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Abstract

We review, clarify, and extend the notion of color-avor locking.
We present evidence that for three degenerate avors the qualitative
features of the color-avor locked state, reliably predicted for high
density, match the expected features of hadronic matter at low density.
This provides, in particular, a controlled, weak-coupling realization of
con�nement and chiral symmetry breaking in this (slight) idealization
of QCD.
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In a recent study [1] of QCD with three degenerate avors at high density,
a new form of ordering was predicted, wherein the color and avor degrees of
freedom become rigidly correlated in the groundstate: color-avor locking.
This prediction is based on a weak coupling analysis using a four-fermion
interaction with quantum numbers abstracted from one gluon exchange. One
expects that such a weak coupling analysis is appropriate at high density, for
the following reason [2, 3, 4]. Tentatively assuming that the quarks start out
in a state close their free quark state, i.e. with large Fermi surfaces, one
�nds that the relevant interactions, which are scatterings the states near the
Fermi surface, for the most part involve large momentum transfers. Thus,
by asymptotic freedom, the e�ective coupling governing them is small, and
the starting assumption is con�rmed.

Of course, as one learns from the theory of superconductivity [5], even
weak couplings near the Fermi surface can have dramatic qualitative e�ects,
fundamentally because there are many low-energy states, and therefore one
is inevitably doing highly degenerate perturbation theory. Indeed, the au-
thors of [1] already pointed out that their color-avor locked state, which
is constructed by adapting the methods of superconductivity theory to the
problem of high-density quark matter, displays a gap in all channels ex-
cept for those associated with derivatively coupled spin zero excitations, i.e.
Nambu-Goldstone modes. This is con�nement. For massless quarks, they
also demonstrated spontaneous chiral symmetry breaking.

In very recent work we [6], and others [7], have reinforced this circle
of ideas by analyzing renormalization of the e�ective interactions as one
integrates out modes far from the Fermi surface. A fully rigorous treatment
will have to deal with the extremely near-forward scatterings, which are
singular due to the absence of magnetic mass for the gluons, at least in
straightforward perturbation theory. This problem, which is presumably
technical, is any case ameliorated self-consistently for states of the color-avor
locking type, wherein all the gluons acquire mass through the Anderson-Higgs
mechanism.

In the earlier work [1], several striking analogies between the calculated
properties of the color-avor locked state and the expected properties of
hadronic matter at low or zero density, based on standard lore and observed
phenomenology, were noted. In addition to con�nement and chiral symmetry
breaking, the authors observed that the dressed elementary excitations in the
color-avor locked state have the spin quantum numbers of low-lying hadron
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states and for the most part carry the expected avor quantum numbers,
including integral electric charge (in units of the electron charge). Thus, as
we shall spell out immediately below, the gluons match the octet of vector
mesons, the quark octet matches the baryon octet, and an octet of collective
modes associated with chiral symmetry breaking matches the pseudoscalar
octet. However there are also a few apparent discrepancies: there is an extra
massless singlet scalar, associated with the spontaneous breaking of baryon
number (superuidity); there are eight rather than nine vector mesons (no
singlet); and there are nine rather than eight baryons (extra singlet). We
will argue that these \discrepancies" are super�cial { or rather that they are
features, not bugs.

Let us �rst briey recall the fundamental concepts of color-avor locking.
The case of three massless avors is the richest due to its chiral symme-
try (and adding a common mass does not change anything essential) so we
shall concentrate on it. The primary condensate, which one calculates using
the methods of superconductivity theory near the Fermi surface, involves
diquarks. It takes the form [1]

hqi�Laq
j�
Lb�iji = �hq

�

R _ka
q�
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�
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�
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Here L, R label the helicity, i; j; k; l are two-component spinor indices, a; b
are avor indices, and �; � are color indices. A common space-time argu-
ment is suppressed. �1; �2 are parameters (depending on chemical potential,
coupling, : : :) whose non-zero values emerge from a dynamical calculation.

This equation must be interpreted carefully. The value of any local quan-
tity which is not gauge invariant, taken literally, is meaningless, since local
gauge invariance parametrizes the redundant variables in the theory, and
cannot be broken [8]. But as we know from the usual treatment of the elec-
troweak sector in the Standard Model, it can be very convenient to use such
quantities. The point is that we are allowed to �x a gauge during interme-
diate stages in the calculation of meaningful, gauge invariant quantities {
indeed, in the context of weak coupling perturbation theory, we must do so.
For our present purposes however it is important to extract non-perturbative
results, especially symmetry breaking order parameters, that we can match
to our expectations for the hadronic side. To do this, we can take suitable
products of the members of (1) and their complex conjugates, and contract
the color indices. In this way we can produce the square of the standard chiral
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symmetry breaking order parameter of type h �qLqRi and a baryon number vio-
lating order parameter of type h(qqq)2i, both scalars and singlets under color
and avor. At this level only the square of the usual chiral order parameter
appears, fundamentally because our condensates preserve left-handed quark
number modulo two. This conservation law is violated by the six-quark
vertex associated with instantons, and by convolving that vertex with our
four-quark condensate we can obtain the usual two-quark chiral symmetry
breaking order parameter [9].

By demanding invariance of the diquark condensate directly, we infer the
symmetry breaking pattern SU(3)c � SU(3)L � SU(3)R � U(1) ! SU(3)�.
Here among the initial microscopic symmetries SU(3)c is local color symme-
try, while the remaining factors are chiral family and baryon number symme-
tries. The �nal residual unbroken symmetry is a global diagonal symmetry.
Indeed, the Kronecker deltas in the �nal term of (1) are invariant only under
simultaneous color and avor rotations, so the color and avor are \locked".
This locking occurs separately for the left and right handed quarks, but
since color symmetry itself is vectorial, the e�ect is also to lock left and
right handed avor rotations, breaking chiral symmetry. The global baryon
number symmetry is, of course, manifestly broken, but quark number is con-
served modulo two. Projecting onto the gauge invariant, color singlet, sector
this implies that baryon number is violated only modulo two. The same
conclusions would emerge from analysis of the gauge invariant symmetry
generators only, upon consideration of the gauge invariant order parameters
we constructed above.

Ordinary electromagnetic gauge invariance, like color symmetry, is vio-
lated by (1), but a linear combination of hypercharge (diagonal matrix -2/3,
1/3, 1/3) and electromagnetic charge (diagonal matrix 2/3, -1/3, -1/3) anni-
hilates the combinations correlated by color-avor locking, and generates a
true symmetry. The physical result is that there is a massless gauge degree
of freedom, representing the photon as modi�ed by its interaction with the
condensate. As seen by this modi�ed photon, all the elementary excitations
have appropriate charges to match the corresponding hadronic degrees of
freedom. In particular, their charges are all integral multiples of the electron
charge [1]. This is, of course, another classic aspect of con�nement.

It was essential, in this construction, that the charges of the quarks add
up to zero. If that were not so, we would not have been able to �nd a color
generator capable of compensating the violation of naive electromagnetic
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gauge invariance. Yet it seems somewhat accidental that these charges do
add up to zero, and one would be quite worried if any qualitative aspect of
con�nement depended on this accident. This worry touches the form rather
than the substance of our argument. If the quark charges did not up to zero,
it would not be valid to ignore Coulomb repulsion. One would have to add a
compensating charge background as a mathematical device, or contemplate
inhomogeneous states. Insofar as we want to use external gauge �elds as
a probe of pure QCD, we must restrict ourselves to those which preserve
the overall neutrality of the QCD groundstate. Fortunately, in our slightly
idealized version of QCD no awkwardness arises for the physically important
gauge �eld, i.e. the physical photon.

The elementary excitations are of three types. The color gluons be-
come massive vector mesons through the Anderson-Higgs mechanism. Due
to color-avor locking, they acquire avor quantum numbers, which makes
them an octet under the residual SU(3)�. The quark �elds give single-
particle spin 1/2 excitations whose stability is guaranteed by the residual Z2

quark (or baryon) number symmetry. These excitations are massive, due to
the color-avor superconducting gap. They form an octet with the quantum
numbers of the nucleon octet, plus a singlet. It might seem peculiar on �rst
hearing that a single quark can behave as a baryon, but remember that there
is a condensate of diquarks pervading this phase. In addition there are col-
lective Nambu-Goldstone modes, associated with the spontaneously broken
global symmetries. These are a massless pseudoscalar octet associated with
chiral symmetry breaking, and a scalar singlet associated with baryon num-
ber violation. A common quark mass lifts the pseudoscalar octet, but not
the singlet, because it spoils microscopic chiral symmetry but not microscopic
baryon number.

Clearly, there are striking resemblances between the elementary excita-
tions of color-avor locked quark matter and the low-energy hadron spec-
trum. One is tempted to ask whether they might be identi�ed. More pre-
cisely, one might ask whether strongly coupled hadronic matter at low density
goes over into the calculable, weak-coupling form of quark matter just de-
scribed without a phase transition. If so, then the con�nement and chiral
symmetry breaking calculated for the weak coupling phase not only resemble
these central properties of low-density QCD, but are rigorously indistinguish-
able from them. This sort of possibility, that Higgs and con�ned phases are
rigorously indistinguishable, has long been known to occur in simple abstract
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models [10].
As mentioned above, however, at �rst sight there appear to be several

di�culties with this identi�cation. We now debunk them in turn.
The most profound of the apparent di�culties is the existence of an ex-

tra scalar Nambu-Goldstone mode, and the related phenomenon that baryon
number is spontaneously violated (indicating, as in liquid He4, superuid-
ity). The answer to this comes through proper recognition of an important
though somewhat exotic phenomenon for three degenerate avors on the
hadron side. Several years ago R. Ja�e discovered [11], in the context of
the MIT bag model, that a particular dibaryon state, the H, a spin 0 SU(3)
singlet with quark content (udsuds), is surprisingly light. This arose, in his
calculations, because of a particularly favorable contribution from color mag-
netism. Roughly speaking, in the H con�guration the color �elds associated
with the quark sources are minimized, together with the energy they would
otherwise store, by arranging both the colors and spins to cancel pairwise
to the greatest extent possible. It has been debated, for QCD with realistic
quark masses, whether H might be only slightly above the nn or n� thresh-
olds. Though at this level the outcome for realistic QCD is unclear, both
theoretically [12] and experimentally [13], it has come to seem quite likely
that in QCD with three degenerate quarks the H will be the particle with
smallest energy per unit baryon number. Thus at any �nite baryon number
density, however small, at zero temperature one should expect, in this con-
text, to �nd a Bose condensate of H dibaryons. This condensate gives us
precisely { i.e. with the appropriate quantum numbers { the superuid we
were led to expect from our super�cially very di�erent considerations on the
quark matter side.

If the H is above dibaryon threshold, one will have a narrow range of
chemical potentials where baryon number is built up by single baryons. Based
on the same calculations [11, 12], it is extremely plausible that in this case
there will be attraction in the H channel at the Fermi surface, and hence
superuidity of the required type, now through a BCS mechanism.

This superuidity, whatever its source, supplies us with the key to the
riddle of the missing vector meson. For once there is a massless singlet
scalar, the putative singlet vector becomes radically unstable, and should
not appear in the e�ective theory. It might be objected here that the octet
of vector mesons is also unstable { for massless quarks { against decay into
massless scalar and pseudoscalar mesons. A quick answer is that this is not
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really an objection at all, because there is no harm in having redundant states
(whose instability will appear immediately upon more accurate calculation).
There is a much prettier and more satisfying answer, however. If we turn on
non-zero masses for the quarks the pseudoscalar octet (but not the singlet)
will become massive. Eventually the decay of the vector octet (but not the
singlet) will be blocked, and then we will be grateful for the prescience of the
theory in providing the appropriate degrees of freedom.

Finally, there is the question of the \extra" singlet baryon. This is the
most straightforward. In the original calculations [1], it was found that the
singlet gap is much larger than the octet gap. Thus the singlet baryon is
predicted to be considerably heavier than the octet. This is not problematic:
a particle of this sort is expected in the quark model, it could well exist
in reality, and in any case it is radically unstable against decay into octet
baryon and octet pseudoscalar, at least for massless or light quarks.

So all the objections have been answered. Continuity of quark and hadron
matter, far from being paradoxical, now appears as the default option.

Clearly, superuidity of quark/hadron matter has been essential for the
argument. There is considerable evidence for pairing in nuclei [14]. Its full
realization is limited by the �nite size of nuclei, which in turn arises from the
non-negligible strange quark mass and the Coulomb energy that arises in the
most favorable (for QCD), symmetric arrangement of neutrons and protons.
These limitations might be relieved to some extent in heavy ion collisions ac-
companied by creation of many strange-antistrange pairs, followed by charge
segregation. An important signature for this, emphasized by the consider-
ations above, is broadening of vector mesons, especially the singlet. This
e�ect might be observable in the dimuon spectrum.

Our considerations here are clearly relevant to any attempt to model the
deep interior of neutron stars, or conditions during supernova and hypernova
explosions. To do justice to these questions, it will be very important to
include the e�ects of unequal quark masses and of electromagnetism. That
is an important task for the future.

In the remainder of this paper we shall consider a related but simpler prob-
lem, that of extending the analysis to larger numbers of degenerate quarks.
An important foundational result, which emerges clearly from this analysis,
is that the color-avor locked state for three avors, which was �rst guessed
to be favorable because of its large residual symmetry and by analogy to the
B phase of superuid He3, is in fact the global minimum for three avors. It
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also reappears as a building block for larger numbers of avors.
The renormalization group analysis in [6, 7] allows one to classify possible

instabilities, and to assess their relative importance, for small but otherwise
arbitrary couplings near the Fermi surface. It was found that the dominant
instability corresponds to scalar diquark condensation. The analysis does
not �x the color and avor channel of this instability uniquely, independent
of initial conditions for the couplings, since there are two equally enhanced
marginal interactions. One gluon exchange, which dominates for weak cou-
pling, is attractive in the color anti-symmetric �3 channel, and favors one of
these interactions. During the evolution this interaction will grow, while the
repulsive interaction in the color symmetric 6 channel is suppressed. Thus
the instability is driven by a leading interaction of the form

L = K (����� � �����)
�
�ac�bd � �ad�bc

�
n�
 �
aC5 

�
b

� �
� 
cC5

� �
d

�
� (C5 $ C)

o
; (2)

where as before �; �; : : : are color indices and a; b; : : : are avor indices. The
Dirac structure of the interaction becomes more transparent when written in
a chiral basis. We have

�ij�kl 
i
L 

j
L
� k
L
� l
L + (L$ R): (3)

The renormalization group analysis only provides the form of the domi-
nant interaction, not the structure of the order parameter. In particular, it
does not tell us whether color-avor locking is the preferred state in three
avor QCD. In order to answer this question, we have to perform a varia-
tional analysis. Since the interaction is attractive in s-wave states, it seems
clear that the dominant order parameter is an s-wave, too. We then only
have to study the color-avor structure of the primary condensate. For this
purpose, we calculate the e�ective potential for the order parameter

h i�
L a 

j�
Lbi = �ij���

ab : (4)

���
ab is a Nf � Nf matrix in avor space and a Nc � Nc matrix in color

space. Overall symmetry requires that ���
ab is symmetric under the combined

exchange (a�) $ (b�). Also, since the interaction only involves color and
avor anti-symmetric terms, the e�ective potential does not depend on color
and avor symmetric components of ���

ab . This means that the e�ective
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potential has at least Nc(Nc + 1)Nf (Nf + 1)=4 at directions. These trivial
at directions will be lifted by subleading interactions not included in our
analysis. We will comment on the importance of subleading terms below.

We calculate the e�ective potential in the mean �eld approximation. This
approximation corresponds to resumming all \cactus" diagrams. These di-
agrams are expected to be dominant both in the limit of large chemical
potential and in the large Nc; Nf limit. In the mean �eld approximation, the
quadratic part of the action becomes

M��
ab  

a
L� 

b
L� = K

�
���

ab ����
ab ����

ba +���
ba

�
 a
L� 

b
L�: (5)

Integrating over the fermion �elds we obtain the familiar tr log term in the
e�ective potential. In order to evaluate the logarithm, we have to diagonalize
the mass matrixM. Let us denote the corresponding eigenvalues by �� (� =
1; : : : ; NcNf ). These are the physical gaps for the NfNc fermion species.
Adding the mean �eld part of the e�ective potential, we �nally obtain

Veff (�) = �
X
�

�(��) +M
ab
���

��
ab : (6)

Here, �(�) is the kinetic term in the e�ective action for one fermion species,

�(�) =
Z

d3p

(2�)3

�q
(p� �)2 + �2 +

q
(p + �)2 + �2

�
: (7)

This integral has an ultra-violet divergence. This divergence can be removed
by expressing � in terms of the renormalized interaction [15]. In this work
we are not really interested in the exact numerical value of the gap, but
only in the symmetries of the order parameter. For simplicity, we therefore
regularize the integral by introducing a sharp three-momentum cuto� �.

The e�ective potential (6) depends on Nc(Nc � 1)Nf (Nf � 1)=4 parame-
ters. We minimize this function numerically. In order to make sure that the
minimization routine does not become trapped in a local minimum we start
the minimization from several di�erent initial conditions. For the numerical
analysis we also have to �x the value of the chemical potential �, the coupling
constant K, and the cuto� �. We have checked that the symmetry breaking
pattern does not depend on the values of these parameters. We have used
� = 0:5 GeV, � = 0:6 GeV and K = 3:33=�2, similar to what was considered
in [3, 4].
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After we determine the matrix ���
ab that minimizes the e�ective potential

we study the corresponding symmetry breaking. Initially, there are N2
f � 1

global avor symmetries for both left and right handed fermions, as well
as N2

c � 1 local gauge symmetries. Superuidity reduces the am-mount of
symmetry. In order to �nd the unbroken generators we study the second
variation of the order parameter �2�=(��i��j), where �i (i = 1; : : : ; N2

f+N
2
c �

2) parameterizes the avor and color transformations. Zero eigenvalues of this
matrix correspond to unbroken color-avor symmetries. The corresponding
eigenvectors indicate whether the unbroken symmetry is a pure color, a pure
avor, or a coupled color-avor symmetry.

Our results are summarized in Table 1. The two avor case is special. In
this case, the dominant order parameter does not break the color symmetry
completely, and the avor symmetry is completely unbroken. This is the sce-
nario discussed in [3, 4]. Subdominant interactions can break the remaining
color symmetry, either with or without [3] avor symmetry breaking.

The main result is that, for three avors, we verify that color-avor lock-
ing is indeed the preferred order parameter. We �nd that all quark species
acquire a mass gap, and both color and avor symmetry are completely
broken. There are eight combinations of color and avor symmetries that
generate unbroken global symmetries. These are the generators of the diag-
onal SU(3)c+L+R. Also, the quark mass gaps fall into representations (8+1)
of the unbroken symmetry. And, as mentioned above, the singlet state is
twice heavier than the octet.

Note that in the present analysis, which only takes into account the lead-
ing interaction, the order parameter is completely anti-symmetric in both
color and avor. We �nd ���

ab � ���I�abI . If subleading interactions are
taken into account, the order parameter will have the more general form
���

ab = �1�
�
a �

�
b + �2�

�
b �

�
a . This order parameter leaves the same residual

symmetry.
The main qualitative results we found for three avors extend to Nf >

3. Color symmetry is always completely broken, and all quarks acquire a
mass gap. The only remaining symmetries are global coupled color-avor
symmetries. For massless quarks, chiral symmetry is spontaneously broken.
For an odd number of avors, there are subleading instanton operators that,
after the dominant gap is formed, can give an expectation value to operators
of the form � L R. For even numbers of avors, generating a non zero h � L Ri
is more subtle. Instantons can only give an expectation value to operators
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Nc Nf Npar gaps (deg) � ��=(NcNf ) Nsym

3 2 3 � (4) �0 �0 3 () + 3 (col)
3 3 9 � (8), 2� (1) 0:80�0 1:27�0 8
3 4 18 � (8), 2� (4) 0:63�0 1:21�0 6
3 5 30 � (5), 2� (7), 3� (3) 0:43�0 1:18�0 3
3 6 45 � (16), 2� (2) 0:80�0 1:27�0 9

Table 1: Groundstate properties of the s-wave superuid state in QCD with
Nc = 3 colors and Nf avors. Npar = Nc(Nc�1)Nf (Nf �1)=4 is the number
of totally anti-symmetric gap parameters. The column labeled \gaps (deg)"
gives the relative magnitude of the gaps in the fermion spectrum, together
with their degeneracy. The numerical values of the gap and the condensation
energy per species are given in units of �0 = 36MeV and �0 = 0:73MeV=fm3,
respectively. Nsym is the number of unbroken color-avor symmetries.

of the form ( � L R)
2.

Nf = Nc (or a multiple thereof) is the most favorable case, in the precise
sense that in this case the condensation energy per species is maximal. If Nf

is a multiple of Nc, the dominant gap corresponds to multiple embeddings
of the Nf = Nc order parameter. We have not studied the case Nc 6= 3
systematically, but since color and avor are interchangeable in (2), the case
Nf = 3 for various numbers of avors is covered implicitly. Also, we have
not studied the interesting case Nf = Nc !1.
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