object.

In Cocoa, the action is implemented as a method in the target object, which Cocoa will automatically
invoke when the user changes the control's state, for example, by clicking it. In this Step, you will create
an action method in MyWindowController to be invoked when the user clicks the Checkbox user control.

You learned in Sep 2.3 that the role of MyWindowController isto mediate between the data controlled by

its associated document and the user controlsin its associated window. Each user control in the main
document window will invoke an action method in MyWindowController when the user changes the state
of the control, so that MyWindowController can in turn tell the document to update its data structures to
reflect the user's action. The application knows where to find the proper action method because you will
wire them together using Interface Builder. At this point, you have only one interactive user control in the
main window, so only one action method need be implemented.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_06.html (1 of 5) [9/10/2001 8:46:38 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.6

1. Inthe MyDocunent . ni b window, select the Classes tab. An outlinelist view of all available
classes appears.

2. Scroll to the bottom of the list, and click MyWindowController once to select it. The line on which
MyWindowController appears is highlighted.

3. Click the action button in the second column of symbolsin the MyWindowController line (the
action button is the small circle with acrossin it, denoting the crosshairs of a scope aimed at a
target). The MyWindowController line expands to show two sublists, one for Outlets and one for
Actions. A built-in action is selected, showW ndow:. . Notice that the names of actions end with a
colon, indicating that they are Objective-C methods that take a single parameter. All action
methods take sender as aparameter, giving the target a means to identify which control sent the
action message.

4. Choose Classes > Add action. A new action appears in the Actions sublist, named nyAct i on: . Its
text is selected, ready to be edited.

5. Typetorenameit myCheckboxAct i on: . Include thetrailing colon indicating that thisisa
method. Hit the Enter key to accept the new name.

6. Bring the main document window to the front and choose the Buttons pane of the tab view, if
necessary, to show the Checkbox user control. Then hold down the Control key and drag from the
checkbox toward the MyDocunent . ni b window. While you drag, alineis drawn from the
checkbox and follows the moving mouse pointer. The MyDocunent . ni b window automatically
switches to the Instances pane as your drag extends over it. Let go of the mouse button over the
File's Owner icon in the MyDocunent . ni b window to complete the drag (drag to an edge of the
window, if ncessary, to scroll the File's Owner icon into view). The NSButton Info palette
automatically appears and comes to the front, with the Connections pane showing.

7. Click thet ar get outlet in the left column of the NSButton Info palette once to select it, if
necessary. Then click the myCheckboxAct i on: method once in the right column to select it.
The Connect button is enabled. Finally, click the Connect button at the bottom of the Info palette.
Y our new connection appears in the bottom pane of the Info palette.

Y ou will add code to the project in Step 3.5 and Sep 3.6 to complete your work to implement this action.

2.6.2 Create outlets and connections

Some of your application's objects need outlets to other objects, in order to be able to send messages to
them and obtain information from them. To finish wiring up the user action you created in Sep 2.6.1, for
example, you need an outlet in your main window's controller to its document, so that the window
controller can tell the document to alter the data it controls and, later, to retrieve the value of the data. And
you need an outlet from the window controller to the Checkbox user control in the main window, so the

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_06.html (2 of 5) [9/10/2001 8:46:38 AM]

Vermont Recipes—Recipe 1, Step 2.6

window controller can tell the control to alter its appearance to reflect the state of the document's data.
It turns out, however, that Cocoa has already done some of this work for you.
2.6.2.1 An outlet from the window controller to the document

In Sep 2.6.1, you created an action method, my CheckboxAct i on: , so that the Checkbox user control
can tell the file's owner, MyWindowController, when the user has changed the state of the control. When a
MyWindowController object receives such amessage at run time, it must be able in turn to tell its
associated document to change its data structures to reflect the user's action. The window controller must
also at times be able to obtain data from the document, in order to alter the user interface to correspond to
the state of the document and for other purposes. To do al this, MyWindowController must have away to
talk to MyDocument.

In fact, however, the window controller class already has a means to converse with its associated
document. When you examine the header files and documentation for the NSWindowController class, you
will find that it has a method, called docunent , which returns the window controller's associated
document object. Recall that a document object is created at run time whenever the user requests a new
document or opens an existing document. At the time of the document's creation, NSWindowController
automatically sets up this method for you.

Y ou will find that many Cocoa classes automatically provide such connections when you need them, so
that you need not create an explicit outlet yourself. The only way you can know whether you need to
create your own outlet isto become familiar with the Cocoa classes. A common beginner's error isto
create custom outlets without realizing that they are already built into the Cocoa framework.

2.6.2.2 An outlet from the window controller to a user control

To complete the network of actions and outlets involving the Checkbox user control, you must create an
outlet from the MyWindowController subclass to the control, so that the control can be told to change its
appearance when appropriate. This outlet is not provided in the NSWindowController superclass because
the Cocoa frameworks cannot know in advance that you would create this particular user control for your
application.

1. Inthe MyDocunent . ni b window, select the Classestab. An outlinelist view of all available
classes appears.

2. Scroll to the bottom of the list, and click MyWindowController to select it.

3. Click the outlet button in the second column of symbols on the MyWindowController line (the
outlet button isthe small circle with two dotsin it, denoting an electrical outlet). The
MyWindowController line expands to show two sublists, one for Outlets and one for Actions.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_06.html (3 of 5) [9/10/2001 8:46:38 AM]

Vermont Recipes—Recipe 1, Step 2.6

4. Choose Classes > Add outlet. A new outlet appears in the Outlets sublist, named "myOQutlet”. Its
text is selected, ready to be edited.

5. Typetorenameit myCheckbox and hit the Enter key. Notice that no colon is needed, because this
isnot amethod but an instance variable.

6. Inthe MyDocunent . ni b window, choose the Instances tab. Then hold down the Control key and
drag from the File's Owner icon to the Checkbox user control in the Buttons pane of the main
window's tab view. While you drag, aline is drawn from the File's Owner icon and follows the
moving mouse pointer. Let go of the mouse button over the Checkbox user control to complete the
drag. The File's Owner Info palette automatically appears and comes to the front, with the
Connections pane showing and the my Checkbox outlet selected. The Connect button is enabled.

7. Click the Connect button at the bottom of the Info palette. The new connection appearsin the
bottom area of the Info palette.

Y ou will add code to the project in Sep 3.4 to complete your work on this outlet.

2.6.3 Connect other outlets

Y ou will need to connect a number of additional outlets to permit various objectsto talk to one another.

Y ou decide what outlets and connections are needed by thinking out which objects must be able to control
or obtain information from other objects. If you forget something, you can create more actions, outlets,
and connections later. Here you will confirm or make several connections on built-in outlets.

1. MyWindowController already has a window outlet provided by Cocoa, so you don't need to create
it. It isalready connected to the Parent Window, too. To verify this, click in the Instances tab of the
MyDocunent . ni b window, select the File's Owner icon, click the window connection in the
bottom section of the Connections pane of the File's Owner Info palette, and see where the line
leads. Y ou made this connection in Step 2.1.

2. Control-drag to draw a connection from the Parent Window icon to the File's Owner icon, which
now represents the window controller. When you compl ete the drag, the Window Info palette
comes to the front. Thistime, select the existing del egat e outlet and click the Connect button.
This appoints MyWindowController the Parent Window's del egate, which will permit built-in
Cocoa window routines to delegate various tasks to MyWindowController objects at run time. Y ou
will see an example of delegation in use later, in Sep 5.1. Many AppKit classes have built-in

delegate outlets; you will connect them to other objects at your option, depending on whether you
want to take advantage of delegated functionality.

3. You should aso connect thei ni ti al Fi r st Responder outlet in the Parent Window, so that
the application will know, when a new window is opened, which one of its user controls has the
"focus' or is"key." Control-drag from the Parent Window icon in the MyDocunent . ni b window

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_06.html (4 of 5) [9/10/2001 8:46:38 AM]

Vermont Recipes—Recipe 1, Step 2.6

to the Checkbox user control in the Buttons tab view item of the main window, select
initial FirstResponder intheWindow Info palette, and click the Connect button.

4. Saveyour work in the nib file by choosing File > Save.

In the next Step, you will create the source files required to start programming the application.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe0l1_step02_06.html

Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.6 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_06.html (5 of 5) [9/10/2001 8:46:38 AM]

Vermont Recipes—Recipe 1, Step 2.7

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.7 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder

2.7 Create the source files

Y ou are now ready to generate source files. Y ou could instead continue working in Interface Builder to
add more user controls to the main window, and you could also use Interface Builder to create a user
interface and connections for DrawContentView and additional drawers and windows. However, for
didactic purposes, you will add additional controls later in source code using Project Builder, instead.

In this Step, you will use Interface Builder to generate source code for the MyWindowController subclass,
because that code does not already exist in any Project Builder template. Y ou will also generate source
code for MyDocument, even though the Cocoa Document-based A pplication template has already
provided starter code for that subclass, just to see what Interface Builder produces.

Eventually, when the code generation features of Interface Builder and Project Builder are fully integrated,
you will be able to use Interface Builder to merge new outlets and actions created in Interface Builder into
your existing Project Builder header and source files. Doing so will place stub declarations for the new
outlets and actions into the existing project source files, without overwriting existing code. However, if
you were to use Interface Builder's Classes > Create Files... command today, in Mac OS X 10.0, to create
MyDocument source files, you would risk overwriting the existing MyDocument files, losing all their
existing code. Y ou will therefore generate code for those filesin adifferent folder, in order to examine it.
Portions of code generated in this fashion could be cut to the Pasteboard and pasted into an existing source
file, if desired.

Start where you left off in Sep 2.6. Launch Interface Builder and open MyDocunent . ni b, if necessary.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_07.html (1 of 3) [9/10/2001 8:46:42 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.7

1. Inthe MyDocunent . ni b window, select the Classes tab. An outline list view of all available
classes appears.

2. Scroll to the bottom of the list and click MyWindowController to select it.

3. Choose Classes > Create Files.... A sheet opens, letting you select alocation in which to create the
files. Y ou also see two checkboxes in which to confirm that you want to create
MyW ndowCont rol | er. h and MyW ndowCont r ol | er . m and they are checked by default.
If the project is still open in Project Builder at this point, you also see a checkbox in the Insert into
targets areain which to confirm that the files should be inserted into the Ver nont Reci pes 1
target; normally, you would leave this checkbox checked, but for present purposes uncheck it if you
seeit. Leave the checkboxes for creating the two source files checked, click the Ver nont
Reci pes 1 folder to confirm that thisiswhere the files should be placed, and click the Choose
button. Asyou will seein instruction 6., below, the two new files are created in the Ver nont
Reci pes 1 folder.

4. Scroll to the upper part of the Classeslist in the MyDocunent . ni b window and click
MyDocument.

5. Choose Classes > Create Files... again. A sheet opens, letting you select alocation in which to
create the files, and checkboxes to confirm that you want to create MyDocunent . h and
MyDocunent . m In this case, however, you see that the Ver nont Reci pes 1 folder already
contains files named MyDocunent . h and MyDocunent . m where you created them earlier, and
you don't want to overwrite them.

Out of curiosity, however, it would be interesting to see what I nterface Builder generates. Uncheck
the Insert into Project Builder checkbox, use the navigation menu to select your home Docunent s
folder, and click the Choose button. (If an alert appears telling you that these files already exist, you
must have selected the Ver nont Reci pes 1 folder by mistake; cancel immediately to avoid
overwriting your files.) If al went well, use the Finder to navigate to your Docunent s folder,
where you find the new MyDocunent . h and MyDocunent . mfiles. Open them by double-
clicking them or by dragging them onto the Project Builder icon in the Dock. When they open in
Project Builder, you will see that these new files contain no code. Thisis because you created no
outlets or actions for the MyDocument class in Interface Builder. Using the Finder, drag both of
them to the trash. Be sure to leave the origina MyDocunent . h and MyDocunent . mfilesin the
Ver nont Reci pes 1 folder.

6. Using the Finder, navigate to the Ver nont Reci pes 1 folder. You will find the two new
MyWindowController files you just created. Open them. Y ou see that they are very ssmple, with
stubs for the action method and each of the outlets you created in Sep 2.6, but not much else. Don't

be discouraged; the nib file contains essential additional information behind the scenes that will
greatly simplify the work remaining.
In the next Step, you will finish merging the source files into the project.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_07.html (2 of 3) [9/10/2001 8:46:42 AM]

Vermont Recipes—Recipe 1, Step 2.7

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe01_step02_07.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.7 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_07.html (3 of 3) [9/10/2001 8:46:42 AM]

Vermont Recipes—Recipe 1, Step 2.8

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 2.8 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 2: Design and build the graphical user interface using Interface Builder

2.8 Merge the source files into the project

Assuming you did not check any project entry in the Insert into targets panein instruction 3. of Sep 2.7,
you now have to merge the two new MyWindowController files into the project.

Start where you left off in Sep 2.7. Launch Project Builder, if necessary.

1. To merge MyWindowController into the project:

a. Inthe Finder, confirm that MyW ndowCont r ol | er. h and MyW ndowControl | er. m
were saved inthe main Ver nont Reci pes 1 folder when you generated them in
Interface Builder. If you saved them somewhere else in the previous Step, drag them into the
folder now. It isimportant to place filesin their proper locationsin the Finder before adding
them to the project.

b. In Project Builder, choose Project > Add Files.... A sheet opensin which you can select
filesto add.

c. Inthe sheet, Navigate to the Ver nont Reci pes 1 folder. Select
MyW ndowCont r ol | er. h and MyW ndowCont r ol | er . m holding down the Shift
key to select both at once. Click the Open button. Another sheet opens, in which you can set
options.

d. Inthe options sheet, you normally check the Copy into group's folder (if needed) checkbox

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_08.html (1 of 2) [9/10/2001 8:46:46 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 2.8

to ensure that the files are moved into the project folder in the Finder. Y ou have already
done thismanually in Step 1.a., above, but it does no harm to get in the habit of checking
this checkbox. The setting of the other controls in the options sheet doesn't matter at this
stage; leave them as you find them. Click the Add button. Both files are added to the | eft
pane of the project window, entitled "Groups & Files."

e. Inthe project window, drag both filesinto the Classes folder icon in the Groups & Files
pane of the project window, if necessary. This does not move the files on disk or in the
Finder, but it does organize the Groups & Files pane according to the conventions of Cocoa
development. Y ou are free to rearrange the Groups & Files panein any way that you find
convenient.

You are just about ready to begin coding the application.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l_step02_08.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 2.8 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step02_08.html (2 of 2) [9/10/2001 8:46:46 AM]

Vermont Recipes—Recipe 1, Step 3.1

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 3.1 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 3: Set up the project source files using Project Builder

3.1 Set up the project target and resources

At some point, you must set up the application's Finder-related information and other settings, such asits
CFBundl ePackageType, CFBundl eSi gnat ur e, and CFBundl eDocunent Types. Itisagood
idea to get these out of the way up front.

Documentation

The Software Configuration chapter of Inside Mac OS X: System Overview in

/Devel oper/Documentati on/SystemOver view/SystemOver view/index.html explains the
function and format of thel nf 0. pl i st and| nf oPl i st. stri ngs filesfoundin
every application package and other bundles. It includes an explanation of each item in
these files. Also read the Bundles and Application Packaging chapters for information
about localizable strings and other resources. Be sure to check the Cocoa documentation
web site for the latest version of System Overview.

The Info Property List Release Note in

/Devel oper/Documentati on/Rel easeNotes/| nfoPlist.html contains important information
about new features of the Info.plist filein Mac OS X 10.0. Also search on "Info.plist" or
any of theindividual itemsin it in the Developer Help Center in the Apple Help Center for
additional information.

For more information on localizable strings, read the I nternationalization chapter of

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_01.html (1 of 5) [9/10/2001 8:46:52 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 3.1

System Overview.

Launch Project Builder and open the project, if necessary.
3.1.1 Set up the Application Settings

The settings you will provide in the Application Settings pane of the Targets tab of the project window
will becomethel nf o. pl i st filein the application's bundle when you use Project Builder to build your
application. In Mac OS X 10.0, Project Builder creates the application as a so-called "new-style" bundle,
automatically saving thel nf 0. pl i st filein XML property list format. In earlier versions, the
application was saved as a so-called "versioned" bundle; the | nf 0. pl i st filewas saved as a plain text
property list, and some of the information was also saved inaver si ons. pl i st fileinthe application
bundle. Thel nf 0. pl i st fileisused by Cocoafor avariety of purposes, including providing the short
application name that appears in the menu bar when the application is running; telling the system where
the application and document icons are located; providing the version, copyright and other strings used in
the Get Info dialog, the about box, and other dialogs and alerts; and providing recognized document types
used to tell the desktop to open the application when the user double-clicks one of the application’s
document icons. Project Builder now also places the type and creator code for your application into afile
named Pkgl nf o, which is used by the Finder to cache this information for performance reasons.

1. Inthe project window, click the Targets tab. The Targets pane slidesinto view in the left pane.

2. Click Vermont Recipes 1 in the Targets pane, on the left. The main pane of the project window
shows several tabs.

3. Select the Application Settings tab and click the Expert button. Y ou will change only some of the
default settings found here. (The Simple button is |eft as an exercise for the reader; note that there
are Help tags associated with some of the fields to help you identify their purpose, and the Setting
Bundle Options subtopic in the Target Options topic in Project Builder Help contains additional
information).

4. Click the disclosure triangles to expand CFBundl eDocunent Types, then expand element O,
then expand CFBundl eTypeExt ensi ons and CFBundl eTypeOSTypes.

a. For CFBundl eTypeExt ensi ons 0, double-click "????" to select the field for editing,
then replace its contents with your document's four-character type. For Vermont Recipes 1,
type VRA1 ("VR" stands for Vermont Recipes and "d" stands for document, in the locution
we use here).

b. For CFBundl eTypeNane, replace "DocumentType" with Ver nont Reci pes 1
Docunent For mat . Later, in Step 4.2.1, you will code a variable using this same string.

c. For CFBundl eTypeQOSTypes O, replace "????" with VRd 1.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_01.html (2 of 5) [9/10/2001 8:46:52 AM]

Vermont Recipes—Recipe 1, Step 3.1

d. Leavetherest of the CFBundl eDocunent Types asyou find them. They are correct for
the application you are building.

5. Change CFBundl eSi gnat ur e from "??2??" to your application's creator. For Vermont Recipes
1, type VRal ("a" stands for application). Note that this has not been registered with Apple
Computer. For areal application, you should register your creator with Apple.

6. Change CFBundl eVer si onto1. 0. 0d1, sincethisisthefirst development build of what will
become version 1.0.0 of the application. Cocoa knows how to deal with version strings using this
traditional Macintosh versioning format.

7. Click the New Sibling button. Type over the New Item name to create an item named
CFBundl el dent i fi er. Click on empty space in the Application Settings pane to let the new
item move to its alphabetical place. Double-click in the Vaue column opposite the new item to
select it for editing, then typecom st epwi se. Ver nont Reci pes. Ver nont Reci pesl.
Thisisthe domain for the application, which Mac OS X uses for various purposes that you will
learn about later, including locating the application's preference files.

8. All the other settings are correct for now, so click the Files tab of the project window, and choose
File > Save.

3.1.2 Set up InfoPlist.strings

Thel nf oPl i st. stri ngs fileprovides English-language localizations for some of the settingsin the

I nf o. plist filethat you just finished setting up. Localization files are saved as plain text property lists,
with comments to help localization contractors identify the use and purpose of the strings. Some of these
strings are used, for example, in the application’s about box.

1. Click the Filestab in the project window to return to the Groups & Files pane. Expand the
Resources group in the Groups & Filespaneand click | nf oPl i st . stri ngs. Severa settings
appear in the main pane of the project window, most of which need to be edited.

a. Change CFBundl eNane to Ver nont Reci pes 1 ifitisnot aready set to that string.
b. Change CFBundl eShort Ver si onStri ngtoVernont Recipes 1 1.0.0d1.

c. Change CFBundl eGet I nfoStri ngtoVer nont Recipes 1 1.0.0d1,
Copyri ght \UODOA9 2000-01 Bill Cheesenan..

"\UOOA9" generates the standard © symbol.

d. Change NSHunanReadabl eCopyri ght to Copyri ght \ UODOA9 2000, Bill
Cheeseman. All rights reserved..

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_01.html (3 of 5) [9/10/2001 8:46:52 AM]

Vermont Recipes—Recipe 1, Step 3.1

e. Thereisanew | nf oPl i st. stri ngs requirement introduced in Mac OS X 10.0,
described in the Info Property List Release Note referenced above. The
CFBundl eTypeNane entry you created for thel nf o. pl i st filein Step 3.1.1, above, is
now displayed by the Finder as the "Kind" string for documents. To ensure that an
appropriate string is displayed by the Finder for Vermont Recipes 1 documents, add this
entry at theend of | nf oPl i st. stri ngs:

"Ver nont Reci pes 1 Docunent Format" = "Vernont Recipes 1
docunent";

Note the quotation marks around the key on the left as well as the value on the right.

2. Choose File > Save.
3.1.3 Set up Credits.rtf

The contentsof Cr edi t s. rtf areshown inthe application’'s about window. Thisdidn't work in Mac OS
X Public Beta, but it was fixed for Mac OS X 10.0.

1. Click Credits.rtf inthe Groups & Files pane of the project window and make any changes
you like. To view the settingswe use, click Credi t s. rt f inthe Resour ces folder of the
downloadable project filesfor Vermont Recipes 1.

2. Choose File> Save.
3.1.4 Set up Localizable.strings

A Local i zabl e. stri ngs file should be added to the project for each localized or language-specific
version of the application. It contains key-value pairs specifying string values for any localizable string
used in the application, for example, for menu item names, button names and the like.
"Localizable.strings" is the conventional name for the file if you have only one. The application can
contain many similar files with other names and, by convention, the ".strings" extension. All . st ri ngs
filesfor agiven language belong in that language's. | pr oj folder. Thefiles take the form of plain text
property lists with comments to assist |ocalization contractors. Here, you will create a

Local i zabl e. stri ngs filefortheEngl i sh. | proj folder.

Specifying strings in localizable, or "internationalized,” form in your code is so easy that you should
awaysdo it. At any place in the application's code where you would normally usethe @t his is a
string" form to provide fixed user-viewabl e text, you should instead use the

NSLocal i zedSt ri ng() function, or, if you have. st ri ngs fileswith names other than
"Localizable.strings,” the NSLocal i zedSt ri ngFr omTabl e() function. These are convenience
functions defined in the NSBundle header in the Foundation framework, which call NSBundle's

| ocal i zedSt ri ngFor Key: val ue: t abl e: method on the application's main bundle. In the
NSLocal i zedSt ri ng() function, you pass two parameters specifying the key and a comment string

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_01.html (4 of 5) [9/10/2001 8:46:52 AM]

Vermont Recipes—Recipe 1, Step 3.1

explaining what you are doing. The comment is not used but exists only to force you to document your
code; it should be descriptive and should be repeated verbatim as a comment in the

Local i zabl e. stri ngs fileor similar file to assist your localization contractor. In the

NSLocal i zedSt ri ngFr omrabl e() function, you pass three parameters specifying the key, the
name of the. st ri ngs filein which the key and its paired value are found, and a comment string. For
examples of the use of the NSLocal i zedSt ri ng() function to name menu items and to compare
names of menu items, see Sep 5.2 and Sep 6.

Typically, when your application is turned over to localization contractors, they will add anew . | pr o]
folder for another language. Among other things, they will placein it acopy of the

Local i zabl e. stri ngs fileand any other . st ri ngs filesyou provide, using the same keys but
localized string values. They will also localize the application's nib files using Interface Builder, aswell as
provide localized images, sounds and perhaps other resources. The localization contractors will not have to
touch the application's code, because when you use these convenience functions, Cocoa automatically uses
theresourcesinthe. | pr oj folder corresponding to the language for which a particular computer is set

up.
1. Choose File> New File... in Project Builder.
2. Select "Empty File" at the top of the list and click the Next button.

3. Setthenameof thefiletoLocal i zabl e. stri ngs, setitslocationtothe Engl i sh. | proj
folder in the project folder, and click the Finish button.

4. Inthe Groups & Files pane, dragthenew Local i zabl e. st ri ngs item into the Resources
group, if necessary.

5. If you wish (thisis not required), click Local i zabl e. st ri ngs to bring the new, empty file
into the right pane, and typeaheading suchas/ * Engli sh strings for Vernont
Reci pes 1 */.From now on, whenever you insert the NSLocal i zedSt ri ng() function or
theNSLocal i zedSt ri ngFr onTabl e() function into your code, you must aso return to the
Local i zabl e. stri ngs fileand provide a suitable key-value pair and comment to match.

6. Choose File > Save.
In the next series of Steps, you will begin coding the application.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipeOl1_step03_01.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 3.1 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_01.html (5 of 5) [9/10/2001 8:46:52 AM]

Vermont Recipes—Recipe 1, Step 3.2

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 3.2 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application
Step 3: Set up the project source files using Project Builder

You arefinally ready to begin writing code. The application you will create in these Recipesis, as you
already know, a document-based application. If you have not already done so, you should now read some
background documentation on basic concepts.

Documentation

A good technical overview of what you have to do to create a document-based application
appears in the Document-Based Application Architecture section of the NSDocument class
reference document, available in the Cocoa section of the Developer Help Center in the
Apple Help Center.

Y ou should also read Application Design for Scripting, Documents, and Undo, |ocated on
your computer at

/Devel oper/Documentati on/Cocoa/ProgrammingTopics/AppDesign/AppDesign.html. It is
also available in PDF form in the same folder.

3.2 Import the Cocoa umbrella framework

Older versions of Interface Builder and Project Builder generated templates that imported the Application
Kit framework. However, Inside Mac OS X: System Overview recommends that Cocoa applications import
the Cocoa umbrella framework, instead. The Cocoa framework imports both AppKit and the Foundation
framework, and it may from version to version import other headers that may be required for Cocoa

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_02.html (1 of 2) [9/10/2001 8:46:56 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 3.2

development. For example, in Public Betait imported AppKi t Scri pti ng. h for AppleScript support.

The current versions of the developer tools import the Cocoa umbrella framework, so this Step is now only
of historical interest.

Launch Project Builder and open the project, if necessary.

1. Open each of the header filesin the Classes group in the Groups & Files pane of the project
window by clicking them in turn.

2. Ineach, if necessary, replacetheline#i nport <AppKi t/ AppKi t. h> with the following:

#i nport <Cocoa/ Cocoa. h>

Vermont Recipes

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l_step03_02.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 3.2 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_02.html (2 of 2) [9/10/2001 8:46:56 AM]

Vermont Recipes—Recipe 1, Step 3.3

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 3.3 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 3: Set up the project source files using Project Builder
3.3 Replace the window routines provided by the Project Builder template

The Cocoa Document-based Application template contemplates an application in which only one window
Is opened for each document. Accordingly, the first method in My Docunent . moverrides NSDocument's
wi ndowNi bNane method, which is designed to work with such an application.

However, the template includes a comment specifically advising to deletewi ndowNi bNanme and instead
override makeW ndowCont r ol | er s in an application like Vermont Recipes, which subclasses
NSWindowController and where each document can have more than one kind of window. In this Step,
you will do this.

The Cocoa documentation also makes clear that you need not implement

wi ndowCont rol | er Di dLoadNi b: , athough you can do so if there is something you want to do just
after the nib fileisloaded. Y ou don't need w ndowCont r ol | er Di dLoadN b: at this point, so you
will delete it for now.

Launch Project Builder and open the project, if necessary.

1. Click the source file MyDocunent . min the Groups & Files pane of the project window. The full
text of MyDocunent . mappears in the main pane.

2. Addthislineto MyDocunent . m after #i nport " MyDocunent. h":

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_03.html (1 of 6) [9/10/2001 8:47:03 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 3.3

#i nport " MyW ndowController.h"

Without this, the override of rakeW ndowcont r ol | er s ininstruction 4., below, would
generate compiler warnings because the compiler wouldn't see a declaration for that method.

3. Deletethefirst two methods from MyDocunent . m wi ndowNi bNanme and
wi ndowCont rol | er Di dLoadNi b: , which were generated by the Cocoa Document-based
Application template but aren't appropriate for the Vermont Recipes application.

4. Replace the deleted methods with the following:

/1 W ndow managenent

- (voi d) makeW ndowControl l ers {
MyW ndowControl |l er *controller =

[[MW ndowControl ler all ocWthZone:[self zone]] init];
[sel f addW ndowControl |l er:controller];
[control |l er rel ease];

Y ou do not need to declare this method in the header file MyDocunent . h, because it will not be
called explicitly from your code. It merely overrides a built-in NSDocument method that will be
invoked for you at the proper time by the Cocoa frameworks. Whether to declare override methods
in the header file is a matter of personal preference; many programmers add matching declarations
for all methods that are defined in the source, or implementation, file, because the header file can
then easily be used as atable of contents for the source file. Here, we choose not to declare override
methods, on a general principle of parsimony. This also makes it easy to see with aglance at the
header file al of the custom methods you have written, because you aren't forced to try to
remember whether a particular method signature exists in the built-in Cocoa frameworks. More
importantly, if you distribute your header files without the sourcefiles, it allows you to change
what methods are overridden in the implementation without requiring your customers to work with
new headers.

Thisisyour first encounter with the standard technique to instantiate and initialize objects using
Objective-C in Cocoa. Thefirst linein makeW ndowCont r ol | er s combines the allocation of
memory for the new object with an invocation of itsinitialization method, all in asingle line of
code. Depending on the object, it may have avariety of initialization methods, and it isimportant to
invoke and obtain areturn value from the one that is relevant to the purpose at hand. Usualy, that
will be the so-called "designated initializer." Invoked here is the designated initializer for
MyWindowController, itsi ni t method. You will seein amoment that itsi ni t method will call
abuilt-in method that initializes the window controller and makes it the owner of the nib file.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_03.html (2 of 6) [9/10/2001 8:47:03 AM]

Vermont Recipes—Recipe 1, Step 3.3

Asinstructed in Sep 2.3, you did not instantiate a window controller in Interface Builder. Now you
have closed this gap by placing code in your MyDocument class that will be invoked automatically
by Cocoato instantiate and initialize awindow controller every time Cocoa creates a new
document object in response to user commands. The second line inserts the new window controller
object into the built-in NSDocument wi ndowCont r ol | er s array.

Notice that this method allocates memory for a new object, awindow controller. Thisis not the
place to delve too deeply into the difficult subject of reference counting and the autorelease pool,
andwhentouser et ai n,r el ease and aut or el ease inyour code. Take it on faith for now
that the memory for the window controller object that is allocated here was automatically retained
by theinvocation of theal | ocW t hZone: method. It istherefore said to be "owned" by you;
that is, you are responsible for releasing it when the application has no further use for it.

Here, thisis accomplished right away, in the last line of the same method that allocated the object.
It is quite common to release an object in the same method in which you allocateit. It is safe to
release it here, even though it is being added to the document'swi ndowCont r ol | er array and
the window will remain open. Thisis because, as ageneral rule, a method like

addW ndowCont r ol | er : that adds an object to a"collection” (here, an array) doesits own
retain on the object. Y ou do not "own" the object once it isinserted into the array and, in a
document-based application like Vermont Recipes, it will therefore be released again automatically
by Cocoa when the window is closed. Some of thisis described in the Window Closing Behavior
section of the NSWindowController class reference document.

Confused? So is almost everybody at this stage, so don't worry about it. Basically, invoking an
object's retain method simply increments its reference counter by one. Invoking the object's release
method does not actually deallocate the object; it only decrements its reference counter by one. As
long as its reference counter is greater than zero, the object survives. Very shortly after its reference
counter becomes zero, probably when the current iteration of the application's main run loop
terminates, the memory will be deallocated. In the method we are discussing here, when the
window closes, the two retains will have been balanced by the two releases, and the object will go
away, thus avoiding a memory leak.

Documentation

To learn more about memory allocation and deallocation, reference counting,
retain,rel ease, and aut or el ease, read Very Simple Rules for Memory

Management in Cocoa, a 2001 article by Mmalcolm Crawford, Memory
Management with Cocoa/\WWebObjects, a1999 article by Manulyengar, and Hold
Me, Use Me, Free Me, a1997 article by Don Y acktman, all on the Stepwise site.

5. Click the source file MyW ndowCont r ol | er . min the Groups & Files pane of the project

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_03.html (3 of 6) [9/10/2001 8:47:03 AM]

http://www.stepwise.com/Articles/Technical/2001-03-11.01.html
http://www.stepwise.com/Articles/Technical/2001-03-11.01.html
http://www.stepwise.com/Articles/Technical/MemoryManagement.html
http://www.stepwise.com/Articles/Technical/MemoryManagement.html
http://www.stepwise.com/Articles/Technical/HoldMe.html
http://www.stepwise.com/Articles/Technical/HoldMe.html

Vermont Recipes—Recipe 1, Step 3.3

window. The text of MyW ndowCont r ol | er . mappearsin the main pane.

6. Whenever anew window controller is created, it must initialize itself. If it allocates memory for an
object, the window controller must also release that memory when the window controller is
destroyed. In deciding whether a subclass needs a method to release memory, you must take into
account whether it allocates memory, as well as other issues.

In MyW ndowCont r ol | er. myinsert the following two methods after @ npl enent at i on
MyW ndowControl | er:

/] Initialization

- (id)init {
self = [super initWthWndowNi bNane: @ MyDocunent "] ;
return self;

}

- (void)deal l oc {

[[NSNoti ficationCenter defaultCenter]
removeQbser ver: sel f];

[super deall oc];
}

In instruction 4, above, you arranged for a new window controller to be allocated and initialized
every time anew document is created. Thei ni t method that you invoked in that instruction is
defined here. It in turn invokes a method implemented by its superclass, NSWindowController,
caledi ni t Wt hW ndowN bNane: . (Note that the name passed to

I ni t WthW ndowNi bNane: isthe name of the MyDocument.nib file, without the trailing
".nib".) Thei ni t Wt hw ndowNi bNane: method has the effect, anong other things, of making
the new window controller the owner of the nib file. By loading the nib file in thisway, the
application acquires knowledge of al the classes and subclasses, the windows and the user controls
that you created in Interface Builder in Step 2.

The syntax used to pass the nameto thei ni t Wt hW ndowNi bNane: method,

@ MyDocunent ", isthe standard Objective-C technique to pass fixed NSString objects to an
application. You will make frequent use of this technique. (Y ou will shortly see how to resolve
localization issues raised by the use of fixed, or hard-coded strings in your code. Thisis not an
issue here, however, because the string is the name of a source file that will have the same, fixed
name in every country.)

The override of NSWindowController'sdeal | oc method takes care of a notification center issue
that you don't yet need to understand (see instruction 6 of Sep 5.3), then it callsits superclass's

deal | oc method to release any memory it alocated.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_03.html (4 of 6) [9/10/2001 8:47:03 AM]

Vermont Recipes—Recipe 1, Step 3.3

Now, every time your application opens a new document, it will automatically create a
corresponding window controller instantiated from the MyWindowController subclass, which will
in turn open that document's main window. When the document is closed, the window controller
will be deallocated.

7. You know from the application specification that every document will optionally be able to open

one or more separate windows. These separate windows are ancillary to the main document
window and they will contain information that is not identical to that displayed in the main
window. It will therefore be appropriate for them to be closed automatically when a document's
main window is closed. That is, the document itself should close when its unique main window is
closed, even if ancillary windows from the same document are also open. Y ou should take care of
thisdetail now. Inyour new i ni t method in MW ndowCont r ol | er. m you will revise the

I ni t method and add a line invoking an NSWindowController method to reverse the
NSWindowController default setting on this point. Doing this requires a slight change to the
structure of thei ni t method that you just wrote in instruction 6., above. Replace thei ni t
method with the following new version:

- (id)init {
i f (self = [super
i nit WthWndowN bNane: @ MyDocunent"]) {
[sel f set Shoul dC oseDocunent : YES] ;
}

return self;

An initialization method must always return an object, usually the super'ssel f , if it succeeds; if it
fails, it should awaysreturn ni | . The test at the beginning of this method ensures that
initialization of the superclass has succeeded before an attempt is made to use the

set Shoul dC oseDocunent : method of NSW ndowCont rol | er. A ni | valuewill have
been returned if initialization of the superclass failed; the test is necessary because attempting to
call amethod of ani | object would, of course, cause an error. This statement is tricky; it combines
in one line the assignment of the return value of the super'si ni t Wt hW ndowNi bNarnre:
method to sel f with atest to see whether theresultisni |, indicating afailure to alocate the
super. Don't mistake this for adirect comparison of sel f with the result of thecall to[super

i nit WthWndowN bNane: @ MyDocunent "], which would require the == operator and
would always return false. Here, the assignment in parentheses is executed first; then, if ni | was
assigned to self, thei f test evaluatestheni | valueasNOand [sel f

set Shoul dC oseDocunent : YES] isnotinvoked. Youri ni t method then returnsthe ni |
value of sel f, asit should because the initialization of the superclass has failed.

8. It seemsto be customary in some circlesto declareani ni t method in the header file even though

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_03.html (5 of 6) [9/10/2001 8:47:03 AM]

Vermont Recipes—Recipe 1, Step 3.3

it isan override method, but not to declare adeal | oc override method. Others consider it silly to
declare methods likei ni t and deal | oc that everyone knows are commonly overridden, while
still others think it important to declare every method that is implemented. In Vermont Recipes, we
will not declarei ni t or deal | oc methodsin header files.

If you wish to follow the practice of declaring i ni t methods, click the header file

MyW ndowCont r ol | er. hinthe Groups & Files pane of the project window. The text of
MyW ndowCont r ol | er . h appearsin the main pane. Add the following lineto

MyW ndowControl | er. h, afterthe@ nt erf ace MyW ndowCont rol | er block (that is,
outside the curly braces):

- (1d)init;
If you wish to declare the deal | oc method, too, you are left to your own devices.

Y ou will not be reminded hereafter to save your work at the end of each step.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeO0l1_step03_03.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 3.3 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_03.html (6 of 6) [9/10/2001 8:47:03 AM]

Vermont Recipes—Recipe 1, Step 3.4

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 3.4 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 3: Set up the project source files using Project Builder

3.4 Implement the user control outlet created in Interface Builder

In Step 2.6.2.2., you used Interface Builder to create an outlet from the MyDocunent . ni b file's owner,

MyWindowController, to the Checkbox user control in the main document window. Y ou must now see to
it that this outlet is correctly implemented in Project Builder.

Launch Project Builder and open the project, if necessary.

1. Click the header file MyW ndowCont r ol | er. h inthe Groups & Files pane of the project
window. MyW ndowCont r ol | er . h appearsin the main pane.

2. You seethat the interface declares an object, my Checkbox, of generic object typei d, with the
| BQut | et prefix. This declaration was created by Interface Builder when you used its Classes >
Create Files... command. If you were |ater to read MyW ndowCont r ol | er . h back into
Interface Builder to update the nib file, Interface Builder would recognize this as an outlet even
without the | BQut | et prefix, becauseit isof typei d. However, you will gain the benefit of
stricter type checking at compile time if you change it to an object of type NSButton. When you do
this, you must, for the benefit of Interface Builder, explicitly identify it as an Interface Builder
outlet; you must therefore usethe | BQut | et prefix.

Deletethelinel BQutl et id nmyCheckbox; in MyW ndowCont r ol | er . h and replace it
with the following lines;

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_04.html (1 of 3) [9/10/2001 8:47:07 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 3.4

@rivate
| BQut | et NSButton *nyCheckbox;

You usethe @r i vat e directive to ensure, theoretically, that any subclasses of

MyW ndowCont r ol | er . h will be denied direct access to the instance variable. It signals that
they should instead use the accessor method that you will provide shortly. Declaring instance
variables private in this fashion is optional, but if the directive is honored by subclassers, it gives
you the ability in the future to change the way the checkbox object is coded without invalidating
any subclasses that may cometo exist. In redlity, these variables can still be accessed by subclasses
using Objective-C techniques, so the effect is more in the nature of moral suasion than full security.

Y ou might think, from afirst reading of the Objective-C documentation, that you need to add the
line @l ass NSButton; before @ nt erfacein MyW ndowCont rol | er. htotell the
compiler that you intend to use that type in the source file. However, in this case you do not need
such aline because your header file already imports the Cocoa. h umbrella header, which
indirectly imports NSButton. Y ou must either import a classinto the header or, if that might create
acircular reference, use @| ass, in order to avoid an undefined type error when compiling and
linking your project, with respect to any type referenced in the header. If you use @I ass ina
header file for a custom class, you must import the class in the sourcefile if you useit there.

3. You created the outlet to the checkbox user control in the first place because you anticipated that
your document object might have to send a message to the control to modify its visible state from
timeto time, or at |least to read its state. For example, the application might have to check it or
uncheck it in order to keep it synchronized with the underlying data, perhaps because a related
menu command was used to set the underlying data. One way the application could do this would
be to manipulate the user control's appearance directly, viaits my Checkbox variable. However, to
isolate your application's data representation from the code as much as possible, you should add an
accessor method to be used to access the control, instead. The use of accessor methods for this
purpose is a commonplace of Cocoa development.

a. Add thefollowing to nyW ndowCont r ol | er. h, immediately before the
myCheckboxAct i on: method that was put there by Interface Builder:

/] Accessor nethods and conveni ences

- (NSButton *) nyCheckbox;

Y ou have noticed that we are adding descriptive headings to the source files as we go. These
fileswill become very large before you are done with Vermont Recipes, so it isimportant to
use an organizing principle like this to help you find your way around them. Y ou needn't use
our wording or organization; every programmer has a favorite technique. Thiswould be a
good time to place a heading like the following above the my CheckboxAct i on: method,

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_04.html (2 of 3) [9/10/2001 8:47:07 AM]

Vermont Recipes—Recipe 1, Step 3.4

both in the header and the source file:

/1 Action nethods

b. Switch to the source file MyW ndowCont r ol | er . mand add the following lines before
the myCheckboxAct i on: stub:

/1l Accessor nethods and conveni ences

- (NSButton *)nmyCheckbox {
return nyCheckbox;

Now, whenever you need to send a message to the window controller's associated checkbox
object, you will be able to write something like[[[sel f myW ndowControl | er]
myCheckbox] doSonet hi ng] from any object that has an outlet connected to the
window controller.

Now is agood time to add a descriptive heading above the stub definition of the
myCheckboxAct i on: method in the sourcefile, just as you did in the header filein
instruction 3.a., above.

Accessor methods are a standard feature of any Objective-C Cocoa application. Y our code will be
full of accessor methods that ook like thisin no time at all.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1/recipe0l1_step03_04.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 3.4 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_04.html (3 of 3) [9/10/2001 8:47:07 AM]

Vermont Recipes—Recipe 1, Step 3.6

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 3.6 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 3: Set up the project source files using Project Builder

3.6 Implement the action created in Interface Builder

Now that the My Settings object knows how to store and fetch the data val ue represented by the checkbox
control, and now that the window controller can talk to the MySettings object, you can return to
MyWindowController's action method and enable it to mediate between the data and the user interface.
Thisistherole prescribed for awindow controller in the MV C paradigm.

1. Inthe sourcefile MW ndowCont r ol | er. m for afirst attempt, insert the following in the stub
myCheckboxAct i on method provided by Interface Builder:

[[self nySettings] toggleM/CheckboxVal uej;

Normally, an action method would use the reference to sender , a parameter that is always passed
with an action method so that the action method can know what object initiated the action. But you
didn't do that here. Here, you might think you can get away without referring to the state of the
sender, on the premise that any time the user clicks a checkbox it always reverses state. On this
assumption, the data value in memory could simply be toggled, too.

However, for avariety of reasons, you should not do it thisway. Among other things, in order to
ensure that the datain MySettings does not fall out of sync with the state of the control in the user
interface due to an error somewhere else, it would be safer and make debugging easier if you
replace the statement you just typed with the following:

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_06.html (1 of 2) [9/10/2001 8:47:11 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 3.6

[[sel f nySettings] set MyCheckboxVal ue: ([sender st at €]
== NSOnState)];

This new implementation of the action method reads the visual st at e of the user control object
sender —which has already changed due to the user's having clicked it—then asks whether it is
NSOnSt at e and sets the data value accordingly.

Having done this, you should now delete thet oggl eMyCheckboxVal ue method from the
My Settings header and source files. You no longer need it, since the set MyCheckboxVal ue:
method is a safer and more general means to accomplish the same thing.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe0l1/recipe01_step03_06.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 3.6 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step03_06.html (2 of 2) [9/10/2001 8:47:11 AM]

Vermont Recipes—Recipe 1, Step 4.1

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 4.1 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application
Step 4: Provide for data storage and retrieval

Y our application must be able to save its data to storage, typically on adisk, and read it back from storage
when a document is opened or reverted to a previously saved state. In this Step, you will add generic
routines for data storage and retrieval to the application.

4.1 Initialize the data

Before coding the application's storage routines, you should set up the default value of the data represented
by the checkbox user control when a new document is created from scratch. For now, you will simply
initialize a new document so that the initial setting of the myCheckboxVal ue variable in MySettingsis
YES. In alater Recipe, you will design and write afull-fledged preferences system to let the user
determine the default data values for a new document.

Launch Project Builder and open the project, if necessary.

1. Inthe sourcefile MySet t i ngs. m add the following statement at the end of thei f block in the
designated initializer, i ni t Wt hDocunent : :

/| Default settings val ues
myCheckboxVal ue = YES;

If you don't provide an initialization value for avariable, Cocoawill initialize it to O (or NO, or
ni |, or any value represented internally as 0). For thisreason, it iscommon practice to omit
initialization of data values atogether when they should start life with one of these default values.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_01.html (1 of 2) [9/10/2001 8:47:15 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 4.1

Here, the initialization method initialized the my CheckboxVal ue variableto YES. Aswritten,
thiswill apply both to new documents and to documents opened from storage. In the latter case,
however, the value will be reset to the value read from the saved document, using routines you will
shortly writein Sep 4.2. This redundancy will be tolerated for now, since you will replace it |ater

with afull preferences system.

Notice that you have initialized the my CheckboxVal ue directly, rather than by calling the

set MyCheckboxVal ue: accessor method. Thisis atemporary solution to an issue you will
encounter later. In Sep 5, you will add code to the accessor method to register the action with the
undo manager. Y ou want to make sure that the initialization of the variable in this Step will not be
registered with the undo manager, because there is no point to undoing the default value of a
variable in anewly created document, so you bypass the accessor method here. Still later, however,
in Step 2 of Recipe 2, you will changethisi ni t Wt hDocunent : method so that, instead of
bypassing the set MyCheckboxVal ue: accessor method here, you will invoke it, after al, and
use a better technique to avoid registering initialization of the variable with the undo manager.

Finally, notice that adeal | oc method is not provided for MySettings. At this point, the
application does not allocate any objects in MySettings, so it has nothing to release. Its super's
deal | oc method, in NSObject, will be called by the Cocoa frameworks without touching the
MySetting object's layer. A deal | oc method will become necessary in My Settings later, as you
proceed to add functionality to the application.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe01_step04_01.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 4.1 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l1_step04_01.html (2 of 2) [9/10/2001 8:47:15 AM]

Vermont Recipes—Recipe 1, Step 4.3

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 4.3 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 4: Provide for data storage and retrieval

4.3 Display the document's data

Y ou have now initialized the document's internal data variable my CheckboxVal ue to adefault value of
YES, and you have written routines to set the variable from data which was read in from storage. But you
have written nothing yet to enable MyWindowController to tell the window to show the value held in

my CheckboxVal ue to the user, in either event.

In an application with multiple window controllers, thisis the job of NSWindowController's
wi ndowDi dLoad method, which you must override. Cocoainvokeswi ndowDi dLoad automatically,
after the document's nib file has been loaded and all of its internals have been initialized.

Launch Project Builder and open the project, if necessary.

1. Add the following to the source file MyW ndowCont r ol | er . m before the Action methods
section:

/1 W ndow managenent

- (voi d)w ndowDi dLoad {

[super wi ndowDi dLoad] ;

[[sel f nyCheckbox] setState:([[self nySettings]
myCheckboxVal ue] ? NSOnState : NSO f State)];

}

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_03.html (1 of 2) [9/10/2001 8:47:19 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 4.3

Sincethisis an override method, it is not necessary to declare it in the header file.

Now, whenever the window |oads, whether as a new document that has never been saved or asa
document that was just loaded from storage, the checkbox control in the Buttons pane of the main
document window will immediately be updated to reflect the internal state of the MySettings
variable myCheckboxVal ue.

Y ou will dedl later, in Sep 7, with the case where the user chooses the Revert menu item, which

does not reload the window and therefore does not cause the w ndowbDi dLoad method to be
invoked.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl1l/recipe01_step04_ 03.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 4.3 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step04_03.html (2 of 2) [9/10/2001 8:47:19 AM]

Vermont Recipes—Recipe 1, Step 5.2

SV S .Co

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 4, 2001 - 6:00 AM
Introduction > Contents > Recipe 1 > Step 5.2 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 5: Implement Undo and Redo
5.2 Set the undo and redo menu item titles with localized strings

Applications that implement undo and redo should provide descriptive titles for the Undo and Redo menu
items, in order to give the user afairly specific idea of what will happen when they are chosen. Thisis
particularly important in a Cocoa application, where multiple undo and redo are the norm. A user could
easily get lost if faced with a succession of Undo menu items all titled simply "Undo".

1. Inthe sourcefile MW ndowCont r ol | er . m insert the following lines at the end of the
myCheckboxAct i on: method:

I f ([sender state] == NSOnState) {

[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set Checkbox", @ Nanme
of undo/redo nenu item after checkbox control was
set")];
} else {

[[[sel f docunment] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ C ear Checkbox",
@ Nane of undo/redo nenu item after checkbox control
was cl eared")];

}

Thisinvocation of the undo manager'sset Act i onNane: method will cause the Undo or Redo

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_02.html (1 of 2) [9/10/2001 8:47:23 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 5.2

menu item'stitle to change whenever this user action has been invoked.

The documentation recommends that the set Act i onNane: method be invoked in an action
method, as you have done here, rather than in the primitive method that actually changes the data
value in the model object, here, set MyCheckboxVal ue: in MySettings. A couple of reasons
are given for this. For one thing, the primitive method might also be called for other purposes, and
a change to the Undo and Redo menu items might not be appropriate for al of them. More
importantly, the titles of the Undo and Redo menu items should reflect the nature of the user action
that will be undone or redone, not the nature of the underlying primitive operation that alters the
data. By changing the menu item titlesin the action method, you leave open the possibility of using
other menu item titles if the same change to the document were effected, say, by a menu command
or an AppleScript command.

2. Thisisthefirst time you have coded for alocalizable string. The use of the
NSLocal i zedSt ri ng() convenience function to extract alocalized string from the
Local i zabl e. stri ngs resource was explained in Step 3.1.4. Here, you seeit in use to make
sure the Undo and Redo menu items appear in the local language where the application is being run
(assuming the application has been localized for that language).

To make this work, you must add the following key-value pairsto the Local i zabl e. stri ngs
fileinthe Resour ces folder. It is customary, but not required, to name the key identically to the
value used for the locale of the developer, here, English. Don't forget the trailing semicolons; if you
do forget them, thiswill appear to work, but Cocoa will in fact be using the name of the key instead
of the localized value and therefore won't pick up any different strings provided by the localization
contractors.

/[* Undo/ Redo nmenu i1tem nanes */

/| * Checkbox */
/* Name of undo/redo nenu item after myCheckbox control
was set */
"Set Checkbox" = "Set Checkbox";
/* Name of undo/redo nenu item after myCheckbox control
was cl eared */
"Cl ear Checkbox" = "C ear Checkbox";

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l_step05_02.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 5.2 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step05_02.html (2 of 2) [9/10/2001 8:47:23 AM]

Vermont Recipes—Recipe 1, Step 6

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 4, 2001 - 6:00 AM
Introduction > Contents > Recipe 1 > Step 6 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application
Step 6: Review the behavior of the Save and Revert menu items

If you tested the behavior of the Undo and Redo menu itemsin Sep 5, you might have noticed that the

Save and Revert menu itemsin the File menu do not behave as a Mac OS 9 user would expect. The Save
menu item in Cocoa remains enabled at all times after the first change is made to the document, even after
adocument is saved, reverted or opened. In Mac OS 9, the Save menu item would become disabled at
these times, and it would remain disabled until the user makes another change to the document. The Revert
menu item in Cocoa behaves just like Save, except that it remains disabled for a new document until the
document has been saved once (because there is nothing to revert to before then). In Mac OS 9, arevert
menu item isnormally disabled at the same time Save is disabled.

Thisisthe way these menu items are supposed to behave in Cocoa. The theory isthat Mac OS X is
inherently multi-process and multi-user in nature, and there is therefore always a chance that another
application has changed the document behind the back of the current application. Because of this
possibility, the Save and Revert menu items are kept available at al times, to let the application at any
time update the document on disk to your current representation of it in RAM or to revert your
representation in RAM to its current state on disk, in case another user, say, on a network, has altered it
since you last saved your own changes. That is, it allows you to decide at any time whether to conform
your version of the document to a concurrent user's version, or to force the concurrent user's version to
conform to yours, or to choose Save As... to create a separate copy for your own use.

Cocoa's default behavior may leave you feeling somewhat uncomfortable. It could be considered
irresponsible to alow a concurrent user to change a document's representation on disk without warning
other active users about what is happening. An application could at least, as Project Builder does, raise an
alert when you bring it to the front after the document has been changed out from under you by a

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step06.html (1 of 3) [9/10/2001 8:47:28 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 6

concurrent user, allowing you to decide what to do. Applications might aso implement some form of
document locking or record locking to prevent concurrent users from making changes while you are using
the document. Ideally, Cocoa would implement one or more standard mechanisms for dealing with this
situation. The current default, allowing a user to save or revert at any time, seems incomplete and
unsatisfactory.

Y ou will not implement record-locking or other devices here, because it is a complicated task. However,
you can, if you wish, implement a simple change to the application at this point that will cause it to adopt
the standard Mac OS 9 menu behavior, disabling the Save and Revert menu items unless you, yourself,
have made a change to the document's representation in RAM. This may provide a small measure of
safety, because it will make it dightly harder for you to overwrite changes saved to storage by others since
you last saved your own changes. Note, however, that it still allows you to save your own changes.

Apple's official interface guidelines and practices should normally be followed, because Mac OS X users
will come to expect all Mac OS X applicationsto behave alike. Thisis one of the Mac's great strengths.

Y ou are therefore advised not to make the changes described here. They are presented only to show you
how it could be done, and to introduce you to some standard Cocoa techniques for enabling and disabling
menu items.

Launch Project Builder and open the project, if necessary.

1. Inthe sourcefile MyDocunent . m add the following method before the Persistent storage section:

/1 Menu managenent

- (BOOQL) val i dat eMenul t em (NSMenul t em *) menul t em {

I f ([[menultemtitle]
| sEqual ToStri ng: NSLocal i zedStri ng(@ Save", @ Nane of
Save nmenu itenf)]) {

return ([self isDocunentEdited] ? YES : NO;

} else if ([[nmenultemtitle]
| sEqual ToStri ng: NSLocal i zedStri ng(@ Revert"”, @ Nane of
Revert nmenu itent)]) {

return ((([self fileNanme] !'= nil) && ([self
| sDocunentEdited])) ? YES : NO;
} else {

return [super validateMenultem nenulteni;

}

This overrides the default NSDocument implementation of val i dat eMenul t em , so you do not
need to declareit in MyDocunent . h.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step06.html (2 of 3) [9/10/2001 8:47:28 AM]

Vermont Recipes—Recipe 1, Step 6

Note that the override method invokes its super's method only if it is not being called on the Save
or Revert menu items. Invoking super's method is necessary to ensure that Cocoais able to validate
other menu items. However, the override method prevents NSDocument's standard

val i dat eMenul t em from being invoked on Save or Revert. The standard method would
enable the menu item when a document exists on disk and has ever been edited, even if it has since
been saved. If the standard method is not overridden, the user can choose Revert on a document
that is not currently "dirtied"—that is, a document that may have been modified but which you
have since saved—nbut there will be no response; that is, the standard revert sheet, saying that the
document has been edited and asking if you want to undo the edits, does not open. Thisis correct
behavior under the circumstances, but a user may find it confusing.

Testing whether the document's nameisni | isastandard way to test whether it has ever been
saved to storage.

You used theNSLocal i zedSt ri ng() convenience function to make sure you are comparing
the menu item title to its localized name in the language where the computer is being used, as
described in Sep 3.1.4, above.

To make thiswork, you must add these key-value pairsto the Local i zabl e. stri ngs filein
the Resour ces folder.

/[* Nanme of Save nenu item */
"Save" = "Save",

[* Name of Revert nenu item */
"Revert" = "Revert":

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeO1/recipeOl1_step06.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 6 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step06.html (3 of 3) [9/10/2001 8:47:28 AM]

Vermont Recipes—Recipe 1, Step 7

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 7 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application
Step 7: Make the Revert menu item work

Now that you have the Save and Revert menu items highlighting according to the Mac OS 9 model or the
Mac OS X model, as you prefer, you should try them out. Y ou will notice that the Revert menu item
doesn't seem to work correctly. For example, save a Vermont Recipes 1 file with its checkbox control
checked. Close and then reopen that document, uncheck the checkbox, and choose File > Revert. The
checkbox does not appear to revert to its checked state, asit should. However, if you use the debugger,
you will discover that the value of the my CheckboxVal ue variable in MySettings has in fact returned to
YES, confirming that the Revert command did in fact read the document back into memory from disk. If
you trace out the logical flow of control in the source code, you will realize that there is no code in the
application to tell the checkbox user control to conform its visible state to that of the

my CheckboxVal ue variable when the document revertsto its saved state.

Here are the stepsto follow to figure out one way to resolve thisissue. They are spelled out in detail here
in order to give you areal-world example of figuring out how to solve a problem in Cocoa. Later, in
Recipe 2, Sep 2, you will discover that there is an even better way.

Thefirst step is to determine how Revert works. Checking the documentation and using the debugger to
trace what happens when the Revert menu item is chosen, you discover that Cocoa automatically invokes a
built-in NSDocument action method called r ever t Docunment ToSaved: , which in turn invokes your
override of the NSDocument | oadDat aRepr esent at i on: of Type: method. This makes sense,
because | oadDat aRepr esent ati on: of Type: isthe method that isinvoked to obtain data from
disk when you open a document, and you also want to obtain data from disk when you revert. Looking at
the custom methods that your override of | oadDat aRepr esent ati on: of Type: invokes, you see
that you already included in one of them, r est or eFr onfst or age: , ameansto set the

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step07.html (1 of 4) [9/10/2001 8:47:33 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 7

my CheckboxVal ue variable viathe MySetting model object. Thisiswhat sets the value of the
document's data to match what is found on disk.

This therefore seems like a possible place to add a statement to make the checkbox's visible state match
the value of the data. However, thisis avery awkward place to do anything that is limited to reverting the
document. Ther est or eFr ontSt or age: method is also invoked when a document is being opened, but
thew ndowDi dLoad method in MyWindowController already updates the user interface in that case. To
handle Revert here would require that you somehow detect whether the Open or the Revert menu item s
being handled.

So you need to look alittle further. Y ou aready discovered that NSDocument includes an action method
for the Revert menuitem, r ever t Docunent ToSaved: . Thismay bejust the ticket, sinceit isinvoked
only to revert adocument, not to open a document. Still, you may have alittle discomfort about overriding
a Cocoa action method. As alast resort, you examine the NSDocument header filein
/System/Library/Frameworks/AppKit.framework/headers/. There you hit paydirt! Thereisan
undocumented method, r ever t ToSavedFr onFi | e: of Type: , which the comment indicatesis called
by the revert action method. The comment explicitly tells you that thisis the appropriate place to detect
when a document is being reverted and to take additional actions. Therefore, you will override this method
in MyDocumnent . mand use it as a springboard to tell the window controller object that the document is
reverted and the user interface needs to be updated.

1. Add thefollowing override method to MyDocunent . m immediately after the
makeW ndowCont r ol | er s method:

- (BOQL)revert ToSavedFronFil e: (NSString *)fil eNane
of Type: (NSString *)type {
I f ([super revertToSavedFrontile:fil eNane
of Type: type]) {
[[self wi ndowControll ers]
makeObj ect sPerf or nSel ect or: @el ect or (docunent D dRevert)];
return YES;
} else {
return NG

}

Thisis an override method, so it does not require declaration in MyDocunent . h.

It first invokes the method's super, to make sure any necessary changes are made to the document's
internal structure. If successful, it informs the built-in window controller array

wi ndowCont r ol | er s that the document has reverted to its saved state by invoking the window
controller'sdocunent Di dRever t method, which you are about to write.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step07.html (2 of 4) [9/10/2001 8:47:33 AM]

Vermont Recipes—Recipe 1, Step 7

1. Inthe header file M\yW ndowCont r ol | er . h, after the Accessor methods and conveniences
section, add the following:

/1 W ndow managenent

- (void)docunent Di dRevert ;

2. Inthe sourcefile MW ndowCont r ol | er . m after w ndowDi dLoad, define the method as
follows:

- (void)docunent Di dRevert {
[sel f updat eCheckbox: [sel f myCheckbox]
setting:[[self nySettings] myCheckboxVal ue]];

}

Y ou have seen this same statement before, in Sep 5.3, where you used it to update the checkbox
control after an undo or redo operation.

Y our application can now update the user interface when a new document is created or a saved document
Is opened, using thew ndowDi dLoad method, and when a changed document is reverted to its saved
state, through thedocunent Di dRevert method, both of which call a single generic method to update
the checkbox. Thew ndowDi dLoad and docunent Di dRever t methods give you a good, genera
framework for handling user interface updating when a user chooses the Save, Open, and Revert menu
items, as well as undo and redo, no matter how many user controls you add | ater.

At this point, you have achieved your goal, aworking application that maintains a good separation
between the model object's single data item and its single user control in the user interface. The window
controller object is used to mediate between the data and the view when a change takes place in either.
When the user changes the interface by clicking the control, Cocoatells the window controller to send an
action method to the model object so that it can decide how to update its data. Contrariwise, when the user
changes the document's data by choosing the New, Open or Revert menu item, Cocoa tells the model
object or its document to inform the window controller that it needs to decide how to update the state of
the user interface.

Only two details remain to complete Recipe 1 and your first Cocoa application: create application and
document icons, and revise your application's menu bar so that it discloses the name of your application to
the user in appropriate menu items.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeOl1_step07.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step07.html (3 of 4) [9/10/2001 8:47:33 AM]

Vermont Recipes—Recipe 1, Step 7

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe0l1_step07.html (4 of 4) [9/10/2001 8:47:33 AM]

Vermont Recipes—Recipe 1, Step 8

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 8 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 8: Add application and document icons

L

No application is complete without an application icon and document icons. The system shows these on
the desktop, in the Dock, in the Finder's info window, and in various alerts and dialogs. Also, the
application normally showsitsicon in its About box.

Thisisnot atutorial on the details of using image-editing applications to create images suitable for use as
icons, so you will haveto create or find your own graphics to serve as icons using whatever applications
are available to you. Briefly, you may find it convenient to use a drawing program, a scanner or adigital
camerato acquire the images, and to use Adobe Photoshop or some other image-editing application
running in Mac OS 9 or the Classic environment of Mac OS X to edit them, until native Mac OS X
applications are available for the purpose.

For the Vermont Recipesicons, the cover and a page from an antique Vermont cookbook whose copyright
has expired were scanned into Photoshop. Each image was then reduced in size and placed on a 128 x 128
pixel canvas. The areas outside the image were erased to transparent. Finally, each image was saved in
PNG-24 format with transparency using the Save for Web... command in Photoshop 5.5. If you are a

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step08.html (1 of 3) [9/10/2001 8:47:39 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 8

perfectionist, you will want to repeat the process until you have saved the imagesin four sizes—16, 32, 48
and 128 pixels square—each optimized to look good at its size.

Thereisaraging controversy in some circles over whether it is best to use Apple's Mac OS X icon
style—an angle view of astylized, "photo illustrative" three-dimensional object, as described in the Icon
Design chapter of Inside Mac OS X: Adopting the Aqua Interface—or a more traditional abstract, flat
graphic. The Vermont Recipes choice of aflat but photo realistic icon does not reflect a considered
position on the issue, but only a deficit of artistic talent. If you're serious about your application, hire a
professional artist.

In this Recipe, you use icon tools provided with Mac OS X to install the icons from whatever images you
have found or created. More powerful commercial applications are available, including IconBuilder Pro,
|conographer and Icon Machine.

Once you have the image files for each icon in hand, you are ready to turn them into icons for the
application.

Launch IconComposer (in the /Devel oper/Applications/ folder). Also launch Project Builder and open the
project, if necessary.

1. Using an untitled IconComposer window, drag each image onto the empty square in the first
column matching its size. Y ou can get away with using only a 128 x 128 pixel icon.

2. If each of the three smaller imagesis dragged onto its square, an alert may appear, asking you
whether to extract a 1-bit mask from the data. Click No if the mask is already present; otherwise,
click Yes.

3. Choose File > Save As..., give theicon file a name, designate any location to which to save it, and
click Save. Thefileisautomatically given the required ".icns' extension.

4. Theicon is saved as an icns Browser document, so you can double-click theicon fileto openitin
the icns Browser application and examine it. It shows as containing only a"Thumbnail” sizeicon
(128 x 128 pixels), but it will work fine,

5. If you did not already save them there in instruction 3., above, drag the icon filesinto the root level
of the project folder. For Vermont Recipes, name the application icon "V Rapp.icns' and the
document icon "VRdoc.icns'. These go in the root project folder rather than the Engl i sh. | pr oj
folder because icons cannot be localized.

6. Turnto Project Builder. Click the Targetstab of the project, click "Vermont Recipes 1" in the
Targets pane, click the Application Settings tab, and click the Expert button.

7. Onthe CFBundl el conFi | e line, type VRapp without the".icns' extension.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step08.html (2 of 3) [9/10/2001 8:47:39 AM]

http://developer.apple.com/techpubs/macosx/System/Documentation/Developer/SystemOverview/AdoptingAquaInterface.pdf

Vermont Recipes—Recipe 1, Step 8

8. Expand the disclosure triangle for CFBundl eDocunent Types, then expand element 0. On the
CFBundl eTypel conFi | e line, type VRdoc without the ".icns' extension.

9. Click the Filestab of the project and expand the Resources disclosure triangle. Then choose
Projects > Add Files..., select the two new icon files, click Open, then click Add in the next sheet.
The two new icons appear in the Groups & Files pane. Drag them into the Resources group, if
necessary.

When you compile and run the application, you will see the new iconsin all the expected places. (You
may have to move the application from the project's build folder to the Mac OS X Applications folder, or
shut down and restart, to see them in the Finder and the Dock.)

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeOl1_step08.html
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 8 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step08.html (3 of 3) [9/10/2001 8:47:39 AM]

Vermont Recipes—Recipe 1, Step 9

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 > Step 9 < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application

Step 9: Revise the menu bar

Before you finish, you should perform alittle cosmetic surgery on your application's menu bar.

Launch Project Builder and open the project, if necessary.

1.

In the Groups & Files pane of the project window, double-click Mai nMenu. ni b inthe
Resour ces group. Mai nMenu. ni b opensin Interface Builder.

In the MainMenu window, double-click the New Application menu title to select its text for
editing, and edit it to read Ver nont Reci pes 1.

In the MainMenu window, click once on the newly-edited Vermont Recipes 1 menu title. The
menu menu opens.

Double-click the About NewApplication menu item to select itstext for editing, and edit it to read
About Vernont Reci pes 1. Hitthe Enter key to commit the change.

Double-click the Hide menu item, and edit it to read Hi de Ver nont Reci pes 1.
Click the Quit menu itemto select it, and editittoread Qui t Ver nont Reci pes 1.

Click the Help menu and click the NewApplication Help menu item to select it. Edit it to read
Ver nont Reci pes 1 Hel p.

In the Interface Builder menu bar, choose File > Save.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step09.html (1 of 2) [9/10/2001 8:47:42 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Step 9

9. Compile, link and run the application. Y ou will find the compiled application in the bui | d folder
of your project folder, unless you altered your build settings in Project Builder. Try moving the
application to the main Appl i cat i ons folder and running it from there, if icons don't appear

properly.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipe0l1_step09.html
Copyright © 2000 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 > Step 9 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_step09.html (2 of 2) [9/10/2001 8:47:42 AM]

Vermont Recipes—Recipe 1, Conclusion

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 1 < Conclusion < BACK | NEXT >

Recipe 1. A simple, multi-document, multi-window application
Conclusion
Run the application and try out al its features.

To ensure that Mac OS X adds your new document format to its database, don't run the application from
within Project Builder the first time. Instead, open the bui | d folder inthe Ver nont Reci pes 1
folder, move the compiled and linked application to the Mac OS X Appl i cat i ons folder, and run it by
double-clicking it there. Thisis necessary in order to alow the system to recognize the application as the
owner of its saved documents, so that double-clicking a document will automatically open it in the
application, and it may also be necessary to ensure that its icons appear on the Dock and elsewhere. If you
run the application from within Project Builder before running it independently, you may find that these
features of Mac OS X don't work properly, and you might not be able to minimize it to the Dock.

A few things don't work yet, such as drawers, printing and help, and you haven't yet created any new
menus or menu items. But an amazing number of standard application features now work perfectly, and
getting to this stage required little or no effort on your part.

For example, the About Vermont Recipes menu item opens an about box with information about your
application, including the copyright notice you supplied. The window minimizes and zooms as expected,
both from the buttons in the window title bar and from the Window menu. Other commands in the
Window menu work, for example, to bring any of multiple open windows to the front. The File > Save
To... menu item creates a separate backup document on disk, leaving the front window untitled. The
keyboard equivalents work just like their associated menu items. Saving changes to an existing document,
or reverting it to its last saved state, opens confirmation sheets.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_conclusion.html (1 of 2) [9/10/2001 8:47:46 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 1, Conclusion

And all of the features you added in thisfirst Recipe work flawlessly. Go ahead: exercise the New, Save
and Open commands repeatedly, working with a dozen documents open at once, if you like. Make changes
to saved documents and revert them. Use the Undo and Redo commands repeatedly to see that they count
multiple changes and undo and redo them as they should.

Y ou are ready now to turn to Recipe 2, where you will begin implementing alarge variety of standard Mac
OS X user controls. Stay tuned for still more Recipes, dealing with menus and menu items, sheets,
drawers, printing, Apple Help, AppleScript, speech synthesis, and myriad other topics of interest to Cocoa
developers.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipeOl/recipeO1_conclusion.htmi
Copyright © 2000-2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 1 < Conclusion < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe0l/recipe01_conclusion.html (2 of 2) [9/10/2001 8:47:46 AM]

Vermont Recipes—Recipe 2

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 1, 2001 - 6:00 PM
Introduction > Contents > Recipe 2 < BACK | NEXT >

Recipe 2: User controls—Buttons

Download the project files for Recipe 2 as a disk image and install them

Download a pdf version of Recipe 2

With this Recipe, you will begin a series of Recipes dealing with user controls. In this Recipe 2, you will
implement a number of different kinds of buttons, which, to a Cocoa programmer, include checkboxes,
radio buttons, pop-up menus, and other controls, as well as traditional push buttons. In subsequent
Recipes, you will learn about other kinds of controls. For example, Recipe 3 will cover sliders, including
techniques for linking sliders and other controls. Before getting to examples of various uses for text fields
in Recipe 6, you will digress briefly in Recipe 4 to learn how to implement sheets, which are an important

means to communicate with your users while they are using text fields, and Recipe 5 to learn about
formattersfor text fields. Y ou won't find every control known to humankind in this series, but you will
find most standard Macintosh user controls, including afew variants. Some of the controls will
interoperate with one another, for example, by disabling or enabling other controls or rapidly updating a
number in atext box as adlider is dragged back and forth.

In these Recipes, each Step will focus on a particular control, although other, related controls may also be
covered, especialy where interaction among them isimportant. Each Step will cover both the Interface
Builder and the Project Builder aspects of creating the controls it covers. After preparing the project files
for Recipe 2in Sep 1 and improving the application’'s initialization code in Sep 2, Sep 3 will provide a
very detailed roadmap through the process of implementing a group of checkboxes. Sep 3 will serveasa
checklist of fundamental tasks for implementing almost any kind of control. Subsequent Steps will provide
less detail where repetition can easily be avoided, but new and interesting techniques will always be
flagged and explained in depth. This orgnization should make it possible to use this series of Recipesasa
reference when implementing controls in your own application.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02.html (1 of 3) [9/10/2001 8:48:00 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes2.dmg
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes2.pdf

Vermont Recipes—Recipe 2

The Vermont Recipes 2 application, when you have completed it, will serve as a demonstration of how the
various buttons work. In subsequent Recipes in this series, user controls will be grouped by category, each
in atabbed pane of its own. Since Vermont Recipes is aimed at programmers, controls will be categorized
by Cocoa view type. In some cases, this may seem odd from an end user's point of view; for example,
checkboxes and pop-up menus are NSButtons, so they will appear in the Buttons tab.

There are some issues that are not covered in this series of Recipes but will be dealt with later. Chief
among them is how you ensure that the items within the window are resized and repositioned
appropriately when the user resizes the window. Think of the Vermont Recipes document window as
having afixed size, for now.

Asyou work your way through this series of Recipes, you should pay close attention to Mac OS X human
interface guidelines. They are very detailed, prescribing specific dimensions for buttons, the position and
spacing of controlsin dialogs, and similar details. The success of the Mac has been built in part on the fact
that users can expect things to look and work more or less the same in all applications. The prospects for
Mac OS X will undoubtedly be enhanced if you conform to the official Apple standards. Interface Builder
Isagreat help, because it lets you apply many of the guidelines automatically, particularly with the
introduction of Aqua guidesin Mac OS X 10.0.

Documentation

The primary source for Mac OS X human interface guidelinesisInside Mac OS X: Aqua
Human | nterface Guidelines, a downloadable pdf document. Substantial additions and

many changes have appeared over the last several months, and more are expected.
Professional developerswill want to keep close tabs on the status of this document.

The Mac OS X guidelines are written as addenda to the older human interface guideline
documents, which remain in effect to the extent they are not inconsistent with the Mac OS
X document. The older documents are available on the web as the downloadabl e pdf files
M acintosh Human Interface Guidelines and Mac OS 8 Human Interface Guidelines. Both

are also available as browsable web documents.

Screenshot 2-1: The Vermont Recipes 2 application

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02.html (2 of 3) [9/10/2001 8:48:00 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html
http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html
http://developer.apple.com/techpubs/mac/pdf/HIGuidelines.pdf
http://developer.apple.com/techpubs/mac/pdf/HIGOS8Guidelines.pdf
http://developer.apple.com/techpubs/macos8/HumanInterfaceToolbox/HumanInterfaceGuide/humaninterfaceguide.html

Vermont Recipes—Recipe 2

*ﬁ 06 |} Recipe 2.VRd2 — ~/Documents

Vermont Recipes 2
A Cocoa Cookbook

r z
" Text Boxes | Buttons |
W Checkbox Party Affiliation:
() Democratic
Pegs for Tots: ® Republican
W Triangle) Socialist
1 Sguare
] Round State: = VT | *r!
=) Select All P

' Beeper v

_ [Play Music
] Allow Rock
1 Recent Hits
1 Oldies : :
1 Classical { e J = '

Back Mext

i i i o e oo s s s s i s o s i i i e o i o o s s s i s o s s i o o i o o oo s s s i o o o e o o s o s o o s s e ke 5

i

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02.htmi
Copyright © 2001 Bill Cheeseman. All rights reserved.

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02.html (3 of 3) [9/10/2001 8:48:00 AM]

Vermont Recipes—Recipe 2, Step 1

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 2 > Step 1 < BACK | NEXT >

Recipe 2: User controls—Buttons
Step 1: Prepare the project for Recipe 2

Before getting into the meat of Recipe 2, you should change some of the application's settings to reflect
the fact that you are creating a new version of the application. Instead of changing the application’'s name
to "Vermont Recipes 2" for this Recipe, which would require changing it again for every subsequent
Recipe, it will be more efficient smply to give it itsfinal name of "Vermont Recipes'. To reflect the fact
that it will incorporate new material added in this Recipe 2, you will simply bump up the application's
development version. Also, the new dataitems will require a new file format, so you will change the
document type codes, to make sure that the Finder does not try to open old documents left over from
Recipe 1 in the new application. The change in the application’'s name will also require changing some
resources and one of the source files. In subsequent Recipes, you will only have to change the application
signature and some document type codes.

1. Inthe Finder, duplicate the Ver nont Reci pes 1 folder and name the copy Ver nont
Reci pes 2.Itisagood ideato give the top-level project folders different names to reflect
different builds, to make it easy to identify them in the Finder and to save backups or archives. Put
theVer nont Reci pes 1 folder away in asafe place, or discard it.

2. IntheVVer nont Reci pes 2 folder, renamethe Ver nont Reci pes 1. pbproj bundleas
Ver nont Reci pes. pbpr oj . Thereisno need to change this name every time you build a new
version. Even with multiple versions open at once in Project Builder, you will be able to tell them
apart by the path available by Command-clicking on the project name in the title bar of the project
window.

3. Dragtheentirebui | d folder to the trash. Cocoawill create a new one for you the next time you
build the application.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step01.html (1 of 3) [9/10/2001 8:48:05 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 2, Step 1

10.

11.

Double-click Ver nont Reci pes. pbpr oj to open the project in Project Builder.

In the project window, click the Targets tab and select Ver nont Reci pes 1. Choose Project >
Rename, then rename the target to Ver nont Reci pes.

Click the Build Settings tab and change the Product nameto Ver nont Reci pes.
Click the Application Settings tab and the Expert button, and change several settings, as follows:

a. Expand CFBundl eDocunent Types and element O, then expand
CFBundl eTypeExt ensi ons, and change the setting of element O from "VRd1" to
VRd2.

b. Do the samewith CFBundl eTypeOSTypes.
c. Change CFBundl eTypeNane to Ver nont Reci pes Docunent For nat.
d. Change CFBundl eExecut abl es toVer nont Reci pes, if it hasn't aready changed.

e. Change CFBundl el dentifi er to
com st epwi se. Ver nont Reci pes. Ver nont Reci pes.

f. Change CFBundl eSi gnat ur e to VRaZ2.
g. Change CFBundl eVersi onto1. 0. 0d2.

Click the Files tab, expand the Resour ces group, and click | nf oPl i st. st ri ngs. Change
every instance of "Ver nont Reci pes 1"toVer nont Reci pes, and change every instance
of "1. 0. 0d1"to 1. 0. 0d2.

Double-click MyDocunent . ni b to openitin Interface Builder. At the top of the main document
window, change"Ver nont Reci pes 1"toVernont Reci pes. Thiswill requireyouto
recenter the line below, "A Cocoa Cookbook™, and to move both lines to the left until they again
comply with Aqua Human Interface Guidelines for the distance of items from the left edge of a

window.

Back in the Project Builder window, double-click Mai nMenu. ni b to open it in Interface Builder.
Click on the Apple and Help menus and change every instance of "Ver nont Reci pes 1" to
Ver nont Reci pes.

In Project Builder, expand the Classes topic, and open MyDocunent . m A little over half way
down, in the Keys and values for dictionary section, change myDocumentTypeto @ Ver nont
Reci pes Docunent Format".

While you're at it, change cur r ent MyDocunent Ver si on to 2. In real world development, this

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step01.html (2 of 3) [9/10/2001 8:48:05 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html

Vermont Recipes—Recipe 2, Step 1

would be used by backward-compatibility routines to help identify the format of the document
when opening it.

12. IntheLocal i zabl e. st ri ngs fileand al of the header and source files, change the application
name in any comments you may have placed at thetop to Ver nont Reci pes.

13. Build and run the application in Project Builder to confirm that it works as expected.

Y ou are now ready to begin adding user controls to the application.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_stepOl.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 2 > Step 1 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step01.html (3 of 3) [9/10/2001 8:48:05 AM]

Vermont Recipes—Recipe 2, Step 2

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 2 > Step 2 < BACK | NEXT >

Recipe 2: User controls—Buttons
Step 2: A better way to handle data initialization

In Recipe 1, in the course of laying out the basic features of the Vermont Recipes application, you

implemented a single user control, a checkbox or "switch button." This required you to take care of a
number of details needed to implement any user control. Before you begin implementing additional
controlsin Recipe 2 and subsequent Recipes, you should revisit Recipe 1 to ensure that you are using the
best possible techniques to handle the checkbox. It turns out that there are a few things you can do better.

In this Step 2, you will improve your datainitialization code, and this will permit you to make further
improvements to the way the checkbox is updated on screen when a new document is created, when an
existing document is opened, and when a document is reverted to its saved state. In doing this, you are
following in our footsteps on a beginner's journey toward understanding Cocoa. Y ou should always
remain alert to overlooked opportunities, and be prepared to go back and improve code already written if
advantages are apparent. One of the most important benefits to consider is that your code will become
easier to maintain and upgrade in the future.

1. InRecipe 1, Sep 4.1, you took care to avoid registering with the undo manager when you
initialized the data variable associated with the checkbox. Y ou did this by taking a direct and
expedient route: you simply bypassed the data variable'sset MyCheckbox: accessor method,
where registration with the undo manager is handled, and instead set the data variable directly.
However, this violates a strong preference in Cocoa programming for accessing data variables only
through accessor methods.

It turns out that Cocoa provides an easy way to suppress registration with the undo manager: the
di sabl eUndoRegi strati on and enabl eUndoRegi st r ati on methods declared in

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step02.html (1 of 5) [9/10/2001 8:48:10 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 2, Step 2

NSUndoManager. If you bracket a call to your data variable'sset MyCheckbox: accessor
method with invocations of these two NSUndoManager methods, the accessor method will not
register the change with the undo manager. Y ou will now use this technique in the initialization of
the data variable associated with the checkbox control when a new document is created.

InMySet ti ngs. mreplacethelineof thei ni t Wt hDocunent method that initializes the
Checkbox data value, my CheckboxVal ue = YES; , with the following statements:

[[sel f undoManager] di sabl eUndoRegi stration];
[sel f set MyCheckboxVal ue: YES] ;
[[sel f undoManager] enabl eUndoRegi stration];

Later, in this and subsequent Recipes, when you initialize additional data variables, you will always
place the calls to their accessor methods between these two NSUndoManager methods.

2. InRecipe 1, Sep 4.2, you also took care to avoid registering with the undo manager when you
loaded the checkbox value from disk upon opening an existing document or reverting a document
to its saved state, which isaform of initialization that also requires bypassing undo manager
registration. The cureisidentical.

InMySet ti ngs. m replace the contents of ther est or eFr onDi ct i onar y: method with the
following:

[[sel f undoManager] di sabl eUndoRegi stration];
[sel f set MyCheckboxVal ue: (BOOL)[[di cti onary
obj ect For Key: nyCheckboxVal ueKey] i ntVal ue]];
[[sel f undoManager] enabl eUndoRegi stration];

Later, in this and subsequent Recipes, you will add additional calls to accessor methods between
the two NSUndoM anager methods.

3. Now, aremarkable thing happens. By using the accessor method to initialize the data variable in
ther est or eFronDi cti onary: method, it becomes possible to update the checkbox when a
document is reverted to its saved state by taking advantage of the fact that the accessor method
posts a notification. The specific view updater method you wrote in Recipe 1, Sep 5.3isa
notification method that is registered to receive and act upon this notification. The checkbox
control will therefore update automatically on screen when it receives the notification, not only
when the user invokes Undo or Redo, but also when the user reverts a document to its saved state.
Y ou no longer need to invoke the generic updater method explicitly in MyWindowController's
docunent Di dRevert method. Infact, you no longer need thedocunent Di dRevert method
at all, nor ther evert ToSavedFr onti | e: of Type: override method that you added to
MyDocunent . min Recipe 1, Sep 7. Y ou are able to ssimplify your code by removing these two

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step02.html (2 of 5) [9/10/2001 8:48:10 AM]

Vermont Recipes—Recipe 2, Step 2

methods.

Removethedocunent Di dRevert method declaration and definition from both

MyW ndowCont r ol | er. h and MyW ndowCont r ol | er . m Leave the"// Window
management” heading in placein MyW ndowCont r ol | er . h even though it will be left empty,
asyou will add a method to it in a moment.

In MyDocunent . m remove the definition of ther evert ToSavedFr onti | e: of Type:
override method.

4. Unfortunately, you still need to update the checkbox control explicitly in MyWindowController's
wi ndowDi dLoad method. The reason for thisisthat, when you initialize the data variable in the
My Settings object's initialization method or its load data method when a document is being created
or opened, its accessor method posts a notification before the control's update method in the
MyWindowController object has been registered as an observer. The checkbox user control doesn't
yet even exist, because a document that is being created or opened isinitialized before its window
appears or its window controller object is instantiated. The posting of the notification when nobody
isyet observing it is harmless, but you do have to update the user control yourself later, when the
window and its controller are created.

Thereis a better way to do even this, however. When you originally set up the checkbox updater
routines, you created both a specific updater for this user control and a generic updater for all two-
state checkboxes. For reasons that do not now seem important, you invoked the generic updater in
thewi ndowDi dLoad method in Recipe 1, Step 5.3. It will make for greater ease of maintenance
and upgrading if you invoke the specific updater, instead, because specific updaters for new
controls may want to do special things that cannot be implemented in a generic updater for all
controls of that kind. Although the specific updater is a notification method, you can invoke it
directly and passni | inits notification parameter.

While you're at it, because you know you will shortly add alarge number of controlsto the
application, it might be convenient to add a method where all calls to view updater methods can be
collected in one place. You can cal it updat eW ndow and place all of the invocations of view
update methods into it. Place the new method at the end of the W ndow nmanagenent section,
both in MW ndowCont r ol | er. h andin MyW ndowCont r ol | er . m, and invoke it once at
the end of thew ndowDi dLoad method.

In MW ndowCont r ol | er. h, declare the new updat eW ndow method in the recently
emptied Window management section, as follows:

- (voi d) updat eW ndow,

In MW ndowCont r ol | er. m defineit asfollows after thewi ndowDi dLoad method:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step02.html (3 of 5) [9/10/2001 8:48:10 AM]

Vermont Recipes—Recipe 2, Step 2

- (voi d)updat eW ndow {
[sel f updat eMyCheckbox:nil];

Inthew ndowDi dLoad method definition in MyW ndowCont r ol | er . m replace the second
line, after [super w ndowDi dLoad] , with an invocation of the new updat eW ndow
method, as follows:

[sel f updat eW ndow] ;

5. Aslong asyou're cleaning up the file, you might as well also create a separate method to hold all
the notification observer registrations that you will have to create as you add more user controls.

In MyW ndowCont r ol | er. h, at thetop of the Window management section before the
updat eW ndow method, declareanew r egi st er Noti fi cati onGbser ver s method:

- (void)registerNotificationCbservers;
In MW ndowCont r ol | er. m defineit asfollows, after wi ndowDi dLoad:

- (void)registerNotificationCbservers {
[[NSNot i fi cati onCent er
def aul t Cent er] addQObser ver: sel f
sel ector: @el ect or (updat eMyCheckbox:)
nanme: VR CheckboxVal ueChangedNoti fi cati on object:[self
nySettings]];
}

Inthew ndowDi dLoad method definition in MyW ndowCont r ol | er . m replace the
notification observer registration statement with an invocation of the new

regi sterNotificationCbservers method immediately beforethecall to[sel f
updat eW ndowj , asfollows:

[self registerNotificationCbservers];

Y ou have now prepared a solid foundation for implementing a number of new user controls.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step02.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step02.html (4 of 5) [9/10/2001 8:48:10 AM]

Vermont Recipes—Recipe 2, Step 2

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step02.html (5 of 5) [9/10/2001 8:48:10 AM]

Vermont Recipes—Recipe 2, Step 4

=114 > .COll

Articles - News - Softrak - Site Map - Status - Comments

Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 7, 2001 - 6:00 AM

Introduction > Contents > Recipe 2 > Step 4

Recipe 2: User controls—Buttons
Step 4: Checkboxes (switch buttons) in a bordered group box
. Highlights:
o Using acontrol as a group box title

o Disabling and enabling controls

In this Step, you will implement five more standard two-state checkboxes,

or switch buttons. This Step differs from the previous Step in three respects:

First, the topmost checkbox serves as the title of the group. Second, it
enables and disables the rest of the controlsin the group. Another checkbox
enables and disables a subgroup. Finally, the group is surrounded by a box
with borders because this makes its functioning clearer to the user. Boxes
are permitted in these circumstances by the Aqua Human Interface

Guidelines.

< BACK | NEXT >

_ [[] Play Music

The routine code in this Step is very similar—nearly identical—to much of the code in the previous Step.
The explanations will therefore be kept to a minimum, simply showing the code to be inserted. When in
doubt about the reason for any code snippet, refer to the corresponding instruction in Sep 3.

The routine steps needed to implement these controls are covered in instruction 2., below. The interesting
material is covered in instruction 1 and in instructions 3. and following. Here, the interesting material hasto
do with turning a control into a group box title in Interface Builder and using Project Builder to code the

enabling and disabling of the remaining user controls.

1. UselInterface Builder to create several new checkboxes grouped together. When you are done with

thisinstruction 1, the group should look like Screenshot 2-3.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (1 of 18) [9/10/2001 8:48:23 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html
http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html

Vermont Recipes—Recipe 2, Step 4

a. Open MyDocunent . ni b in Interface Builder and select the Buttons tab view item, if
necessary. Make sure the tab view item is selected, so that controls dropped in from the
palette land on that pane, not in the underlying tab view.

b. From the Views palette, drag five checkboxes onto the Buttons pane and arrange them
approximately as shown in Screenshot 2-3.

c. Rename the new checkboxes, from top to bottom, Pl ay Musi ¢ (without atrailing colon),
Al'l ow Rock,Recent Hits,d di es,andC assi cal .

d. Interface Builder doesn't et you turn the built-in title of a group box into a user control,
although the Aqua Human Interface Guidelines expressly allow the use of a checkbox label or
the text of a pop-up menu as a group box title, in addition to static text. Presumably, Interface
Builder will eventually be updated to make this possible directly, but in the meantime you
must devise atechnique of your own.

Y our first thought on creating atitle consisting of a checkbox might be to use a group box
without atitle and simply drag the control into the place where the title would normally
appear. Unfortunately, if you do that, the top border of the box will show through.

Y ou must therefore resort to a kludge to accomplish the desired effect. Select the last four
new switches, then choose Layout > Group in Box. A box appears surrounding the selected
items, with atitle at the top having the default title "Title." Drag the fifth checkbox, Play
Music, until it coversthe Title, then line them up on the same text baseline and align their left
edges; use the arrow keys as necessary to nudge the checkbox into position. Then choose
Layout > Send to Back. Select thetitle for editing, delete the word "Title," and type enough
space characters to expand the text area horizontally so that it is a couple of pixelswider than
the Play Music checkbox. Y ou will be left with atop border that has a gap just wide enough
to accept the Play Music checkbox. Choose Layout > Send to Back immediately while the
box is still selected.

There were some old NextStep devel oper's tricks to make the checkbox opague, so that you
wouldn't need a dummy title composed of spaces. One was to group the control in a
borderless, untitled box, then drag it over the top border. However, in Mac OS X this
technique no longer works, because the checkbox is clipped to invisibility as you drag it away
from the box. Another technique still works. Y ou can create a non-editable, non-selectable,
non-bordered text box with no content but a suitable background color to obscure the top
border of the group box. The dummy title with spacesis easier to implement, however, so
stick withiit.

e. You don't have to reposition any of the checkboxes within the box to comply with Aqua
guides, because the Group in Box command took care of that for you.

f. Thereisonefinal issue posed by the ssimulated group box title, namely, moving the box and
its checkbox title into position in the tab view item. If you drag the box without also selecting

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (2 of 18) [9/10/2001 8:48:23 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html

Vermont Recipes—Recipe 2, Step 4

the ssimulated title, their positioning relative to one another will be disrupted. The only redl
solution is to remember to select both of them before dragging. It used to be possible to make
them draggabl e together without having to select both, by grouping the box and the checkbox
into another box, but this no longer seems to provide fool proof protection against accidentally
dragging the inner box out of position relative to the checkbox that serves as atitle. For now,
select both and drag them into position. The left border of the group should be placed the
same distance from the left edge of the tab view item as the Checkbox control, and the
vertical gap between this group and the group above it should be the same as the gap between
that group and the Checkbox control aboveit.

2. Use Project Builder to write the code.

a. User control outlet variable and accessors. In the header file MyW ndowCont r ol | er . h,
declare five new outlets to access each of the new checkboxes, after the Pegs switch button

group, asfollows:

[/ Music
| BQut | et
| BQut | et
| BQut | et
| BQut | et
| BQut | et

switch button group

NSBut t on *nusi cCheckbox;
NSButt on *r ockCheckbox;

NSBut t on *r ecent RockCheckbox;
NSBut t on *ol di esRockCheckbox;
NSButt on *cl assi cal Checkbox;

Still in the header file, also declare accessors for the outlets after the Pegs switch button group
in the Accessor methods and conveniences section, as follows:

/1 Music switch button group
- (NSButton *)nusi cCheckbox;

(NSButton *)rockCheckbox;
(NSButton *)recent RockCheckbox;
(NSButton *)ol di esRockCheckbox;
(NSButton *)cl assi cal Checkbox;

In the source file MW ndowCont r ol | er . m define the accessors after the Pegs switch
button group in the Accessor methods and conveniences section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (3 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

/1l Music switch button group

(NSBut t on *) nusi cCheckbox {
return nmusi cCheckbox:

(NSButton *)rockCheckbox {
return rockCheckbox;

(NSButton *)recent RockCheckbox {
return recent RockCheckbox;

(NSButton *)ol di esRockCheckbox {
return ol di esRockCheckbox;

(NSButton *)cl assi cal Checkbox {
return cl assi cal Checkbox; }

b. Data variable and accessors. All of the new checkboxes require corresponding Boolean
variables in MySettings to hold the data they represent. The first checkbox ("Play Music:") is
used to determine whether music is turned on or off, so this value must be preserved. The
second switch ("Allow Rock") is used to control whether playing of rock music is allowed, so
it al'so needs adata variable. The remaining three switches record what kinds of music have
been selected. Two of them are subcategories of rock.

In the header file MySet t i ngs. h, declare four new variables after the Pegs section, as
follows:

/] Music

BOOL nusi cVal ue;

BOOL rockVal ue;

BOCL recent RockVal ue;
BOCL ol di esRockVal ue;
BOOL cl assi cal Val ue;

InMySet ti ngs. h, aso declare the corresponding accessor methods after the Pegs
subsection of the Accessor methods and conveniences section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (4 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4
/1 Music

- (voi d) set Musi cVal ue: (BOOL) val ue;
- (BOQL) nusi cVal ue;

- (voi d) set RockVal ue: (BOQOL) val ue;
- (BOQL) r ockVal ue;

- (voi d) set Recent RockVal ue: (BOCL) val ue;
- (BOQL) r ecent RockVal ue;

- (voi d)set A di esRockVal ue: (BOCOL) val ue;
- (BOQL) ol di esRockVal ue;

- (voi d)set d assi cal Val ue: (BOOL) val ue;
- (BOQL) cl assi cal Val ue;

Turn to the source file My Set t i ngs. mand define the accessor methods after the Pegs
subsection, as follows:

[l Music

- (voi d) set Musi cVal ue: (BOOL) val ue {

[[[sel f undoManager]
prepareWt hl nvocati onTar get : sel f]
set Musi cVal ue: nusi cVal ue] ;

nmusi cVal ue = val ue;

[[NSNoti ficationCenter defaultCenter]
post Noti fi cati onNanme: VRMusi cVal ueChangedNot i fi cati on
obj ect:sel f];

}

- (BOQL) nusi cVal ue {
return nusi cVal ue;

}

- (voi d) set RockVal ue: (BOOL) val ue {

[[[sel f undoManager]
prepareWt hl nvocati onTar get : sel f]
set RockVal ue: r ockVal ue] ;

rockVal ue = val ue;

[[NSNoti fi cati onCenter defaultCenter]
post Noti fi cati onNanme: VRRockVal ueChangedNot i fi cati on
obj ect:sel f];

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (5 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

}

- (BOQL) rockVal ue {
return rockVal ue;

(voi d) set Recent RockVal ue: (BOOL) val ue {
[[[sel f undoManager]
prepareWthl nvocati onTar get: sel f]
set Recent RockVal ue: r ecent RockVal ue] ;
recent RockVal ue = val ue;
[[NSNoti ficationCenter defaultCenter]
post Noti fi cati onNanme: VRRecent RockVal ueChangedNoti ficati on
obj ect: sel f];

}

- (BOQL) recent RockVal ue {
return recent RockVal ue;

}

- (void)set d di esRockVal ue: (BOOL) val ue {
[[[sel f undoManager]
prepareWt hl nvocati onTarget: sel f]
set A di esRockVal ue: ol di esRockVal ue] ;
ol di esRockVal ue = val ue;
[[NSNoti ficationCenter defaultCenter]
post Noti fi cati onNane: VRA di esRockVal ueChangedNot i fi cati on
obj ect: sel f];

}

- (BOQL) ol di esRockVal ue {
return ol di esRockVal ue;

}

- (voi d)set d assi cal Val ue: (BOOL) val ue {

[[[sel f undoManager]
prepareWt hl nvocati onTarget: sel f]
set Cl assi cal Val ue: cl assi cal Val ue] ;

cl assi cal Val ue = val ue;

[[NSNoti ficationCenter defaultCenter]
post Noti fi cati onNane: VRC assi cal Val ueChangedNotificati on
obj ect:sel f];

}

- (BOQL) cl assi cal Val ue {
return cl assi cal Val ue;

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (6 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

}

c. Notification variable. Return to the header file MySet t i ngs. h, at the bottom of thefile, to
declare the notification variables used in the set ...methods, as follows:

Il Music

extern NSString *VRWsi cVal ueChangedNoti ficati on;
extern NSString *VRRockVal ueChangedNoti fi cati on;
extern NSString

*VRRecent RockVal ueChangedNot i fi cati on;

extern NSString

*VRA di esRockVal ueChangedNot i ficati on;

extern NSString

*VRC assi cal Val ueChangedNot i fi cati on;

Turn back to the source file My Set t i ngs. m near the top of thefile, to define the
notification variables, asfollows:

/'l Music

NSSt ri ng *VRMusi cVal ueChangedNoti fication =

@ Musi cVal ue Changed Notification";

NSSt ri ng *VRRockVal ueChangedNotification =

@ RockVal ue Changed Notification";

NSStri ng *VRRecent RockVal ueChangedNoti fi cati on
@ Recent RockVal ue Changed Notification";

NSSt ri ng *VRA di esRockVal ueChangedNotification =
@ d di esRockVal ue Changed Notification";

NSSt ri ng *VRO assi cal Val ueChangedNotification =
@ d assi cal Val ue Changed Notification”;

d. GUI update method. Go now to the header file MyW ndowCont r ol | er. h to declare
methods to update the graphical user interface in response to these notifications, after the Pegs
subsection of the Specific view updaters section, as follows:

/1 Misic

- (voi d)updat eRecent RockCheckbox: (NSNoti fi cati on
*)notification;

- (voi d)updat ed di esRockCheckbox: (NSNot i fi cation
*)notification;

- (voi d)updat e assi cal Checkbox: (NSNoti fi cati on
*Inotification;

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (7 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

Y ou will also need update methods for the Play Music and Rock checkboxes, but this
involves some new thinking and will be deferred to instruction 4., below.

In the source file MyW ndowCont r ol | er . m define these specific update methods, after
the Pegs subsection of the Specific view updaters section, as follows:

[l Music

- (voi d) updat eRecent RockCheckbox: (NSNoti fi cation
*)notification {

[sel f updat eCheckbox:[self recent RockCheckbox]
setting:[[self nySettings] recentRockVal ue]];

}

- (voi d)updat ed di esRockCheckbox: (NSNoti fi cati on
*)notification {

[sel f updat eCheckbox:[sel f ol di esRockCheckbox]
setting:[[self mySettings] ol di esRockVal ue]];

}

- (voi d)updat ed assi cal Checkbox: (NSNoti fi cati on
*Jnotification {

[sel f updat eCheckbox:[self classical Checkbox]
setting:[[self nySettings] classical Val ue]];

}

e. Notification observer. Now register the window controller as an observer of the notifications
that will trigger these updaters, by inserting the following statements in the
regi sterNotificati onOobservers method of the sourcefile
MyW ndowCont r ol | er . m after the Pegs registrations:

/'l Music

[[NSNotificati onCenter defaultCenter]
addCbser ver: sel f

sel ect or: @el ect or (updat eRecent RockCheckbox:)
name: VRRecent RockVal ueChangedNoti fi cation
object:[self nySettings]];

[[NSNoti ficati onCenter defaultCenter]
addQObserver: sel f

sel ect or: @el ect or (updat ed di esRockCheckbox:)
name: VRA di esRockVal ueChangedNoti fi cation
object:[self nySettings]];

[[NSNotificati onCenter defaultCenter]

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (8 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

addObser ver: sel f

sel ect or: @el ect or (updat eCl assi cal Checkbox:)
nanme: VRC assi cal Val ueChangedNot i ficati on
object:[self nySettings]];

The Play Music and Rock switch updaters will be dealt with in instruction 5., below.

f. Action method. Next, you must add action methods. In the header file
MyW ndowCont r ol | er . h, after the Pegs section at the end, add the following:

/'l Misic

- (I BAction)recent RockAction: (i d)sender;
- (1 BAction)ol di esRockAction: (id)sender;
- (I BAction)cl assi cal Action: (id)sender;

Y ou will also need action methods for the Play Music and Rock switches, but these will be
deferred to instruction 3., below, because both require some new techniques.

In the source file MyW ndowCont r ol | er . m define these action methods, after the Pegs
section at the end,, as follows:

/] Music

- (I BAction)recent RockAction: (id)sender {
[[sel f nySettings] setRecent RockVal ue: ([sender
state] == NSOnState)];
if ([sender state] == NSOnState) {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set Recent Hits",
@ Name of undo/redo nenu itemafter Recent Hits
checkbox control was set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Cl ear Recent
H ts", @Nane of undo/redo nenu item after Recent
Hits checkbox control was cleared")];

}
}
- (I BAction)ol di esRockAction: (id)sender {

[[sel f nySettings] setd di esRockVal ue: ([sender
state] == NSOnState)];

if ([sender state] == NSOnState) {

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (9 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

[[[sel f docunment] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set A di es",
@ Nane of undo/redo nmenu itemafter 4 di es checkbox
control was set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@C ear O di es",
@ Nanme of undo/redo nenu item after A di es checkbox
control was cleared")];

}
}

- (I BAction)cl assi cal Action: (id)sender {
[[self nySettings] setd assical Val ue: ([sender
state] == NSOnState)];
if ([sender state] == NSOnState) {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set C assi cal ",
@ Name of undo/redo nenu item after C assi cal
checkbox control was set")];
} else {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ d ear d assi cal ",
@ Name of undo/redo nenu item after C assi cal
checkbox control was cleared")];

}
}

g. Localizable.strings. Don't forget to update the Local i zabl e. stri ngs filewith the undo
and redo menu titlesin the previous instruction.

h. Initialization. Don't initialize any of your new variables. When a new document is opened,
the Play Music checkbox will be unchecked and al of the other switches will be unchecked
and disabled.

i. Data storage. Take care now of persistent storage of the new data variables. In the sourcefile
MySet t i ngs. m define these keys at the end of the Keys and values for dictionary
subsection of the Persistent storage section:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (10 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

/'l Misic

static NSString *nusicVal ueKey = @ Musi cVal ue";
static NSString *rockVal ueKey = @ RockVal ue";
static NSString *recent RockVal uekKey =

@ Recent RockVal ue";

static NSString *ol di esRockVal uekKey =

@ A di esRockVal ue";

static NSString *cl assi cal Val uekKey =

@ d assi cal Vval ue";

Add these lines at the end of theconvert ToDi cti onary: method, using the new
methods from the VRStringUtilities category that you created in Step 3:

/'l Misic

[dictionary setCbject:[NSString stringWthBool :[self
nmusi cVal ue]] forKey: nusi cVal ueKey] ;

[dictionary setCbject:[NSString stringWthBool :[self
rockVal ue]] forKey:rockVal ueKey];

[dictionary setObject:[NSString stringWthBool :[self
recent RockVal ue]] forKey: recent RockVal uekey] ;
[dictionary setObject:[NSString stringWthBool :[self
ol di esRockVal ue]] forKey: ol di esRockVal ueKey] ;
[dictionary setCbject:[NSString stringWthBool :[self
cl assi cal Val ue]] forKey: cl assi cal Val ueKey] ;

Add these lines near the end of ther est or eFr onDi ct i onar y: method, before the
[[sel f undoManager] enabl eUndoRegi strati on] statement, also using the
new VRStringUtilities methods:

/'l Misic

[sel f set MusicVal ue:[[dictionary

obj ect For Key: nusi cVal ueKey] bool Val ue]];
[sel f setRockVal ue:[[dictionary

obj ect For Key: r ockVal ueKey] bool Val ue]];

[sel f set Recent RockVal ue:[[dictionary

obj ect For Key: r ecent RockVal ueKey] bool Val ue]];
[self setd di esRockVal ue: [[dictionary

obj ect For Key: ol di esRockVal ueKey] bool Val ue]];
[sel f setd assical Value: [[dictionary

obj ect For Key: cl assi cal Val ueKey] bool Val ue]];

j. GUI update method invocation. Finally, add calls to the control update methods to the

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (11 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

window controller. In MyW ndowCont r ol | er . m add the following calls at the end of the
updat eW ndow method:

Il Music

[sel f updat eRecent RockCheckbox: nil];
[sel f updat ed di esRockCheckbox: nil];
[sel f updat ed assi cal Checkbox: nil];

You will deal with the Play Music and Rock switchesin instruction 5., below.

3. You have left until the end the most interesting part of this Step, implementing the means to disable
and enable various groupings of checkboxes.

a. You will start with the two subsidiary checkboxes under the Rock checkbox, the Recent Hits
and Oldies checkboxes.

First, go back to Interface Builder. Select in turn the Recent Hits and the Oldies checkboxes.
In the NSButton Info palette, under Options, deselect the Enabled checkbox for each, so that
they will start up in adefault disabled state.

Then, in the header file MW ndowCont r ol | er . h, declare anew action method as
follows, at the top of the Music subsection in the Action methods and conveniences section:

- (I BAction)rockAction: (id)sender;

Then turn to the definition of this action method, which disables and enables the two
subsidiary checkboxes, the Recent Hits and Oldies checkboxes. In the sourcefile

MyW ndowCont r ol | er . m define its action method at the top of the Music subsection in
the Action methods and conveniences section, as follows:

- (I BAction)rockAction: (id)sender {

[[sel f nySettings] setRockVal ue: ([sender st ate]
== NSOnState)];

[[sel f recent RockCheckbox] setEnabl ed:[[self
mySettings] rockVal ue]];

[[sel f ol di esRockCheckbox] set Enabl ed:[[self
mySettings] rockVal ue]];

if ([sender state] == NSOnState) {

[[[sel f docunent] undoManager]

set Act i onNane: NSLocal i zedStri ng(@ Set Al | ow Rock",
@ Nane of undo/redo nenu item after Al | ow Rock
checkbox control was set")];

} else {

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (12 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

[[[sel f docunent] undoManager]
set Act i onNane: NSLocal i zedStri ng(@ Cl ear All ow Rock",
@ Nane of undo/redo nenu item after Al |l ow Rock
checkbox control was cleared")];

}
}

Y ou could have tested the on or off state of the Allow Rock checkbox to determine whether to
enable or disable the two subsidiary checkboxes, instead of testing the state of the

r ockVal ue variable. It is generally safer, however, to be consistent about relying on a data
variable whenever one exists, in order to minimize the possibility of the application's data and
its user interface getting out of sync.

Don't forget to provide for the localizable Undo/Redo menu item namesin
Local i zabl e. stri ngs.

b. The action method for the Play Music checkbox is more complicated. While considering
whether to enable and disable the subsidiary checkboxes in the group, it must take into
account the enabled or disabled state of the Rock checkbox with respect to its own sub-
subsidiary switches.

It will take several lines of code to enable or disable all of the subsidiary checkboxesin the
Play Music group. Thinking ahead, you anticipate that these same lines of code will have to
be called both in the action method and in the update method, since both methods must enable
or disable the group based on identical considerations. After all, a user might change the Play
Music setting variously by clicking the checkbox, by sending an AppleScript command, by
choosing Undo or Redo, or by reverting the document to its saved state. For efficiency's sake,
therefore, you first create a utility method to accomplish this task.

In the header file MyW ndowCont r ol | er . h, add the following declaration at the top of
the Music subsection of the Specific view updaters section:

- (voi d) enabl eMusi cG oup: (BOQL) f | ag;

In the source file MyW ndowCont r ol | er . m define the utility method at the top of the
Music subsection of the Specific view updaters section:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (13 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

- (voi d) enabl eMusi cG oup: (BOOL) fl ag {

[[sel f rockCheckbox] setEnabl ed: fl ag];

[[sel f recent RockCheckbox] setEnabl ed:flag &&
[[self nySettings] rockVal ue]];

[[sel f ol di esRockCheckbox] set Enabl ed: flag &&
[[self nySettings] rockVal ue]];

[[sel f cl assical Checkbox] setEnabl ed: fl ag];
}

Asyou see, the subsidiary Recent Hits and Oldies checkboxes are updated on the basis both
of the Play Music checkbox and the Allow Rock checkbox. If the Allow Rock checkbox is
off, for example, then setting the Play Music checkbox should not enable the subsidiary Rock
catagories.

Now you can turn to the nusi cAct i on: method. In the header file
MyW ndowCont r ol | er. h, declare anew action method as follows, at the top of the
Music subsection in the Action methods section:

- (I BAction) nusi cAction: (i d)sender;

At the top of the Music subsection of the Action methods section of the sourcefile
MyW ndowControl | er. m

- (I BAction) nusi cAction: (id)sender {
[[sel f nySettings] setMisicVal ue: ([sender state]
== NSOnState)];
[sel f enabl eMusi cGoup:[[self nySettings]
nmusi cVal ue]] ;
i f ([sender state] == NSOnState) {
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set Play Misic",
@ Name of undo/redo nenu itemafter Play Misic
checkbox control was set")];
} else {
[[[sel f docunment] undoManager]
set Acti onNane: NSLocal i zedString(@C ear Play Music",
@ Nanme of undo/redo nenu itemafter Play Misic
checkbox control was cleared")];

}
}

The default state of the Play Music checkbox will be off, so return to Interface Builder and

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (14 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

uncheck the Enabled checkbox in the Options section of the NSButton Info palette for the
Allow Rock and Classical checkboxes.

Finally, make sure the localizable Undo/Redo menu item names have been provided for in
Local i zabl e. strings.

4. Now for the update methods.

a. Theimplementation of the Play Music update method is very simple, because of the utility
method you created in instruction 3.b., above. In addition to doing what an update method
normally does—setting the state of its checkbox to on or off—it need only invoke the utility
method to enable or disable all of the other checkboxes in the group.

In the header file MyW ndowCont r ol | er . h, declare the update method as follows, at the
top of the Music subsection of the Specific view updaters section:

- (voi d) updat eMusi cCheckbox: (NSNoti fi cati on
*)notification;

In the source file MyW ndowCont r ol | er . m define the update method as follows, at the
top of the Music subsection of the Specific view updaters section:

- (voi d)updat eMusi cCheckbox: (NSNoti fi cati on
*)notification {

[sel f updat eCheckbox: [sel f nusi cCheckbox]
setting:[[self nySettings] mnusicVal ue]];

[sel f enabl eMusi cG oup: [[sel f nySettings]
musi cVal ue]] ;

}

Now make sure the updat eMusi cCheckbox: method gets called when its datavalue is
changed. In the source file MW ndowCont r ol | er . m add the following to the
regi sterNotificationObservers method, at the beginning of the Music section:

[[NSNoti fi cati onCenter defaultCenter]

addQObserver: sel f

sel ect or: @el ect or (updat eMusi cCheckbox:)

name: VRMusi cVal ueChangedNot i fi cati on object:[self
nmySettings]];

b. Do the same with the Allow Rock switch.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (15 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

In the header file MyW ndowCont r ol | er . h, declare the update method as follows, after
theenabl eMusi cG oup: method:

- (voi d)updat eRockCheckbox: (NSNoti fi cati on
*)notification;

In the source file MW ndowCont r ol | er . m define the update method as follows, after
theenabl eMusi cG oup: method:

- (voi d)updat eRockCheckbox: (NSNoti fi cati on
*)notification {

[sel f updat eCheckbox: [sel f rockCheckbox]
setting:[[self nySettings] rockVal ue]];

[[sel f recent RockCheckbox] setEnabl ed:[[self
mySettings] rockValue] && [[self mySettings]
nmusi cVal ue]] ;

[[sel f ol di esRockCheckbox] set Enabl ed:[[self
mySettings] rockValue] && [[self mySettings]
nmusi cVal ue]] ;

}

You might initially think that the updat eRockCheckbox: method doesn't need to test the
status of the Play Rock checkbox when updating the two subsidiary Rock checkboxes,
because if the Play Rock checkbox is unchecked the Rock checkbox will be disabled and the
user can't select it to invoke this method. However, you must always keep in mind that there
are other interfaces, such as AppleScript, that might be able to do things without paying
attention to GUI constraints (even if that might be a bug). Code defensively, and test the state
of all conditions on which updating a user control depends.

Now make sure the updat eRockCheckbox: method gets called when its datavalueis
changed. In the source file MW ndowCont r ol | er . m add the following to the

regi sterNotificationCOboservers method, after the

VRMusi cVal ueChangedNot i fi cat i on registration:

[[NSNotificati onCenter defaultCenter]
addObser ver: sel f

sel ect or: @el ect or (updat eRockCheckbox:)
nanme: VRRockVal ueChangedNoti fi cati on
object:[self nySettings]];

5. Onething remains. The graphical user interface must be updated when a document is created or

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (16 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

opened . As noted in instruction 2.j., above, you must therefore update the visible state of the Play
Music and Rock checkboxes. In MyW ndowCont r ol | er . m add the following calls at the
beginning of the Music section in the updat eW ndow method:

[sel f updat eMusi cCheckbox:nil];
[sel f updat eRockCheckbox:nil];

Also, theenabl eMusi cG oup: method must be invoked in thewi ndowDi dLoad method:
[sel f enabl eMusi cG oup:[[self nmySettings] nusicVal ue]];

Notice that the enabl eMusi cG oup: method does double duty here, enabling and disabling both
the Allow Rock subgroup and the Play Music group.

6. Before you can run the revised application, you must inform the nib file of the new outlets and
actions you have created in the code files, then connect them to the new checkboxes.

a. InInterface Builder, select the Classestab in the nib file window, then choose Classes > Read
File.... Inthe resulting dialog, select the two Vermont Recipes 2 header filesin which you
have created outlets or actions, MySet t i ngs. h and MyW ndowCont r ol | er . h, then
click the Parse button.

b. Select the Instances tab and Control-drag from the File's Owner icon to each of the five new
checkboxes in turn and, each time, click its outlet name then click the Connect button in the
Connections pane of the File's Owner Info palette.

c. Control drag from each of the five new checkboxes to the File's Owner icon in turn and, each
time, click the target in the left pane and the appropriate action in the right pane of the Outlets
section of the Connections pane of the NSButton Info palette, then click the Connect button.

7. Compile and run the application to test the interactions among the five new checkboxes. Be sure to
explore how undo and redo work, and make sure changes can be saved to disk, restored, and reverted

properly.

Take this opportunity to reconsider the user interface. Y ou decided early in this Step that it was
advisable to make this set of controls a boxed group with aborder. But is the border realy
necessary? To explore this question, go into Interface Builder, select the NSBox object by clicking in
an empty area near one of the checkboxes, and, in the NSBox Info palette, click the borderless Box
Type button. Save, build and run the application. It may be a close question, but a group with a
control for itstitle and subgroups within the main group, where the title disables all the controlsin
the group, seems clearer with aborder. Why don't you set it back to a bordered box and move on to
the next Step.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (17 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 4

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.htmi
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 2 > Step 4 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step04.html (18 of 18) [9/10/2001 8:48:23 AM]

Vermont Recipes—Recipe 2, Step 5

SV > .COl]

Articles - News - Softrak - Site Map - Status -
Comments

Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM

Introduction > Contents > Recipe 2 > Step 4 < BACK | NEXT >

Recipe 2: User controls—Buttons

Step 5: A radio button cluster

. Highlights:
o Using tags and an enumeration type to manage a radio button cluster

Radio buttons always come in clusters. A two-button cluster is sometimes —
preferred over a checkbox because it allows you to name the two states; for Party Affiliation:

example, achoice between "red” and "green” is more meaningful than the choice ™) Democratic
whether to turn "red" on or off. More than two radio buttonsin a cluster are very

™) Republican
common.

™ Socialist

Interestingly, no matter how many radio buttons are in a cluster, only one

variable is needed to store their value. This follows from the fact that only one button in the cluster can be
selected at atime. The value of the cluster can therefore be specified by an integer representing the ordinal
index of the selected button, starting with O for the first. It is customary, though not necessary, to use the C
enumeration type in order to assign meaningful names to each of the integer values.

Cocoa implements radio clusters and certain other grouped controls using matrices whose component cells
can be assigned "tags'. Each button in aradio button cluster is a separate cell in an NSMatrix object. You
can use the NSMatrix Info palette in Interface Builder to assign each button a unique tag value, which you
can use in your code to specify a particular button. These tags can be any value in any order, giving you
great flexibility. A common technique is simply to equate each tag to its cell's zero-based ordinal position
within the matrix, either horizontally or vertically. Just click the Tags = Positions button to accomplish this
for al the cells at once (in the current version of Interface Builder thisis done for you automatically).
Alternatively, you can select each button in turn and manually set the tags using the NSButton Info palette.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (1 of 9) [9/10/2001 8:48:32 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 2, Step 5

It isgenerally preferable to use tag or index valuesto identify user interface itemsin your code, instead of
using their titles, because localization may change thetitles.

This Step is remarkably simple. The interesting techniques and code appear in instructions 1.b., 2.b., d., f.,
and h., and 3.

1. Use Interface Builder to create a cluster of three radio buttons with atitle. When you are done with
thisinstruction 1, the group should look like Screenshot 2-4.

a. From the Views palette, drag the two-button radio button group to the upper right area of the
Buttons pane. Be careful to drop it on the pane, not the underlying window.

b. Select the cluster by clicking anywhere in it. There are two ways in which you can create a
third button. Using the NSMatrix Info palette, change the number of rows from 2 to 3 by
typing in the Row/Col form at the bottom right. More easily, you can option-drag the bottom
border of the matrix and watch the new buttons appear before your eyes. Using either
technique, create athird button.

c. Rename the three buttons "Democratic,” "Republican,” and "Socialist," respectively. (Bernie
Sandersis the socialist Congressman from Vermont. Local tub thumping will hopefully be
forgiven in these Vermont Recipes.)

d. Drag the Message Text textbox onto the Buttons pane, placing it above and alittle to the left
of the radio buttons. The Aqua guides should be used to position the baseline of the text at
the same level as the baseline of the Checkbox control's label. Then drag the radio button
cluster in order to use the Aqua guides to position it the proper distance below the Message
Text.

e. Rename the textbox "Party Affiliation:" (note the trailing colon). Y ou may have to choose
Layout > Sizeto Fit to make the new text fully visible.

f. Inthe NSTextField Info palette, uncheck the Selectable Option and make sure the Editable
Option is also unchecked. This text field holds static text, that is, a heading that the user
should not be able to edit, select or copy to the clipboard.

2. Use Project Builder to write the code.

a. User control outlet variable and accessors. In the header file
MyW ndowCont r ol | er . h, declare anew outlet to access the radio button cluster, after
the Music switch button group, as follows:

/[l Party radio button cluster
| BQutl et NSMatrix *partyRadi od uster;

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (2 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5

Still in the header file, also declare the accessor for the outlet, after the Music switch button
group, asfollows:

/[l Party radio button cluster
- (NSwatri x *)partyRadi od uster;

In the source file MW ndowCont r ol | er . m define the accessor after the Music switch
button group, as follows:

/[l Party radio button cluster

- (NSMatri x *)partyRadi oC uster {
return partyRadi oCl uster;

b. Data variable and accessors. The variable that will hold the data val ue associated with the
radio button cluster can be asimple C integer type, and its accessors and other methods can
accept and return integers. However, the use of the C enumeration type to substitute
constants for integers often promotes more understandabl e code.

In the header file MySet t i ngs. h, declare a new type immediately following the
#i npor t directive, asfollows:

t ypedef enum {
VRDenocr ati c,
VRRepubl i can,
VRSoci al i st

} VRParty;

Now you can declare the data variable as type VRPar t y instead of typei nt . You will see
an example of how to do thisin instruction 2.h., below.

When you use typedefs like this, you should generally prefix them with unique initialsto
avoid possible naming conflicts with third-party frameworks that you might use, just as you
did earlier (and will continue to do) with the notification names. Y ou should even follow
this practice when naming your classes, although in Vermont Recipesthe use of "My" asa
class prefix (asin "MyDocument") is probably sufficient, if somewhat trite.

In the header file MySet t i ngs. h, declare the variable to access the data val ue associated
with the radio button cluster, after the Music section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (3 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5

[l Party
VRParty partyVal ue;

InMySet ti ngs. h, also declare the corresponding accessor methods after the Musi ¢
section, as follows:

/'l Party

- (voi d)set PartyVal ue: (VRParty)val ue;
- (VRParty)partyVal ue;

Turn to the source file My Set t i ngs. mand define these accessor methods after the
Musi ¢ section, asfollows:

/[l Party

- (void)set PartyVal ue: (VRParty)val ue {

[[[sel f undoManager]
prepareWt hl nvocati onTarget: sel f]
set PartyVal ue: partyVal ue];

partyVal ue = val ue;

[[NSNoti fi cati onCenter defaultCenter]
post Noti fi cati onNane: VRPar t yVal ueChangedNot i fi cati on
obj ect:self];

}

- (VRParty)partyVal ue {
return partyVal ue;

c. Notification variable. Return to the header file MySet t i ngs. h, at the bottom of thefile,
to declare the notification variable used in the set ... method, as follows:

[l Party
extern NSString *VRPartyVal ueChangedNoti fi cati on;

Turn back to the source file My Set t i ngs. m near the top of thefile, to define the
notification variable, asfollows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (4 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5

[l Party
NSStri ng *VRPart yVal ueChangedNotification =
@ PartyVal ue Changed Notification";

d. GUI update method. Now you need a method to update the graphical user interface in
response to this notification. First, however, since you are dealing with a new kind of
control, you must devise a new generic method to update radio clusters. In the header file
MyW ndowCont r ol | er . h, declare the following method at the end of the Generic view
updaters section:

- (voi d)updat eRadi oCl uster: (NSMatri x *)control
setting: (int)val ue;

Because this is a generic method that must be able to update many different radio button
clusters, the second parameter must be typed as an integer rather than the enumeration type
you have created for this particular button.

Now define this method in the corresponding location in MyW ndowCont rol | er. m as
shown below. Here you see how matrix-based groups of controls can express their values,
namely, by reporting the value of the tag of the currently-selected cell. By the same token,
such a control's view is updated by selecting the cell whose tag corresponds to the integer
value passed to it.

- (voi d)updat eRadi oCl uster: (NSMWatri x *)control
setting: (int)value {
if (value !'=[[control selectedCell] tag]) {
[control selectCell WthTag: val ue];

}

Now you can declare the specific udpater in the header file MyW ndowContr ol | er. h,
after the Music subsection of the Specific view updaters section, as follows:

/'l Party
- (voi d)updat ePart yRadi oCl uster: (NSNotification
*Ynotification;

In the source file MyW ndowCont r ol | er . m define this specific update method, after the
Music subsection of the Specific view updaters section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (5 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5
[l Party

- (voi d)updat ePart yRadi oCl uster: (NSNotification
*Jnotification {

[sel f updat eRadi oCl uster:[self
partyRadi oCl uster] setting:[[self nySettings]
partyVal ue]];

}

e. Notification observer. Now register the window controller as an observer of the
notification that will trigger this updater, by inserting the following statement in the
regi sterNotificationObservers method of the sourcefile
MyW ndowCont r ol | er . m after the Music registrations:

/[l Party

[[NSNoti ficati onCenter defaultCenter]

addCobserver: sel f

sel ector: @el ect or (updat ePart yRadi oCl uster:)
name: VRPar t yVal ueChangedNot i fi cati on object:[self
nmySettings]];

f. Action method. Next, you must add an action method. In the header file

MyW ndowCont r ol | er . h, after the Music subsection at the end of thefile, add the
following:

Il Party
- (I BAction)partyAction: (id)sender;

In the source file MyW ndowCont r ol | er . m define the action method, after the Music
subsection at the end, as shown below. Here, again, you see the use of a cell'stag in a matrix-
based user control. Since there may be multiple values associated with multiple radio
buttons in the cluster, you must useaC swi t ch statement or chainedi f ...el se
statements.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (6 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5
[l Party

- (I BAction)partyAction: (id)sender {
[[self nySettings] setPartyVal ue:[[sender
sel ectedCell] tag]];
swtch ([[sender selectedCell] tag]) {
case 0O:
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Sel ect Denocratic
Party", @Nanme of undo/redo nenu item after
Denocratic radi o button was sel ected")];
br eak;
case 1.
[[[sel f docunent] undoManager]
set Act i onName: NSLocal i zedSt ri ng(@ Sel ect Republ i can
Party", @Nane of undo/redo nenu item after
Republ i can radi o button was sel ected")];
br eak;
case 2:
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Sel ect Soci al i st
Party", @Nane of undo/redo nenu item after
Soci alist radio button was selected")];
br eak;

}

g. Localizablestrings. Updatethe Local i zabl e. st ri ngs filewith these undo and redo
menu titles.

h. Initialization. To give you an example of how to use the enumeration type you defined in
instruction 2.b., above, you will now set the value of the par t yVal ue variable to
VRRepubl i can, which is one of the constants you defined there.

Inthe sourcefile MySet ti ngs. m add thislineto thei ni t Wt hDocunent : method,
after theinitialization of t r i angl ePegsVal ue:

[sel f setPartyVal ue: VRRepubl i can];

Also, return to Interface Builder to make sure the initial appearance of the radio button
cluster is correct. First, select the Republican radio button. To do this, you must first select
the entire cluster by clicking it, then double-click the Republican radio button. Then, in the
Options area of the NSButtonCell Info palette's Attributes pane, check the Selected

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (7 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5

checkbox. Y ou will see the Republican radio button become selected immediately. It is not
necessary to select the Democratic radio button and uncheck the Selected checkbox, because
selecting the Republican radio button did this for you automatically. Now, when the
application launches and a document opens, the Democratic radio button will appear
selected by default.

i. Data storage. Deal now with persistent storage of the new data variables. In the source file
MySet ti ngs. m definethis key at the end of the Keys and values for dictionary
Subsection:

/[l Party
static NSString *partyVal uekey = @PartyVal ue";

Add theselines at the end of the conver t ToDi cti onary: method:

Il Party

[dictionary setCbject:[NSString
stringWthFormat: @ %", [self partyVal ue]]
f or Key: part yVal ueKey] ;

Add these lines near the end of ther est or eFr onDi cti onary: method, before the call
to[[sel f undoManager] enabl eUndoRegi strati on]:

[l Party
[self setPartyVal ue: (VRParty)[[dictionary
obj ect For Key: part yVal ueKey] i ntVal ue]];

Y ou will notice that you are saving and retrieving integer values here. Y ou could instead
add methods to the VRStringUTtilities category that you implemented in Sep 3 in order to
save the enumeration constants as strings, to make the file more readable for anyone
examining it with agenera file utility. Thisisleft as an exercise for the reader; however,
you can examine the project source files to see how we did it. Hint: In addition to writing
the new methods in the VRStringUtilities category, you will have to call them in the
convert ToDi ctionary: andrestoreFronDi cti onary: methodsin
MySettings. m

j. GUI update method invocation. Finally, add an invocation of the control update method to
the window controller. In MyW ndowCont r ol | er . m add the following call at the end of
the updat eW ndow method :

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (8 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 5

/[l Party
[sel f updatePartyRadi oCl uster:nil];

3. You must inform the nib file of the new outlet and action you have created, then connect them to
the new radio button cluster.

a. InInterface Builder, select the Classes tab in the nib file window, then choose Classes >
Read File.... In the resulting dialog, select the two header filesin which you have created an
outlet and an action, MySet t i ngs. h and MyW ndowCont r ol | er. h, then click the
Parse button.

b. Select the Instances tab and Control-drag from the File's Owner icon to the new radio cluster
and click its outlet name, then click the Connect button in the Connections pane of the File's
Owner Info palette. Take care that the entire radio cluster is enclosed in the square at the end
of the line while you are drawing the connection. If you aren't careful, you will end up
selecting one of the individual radio buttons, which is not what you want here.

c. Control drag from the new radio cluster to the File's Owner icon and click the target in the
left pane and the appropriate action in the right pane of the Outlets section of the
Connections pane of the NSButton Info palette, then click the Connect button. Again, make
sure you start the drag with the entire radio cluster, not one of the individual radio buttons.

4. Compile and run the application to test the interactions among the new radio buttons, explore how
undo and redo work, and make sure changes can be saved to disk, restored, and reverted properly.
If you haven't done so already, try changing afew of the controls you created in Steps2 and 3in
between changing radio button selections, then undo all your actions in turn to confirm that
multiple undo unwinds your actions in the same order no matter which controls or groups of
controls are involved. If you took up the challenge to modify the VRStringUtilities category, use
PropertyListEditor on a saved file to be sure the party affiliation was saved as a string value rather
than an integer.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 2 > Step 5 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step05.html (9 of 9) [9/10/2001 8:48:32 AM]

Vermont Recipes—Recipe 2, Step 6

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 2 > Step 6 < BACK | NEXT >
Recipe 2: User controls—Buttons
Step 6: A pop-up menu button
. Highlights:
o Using an index and an enumeration type to manage a pop-up menu button
A pop-up menu button_ (also knovv_n as a pop-up list) @ Republican
State: VT %1 isvery similar in function to aradio button cluster. It - -

allows you to choose one among multiple listed . M
options, but the user hasto click it to see all of the MA
options it offers. The current choice appearsin the button asitstitle, andwhen ~ State «* NH B
thelist is expanded by holding down the mouse button over it, the list extends RI
above and below the button as far as needed to alow the current choice to Bee Vi n

remain positioned where it was, on the button. According to the Mac OS 8 A .
Human Interface Guidelines, radio button clusters should max out at

"approximately seven" options. If you offer more than about seven options, consider using a pop-up menu
button instead. Y ou can also use a pop-up menu button when there are fewer than seven options, as space
or design considerations may dictate.

Like aradio button cluster, only one variable is needed to store the value of a pop-up menu button. The
value of the button can be specified in your code by a unique tag you assign, possibly using Interface
Builder, asin the case of radio buttons, or as an integer index representing the zero-based positional index
of the currently-selected menu item. It is customary, though not necessary, to use the C enumeration type
in order to assign meaningful names to each of the integer values. There are times when tags are more
useful, such as when you will continually re-al phabetize the menu items. Here, however, you will use
Index values to see how it is done.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (1 of 9) [9/10/2001 8:48:40 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://developer.apple.com/techpubs/mac/pdf/HIGOS8Guidelines.pdf
http://developer.apple.com/techpubs/mac/pdf/HIGOS8Guidelines.pdf

Vermont Recipes—Recipe 2, Step 6

Because the selected menu item in the pop-up menu button here will be identified by itsindex, it is not
necessary to set itstag. Except for using the index instead of the tag, coding a pop-up menu button is
virtually identical to coding aradio button cluster. Asisthe case with radio button clusters, it is possible to
use the titles of the separate items to select and obtain the selection of a pop-up menu button, and Cocoa
provides methods to convert among index, tag and title.

1. UseInterface Builder to create a pop-up menu button. When you are done with thisinstruction 1, it
should look like Screenshots 2-5a and b.

a. From the Views palette, drag the pop-up menu button to the Buttons pane, below the Party
Affiliation radio button cluster. The pop-up menu button is distinguished by the double
arrows at itsright end. Be careful to drop it on the pane, not the underlying tab view.

b. Select the button by double-clicking it. Three menu items appear superimposed over it. Add
two more menu itemsto the list. Y ou do this by switching to the Menus pal ette, then
dragging the menu item named "Item" to the bottom of the list twice.

c. Rename the five menuitems"ME," "MA," "NH," "RI," and "VT," respectively. Select the
menu item with a checkmark beside it and, in the NSMenultem Info pal ette, select the Off
radio button. Select the VT menu item last in order to leave it showing as the default
selection when the list is collapsed, and select the On radio button in the Info pal ette.
(Vermont is one of the five New England states. Tub thumping again.)

d. Drag the Message Text textbox onto the Buttons pane, placing it to the left of the pop-up
menu button.

e. Rename the textbox "State:" (note the trailing colon), and choose Layout > Size to Fit to
shrink the size of the item. Drag the textbox until it is aligned at the left edge below thetitle
of the radio button cluster, using the Agua guides for precise positioning. Then drag the pop-
up menu so that itstext baseline is on the baseline of the text field and it is the proper
distance to the right of the text field.

f. Using the Options area of the Info palette, make sure the text field is not Editable or
Selectable, but Enabled.

g. Select the pop-up button and choose Layout > Size to Fit to size the new button
appropriately relative to itslongest item, and position it in the pane according to the
guidelines.

2. Use Project Builder to write the code.

a. User control outlet variable and accessors. In the header file
MyW ndowCont r ol | er . h, declare anew outlet to access the pop-up menu button, after
the Party radio button cluster section, asfollows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (2 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6

/[l State pop-up nenu button
| BQut | et NSPopUpButton *statePopUpButton;

Still in the header file, also declare the accessor for the outlet, after the Party radio button
cluster section, asfollows:

[/ State pop-up nenu button
- (NSPopUpButt on *) st at ePopUpButt on;

In the source file MyW ndowCont r ol | er . m define the accessor after the Party radio
button cluster section, as follows:

/|l State pop-up nmenu button

- (NSPopUpButt on *) st at ePopUpButton {
return statePopUpButton;

b. Data variable and accessors. Create the variable that will hold the data value associated
with the pop-up menu button and arelated C enumeration type. In the header file
MySet t i ngs. h, declare anew type following the party enumeration type, as follows:

t ypedef enum {
VRMai ne,
VRMVassachusett s,
VRNewHanpshi re,
VRRhodel sl and,
VRVer nont

} VRSt at e;

Still in the header file, declare the variable to access the data value associated with the pop-
up menu button, after the Party section, asfollows:

/] State
VRSt at e st at eVal ue;

InMySet ti ngs. h, also declare the corresponding accessor methods after the Par t y
section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (3 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6
[l State

- (voi d)set St at evVal ue: (VRSt at e) val ue;
- (VRSt at e) st at eVal ue;

Turn to the source file My Set t i ngs. mand define these accessor methods after the
Par t y section, asfollows:

/] State

- (voi d)set St at eVal ue: (VRSt at e) val ue {
[[[sel f undoManager]
prepareWt hl nvocati onTarget: sel f]
set St at eVal ue: st at eVal ue] ;
st at eVal ue = val ue;
[[NSNotificationCenter defaultCenter]
post Not i fi cati onNane: VRSt at eVal ueChangedNoti fi cation
obj ect:self];

}

- (VRSt at e) st at eVal ue {
return stateVal ue;

c. Notification variable. In the header file MySet t i ngs. h, at the bottom of thefile, declare
the notification variable used in the set ...method, as follows:

/'l State
extern NSString *VRSt at eVal ueChangedNoti ficati on;

In the sourcefile MySet t i ngs. m at the end of the notification definitions near the top,
define the notification variable, asfollows:

/] State
NSStri ng *VRSt at eVal ueChangedNotification =
@ St at eVal ue Changed Notification";

d. GUI update method. Y ou are dealing with a new kind of control, so you must again define
anew generic method to update pop-up menu buttons. Y ou will use the index of its selected
menu item. In the header file MyW ndowCont r ol | er . h, declare the following method at
the end of the Generic view updaters section:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (4 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6

- (voi d) updat ePopUpBut t on: (NSPopUpButt on *) contr ol
setting: (int)val ue;

Because this is a generic method that must be able to update many different pop-up menu
buttons, the second parameter must be typed as an integer rather than any specific
enumeration constant.

Now define this method in the corresponding location in MyW ndowCont rol | er. m as
shown below. Here you see that the button reports the value of the index of the currently-
selected menu item. By the same token, such a control's view is updated by selecting the
menu item whose index corresponds to the integer value passed to it.

- (voi d) updat ePopUpBut t on: (NSPopUpButt on *) cont r ol
setting: (int)val ue {
i f (value !'=[control indexOrSelectedlitenm) {
[control selectltemAt! ndex: val ue];
}

Now you can declare the specific udpater, after the Party subsection in the Specific view
updaters section of MyW ndowCont r ol | er . h, asfollows:

/[l State
- (voi d)updat eSt at ePopUpBut t on: (NSNot i ficati on
*)notification;

In the source file M\yW ndowCont r ol | er . m define this specific update method, after the
Music subsection of the Specific view updaters section, as follows:

/] State

- (voi d)updat eSt at ePopUpBut t on: (NSNot i fi cati on
*Jnotification {

[sel f updat ePopUpButton:[self statePopUpButton]
setting:[[self nySettings] stateValue]];

}

e. Notification observer. Register the window controller as an observer of the notification that
will trigger this updater, by inserting the following statement in the

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (5 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6

regi sterNotificationObservers method of the sourcefile
MyW ndowCont r ol | er . m after the Party registration:

/'l State

[[NSNoti ficationCenter defaultCenter]

addQbserver: sel f

sel ector: @el ect or (updat eSt at ePopUpBut t on:)

nanme: VRSt at eVal ueChangedNot i fi cati on object:[self
mySettings]];

f. Action method. Add an action method. In the header file MyW ndowControl | er. h,
after the Party section at the end, add the following:

/]l State
- (I BAction)stateAction: (id)sender;

In the source file MW ndowCont r ol | er . m define the action method, after the Music
section at the end of the file, as shown below. Here, again, you see the use of the menu
item's index.

/] State

- (I BAction)stateAction: (id)sender {
[[sel f nySettings] setStateVal ue:[sender
I ndexCf Sel ectedltem];
switch ([sender indexOSelectedlten]) {
case O:
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Sel ect ME"
@ Narme of undo/redo nmenu item after Mine pop-up
nmenu button was sel ected")];
br eak;
case 1:
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Sel ect MA"
@ Nane of undo/redo nenu item after Massachusetts
pop-up nenu button was selected")];
br eak;
case 2:
[[[sel f docunent] undoManager]
set Act i onNane: NSLocal i zedStri ng(@ Sel ect NH',
@ Nane of undo/redo nmenu item after New Hanpshire

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (6 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6

pop-up nenu button was selected")];
br eak;
case 3.
[[[sel f docunent] undoManager]
set Act i onNane: NSLocal i zedStri ng(@ Sel ect Rl ",
@ Nane of undo/redo nenu item after Rhode Island
pop-up nenu button was sel ected")];
br eak;
case 4:
[[[sel f docunent] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Sel ect VT
@ Nanme of undo/redo nenu item after Vernont pop-up
menu button was sel ected")];
br eak;

}

g. Localizablestrings. Updatethe Local i zabl e. st ri ngs filewith these undo and redo
menu titles.

h. Initialization. Set the value of the st at eVal ue variable to VRVer nont , which is one of
the constants you defined in the VRSt at e enumeration type. In the sourcefile
MySetti ngs. maddthislinetothei ni t Wt hDocunent : method, after the
initialization of par t yVal ue:

[sel f set StateVal ue: VRVer nont] ;

Y ou aready set up the Interface Builder selection in instruction 1.c., above.

I. Data storage. Deal now with persistent storage of the new data variables. In the sourcefile
MySet ti ngs. m definethiskey at the end of the Keys and values for dictionary section:

/[l State
static NSString *stateVal ueKey = @ St at evVal ue”;

Add these lines at the end of theconvert ToDi cti onary: method:

/]l State

[dictionary set Qbject:[NSString
stringWthFormat: @ %", [self stateVal ue]]
f or Key: st at eVal ueKey] ;

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (7 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6

Add these lines near the end of ther est or eFr onDi cti onar y: method, before the call
to[[sel f undoManager] enabl eUndoRegi stration]:

[l State
[self setStateValue: (VRState)[[dictionary
obj ect For Key: st at eVal ueKey] i ntVal ue]];

Y ou will notice once again that you are saving and retrieving integer values here. Y ou could
instead add still more methods to the VRStringUtilities category that you implemented in
Sep 3 in order to save the enumeration constants as strings, to make the file more readable
for anyone examining it with afile reading utility. Thisisleft as an exercise for the reader;
however, you can examine the project source files to see how we did it.

j. GUI update method invocation. Finally, add invocations of the control update method to
the window controller. In MyW ndowCont r ol | er . m add the following call at the end of
the updat eW ndow method:

/1l State
[sel f updat eSt at ePopUpButton:nil];

3. You must inform the nib file of the new outlet and action you have created, then connect them to
the new pop-up menu button.

a. InInterface Builder, select the Classes tab in the nib file window, then choose Classes >
Read File.... In the resulting dialog, select the two Vermont Recipes 2 header filesin which
you have created an outlet and an action, MySet t i ngs. h and
MyW ndowCont r ol | er . h, then click the Parse button.

b. Select the Instances tab and Control-drag from the File's Owner icon to the new pop-up
menu button and click its outlet name, then click the Connect button in the Connections
pane of the File's Owner Info palette.

c. Control drag from the new pop-up menu button to the File's Owner icon and click the target
in the left pane and the appropriate action in the right pane of the Outlets section of the
Connections pane of the NSButton Info palette, then click the Connect button.

4. Compile and run the application to test the new pop-up menu button, and explore how undo and
redo work and make sure changes can be saved to disk, restored, and reverted properly.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (8 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 6

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step06.html (9 of 9) [9/10/2001 8:48:40 AM]

Vermont Recipes—Recipe 2, Step 7

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 2 > Step 7 < BACK | NEXT >

Recipe 2: User controls—Buttons
Step 7: A pull-down menu button

. Highlights:
o Issuing commands from menu items in a pull-down menu button

A pull-down menu button (also known as a pull-

Beeper ‘v downlist) isan NSPopUpButton, but with a Beeper ﬂ
dlightly different appearance, behavior and '
function. It has a single down-pointing arrow at

the right end, signifying that it only pulls down, instead of two arrows
pointing in opposite directions. Like a pop-up menu button, it allows you to
choose one among multiple listed options. However, the button's title never
changes, and the current choice thus doesn't appear in the button except when the list is expanded by
holding down the mouse button over it. This behavior makesit suitable for choosing optionsin a
constrained environment, where the context is fixed and readily apparent, and a constricted space, where a
label can't appear beside it. It can also be used to choose and execute commands, since each menu item
can have its own action method.

Beep Once
Beep Twice

Here, you will create a pull-down menu button whose menu items simply beep the indicated number of
times. The beeps are for demonstration purposes only, of course; they are stand-ins for whatever actions
you might want to perform in your application. It is good to know, however, that there is an NSBeep()
function in the AppKit, which can be used at any time to play an alert sound based on the user's system
preferences. Since the pull-down menu is purely action-oriented, you will not need to provide for a data
value, nor, therefore, undo, redo, save, read, or revert. All you need are outlets and actions.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step07.html (1 of 3) [9/10/2001 8:48:47 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 2, Step 7

This Step differs from the previous Step in that you will work with the two individual menu items, rather
than the pull-down menu button itself.

1. UseInterface Builder to create a pull-down menu button. When you are done with this instruction
1, it should look like Screenshot 2-6a and b.

a. From the Views palette, drag the pop-up menu button to the Buttons pane, below the State
pop-up menu button. Y ou will change the new button to a pull-down menu button in a
moment.

b. Select the button by double-clicking it. Three menu items appear superimposed over it.
Select the topmost item for editing, and name it "Beeper." Name the next two items "Beep
Once" and "Beep Twice" and set their States to Off. The topmost button will become the
fixed title when you change the button to a pull-down button. (Should you want to retitle it
later, you will have to turn it back into a pop-up menu button temporarily.)

c. Click outside the button to dismiss the menu items, then select the button itself again. In the
NSPopUpButton Info palette, click the PullDown radio button. Y ou will see the button
change appearance to that of a pull-down menu button.

d. If necessary, choose Layout > Size to Fit to size the new button appropriately relative to its
longest item, and position it in the pane according to the Aqua guides.

2. Use Project Builder to write the code.

a. User control outlet variable and accessors. If you were planning to implement some
means to disable the two menu items, Begp Once and Beep Twice, you would need to create
two new outletsin MyWindowController, using the same technique you used in Step 5,

instruction 2.a.. You might call these new outletsbeepl1Menul t emand

beep2Menul t em Their type would be NSMenultem. Y ou would need to declare the
variable and the accessor method in the header file, and define the accessor method in the
sourcefile.

However, since you aren't going to let the user disable these menu items, you don't need
outlets or accessor methods for them. Y ou don't need to create a data variable, because there
Is no data value associated with the pull-down menu button, nor do you need aC
enumeration type. For the same reason, you don't need notifications to update the control or
an observer. All you need are action methods.

b. Action method. Y ou will create two action methods, one to carry out the commands issued
by each of the two menu items in the pull-down menu button. In the header file
MyW ndowCont r ol | er . h, after the State subsection at the end, add the following:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step07.html (2 of 3) [9/10/2001 8:48:47 AM]

Vermont Recipes—Recipe 2, Step 7

/| Beeper
- (I BAction)beeplAction: (id)sender;
- (1 BAction) beep2Action: (id)sender;

In the source file MyW ndowCont r ol | er . m define the action methods, after the State
section at the end, as shown below. NSBeep() isaCocoa function that beeps.

/| Beeper

- (I BAction)beeplAction: (id)sender {
NSBeep() ;

}

- (I BActi on) beep2Acti on: (i d)sender {
NSBeep() ;
NSBeep() ;

}

There are no undo or redo strings to be updated inthe Local i zabl e. stri ngs file, no
datato initialize or store, and no control update methods to invoke.

3. You must inform the nib file of the new actions you have created, then connect them to the new
pull-down menu button's menu items.

a. InInterface Builder, select the Classes tab in the nib file window, then choose Classes >
Read File.... In the resulting dialog, select the header file in which you have created the
actions, MyW ndowCont r ol | er . h, then click the Parse button.

b. Double-click the pull-down menu to reveal the two menu items.

c. Control drag from each of the new menu itemsto the File's Owner icon in turn, and click the
target in the left pane and the appropriate action in the right pane of the Outlets section of
the Connections pane of the NSButton Info palette, then click the Connect button.

4. Compile and run the application to test the new pull-down menu button, listening for the beeps.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_stepO7.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 2 > Step 7 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step07.html (3 of 3) [9/10/2001 8:48:47 AM]

Vermont Recipes—Recipe 2, Step 8

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
June 20, 2001 - 9:00 AM
Introduction > Contents > Recipe 2 > Step 8 < BACK | NEXT >

Recipe 2: User controls—Buttons

Step 8: Bevel buttons to navigate a tab view

. Highlights:
o Placing an image and text on a bevel button
o Creating a navigation button that appears on every tab view item in atab view
o Using a delegate method to disable navigation buttons when the first or last tab view itemis
selected

Bevel buttons are ordinary buttons, except that they are square and come in any
size. In Mac OS X, the bevel height is always the same, no matter the size of the
button. Bevel buttons usually hold an image or icon, and they can also contain text,
usually placed below the image. The Aqua Human Interface Guidelines don't

specify afont size for the label but they do note that the Finder uses a 10-point font.

- -

Back

In this Step, you will create two bevel buttons that behave as push buttons. They highlight momentarily
when clicked but do not alter their appearance, as a"sticky" button does. They will function as navigation
buttons to take the user back to the previous pane (tab view item) or forward to the next pane.

There are two interesting techniques used in this Step.

First, asingle pair of navigation buttons will be made to appear asif they were different buttons in each of
the tab view items, by the smple expedient of dropping them into the window instead of onto the tab
view. They could be placed to one side of the tab view, but it can be made to appear as if there are buttons
in every tab view item by placing them in the same space occupied by the tab view and layering them in
front of the tab view.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (1 of 7) [9/10/2001 8:48:55 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html

Vermont Recipes—Recipe 2, Step 8

Second, a delegate method is implemented, taking advantage of the ability of NSTabView to tell its
delegate when a new tab view item has been selected and is about to come to the front. Y ou need some
means to disable the Back button when the first tab view item is selected, and to enable it when another tab
view item is selected. Similarly, you need a means to disable the Next button when the last tab view item
Is selected, and to enable it when another tab view item is selected. Because tab view items can be selected
in any of several ways—for example, by clicking any tab or by clicking either navigation button—you
might think that disabling and enabling the navigation buttons would require adding code in several

places. However, the power of delegation can be harnessed to do it all in asingle, short method in the
window controller. Thiswill be your first significant encounter with a delegation method provided for in
Cocoa. Pay close attention, because it is an extraordinarily useful technique, used heavily throughout
Cocoa.

1. UseInterface Builder to create two bevel buttons. When you are done with thisinstruction 1, they
should look like Screenshot 2-7 (but their images may be different, depending on where you find

suitable arrow images).

a. From the Views palette, drag the square-shaped, round-cornered bevel button bearing a Mac
face to the document window twice. Drop each of them in the area occupied by the tab view,
near its bottom right corner. Thistime, contrary to your practice in all of the previous Steps,
you should be careful to drop them into the window, not onto the currently selected tab view
item. Thisiseasy; just click once in an empty area of the window outside of the tab view, to
make sure that neither the tab view nor either of itstab view itemsis selected, then perform
the drags. To make sure the buttons do not become hidden behind the tab view, choose
Layout > Bring to Front immediately, while each button is selected, before you click on
something else. (If you do accidentally click on something else and the new buttons
disappear behind the tab view, you can get them back by selecting the tab view and
choosing Layout > Send to Back to layer it behind the new buttons.) Place the buttons side
by side in the lower right corner of the pane. Their Mac faces will have disappeared along
the way. Because they reside in the window, not the tab view, you will not see Aqua guides
to help you position them relative to the lower right edges of the tab view. However, if you
hold down the Option key while moving them, you will see their distances from those edges
and can nudge them into position using the arrow keys (20 pixels from each edge). The
Aqua guides will help you determine how far apart they should be.

b. Find or create two images of left and right arrows, respectively. They can be TIFF or PNG
Images (or GIF, which have more limited capability and present potential licensing issues),
or any of a number of other graphic types. Consult the Aqua Human Interface Guidelines
regarding the dimensions of the images. If you have nothing more suitable handy, use the
two TIFF images in the project files that come with Vermont Recipes. To install the images
into your project, first save or drag the image files into the Vermont Recipes 2 project
folder. Then choose Project > Add Files... in Project Builder and add them to the Resources
group in the Groups & Files pane of the main project window.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (2 of 7) [9/10/2001 8:48:55 AM]

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/index.html

Vermont Recipes—Recipe 2, Step 8

If the images might require localization, they can be placed in the appropriate language
subfolder in the project folder, instead, and a localization contractor can substitute other
Images in other language subfolders.

(In Mac OS X Public Betaand earlier, it was feasible to storeimagesin thenibfile. Itis
now recommended that they always be stored in the project folder.)

c. By adding the image files to the project, you made them automatically available to Interface
Builder in the Images tab of the MyDocunent . ni b window. Drag the left arrow and right
arrow images in turn from the Images pane of the MyDocunent . ni b window and drop
them onto the left or right bevel button, respectively. They will center themselves.

d. Inthe Attributes pane of the NSButton Info palette, first make sure the lower right button is
selected in the Icon Position area of the Info palette in order to move the image upwards to
make room for the text you are about to add, and that the centered button is selected in the
Alignment area. Then type "Back" asthetitle for the left button and "Next" asthe title for
the right button. The text will appear in the buttons.

e. Select the"Back" and "Next" text for editing in each button in turn. Choose Format > Font >
Show Fonts to open the Fonts dialog, and verify that the font size of the button text is 10
points.

f. If either of the buttons has changed size unexpectedly, select it, then select the Size pane of
the NSButton Info palette. Drag the resizing handles until each button is 40 by 40 pixels, or
larger if your left and right arrows are large. Leave at least 6 pixels around each image
within its button, and make sure the buttons are the same size

2. Use Project Builder to write the code.

a User control outlet variable and accessors. Create two new outletsin
MyWindowController using the same technique you used in Sep 5, instruction 2.a., but call
these new outlets backBut t on and next But t on. Their type should be NSBut t on. You
will need to declare the variable and the accessor method for each in the header file, and
define the accessor methods in the source file.

Y ou don't need to create a data variable in MySettings, because there is no data value
associated with these buttons. For the same reason, you don't need a C enumeration type,
notifications to update the buttons, or observers.

b. Action method. Y ou want to create two action methods, one to carry out the commands
issued by each of the two navigation buttons. The action methods will tell the tab view to
select the previous or next pane, respectively.

But you never created an instance variable to enable you to talk to the tab view. You'll have
to do that now, along with arelated accessor method.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (3 of 7) [9/10/2001 8:48:55 AM]

Vermont Recipes—Recipe 2, Step 8

In the header file MyW ndowCont r ol | er. h, above the myCheckbox variable
declaration, add the following:

| BQut | et NSTabVi ew *nyTabVi ew,

Also in the header file, create the accessor method above the my Checkbox accessor
declaration at the top of the Accessor methods and conveniences section, as follows:

- (NSTabVi ew *) nyTabVi ew;

In the source file MyW ndowCont r ol | er . m, above the myCheckbox accessor
declaration at the top of the Accessor methods and conveniences section, add this definition:

- (NSTabVi ew *) nyTabVi ew {
return nyTabVi ew;

c. Now you can create the navigation button action methods. In the header file
MyW ndowCont r ol | er . h, after the Beeper section at the end, add the following:

/1 Navi gation
- (I BAction)backAction: (i d)sender;
- (I BAction)next Action: (id)sender;

In the source file MyW ndowCont r ol | er . m define the action methods, after the Beeper
section at the end, as shown below.

/1 Navi gation

- (I BAction)backAction: (id)sender {
[[sel f nyTabVi ew
sel ect Previ ousTabVi ew t em sender] ;

}

- (I BAction)next Action: (id)sender {
[[sel f nyTabVi ewj
sel ect Next TabVi em t em sender] ;

}

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (4 of 7) [9/10/2001 8:48:55 AM]

Vermont Recipes—Recipe 2, Step 8

NSTabView'ssel ect Previ ousTabVi ew t emand sel ect Next TabVi ewl t em
methods do nothing if there is no previous or next tab item, so you never have to worry
about an error if the Back button is clicked while the first tab item is selected, nor if the
Next button is clicked while the last tab item is selected.

Note that NSTabView implements afull set of methods for navigation among panesin atab
view, including methods to select the first tab item, the last tab item, and any tab item by its
index.

d. Although the action methods will not cause an error if an attempt is made to navigate past
thefirst or last tab view item, it is good user interface design to disable either button when
the user can't navigate any farther in the one direction or the other. To do this, you will
implement in MyWindowController a delegate method provided for in NSTabView,

w || Sel ect TabVi ewl t em . If you haven't worked with the delegation capability of
Objective-C before, you will find it to be an eye-opening and powerful feature of the
language.

This delegate method is anticipated in NSTabView. Whenever the user selects a new tab
view item by any means—clicking atab, choosing a pull-down menu item, or clicking a
button, for example—a method built into NSTabView isinvoked that selects the chosen tab
view item. This method, among other things, checks to see whether a delegate has been
appointed for NSTabView and, if so, whether that del egate implements the

w | | Sel ect TabVi ew t em delegate method. If neither condition is met, the delegate
method is not called. If, however, NSTabView discovers that a delegate has been appointed
and that the delegate implements this method, then it isinvoked. Y ou, the developer, can use
Interface Builder to appoint a delegate for NSTabView (here, you will appoint
MyWindowController as the delegate), and you can implement the delegate method in the
delegate and code it to do anything that will be useful when a user chooses a new tab view
item.

What your delegate method will do here, of course, is to test whether the newly-selected tab
view item isthefirst or last and disable or enable the two navigation buttons accordingly.
Because of the power of delegation, you will only have to write this one simple method, and
Cocoawill seeto it that it isinvoked every time the user chooses a new tab view item by
any means.

In the source file MyW ndowCont r ol | er . m define the delegate method at the end of the
Action methods section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (5 of 7) [9/10/2001 8:48:55 AM]

Vermont Recipes—Recipe 2, Step 8

- (void)tabVi ew. (NSTabVi ew *)t heTabVi ew
W || Sel ect TabVi ew t em (NSTabVi ew t em
*)theTabVi ew tem {
I f (theTabView == [self nyTabView]) {

[[sel f backButton] setEnabl ed: ([theTabVi ew
I ndexCf TabViewltem t heTabViewlten] > 0)];

[[sel f nextButton] setEnabl ed: ([theTabVi ew
I ndexOf TabViemtemtheTabViemten] + 1 <
[t heTabVi ew nunber O TabVi ewi t ens]) | ;

}
}

Y ou do not have to declare a delegate method in the header file, because Cocoa declares and
invokesit for you.

That's all thereisto it, except for connecting things up in Interface Builder. There are no
undo or redo stringsto be updated inthe Local i zabl e. st ri ngs file, no datato
initialize or store, and no control update methods to invoke.

3. You must inform the nib file of the new outlets and actions you have created, then connect them to
the associated objects.

a. InInterface Builder, select the Classes tab in the nib file window, then choose Classes >
Read File.... In the resulting dialog, select the header file in which you have created outlets
and actions, MyW ndowCont r ol | er . h, then click the Parse button.

b. Control-drag from the tab view to the File's Owner icon in the MyDocunent . ni b
window, select the built-in delegate outlet in the NSTabView Info palette, and click the
Connect button. When dragging from the tab view, take care not to drag from the current tab
view item, but from the tab view. It is best to start the drag from the open area beside the
first or last tab above the top of the tab view.

c. Control-drag from the File's Owner icon to the tab view, click its outlet name in the
NSButton Info palette, ny TabVi ew, then click the Connect button. When dragging to the
tab view, be careful to end on the tab view , not the current tab item view. The easiest way
to doit correctly isto end the drag in the open area beside the first or last tab above the top
of thetab view.

d. Control-drag from the File's Owner icon to each of the new bevel buttonsin turn, and click
its outlet name in the Info palette, backBut t on or next But t on, then click the Connect
button.

e. Control drag from each of the new bevel buttons to the File's Owner icon in turn, and click

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (6 of 7) [9/10/2001 8:48:55 AM]

Vermont Recipes—Recipe 2, Step 8

the target in the left pane and the appropriate action, backAct i on or next Acti on,in
the Info palette, then click the Connect button.

f. If the Buttons tab is going to be the initially-sel ected tab when the document window is
opened, the Next button should be disabled at the outset as long as the Buttons pane is the
last tab view item. Select the Next button and, in the NSButton Info pal ette, uncheck
Enabled. Y ou will come back to change this later, when you add another tab view item.

g. Finally, since you have now fully populated the Buttons pane of the document window, step
back and consider its overall arrangement. It's pretty ugly, but that's mainly because thisisa
set of disparate examples; there isn't a unifying theme or function to the pane. However,
there is one thing you should do to finish your effort to comply with human interface
guidelines. Mac OS X dialogs are supposed to gravitate towards the center, horizontally. So
drag the Checkbox switch and the Pegs group box to the right until their right edges align
with the right border of the Music group box; the Aqua guides make this especialy easy. It's
still ugly, but you'll do better in your real applications.

4. Compile and run the application. To test the new Back button, click it and note that the Text Boxes
paneis selected. Then click the Next button on that pane and note that the Buttons pane is sel ected
again. In each case, confirm that the navigation buttons are disabled and enabled appropriately.

Y ou are now done with Recipe 2. There are still more variants of buttons you can use in your application,
but this recipe has given you enough of a head start that you will be able to figure out how to create
additonal buttonsin your application.

Vermont Recipes
http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 2 > Step 8 < BACK | NEXT >

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe02/recipe02_step08.html (7 of 7) [9/10/2001 8:48:55 AM]

Vermont Recipes—Recipe 3

SV > .COl]

Articles - News - Softrak - Site Map - Status -

Comments
Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 1, 2001 - 6:00 PM
Introduction > Contents > Recipe 3 < BACK | NEXT >

Recipe 3: User controls—Sliders

Download the project files for Recipe 3 as a disk image and install them

Download a pdf version of Recipe 3

This Recipeisthe second in a series of Recipes dealing with user controls. In Recipe 2, you implemented a

bunch of buttons. Here, you will learn about some dlick sliders and get a brief introduction to text fields
and sheets.

Sliders are fun, in addition to being useful. They have a much more interactive and redlistic feel than other
controls, probably because of their graphical complexity and the continuous visual feedback they give you
as you drag them back and forth or up and down. Also, they give you an instantaneous sense of scale that
pure numbers lack. If adlider is set towards one end, you immediately sense that it represents something
that is at, say, afifth or aquarter of the range of available values. Where absol ute precision doesn't matter,
it ismuch easier to set a dider approximately where you want it than it is to type in anumber. With the
addition of tick marks and the use of a discrete slider—one that snaps to integer values, say—accuracy is
also easily achieved.

Sliders provide the best of both worlds if they are linked to a text box. The text box can report the slider's
setting in exact numbers, and you can type a specific number into the text box and see the dider instantly
snap to that setting. Cocoa provides a linking mechanism that causes the numbers in the text box to spin by
very fast as you drag the dlider, creating an extraordinarily responsive feel. Sliders can also be linked to
buttons and other user controls; for example, you can provide buttons that instantly set the slider to its
minimum and maximum positions or, say, to one-third and two-thirds positions. In this Recipe, you will
create all of these examples.

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03.html (1 of 3) [9/10/2001 8:49:03 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes3.dmg
http://graphics.stepwise.com/Articles/VermontRecipes/VermontRecipes3.pdf

Vermont Recipes—Recipe 3

Before turning to Step 1, you should prepare your project files for this Recipe 3. Y ou do not have to follow
all of the procedures you went through to prepare for the previous Recipe. Y ou can leave all old references
to Vermont Recipes alone, for example, because that will be the name of the application in all subsequent
Recipes. Y ou should, however, update the application and document signatures to VRa3 and VRd3,
respectively, and change the version number to 1. 0. 0d3, in the Targets pane and to change the version
number to 1.0.0d3 in the InfoPlist.strings file, as detailed in Recipe 2, Step 1. It would also be agood idea

to changethe cur r ent MyDocunent Ver si on variablein MyDocunent . mto 3.

Screenshot 3-1: The Vermont Recipes 3 application

00 Untitled-1

Vermont Recipes 3
A Cocoa Cookbook

" Text Boxes T Buttons f!ﬂidﬂrﬁj

Personality Speed Limiter: 75.0 mph
Type B r o
-\.I.-'" - - i T
75 a5 115 135 155
L) Type A

Quantum Electron State:

O m—

E—

Energy Levels:

* Lowest "rHighEHﬁ'

- -

Back

Vermont Recipes

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03.html
Copyright © 2001 Bill Cheeseman. All rights reserved.

Introduction > Contents > Recipe 3 < BACK | NEXT >

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03.html (2 of 3) [9/10/2001 8:49:03 AM]

Vermont Recipes—Recipe 3

Copyright 1994-2001 - Scott Anguish. All rights reserved. All trademarks are the property of their respective holders.

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03.html (3 of 3) [9/10/2001 8:49:03 AM]

Vermont Recipes—Recipe 3, Step 1

114 > COl[l

Articles - News - Softrak - Site Map - Status - Comments

Vermont Recipes—A Cocoa Cookbook for Mac OS X
By Bill Cheeseman
August 1, 2001 - 6:00 PM

Introduction > Contents > Recipe 3 > Step 1 < BACK | NEXT >

Recipe 3: User controls—Sliders
Step 1: A simple slider

. Highlights:
o Adding atab view item using Interface Builder
o Presenting a ssmple document-modal sheet
o Usingthe NSString | ocal i zedSt ri ngW t hFor mat : class method to concatenate strings
and to format numbers using localized formatting conventions

In Step 1, you will create asimple vertical slider that returns a floating point value within a
defined range after you drag it to a new setting. It will be adorned with atitle and labels at
top and bottom, but it will have no tick marks. The slider will describe a personality in a Type B
continuous range from Type A to Type B (never mind whether psychologists recognize a
B+ or an A- personality type). You will add this control using the roadmap that was adopted
in Recipe 2, Sep 3.

Personality

- Type &

The dlider will be placed in anew tab view item that will hold the various sliders you will

create in this Recipe 3. The technique for adding atab view item in Interface Builder is described in
instruction 1.a., below. One interesting thing to note is that you do not have to update the code for disabling
and enabling the navigation buttons you created in Recipe 2, Step 8—they work asis, without revision, no

matter how many tab view items you may add.

In order to let you verify that the slider returns an appropriate value when you are done dragging it, the
application will present a sheet reporting its final value. Thisis not something you would necessarily want to
do in areal-world application; instead, you might provide atext field to present the value, as you will do later
in Sep 2, or you might simply rely on the slider itself as a sufficient presentation of the data. Here, however,
a sheet will give you an introduction to presenting aertsin Cocoa, in addition to giving you some comfort
that the slider isworking correctly. The code for this appearsin instruction 3., below. It makes use of an

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (1 of 9) [9/10/2001 8:49:12 AM]

http://www.stepwise.com/
http://www.stepwise.com/Articles
http://www.stepwise.com/OldNews
http://www.stepwise.com/Softrak
http://www.stepwise.com/SiteMap.html
http://www.stepwise.com/Status.html
mailto:sanguish@digifix.com
mailto:wjcheeseman@earthlink.net

Vermont Recipes—Recipe 3, Step 1

important Cocoa method, the NSString | ocal i zedSt ri ngW t hFor mat : method, which you will use
frequently throughout your applications.

1. Uselnterface Builder to add atab view item to the existing tab view and create a new vertical slider
with atitle and labels. When you are done with this instruction 1, the group should look like that
shown in Screenshot 3-2.

a. Using MyDocunent . ni b inInterface Builder, select the tab view (not atab view item) in the
document window by clicking in the empty space on either side of the existing tabs. In the
NSTabView Info palette, type 3 in the Number of Items box and hit the Enter key. A third tab
appearsto the right of the two existing tabs. Double-click twice on the new tab to to edit its
label and type Sl i der s. When you hit the Enter key, the tab resizes so that the new label will
fit, and the three tabs center themselves as a group. Click once outside the tab view, and the
two navigation buttons you created in Recipe 2 appear. The Next button remains disabled; you
might as well leave it that way for now.

b. With the new Sliderstab view item selected, drag the rightmost vertical slider from the More
Views palette onto the Sliders pane and place it in the upper |eft area of the pane. In the
NSSlider Info palette, leave all but one of the Attributes set as you find them, including arange
from 0.0 to 100.0 and no tick markers. However, you should uncheck the Continuous option.
Thereis no need for this control to send its action method continuously as the dlider is dragged
up and down; it only needs to set its associated variable when the drag is completed. Also, in
instruction 3., below, you will add a statement to the slider's action method to present a sheet,
and you only want the alert to appear when the drag is compl eted.

c. Drag the Messsage Text item from the Views palette and place it above the dider. Type
Per sonal i t y and choose Layout > Size to Fit. Make sure the Editable and Selectable
checkboxes in the Options area of the NSTextField Info palette are unchecked and that the
Enabled checkbox is checked.

d. Dragthe Informational Text item from the Views palette and place it to the right of the dider at
its bottom, using the Aqua guides to position it properly. Renameit Type A and choose
Layout > Size to Fit. For vertical dliders, the minimum value is always at the bottom. Uncheck
the Editable and Selectable checkboxes and check the Enabled checkbox, if necessary.

e. Duplicate the Type A label by Option-dragging it to the top of the slider, and renameit Type
B.

f. Reposition all the new items to comply with human interface guidelines. If you select the slider
and its minimum and maximum labels, then drag them, Apple guides would normally appear
when the group is centered the proper distance beneath the group's title, if thetitle were long
enough. Here, thetitle istoo short, and the slider and its labels want to snap to the left or right
guides. To center them, choose Layout > Guides > Disable Aqua Guidelines, then use the
arrow keys to nudge them until they are centered under thetitle.

g. Select al the new items, then choose Layout > Group in Box, and use the NSBox Info palette

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (2 of 9) [9/10/2001 8:49:12 AM]

Vermont Recipes—Recipe 3, Step 1

to hide the title and select the no border box type. Now the new items can be dragged as a
group without selecting al of them individually.

2. Use Project Builder to write the code required to make the new dlider work.

a. User control outlet variable and accessors. In the header file MyW ndowCont rol | er. h,
declare an outlet variable after the existing variable declarations, as follows:

/'l Personality slider
| BQut| et NSSIider *personalitySlider;

Still in MW ndowCont r ol | er . h, aso declare an accessor method for the outlet at the end
of the Accessor methods and conveniences section, as follows:

/'l Personality slider
- (NSSlider *)personalitySlider

Turn to the source file MyW ndowCont r ol | er . mand define the accessor method at the end
of the Accessor methods and conveniences section, as follows:

[l Personality slider

- (NSSlider *)personalitySlider {
return personalitySlider;

b. Data variable and accessors. In the header file MySet t i ngs. h, declare anew variable after
the existing variable declarations, as shown below. The datatype represented by adliderisaC
float type.

[l Personality
fl oat personalityVal ue;

InMySet ti ngs. h, aso declare the corresponding accessor methods at the end of the
Accessor methods and conveniences section, as follows:

/] Personality

- (void) setPersonalityVal ue: (fl oat)val ue;
- (float) personalityVal ue;

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (3 of 9) [9/10/2001 8:49:12 AM]

Vermont Recipes—Recipe 3, Step 1

In the source file My Set t i ngs. m define the accessor methods at the end of the Accessor
methods and conveniences section, as follows:

[l Personality

- (void) setPersonalityVal ue: (float)val ue {

[[[sel f undoManager] prepareWthlnvocationTarget: sel f]
set Personal i t yVal ue: personal i t yVal ue] ;

personal i tyVal ue = val ue;

[[NSNoti fi cati onCenter defaultCenter]
post Not i fi cati onNane: VRPer sonal i t yVal ueChangedNoti fi cati on
obj ect:sel f];

}

- (float)personalityVal ue {
return personalityVal ue;

c. Notification variable. Return to the header file MySet t i ngs. h, at the bottom of thefile, to
declare the notification variable, as follows:

/'l Personality
extern NSString
*VRPer sonal i t yVal ueChangedNot i fi cati on;

Turn back to the source file MySet t i ngs. m near the top of thefile, to define the notification
variable, asfollows:

[l Personality
NSStri ng *VRPer sonal i t yVal ueChangedNotification =
@ Per sonal i t yvVal ue Changed Notification";

d. GUI update method. In the header file MyW ndowCont r ol | er . h, declare auser interface
update method at the end of the Specific view updaters section, as follows:

/'l Personality
- (voi d)updat ePersonal i tySlider: (NSNotification
*Inotification;

In the source file MW ndowCont r ol | er . m define this specific update method at the end
of the Specific view updaters section, as follows:

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (4 of 9) [9/10/2001 8:49:12 AM]

Vermont Recipes—Recipe 3, Step 1
[l Personality

- (voi d)updat ePersonal itySlider: (NSNotification
*)notification {

[sel f updateSlider:[self personalitySlider]
setting:[[self nySettings] personalityVal ue]];
}

Asyou see, anew generic updater isrequired for diders. In the header file

MyW ndowCont r ol | er. h, declare a user interface update method at the end of the Generic
view updaters section, as follows:

- (void)updateSlider: (NSSlider *)control
setting: (fl oat)val ue;

In the source file M\yW ndowCont r ol | er . m define this update method at the end of the
Generic view updaters section, as follows:

- (void)updateSlider: (NSSlider *)control
setting: (float)val ue {
if (value !'= [control floatValue]) {
[control setFl oat Val ue: val ue];
}

e. Notification observer. Register the window controller as an observer of the notification that
will trigger the updater method, by inserting the following statement in the
regi sterNotificati onObservers method of the sourcefile
MyW ndowCont r ol | er . m after the existing registrations:

/'l Personality

[[NSNoti ficati onCenter defaultCenter]
addQoser ver: sel f

sel ect or: @el ect or (updat ePersonal i tySlider:)
nanme: VRPer sonal i t yVal ueChangedNoti fi cati on
object:[self nySettings]];

f. Action method. In the header file MW ndowCont r ol | er . h, at the end of the Action
methods section, add the following:

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (5 of 9) [9/10/2001 8:49:12 AM]

Vermont Recipes—Recipe 3, Step 1

/'l Personality
- (I BActi on) personal i tyAction: (i d)sender;

In the source file YW ndowCont r ol | er . m define the action method at the end of the
Action methods section, as follows:

/1l Personality

- (I BAction)personalityAction: (id)sender {

[[self nySettings] setPersonalityVal ue:[sender
f | oat Val ue]] ;

[[[sel f document] undoManager]
set Acti onNane: NSLocal i zedStri ng(@ Set Personal ity",
@ Nane of undo/redo nenu item after Personality
slider was set")];

}

g. Localizable.strings. Updatethe Local i zabl e. st ri ngs file by adding " Set Personality."

h. Initialization. Leave the Personality data variable uninitialized. Objective-C will initidizeit to
0, which in this case stands for a Type A personality.

i. Data storage. Inthe sourcefile MySet t i ngs. m define the following key in the Keys and
values for dictionary section:

/[l Personality
static NSString *personalityVal uekey =
@ Per sonal i t yVal ue";

Immediately after that, add these lines at the end of theconver t ToDi cti onary: method:

/1l Personality

[dictionary setQbject:[NSString
stringWthFormat: @% ", [self personalityVal ue]]
f or Key: per sonal i t yVal ueKey] ;

And add these lines near the end of ther est or eFr onDi ct i onar y: method, before the
calto[[sel f undoManager] enabl eUndoRegi strati on]:

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (6 of 9) [9/10/2001 8:49:12 AM]

Vermont Recipes—Recipe 3, Step 1

/1l Personality
[sel f setPersonalityValue: (float)[[dictionary
obj ect For Key: per sonal i t yVal ueKey] fl oat Val ue]];

j. GUI update method invocation. Finally, in MyW ndowCont r ol | er . m add the following
call at the end of theupdat eW ndow method :

/'l Personality
[sel f updatePersonalitySlider:nil];

3. Toenable you to verify that the slider set the data variable to an appropriate value, you will now
modify the dider's action method so that it presents a sheet reporting the value whenever the valueis
changed. Thisiswhy you unchecked the Continuous attribute of the dlider in instruction 1.b., above:
you don't want the alert to be presented repeatedly as you drag the slider, but only when the drag is
completed.

Go back to the dider's action method definition in MyW ndowCont r ol | er . mand add the
following statements calling the Cocoa NSBegi nAl ert Sheet () function, at the end of the
method. This function was introduced in Developer Preview 4 and now, in the final release of Mac OS
X, replaces the deprecated NSRunAl er t Panel Rel ati veToW ndow() function. Documentation
for the new function is sparse at thistime. It is declared in NSPanel.h, where you will find some
cryptic comments regarding its use, and there is some relevant discussion in the Developer Preview 4
and Public Beta AppKit Release Notes, under the heading "Document-Modal API." The invocation
here is the simplest possible, providing information to the user but offering no alternative course of
action. It makes no use of the modal delegate or other available parameters, but ssmply goes away
when the user clicks OK. Y ou will learn about these more complex features of sheets, including how
to provide multiple buttons and respond to the user's selection, in Recipe 4. For now, just passing

NULL or ni | in most of the parameters does the trick.

al ert Message = [NSString

| ocal i zedSt ri ngW t hFor mat : NSLocal i zedSt ri ng(@ The
personality type you set is % in a range fromO to 100.",
@ Message text of alert posed by Personality slider to
report value set by user"), [[self nmySettings]

personal i tyVal ue]];

alertInformati on = NSLocal i zedString(@0 is Type A 100 is
Type B.", @Informative text of alert posed by Personality
slider to report value set by user");

NSBegi nAl ert Sheet (al ert Message, NULL, NULL, NULL, [self
wi ndow], nil, NULL, NULL, NULL, alertlnformation);

http://www.stepwise.com/Articles/VermontRecipes/recipe03/recipe03_step01.html (7 of 9) [9/10/2001 8:49:12 AM]

Vermont Recipes—Recipe 3, Step 1

Y ou must also declare the two local variables, al ert Message andal ert | nf or mati on, at the
beginning of the method, as follows:

NSString *al ert Message;
NSString *al ertlnformation;

The NSBegi nAl ert Sheet () function posesthe alert asaMac OS X sheet, so the sheet remains
attached to the window whose slider was set. If many windows are open at once, the user will have no
doubt about which window's slider value the alert is reporting.

Note the use of the NSString | ocal i zedSt ri ngW t hFor mat : class method. Thisisamethod
you will make heavy use of in your Cocoa applications, as you will its companion method,
stringWt hFor mat : . They provide concatenation of multiple string values and, in the case of the
former, localization of many data types. Just pass in aformatting string followed by any number of
values or variables, separated by commas, and include placeholders for each of the valuesin the
formatting string (such as % for afloating point value). The placeholders will be filled by string
versions of the valuesin the order given. Thel ocal i zedSt ri ngW t hFor nat : method is
appropriate when one or more of the values you want to convert is a numeric value and you want to
use the numeric formatting conventions of the particular computer's locale as set in System
Preferences (in many countries, for example, the thousands separator is a period and the decimal
separator is acomma).

You are already familiar with the NSLocal i zedSt ri ng() function from Recipe1, Sep 3.1.4. You

have used it repeatedly in Recipe 2 and Recipe 3 when naming undo and redo strings using
localization key-value pairsfromthe Local i zabl e. st ri ngs file. Here, you useit for asimilar
purpose, providing internationalized strings for the message and information text in a sheet. Be sure to
put the key-value pairsintheLocal i zabl e. st ri ngs file now, as shown below. Notice that the
printf-style placeholder % continues to serve its purpose even though it is passed through the

Local i zabl e. st ri ngs file (assuming the localization contractor includes it in the new localized
string).

[* Alert strings */

/* Personality slider alert r3sl */

/* Message text of alert posed by Personality slider to
report val ue set by user */

"The personality type you set is % in a range fromO to
100." = "The personality type you set is % in a range
fromO to 100.";

/* Informative text of alert posed by Personality slider
to report val ue set by user */

"Ois Type A 100 is Type B." = "0 is Type A 100 is Type
B.";

http://www.stepwise.com/