

1

Preface

We are satisfied by doing real work. Software is like a plant that
grows: You can’t predict its exact shape, or how big it will grow;
you can control its growth only to a limited degree. There are no
rules for this kind of thing—it’s never been done before.

 - Charlie Anderson, Architect, Borland Quattro Pro for Win-
dows.

You will find no books on the bookshelf here that tell you how to
start up a new discipline. Software has been seeking its own way as a
relatively young discipline for the past 40 years. Every new discipline
struggles to find practices suitable to its survival and growth. Some-
times this struggle is incremental. Sometimes disciplines undergo
more substantial shifts in process, structure and values that break
more with the past to explore new ground. What Charlie Anderson
said above about the Borland Quattro Pro for Windows effort in partic-
ular applies to the rhythms of software development in general. Get
ready for change, for it will come tomorrow.

The most exciting advances in science go hand in hand with radical
social change. The move from classic physics to quantum physics pre-

2

Chapter

cipitated from a crisis in physics. We talk about the software crisis, yet
no individual crisis in software — let alone

the

Software Crisis, what-
ever that might be — has precipitated the same kinds of change that
we associate with great advances in science. Software development
has perhaps yet to face its first true crisis that leads to the first true
industry-wide systemic change.

But that doesn’t mean that software is static. We can identify dif-
ferent faces of change in software development over the past five
decades. Our interest in this book is what software development has
learned about itself from an organizational and social perspective.
Software development is perhaps working in its fourth

social

style of
system development. Yet what is

really

interesting about these social
styles is their ties to technical advances in the art. The first style of soft-
ware development goes back to the first computers that were pro-
grammed manually with console switches. The second style came
with the advent of programming languages that allowed scientists to
work individually or in small teams, interacting with the machine
through a language. In the third style, what we learned from hardware
design and manufacturing carried over into software. Formal pro-
cesses drove development, management was visible and explicit, and
both the system and the organizations that worked on the system were
highly hierarchical. Now we are in the fourth style: one that breaks
down hierarchy, that features dynamic social structures and communi-
cation paths, and that values immediacy. This fourth style often bears
the label “agile,” but that is just one of many characterizations of a
broad new way of developing software that has emerged over the past
decade.

Yet human endeavors tend to take the same shape century after cen-
tury, and the fact that human endeavors all have the common element
of human nature bounds the range of human undertakings. For
example, most organizations have leaders, and cliques, and their own
little rituals, their own nuances of meaning for terms of the trade, a
correspondence between physical space and organizational structure,
and hundreds more. The organization of any major human endeavor
follows basic laws of efficiency of communication, span of control,
xenophobia, specialization, and other sociological forces that drive
most large-scale projects to similar practices and structures. Much has
been made of the similarity between vernacular housing architecture
and the construction of software systems. [CoplienDevos2000]. The

3

same may be true for the organization of any social animals, but we
leave verification of that claim to readers better tooled in those disci-
plines than we are.

Going deeper yet, the systems of nature have common rhythms and
trends that underlie their emergent complexity. These properties come
from the

structure

of the organization: the deeply held relationships
that define the organization as a social entity. Senge [Senge1990] popu-
larized this aspect of social behavior in a discipline he called

systems
thinking

, a discipline that goes beyond our everyday disciplines that
are based on a simplistic relationship between cause and effect. Many
early attempts at software process improvement relied on this sim-
plistic cause-and-effect relationship, particularly as the third paradigm
of software development started to take hold in the industry. Most ISO
9000 process improvement efforts were run this way: find what we’re
doing wrong, find the place in the process that’s wrong, and make it
right. There was rarely any notion that the process as a whole might be
wrong and that, for example, a step-by-step process should be
replaced by a more reactive, agile process. And it was heresy to conjec-
ture that process itself might be the wrong formalism to capture the
crucial properties of efficient, effective systems.

When we started this work in the early 1990s, we started with docu-
mented research that showed serious shortcomings in process-based
approaches such as ISO 9000. We asked: if process isn’t the answer,
then what is? We chose organizational structure—and, in particular,
the structure of relationships between roles—as the basis for system
understanding. All systems are about relationships, and most disci-
plines that study systems study the relationships in those systems. The
idea worked. What’s better, the technique didn’t displace the process-
based approaches in existing organizations (it’s always hard to tell an
organization to stop doing something they think is helpful, anyhow),
but complemented them by adding insight into deep structure that
explained behavior at the process level. So if you already have a pro-
cess improvement program in place, this book can add an enriching
dimension that builds on your own culture and helps develop your
peoples’ insights into that culture.

Patterns provide a way to capture both the broad, invariant prac-
tices of socially built artifacts as well as the specialized practices of
individual disciplines, along with an understanding of how those
practices build on each other. Long before Alexander started using pat-

4

Chapter

terns for the field of architecture, anthropologists were using them to
describe human social structures [Kroeber1948]. The pattern lan-
guages in this book combine the timeless human structures that tran-
scend disciplines with the best practices of contemporary software
development. These patterns are all empirical: they capture the major
rhythms and structures of successful software-intensive organizations
today. Many of the patterns come from our own research, but we also
incorporated patterns from other authors working in the same field.
This is a collected work and in many ways reflects a community-wide
effort.

There are two equally valid views of this book: as a guide to organi-
zational improvement, and as a record of the “best typical” software
development structures of the fourth social paradigm of software
development. Most readers will use the book in the first sense. How-
ever, it is our hope that this book reflects a well-enough grounded
view of contemporary software development to serve as a touchstone
that records what life was like in software development organizations
in the late twentieth and early twenty-first centuries. Fifty years from
now, will this book be a sobering admonishment to the industry? Will
we just chuckle at how things used to be? Or will time leave this
fourth-generation culmination of software progress largely
untouched? In that spirit, we greet the rare reader who finds an
archival copy of this tome on a dusty bookshelf in the middle of the
twenty-first century, and we salute your efforts to use this under-
standing to further improve the lot of the organizations of your time
and place.

Our sense of history extends in the other direction as well. Christo-
pher Alexander’s book includes a picture at the beginning of every
pattern [Alexander1977]. Each picture sets a broad tone for the pattern
that follows. We wanted that same feeling for this book, and we strove
to include a picture for each pattern. We initially felt that the social net-
work diagrams would suffice as pictures, but that gave the book an
“academic” feel that left a bad taste in our mouths. Paul Bramble
turned us on to the prints and photographs division of the Library of
Congress (http://lcweb.loc.gov/rr/print/catalog.html), which pro-
vided a wealth of vintage photos. Most come from a collection of
depression-era photographs sponsored by the Farm Services Adminis-
tration. Some of the photos are strikingly poignant or relevant to the
patterns; that was a surprise, since they come from an era that predates

5

the software culture that is such a large part of this book. But we feel
that the age and human element of the photos lends an overall charm
to the book that totally would be lacking in the social network dia-
grams. They also give us a feel of the timelessness of the basic human
issues facing organizations of any culture, era, or ideology. This is not
a book about ideology, but about human nature. Last, the pictures
might help make the patterns more memorable for you: pictures are
powerful association tools.

Many of the pictures have a military theme. Please remember that
the purpose of patterns is human quality of life and comfort, and that
patterns help us capture as much learning from history’s tragedies as
from its moments of peak culture. Also remember that the earliest pat-
terns of human organizations (such as [Clavell1989]) have roots in mil-
itary organizational structure.

Acknowledgments

In doing this book we view ourselves as editors and chroniclers of
others’ work and ideas. There are literally thousands of people who
contributed to this book through their participation in the empirical
studies from which we mined the patterns. We don’t have all of their
names here, but we appreciate all of them for their time and energy.
Especially noteworthy were the Borland QPW Group, coordinated by
David Intersimone, a remarkably productive project at AT&T led by
Judy Tschirgi, highly effective projects at Schlumberger in Oslo, where
we were hosted by Lise Hvatum, and the group managed by Richard
Gabriel at ParcPlace Systems that was undergoing a sobering restruc-
turing at the time we visited Richard.

There are other people who put even more of their own energy into
this book by building things for us and doing things with us. Brendan
Cain was one of the original members of the Pasteur research effort at
Bell Laboratories, and he wrote many of the original analysis tools.
Anthropologist Peter B¸rgi was another early member of the research
team; he contributed many of the insights on schismogenesis and on
other direct parallels between the corporate world and the more “tra-
ditional” world of cultural anthropology. Tom Burrows’ early work on
the GIL and Romana environments at Bell Labs provided a platform
for many of the early tools. We are grateful to Steve North for the

dot

tool that not only provides good supporting visuals that map out the
pattern languages, but which was a key research tool in its own right.

6

Chapter

We are particularly indebted to authors who let us reproduce their
patterns here. Pieces of the patterns of Alistair Cockburn, Ward Cun-
ningham, Bruce Whitenack and Steve Berczuk have all made their way
into this collection. Thanks for sharing, folks. Gerard Meszaros wrote
several patterns, including A

RTIFACT

 O

WNERSHIP

, A

RCHITECTURE

 D

EFINI-

TION

 T

EAM

, and A

RCHITECTURE

 O

RGANIZATION

, whose contents filtered
into many patterns in these pattern languages.

Other people steered us in the right direction. Diane Grinnell
pointed us to the references on organizational incest and its parallels to
dysfunctional constellations in family therapy. Tom Stone, then at
Addison-Wesley, pointed us to some dynamite references on organiza-
tional learning, and in particular the studies that came out of Royal
Dutch Shell. Bindu Rama Rao of Lucent pointed us to the work by
Kroeber, which gave us strong ties from patterns back to the world of
anthropology. Urvashi Kaul of Allstate developed pattern taxonomies
that shaped how we organized these patterns into pattern languages.
But most of all, we’re grateful to Moody Ahmad, who first gave us a
hint back in the mid-1980s that software development research should
be investigating not just the technical issues, but the human issues as
well.

Dozens of people reviewed these patterns in writers workshops at
pattern conferences and local pattern groups. Additionally, we enjoyed
the feedback of a team of focused and thorough reviewers who
weren’t afraid to give us the benefit of their opinion in places where
they felt we were misguided, and they were usually right. Gerhard
Ackermann at Siemens in Vienna offered a wealth of first-hand
insights in organizational growth and repair. Paul Bramble and Ian
Graham were our two main manuscript reviewers for the late versions
of the manuscript, but they offered a lot of useful advice on the organi-
zational of the book. Joshua Kerievsky pioneered the conversion of
these patterns to Alexandrian form with his outstanding editorial
efforts on S

OLO

 V

IRTUOSO

, S

IZE

 T

HE

 O

RGANIZATION

, and S

ELF

 S

ELECTING

T

EAM

. And many thanks to our favorite Mercenary Analyst, Betsy
Hanes Perry, for her contributions to P

UBLIC

 C

HARACTER

. Other key
early reviewers included Jay Stagnone, ...

There are others who worked with us as partners along the way,
and whose editorial feedback and suggestions were fundamental to
the shape of the book. Martine Devos (then of Argo in Belgium, and
currently of Avaya Labs) and Steve Berczuk invested much of them-

7

selves in this work, and we are grateful for their energy and dedica-
tion.

We enjoyed a good technical and organizational infrastructure to
support out work. At Bell Labs, the research organizations managed
by Eric Sumner, Mary Zajac, and David Weiss actively supported this
work over a decade. That is a long time not only in Internet years but
even by research project standards. We honor their vision, patience,
and forbearance. David Weiss continued to support this work in a sim-
ilar capacity at Avaya Labs. Many thanks to U

NIVERSIT

‰

T

 Karlsruhe for
the Wiki that we used to develop the book manuscript, and in partic-
ular to Dr. Helmut Goos. The support came in part under the auspices
of the IST 1999-14191 EasyComp joint research project of the European
Community, and we are grateful for that support. Research Chair John
Roddick and fellow professor Paul Calder sponsored the infrastruc-
ture and time for this work while Jim Coplien spent a summer (or was
it winter?) at Flinders University in Adelaide, Australia.

And of course, where would we be without our editorial support?
Alan Apt has always been there in the wings, but not bugging us too
much, supporting us in mighty ways. It’s been a joy working with
him.

This book was generated automatically from a Wiki web site using
tools that generated a MIF file for transmission to the publisher.

8

Chapter

9

PART I. History And Introduc-
tion

This book is about people — people who write software. No, this
isn’t a Dilbertesque look at our profession or an analysis of the minds
of cult figures in the profession. It is about teams of real people who
write real software. You see, over the last ten years or so, we have
studied how people work together to create software. And we have
seen that these organizations have a lot in common, whether they are
writing software for telephone systems, banks, or oil exploration. The
people issues shine through whatever application they are developing.
And that is comforting, in a way.

At the same time, though, it is disconcerting. For while organiza-
tions are inanimate, they take on a life of their own. We see that organi-
zations grow, learn, and sometimes even get sick! Yet they can heal
themselves, and can become healthy again. Of course, we are most
interested in the characteristics of the healthy organizations; perhaps
other organizations can learn from those experiences.

It is this notion of healing, repair and growth that are the founda-
tions of Agile development. O.K., we’ll be frank: we chose “Agile” for
the title out of marketing concerns. It seems to be the current term of
choice for the kinds of things we describe in this book. It is a term that
rolls off the tongue more easily that other clever names that clamor for
your attention on today’s bookshelves. This manuscript has been

10

Chapter

evolving piecemeal for over a decade, and the early pre-publication
manuscripts have been a foundation and source of inspiration for
many contemporary popular approaches. For example, Jeff Sutherland
notes that an early publication on this work, related to one of the major
case studies in this book, was one early influence on SCRUM
[Sutherland2003]. Ken Schwaber notes that the early background of
these pattern languages “were the genesis of some of the agile pro-
cesses” [Schwaber2003]. Gabriel’s early article [Gabriel1994] and later
book [Gabriel1996] discuss the successful application of these tech-
niques at ParcPlace Systems as a key part of a broader effort that trans-
formed the organization. And these patterns have the dubious
distinction of earning the criticism of one notable software person who
was the primary reviewer of the first published version of these pat-
terns. He noted that anyone who worked on organizational issues was
avoiding doing real work (which by his own admission was limited to
anything directly related to Smalltalk programming). He would later
go on to be one of the founders of Extreme Programming—a discipline
that builds in part on the patterns that have been in this language
(such as D

EVELOPING

 I

N

 P

AIRS

 (4.2.28)) for almost a decade.
Yet this book is broader than so-called agile development. We are

really concerned with effective software development — the ability to
produce good software efficiently, time after time. Many of the organi-
zations we studied and learned from would not be considered “agile”,
but they were highly effective. The 5ESS development in AT&T, for
example, would fit nobody’s definition of agile. But year after year,
they produced software for a system that was not only one of the
largest software systems in the world, but among the world’s most
reliable. Yes, many of these patterns contribute to agility, but our chief
aim is effectiveness.

We have captured the good things organizations do and have
written them down as patterns. We hope these patterns will be as
interesting and useful to you as they have been to us. Many others
have found them useful: at conferences, we find that these patterns are
the foundation of improvement programs in many companies world-
wide.

We have divided this book into four parts:

• Part I: History and Introduction, the section you are reading

• Part II: The patterns themselves

• Part III: Foundations and History

11

• Part IV: Case Studies

• Part V: Appendices

Here in the introduction, we provide background material that will
help you better understand the core of the book, which is the patterns
themselves. It is an ideal goal that each pattern should convey every-
thing you need to know to touch the resources within you that will
allow you to apply it. But more practically, experience has shown that
a knowledge of the history behind the gathering and publication of
patterns can help the reader better understand their scope and applica-
bility. For example, John Vlissides’ book “Pattern Hatching,”
[Vlissides1998] a reflection on the seminal Gang of Four book, offers
commentary that takes the pattern practitioner to a new level of depth
in understanding both the strengths and limitations of the techniques.
Here, we package both parts into the same book. And furthermore, we
present the ideas up front as a foundation for what follows.

After you read the patterns, the case studies follow to revisit and
reinforce the principles and practices that the patterns offer. The
appendices include miscellaneous supporting material.

12

Chapter

What Are Patterns?

13

CHAPTER 1

An Overview Of Patterns
And Organizational
Patterns

The authors of this book all know that you really wanted to first
open the book to H

OW

 T

O

 U

SE

 T

HIS

 B

OOK

 (C

HAPTER

 3), but we thought it
would be good to introduce the topic a bit before taking you there.
Having a bit of terminology at hand will help provide context for the
most powerful application of the patterns in this book. We kindly urge
you to read all of Part I before moving into the patterns in the fol-
lowing sections, for the same reason.

1.1 What Are Patterns?

A

pattern

is an element of design that is most commonly ascribed to
the architect Christopher Alexander, who uses a pattern-based
approach to the construction of towns, neighborhoods and buildings
([Alexander1977], [Alexander1979]). Each pattern solves a problem by
adding structure to a system. The main tenets of the pattern approach
to system construction include incremental repair and piecemeal
growth, building on experience, and an attentiveness to quality of life.

14

Chapter 1 An Overview Of Patterns And Organizational Patterns

Alexander’s ideas were adopted by the software community, and in
particular by the object-oriented programming community, in the
early 1990s.

The concept of pattern is difficult; it is plagued by more misunder-
standing than were ever suffered even by terms like “object” and
“function” of the 1970’s and 1980’s. There are aspects of the definition
that are intuitive—“a solution to a problem in a context”—yet a pat-
tern is much more than that. In this book, your intuition about what
the term “patterns” means will take you far as you build and repair
your organization. But a deeper knowledge of patterns will make it
easier for you to extend the pattern language with your own patterns,
and to experience the joy that comes with the freedom of playful and
insightful organizational design.

To fully understand what a pattern is, you must first understand
what a pattern language is. A pattern doesn’t exist apart from a pattern
language; its first purpose is to establish connections to other patterns
in the language ([Alexander1977], p. xii). But to understand pattern
languages, you must first understand what a pattern is. We know this
is recursive, and to understand recursion, you must first understand
recursion. We must start somewhere, and we start here: with patterns.

Here is a short and necessarily incomplete definition of a pattern:

 A recurring structural configuration that solves a problem in
a context, contributing to the wholeness of some whole, or
system, that reflects some aesthetic or cultural value.

Some of these aspects of pattern don’t come out in the popular liter-
ature, and you may not find them all in the same place in Alexander’s
definitions. But they are the key elements of what makes a pattern a
pattern, and what makes it different from a simple rule. A pattern

is

a
rule: the word

configuration

should be read as “a rule to configure.” But
it is more than just a rule; it is a special kind of rule that contributes to
the overall structure of a system, that works together with other pat-
terns to create emergent structure and behavior.

Let’s jump into an example. Consider the pattern T

EAM

 P

ER

 T

ASK

(4.1.21). Let’s discuss each section of the pattern in turn interleaved
with explanatory commentary.

 T

EAM

 P

ER

 T

ASK

**

What Are Patterns?

15

That’s the

name

of the pattern. We try to make pattern names
descriptive, and sometimes even evocative. The name is a shorthand
by which we’ll refer to the structure, forces, solution, and so forth of
the pattern as a whole, and it’s important that patterns have good
names to support good communication between you and your col-
leagues as you evolve your organization. The two stars after the name
are a confidence level for the pattern; there can be zero, one, or two
stars depending on how often we have seen the pattern applied and
depending on our sense of confidence about the pattern’s value.

 ... a big diversion hits the team, threatening to disrupt the
ongoing work, and temporarily halt progress.

This is the

context

in which we find the problem. The context tells us
something about the current structure of the system and may give us a
hint about what other patterns already have been applied. After this
prologue is the following delimiter, which leads into a discussion of
the

forces

, or trade-offs, behind the pattern:

✥ ✥ ✥

Large distractions (usually called crises) must not be
allowed to stop a project, even for a short time.

Crises are
inevitable, and they are legion. If the project takes time to
respond to each, its members will soon find themselves
spending so much time responding to each crisis that the real
work doesn’t get done.

 Of course the diversions are real. A previous release needs an
emergency bug fix. New people must be trained. The ISO
audit will happen. But they must be handled in a way that
the project still moves forward.

At this point we have a sense that this is a tough problem! These
“forces” draw out the considerations that must be balanced in the
solution. They point to the nub of the problem and, in summary, are a
statement of the problem itself. In this pattern form—called Alexan-
drian form, after Christopher Alexander—there is no real separate
problem statement. We can interpret the emboldened part of the forces

16

Chapter 1 An Overview Of Patterns And Organizational Patterns

to summarize the problem, but it is

all

the forces together that cause
the problem.

The problem isn’t context-free; it is not a law of nature, but arises in
a cultural context. Each culture has its own aesthetics about what is
acceptable and what is gauche, what is constructive and what is unac-
ceptable. Patterns honor this human element of design.

Next, we present the solution after a ceremonious “Therefore”:

 Therefore:

Let a sub-team handle the diversion, which allows the main
team to keep working.

 One approach is to split the team. Sort the activities so that
each team has a primary task with additional, sympathetic
activities. Sitting in meetings, answering phone calls, writing
reports, for example, are non-sympathetic to designing soft-
ware. Arrange it so that each team can focus on its primary
task, and each task has a dedicated team member.

✥ ✥ ✥

We close off the solution with another set of stars, and then go into
some discussion about why the pattern works: how it balances the
forces, what the strengths and liabilities of the pattern might be, and so
on:

 The result is that the important distractions are handled
pretty much entirely by specialized teams, thus allowing the
main team to continue uninterrupted.

 However, one must be careful not to overdo it. Carried to
extremes, it results in single-person teams. In addition, while
solving a crisis is important, be careful not to heap praise too
lavishly on the crisis teams. Otherwise, addressing crises
becomes the glamor job, and the focus of the team becomes
putting out fires rather than building the building. (See C

OM-

PENSATE

 S

UCCESS

 (4.2.25)).

Aha! And there is a link to another pattern. We can also add sections
to make these links explicit:

What Are Pattern Languages?

17

Related Patterns:

 This pattern treats each task both as an activity and as a deliv-
erable. Therefore:

 O

WNER

 P

ER

 D

ELIVERABLE

 (10.5.19) - the general form of owner-
ship and accountability

 F

UNCTION

 O

WNER

 A

ND

 C

OMPONENT

 O

WNER

 - team for each arti-
fact, as well as the task of designing it

And so forth. For the full pattern, see T

EAM

 P

ER

 T

ASK

 (4.1.21).
A good pattern takes the reader on an emotional journey. We want

you to feel what it might be like to be on such a team, focused on one
task. One goal of the forces is to touch those experiences within you
that cause you to say “Aha!” and identify with the pattern.

Patterns tend to be small, local things. There is no “organization
structure” pattern or anything like that. Patterns work together in rich
and complex ways to generate emergent structure and behavior. An
individual pattern captures local related concerns; a pattern is an
encapsulation of related forces. When we apply patterns, we can do so
without undue concern for other patterns in the language. In applica-
tion, they are decoupled—but in the broader scheme of things, they
are always part of some whole that gives them context. Patterns are
like the cells in a plant; the resulting organization is like the tree or the
forest that results as the cells grow, divide, and specialize. The struc-
ture for putting the patterns together in this way is called a

pattern lan-
guage.

1.2 What Are Pattern Languages?

Patterns come from pattern languages. We use the term “language”
as an analogy. English is a language: as a language, it comprises words
and the rules to put words together in meaningful ways. A pattern lan-
guage is a language that comprises patterns and the rules to put pat-
terns together in meaningful ways, in a certain sequence. It tells how

18

Chapter 1 An Overview Of Patterns And Organizational Patterns

to build a

whole,

a

system.

Patterns encapsulate related forces so you
can focus on local trade-offs using local thinking; pattern languages
are about emergent behavior in systems.

Actually, a pattern language is an outline of many ways that pat-
terns

may

be put together. How they are put together depends on

con-
text.

When we apply a pattern, the context changes. When someone
joins the organization, or when the organization decides to build a
new product line, the context may change. Depending on the context
at any given time, different patterns might or might not apply.

So while a pattern language is a roadmap, there are paths to organi-
zational growth. The exact path one takes depends on circumstances
and on progress—and, of course, on the choices that people make in
shaping the organization along the way. Sometimes people make bad
choices, and that may mean backing up a bit or taking a detour on the
journey. And bad choices sometimes result in insights that lead to new
patterns and to new structures in the pattern language.

Consider that you are working in the P

ROJECT

 M

ANAGEMENT

 P

ATTERN

L

ANGUAGE

. You already have P

ROGRAMMING

 E

PISODES

 (4.1.19) in place,
and that you’ve decided that you need the pattern S

OMEONE

 A

LWAYS

M

AKES

 PROGRESS (4.1.20) to keep the project from getting “stuck” or dis-
tracted, particularly by diversions. SOMEONE ALWAYS MAKES PROGRESS

seems like the right idea; you have many tasks that go awry. But now
the question is how to tailor SOMEONE ALWAYS MAKES PROGRESS to the
particular situation. You could derail the entire team to address the
problem, but that would be overkill.

So you look at SOMEONE ALWAYS MAKES PROGRESS where you find this:

 You can employ one of a broad range of particular solutions
and tactics depending on the exact forces to be resolved. The
following specializations are example refinements of this pat-
tern:

• DEVELOPING IN PAIRS (4.2.28) - one person can always
take the keyboard.

• TEAM PER TASK (4.1.21) - separate tasks into sympathetic
sets.

• SACRIFICE ONE PERSON (4.1.22) - assign only one person to
the distraction.

Organizational Pattern Languages 19

• DAY CARE (4.1.23) - separate the training task from that
of producing software.

You home in on TEAM PER TASK as being a good response to the con-
cerns raised by trying to fit SOMEONE ALWAYS MAKES PROGRESS (4.1.20)
into the organization. So you design a team into your organization to
address the problem.

How do you staff the team? You move onward in the language and
find that SACRIFICE ONE PERSON (4.1.22) or DEVELOPING IN PAIRS (4.2.28)
might be suitable solutions to the problem. Or you might look at INTER-

RUPTS UNJAM BLOCKING (4.1.25) as another refinement of TEAM PER TASK:
connect the team with a manager who can get the team off top dead
center if the team becomes stuck on the problem too long.

Each of these pattern selections follows a natural progression
through the pattern language. Most patterns can be applied one at a
time. However, it pays to know the patterns in advance, and it pays to
explore several patterns in your mind to provoke your instinct to the
right action. Good advice from peers and, even more so, from the
stakeholders in the decision, can also help guide the decision. Having
the patterns at hand provides a foundation for discussion and analysis
of the problem and its potential solutions.

There are four pattern languages in this book that build four
“wholes”. These languages are a Project Management Pattern Lan-
guage, a Piecemeal Growth Pattern Language for growing the organi-
zation incrementally, an Organizational Style Pattern Language, and a
People and Code Pattern Language. Note, though, that the “wholes”
aren’t distinct, but are different views of the same organization. In
other words, a healthy organization exhibits patterns from all four of
these pattern languages, simultaneously!

1.3 Organizational Pattern Languages

1.3.1 The Structure of Social Systems
An organization is a system and, like most systems, it has structure.

In particular, it is a social system. What does it mean for a social
system to have structure?

20 Chapter 1 An Overview Of Patterns And Organizational Patterns

The study of human organizations goes back thousands of years,
and many of the schools of this nascent organizational science looked
at structure. The Chinese classics like The Art of War [SunTzu1989] talk
much about organization structure—the organization of armies, some
of the earliest large groups of people that needed guidance from orga-
nizational principles. The primary structure in a classic militia is one of
hierarchy, authority, and top down control; most other structures
respond to that.

These structures are part of culture (see ANTHROPOLOGICAL FOUNDA-

TIONS (CHAPTER 7)). A friend of ours in Siemens-Nixdorf claims to be
able to trace the hierarchical structure of the company back to its
founders, who were military officers in the Bismarck era in Prussia—a
very hierarchical culture. One finds such overt hierarchy in much of
German culture and in its companies.

But there are other kinds of culture that reflect different kinds of
structure, and that structure comes about from the patterns that gen-
erate it. Another extreme is the contemporary Linux culture in soft-
ware. It is an extremely shallow and broad hierarchy; that structure in
turn leads to different processes (see BEYOND PROCESS TO STRUCTURE AND

VALUES (7.2)).
Culture is important. While engineering organizations traditionally

seek technical missteps in their postmortem analyses, the contribu-
tions of culture are usually ignored. If you are in a culture, it’s hard to
see the culture, and that causes us to miss the important cultural roots
of failed projects again and again. But we are getting better at it. The
Columbia Accident Investigation Board lays blame for the Challenger
disaster on the NASA ’culture.’ Elements of that culture included its
value system of funding, schedule, and safety [Recer2003]. We don’t
need to wait for disaster to strike to take proactive steps to grow and
repair corporate culture. That’s what organizational pattern languages
do.

1.3.2 The Multiple Structures of Social Systems
Organizations are complex; we might define complexity as propor-

tional to the number of distinct, meaningful views of a system. In soft-
ware, we sometimes use the word architecture to describe the
articulation of system structure. We can also talk about the organiza-
tion as a system, a system that can be described by architecture, where

Organizational Pattern Languages 21

an architecture comprises the structures in the organization and the
relationships between them. The “structures” are patterns, and each
pattern documents its relationships to the other patterns in the lan-
guage. In this book we talk about four interrelated architectures of an
organization. Each one has its own pattern language:

• PROJECT MANAGEMENT PATTERN LANGUAGE (4.1): This pattern lan-
guage has to do with the work of the organization and how to
structure it. It focuses on schedule, process, tasks, and in particu-
lar the structures to support good work progress.

• PIECEMEAL GROWTH PATTERN LANGUAGE (4.2): This pattern language
describes how to grow the organization and process together; it
is reminiscent of concurrent engineering approaches that grow
the process and product together.

• ORGANIZATIONAL STYLE PATTERN LANGUAGE (5.1): This pattern lan-
guage looks at the structure of role relationships in the organiza-
tion and what they portend for different organizational styles.

• PEOPLE AND CODE PATTERN LANGUAGE (5.2): This pattern language
is an expansion of the famous Conway’s Law, that states that
there is a close relationship between the structure of an organiza-
tion and of the artifacts it builds. The pattern language offers fur-
ther insight on organizational structuring in light of growing
insight into the system architecture.

Each of the pattern languages reflects a domain. These domains
came from our analysis of the patterns. We grouped the patterns
according to how they worked together in sequences and, modulo a
small number of pattern duplications, we just ended up with four
groupings. There’s nothing magic about the number “four,” but it’s
nice and manageably small.

In practice, one uses all of these pattern languages in parallel. Each
one describes a different architecture of the organization. Each of these
architectures must be tended to. There are of course relationships
between the pattern languages; in particular, some patterns are
common to more than one pattern language. In this book we present
each pattern only once, in the pattern language where it best seems to
belong, and the other pattern languages make reference to that presen-
tation of the pattern.

These patterns come from a wide variety of organizations, large and
small. We feel that most of the patterns can be considered for most

22 Chapter 1 An Overview Of Patterns And Organizational Patterns

organizations, large and small. Large organizations almost always
comprise a composition of several smaller organizations; almost all of
these patterns were collected from identifiable groups that were cohe-
sive in their own right, though they all had effective coupling to
external agencies, organizations, and individuals. The PEOPLE AND

CODE PATTERN LANGUAGE (5.2) is particularly applicable to small organi-
zations, and those readers who have a particular interest in small team
dynamics might find that chapter particularly useful. (However, nei-
ther of us believe in “large teams;” we don’t believe they exist! The
word team means something, and the spirit and effectiveness that
come with the word team can’t be sustained across large populations.)

1.3.3 Pattern Languages and Sequences
With each pattern language we provide a story—from real life—

that illustrates how patterns from the pattern language might fit
together to achieve organizational growth, improvement, or maturity.
These stories are a form of what we call sequences. A sequence is an
architect’s tour through the structure about to be built. It is a path
through the pattern language; when you use the patterns in a given
order, that is a sequence. For example, one may begin a new project by
appointing an architect design the overall product (ARCHITECT CON-

TROLS PRODUCT (5.2.3)). Because it is a big project, the architect gets help
(ARCHITECTURE TEAM (5.2.4)), and then they sequester themselves to
come up with the initial architecture (LOCK ’EM UP TOGETHER (5.2.5)).
This shows a small piece of a typical sequence of a new project. A
given path, or sequence of patterns, results in a particular system, or
whole. At the end of each of the four languages, we give a story that
illustrates a sequence through the pattern language.

These sequences should help you get a feel for what the language is
trying to build; what it’s trying to achieve. They should give you a
better feel for what pattern languages in general are about. They
should help you see how the patterns tie together, depend on each
other. As you read the pattern languages and consider your own expe-
riences, you will be able to see sequences through the pattern lan-
guage—your own stories.

Of course, all the possible sequences are implicit in the structure of
the pattern language. You can and should generate your own sequence
by going from pattern to pattern, working your way through the lan-

Organizational Pattern Languages 23

guage. The pattern language diagrams presented at the beginning of
each pattern language can be a guide. And sometimes you may find a
place to apply a pattern in a way that’s a bit out of sequence; as long as
the context is suitable for the new pattern, let common sense rule and
try the pattern if your instinct leads in that direction.

Near the end of the book we also present some case studies. These
are like the sequences in the stories we present with each pattern lan-
guage, only they are less structured. The case studies come from orga-
nizations we have studied and modeled, so we have less insight into
their process of growth than we do for the examples given with the
pattern languages. But one can still imagine what process might have
taken place, and one can still see the interworking of the patterns in
those stories.

24 Chapter 1 An Overview Of Patterns And Organizational Patterns

Organizational Pattern Languages 25

CHAPTER 2 How The Patterns Came
To Us

We didn’t make up these patterns. No one invents a pattern (or if
they do, they shouldn’t). Patterns are out there waiting to be discov-
ered and documented. We took it upon ourselves to find the latent pat-
terns of the domain of organizational maintenance and to document
them. This book is the result.

This section briefly looks at the techniques we used to find and
organize the patterns. You should read this chapter if you are inter-
ested in the methodology behind the patterns as much as you are
interested in the patterns themselves. However, the section on HOW TO

USE THIS BOOK (CHAPTER 3) provides a summary of what you’ll need to
know to understand most of the patterns that follow.

We can summarize our research approach as follows:

1. Gather data from identifiable teams, using team interviews.

2. Analyze the data using social network techniques, to build orga-
nizational models.

3. Present the analysis results to the team, note team reactions, and
adjust the model as necessary

4. Catalog the analysis results and look for common patterns, iden-
tifying the problem, forces and solution for each pattern

26 Chapter 2 How The Patterns Came To Us

5. Capture the patterns in pattern form.

6. Look for links between the patterns that form meaningful
sequences for applying the patterns.

7. Organize the sequences into pattern languages.

We started with team interviews, and largely used social network
analysis tools to look for patterns in the data from around 100 organi-
zations. Those organizations ranged in size from 5 people to 100
people, but most of them were organizations of 20 to 40 people
working on a common software project. By “organization” here, we
mean a social unit such as a department or project or sometimes a
work location where the people depend on each other and work
together. That sense of organization may (or may not) be independent
of what is on the corporate organizational chart. Often, each organiza-
tion would be responsible for one or more processes in the sense that
the term is used in ISO 9000 certification.

We studied organizations in Europe, America, the Middle East, and
Australia. Our models unfortunately do not build on any substantial
data from Japan, China, Singapore, or other countries of the Pacific
Rim. It is possible that the cultural differences (in the vernacular sense)
might limit the application of some of these patterns in Pacific Rim set-
tings. But we have found remarkable commonality across organiza-
tions in Western Europe, the Nordic countries, the United States, and
the Middle East.

Given that background, here’s a more in-depth description of how
we gathered and analyzed the organizational data.

2.1 Gathering Organizational Data

This work draws on data gathered as part of the Pasteur process
research program at AT&T Bell Laboratories. In the Pasteur program,
we studied software development organizations in many companies
worldwide, covering a wide spectrum of development cultures. The
Pasteur analysis techniques are based in part on organizational visual-
ization. Many of the patterns in this pattern language have visual ana-
logues in the Pasteur analyses. We sometimes use visualizations to
illustrate a pattern.

Gathering Organizational Data 27

There are two kinds of pictures used in the Pasteur studies. The first
is a social network diagram, also called an adjacency diagram. Each
diagram is a network of roles and the communication paths between
them. The roles are placed according to their coupling relationships:
closely coupling roles are close together, and de-coupled roles are far
apart. Roles at the center of these pictures tend to be the most active
roles in these organizations, while those nearer the edges have a more
distant relationship with the organization as a whole.

The second kind of picture is an interaction grid. The interaction
grid is a communication matrix for the organization, structured in a
way that makes it easier to find clusters of communication, of engaged
and disengaged roles, and of other patterns in the communication net-
work. We present an overview of these tools in READING THE PATTERNS

(3.1), and describe them in more detail in the section SOCIAL NETWORK

ANALYSIS (7.4).
The pattern texts in this book often make reference to documents or

projects that typify the pattern, particularly in the Design Rationale
section of the patterns. One of our most important case studies was a
1993 evaluation of Borland’s QuattroPro for Windows development,
also called “QPW” in the text. This research is further discussed in the
proceedings of BIC/94 [Coplien1994], in a column by Richard Gabriel
[Gabriel1994], and in an article in Dr. Dobb’s Journal [Coplien1994b].
The case study appears in this book as BORLAND QUATTRO PRO FOR WIN-

DOWS (CHAPTER 8).

2.1.1 Introspection In And Analysis Of Organizations
We launched our work on process and organization as ISO 9000,

STD 2167a and other standards broadened their influence on software
development in the late 1980s and early 1990s. These standards
focused on process reproducibility, striving to reduce organizational
performance variation more than on raising the mean. Such baselining
is important to the quality techniques popularized by W. Edwards
Deming [Deming1986] based on statistical process control. A process
can be improved if it can be understood; it can be understood only if it
has a consistent structure [Senge1990]; its structure can be consistent
only after the first steps of process improvement have reduced process
variability. We found that the process culture in most contemporary
organizations has a strong focus on process documentation, but what

28 Chapter 2 How The Patterns Came To Us

is documented is often distant from day-to-day practice. The process
cultures often ignored important variations in organizational behavior
that are key to dealing with market uncertainties, or the uncertainties
that arise in any process rooted in human intellect and instinct.

2.1.2 Shortcomings Of State Of The Art
Most process-intensive organizations look to a process specification

document as the final word on development activities. We noted three
problems with this approach in practice: lack of empirical conform-
ance between practice and process specifications; incompleteness of
process models; and inability to capture long-term stable process
abstractions. Many processes exhibited such broad variation in
behavior that it was difficult for process specifiers to agree on a pro-
cess that represented the typical scenario. Many organizations infor-
mally built process specifications from anecdotal process experience
instead of driving the baseline process model with empirical models
and data. Many organizations we studied created an ideal specification
instead of capturing empirical practices [Archibald1993]; organiza-
tions used those specifications as a baseline for improvement despite
this mismatch. Because many process specification models were
divorced from empirical practice, nothing forced development prac-
tice into statistical control.

Second, process models were often incomplete and inconsistent.
Most process models focused on the task and event perspective,
leaving artifacts, roles, actors and agents as secondary abstractions.
Much of this task perspective was driven by a preoccupation with
interval prediction and reduction on one hand (one manages overall
interval by focusing on individual intervals) and quality on the other
(methodical reviews form obvious task/event benchmarks). Task
models fit well the waterfall-based development model that is pre-
dominate in most development cultures. Furthermore, task models
he ld up the promise o f process automat ion (e .g . ,
[KrishnamurthyRosenblum1991]). We note that the disconnect
between process tasks and the artifacts they produce continues to
plague most of the organizations we work with today.

Third, many organizations built their process improvement pro-
grams around the task or event dimension of process. Well-under-
stood processes (like bug report flow) often can be regularized, but the

Gathering Organizational Data 29

core processes of architecture, design, implementation and validation
are poorly understood from a task perspective. We have found that
task ordering changes rapidly in a high-technology development orga-
nization, so it can’t be counted on as a stable component of process
structure. One large organization we studied surveyed its developers
and found that 80% of them were working under officially granted
process waivers instead of the official common process, largely
because the project’s process standard didn’t capture the essential,
stable structure of the process. One reason that task chain models
don’t capture the stable structure is because of the high degree of con-
currency present in modern software development. It is interesting to
note that iterative and incremental design cultures were demon-
strating success at about the same time that process consciousness was
growing. Project managers still find it difficult to reconcile iterative
and incremental techniques with process standards that prescribed
process steps [Archibald1993]. Many organizations we studied exhib-
ited concurrent engineering practices, where requirements, design,
and implementation activities proceeded in parallel [Hartley1992].
Few organizations intentionally applied concurrent engineering. In
fact, many organizations using concurrent engineering (as we discov-
ered empirically) remained stalwart about the accuracy of their water-
fall design methods (as stipulated in project process documents). We
felt that a role-based model would be a better match for these concur-
rent engineering organizations than would models based on tasks and
events.

There is growing recognition that even if process models could rep-
resent interesting aspects of an organization, they aren’t terribly useful
as a guide for carrying out the work of the business. In Contextual
Design ([BeyerHoltzblatt1998], p. 41), Beyer and Holtzblatt note:

 In Contextual Design, we always try to build on natural
human ways of interacting. It is easier to act, not out of a long
list of rules, but out of a simple, familiar model of relation-
ship. A list of rules says, “Do all these things”—you have to
concentrate so much on following the rules you can’t relate to
the customer. It’s too much to remember. A relationship model
says, “Be like this”—stay in the appropriate relationship, and
you will naturally act appropriately.

30 Chapter 2 How The Patterns Came To Us

And this position in turn builds on longstanding observations of
human behaviour; Beyer and Holtzblatt cite Goffman’s work from
almost a hal f -century ago as foundation for this posi t ion
([Goffman1959]). We sought to counter the problems of an explicitly
process-based approach to organizational improvement with an
explicitly role-based modeling approach.

We wanted to adopt process formalisms that would allow us to
compare iterative processes with traditional waterfall models; this
meant going beyond task and event models. While many aspects of
process might be automatable, we found that productive processes
emphasized the creative value added by the people in the process. In
general, this suggested that we should study many dimensions of pro-
cess: artifacts, organizational roles and structure, personal skill sets,
and many other factors. Together, these diverse properties define a
process architecture. Architecture is a partitioning of a system that
results from applying a set of partitioning principles, together with the
relationship between the parts resulting from that partitioning. Our
resources didn’t allow us to study all of these at once, we decided to
focus on organizational structure, to balance the investment most
organizations had made in task models. The industry has a fascination
with the relationship between development organizations and the
software they create (see [Fraser1994a] and [Fraser1994b]) so we felt
there would be interest in such research.

The organizations we studied didn’t necessarily correspond to
formal organizational structures, but arose as communities of interest
develop within a project. The “real” organizations in any culture can
be defined in terms of coupling between actors or roles, brought
together by a common interest or objective. Such organizations are
called instrumental organizations and should be distinguished from the
formal organization structure. An instrumental organization is the
“ ins t rument which regula tes organizat ional behaviour.”
([SwieringaWierdsma1992], page 10). These two structures line up in
some organizations; see the studies by Swieringa and Wierdsma
[SwieringaWierdsma1992].

2.1.3 The CRC- Card Methodology
The Pasteur research program was an empirical research program

based on real-world experience. Research on human subjects is notori-

Gathering Organizational Data 31

ously difficult. We were wary of any results that would simply reduce
people to numbers. We wanted results that were intuitive. We wanted
to build on the insight of our subjects as much or more as on the
insights that we as researchers would develop. One of the few con-
straints we wanted to apply to the data we collected is that it be based
on roles, and we felt that roles were a general enough representation to
not interfere with gathering insights from the study subjects. This sec-
tion describes how we used CRC cards to capture the data about orga-
nizational roles that would serve as input to our analyses.

We set out to build instrumental organizational models from first-
hand accounts [CainCoplien1993]. Since process works at the level of
the engineers doing the day-to-day design, coding, and fire-fighting,
why not build the models from their perspective? We chose CRC cards
as the tool we would use to analyze organizations. CRC cards (which
stands for classes, responsibilities, and collaborators) had been devel-
oped as a software design tool by Beck and Cunningham to support
their work on software architecture and implementation in the mid-
1980s [Beck1991]. In CRC design each index card represents an object
in the system. The card is used to note and track a c lass’s set of r
esponsibilities and c ollaborations (hence the name: CRC) in a role-
playng exercise.

32 Chapter 2 How The Patterns Came To Us

A CRC Card

In our organizational analysis, each index card represents a role. We
also captured responsibilities and helping relationships in our role
play, but the resulting model captures the structure not of an object-
oriented program, but of an organization.

CRC cards fit our needs in several respects. First, they support a
highly participatory information gathering technique—something that
would help us get at empirical behavior. This level of participation
allowed people to act out a faithful memory of day-to-day events.

Second, they made it possible to gather data in a group setting.
Role-play is a powerful technique to help people recall past events,
particularly in the company of the original players. There is something
about acting out one’s memories that makes the memories almost tac-
tile, drawing out further detail and recalling context that helps keep
the data faithful to actual practice. Sociometric research by Bernard,
Killworth et al. has shown that informant accuracy is less than 50%

Subsystem Coord.

Validate MR lists

Build group products

Administer ENVY

Resolve physical deps.

Subsystem coord.

Change committee

Designers

system test

Tool vendors

Gathering Organizational Data 33

when people repor t ind iv idua l ly on the i r in te rac t ions
([Wasserman1994], p. 57). This enactment unfolds in a sociodrama: a
kind of play that recalls the reality of life in the organization. Our sub-
jects were the actors; we were the audience. Of course, the subjects
were also unwitting members of the audience, and the technique owes
much of its power to that fact. Bringing group members together helps
recall corporate memory. It is also an opportunity to plant the seeds of
group learning [Senge1990], as we will discuss later.

Third, CRC cards were a good “fit” for the domain we were
studying. Each card could be used to model an organizational role; the
“responsibilities” captured the responsibilities of each role to the orga-
nization; the “collaborations” captured the dependency relationships.
At this early juncture, we were naive about social network theory and
sociometric diagrams, but we would find that the CRC model would
serve us well to support social network formalisms.

Fourth, CRC cards balanced important aspects of several tech-
niques commonly used in soc ia l network data gather ing
([Wasserman1994], p. 19; p. 44). There are many different flavors of
modeling units. Examples of modeling units include actors, dyads,
triads, and others. Our primary modeling unit was roles, a generaliza-
tion of related actor responsibilities. In dyadic data gathering, each
actor is asked about their interactions with other actors. In triadic data
gathering, one actor offers an opinion on how a second actor interacts
with a third. The CRC modeling technique focuses on dyadic data by
helping role actors focus on their interactions with others. However,
group discussions led to the collection of triadic data, particularly for
controversial or problematic interactions. It was possible to gather
data from an entire organization in one or two sessions of a few hours
each.

We have used CRC cards to gather data from about forty organiza-
tions, almost all of which serve the software industry. We focused on
large system development efforts, including development organiza-
tions in AT&T and other telecommunications companies, companies
producing software development environment products, aerospace
organizations, and medical software development. We also have data
points from areas as diverse as government administration projects
and consumer software. Most of these have been “software develop-
ment organizations”: the folks who design, implement, and test soft-
ware. We have a smaller sampling of organizations that interface the

34 Chapter 2 How The Patterns Came To Us

market to the development organization, and which perform other
assorted functions

You can read more details about the CRC technique, particularly
from the perspective of research methodology, in CRC CARDS AND

ROLES (7.5.1).

2.1.4 Analyzing Roles And Relationships
We analyzed the data from the CRC cards and from notes taken

during the role plays in various ways. We analyzed the data on the
CRC cards quantitatively. Over time, three meaningful quantitative
measures emerged. They are:

Number of Roles: This is simply the number of roles in the organiza-
tion. It is not the number of people.

Communication Saturation: Each role has the potential to communi-
cate with every other role. The communication saturation is the per-
centage of the potential communication paths that are actually used.

Communication Intensity Ratio: Not every role has the same number
of communication paths to other roles. In many organizations, one role
has the lion’s share of the communication paths. The communication
intensity ratio is the ratio of the number of communication paths of the
’busiest" role to the average number of communication paths in an
organization. It measures how much the communication is concen-
trated in a single role.

These measures helped form some of the patterns; you will see
them mentioned later in the patterns themselves. The patterns will
explain the implications of the measures.

Visual Analysis
Besides the quantitative analysis, we found that looking at the data

from the CRC cards yielded some interesting — and sometimes sur-
prising — insights.

The first “picture” of the data we use is called a sociogram. It is best
explained by a metaphor. At the conclusion of a session with an orga-
nization, we have a deck of cards, one for each role. We take the cards
back home to our laboratory. We begin by rubbing each card through
our hair, thus imparting a weak positive charge to the cards (and a
negative charge to our hair.) We then deal the cards out on a friction-
less table (we have one of those in our lab.) Then we reach for our jar
of protons, and very carefully place one proton in the middle of the

Gathering Organizational Data 35

table (we have a jar of protons.) This causes all the cards to move away
from the center, and away from each other. But then we hook the cards
that communicate with each other together with rubber bands. In fact,
we have three strengths of rubber bands, representing the strength of
communication. They show up as lines of different thickness. We have
noticed that the more rubber bands that a card gets, the darker it is
shaded.

Finally, we step back and let the cards settle down, and view the
resulting patterns. As you can imagine, cards that communicate
strongly with each other clump together. And some cards are left
pretty much alone. The cards with the most communication end up in
the middle. In the following sociodiagram, for example, you can see
that a role called “SPM” is central to the entire organization. On the
other hand, the factory role is isolated from the rest of the organiza-
tion.

With practice, we were able to learn many things about an organiza-
tion, literally at a glance. These diagrams led to other patterns; the
above pattern is representative of the HUB SPOKE AND RIM (5.1.17) pat-
tern.

The second diagram we use is called an interaction grid. Here is a
simple interaction grid for the same organization as depicted in the
sociogram above:

36 Chapter 2 How The Patterns Came To Us

This diagram shows both communication and direction — which
roles initiate communication to other roles. The roles shown along the
left of the grid (the y axis) initiate communication to the (same) roles
along the bottom of the grid (the x axis). The shading represents the
intensity of the communication, just as in the sociogram.

These visualizations have their roots in social network theory. For
those of you who are interested, we explore their origins in SOCIAL NET-

WORK THEORY FOUNDATIONS (7.5.2), as well as the tools used to create the
pictures, after we present the patterns.

2.2 Creating Sequences

2.2.1 Why Sequences Are Important
The pattern languages themselves in this book are static. Organiza-

tions are always changing, and the way they change isn’t always pre-
dictable. Where do the dynamics come from?

The dynamics come in the application of the patterns, and the order
in which one applies them. What is the right order, then? One might
speculate that one follows the structural relationships between the pat-
terns (as in the sections PROJECT MANAGEMENT PATTERN LANGUAGE (4.1),
PIECEMEAL GROWTH PATTERN LANGUAGE (4.2), ORGANIZATIONAL STYLE PAT-

Creating Sequences 37

TERN LANGUAGE (5.1), and PEOPLE AND CODE PATTERN LANGUAGE (5.2),
where the relationships are shown graphically). But it doesn’t always
work that way.

Alexander believes that order in any system fundamentally
depends on the process used to build the system. This is why the fun-
damental process is important (see the section PIECEMEAL GROWTH (6.2)).
It is important that each step preserves structure and gradually adds
local symmetries, and the organization unfolds over time. It is step-by-
step adaptation with feedback. Simply following the pattern language
doesn’t give you a clue about how to handle the feedback. So that’s
why the fundamental process exists: to give complete freedom to the
design process to attack the weakest part of the system, wherever it
may be.

However, the fundamental process cannot work on a human scale
without some kind of cognitive guide that is built on experience and
which can foresee some of the centers that must be built. That’s what
patterns are: essential centers.

If unfolding is important, how do you know what order to unfold
things? The sequence is crucial. You want a smooth, structure-pre-
serving unfolding. It shouldn’t feel like “organizational design.”

So, what a sequence does is:

• Preserves structure;

• Keeps you doing one thing at a time;

• Takes the whole organization into account at each step;

• May be repeated tens of thousands of times.

Sequences take you into unpredictability, and into circumstances
you handle with feedback, always in the context of the whole organi-
zation. Sequences are where generativity comes from.

2.2.2 Our Sequences
We have created sequences for each pattern language here. Each of

these sequences is one of millions of sequences one could hypothesize
for each pattern language: there are many meaningful paths through
the pattern language graph.

Sequences unfold as stories, and so that’s how we present them.
These “stories” are sanity checks on the set of patterns they refer to. If
these patterns really do belong together, then we should be able to

38 Chapter 2 How The Patterns Came To Us

come up with a “story” that flows through the patterns. (And note that
this is not necessarily a temporal flow through the patterns.) It may
point out patterns that don’t quite fit where they are, or don’t fit well
in the group at all. We might also use the story in the book as an illus-
tration of how the patterns work together. Look at these sequences in
the book:

• A STORY ABOUT PROJECT MANAGEMENT (in PROJECT MANAGEMENT PAT-

TERN LANGUAGE (4.1))

• A STORY ABOUT PIECEMEAL GROWTH (in PIECEMEAL GROWTH PATTERN

LANGUAGE (4.2))

• A STORY ABOUT ORGANIZATIONAL STYLE (in ORGANIZATIONAL STYLE

PATTERN LANGUAGE (5.1))

• A STORY ABOUT PEOPLE AND CODE (in PEOPLE AND CODE PATTERN

LANGUAGE (5.2))

These sequences are real; they come from our experience, and we
thought they typified the rich ways in which patterns build on each
other, and the way in which the language can become alive.

Of course, each of the CASE STUDIES could also have a sequence
written for it. Each sequence selects patterns which themselves form a
small language. That language describes the culture of the organiza-
tion.

2.3 History And Related Work

The bulk of the organizational patterns in this book draw on the
Pasteur research project at Bell Laboratories. The earliest work on that
project sought alternatives to ISO 9000 series approaches as a means to
baselining organizational quality. That work dates back to about 1991;
the first paper published from that work was [CainCoplien1993]. The
key idea of using roles dates back to that work.

That research program first used started using patterns to capture
organizational structures in late 1993. This body of patterns grew, and
the first draft of those patterns was presented for review at the first
conference on Pattern Languages of Programs in 1994. The organiza-
tional pattern language that was eventually published in the first book
in the PLoPD series [Coplien1995] was one of the first pattern lan-

History And Related Work 39

guages in software. That pattern language dealt with recurring struc-
tures—configurat ions of ro les—in sof tware development
organizations, as a reaction against the predominate organizational lit-
erature of the era that was based on development process and ISO
9000 series standards and the CMM.

A contemporary language that dealt closely with process and orga-
nizational issues was Bruce Whitenack’s RAPPeL pattern language
[Whitenack1995]. Bruce’s pattern language focused largely on the
requirements process, “to build systems that do the right things.” His
view of prototyping contributed heavily to the BUILD PROTOTYPES (4.1.7)
pattern in this book. It is perhaps regrettable that few of Bruce’s other
patterns appear here, but we decided they are a good pattern collec-
tion in their own right with loose enough coupling to other organiza-
tional issues that it would be best to keep the two as separate works.

Another contemporary pattern language was Norm Kerth’s “Cater-
pillar’s Fate” [Kerth1995] which also appeared at the first pattern con-
ference and is published in the first PLoP book. It looks at the
transition from analysis into design, and there are many good organi-
zational insights in his patterns, borne on years of consulting and
experience. Like RAPPeL, the patterns look at organizational structure
as a secondary concern, and so we elected not to incorporate them into
the patterns here.

Since then several other efforts have come on the scene and have
matured over the years. Steve Berczuk wrote patterns about devel-
oping software with distributed teams that are strongly technical, but
have interesting organizational overtones [Berczuk1996]. Some of
these ideas have evolved into the excellent book by Steve and his co-
author, Brad Appleton [BerczukAppleton2002].

Another follow-on was Ward Cunningham’s Episodes pattern lan-
guage. Episodes reflected long-standing experience in the Smalltalk
community on small projects that extended all the way back to Ward’s
experience at Wyatt Software. His work included patterns such as PRO-

GRAMMING EPISODE (4.1.19) and its subtending patterns. Episodes was
first published in the PLoPD-2 book [Cunningham1996].

Other follow-on work in this vein came from Alistair Cockburn in
1998 and showed up in his book Surviving Object-Oriented Projects: A
Manager’s Guide [Cockburn1998]. His patterns include DAY CARE

(4.1.23), SACRIFICE ONE PERSON (4.1.22), and many other practical project
management patterns.

40 Chapter 2 How The Patterns Came To Us

Joseph Morabi and colleagues studied the design of organizations
[MorabitoSackBhate1999].

Scott Ambler wrote some patterns of developing software from the
process perspective[Ambler1999].

You can find more research foundations and related work in
ANTHROPOLOGICAL FOUNDATIONS (CHAPTER 7), and particularly in PATLETS

FROM OTHER PATTERN LANGUAGES (10.5).

Reading The Patterns 41

CHAPTER 3 How To Use This Book

How should you use this book? Just read the patterns and apply
them in your organization! But of course, it isn’t that easy. In fact, it
isn’t easy at all. But right now, the big question for you is how to get
started. Here is what we recommend.

3.1 Reading The Patterns

First, read the patterns. We have attempted to put them in a logical
order; in the order of a typical sequence through each of the languages.
So begin by reading them in order.

3.1.1 The Form
We use Alexandrian form for our patterns: a stylized format for

organizing the important components of a pattern. The body of each
pattern starts with a statement of the context in which that pattern
applies. A problem may arise in that context; the problem description
comes next in the pattern. Then the pattern elaborates the problem
with a description of the forces that define the problem. Last, the pat-
tern presents a solution that we have validated across a spectrum of

42 Chapter 3 How To Use This Book

development organizations, followed by a rationale that describes
why you might believe the pattern should be successful.

3.1.2 Understanding the Models Behind the Patterns
In HOW THE PATTERNS CAME TO US (CHAPTER 2), we gave a detailed

description of the methodology and research technique behind the
pattern. We told you that section was optional reading. Nevertheless,
it’s important to go into the rest of the book with some level of under-
standing of the source of the patterns, so we give you a summary here.

All of these patterns came out of empirical research. Most of the
patterns were distilled from observations gleaned from organizational
analysis exercises we conducted on dozens of organizations world-
wide. These exercises were used to build organizational models. The
role is the basic building block of these models. Every organization has
roles: developer, manager, systems engineer, tester, and many more.
Roles get their work done by interacting with other roles, and much of
the success of an organization owes to how effectively roles can
exchange information and work together. Each model attempts to cap-
ture these interactions between roles.

We gathered the data for the models in a role-playing exercise
where each participant tracked the interactions between their role and
other roles in the model as the role-play progressed. We used CRC
cards — a technique borrowed from object-oriented design — as the
tool for capturing these interactions.

These data were fed into a tool to visualize the interaction structure
of a given organization. We discovered many of these patterns by
looking at diagrams of the communication structures between roles or
individuals in the organizations. It was easy for us to notice important
features and anomalies in these pictures, and it will be easy for you to
do so as well.

For example, consider the following organizational model (called a
sociogram) that we cite frequently in this book:

Reading The Patterns 43

The roles near the center are more closely coupled to the organiza-
tion as a whole than are those nearer the outer edge. Roles that are
near each other are more closely coupled to each other than they are to
more distant roles. And roles with more coloring are more coupled to
other roles than the ones with less coloring.

We can see many patterns in this picture. We can see that the roles
in this organization DISTRIBUTE WORK EVENLY, since the amount of work
— reflected by the shading of the roles — is spread around rather than
being centralized in a handful of roles. We can see that the ARCHITECT

CONTROLS PRODUCT, being central to the organization. We can validate
that the ARCHITECT ALSO IMPLEMENTS because of the proximity to the
Coder role. Of course, when we wrote the patterns, we had additional
information that led us to these conclusions, information that came
from the organization’s process sequences. But these diagrams serve to
substantiate and illustrate those observations.

(Don’t worry that you don’t yet understand these patterns; we’ll get
to them later on.)

That is just one kind of visual model that we can build. Here is
another model of the same organization:

44 Chapter 3 How To Use This Book

The axes of the interaction grid span the roles in the organization,
ordered according to their coupling to the organization as a whole. If a
role at ordinate position p initiates an interaction with a role at coordi-
nate position q, we put a point at the position (p, q). The point is
shaded according to the strength of the interaction. In the above model
we can see that there is a dense network of communication between
roles. There aren’t very many large “holes” in the communication
structure of the organization. Compare the above grid with this grid:

Reading The Patterns 45

This picture tells a tale of a much different management style, one
where a few core managers initiate interactions across the rest of the
organization. Barring those management-initiated interactions, there
just isn’t much interaction between roles.

Many of the patterns in this book use these pictures as aids to
understanding the context and forces described in the pattern. We
describe the diagrams in more detail in the section SOCIAL NETWORK

THEORY FOUNDATIONS (7.5.2), and we recommend you take a quick look
at that section before exploring the patterns in depth. For more on our
research techniques, you can read the entire section HOW THE PATTERNS

CAME TO US (CHAPTER 2).

3.1.3 Stories and Pictures in the Patterns
Many of these patterns come from stories we have picked up on our

travels — stories of real problems in real organizations and the real
solutions they applied. Many of our patterns start with what we
believe to be a particularly poignant or appropriate selection from
among such stories.

Each pattern starts with a picture. The pictures are sometimes fun,
sometimes somber, and sometimes thought-provoking. Each one

46 Chapter 3 How To Use This Book

strives to underscore the human dimension of the pattern and to serve
as a tool to help remember the pattern.

3.1.4 Finding your Way
You will soon see that patterns point to other patterns, not neces-

sarily in the same sequence. One would expect this, since there are
many paths through a language. So you may find it more useful to
read the patterns in a different order; feel free to do so.

Each pattern is designed to be understandable and applicable in
isolation, even though each pattern gains much of its power by rein-
forcing the patterns around it in the pattern language. When you read
the patterns, focus on understanding each on individually: don’t
worry unduly about the sequence. Allow yourself to get lost, to
explore, to play. Of course, if you’re a more linear thinker, you may
want to follow a specific sequence to order your thoughts; do what is
comfortable for you. There are many paths to understanding these pat-
terns.

If you need to get a quick overview of a pattern, just read the text.
That gives you the name, the problem it solves, and the solution. For
convenience, there is a quick reference summary of the patterns at the
end of the book; they are called “patlets.” In the patlets, the problem
and solution are distilled into a single sentence. Therefore, they are
best used as a reference; as a reminder of what each pattern is about.

Whatever order you read the patterns in, you will find some pat-
terns that seem particularly relevant to your organization. Some will
jump out at you, and you will say to yourself, “Now here’s a pattern
that our organization can really use.” So mark them with a little yellow
sticky note. One or more of these will probably become your organiza-
tion’s entry into the pattern language. Note the wording above: the
patterns you mark must be not only helpful, but feasible in your situa-
tion.

3.2 Applying The Patterns

Now for the hard part: getting the organization to actually use any
of the patterns. That means changing the culture of the organization,
and cultural change is tricky, difficult, sometimes painful, and some-

Applying The Patterns 47

times even dangerous. We cover this topic in more detail in ORGANIZA-

TIONAL PRINCIPLES (CHAPTER 6), and it is important to read that chapter
before actually trying out these patterns in your organization. The sec-
tion PIECEMEAL GROWTH (6.2) gives particularly important advice that
can be boiled down to: apply one pattern at a time, and if it doesn’t feel
right, back out. Until you read ORGANIZATIONAL PRINCIPLES, here are some
tips to get started.

3.2.1 Sequences
You should apply the patterns in a sequence. Though you can under-

stand the patterns individually in almost any sequence, they gain
much of their power by building on each other in the right order. Each
particular organization is built from a sequence of patterns whose
order is suggested by the succession of unbalanced forces each pattern
leaves for the ensuing one. At the beginning of each pattern language
chapter we offer some example sequences.

For more on sequences, see the section CREATING SEQUENCES (2.2).

3.2.2 Which patterns?
There is no prize for using the most patterns. With the sequences as

a guide, choose the patterns that solve problems that you actually
have. Do you feel the pattern’s forces in your organization? Then the
pattern is worth considering. Otherwise, don’t oblige yourself to use
the pattern. There is nothing intrinsically good about any pattern in isola-
tion; each one is good only to the extent that it resolves the forces that actually
exist in your organization. Pay specific attention to the patterns you
marked with yellow stickies when you were reading them. Don’t be
afraid to follow your nose. Remember: patterns aren’t about us telling
you what to do, they’re about helping you discover what you knew
how to do all along.

3.2.3 Human Concerns
Organizations comprise people, so it should be no surprise that you

will need to deal with “people issues” as you unfold a pattern lan-
guage in an organization. Let common sense and sensitivity be your
guide; here are a few tips to guide you.

48 Chapter 3 How To Use This Book

First, remember that nearly every organization has some awareness
of its own failings. People may not be able to put their finger on a par-
ticular problem, but they know that they have troubles. But we tend to
be our own worst critics: we usually think that things are worse than
they are. So build on this self-awareness and self-criticism. You may
wish to begin with patterns that the organization already does well,
and then introduce the patterns they can easily adopt.

Language and conversation are keys to successful change. In other
words, people need to learn what the patterns are, and then begin to
use the names of the patterns in their conversations. So teach people
about the patterns you have selected. Naturally, we think it would be
grand if everyone in the organization had their own copy of this book
to refer to!

Finally, recognize that no matter who your are, you can’t change the
organization. The people must change themselves. So enlist allies.
Make sure you read the following patterns: GATE KEEPER (4.2.10),
PATRON ROLE (4.2.15), PUBLIC CHARACTER (4.2.17), LEGEND ROLE (4.2.20),
and WISE FOOL (4.2.21). These patterns describe some of the key movers
and shakers in an organization. Identify them in your organization,
and go to them first. Once they get excited about these patterns, it is
likely the rest of the organization will come along. By the way, which
of those patterns fits you?

3.3 Updating The Patterns

We certainly didn’t foresee all possible details of organizational
structure in this book! Your business almost certainly has detailed
needs that beg for new patterns or for different versions of the patterns
here. Make the patterns your own. That’s O.K., we won’t mind—
really! Until you make a subset of these patterns yours you won’t
really be in control of your organization. Take control by letting your
instinct guide you into a tailoring of these patterns.

By the way, we are interested in your updates, if you care to share
them with us. It is your experiences that expand, correct, or substan-
tiate these patterns. In a very real sense, these patterns do not belong
to us, but to the software development community as a whole. So
write us—we would love to hear from you!

Who Should Use This Book? 49

3.4 Who Should Use This Book?

Let us say a few words about the intended audience for this book.
What kind of organization can use these patterns? Who should be
responsible for applying the patterns in these organizations?

These patterns come from studies of a wide range of organizations,
most of which are software development organizations. These organi-
zations ranged from small individual companies of a couple dozen
people to organizations embedded in companies with hundreds of
thousands of employees. We have turned around and used these pat-
terns in improvement efforts in a similar range of organizations. While
a few of the patterns may be particularly suitable to teams of a partic-
ular size, almost all of them are generic.

While the patterns often exhibit ties to software development, they
apply far beyond software developers. Project managers, testers, mar-
keting people, secretaries and clerks, business planners, and a host of
other roles figure as strongly or more strongly than the designer and
coder in software development. There is something in this book for
every member of a software enterprise. And many of the patterns gen-
eralize into other businesses if applied with insight and taste.

Many of the patterns require some authority to implement, so first
or second level managers would be a natural audience for this book.
But the funny thing is that we predict that many of the people who
read this book will not be managers, but developers. So we think there
is a good chance that you, dear reader, are a developer. But not just any
developer. You probably feel an extra concern for the function of your
organization. In fact, you are probably a key person; one of the roles
we mentioned above: GATE KEEPER, PATRON ROLE, PUBLIC CHARACTER,
LEGEND ROLE, or WISE FOOL. You may have more influence than you
think you do.

So what is a GATE KEEPER or a WISE FOOL? We’ve talked enough about
the patterns; it’s now time to read the patterns themselves.

50 Chapter 3 How To Use This Book

Who Should Use This Book? 51

PART II. The Pattern Lan-
guages

Finally, the patterns themselves! Thank you for patiently reading
the introductory material; it will help you use the patterns.

We have divided the patterns into four interrelated pattern lan-
guages:

1. Project Management: the organizational aspects of managing
projects.

2. Piecemeal Growth of the Organization: how an organization
grows and develops over time.

3. Organizational Style: the general approach the way the organiza-
tion works.

4. People and Code: how the people affect the code — and how the
design of the code affects the people!

Each pattern language presents patterns in a sequence that allows
the patterns to build on each other. Sometimes a pattern recurs in mul-
tiple pattern languages, but we present the pattern only in the first pat-
tern language where it occurs, and we substitute a reference to that
first appearance in subsequent pattern appearances. In practice, you
will use all four of these pattern languages together, weaving patterns

52 Chapter 3 How To Use This Book

together to solve problems and to strengthen your organization one
pattern at a time.

The first two pattern languages are design pattern languages; the
second two are construction pattern languages. The two following
chapters are dedicated to these two kinds of patterns, respectively.
Alexander makes the same distinction in his pattern language, sepa-
rating the act of design from the engineering considerations of con-
struction.

Design patterns are those that lay the foundation of the entity to be
built — buildings and towns for Alexander; software development
organizations for us.

Construction patterns deal with the nuts and bolts of creating the
thing. Organizations need to be built just as surely as buildings need to
be built.

A pattern may appear in several of these pattern languages. If so,
we include its description in the pattern language with which it is
most strongly connected. Other pattern languages cross-reference that
text.

The appendix SUMMARY PATLETS (CHAPTER 10) presents summaries of
all the patterns in patlet form. A patlet is a terse summary of the pat-
tern’s problem and solution. You may find this useful as a reference as
you set about putting the patterns to practice.

Who Should Use This Book? 53

CHAPTER 4 Organization Design
Patterns

The term Design Patterns has unfortunately come to mean the collec-
tion of 23 patterns that appear in the book Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides [GOF1995]. Here we use the term in
the same sense Alexander does in his classic, A Pattern Language
[Alexander1977]. In Alexander’s sense, a design pattern is something
you use to understand the geometry of a building; to understand the
major relationships between parts. It is a definition that most of us we
recognize as similar to the word architecture in software.

Once you design an organization, the organization comes to life
through organizational construction patterns. Construction patterns dis-
cuss the “materials” and processes to reduce the conceptual design to
practice.

The distinction between these two kinds of patterns isn’t as clear in
organizational design as in the design of buildings, and even there the
difference isn’t formal or clean. We separated the two kinds of patterns
based less on their characterization as “design” or “construction” pat-
terns than according to their affinity for each other. The so-called “con-
struction patterns” can be found in the chapter ORGANIZATION

CONSTRUCTION PATTERNS (CHAPTER 5).

54 Chapter 4 Organization Design Patterns

4.1 Project Management Pattern Language

Project Management is a crucial part of organizational design.
Many organizations have a project manager role, but in fact project
management is a much broader function—so broad that it covers
almost a quarter of the patterns in this book.

The patterns here do concern themselves with all the things a
project manager worries about. We start out with SIZE THE SCHEDULE

(4.1.2). In today’s markets, time to market is everything. In the classic
view of project management that suggests that there are three
resources one can trade off against each other—staff, functionality, and
schedule—it is schedule that is most often the strongest invariant. Past
years have seen functionality fall from this first place position as soft-
ware development enterprises have come to realize the difficulty in
both capturing and meeting detailed requirements. Customers have
come to the realization that it’s better to get something that works in a
finite amount of time than to spend a seeming eternity “getting it right
the first time.” Instead, we tend to defer correctness to the later
releases.

The Pattern Language

Project Management Pattern Language 55

The above figure depicts the patterns in the pattern language and
the connections between them. The connections themselves are as
much part of the language as the patterns themselves. Each pattern
provides a possible context for the patterns below it. They depict the
dependencies between the patterns that govern the order in which
they are to be applied: you start at the top and work your way toward
the bottom. If a pattern has several subtending patterns you can apply
as few or as many of them as you like, and in any order.

The pattern language is based in empirical study of organizations
that do software, most of whom deliver some software artifact to a
customer. However, the pattern language has little to do with software
per se. We believe these patterns reflect management principles that
are deeper and broader than software alone. Software development
organizations can learn from these broader principles.

Build
Prototypes

Surrogate
Customer

Completion
Headroom

Recommitment
Meeting

Work
Split

Day
Care

Developer
Controls
Process

Programming
Episode

Work
Flows
Inward

Developing
In

Pairs

Fire
Walls

Development
Episode

Implied
Requirements

Feature
Assignment

Dont
Interrupt

An
Interrupt

Get
On

With
It

Informal
Labor
Plan

Interrupts
Unjam

Blocking

Mercenary
Analyst

Scenarios
Define

Problem

Named
Stable
Bases

Take
No

Small
Slips

Incremental
Integration

Private
World

Team
Per
Task

Sacrifice
One

Person

Size
The

Schedule

Someone
Always
Makes

Progress

Work
Queue

Compensate
Success

Early
And

Regular
Delivery

Phasing
It
In

56 Chapter 4 Organization Design Patterns

Here is a real story about a real project that features many of the
patterns in this pattern language. Think of this story as a sequence of
application of the patterns.

A Story About Project Management
In the mid 1980s my group embarked on an ambitious project. We

took a successful product and adapted it to new technology. We began
by testing the concepts in prototypes (BUILD PROTOTYPES (4.1.7)), and
their success gave us the confidence to SIZE THE SCHEDULE (4.1.2).

Because we were building on an existing product, it was easy to
have NAMED STABLE BASES (4.1.4) of code; we continued them
throughout the project. This made it possible — and necessary — to
provide developers a way to have their own view of the system, a PRI-

VATE WORLD (4.1.6). There was ample tool support for these views.
Although the project was large, the project was basically centered

on the developers. For example, we decided on our own coding stan-
dards (DEVELOPER CONTROLS PROCESS (4.1.17)). It certainly had a feel of
WORK FLOWS INWARD (4.1.18). Developers had some latitude about how
to organize their work; WORK QUEUE (4.1.13), INFORMAL LABOR PLAN

(4.1.14), and PROGRAMMING EPISODES (4.1.19) were common.
Unfortunately, we had problems. One of the biggest was that we

did not allow COMPLETION HEADROOM (4.1.10). As the technical difficul-
ties intensified, the schedule became tighter. Finally, the head of the
project called everyone together and announced a single large
schedule slip (TAKE NO SMALL SLIPS (4.1.9)), and asked everyone to
commit to the new schedule (RECOMMITMENT MEETING (4.1.12)).

We continued to struggle with technical challenges, and some
became crises. We created teams to deal with them (TEAM PER TASK

(4.1.21)), and even had to SACRIFICE ONE PERSON (4.1.22) on at least one
occasion. However, no crisis stopped everyone (SOMEONE ALWAYS

MAKES PROGRESS (4.1.20)); this was in part because the architecture of
the system allowed it.

In the end, we met the slipped date. But the technology was moving
in such a direction that it made no sense to deploy it. However, pieces
of that project were used in later projects for years to come.

Project Management Pattern Language 57

4.1.1 COMMUNITY OF TRUST **

In high school, I went to music camp one year. During one orchestra
rehearsal, my section was struggling with a particularly difficult passage. The
conductor asked about it, and I said, “Don’t worry. We will have it
tomorrow.” He said, “Ok,” and continued with the rehearsal. By the next day,
we had indeed learned the passage.

... once an organization has been established, interpersonal relation-
ships have a significant positive or negative impact on the effective-
ness of the team.

✥ ✥ ✥

It is essential that the people in a team trust each other, otherwise,
it will be difficult to get anything done.

Communication is essential to the smooth working of any team; for
example, software developers must constantly talk to each other to
coordinate interfaces, builds, and tests. If individuals do not trust each
other, communication will not be smooth.

If people do not trust each other, they will spend time in defensive
mode. For example, if I don’t believe you will provide me a certain
interface on time, I might go to great lengths to code around it, costing
extra work and time.

Design reviews can foment distrust. All too often, design reviews
are contests among the reviewers to show who is more clever, and thus
do not provide helpful suggestions to the designer. One alternative is

58 Chapter 4 Organization Design Patterns

for people to put on their best social behavior in reviews, but that
dampens the energetic discussions that lead to the best insights in
group discussions.

The organization might have policies that smell of distrust: one may
have to jump through hoops to be allowed to submit code to the
project base.

The perception of trust or mistrust is the reality, regardless of the
intention.

Therefore:
Do things that explicitly demonstrate trust, so it is obvious. Man-

agers, for example, should make it overtly obvious that they are at
the side of the organization, rather than playing a central role that
controls people to do what must be done. Take visible actions to give
developers control over the process.

The key here is that the actions must be visible and obvious, partic-
ularly if they are removing onerous rules and processes. Shortly before
I went to work at a certain company, the company dispensed with time
clocks for research and development personnel. My co-workers spoke
fondly of the time clock smashing ceremony they had.

✥ ✥ ✥

This is different from the oft-cited “empowerment” strategy.
Empowerment is a conscious abdication of control to lower levels (see
THE OPEN CLOSED PRINCIPLE OF TEAMS (6.1.4)). In a COMMUNITY OF TRUST,
progress is more often made by bilateral agreement than by unilateral
directions. If people feel they have a voice and have influence over
decisions, they are more likely to trust those who make the decisions.
By the same token, they are likely to be more responsive in carrying
out responsibilities they have committed to themselves over responsi-
bilities that have been “given” to them. In fact, you can’t give someone
responsibility; you can only give someone accountability. Responsi-
bility is taken, not given. One of the most demoralizing things a man-
ager can do is to give accountability in the absence of responsibility.

You need trust between the customer and all team members to lay
out project plans that extend from SIZE THE SCHEDULE (4.1.2) in the
PROJECT MANAGEMENT PATTERN LANGUAGE (4.1). The same is true for role
differentiation; giving everyone pride and individuality can contribute
to trust, as in SIZE THE ORGANIZATION (4.2.2) and its subtending patterns

Project Management Pattern Language 59

in the PIECEMEAL GROWTH PATTERN LANGUAGE (4.2). Start building trust
by starting small with FEW ROLES (5.1.2), and let this principle guide the
ORGANIZATIONAL STYLE PATTERN LANGUAGE (5.1). To keep people from
working defensively, one needs a team spirit; this is true ARCHITECT

CONTROLS PRODUCT (5.2.3) and subtending patterns relating to PEOPLE

AND CODE PATTERN LANGUAGE (5.2).
COMMUNITY OF TRUST provides a foundation for many other patterns,

such as UNITY OF PURPOSE (4.2.12), PATRON ROLE (4.2.15), FIRE WALLS

(4.2.9), DEVELOPER CONTROLS PROCESS (4.1.17), RESPONSIBILITIES ENGAGE

(5.1.14), and more.
So why is this a separate pattern? It has a specific structural impact:

it is about nurturing communication paths, and has some positional
impact (in particular, it encourages manager roles away from the
center.) Second, the visible nature of the actions is important; we
haven’t captured that in any of the other patterns.

Trust is contagious, and spreads most effectively through an organi-
zation from the top down.

60 Chapter 4 Organization Design Patterns

4.1.2 SIZE THE SCHEDULE **

Software engineers determining the next schedule.

... the product is understood and the project size has been esti-
mated.

✥ ✥ ✥

Both overly ambitious schedules and overly generous schedules
have their pains, either for the developers or the customers.

If you make the schedule too generous, developers become compla-
cent, and you miss market windows. But if the schedule is too ambi-
tious, developers become burned out, and you miss market windows.
And if the schedule is too ambitious, product quality suffers, and com-
promised architectural principles establish a poor foundation for
future maintenance.

Common wisdom says that you can trade off staff, schedule, and
functionality. While principles such as Brooks’ “adding people to a late
project makes it later” [Brooks1995] cast doubt on the place of staff in
this equation, it’s clear that schedule and functionality trade off
against each other. Ward Cunningham says in his pattern COMPARABLE

WORK, “Every project must commit to delivery on a few hard and fast

Project Management Pattern Language 61

dates. This is actually fortunate because it is about the only way to get
out of work that is going poorly.” [Cunningham1996] In a reasonable
business climate, it is much smarter to hold the schedule constant and
to negotiate functionality than it is to extend the schedule. The cus-
tomer believes you can cut functionality, but a promise of having the
yet unattained functionality at some future date leaves the customer
much less comfortable. And projects without schedule motivation
tend to go on forever, or spend too much time polishing details that
are either irrelevant or don’t serve customer needs.

Therefore:
Reward developers for negotiating a schedule they prove to meet,

with financial bonuses (or at-risk compensation; see COMPENSATE

SUCCESS (4.2.25)), or with extra time off. Keep two sets of schedules:
one for the market, and one for the developers.

The external schedule is negotiated with the customer; the internal
schedule, with development staff. The internal schedule should be
shorter than the external schedule by two or three weeks for a mod-
erate project (this figure comes from a senior staff member at a well-
known software consulting firm). If the two schedules can’t be recon-
ciled, customer needs or the organization’s resources—or the schedule
itself—must be re-negotiated (RECOMMITMENT MEETING (4.1.12)).

✥ ✥ ✥

Help delineate the schedule with NAMED STABLE BASES (4.1.4). Grow
as needed with PHASING IT IN (4.2.3). Define initial targets with WORK

QUEUE (4.1.13). Make sure SOMEONE ALWAYS MAKES PROGRESS (4.1.20).
The forces come from the MIT project management simulation and

from studies as projects such as Borland Quattro Pro for Windows.
Another manager suggested that the skew between the internal and
external schedules be closer to two months than two weeks because, if
you slip, it usually reflects a major oversight that costs two or three
months.

De Marco talks about rewarding people for accuracy of schedules;
see [DeMarcoBoehm1986]. Verify this reference... Also, read about the
place of promptness in [ZuckermanAndHatala1992].

You don’t need a full schedule—perhaps no schedule at all—to get
started. See GET ON WITH IT (4.1.3) and BUILD PROTOTYPES (4.1.7).

62 Chapter 4 Organization Design Patterns

4.1.3 GET ON WITH IT **
Alias: PARTIAL EVALUATION

Get ready...

Go!!!!!

During one study, I asked the organization to describe how they develop
software. “Well,” they said, “project management gives us a list of features
they want estimates for. So we start working on the features we think are the
most important. Over time, they ask for more detailed estimates, and the fea-
tures we are working on have smaller estimates, because they are underway.
Those features generally make the cut. By the time we get official approval to
begin development, we are nearly finished.”

Project Management Pattern Language 63

....you have a good idea of a market need and, furthermore, a good
idea of how to get started on parts of the project. You’re eager to get
started but want to proceed deliberately and by the path that will be
both expedient and productive.

✥ ✥ ✥

You can’t wait until you have every last requirement to get
started.

Team members are sitting idle because their upstream tasks have
not been completed. On the one hand, you want requirements to be
done carefully. On the other hand, you have some information, and
people sitting idle.

Therefore:
As soon as you have confidence about some project direction,

start developing areas in which you have high confidence. These
may lie in the area of hardware development (or procurement), algo-
rithm development, database schema development, etc. Let each sub-
group work according to an INFORMAL LABOR PLAN (4.1.14) as if they
were in full-swing development.

Note that “high confidence” refers to project direction and require-
ments, not technology. It’s perfectly all right, and in fact desirable, to
work on the technologically risky areas first (see BUILD PROTOTYPES

(4.1.7).)
Give yourself some room to retrench later as requirements become

more clear.

✥ ✥ ✥

In many projects, behavioral requirements are one of the last things
that the designers get right. Many projects ship their first release with
only basic requirements met, with economically more significant
requirements met in subsequent releases. Telecommunications sys-
tems often follow this pattern, offering basic communications systems
in early releases and more advanced features later. In fact, behavioral
requirements are often overrated in their impact on the overall struc-
ture of the system; the code that meets behavioral requirements often
lives in application code that is added very late to a robust stable base.

64 Chapter 4 Organization Design Patterns

The base reflects deep domain knowledge more than it reflects behav-
ioral requirements. There is much common code that can be done early
on with high confidence: code that supports common domain func-
tionality that is part of most systems for a given market. This code can
often be started or acquired before requirements are firm.

This pattern can increase rework, but it is more in the spirit of piece-
meal growth architecture than would be a master-planned system that
precipitates from “complete” requirements. It is likely that any false
starts will also be educational at the enterprise level. In fact, as a risk
management measure one can consciously decide to not commit to the
results of such an activity. On the enterprise level, this becomes the
pattern SKUNK WORKS (4.2.14); with a project, it is BUILD PROTOTYPES

(4.1.7).
There are two occasions in which you cannot tolerate that rework.

First, if the task is the process bottleneck, it must work at peak effi-
ciency, and rework should be minimized. Very occasionally, the
rework will take longer than the original task, and so this pattern
should not be used.

Teams need good communication with their upstream counterparts
through patterns like HALLWAY CHATTER (5.1.15) and RESPONSIBILITIES

ENGAGE (5.1.14) to make this work.
The principle involved is that a process not constraining the overall

system can afford to be done inefficiently and in parallel. It is often the
case that the analysts, designers and programmers can get started
right away, without having finalized requirements. Serializing their
work will take longer than doing 10-20% rework. In one group we
studied, the database group constrained the process. They could not
afford rework, and had to work in the most efficient way possible.
Therefore, they did not start early, but waited until their requirements
were stable. The designer/programmers had enough extra time that
they could afford to prototype some test databases for themselves,
which were thrown away when the database designers did their final
design.

See [GoldrattCox1986].
Examples:
Each team had 1 requirements & analysis person, and 2-3 designer/

programmers. Database design was understaffed and constraining the
process, so it was made a special service group given final require-
ments only (the counterforce). A first cut at the requirements had been

Project Management Pattern Language 65

done earlier, so a rough set of requirements were available. Much of
the system was similar.

The designer/programmers quickly got ahead of the requirements
people, who were busy in meetings trying to nail down details of the
requirements. If they waited until the requirements were solid, they
would not have enough time for to do their work. They were able to
guess quite closely what the requirements would be like, without
knowing final details, so they started design and programming right
away. The requirements person gave them course corrections after
each meeting. The amount of time it took to incorporate those mid-
course alterations was small compared to the total design time.

This pattern comes from Alistair Cockburn’s original pattern ALL

AT ONCE (10.5.3) [Cockburn1996], which was later modified and
renamed GOLD RUSH [Cockburn1998]. The alias name “PARTIAL EVALUA-

TION” comes from the inspiration that this is a temporal form of DIVIDE

AND CONQUER (5.1.6). The name “GET ON WITH IT (4.1.3)” arose when
we discovered that the name the pattern bore at that time—JUST DO IT--
CONFLICTED with another pattern written by Jeff Garland. Jeff suggested
the current name.

Shalom Reich writes:

 The “ALL AT ONCE (10.5.3)” pattern appears to be a typical
Project Management “crash project” approach. In a “crash
project” one must be careful to identify true predecessors for
each task with the goal of reducing the “critical path”. This
allows parallel efforts to proceed which will all “come
together” at the last possible moment. I have found that
project plans often contain false linkages between tasks. For
example, in one large project we had a “specification” phase.
I was able to break the project into several smaller projects
which each had its own specification phase. This allowed me
to juggle my limited resources and have coders working on
the part that went first through the specification phase at the
same time that the analysts were working on the specifica-
tions for the second sub-project.

66 Chapter 4 Organization Design Patterns

4.1.4 NAMED STABLE BASES *

A stable base with a name on it...

... the project schedule has been laid out and development has
started.

✥ ✥ ✥

It is important to integrate software frequently enough so that the
base doesn’t become stale, but not so frequently that you damage a
shared understanding of what functionality is sound and trusted in
an evolving software base.

If you try continuous integration, developers struggle to follow a
moving target and there is no shared sense of quanta of functionality
at any given time, or quanta of progress from week to week. But if it’s
too long between integrations, developers become blocked from
making progress beyond the limits of the last base.

So while stability is a good thing, the project must always make
progress — and, more importantly, the stakeholders must perceive that
progress is being made.

Therefore:
Stabilize system interfaces—the architecture—about once a week.

Give the stable system a name of some kind by which developers
can identify their shared understanding of that version’s function-
ality.

Project Management Pattern Language 67

The names need not be elaborate; they can simply be a load
number. The names should, however, be easy to remember, to identify
with the correct version of software, and to distinguish from each
other. The idea is to provide some sort of handle that people can use to
communicate about a stable base.

Other software can be changed (and even integrated) more fre-
quently.

✥ ✥ ✥

A prototype can be an expedient for one of the NAMED STABLE BASES;
see BUILD PROTOTYPES (4.1.7).

The project has targets to shoot for and benchmarks whose accom-
plishments can be trumpeted to customers. This affects the Customer
view of the process, and has strong ramifications for the Architect as
well.

The pattern was initially pointed out by Dennis DeBruler at AT&T.
The main point of the pattern is that a project should schedule

change introduction so the effects of changes can be anticipated. It is
less important to publish the content of a change (which will go
unheeded under high change volume) than for the development com-
munity to understand that change is taking place. It is important not to
violate “the rule of least surprise.”

It can be helpful to have, simultaneously, various bases at different
levels of stability. For example, one AT&T project had a nightly build
(which is guaranteed only to have compiled), a weekly integration test
build (which is guaranteed to have passed system-wide sanity tests),
and a (roughly biweekly) service test build (that is considered stable
enough for QA’s system test).

PROGRAMMING EPISODE (4.1.19) is an example of this pattern in the
small.

68 Chapter 4 Organization Design Patterns

4.1.5 INCREMENTAL INTEGRATION **

Contribute to software one piece at a time, gradually, avoiding waterfall and
other precipitous changes.

...some organizations have infrequent integrations which reflect
large changes. This can make it difficult for the integration release to
work as expected, complicate the process of work integration and
make NAMED STABLE BASES (4.1.4) difficult to achieve when modules do
not work together. Because we often develop with one OWNER PER

DELIVERABLE (10.5.19) there will be occasional mismatches between
units.

✥ ✥ ✥

Project Management Pattern Language 69

For iterative development to work well, it is necessary to make
sure that components work together.

Subsystems get developed at different rates. Developers work in a
PRIVATE WORLD (4.1.6). We need to find a way to make it possible to
integrate without surprises.

Therefore:
Provide a mechanism to allow developers to build all the current

software periodically. Developers should be discouraged from
maintaining long intervals between check-ins. Developers should
also be able to build against any of the NAMED STABLE BASES (4.1.4), or
the newest checked in software, at will.

✥ ✥ ✥

Assign the task of building the entire software system periodically:
NAMED STABLE BASES (4.1.4) suggests intervals no more frequent than a
week. This periodic build should be checked for interface compati-
bility (does it compile?) and testing (does it still work?)

Encourage developers to build from files that are likely to be in the
release (for example, perhaps the newest code in the revision control
system is trunk) to anticipate, and allow time to correct for, incompati-
bilities. The goal is to avoid a “big bang” integration and allow the
developmental build to proceed smoothly.

This can be combined with PRIVATE WORLD to ensure that the
changes integrate with a copy of the current development system.
There are issues relating to the size of the software system (some sys-
tems take quite a while to build, making frequent integrations diffi-
cult). Balance this with PRIVATE VERSIONING (5.2.16) to allow the
developer some leeway on deciding when to integrate their new code
into their environment, but do not put it off for too long.

Example:
The developer’s work space could be updated (at the developer’s

request) to a named stable base from the project repository approxi-
mately weekly. The developer will also retrieve the current files from
the repository to anticipate how the current changes in the work space
will work with files that may later be in the baseline.

70 Chapter 4 Organization Design Patterns

4.1.6 PRIVATE WORLD **

... an organization is creating NAMED STABLE BASES (4.1.4), and devel-
opers can build against these versions, integrating their own code with
the latest of other code (INCREMENTAL INTEGRATION (4.1.5)).

✥ ✥ ✥

How can we balance the need for developers to use current revi-
sions, based on periodic baselines, with the desire to avoid undue
grief by having development dependencies change from underneath
them?

It is important for developers to work with current versions of soft-
ware subsystems to keep up with the latest enhancements, avoid run-
ning into already fixed bugs fixed elsewhere, and to avoid getting out
of synch with interface changes.

Introducing new software into an environment while debugging
may cause grief by introducing new behavior, and providing distrac-
tions because of the time spent resolving integration issues in some
cases, code may no longer compile due to interface changes.

However, we must balance these needs: the need to keep up to date
with the need of developers to maintain a stable environment for fea-
ture development/bug fixing.

Project Management Pattern Language 71

Some organizations, to facilitate INCREMENTAL INTEGRATION, will have
a shared baseline of code, libraries, etc. Unfortunately changing a code
base, even in a different subsystem, can cause problems when there are
interface changes, for example. You want to avoid hearing stories
about developers leaving a problem at night to view it in the morning
with a clear head, only to find that one’s test environment does not
compile.

Therefore:
Provide a mechanism where developers can maintain a PRIVATE

WORLD development environment. In their PRIVATE WORLD they can
control the rate of integration. This allows them to avoid having an
integration step interrupt work in progress. The environment
should represent a snapshot of all the software being developed in a
system, not just the code the developer is modifying. Try to ensure
that the private development area is not used as a means of avoiding
integration issues.

✥ ✥ ✥

A starting point for the independent development area would be
one of the NAMED STABLE BASES which have been previously released.
Developers then build their software and any related software that
depends on their software. Alternatively, you can provide the ability to
do a private system build from source code (and other artifacts).

While allowing developers the freedom to decide when to allow
changes into their space you need to make sure that the developers
update their code as often as possible to avoid integration surprises. So
encourage developers to integrate their code frequently, perhaps by
providing a mechanism for easily backing out of a difficult change.

Depending on details of implementation, one consequence of this
pattern might be that project disk space requirements may grow
quickly as N developers will have their own copies of the source code.
But the costs of personnel almost always exceed the cost of an extra
disk. A modification to this approach is that stable and distantly
related subsystems can be used by reference, but one should be made
aware of when changes are imminent. In this case the configuration
management system should provide access to prior NAMED STABLE

BASES as well.

72 Chapter 4 Organization Design Patterns

Developers can simply defer advancing to a new instance of the
NAMED STABLE BASES until the current problem is solved.

A variation of a PRIVATE WORLD is a shared integration machine. In
this case the developers move their new code to a system that has a
current version of the system.

The pattern simulates SOLO VIRTUOSO (4.2.5). See also PRIVATE VER-

SIONING (5.2.16).
Example:
A developer is working on a problem. The developer work space is

self-contained with all of the files needed to build the system. The
developer work space is updated only at the developer’s request, after
the problem is solved in the context of the current NAMED STABLE BASES.

Notes:
Brad Appleton points out:

 Sun’s NSE (Network Software Environment) had this type of
thing built into it. I think that the more recent TEAM WARE
product may also have preserved some of these concepts.
NSE let you create work spaces that it called “environments”.
There were three kinds of environments you could create:

• Independent Development Environments: for Indepen-
dent Development.

• Independent Integration Environments: for integrating
(importing and merging) and reconciling changes and
integration building and testing.

• Independent Release Environments: for release builds,
system test, and other release engineering and software
product deployment activities.

PRIVATE WORLD captures the spirit of all these environments.
An environment would insulate developers but would not isolate

them. There was an event notification and registration mechanism for
broadcasting events in one or more other environments to interested
parties (maybe this is a more general configuration management event
notification pattern of which things like baseline publishing and
change publishing are concrete variants).

Project Management Pattern Language 73

4.1.7 BUILD PROTOTYPES **

...you are trying to gather requirements necessary for test planning,
as in the pattern APPLICATION DESIGN IS BOUNDED BY TEST DESIGN (4.2.30),
and for the architecture, as for the pattern ARCHITECT ALSO IMPLEMENTS

(5.2.10). Some of these requirements come from the customer, but
some are design decisions that come from the structure of the solution
itself. For example, you may be building a user interface, some new
technology such as database or network technology, or you are
working on a new, critical algorithm, or don’t understand your project
domain.

✥ ✥ ✥

A project must test requirements and design decisions to reduce
the risk of wasted cost and missed expectations.

You need knowledge to proceed on development, and you must
move forward; yet, requirements (or your understanding of them) are
always changing.

You’re missing information about the product (not the process), and
you have a best guess you can use to move forward, and you want
some way to evaluate the result of your best guess.

74 Chapter 4 Organization Design Patterns

Written requirements that are gathered once at the beginning of a
development cycle with the hope that they can drive development are
usually too ambiguous.

You want to get requirements changes as early as possible, and you
want requirements understanding to lead deployment by as far as pos-
sible.

Designers and implementors must understand requirements
directly — that the requirements have been captured in a document
isn’t enough. And for designers and developers to understand require-
ments implies that they must understand the implementation ramifi-
cations.

Therefore:
Build an isolated prototype solution whose purposes are:

• to understand requirements, including latent needs,

• to validate requirements with customers as in ENGAGE CUSTOM-

ERS (4.2.6);

• to explore human/computer interactions for the system;

• to explore the cost and benefits of design decisions.

The prototype is a small system that explores a small number of
issues in isolation using best current knowledge. By examining that
small system you can learn whether your current knowledge is correct
and sufficient. Prototypes are particularly useful for external inter-
faces.

Throw the prototype away when you’re done. This is more impor-
tant than it may sound. Since the purpose of prototyping is to gain
knowledge, prototypes can (and should) ignore details necessary in
production software. Yet such details (such as scale, performance,
robustness, etc.) cannot be incorporated into prototype-based software
without the result resembling the proverbial bowl of pasta.

✥ ✥ ✥

You will decide that your current knowledge is or is not sufficient. If
it is, adapt that small system’s design (not code!) to your larger system
(incorporate it entirely if it was built to production specifications). If
not, decide whether you now have enough information to safely pro-
ceed, or whether you need to do another Prototype.

Project Management Pattern Language 75

It’s good to use DEVELOPING IN PAIRS (4.2.28), particularly if one of the
pair represents the customer interests or is a customer per se.

Prototypes are a good supplement to use cases to help more thor-
oughly to assess requirements. For one thing, prototypes help bring
unstated requirements into the open. This pattern nicely complements
ENGAGE CUSTOMERS (4.2.6) and SCENARIOS DEFINE PROBLEM (4.2.8).

The processes of the visualizations used for DEVELOPER CONTROLS

PROCESS (4.1.17), and the pattern ENGAGE QUALITY ASSURANCE (4.2.29), are
based largely on prototyping.

Continued prototyping without convergence means that the design
is constantly shifting, and the team is not learning enough to reach a
conclusion. If other teams that depend on the prototyping team do not
get the stable interface they need, it is time to get out of prototyping
and either implement or ENGAGE CUSTOMERS (4.2.6) (RECOMMITMENT

MEETING (4.1.12)) to evaluate current project directions and priorities.
There are subtle organizational overtones to building prototypes. It

is important that the ARCHITECT CONTROLS PRODUCT (5.2.3), and not the
prototype control the product. Therefore, the prototyping team should
be kept separate from the Architect and ARCHITECTURE TEAM (5.2.4).
Instead, the prototyping activity helps enhance the DOMAIN EXPERTISE IN

ROLES (4.2.22). And one of the positive effects of building a prototype is
to reduce the risk of the unknown. The prototype helps to define the
scope of the problem as well as a possible solution.

Related patterns:

• EARLY AND REGULAR DELIVERY (10.5.11) - adds knowledge about
your development process.

• MICROCOSM (10.5.18) - returns measurable data about process and
technology.

Another related pattern is Alistair Cockburn’s CLEAR THE FOG

(10.5.7) [Cockburn1998], which one might view as a generic version of
this pattern. In that pattern, Alistair recommends “Do something
(almost anything) that is a best initial attempt to deliver some part of
the system in a short period of time” in the interest of SOMEONE ALWAYS

MAKES PROGRESS (4.1.20). He gives as rationale, “The difficulty is that
you don’t know what it is that you don’t know. Only by making some
movement can you detect what it is you don’t know. Once you come to
know what it is you don’t know, you can pursue that information
directly.” And he adds an interesting admonition: “If you only ’clear

76 Chapter 4 Organization Design Patterns

the fog’ and ’clear the fog’ and ’clear the fog’, you will not make real
progress. You will have lots of little experiments and no deliverable
results.”

Bruce Whitenack’s RAPPeL pattern language also presents a PROTO-

TYPES (10.5.23) pattern ([Whitenack1995], p. 288). He adds the admoni-
tion:

 The dark side to prototyping is that solutions can be hacked
together with the software inadequately robust and not well
designed. It takes maturity, discipline and a very good pro-
gramming/design environment to reengineer quality back
into a product. Without rigor and discipline a product is in
serious risk of failure when features are continually added.
As more prototyping and evaluating are done, there will be
the need to modify the requirements. Iteration between pro-
totyping and use-case modeling occurs during requirements
analysis. In addition, user expectations have to kept realistic
as a prototype is not a product. Customers must realize that
what they are seeing is a product simulation — not the prod-
uct itself.

He also distinguishes between lo-fidelity prototypes and hi-fidelity pro-
totypes:

 Work with the customer to build (initially) low-fidelity proto-
types... using paper widgets, drawings, self-stick notes, and
index cards. (These are true throwaway prototypes). Or, if the
necessary skills and tools are available, build high-fidelity
prototypes. (You do not want to spend more that 10 percent
of your time on how to use the tool instead of focusing on the
actual prototype, however). Alternate between prototyping
and use-case modeling. Prototyping provides more user
involvement, and use case modeling provides rigorous anal-
ysis. Augment the use case documentation with references to
prototype versions (product simulations).

The high fidelity prototypes that are developed with a tool capable
of generating useful code may be used for evolutionary development.
It may not be a throwaway prototype but should be developed with
the spirit that it will be thrown away. This means making sure that all
on the project — especially managers — understand that the prototype

Project Management Pattern Language 77

may be thrown away. It has been my experience with Smalltalk devel-
opment that if the developer has a good design in mind and if he is
experienced, the prototype will probably contain code that is very
usable for a production version. Be sure to plan for training of beta
users and for doing a number of prototypes for perspective users.

Building and demonstrating prototypes is an art in itself. See the
excellent pattern language, “DEMO PREP (10.5.9),” by Todd Coram
[Coram1996] for guidance on the building, administration, and dem-
onstration of prototypes. See also an earlier work by Ian Graham
[Graham1991].

The risk to your project of a small, throw-away effort is a small
schedule delay. The risk of making a poor technical choice is a poor
product, or perhaps committing to a technology that simply will not
work.

Be careful not to be seduced by the siren song of a successful proto-
type. Prototypes almost never can demonstrate capacity, reliability, or
performance. But these are often the most troublesome issues in devel-
opment. The danger is that we see a prototype working, and naturally
assume that it will scale gracefully, will run for weeks without reboo-
ting, or will perform nimbly under a typical customer ’s load. A
working prototype does not imply that these problems are solved.

Contrast this pattern with SKUNK WORKS (4.2.14), which many think
of as prototyping on a larger scale, but which is actually a little bit dif-
ferent in its forces and intent.

“The best friend of the architect is the pencil in the drafting room,
and the sledgehammer on the job.” — Frank Lloyd Wright, quoted in
[Jacobs1978].

4.1.8 Surrogate Customer
See Section XXX.

78 Chapter 4 Organization Design Patterns

4.1.9 TAKE NO SMALL SLIPS **

Boarding house, Washington, D.C., 1942, morning bathroom line. Small slips
in the bathroom schedule build up, causing unfulfilled expectations down-
stream, and leading to discomfort and dissatisfaction on the part of others.

Our project was in trouble. Everybody knew it. And then our project man-
ager left the company. When our new project manager arrived, he called us all
together. “I believe in taking one schedule slip,” he said. Then he announced a
three month slip. We all returned to work, and redoubled our efforts. It was a
challenge to meet the revised schedule, but he (and we) stuck to it, and ulti-
mately completed our development without incurring another slip.

...development is under way and progress must be tracked,
avoiding major surprises to both the customer and the enterprise.

✥ ✥ ✥

Project Management Pattern Language 79

It’s difficult to know how long a project should take, and even
more difficult to recover when one guesses wrong.

If you guess pessimistically, developers become complacent, and
you miss market windows. If you guess optimistically, developers
become burned out, and you miss market windows. Projects without
schedule motivation tend to go on forever, or spend too much time
polishing details that are either irrelevant or don’t serve customer
needs.

Therefore:
Prefer a single large slip to several small slips. ([Brooks1995], page

24.)
"We found a good way to live by ‘Take no small slips’ from... The

Mythical Man Month. Every week, measure how close the critical path
(at least) of the schedule is doing. If it’s three days beyond schedule,
track a ’delusion index’ of three days. When the delusion index gets
too ludicrous, then slip the schedule. This helps avoid churning the
schedule." — Personal discussion with Paul Chisholm, June, 1994.

✥ ✥ ✥

This helps support a project with a flexible target date.
Dates are always difficult to estimate; De Marco notes that one of

the most serious signs of an organization in trouble is a schedule
worked backward from an end date [DeMarco1993].

A single large slip is important for the morale of the team. If you
continually take small slips, nobody believes the schedule any more.
This hurts morale, the sense of urgency fades, and people stop caring.
On the other hand, a single large slip preserves at least some of the
believability of the schedule, and people are more willing to work
toward the revised schedule.

Much of the rationale is supported in the MIT project management
simulation; the Borland Quattro Pro for Windows case study; and
from Brooks’ seminal work [Brooks1995].

Most sane projects manage this way.
See also RECOMMITMENT MEETING (4.1.12).

80 Chapter 4 Organization Design Patterns

4.1.10 COMPLETION HEADROOM **

Speaking of headroom...

...work is progressing as the software unfolds and the team learns
more about the system from the customer and from the behavior of the
system itself. Things are far enough along to start thinking about
delivery, and about delivering what can be delivered to the customer
on the agreed delivery date.

✥ ✥ ✥

Every project must commit to delivery on a few hard and fast
dates. This is actually fortunate because it is about the only way to get
out of work that is going poorly. It’s also important because it’s usually
more important to deliver something on a specified date even than to
deliver everything that was anticipated: when is often more important
than what. A WORK SPLIT (4.1.11) provides the graceful exit by allowing
one to defer the portion of work that is not understood or going poorly
while saving the part that does work or will save face. A WORK SPLIT

does require some advance notice since some portion of the work must
still be completed before deadline.

Therefore:

Project Management Pattern Language 81

Project work group completion dates from remaining effort esti-
mates in the WORK QUEUE REPORT [Cunningham1996]. Take the largest
of the earliest completion dates for each work group and compare it to
any hard delivery date that may apply. The difference is your COMPLE-

TION HEADROOM.
Any group has an obligation to make their efforts visible through

what becomes the ultimate trouble signal, low COMPLETION HEADROOM

(4.1.10). Headroom disappears when developmental activities fail to
match those of COMPARABLE WORK [Cunningham1996].

✥ ✥ ✥

In order for COMPLETION HEADROOM to work, it is vital to calculate it
from the beginning, and recalculate it often, at least weekly. Watch for
trends. Headroom will often jitter plus or minus a day or two from
week to week. But steady evaporation of headroom for any WORK

GROUP is a sure indicator for management attention. You have at your
disposal reordering the WORK QUEUE (4.1.13), possibly deferring whole
items to later release, the WORK SPLIT already mentioned, or the public
embarrassment of a RECOMMITMENT MEETING (4.1.12).

A common problem is the well-meaning escalation of requirements
by people too close to a problem. If you track COMPLETION HEADROOM

(4.1.10), you are better in a position to assess the impact of adding
these requirements to the project.

See also TAKE NO SMALL SLIPS (4.1.9).
A version of this pattern first appeared in [Cunningham1996].

82 Chapter 4 Organization Design Patterns

4.1.11 WORK SPLIT *

... a WORK GROUP commits to resolve and deliver IMPLIED REQUIRE-

MENTS (4.1.16) in the most timely and satisfactory way they can find.
They are not committed to specific dates.

✥ ✥ ✥

A work group has an obligation to make its efforts visible
through what becomes the ultimate trouble signal, low COMPLETION

HEADROOM (4.1.10). Headroom disappears when developmental activi-
ties fail to match those of COMPARABLE WORK. A common problem is the
well-meaning escalation of requirements by people too close to a
problem.

Therefore:
Divide a task into an urgent and deferred component such that no

more than half of the developmental work is in the urgent half.
Defer more if required to acquire sufficient COMPLETION HEADROOM

(4.1.10). Defer analysis and design of parts that won’t be implemented.
This advise runs counter to conventional wisdom.

✥ ✥ ✥

Often a split is just a way to get back to the basic work that had been
originally planned. TRUST ARCHITECTURAL SUBSTITUTION to cover for omis-
sions and inconveniences caused by incomplete “up-front” work. Both
halves of the split will appear in the WORK QUEUE (4.1.13) with dis-
tinctly different urgency.

Project Management Pattern Language 83

The split should be based on clear business priorities or should oth-
erwise be rooted in agreed values. Ian Graham has written patterns
that combine to form a small pattern language (drawn from a larger
pattern language) to address this issue. See the patlets for ESTABLISH

THE BUSINESS OBJECTIVES (10.5.12), BUSINESS PROCESS MODEL (10.5.6), and
GRADUAL STIFFENING (10.5.14).

A version of this pattern first appeared in [Cunningham1996].

84 Chapter 4 Organization Design Patterns

4.1.12 RECOMMITMENT MEETING *

...each development group is managing its schedule using WORK

SPLIT (4.1.11), but additional scheduling problems seem to keep coming
up.

✥ ✥ ✥

If a Product Initiative is in jeopardy because IMPLIED REQUIREMENTS

(4.1.16) cannot be met through schedule and WORK QUEUE (4.1.13)
adjustments, then it is unlikely any other development initiated
activity will help. Management up to at least the level that began the
initiative will suddenly take interest in all circumstances leading up to
the current situation. Some of this is natural and appropriate. But it
won’t be a time of high productivity and shouldn’t be allowed to con-
tinue too long.

Therefore:
Assemble a meeting of interested management and key develop-

ment people. Allow the meeting to review history until all present
agree simple adjustments (like working weekends, or adding staff)
won’t help. Eventually a solution appears, usually expressed as a
question of the form: What is the least amount of work required to
do X? X is one person’s idea of the most important part of the initia-
tive. The question should be answered quickly and confidently by
consulting a recent WORK QUEUE REPORT [Cunningham1996].

Project Management Pattern Language 85

The process may repeat for plans Y and Z. Ultimately a plan will be
selected. Then the remainder of the meeting is devoted to talking
through implications of the decision and getting all parties commit-
ment to the new plan and/or schedule.

✥ ✥ ✥

This, of course, is another form of episode. The decisions are ones of
allocating business resources and belong in upper management. How-
ever, all present can contribute, and should do so in a frank, honest,
non-defensive and constructive way.

See also TAKE NO SMALL SLIPS (4.1.9).
A version of this pattern first appeared in [Cunningham1996].

86 Chapter 4 Organization Design Patterns

4.1.13 WORK QUEUE *

...IMPLIED REQUIREMENTS (4.1.16) suggest deliverable program
enhancements which will have various necessities, dependencies,
risks and rewards. Deliverables may be ill-defined, being represented
more by a vision or desire than by anything concrete or measurable.

✥ ✥ ✥

It is difficult to do linear, monochronic scheduling in light of
IMPLIED REQUIREMENTS.

If we were to work up a conventional schedule we would probably
begin with a block of requirements analysis for each item. From these
would be hung blocks of specification, design, implementation and
eventually integration and testing. Add to this some wild guesses and
a few ordering constraints and, presto, thirty feet of diagram saying
what will be finished when and by whom. Such a document takes on a
life of its own striking fear in developer’s hearts and generally dis-
tracting everyone else from the real scheduling task which is to get
better input, not larger output.

Therefore:

Project Management Pattern Language 87

Produce a schedule that is simply a prioritized list of work. Use
the list of IMPLIED REQUIREMENTS (4.1.16) (really just names) as a
starting point and order them into a likely implementation order
favoring the more urgent or higher priority items. When work can be
factored from two or more entries, go ahead and do so giving the
common element a name that establishes its worth and implies its
implementation precedence.

✥ ✥ ✥

Example:

1. Settlement-Date Positions

2. Settlement-Date Based Tax Reports

3. Trade vs. Settlement Accounting Preference by Portfolio

Be prepared to reorder this list as unforeseen interactions surface or
business realities demand new priorities. Remove work from the list as
it is completed. Observed defects is not enough to return completed
work to the list. However, independently scheduled repair activity
may uncover omissions that are more appropriately removed from
defect tracking and scheduled in competition with all of the other
work on the WORK QUEUE (4.1.13).

A version of this pattern first appeared in [Cunningham1996]. The
pattern is similar to the later SCRUM pattern “Backlog” [Beedle1999,
643-644], which is summarized in [Rising2000, 146]:

 To organize the work remaining on a project, maintain a pri-
oritized list, the Backlog. The list is dynamic and updated at
the end of each Sprint.

88 Chapter 4 Organization Design Patterns

4.1.14 INFORMAL LABOR PLAN **

Constructing an adobe building, Penasco, New Mexico. Workers using an
informal labor plan.

We were discussing the introduction of new project management software.

One project manager protested that it was too high level; it didn’t provide the
granularity she needed. It turned out that she wanted to track items that were
fractions of days of effort.

... real development requires developers to work on several parallel
tasks such as DEVELOPMENT EPISODES (4.1.15) that may have interdepen-
dent or even conflicting priorities and due dates.

✥ ✥ ✥

A schedule of developer work tasks can both assist workers in
planning their time, and ensure stakeholders about scheduling
expectations. The DEVELOPMENT EPISODE presents an ideal that must be
worked into the lives of people trying to get a big job done quickly.
Developers will often find themselves obligated to more than one in-
progress DEVELOPMENT EPISODE at a time. The WORK QUEUE (4.1.13) offers

Project Management Pattern Language 89

one prioritizing, though one that ignores the many small trade-offs
possible when the work is at hand.

Therefore:
Let individuals devise their own short-term plans. Accept that

much of the group activity implied in a DEVELOPMENT EPISODE will take
place pair-wise between group members that find the time to tackle
some issue together (DEVELOPING IN PAIRS (4.2.28)). Avoid the tempta-
tion to call a meeting where a developmental climax is intended to
happen. It won’t. Instead let individuals express interests and make
commitments to each other. And let them revise these intentions on a
moment’s notice when the energy of some episode reaches an irresist-
ible level.

Note that this means that there is a threshold of detail below which
a project manager should not track. The threshold may vary
depending on the project, but it is a safe bet that tasks smaller than a
few days should not be formally tracked. One might get a sense of
excess detail by the amount of complaining the developers do about
the relevance of the tracking.

✥ ✥ ✥

This leads to an organization where the DEVELOPER CONTROLS PROCESS

(4.1.17). Not only does the developer suggest the overall structure of
commitments, but the developer becomes the focal point for day-to-
day priority calls.

A DEVELOPMENT EPISODE is actually composed of a series of PROGRAM-

MING EPISODES (4.1.19), some of which must take place in (at least) pairs
if any approximation of group consciousness is to form. An indi-
vidual’s labor plan is his tool to make these connections happen. Pair
Programming Facilities [Beck1999] are configurations of the physical
environment that can reduce this planning to an occasional HALLWAY

CHATTER (5.1.15) promise.
A version of this pattern first appeared as [Cunningham1996].

90 Chapter 4 Organization Design Patterns

4.1.15 DEVELOPMENT EPISODE *

A baseball game is divided into separate episodes, called innings.

...members of a WORK GROUP have been selected based on needs
inferred from the IMPLIED REQUIREMENTS (4.1.16).

✥ ✥ ✥

It’s important to build on the collective strength of an entire team
and to build a true gestalt from the team members.

Each member brings specific skills which will be important at some
point in the development. For this we can be thankful. However, if we
overemphasize a member’s specific strength, we diminish everyone’s
general abilities, unnecessarily narrow the members focus to applying
just that specialty, risk creating ambiguity as to who is responsible for
non-specialized tasks, and discourage the learning of new skills.

Therefore:
Approach all development as a group activity as if no one had

anything else to do. Expect the activity to follow the usual course of
an episode where energy builds to a decision-making climax and
then dissipates. At the height of the episode, purpose should be
clear, terminology well understood, knowns well explored and

Project Management Pattern Language 91

unknowns identified. It is at exactly this point that individual
strengths merge into a sort of common consciousness. Landmark
decisions come easy. Breakthroughs are common. A creative act will
have been shared.

✥ ✥ ✥

Besides yielding better decisions, the collective episode has very
positive effects on the participants. Looking back, people often have
trouble identifying the actual source of key ideas. Non-specialists gain
invaluable insight into the thought processes of the specialist. A spe-
cialty is demystified, shared, spread throughout the group. A master
of a specialty will realize that this sharing will not diminish one’s own
status within the group. As insight wells up in the master, he will
delay slightly, expecting others to be close to the same insight, and
knowing that their actual recognition experience will be of tremen-
dous value to them and a small loss to himself. Seymour Papert called
this an “Ah Ha” and admonished instructors not to “Steal the Ah Ha”
[Papert1980].

A version of this pattern first appeared in [Cunningham1996].

92 Chapter 4 Organization Design Patterns

4.1.16 IMPLIED REQUIREMENTS

FSA (Farm Security Administration) home supervisor Miss Harton helping
one of borrowers’ families cut patterns and make their own clothes. Caswell
County, North Carolina. Pattern parts such as sleeves are named chunks of

functionality, well understood by the customer.

...a PRODUCT INITIATIVE (10.5.22) [Cunningham1996] has identified the
direction for further development and a MARKET WALK-THROUGH

(10.5.16) [Cunningham1996] has explored the customer motivation
and developmental possibilities behind it. We expect positions and
attitudes to be understood but have yet to make any commitments
beyond everyone’s general commitment to do a good job by the com-
pany.

✥ ✥ ✥

A commitment implies an agreement between people. Develop-
ment commitments generally obligate developers to meet some cus-
tomer need in a timely and satisfactory way. The tension here is to
define a need in sufficient detail that commitments have meaning
without exhausting up-front analysis or over constraining a solution.

Therefore:

Project Management Pattern Language 93

Select and name chunks of functionality. Use names that would
have meaning to customers consistent with the PRODUCT INITIATIVE

(10.5.22). Allow these names to imply customer requirements without
actually enumerating requirements in the traditional sense.

✥ ✥ ✥

Examples:

• Year-End Tax Reports

• Dollar Denominated Japanese Bonds

• High-Quality Printing

• Disconnected Operation on LAP- TOPS

These names will fill in the blank in the recurring questions like:
Who’s handling the programming (or specification, or customer con-
tact, or manual update, or release notes) for _____.

A version of this pattern first appeared in [Cunningham1996].

94 Chapter 4 Organization Design Patterns

4.1.17 DEVELOPER CONTROLS PROCESS **

A journeyman devises effective and efficient processes for manufacture of self-
sealing fuel tanks, WW II.

...an organization has come together to build software for a new
market in an immature domain, or in a domain which is unfamiliar to
the development team. Progress will be marked by an INFORMAL LABOR

PLAN (4.1.14). The necessary roles have been defined and initially
staffed.

✥ ✥ ✥

A development culture, like any culture, can benefit from recog-
nizing a focal point of project direction and communication. Suc-
cessful organizations work in an organic way with a minimum of
centralized control. Yet there are important points of focus, embodied
in roles, that tie together the ideas, requirements, and constraints into
an artifact ready for testing, packaging, marketing, and delivery.

Totalitarian control is viewed by most development teams as a dra-
conian measure. The right information must flow through the right
roles. You need to support information flow across analysis, design,
and implementation.

Project Management Pattern Language 95

Because developers contribute directly to the end-user-visible arti-
fact, they are in the best position to take accountability for the product.
Of all roles, they have the largest stake in the largest number of phases
of product development. And there should be no accountability
without control. The MANAGER ROLE has some accountability as well, to
the extent that it indirectly supports delivery of the user-visible arti-
facts. These are process issues.

Therefore:
Make the Developer the focal point of process information. Place

the Developer role at a hub of the process for a given feature, in the
spirit of ORGANIZATION FOLLOWS MARKET (5.1.9). A feature is a unit of
system functionality (implemented largely in software) that can be
separately marketed, and for which customers are willing to pay.
Responsibilities of Developers include understanding requirements,
reviewing the solution structure and algorithm with peers, building
the implementation, and unit testing.

The developer is central to all activities of this end-to-end software
development process.

Note that other hubs, such as the MANAGER ROLE, may exist as well,
though they are less central than the Developer.

✥ ✥ ✥

The Developer who is at the hub of a particular feature may be
accorded that position according to FUNCTION OWNER AND COMPONENT

OWNER but, more generally, the developer should be at the communi-
cation hub of whatever process engages them in writing code for the

96 Chapter 4 Organization Design Patterns

customer. This pattern encourages a structure that supports its prime
information consumer. The Developer can be moved toward the center
of the process using patterns WORK FLOWS INWARD (4.1.18) and MOVE

RESPONSIBILITIES (5.1.18). Though Developer should be a key role, care
must be taken not to overburden it. This pattern should be balanced
with MERCENARY ANALYST (4.1.24), FIRE WALLS (4.2.9), GATE KEEPER

(4.2.10), and more general load-balancing patterns like HALLWAY

CHATTER (5.1.15), RESPONSIBILITIES ENGAGE (5.1.14), and MOVE RESPONSIBILI-

TIES (5.1.18). Conflicts can be escalated to the PATRON ROLE (4.2.15) when
consensus breaks down. and the Developer should enjoy particularly
strong support from the PATRON ROLE (4.2.15).

If the Developer controls the process, then it’s possible to have
WORK FLOWS INWARD (4.1.18).

Developers of course don’t “control” the process unilaterally, but as
a collective group, starting with DEVELOPING IN PAIRS (4.2.28).

We have no role called Designer because design is really the whole
task. Managers fill a supporting role; empirically, they are rarely seen
to control a process except during crises. While the Developer controls
the process, the Architect controls the product. (In the figure, the
Architect role is split across FRAMEWORK OWNER and ARCHITECTURE TEAM

(5.2.4).) This communication is particularly important in domains that
are not well understood, so that iteration can take place to explore the
domain with the customer.

In a mature domain, consider HUB SPOKE AND RIM (5.1.17) as an
alternative.

You can still write down your process as part of a process improve-
ment program. But keep the documentation light; many organizations
have found that one page per process is good enough. And make sure
each process step meets a need that you can tie to your organization’s
value proposition. Most often, this value is or should be tied to the
product you are producing for a paying customer. If it isn’t obvious
how the process step helps achieve what you know the customer
wants, the do the right thing instead.

Project Management Pattern Language 97

4.1.18 WORK FLOWS INWARD **

Work (i.e. pears) flowing into a pear processing plant.

...an organization is in place and has been doing work long enough
that it can introspect about its structure and workings. There is some
management pecking order or hierarchical decision-making structure
in the organizational network. Work instructions flow through this
structure, with the possibility that each role makes decisions, adds
constraints, or works to carry out decisions within some set of con-
straints.

✥ ✥ ✥

An organization must seek a structure that best insures that the
most authoritative roles make the decisions and carry out the work
that adds value directly to the product.

Some centralized control and direction are necessary. During soft-
ware production, the work bottleneck of a system should be at the
center of its communication and control structure. If the communica-
tion center of the organization generates work more than it does work,
then organization performance can become unpredictable and spo-
radic. The developer is already sensitized to market needs through
FIRE WALLS (4.2.9) and GATE KEEPER (4.2.10) (no centralized role need fill
this function).

Look at the following grid that depicts the directed flow of commu-
nication in an organization (see HOW THE PATTERNS CAME TO US

98 Chapter 4 Organization Design Patterns

(CHAPTER 2)). In this organization, there is a core of roles at the center
that initiate interactions across the spectrum of most of the other roles:

Yet this core receives very little input from the rest of the roles in the
organization. And this core is rife with management roles (Team
Leader, Manager, Lead Assembler). It has an overloaded center, and
work requests flow outward from this center, diffusing across the
other roles. Core roles make work.

Katz & Kahn’s analysis of organizations shows that the exercise of
control is not a zero-sum game [KatzKahn1978, p. 314].

Therefore:
Work should flow in to developer from stakeholders, especially

customers. Work should not flow out from managers.
You should not put managers at the center of the communication

grid: they will become overloaded and make decisions that are less
well-considered, and they will make decisions that don’t take day-to-
day dynamics into account.

Consider the following picture, where work flows from the roles
across the organization to the roles at the center: Developer, Architect,
Ambassador. There is a healthy distribution of inward-directed inputs.
And in large part, the central roles do work, not make work.

Project Management Pattern Language 99

✥ ✥ ✥

The result is an organization whose communication grid has more
points below the diagonal than above it (as in the second figure
above).

The work should focus at the center of the process; the center of the
process should focus on value-added activities (DEVELOPER CONTROLS

PROCESS (4.1.17)).
But consider this interaction grid:

100 Chapter 4 Organization Design Patterns

Superficially, the graph appears to show a WORK FLOWS INWARD pat-
tern. But in fact, most of the interactions directed from outlying roles
to the developer were of an imperative nature rather than an informa-
tive nature. The developer role was being pulled in many directions,
and the organization health suffered greatly.

Organizations run by professional managers tend to have repeat-
able business processes, but don’t seem to reach the same productivity
plateaus of organizations run by engineers. In programmer-centric
organizations, the value-added roles are at the center of the process
(DEVELOPER CONTROLS PROCESS (4.1.17); ARCHITECT ALSO IMPLEMENTS

(5.2.10)). The manager should facilitate and support these roles and
their work (PATRON ROLE (4.2.15); FIRE WALLS (4.2.9)).

Mackenzie characterizes this pattern using M-curves, that model the
percentage of task processes of each task process law level (planning,
directing, and execution) as a function of the classification.
[Mackenzie1986]

The rationale is supported with empirical observations from
existing projects.

The broad goal of this pattern is to separate overhead work from
central work; DAY CARE (4.1.23) is another pattern with a similar intent.

Project Management Pattern Language 101

The MANAGER ROLE should still make day-to-day decisions for the
business process, and pursuant to their responsibility to “keep the
pests away” (FIRE WALLS (4.2.9)).

In his new work, The Nature of Order, Christopher Alexander speaks
of gradients as one of the 15 structural properties of whole systems that
emerge naturally in a process of local adaptation. In WORK FLOWS

INWARD, there should be a natural gradient of information flow toward
the developer: the “center” of the organization — both in the sense of
the social network diagrams, and in the sense that Alexander uses the
term “center” to describe a prominent feature of a system.

102 Chapter 4 Organization Design Patterns

4.1.19 PROGRAMMING EPISODE **

Making the possible decision now: what kind of candy can I buy with my
nickel?

...you have a good idea on where to start and perhaps even some
fledgling pieces of code. Now you need to get on to establishing a
rhythm of productive development that can engage and fuel the team.

✥ ✥ ✥

Programming is the act of deciding now what will happen in the
future, but it always seems like parts of the future don’t happen
soon enough and parts of it are always too far off and out of reach. A
programming language offers an operationally precise way to encode
decisions through a process called simply coding. Programmers
reason about future behavior by interpreting previously coded deci-
sions and integrating these with their own decisions and their inter-
pretations of other sources like TECHNICAL MEMOS and domain experts.
The depth, quality and value of programming decisions will be limited
by the programmers ability to concentrate.

Therefore:
Develop a program in discrete episodes. Select appropriate deliv-

erables for an episode and commit sufficient mind share to deliver
them. Do this by making the possible decisions now, and coding
those decisions. Be aware of the rise in concentration as the episode
progresses. Consider each source (above) and consciously include or
exclude its recommendations.

Project Management Pattern Language 103

✥ ✥ ✥

Use the fear that often accompanies a decision not-yet-made as a
motivation. Try to compare your position within an episode to similar
points in previously successful episodes.

Example:
“I feel like we’ve been around twice now on the possible ways we can bind

the six terms of this bond analytic to the four calculation classes we have in
our library.”

“Yeah, right now I’d be happy if we could place the four primary terms,
look at the error cases, and see if that gives us a hint how to proceed after
lunch.”

Push for the decisions that can be made. Don’t abandon an episode;
that will leave you feeling defeated and unable to achieve even the
same level of concentration at a future time. Make the decisions that
seem possible. Code the decisions. Then review the code to be sure
that the extent of your decisions and your confidence in them is
apparent in the code. Coding occurs on the down-hill side of a pro-
gramming episode. Coding is the most direct way to promulgate pro-
gramming decisions.

A version of this pattern first appeared as [Cunningham1996].

104 Chapter 4 Organization Design Patterns

4.1.20 SOMEONE ALWAYS MAKES PROGRESS *

Room enough for everyone to work...

...non-primary tasks are dominating the team’s time, keeping it
from moving forward with their primary goal. There are common
complaints of distraction.

✥ ✥ ✥

It is important to keep a team moving forward and to avoid get-
ting stuck on the obstacles. You need to pay attention to every task,
including small diverting ones. But you also need to complete the pri-
mary task by an important date.

Therefore:
Whatever you try, ensure that someone on the team is making

progress on the primary task.

✥ ✥ ✥

If you do not complete your primary task, nothing else will matter.
Therefore, complete that at all costs.

Project Management Pattern Language 105

You can employ one of a broad range of particular solutions and
tactics depending on the exact forces to be resolved. The following
specializations are example refinements of this pattern:

• DEVELOPING IN PAIRS (4.2.28) - one person can always take the key-
board.

• TEAM PER TASK (4.1.21) - separate tasks into sympathetic sets.

• SACRIFICE ONE PERSON (4.1.22) - assign only one person to the dis-
traction.

• DAY CARE (4.1.23) - separate the training task from that of produc-
ing software.

But, in any case, you will always be closer to your final goal —
which is not always the case when dealing with distractions.

The psychological effect of this pattern should not be underesti-
mated. If the project is hit with many distractions, it can be demoral-
izing to see work grind to a halt. However, any visible progress will
help the entire team stay focused, and will encourage them to get
through their particular crisis, so that they too can once again make
progress.

Carried too far, this pattern might lead you into trouble for not ade-
quately addressing the distractions. But too many distractions are usu-
ally a symptom of some other problem; see, for example, FIRE WALLS

(4.2.9).
Sample situations:
A. Scylla and Charybdis, Atalanta. In the ancient Greek story, Odys-

seus had to get his ship past Scylla and Charybdis. Scylla was a six-
headed monster guaranteed to eat six crew members, but the rest
would survive. Charydbis was a whirlpool guaranteed to destroy the
entire ship. In this paradigm of the dilemma, Odysseus chose to sacri-
fice six people so that the rest would get past Scylla’s cave.

In the Greek story of Atalanta, Atalanta was assured by the gods
that she would remain the fastest runner as long as she remained a
virgin. So she told her father, the king that she would only marry the
man who could beat her in a foot race. The losers were to be killed for
wasting her time. The successful young man was aided by a god, who
gave him 3 golden apples. Each time Atalanta pulled ahead, he tossed
an apple in front of her. While she paused to pick up the golden apple,
he raced ahead, and eventually won.

106 Chapter 4 Organization Design Patterns

You could interpret this story as containing the moral that Atalanta
should not have stopped to pick up the apples - that would also illus-
trate the point of this pattern. I choose to view it more metaphorically,
that Atalanta represents distractions trying to beat you to your
project’s deadline. The apples are members of your team, whom you
will separate from the main team one at a time to ensure success.

See [Csikszentmihalyi1990] and [DeMarcoLister1976].
A version of this pattern first appeared in [Cockburn1998].

Project Management Pattern Language 107

4.1.21 TEAM PER TASK **

... a big diversion hits the team, threatening to disrupt the ongoing
work, and temporarily halt progress.

✥ ✥ ✥

Large distractions (usually called crises) must not be allowed to
stop a project, even for a short time. Crises are inevitable, and they
are legion. If the project takes time to respond to each, its members will
soon find themselves spending so much time responding to each crisis
that the real work doesn’t get done.

Of course the diversions are real. A previous release needs an emer-
gency bug fix. New people must be trained. The ISO audit will
happen. But they must be handled in a way that the project still moves
forward.

The temptation is to take this high-priority item and throw every-
thing you have at it: let the whole team work the issue until it goes
away. However, such an approach confuses urgency with amount of
effort; some problems require only a small amount of attention,
although it should be immediate attention. A stitch in time saves nine.

Therefore: Let a sub-team handle the diversion, which allows the
main team to keep working.

One approach is to split the team. Sort the activities so that each
team has a primary task with additional, sympathetic activities. Sitting
in meetings, answering phone calls, writing reports, for example, are

108 Chapter 4 Organization Design Patterns

non-sympathetic to designing software. Arrange it so that each team
can focus on its primary task, and each task has a dedicated team
member.

✥ ✥ ✥

The result is that the important distractions are handled pretty
much entirely by specialized teams, thus allowing the main team to
continue uninterrupted.

However, one must be careful not to overdo it. Carried to extremes,
it results in single-person teams. In addition, while solving a crisis is
important, be careful not to heap praise too lavishly on the crisis
teams. Otherwise, addressing crises becomes the glamor job, and the
focus of the team becomes putting out fires rather than building the
building. (See COMPENSATE SUCCESS (4.2.25))

Related patterns:
This pattern treats each task both as an activity and as a deliverable.

Therefore:

 OWNER PER DELIVERABLE (10.5.19) - the general form of owner-
ship and accountability.

 FUNCTION OWNER AND COMPONENT OWNER - team for each arti-
fact, as well as the task of designing it.

 SOMEONE ALWAYS MAKES PROGRESS (4.1.20) - the general distrac-
tion management pattern.

 SACRIFICE ONE PERSON (4.1.22) - specialization to lose only one
person.

 DAY CARE (4.1.23) - addresses training as a separate deliver-
able from the software.

Principles involved:

 Increase flow time and decrease distractions, thus trading
personnel parallelism for time slicing. “Flow” is the quiet
time in the brain when the problem flows through the
designer ([Csikszentmihalyi1990], [DeMarcoLister1976]). It is
when the design alternatives are weighed, and decisions are

Project Management Pattern Language 109

made in rapid succession as mental doors open. The problem,
the alternatives and the state of the decision process are all
kept in the head. It is a not only a highly productive time, it is
the only time when the designer feels comfortable making
decisions.

 It takes about 20 minutes to reach the internal state of flow,
and only a minute to lose it. Beyond getting into flow, the
designer must have time to make actually progress, which
may be another 10 minutes. Any significant interruption
within the half hour minute essentially causes the entire half
hour to be lost. As it takes energy to get into the flow, a dis-
traction costs energy as well as time.

 To increase flow time, distractions have to be reduced. Cer-
tain pairs of activities are more mutually distracting that oth-
ers. Fixing a bug requires flow in the old system, hence
distracts from flow in the new system. Sitting in meetings,
answering questions and time on the telephone are major dis-
tracters to design flow. Therefore the recommendation to
group tasks into sympathetic sets. Requirements and analysis
involve meetings, reading, and writing. Design and program-
ming require concentration on the implementation technol-
ogy and keeping a great number of details in the head.

 Parallelism vs. time-slicing. Time-slicing can be more attractive
in terms of job satisfaction - each person will do design some
part of the time. The significant time to switch between tasks
causes parallelism to be preferred in this case. Some of the
people may adopt the new task as their profession (see SACRI-

FICE ONE PERSON (4.1.22), DAY CARE (4.1.23), and FIRE WALLS
(4.2.9) for examples).

Sample situations:
A. Concurrently gathering requirements and designing software.
Project Winifred tried having each person do requirements, anal-

ysis, design and programming. We thought the developers would
enjoy the change of activity, that this would reduce the meetings and
bureaucratic documentation exchanged between people.

110 Chapter 4 Organization Design Patterns

What happened was that the first two activities were so different
from the latter two that people were unable to switch easily between
them. After having attended and documented meetings for much of
the day, it was difficult to start working on the design and program-
ming. As with bug-fixing / new-development, every time a designer
was pulled away from her or his work, it cost an additional hour to
recover the train of thought.

We applied TEAM PER TASK (4.1.21), and split the teams along task
lines. Requirements gathering and analysis went with designated
people in each team, and design and programming went with the
others. The result was that the requirements/analysis people sat in
meetings, read and wrote specs, examined interfaces and the like.
They communicated their findings to the designer/programmers -
orally, for the most part, since they were closely linked on the same
team (HOLISTIC DIVERSITY (4.2.19)). The designer/programmers stayed
in their train of thought, getting fresh input from their requirements
colleagues. Some of the people put onto requirements really wanted to
program, so this was quite a sacrifice for them (SACRIFICE ONE PERSON

(4.1.22)).
Two things we did not do. We did not put the requirements/anal-

ysis people into a separate team (HOLISTIC DIVERSITY (4.2.19) again). A
team was jointly responsible for a section of the system, from require-
ments to delivery. The splitting was within each team. We also did not
require the requirements group to document their decisions for the
designers benefit (they did document for the project’s benefit). The
requirements and design people were in close contact at all times, and
most information passed orally. There was, therefore, no “throw it
over the wall” effect. These were both important teaming decisions
made earlier, which we were intent on preserving.

B. Training is distracting the experts. See DAY CARE (4.1.23).
C. Other examples under SACRIFICE ONE PERSON (4.1.22).
Reading:
See [Csikszentmihalyi1990] and [DeMarcoLister1976].
A version of this pattern first appeared in [Cockburn1998].

Project Management Pattern Language 111

4.1.22 SACRIFICE ONE PERSON *
Other names: “Sacrificial Lamb”

... during a typical project, there are always a host of small distrac-
tions.

✥ ✥ ✥

Small distractions can add up, and sap the strength of the team.
Even small distractions must be handled. But they take time away

from the primary task. In particular, any distraction, even a small one,
disrupts “flow” time, which costs significant additional time to regain.

Many small distractions are less desirable jobs.
Therefore:
Assign just one person to it until it gets handled.
This is very much like TEAM PER TASK (4.1.21), except the distraction

is smaller; it could seemingly be handled by one person half-time to
full-time.

✥ ✥ ✥

The main group of the team moves forward distraction free. The
person assigned to the distracting task may be unhappy, so try to get

112 Chapter 4 Organization Design Patterns

that person back on the team again as soon as possible. If you feel that
one person is too much to sacrifice to this task and want to make it part
time work, compute the loss of flow time that would result from trying
to work this distraction and some other task.

If this keeps happening, you will have no one performing the pri-
mary task, and you ought to examine why you have so many distrac-
tions in the first place.

OWNER PER DELIVERABLE (10.5.19) is the general ownership and
accountability pattern. SOMEONE ALWAYS MAKES PROGRESS (4.1.20) is the
general distraction management pattern. TEAM PER TASK (4.1.21) is the
general form of this pattern at the team level.

Several patterns refine this pattern for specific contexts. DAY CARE

(4.1.23) addresses training as a separate deliverable from the software,
and produces mentor as a profession. In FIRE WALLS (4.2.9), the distrac-
tion is a series of requests from outside the team, so one of the devel-
opers is sacrificed to act as project manager. That can produce project
manager as a profession. The MERCENARY ANALYST (4.1.24) handles the
distraction of documentation, usually a “hired gun” who takes care of
it, leading to technical writing as a profession. And in GATE KEEPER

(4.2.10), the constant inflow of technical information is the distraction,
and one person is assigned managing that information as a distinct,
part-time task. It is one of the major foundations for manager as a pro-
fession.

Don’t forget the sacrificial lamb when it comes time to COMPENSATE

SUCCESS (4.2.25).
Principles involved:

 As for TEAM PER TASK (4.1.21). The fact that handling the dis-
traction looks less than a full-time job illustrates the signifi-
cance of the time spent getting into mental flow.

 Maximum parallelism, profession, or sacrifice? If the people
do not like the task, they consider it a sacrifice. If they like the
task, it becomes their profession. Thus, FIRE WALLS gives rise
to the profession of project management, DAY CARE gives rise
to the profession of mentor.

Sample situations:
A. Updating the project schedule. On Project Winifred, the schedule

was out of date. We thought it would be fair to let each person on each

Project Management Pattern Language 113

team evaluate their own work. That would spread the experience, dis-
comfort and load. What really happened was that progress came to a
total halt. When the design team got back to designing, a month had
gone by with no design progress, and they had forgotten some of the
design issues that had been in their head. One of the teams used SACRI-

FICE ONE PERSON (4.1.22). They drew lots, for one person to do the
whole team’s estimation while the others got on with the main task. At
the end of several weeks of estimation, that team had moved forward
while the other teams were at a standstill. Thereafter, every team
applied the pattern. The person working on the schedule really felt
sacrificed. This pattern was originally called “Scylla”, as described in
the story of Scylla and Charybdis.

B. Simultaneous release to QA and development of the next release.
Project Winifred had one increment entering test at the same time

design was starting on the next. We optimistically thought the bug
fixes would take a relatively small amount of time, and so assigned the
whole team to both fixing bugs and doing new design.

Each fix broke a designer’s train of thought for a period of time on
the order of an hour, beyond just the fix. Three or four of these caused
the designer to lose most of the day. Eventually, the designers gave up
on the new release, because they knew the next bug fix would arrive
before they would had recovered their thoughts and progressed on the
new design.

We applied SACRIFICE ONE PERSON (4.1.22), and assigned one person
to bug fixes. We originally planned it as a half-time job, but found
there was not enough time left over for the person to do any useful
design. The person rejoined the new design team as soon as the release
went through test.

A version of this pattern first appeared in [Cockburn1998].

114 Chapter 4 Organization Design Patterns

4.1.23 DAY CARE *
Alias: “Progress Team / Training Team”

... the project has just brought on several new people.

✥ ✥ ✥

Your experts are spending all their time mentoring novices.
You begin to hear things like “We are wasting our experts,” or “A

few experts could do the whole project faster.” Indeed, the experts are
not proceeding at the rate you or they would expect, because training
the new people is draining their energy, time and concentration. But
the new people must be trained, by experts, of course.

At the same time, you must make progress on the project itself.
Therefore:
Put one expert in charge of all the novices, let the others develop

the system.
Separate an experts-only “progress” team from a training team

under the tutelage of one or more mentors. Select the mentors for their
ability to teach design and programming (object-oriented design and
programming, for example) to novices. Let the progress team design
85-95% of the system, let the training team focus on quality training,

Project Management Pattern Language 115

delivering only 5-15% part of the system. Transfer people to the
progress team as they become able to contribute meaningfully.

Make sure that the training team does not simply do training exer-
cises, but actually contributes to the final system in an ever-increasing
way.

If you have many people to train (more than, say, six), you will have
to design a series of tasks for them to attempt. Otherwise you may give
them a small, real part of the main system to design.

If the people in the training team are the ones who know the
domain, you will have to make some further adjustment, or else the
division may cause conflict.

✥ ✥ ✥

The result is that most of the experts can continue to make progress
on the project. The novices contribute a small part of the project, that
grows as they gain experience.

In extreme cases, though, you eventually have too few people to
constitute a progress team.

How many people can one mentor train, if training results and not
running software are his/her deliverable? A small, reasonable number
is five. I have heard of one person mentoring 15 people on five concur-
rent mini-projects.

Related patterns:

 This pattern is a cross-specialization of several given in this
chapter: OWNER PER DELIVERABLE (10.5.19), SOMEONE ALWAYS
MAKES PROGRESS (4.1.20), TEAM PER TASK (4.1.21), SACRIFICE ONE
PERSON (4.1.22).

Principles involved:

 The principles are synergy vs. distraction, the synergy of hav-
ing a novice learn directly from an expert vs. the distraction
to the expert. Experts having to answer novice questions are
reduced to a fraction of their productivity, without particu-
larly raising the productivity of the newcomers. Adding one
novice to an expert may cut the expert’s productivity in half,
adding two may cut it to a third, adding three may prevent
all productivity altogether.

116 Chapter 4 Organization Design Patterns

 Assume there are X experts who work at productivity 1 each,
a larger number of N novices who work at n productivity
each, with n much smaller than 1, on the order of 1/10. If the
experts could work together, they would have, in this simple
model, a total productivity of

(X) for the experts working together.

 If one of them is sacrificed to train the novices, that person
has zero productivity (except training novices), so the
group’s total productivity is

(X-1) + N*n for Day Care (upper curve in figure 8.1).

 If they are all mixed together (“Even Mix”), m=N/X novices
per expert, each expert’s productivity falls from 1 to some-
thing like 1/(m+1). The group’s total productivity is now

(X*X/ (N+1)) + N*n for Even Mix (lower curve in figure 8.1).

 Figure 8.1 shows the productivity of DAY CARE (4.1.23) versus
EVEN MIX, novices assumed to work at 1/10th the productiv-
ity of the experts. This shows the total productivity for the
team in units of experienced people’s productivity. As the
number of novices increases, the EVEN MIX line shows the
effect of training them. Let us check that the assumed produc-
tivity difference is not skewing the results. Figure 8.2 shows
the ratio of DAY CARE (4.1.23) to EVEN MIX, for different pro-
ductivity assumptions. Note that with five experts and five
novices, the ratio is actually just below one, meaning that the

Project Management Pattern Language 117

experts are absorbing and making use of the novices. By two
novices per expert, DAY CARE (4.1.23) is already considerably
more effective.

 The nature of the training does not matter. Design and teach-
ing are antagonistic tasks (as described in TEAM PER TASK
(4.1.21)), and better split into separate teams.

Treating the delivery of trained people as separate from the delivery
of running software gives you access to OWNER PER DELIVERABLE

(10.5.19). SOMEONE ALWAYS MAKES PROGRESS (4.1.20) protects the delivery
of running software.

Sample situations:
A. Mentoring. The standard recommendation in the industry is to

put 1-5 novices under each trained expert. The consequence is that the
experts spend the prime part of their energies training, halfheartedly.
Besides being drained of energy for designing the system, the experts
typically do not have the personality, background or inclination to
actually teach the novices how to do design. They are caught between
trying to get the maximum out of their trainees and trying to do the
maximum development themselves. Thus, they neither develop the
system, nor train the novices adequately.

Some companies have dedicated “Apprenticeship” programs, in
which novices are put under the tutelage of a dedicated mentor for 2
weeks out of every 3 for 6 months.

B. Adding staff. Fred Brooks, in The Mythical Man-Month, talks
about the training costs of adding people to a project. These new
people drain productivity from the experts. The same suggestion
applies: put the newcomers in a separate team to learn the system.
Move them to the progress team as soon as they are up to speed.

118 Chapter 4 Organization Design Patterns

Reading:
Brooks, F., The Mythical Man-Month, Addison-Wesley, 1995

[Brooks1995].
In Situated Learning: Legitimate Peripheral Participation, [Lave1991],

Lave and Wenger describe the use of this sort of arrangement in
apprentice-based work situations.

A version of this pattern first appeared in [Cockburn1998].

Project Management Pattern Language 119

4.1.24 MERCENARY ANALYST *

On one of his many journeys in the Appalachian Mountains, the itinerant
folk song collector John Jacob Niles heard a woman singing a particularly
beautiful song. He persuaded her to repeat the now-famous Christmas song,
“I Wonder as I Wander,” until he had learned it himself. He later said, “I
never saw her again.”

... you are assembling the roles for the organization. The organiza-
tion exists in a context where external reviewers, customers, and
internal developers expect to use project documentation to understand
the system architecture and its internal workings. (User documenta-
tion is considered separately). Supporting a design notation, and the
related project documentation, is too tedious a job for people directly
contributing to product artifacts.

✥ ✥ ✥

Technical documentation is the dirty work every project must do.
It’s important to create—and, more so, to maintain—good documenta-
tion for subsequent use by the project itself. Who writes these docu-
ments?

If developers do their own documentation, it hampers “real” work.
Meeting software deadlines means money to the organization; tech-

120 Chapter 4 Organization Design Patterns

nical documentation is one of those things we tell ourself can be
deferred until there is time to do it. But “the time to do it” often never
comes, and an organization without good internal technical documen-
tation of its system has a serious handicap.

Documentation is often write-only.
Engineers often don’t have good communication skills.
Many projects use tools like Rose to do design, that produce pretty

pictures. A good picture is not necessarily a good design, and archi-
tects can become victims of the elegance of their own drawings (see
the rationale below).

Therefore:
Hire a technical writer, proficient in the necessary domains, but

without a stake in the design itself.
This person will capture the design using a suitable notation, and

will format and publish the design for reviews and for consumption
by the organization itself.

✥ ✥ ✥

The documentation itself should be maintained on-line where ever
possible. It must be kept up-to-date (therefore, MERCENARY ANALYST is a
full-time job), and should relate to customer scenarios (SCENARIOS

DEFINE PROBLEM (4.2.8)). Note, though, that all team members need to
provide input to keep the documentation up to date. The AD- HOC

CORRECTIONS (10.5.2) pattern [Weir1998] suggests that a master copy of
the documentation be kept, and that team members write corrections
in the margin. One team member is assigned to periodically update
the document.

The success of this pattern depends on finding a suitably skilled
agent to fill the role of mercenary analyst. If the pattern succeeds, the
new context defines a project whose progress can be reviewed (the pat-
tern STAND UP MEETING (5.2.7)) and monitored by community experts
outside the project.

If the MERCENARY ANALYST really is a “mercenary” who “rides into
town, gets the early stuff documented, kisses his horse, saddles up his
girl, and rides off into the sunset” (Paul Chisholm), then it’s good to
keep some of the expertise behind by combining MERCENARY ANALYST

with DEVELOPING IN PAIRS (4.2.28).

Project Management Pattern Language 121

This pattern is uncommon but empirically grounded and effective,
found in Borland’s Quattro Pro for Windows and many AT&T projects
(a joint venture based in New Jersey, a formative organization in
switching support, and others). It is difficult to find people with the
skills to fill this role.

Rybczynski writes:

 Here is another liability: beautiful drawings can become ends
in themselves. Often, if the drawing deceives, it is not only
the viewer who is enchanted but also the maker, who is the
victim of his own artifice. Alberti understood this danger and
pointed out that architects should not try to imitate painters
and produce lifelike drawings. The purpose of architectural
drawings, according to him, was merely to illustrate the rela-
tionship of the various parts... Alberti understood, as many
architects of today do not, that the rules of drawing and the
rules of building are not one and the same, and mastery of
the former does not ensure success in the latter. —
[Rybczynski1989, p. 121].

A passage from Manzoni’s I Promessi Sposi (The Betrothed
[Manzoni1984]) might amuse the MERCENARY ANALYST.

 The peasant who knows not how to write, and who needs to
write, applies to one who knows that art, choosing as far as
he can one of his own station, for with others he is hesitant, or
a little untrusting. He informs him, with more or less clarity
and orderliness, of who his ancestors were, and in the same
manner tells him what to set down on paper. The literate per-
son understands part and guesses at the rest, gives a few
pieces of advice, suggests a few changes, and says “Leave it
to me.”

 He picks up his pen, puts the other’s thoughts as well as he
can in literary form, corrects them, improves them, embel-
lishes them, tones them down, or even omits them, according
to how he thinks best, because—and there’s nothing to be
done about it—someone who knows better than others has
no wish to be a mere tool in their hands, and when he is con-
cerned with the business of others he wants it to go a little in
his own way.

122 Chapter 4 Organization Design Patterns

Richard Gabriel [Gabriel1995] notes the following are important
traits of this role:

• good meeting facilitator

• likes things organized

• good attention to details

• has written instructional material (for software)

• has no ego to invest in the material being documented

• very smart, highly educated (Ph.D. in literature from Cornell in
my case)

In exceptional cases, the MERCENARY ANALYST can actually take a
stake in the design. Betsy Hanes Perry writes:

 When I fill this role, I most definitely have a stake in the
design: I want to make sure it’s elegant, consistent, and clean.
The architect has primary responsibility, of course, but I also
suggest places in which the design conflicts with itself or may
lead to future misunderstandings. As I see it, a software
architecture is an idea. The designer/implementors are
responsible for expressing that idea (or those ideas) as code; I
express it/them as prose. Both are projections of the idea into
a particular plane. When there’s a conflict, the code is proba-
bly correct.

Many projects put faith in tools and notations such as UML to
improve quality. But, as Betsy points out, the tool largely provides the
forum and opportunity for a human being to engage in the processes
and convey the insights that contribute to quality. For documentation
to have added value as a quality tool, the documentation process must
proceed in the spirit of this admonition.

Paul Chisholm offers the following about the history and rationale
of MERCENARY ANALYST:

 MERCENARY ANALYST came from two sources:

 (1) Borland’s Quattro Pro for Windows, which Cope’s identi-
fied as the most productive software development organiza-
tion he’s ever seen (average 1000 delivered non-commentary
source lines of C++ per staff week), in large part due to the

Project Management Pattern Language 123

fact that developers had people to write the development
documentation for them).

 Designer/coders have responsibilities that cannot be dele-
gated. Some responsibilities, such as documentation, can be
delegated. Besides, many excellent programmers and most
average ones are less than stellar writers. (Richard [Gabriel]
may disagree that this *is* the case, and will certainly dis-
agree that this *should* be the case...

 (2) A combination of two patterns. One, from Tony Hansen’s
group, is DISPOSABLE ANALYSIS: do analysis once, translate to
design, throw away the analysis, keep only the design up to
date with the code. The other is my observation that most
CASE tools require significant experience in the method and
the tool itself. If you have DISPOSABLE ANALYSIS (which few
projects plan to do but many follow unintentionally), you
should not develop local expertise in CASE tool operation.

 It’s bad enough learning Framemaker. CASE tools tend to
have lousy user interfaces; it’s a real pain to use them, or
learn how to use them.

 The “mercenary” in MERCENARY ANALYST. comes from the
“hired gun” quality a MERCENARY ANALYST might have; rides
into town, gets the early stuff documented, kisses his horse,
saddles up his girl, and rides off into the sunset. That’s the
DISPOSABLE ANALYSIS model, not the Borland Quattro Pro for
Windows model!

 Mercenary Analyst plays well with DEVELOPING IN PAIRS
(4.2.28).

 Someone quoted by Jim Coplien wrote that “Mercenary Ana-
lyst is the professional technical writer who takes care of all
the project diagrams and documentation so it doesn’t get in
the way of the architects.”

 Maybe not a “tech writer”, and not " all the diagrams and
documentation," but, yes, that’s the idea.

124 Chapter 4 Organization Design Patterns

 What should be a MERCENARY ANALYST’s education? Mastery of
his or her tools (e.g., word processor, CASE tool) beyond that
of most users. Experience (perhaps expertise) in the
“method” behind the documentation (e.g., an ObjecTime
MERCENARY ANALYST would have to know ROOM well, some-
one writing requirements would need systems engineering
and/or software development experience).

 What is the MERCENARY ANALYST’s motivation? To get the software
(not the documentation) out faster!

 How can one paint CASE diagrams without knowledge of soft-
ware? I had some naive hope that a CASE tool MERCENARY
ANALYST could be a highly skilled clerk. I’ve given up on that.
There may be some way of combining MERCENARY ANALYST
with DEVELOPING IN PAIRS (4.2.28) (or a variant for triples) to
make MERCENARY ANALYST some sort of entry-level or appren-
tice position.

 Domain Knowledge. While knowledge of the domain is impor-
tant for a project (DOMAIN EXPERTISE IN ROLES (4.2.22)) I don’t
think the MERCENARY ANALYST (4.1.24) needs it. (I hope not!)

 Knowledge of software is important. Would you trust a driving
instruction manual written by someone who’d never driven?

Project Management Pattern Language 125

4.1.25 INTERRUPTS UNJAM BLOCKING **

During one project status meeting, it was reported that a critical piece of
hardware was malfunctioning. Unfortunately, the expert on the hardware
was on the other side of the country, and was involved in his own work. But
he had the (mis)fortune to be on that conference call. So was the project
director, who informed him in blunt terms that his services were required
immediately. He was on the next plane out.

... you are fine-tuning scheduling in a high productivity design/
implementation process or low-latency service process. The sched-
uling problem is to be addressed on a small scale (i.e., this is not sched-
uling entire departments, but the work of cooperating individuals).
You want to use INFORMAL LABOR PLAN (4.1.14), but need additional cri-
teria for individuals and small groups to plan their schedules. Local
decisions may lack the scope necessary to avoid duplication of work,
missed opportunities, and other sillinesses.

✥ ✥ ✥

A comprehensive scheduling plan is difficult if not impossible;
yet, without some kind of plan, it becomes easy to fall into
thrashing.

The events and tasks in a process are too complex to schedule
development activities as a time-linear sequence.

126 Chapter 4 Organization Design Patterns

Complete scheduling insight is impossible. Even if it were possible
to capture the entire picture of the project for an instant, it would
change very quickly. The dynamics of project development mean that
the best we can hope for is a high-level, approximate schedule.

The programmers with the longest development schedules will
benefit if more of others’ code is done before they try integrating or
testing later code, and their interval can’t otherwise be shortened (see
CODE OWNERSHIP (5.2.13)).

Therefore:
If a role is about to block on a critical resource, interrupt the role

that provides that resource so they stop what they’re doing to keep
you unblocked.

The nature of the critical resource can vary. It may be a software
module that is in the critical path. It could be the latest software inte-
gration. It is often critical knowledge, without which one cannot move
forward. Whatever the resource is, the approach is to interrupt the pro-
vider of the resource.

✥ ✥ ✥

If the overhead is small enough, it doesn’t affect throughput. It will
always improve local latency.

The process should have a higher throughput, again, at the expense
of higher coupling. Coupling may have already been facilitated by ear-
lier patterns, such as WORK FLOWS INWARD (4.1.18), MOVE RESPONSIBILITIES

(5.1.18), RESPONSIBILITIES ENGAGE (5.1.14), HALLWAY CHATTER (5.1.15), and
COUPLING DECREASES LATENCY (5.1.22).

The intent is that this pattern will apply most frequently between
cooperating developers working on a single project. This is supported
empirically from a high productivity process in AT&T. There are
strong software engineering (operating system) principles as well.

It may be useful to prioritize interrupts, and service the ones that
would optimize the productivity of the organization as a whole. That
is, it is better to unblock 4 people who are currently blocked than to
unblock a single squeaky wheel. The decision-making process should
be fast: Most of the time, it should be distributed. Where arbitration is
needed, apply PATRON ROLE (4.2.15). The simplest resolution is the pat-
tern DON’T INTERRUPT AN INTERRUPT (4.1.26).

Project Management Pattern Language 127

The PATRON ROLE (4.2.15) and MANAGER ROLE can help the team audit
the project for blocked progress, but should defer to the Developers (or
other directly impacted roles) to resolve the blockage when ever pos-
sible. Management intervention can be effective, but may risk good
will within the project.

Joe Maranzano notes a corollary to this pattern is another pattern:
Don’t put too many critical tasks on one person (which is related to
MODERATE TRUCK NUMBER (4.2.24) and DISTRIBUTE WORK EVENLY (5.1.13)).

This pattern is much less effective if the provider of the resource is
not in the same project as you are. In that case, the provider has little
incentive to service your interrupt, and you risk alienating the pro-
vider if you engage in incessant pestering. This problem can be miti-
gated by adopting a policy of reciprocity, fair and proactive exchange
of value among partners. [Dikel2001].

128 Chapter 4 Organization Design Patterns

4.1.26 DON’T INTERRUPT AN INTERRUPT *

The original interruption device.

...you’ve applied INTERRUPTS UNJAM BLOCKING (4.1.25), but notice that
the organization is now thrashing, particularly in the end game or
under heavy churn.

✥ ✥ ✥

It’s important to balance a desire that SOMEONE ALWAYS MAKES

PROGRESS (4.1.20) with the thrashing that can accompany short-term
priority calls. One worker will inevitably be blocked on you—you
can’t do both things at once. Complete, omniscient foresight and
scheduling are unreasonable to expect.

Therefore:
If a developer is already working in “interrupt mode” on a critical

issue, don’t put that work aside until it is complete or until that issue
itself becomes hopelessly tangled.

✥ ✥ ✥

This prevents endless churn that can result from too much context
switching. It helps ensure that SOMEONE ALWAYS MAKES PROGRESS. And it
provides some “back pressure” in the process that can help temper
irresponsibly quick reversals of position in the front-end.

This is a simple, though somewhat arbitrary, rule to keep sched-
uling from becoming an elaborate ceremony.

Project Management Pattern Language 129

This relates to the “red zone” from Linda McLyman’s analysis of the
Satir change model [Satir1991], that suggests that if a foreign element
(problem) arrives before the organization starts to learn its way out of
the last foreign element, recovery is difficult.

130 Chapter 4 Organization Design Patterns

4.2 Piecemeal Growth Pattern Language

The Pattern Language
This pattern language offers patterns to strengthen and tune an

organization using feedback and insight. It is essentially a process of
repair. Here are the patterns and their connections to each other:

Piecemeal Growth Pattern Language 131

A
pp

lic
at

io
n

D
es

ig
n

Is
B

ou
nd

ed
B

y
Te

st
D

es
ig

n

S
ce

na
rio

s
D

ef
in

e
P

ro
bl

em

A
pp

re
nt

ic
e

S
hi

p

D
ev

el
op

in
g

In
P

ai
rs

D
ay

C
ar

e

G
en

er
ic

s
A

nd
S

pe
ci

fic
s

C
om

pe
ns

at
e

S
uc

ce
ss

Fa
ile

d
P

ro
je

ct
W

ak
e

T
he

W
at

er
C

oo
le

r

G
ro

up
V

al
id

at
io

n

D
iv

er
se

G
ro

up
s D

om
ai

n
E

xp
er

tis
e

In
R

ol
es

H
ol

is
tic

D
iv

er
si

ty
P

ub
lic

C
ha

ra
ct

er

M
od

er
at

e
Tr

uc
k

N
um

be
r

S
ub

sy
st

em
B

y
S

ki
ll

E
ng

ag
e

C
us

to
m

er
s

E
ng

ag
e

Q
ua

lit
y

A
ss

ur
an

ce

S
ur

ro
ga

te
C

us
to

m
er

U
ni

ty
O

f
P

ur
po

se

F
ire

W
al

ls

G
at

e
K

ee
pe

r
M

an
ag

er
R

ol
e

S
ta

nd
U

p
M

ee
tin

g

Le
ge

nd
R

ol
e

W
is

e
F

oo
l

M
at

ro
n

R
ol

e

P
at

ro
n

R
ol

e

P
ha

si
ng

It In

S
el

f
S

el
ec

tin
g

Te
am

S
ku

nk
W

or
ks

S
iz

e
T

he
O

rg
an

iz
at

io
n

S
ol

o
V

ir
tu

os
o

F
ew

R
ol

es

B
ui

ld
P

ro
to

ty
pe

s

132 Chapter 4 Organization Design Patterns

Note, perhaps surprisingly, that none of these patterns have funda-
mental ties to software development. They are applicable to any
design activity: any activity where a group of people is building some-
thing to solve a problem. They are equally applicable to software ser-
vices as to building product; to hardware development as to software
development. They are patterns about human nature and human orga-
nizations, about the ways that people come together to solve prob-
lems.

A Story About Piecemeal Growth
When I started to plan the Q project, I wanted small core team of

architects, so I employed SIZE THE ORGANIZATION (4.2.2) with an eye to
PHASING IT IN (4.2.3) through APPRENTICESHIP (4.2.4) with other staff later
on. The project was too large for a SOLO VIRTUOSO (4.2.5) approach —
though we would use that pattern later to flesh out a prototype. I put
forward the opportunity and made it possible for people to sign up;
there was no corporate or management compunction to join. Hence, it
was a purely SELF SELECTING TEAM (4.2.11), started as a SKUNK WORKS

(4.2.14) under management radar.
My main job as project coordinator was to put up the FIRE WALLS

(4.2.9) to management until we had our act together. But my second
job was to make sure we got a good group of people to the end of
HOLISTIC DIVERSITY (4.2.19). We brought in Lalita for her work in
scripting languages and their environments; Peter for his architectural
expertise. Later we decided we needed market domain knowledge,
and that’s when we brought on Jim and Beki in the interest of having
DOMAIN EXPERTISE IN ROLES (4.2.22). The recruitment strategy was
always one of ferreting out matches of interest that would excite the
players, amplified by the new nature and somewhat subversive
approach of the opportunity. Team pride was an emergent property of
this process. We also had our own value system and model of rewards:
all team members would share credit for any patents that were issued,
and we would seize a leadership role in the organization. We also
knew we were catering to the organization’s product interests, and
that would be rewarded: COMPENSATE SUCCESS (4.2.25).

Beki served as the GATE KEEPER (4.2.10), bringing in ideas from the
AOL Instant Messenger world, interviewing (child!) users of the
system, and bringing in knowledge of the organization and market

Piecemeal Growth Pattern Language 133

opportunities. She and I split duties of PUBLIC CHARACTER (4.2.17) and
MATRON ROLE (4.2.18).

We moved forward on design using CRC cards to formulate an
architecture, employing SCENARIOS DEFINE PROBLEM (4.2.8) and GROUP

VALIDATION (4.2.32). The goal was to get the project “running” on CRC
cards and then to implement a first, simple cut in a one- or two-day
programming session, all together in one room, doing DEVELOPING IN

PAIRS (4.2.28). The CRC cards were given to individuals best suited to
those areas, exemplifying both DOMAIN EXPERTISE IN ROLES (4.2.22) and,
to the degree one could talk about subsystems at that point, SUBSYSTEM

BY SKILL (4.2.23).
At our (frequent) meetings we made sure that work was spread

around evenly. We did most things in a group to make sure that the
specialization didn’t get out of hand. We occasionally traded off CRC
cards, all in the interest of having a MODERATE TRUCK NUMBER (4.2.24).

At some point in the process, people felt that the CRC cards weren’t
enough and that we needed to document the scenarios. We used ping-
pong diagrams to do this, first on whiteboards, then using a formal
documentation tool (SCENARIOS DEFINE PROBLEM (4.2.8)). But this was
done in a SACRIFICE ONE PERSON (4.1.22) mentality, shades of MERCENARY

ANALYST (4.1.24) (we were too small to enlist a full fledged MERCENARY

ANALYST (4.1.24), but we faked it).
Lalita went away as a SOLO VIRTUOSO (4.2.5) to BUILD PROTOTYPES

(4.1.7). The prototype ended not being terribly gee-whiz and it failed
to energize the team to take the next steps forward, and things came to
an impasse, particularly in light of competing priorities on other
development projects.

Dysfunction struck the organization in the untimely departure of
Beki and Peter from the project, and afterwards, in Lalita’s promotion
out of the project. Jim took the ideas forward into another project but
took no other people with him. We did not have a FAILED PROJECT WAKE

(4.2.26) — perhaps we should have. We didn’t get so far as to run the
development exercise as a team in a room, at which point INTERRUPTS

UNJAM BLOCKING (4.1.25) and DON’T INTERRUPT AN INTERRUPT (4.1.26)
would have become important.

4.2.1 Community Of Trust
See Section 4.1.1.

134 Chapter 4 Organization Design Patterns

4.2.2 SIZE THE ORGANIZATION **

...within a larger organization, usually that of a sponsoring enter-
prise or company, there need to be smaller organizations capable of
creating large software systems (greater than twenty-five thousand
lines of code) that meet competitive cost and schedule benchmarks.
This pattern shows how the proper sizing of an organization is vital to
the health of the project and the productivity of its people.

✥ ✥ ✥

Large software projects (greater than twenty-five thousand lines
of code) are seldom delivered on time and within budget when the
development team is too large or too small.

There are two arguments that have led us to this conclusion:

1. There are limits to the size of software development teams that
allow them to work effectively. A team can handle a larger
problem than an individual can ([BeyerHoltzblatt1998], p. 4).

2. Adding people late to a project rarely helps complete that project
on time and within budget.

Piecemeal Growth Pattern Language 135

1. If a software development team is too large, you can reach a point
of greatly diminishing returns. We have found empirically that an
organization’s size affects a deliverable non-linearly. Communication
overhead goes up as the square of the size, which means that the orga-
nization becomes less cohesive as the square of the size while the
“horsepower” of the organization goes up only linearly.

In addition, if the organization is too small, the team won’t have
critical mass and productivity will suffer. Projects larger than
25KSLOC can rarely be done by a SOLO VIRTUOSO (4.2.5) and overly
small organizations have inadequate inertia and can easily become
unstable.

However, experience has shown that a suitably selected and nur-
tured small team of around 10 people can provide a suitable critical
mass with a capacity to develop a 1,500 KSLOC project in 31 months, a
200 KSLOC project in 15 months, or a 60KSLOC project in 8 months.

Keeping the organization small makes it possible for everybody to
have knowledge of how the project works (“global knowledge”). We
have found empirically that most roles in a project can handle interac-
tions with about six or seven other roles; with 10 people, you can
almost manage total global communications (and a fully connected
network may not be necessary).

Projects that do well have processes that adapt, and processes adapt
well only if there is widespread buy-in and benefit. The dialogue nec-
essary to buy-in and benefit can accrue only to small organizations.
Tom De Marco has noted that everybody who is to benefit from pro-
cess should be involved in process work and process decision-making.

Further study might evaluate the relationship between this pattern
and Alexander’s THE DISTRIBUTION OF TOWNS ([Alexander1977], ff. 16)
and related patterns. Here, we stipulate that the social organization
must be small; it reflects a SUBCULTURE BOUNDARY ([Alexander1977], ff.
75) and IDENTIFIABLE NEIGHBORHOOD ([Alexander1977], ff. 80). Alexander
emphasizes the grander architectural context that balances support for
the ecology with the economies of scale that large towns can provide,
while supporting the xenophobic tendencies of human nature. Small
organizations like that being built here rarely exist in isolation, but in
the context of a broader supporting organization. This relationship to
the larger organization invokes PATRON ROLE (4.2.15).

2. Adding people late to a project rarely helps complete that project
on time and within budget.

136 Chapter 4 Organization Design Patterns

One manager writes: “On [one] project, I grew from 10 to 20 people
to meet a customer contract....with new people, [I] wound up three
months late because of ‘absorption’ of new folks into the organiza-
tion.”

Many software development cultures support technical manager
groups up to around 10 people. Adding more people would force a
group split, which can cause a large decrease in productivity, all other
things being equal. We have also found that a single team is better than
a collection of sub-teams. The faster a team breaks up into sub-teams
worrying about their own responsibilities rather than those of the
larger team, the less effective the enterprise will be as a whole.

Therefore:
By default, choose about ten people to establish critical mass in

the development of large software systems and avoid adding indi-
viduals late in the game, or trying to work backwards from a com-
pletion date.

Experts vary on the exact number; the number 10 has a bit of tradi-
tion associated with it, but numbers like 6 or 7 are also common. Two
is too small, and 13 is too big.

✥ ✥ ✥

Having 10 people at the start of a large project can be overkill, but it
avoids the expense and overhead of adding more people later. How-
ever, once a core team establishes an identity, it can grow graciously by
PHASING IT IN (4.2.3) or using APPRENTICESHIP (4.2.4). The organization
can generate knowledge early on by building and throwing away a
prototype (see BUILD PROTOTYPES (4.1.7)). To decide whom to hire into the
nascent organization, use patterns like DOMAIN EXPERTISE IN ROLES

(4.2.22) and ARCHITECTURE TEAM (5.2.4). SMALL WRITING TEAM (10.5.27)
[Bramble2002, p. 31] suggests that two or three people be used to write
the use cases; others will be in other roles.

Astute readers might consider this pattern and remark, “You have a
strange idea of what constitutes a large project! I can see this working
for projects that will grow to thirty or forty people and maybe a few
tens of thousands of lines of code. But how about for really large
projects?”

First, it’s important to understand that there are few real software
development teams that are larger than a few dozen people; larger

Piecemeal Growth Pattern Language 137

projects almost always self-organize into subcommunities (DIVIDE AND

CONQUER (5.1.6)). But even the largest projects start with an idea, and
an idea starts with an individual or a small group of people. This pat-
tern says that a small group should take the project as far as they can
before other staff are actively engaged. One of course must anticipate
the point of diminishing returns for the seed team and seek people
early enough so they will be available and ready when they are
needed. And of course people should be brought on gradually (see
PHASING IT IN, DAY CARE (4.1.23), etc.) But start small, and stay as small
as possible as long as possible. Large systems grow from small systems
that work.

Second, remember that it is imperative to have FEW ROLES (5.1.2).
With ten people, it is easy to define and fill half a dozen or so roles. But
with a large initial team, people will at first be at a loss as to what to
do, until they receive assignments (and you can’t give everyone an
assignment all at once.) So they will find something to do, and will
tend to invent roles for themselves. It’s a good way to create deadbeat
roles.

Joe Walters said that a project shouldn’t grow larger than the size of
the auditorium of the building where the project is centered.

Staff sizing complete, the project can SIZE THE SCHEDULE (4.1.2).

138 Chapter 4 Organization Design Patterns

4.2.3 PHASING IT IN **

... key project players have been hired or otherwise brought into the
project and cover the necessary expertise (DOMAIN EXPERTISE IN ROLES

(4.2.22)) but the project needs more staff.

✥ ✥ ✥

Growing projects must figure out how to grow long-term staff:
whom to hire, how many to hire, and when to hire them. Projects
must ramp up while minimizing the pains of growth.

You need enough people for critical mass. Yet you cannot just hire
anyone off the street; staff are not plug compatible and interchange-
able.

The right set of initial people (SIZE THE ORGANIZATION (4.2.2)) sets the
tone for the project, and it’s important to hire the key people first. You
need a critical mass of key people early on. Yet too many people too
early create a burden for the core team.

Therefore:
Phase the hiring program. Start by hiring people to meet the basic

core competencies of the business and gradually bring on new
people as the project needs to grow.

✥ ✥ ✥

The organization can staff up to meet development load. This pat-
tern is closely related to APPRENTICESHIP (4.2.4) and to MODERATE TRUCK

NUMBER (4.2.24). DAY CARE (4.1.23) can be applied to help with the

Piecemeal Growth Pattern Language 139

training and mentoring load that new employees place on the organi-
zation.

This is a well-known management technique that allows the project
to establish an identity early on, and to grow graciously.

Larry Putnam points out that projects that grow very quickly at the
beginning tend to be late. He advocates growing staff gradually.
[Putnam1992].

In The Mythical Man-Month Brooks states, “V. A. Vyssotsky of Bell
Telephone Laboratories estimates that a large project can sustain a
manpower buildup of 30 percent per year. More than that strains and
even inhibits the evolution of the essential informal structure and its
communication pathways.” [Brooks1995], page 293.

What constitutes “core competencies?” Part of this depends on the
business you are in. If you are in finance, you want people who can
develop financial software. The better people you can get early on, the
better off you will be, and it is probably a good return on investment to
spare no expense on talent at this early stage. Talent isn’t limited to
domain knowledge, though; you also need individuals who can put
customers at ease, who can keep a cool head for strategic planning,
who can “fill in the cracks” by doing the miscellaneous detailed tasks
that others don’t want to do or forget to do, etc. Many individuals
have many of these talents; the key is to cover the crucial needs early
on with as few people as possible, and to grow the organization once
that organization has gelled (see STABLE ROLES (5.1.5)). You can achieve
these goals with HOLISTIC DIVERSITY (4.2.19) and DIVERSE GROUPS (4.2.16).

140 Chapter 4 Organization Design Patterns

4.2.4 APPRENTICESHIP *

...the project is incrementally staffing up after the first round of
experts have been brought on board.

✥ ✥ ✥

A project must balance its need for growth with its need to
develop and maintain deep domain expertise. You need enough
people for critical mass. However, staff are not plug compatible and
interchangeable. And academic training and prior experience are
rarely, in themselves, adequate preparation for competent work at a
new task.

Therefore:
Turn new hires into experts (see DOMAIN EXPERTISE IN ROLES

(4.2.22)) through an apprenticeship program. Every new employee
should work as an apprentice (not just a mentee) to an established
expert. Most apprenticeship programs will last six months to a year—
the amount of time it takes to make a paradigm shift.

✥ ✥ ✥

Piecemeal Growth Pattern Language 141

It will be possible to maintain expertise in the organization. This
pattern also reduces the organization’s “truck number” (the smallest
number of people such that, if any one of them were hit by a truck, the
organization will have lost a critical resource; see MODERATE TRUCK

NUMBER (4.2.24)) by spreading knowledge around. The “masters” feel
valued and the apprentices are given a good environment to learn.

Manage drain on expert staff resources with DAY CARE (4.1.23).
DEVELOPING IN PAIRS (4.2.28) is often used as an effective APPRENTICE-

SHIP technique.
It is better to apprentice people than to put people through a “trial

by fire” that may damage the project. The apprenticeship approach
makes it possible to form domain-specific teams, and it is important to
keep the team concept as a central part of organizational values.

142 Chapter 4 Organization Design Patterns

4.2.5 SOLO VIRTUOSO *

. . . we have described optimal sizes of organizations needed to
create large software systems on time and within budget — SIZE THE

ORGANIZATION (4.2.2). The following pattern explains what to do for
smaller systems (less than twenty-five thousand lines of code), when a
product must still be created on time and within budget, but when
rapid growth is not anticipated after the first release.

✥ ✥ ✥

When a smaller software project (less than twenty-five thousand
lines of code) is overstaffed, communication overhead increases and
talented individuals, who could produce the software entirely on their
own, are bridled, their “horsepower” diminished.

We have said that organizational size affects the deliverable in a
non-linear manner (SIZE THE ORGANIZATION (4.2.2)). We have also
observed that communication overhead goes up as the square of the
size, which means that the organization becomes less cohesive as the
square of the size while the “horsepower” of the organization goes up
only linearly.

Piecemeal Growth Pattern Language 143

The question then is, what organizational size works best for
smaller software projects?

The answer depends on the individual(s) involved in the project.
The productivity of a single individual can be higher than that of a col-
lection of productive individuals. We have seen single-person devel-
opments generate 25KSLOC of deliverable code in 4 months (a craft
interface for a telecommunication system); two-person developments
do 135 KSLOC in 30 months. Many of these adhered faithfully to all
stipulated reviews and verification steps.

Boehm [Boehm1981] notes a 20-fold spread between the least and
most effective developers. A telecommunications developer recently
told me that “having the right expertise means the difference between
being able to solve a problem in a half hour, and never being able to
solve the problem at all.”

(Note: Boehm quotes Grant and Stackman [Grant1966] with a 26-
fold spread, page 667.)

The result of using a SOLO VIRTUOSO (4.2.5) is an organization limited
to small development. Though there is a singleton development role,
other roles may be necessary to support marketing, toolsmithing, and
other functions. The productivity of a suitably chosen singleton devel-
oper is enough to handle sizable projects; here, we establish 25KSLOC
as a limit.

Therefore:
Do the entire design and implementation with one or two of your

most effective developers.

✥ ✥ ✥

This pattern is not a “License to Hack.” The work of SOLO VIRTUOSOS

(4.2.5) is still subject to technical reviews, validation, and verification
at appropriate times in the development cycle — STAND UP MEETING

(5.2.7), ENGAGE CUSTOMERS (4.2.6). This combines nicely with DEVELOPING

IN PAIRS (4.2.28).
See also MODERATE TRUCK NUMBER (4.2.24), which raises concerns

about the use of this pattern in risk-averse business.

144 Chapter 4 Organization Design Patterns

4.2.6 ENGAGE CUSTOMERS **

Clerk measuring customer for a suit of clothes, San Antonio, Texas.

A friend of one of the authors once designed and implemented the user
interface for a large system. He got input from customers on how to make it
useful for them. Unfortunately, the requirements writers had a different idea,
and made him remove the features the customers liked. But then the cus-
tomers asked for the missing features, and the requirements writers were
forced to relent. I guess it didn’t help relations between my friend and the
requirements writers.

...an organization is in place, and its Quality Assurance function has
been generally shaped and chartered. The Quality Assurance (QA)
function needs input to drive its work. Many people in the enterprise
are concerned about quality.

✥ ✥ ✥

It’s important that the development organization ensures and
maintains customer satisfaction by encouraging communication
between customers and key development organization roles. This

Piecemeal Growth Pattern Language 145

isn’t the responsibility of any single “customer satisfaction” organ, but
the need pervades the entire organization structure. Most organiza-
tions are averse to direct contact between developers and customers,
fearing that the developers are “loose cannons on deck” who will
promise to deliver things that go beyond the scope of a job.

Yet you can’t know all the requirements up front, so developers
need to keep going back to customers for more information—and cus-
tomers need to keep coming back to developers with their insights,
particularly when developers BUILD PROTOTYPES (4.1.7). Requirements
changes occur even after design reviews are complete and coding has
started.

Many organizations depend on their marketing organization to
provide requirements and needs. But marketing doesn’t provide
design data (BeyerHoltzblatt1998], p. 30). The best that marketing can
do (or should do) is to understand what will sell and why people will
buy what you want to sell. Designers in turn must understand how
people will use the product in a way that creates value for them. Good
value sometimes leads to good market potential, but marketing usu-
ally looks at other factors (brand name recognition, product name and
posturing n the market) about which designers care little.

Missing customer requirements are a serious problem: most prob-
lems in software systems can be traced to requirements problems
([Daley1977]; [Boehm1976]). Yet it seems like so much effort to elicit
them — which is work that is not directly producing a marketable arti-
fact. It seems like makework and overhead.

Customers are traditionally not part of the mainstream develop-
ment, which makes it difficult to discover and incorporate their
insights. Yet customer contact correlates with project success
[KeilCarmel1995].

Trust relationship between managers and coders are often strained,
so you don’t want them to be the sole intermediary between devel-
opers and customers.

Therefore:
Closely couple the Customer role to the Developer and Architect,

not just to QA or marketing. In short, developers and architects must
talk freely and often with customers. When possible, engage cus-
tomers in their environment rather than brining them into your
environment.

146 Chapter 4 Organization Design Patterns

Two things are necessary for this to happen: opportunity and cul-
ture. Developers must have the opportunity (and the means) to com-
municate with customers. They should meet customers personally to
establish trust and free flow of communication.

But these visits will be superficial if the organization culture builds
walls between customers and developers. In particular, if system
requirements must go through a lengthy formal process to be
approved, the developer will be hamstrung — unable to respond to
customer requests. Therefore, the organization must develop a culture
where developers have some latitude to respond to customers. This is
not saying, however, that all control of requirements should be rele-
gated to the developer. Order is necessary.

Beyer and Holtzblatt note that “many common ways of working
wi th cus tomers remove them f rom the i r work .”
([BeyerHoltzblatt1998], pp. 36-7). One way to help this is by “putting
designers and engineers directly in the customer’s work context”
([BeyerHoltzblatt1998], p. 20). This is particularly important if you are
using customer engagement to create wholly new market directions
for the enterprise, rather than refining existing work. Putting devel-
opers in the customer work environment also trains developers’ intu-
ition about good design and good human interfaces, and this intuition
can fill in when specific detailed requirements are unavailable
[BeyerHoltzblatt1998], p. 35).

Language is a key element of culture that can smooth customer
engagement if treated properly, and smother it if treated badly. Don’t
make your customers learn UML or other technical notations; do your
best to learn their language and to communicate with them in the
terms of their culture.

QA can monitor the relationship to keep the direction within con-
tractual business limits, while allowing a free flow of insights back and
forth between developers and customers. Such communication can
often flow unimpeded; however, see the pattern GATE KEEPER (4.2.10).

Note that this pattern is all about relationships and culture. It is the
culture of respect for and communication with customers that makes
the communication effective, for example, during the writing of use
cases, as described in PARTICIPATING AUDIENCE (10.5.20) ([Bramble2002],
p. 35).

✥ ✥ ✥

Piecemeal Growth Pattern Language 147

This pattern supports requirements discovery from the customer, as
required by SCENARIOS DEFINE PROBLEM (4.2.8) and BUILD PROTOTYPES

(4.1.7). Other patterns like FIRE WALLS (4.2.9) also build on this pattern.
The pattern RECOMMITMENT MEETING (4.1.12) is a more formal derivative
of this pattern in a different context.

A good understanding of customer needs can avoid rework after
implementation is done. While it is also important to continuously
engage customers through each development episode of iteration,
early understanding helps launch the effort in the right direction. A
Navision project in Copenhagen felt that improvements in customer
engagement helped save time on their development schedule (from a
draft pattern “Scandinavian System Development” by Flemming Ped-
ersen, 24 January 2002).

This was a strong pattern in the Borland Quattro Pro for Windows
case study. Also, see [Floyd1992] and in particular the works of Reisin
and Floyd therein.

Some processes and methods are founded on customer engage-
ment, such as IBM’s Joint Application Development. Other methods
are conducive to customer engagement, such as Cunningham and
Beck’s CRC design technique. Other methods, and especially most
CASE-based methods, are indifferent or harmful to customer engage-
ment.

Even some of the best customer engagement techniques tend to
stop once they achieve some level of contractual agreement about
what is to be delivered. Customer engagement in agile processes goes
far beyond that. Developers need to assimilate the context in which
their product will be used: this is called contextual design. Contextual
design means gathering data on customers’ models of how they do
their work rather than creating models of how the program will solve
the problem. Use Cases are about the latter; contextual design is about
the former. See [BeyerHoltzblatt1998].

The pattern is “ENGAGE CUSTOMERS”, in the plural, to support a
domain view and to avoid being blind-sided by a single customer.

The project must be careful to temper interactions between Cus-
tomer and Developer, using FIRE WALLS (4.2.9), GATE KEEPER (4.2.10),
and the QA organizational presence as in ENGAGE QUALITY ASSURANCE

(4.2.29). A big part of interacting with the customer is to learn how
they want to interact with the project as the unfolding software

148 Chapter 4 Organization Design Patterns

uncovers problems in requirements and systems engineering (see
APPLICATION DESIGN IS BOUNDED BY TEST DESIGN (4.2.30)).

Note that “maintaining product quality” is not the problem being
solved here. Product quality is only one component of customer satis-
faction. Studies have shown that customers leave one company for
another when they feel they are being ignored (20% of the time), or
because the attention they receive was rude or unhelpful (50% of the
time). For customers having problems that cost over $100 to fix, and
the company does not fix it, only 9% would buy again. 82% would do
business with the company again if the problem was quickly resolved
after they complained. (The source for the former pair is The Forum
Corporation; for the latter pair, Traveler ’s Insurance Company
[ZuckermanAndHatala1992].)

Joe Maranzano [Maranzano1992] notes that this pattern probably
should come earlier in the language. However, it is important that the
project roles be defined first—particularly those that interact with the
customer, and those that are driven by customer input (such as Quality
Assurance). Said in another way, the organization exists to serve the
customer, so the organization should be in place before the customer is
fully engaged.

This pattern works only if customers are directly accessible to the
development team. If that is impossible for business reasons or
because of geographic separation, consider SURROGATE CUSTOMER

(4.2.7).

Piecemeal Growth Pattern Language 149

4.2.7 SURROGATE CUSTOMER *

Store dummy displaying Daniel Boone hat, fur trimming detachable, suitable
for auto aerial plume (advertisement). Amsterdam, New York.

...the project is beginning to move forward. As architects and devel-
opers get deeper into the project, requirements questions begin to sur-
face.

✥ ✥ ✥

It is important to exchange ideas and clarify issues with cus-
tomers. But a customer may not be available.

There are several reasons that a customer may be unavailable. If the
project is new, there may be no customers yet. In fact, the product
might even create its own customers. Even in existing products, the
organization may never have established relationships with cus-
tomers, and now is not a propitious time to do so.

In some cases, the customer might not have the time right now.
They’re busy too. But you need answers immediately.

Some corporate cultures are such that the developers are insulated
from the customers; they just don’t talk. We certainly aren’t recom-
mending it, but it does happen.

150 Chapter 4 Organization Design Patterns

Whatever the cause, there is a temptation for developers to make
their best guess and go on. The problem is that developers are natu-
rally biased by their own designs, and will assume customer behavior
that conforms to their design. There are always other ways to think
about the application, some of which may not mesh with the devel-
oper’s view.

Therefore:
Create a SURROGATE CUSTOMER role in the project, and fill it with

someone who will try to think like the customer. Use the SURROGATE

CUSTOMER like the real customer.
If the organization has human factors people, they are almost nat-

ural Surrogate Customers. Their emphasis may be on the human inter-
face, but that is often much of the battle.

System Test organizations are similar to SURROGATE CUSTOMERS, but
there are important differences in intent. System testers tend to eval-
uate a product with respect to a specification, to determine its readi-
ness for market. Customers, real or surrogate, are interested in
whether the product meets their need and is easy to use.

Fellow developers tend to make poor SURROGATE CUSTOMERS. Devel-
opers think too much alike (but see below).

✥ ✥ ✥

Of course, no SURROGATE CUSTOMER will ever replace a real customer.
But they allow the project to move ahead in the absence of more con-
crete information. For more reading on the limitations of the SURROGATE

CUSTOMER role, see [ConstantineLockwood1999] and [Bramble2002].
Perhaps a perfect ideal comes where the developers are themselves

customers or SURROGATE CUSTOMERS, if one can overcome the nerdish
groupthink owing to their identity as developers. See CREATE RATHER

THAN CONFORM (8.9) in the Quattro Pro for Windows case study.
Most organizations seat the SURROGATE CUSTOMER with the develop-

ment team; this role is often a member of the development team. Con-
sider instead seating developers at the customer site to avoid the
prob lem descr ibed in the book Contex tua l Des ign
([BeyerHoltzblatt1998], p. 34):

 Many IT departments avoid these problems by stationing IT
developers with the customer organization. This certainly
succeeds in making IT more responsive to the customer, but

Piecemeal Growth Pattern Language 151

brings a loss of control.. The developers easily become
focused on short-term problems and soltions—they tend to
become the local fix-it man. The structure of the customer’s
work and long-term possibilities for improvement are no
more visible to IT developers than to the customer, and with-
out this perspective they, like the customer, focus on the
immediate and most visible issues. And they are stationed in
a particular department, so cross-departmental issues are as
invisible to them as to their customers. They are rewarded for
producing quick fixes to pressing problems. The usual result
is doezens of small applications, each solving a single prob-
lem, that do not work together to support the work coher-
ently.

152 Chapter 4 Organization Design Patterns

4.2.8 SCENARIOS DEFINE PROBLEM *

Discussing a worst-case scenario...

How do you know a programmer is extroverted? He stares at YOUR shoes
when he talks to you.

...you want to engage the customer and need a mechanism to sup-
port other organizational alliances between customer and developers.

✥ ✥ ✥

Design documents are often ineffective as vehicles to communi-
cate the customer vision of how the system should work.

There is a natural business distancing and mistrust between cus-
tomers and developers. Communication between developers and cus-
tomers is crucial to the success of a system.

Therefore:
Capture system functional requirements as use cases.
It is obvious that use cases help increase understanding of the

requirements, but a less obvious aspect of this is that they help set
boundaries of the problem. This became clear as one of the authors

Piecemeal Growth Pattern Language 153

(Neil) consulted with a group who was writing patterns of use cases.
When I questioned a member of the group what problem use cases
solve, I got an unsatisfying answer. I probed deeper by asking how the
situation would look if one didn’t apply use cases, and he responded,
“You wouldn’t know where to start, because the problem would be too
broad.” Interestingly, he had never thought about use cases as a tool to
bound the problem until that point.

Use cases do not capture success scenarios alone, but all the sce-
narios that the system must deal with. There is no such thing as an
exceptional case; make the exception the rule. Interview enough con-
stituencies to get full coverage of the expectations of users and other
stakeholders. Use cases also can, should, and almost certainly must be
augmented with non-functional requirements.

✥ ✥ ✥

It is easy to see that this is a good idea, but what does this have to
do with organizations? One of the tensions in many organizations is
that the developers are, well, geeks. Many don’t have particularly
good communication skills, or, more precisely, aren’t particularly
interested in interpersonal communication. So it is difficult to commu-
nicate requirements to developers. Scenarios work. So if you really
want to ENGAGE CUSTOMERS (4.2.6), this pattern makes it much easier.

The problem is now defined, and the architecture can proceed in
earnest. You can use scenarios as a means of dialogue and require-
ments clarification with your users, particularly when building and
demonstrating a system or subsystem prototype. For more on this, see
CATALYTIC SCENARIOS in the DEMO PREP (10.5.9) pattern language from
Todd Coram [Coram1996].

Also read about the MERCENARY ANALYST (4.1.24), who captures sce-
narios and uses them for project documentation (both internal and
external).

[Cockburn2000] is one of the most acclaimed references on use
cases. Also see CACM Nov. ‘88 (v. 31, no. 11) pp 1268-1287, according
to Ralph Johnson. Also Rubin and Goldberg [GoldbergRubin1995],
who take scenarios all the way to the front of the process preceding
design. See also [HsiaSamuelGaoKung1994].

154 Chapter 4 Organization Design Patterns

4.2.9 FIRE WALLS **

Nobody gets past this point without my permission!

"A manager should be like the sweeper in curling: The sweeper runs ahead
of the stone and sweeps away debris from the path of the stone so that the
progress of the stone will be smooth and undisturbed — does this sound like
your manager?" [Gabriel1996]

Unfortunately, heavy human use in this same area could lead to bear/
human interactions which could injure humans and cause management
actions against the bear. — Sign at an entrance to Boulder Mountain Parks,
Boulder, Colorado

...an organization of developers has formed in a corporate or social
context where they are scrutinized by peers, funders, customers, and
other “outsiders.” Project implementors are often distracted by out-
siders who feel a need to offer input and criticism.

✥ ✥ ✥

It’s important to placate stakeholders who feel a need to “help”
by having access to low levels of the project, without distracting
developers and others who are moving towards project completion

Piecemeal Growth Pattern Language 155

Isolationism doesn’t work: information flow is important. But com-
munication overhead goes up non-linearly with the number of
external collaborators.

Many interruptions are noise.
Maturity and progress are more highly correlated with being in

control than being effectively controlled.
Therefore:
Create a MANAGER ROLE, who shields other development per-

sonnel from interaction with external roles. The responsibility of this
role is “to keep the pests away.”

✥ ✥ ✥

The new organization isolates developers from extraneous external
interrupts. To avoid isolationism, this pattern must be tempered with
others, such as ENGAGE CUSTOMERS (4.2.6) and GATE KEEPER (4.2.10).

This pattern was present in both BORLAND QUATTRO PRO FOR WIN-

DOWS (CHAPTER 8) and in A HYPERPRODUCTIVE TELECOMMUNICATIONS DEVEL-

OPMENT TEAM (CHAPTER 9). See also the pattern ENGAGE CUSTOMERS (4.2.6),
which complements this pattern.

GATE KEEPER (4.2.10) is a pattern that facilitates effective flow of
useful information; FIRE WALLS restricts detracting flow of (even poten-
tially useful) information. You need a balance between them. In the
park in Boulder, people (customers) come to see nature, and bears are
a part of that nature. But if the customers interact too closely with the
core contributors—to the point where it is a distraction—things can
get out of control. Developers need information, and they can take
advantage of customer contacts and GATE KEEPERS to get the informa-
tion they need. But they can also use managers as a shield. Further-
more, managers may need to step in to “help” developers who may be
afraid to ask not to be bothered by customer contacts, or who are at
risk of not fulfilling their own responsibilities if they are embroiled in
customer matters.

Be warned that if the organization fills this role with someone moti-
vated largely by personal power, the potential damage to the organiza-
tion can be large. If other roles like GATE KEEPER maintain good contact
with other organizations, communications are more likely to remain
open and FIRE WALLS will more likely be called to account for self-
serving actions.

156 Chapter 4 Organization Design Patterns

Sun Tzu notes: “He will win who has military capacity and is not
interfered with by the sovereign.” [SunTzu1989]

Piecemeal Growth Pattern Language 157

4.2.10 GATE KEEPER **

... an organization of developers has formed, in a corporate or social
context scrutinized by peers, funders, customers, and other “out-
siders.”

✥ ✥ ✥

A project must develop good interfaces with the many outsiders
with whom it interacts, or with whom it should interact.

Most software development professionals — particularly program-
mers — are more comfortable interacting with their software and
working with technology than working with people. Yet isolationism
doesn’t work: information flow is important. On the other hand, com-
munication has a cost: communication overhead goes up non-linearly
with the number of external collaborators. That wouldn’t be so bad if
so many interruptions weren’t noise. And an organization should be in
control of its external interactions rather than letting the external inter-
actions control it; that is a hallmark of organizational maturity.

Therefore:
One project member, a PUBLIC CHARACTER (4.2.17) with an engaging

personality, rises to the role of GATE KEEPER. This person dissemi-
nates leading-edge and fringe information from outside the project
to project members, “translating” it into terms relevant to the
project. The GATE KEEPER may also “leak” project information to rele-
vant outsiders.

158 Chapter 4 Organization Design Patterns

✥ ✥ ✥

This role can also manage the development interface to marketing
and to the corporate control structure.

This pattern provides balance for the pattern FIRE WALLS (4.2.9), and
complements the pattern ENGAGE CUSTOMERS (4.2.6) (to the degree Cus-
tomers are still viewed as outsiders).

GATE KEEPER and FIRE WALLS (4.2.9) alone are insufficient to protect
developers in an organization whose culture allows marketing to
drive development schedules. This role can be made explicit in large
projects whose budget and staffing profiles support funding and sup-
port for such a role. But the role can also thrive informally in the mar-
gins.

GATE KEEPER is a pattern that facilitates effective flow of useful infor-
mation; on the other hand, the FIRE WALLS (4.2.9) role restricts flow of
detracting information. As described in FIRE WALLS, a self-serving
person who works their way into this role can do much damage. It is
probably healthier for the organization if this role is filled by someone
who is not part of the management establishment, because it is more
likely that peer support will sustain that person in the role, and it is
more likely that the person will remain responsive to his or her constit-
uencies. But respected managers also make great GATE KEEPERS.

The GATE KEEPER pattern has empirical value. In the discussion of
this pattern at PLoP/94, many of the reviewers noted that creating a
GATE KEEPER role had served their organizations well.

Engineers are lousy communicators as a lot; it’s important to
leverage the communication abilities of an effective communicating
engineer when one is found.

Alexander notes that while it is important to build subcultures in a
society (as we are building a subculture here in the framework of a
company, or of the software industry as a whole), such a subculture
should not be closed (MOSAIC OF SUBCULTURES, [Alexander1977], ff. 42);
also, cp. Alexander’s pattern MAIN GATEWAYS ([Alexander1977], ff. 276).

One might muse that the GATE KEEPER takes an outsider through any
rites of passage necessary for more intimate access to the development
team, by ana logy to Alexander ’ s E N T R A N C E T R A N S I T I O N

([Alexander1977], ff. 548). GATE KEEPER can serve the role of “peda-

Piecemeal Growth Pattern Language 159

gogue” as in Alexander ’ s pa t te rn N E T W O R K O F L E A R N I N G

([Alexander1977], ff. 99).
Joe Maranzano (personal interview, 1992) notes that the same

person often must fill both the MANAGER ROLE and GATE KEEPER roles,
because of the relationships to external people who need the info.

If the GATE KEEPER (4.2.10) function starts taking on an aura of sta-
bility and legitimacy in its own right, it might point to the fact that
there are key business issues that cut across the existing organizations.
Look at FUNCTION OWNER AND COMPONENT OWNER, as well as UPSIDE

DOWN MATRIX MANAGEMENT (5.1.19), as solutions that broaden the GATE

KEEPER function to organizational scope.

160 Chapter 4 Organization Design Patterns

4.2.11 SELF SELECTING TEAM **

Japanese-American volunteers taking oath of induction.

I had applied for a job in a different part of the company. It was forward-
looking work in a small team. The manager was happy to take me, but it
wasn’t until the team had interviewed me that I got the job.

... SIZE THE ORGANIZATION (4.2.2) revealed the need for a small, select
team. How do you staff such a team?

✥ ✥ ✥

The worst team dynamics can be found in appointed teams.
There are no perfect criteria for screening team members. Yet broad

interests (music and poetry for, example) seem to indicate successful
team players. Teams staffed with such individuals are often willing to
take

extraordinary measures to meet project goals.
However, when such interests are ignored, or when team members

are appointed, team dynamics can suffer, greatly diminishing the pro-
ductivity of a team.

Therefore:
Create enthusiastic teams by letting people select their own

teams. Do limited screening on the basis of track record and broader
interests.

Piecemeal Growth Pattern Language 161

Such teams often, but not always, come about of their own volition.
Sometimes, a PATRON ROLE (4.2.15) or other leader can seed the idea of
such a team first as a rallying point for the formation of the team.

✥ ✥ ✥

A SOLO VIRTUOSO (4.2.5) or APPRENTICESHIP (4.2.4) role may self-select
a team. FORM FOLLOWS FUNCTION (5.1.11) can give such a team its struc-
ture. DIVERSE GROUPS (4.2.16) can help in the screening process. Tempo-
rary SELF SELECTING TEAMS can come together to work on PROGRAMMING

EPISODES (4.1.19).
A SKUNK WORKS (4.2.14) is a special kind of SELF SELECTING TEAM that

comes together to share high risk on behalf of the organization.
Self-selection can and should happen at finer granularity than

teams, too; see, for example, DEPLOY ALONG THE GRAIN (5.2.8).
This is different from “empowered teams.” Research has shown

that empowerment leads to communication locales that can become
blindsided to the broader context of surrounding teams and can
unnecessarily narrow the communication channels between teams,
though it may increase it within teams [Yates1995].

One danger to be aware of is that an exclusive group of friends may
build a team from their own numbers, failing to take advantage of
others’ skills. The PATRON ROLE (4.2.15) can monitor these dynamics.

162 Chapter 4 Organization Design Patterns

4.2.12 UNITY OF PURPOSE **

...the team is beginning to come together. Team members may come
from different backgrounds and may bring many different experi-
ences.

✥ ✥ ✥

Many projects have rocky beginnings as people struggle to work
together.

Often, the people have different ideas about what the final product
should be. In fact, the final product may well be a pretty fuzzy con-
cept. Yet the people must have a consistent view of the product if there
is any hope of it getting done.

Each person is different and has different views and opinions. They
come with different backgrounds and experiences. They must learn to
work together.

It is important to get off to a good start — initial impressions, good
or bad, tend to be lasting.

Therefore,
The leader of the project must instill a common vision and pur-

pose in all the members of the team. This “leader” can be a manager,
or the PATRON ROLE (4.2.15), or a customer advocate, but should be
someone who holds the team’s respect and who has influence over the
team’s thinking. This is an overt action; you can’t count on it hap-
pening automatically. The leader should make sure everyone agrees
on the following: What is the product supposed to do? Who are the

Piecemeal Growth Pattern Language 163

customers, and how will it help them? What is the schedule, and
everyone must feel personally committed to the schedule. Who is the
competition?

An important component of this action is to identify strengths of
the team, and use them as rallying points as well. This is related to
identifying the challenges and competition, and uniting to overcome
and surpass them.

As time goes on, the UNITY OF PURPOSE continues to emerge from
ongoing dialogue within the team and with customers and other
stakeholders. While the team leader primes the pump, team dynamics
take over and keep things going.

✥ ✥ ✥

The obvious result is that the team is on the same page, and is
working together, rather than at cross purposes. But a more subtle, but
probably more powerful effect is what it does for the morale of the
team. The best teams tend to feel that they are somehow better than
others — and they work to prove it!

This pattern relates to some deep-seated principles and values of
organizational health. There may be no more important single prop-
erty of an organization than that its members have a shared vision
they are motivated to achieve. Communication—which receives the
bulk of the attention in this book—is just a means to achieving that
shared vision. UNITY OF PURPOSE is a deeper principle even than effec-
tive communication; communications are just a means to UNITY OF

PURPOSE.
Related Patterns:
SHARED CLEAR VISION (10.5.25) ([Bramble2002], p. 80) notes the

importance of a clear vision in creating unity, from the point of view of
writing use cases. SELF SELECTING TEAM (4.2.11) outlines how a team
should come together, but that alone is insufficient to achieve UNITY OF

PURPOSE. LOCK ’EM UP TOGETHER (5.2.5) helps achieve unity, particularly
of architecture. A GATE KEEPER (4.2.10) can help. It can help the team be
more unified on what requirements to ENGAGE CUSTOMERS (4.2.6). This
pattern sets up COMPENSATE SUCCESS (4.2.25): it’s much easier to com-
pensate success when everyone knows what success means. And
while UNITY OF PURPOSE is important to galvanize the team, effective

164 Chapter 4 Organization Design Patterns

team dynamics can come only if every team member is also valued as
an individual: HOLISTIC DIVERSITY (4.2.19) comes to play here.

Piecemeal Growth Pattern Language 165

4.2.13 TEAM PRIDE **

Problems worthy

of attack

prove their worth

by hitting back.

—Piet Hein (1905-1996)

... you are about to embark on yet another challenging project. The
work will be technically difficult, or maybe it’s just that you have a
very short schedule. But at least you have some idea of what you want
to do — the beginning of UNITY OF PURPOSE (4.2.12).

✥ ✥ ✥

166 Chapter 4 Organization Design Patterns

People are most successful when they feel good about their
project, and are confident. But there is a chicken and egg problem
here: Confidence breeds success, but success creates confidence.

Pride perhaps goeth before a fall, but so doth apathy.
Most software projects—sometimes even the fun ones—demand a

lot of work. And the ones that aren’t fun don’t have much of a chance
of seeing a victorious finish unless something pulls its people together
and draws them on towards completion. The hard work feels even
harder because of short schedules. Such projects demand the best
everyone can give, so motivation is often a key to success.

If people consider the work to be “just a job”, the results will reflect
it.

Teams tend to become self-fulfilling prophecies: everyone wants to
work on a winning team, so teams can pick the best people. On the
other hand, teams with low performance tend to be stuck with low
morale. People don’t join such teams willingly; they come in with a
bad attitude.

So how do you bring such a team out of the doldrums? Even better,
how do you give a team a winning attitude right from the start?

Therefore,
“We’re the best.” Instill a sense of elitism into the team. Teams

that have a certain arrogance tend to work hard and accomplish what
is put before them.

Really, one cannot open a team up and pour in a cup of team pride.
Team pride must come from within. But there are many things you can
do to help it come to pass:

• Start with a worthwhile problem. Team members are more likely
to feel elite if they have a challenging problem to tackle. It is
especially good if the problem involves new technology; nothing
excites a bunch of geeks more than working with the newest
stuff.

• Apply SELF SELECTING TEAM (4.2.11). If the team self-selects, they
will go for the best people, in their opinion. So they will believe
they are good.

• Find some important strength of the team, and make that a rally-
ing point: teach the team that they are good in a particular area.
Be sure to find a real strength; people can easily see through a
manufactured strength. The strength should be a technical

Piecemeal Growth Pattern Language 167

strength; while a team might rally around “we party better than
anyone else”, it won’t get the software written.

• Provide some explicit separation from other projects. This can be
physical location (put people together away from others), organi-
zational, or information (share secrets with the group.) It can also
be exemption from some of the rules that everyone else must fol-
low. Just things to make it clear they are set apart from other
groups.

• COMPENSATE SUCCESS (4.2.25).

• The parent company must be doing well enough so that it isn’t a
concern. This author was once on a team that felt it was elite until
the company started doing very poorly. The company woes
diverted our attention and sapped our morale.

• FIRE WALLS (4.2.9). This generates an attitude of “Top teams
shouldn’t be bothered by bureaucratic crap.”

• As with UNITY OF PURPOSE (4.2.12), it helps to unite against a com-
mon enemy.

✥ ✥ ✥

By itself, TEAM PRIDE does not guarantee the success of a project. But
Boehm and others have pointed out that people are the key success
element of any project, and TEAM PRIDE helps nurture and encourage
them. It may even be able to overcome poor overall morale in the com-
pany.

168 Chapter 4 Organization Design Patterns

4.2.14 SKUNK WORKS *

At the end of college, I was interviewed for a job with Lockheed Aircraft
Corporation, including their famed “Skunk Works” division. They had a huge
skunk painted on the wall at the entrance to their work area. Everyone said
the same thing to me: “We can’t tell you what we do, but we sure have fun.” I
ultimately went to work elsewhere, but I occasionally wonder what it would
have been like to work there. I don’t know what work I would be doing, but
I’m sure I would have fun doing it.

...organizations have the freedom to iterate and innovate early in
the life cycle of their major products. As a project matures, the context
becomes rigid, and innovation becomes “forced” and may appear in
the guise of “innovation programs.” While these programs are good at
the divergent thinking component of innovation, they rarely do a good
job of convergent thinking. The result is that novelty, valued for its
own sake, finds its way into mainstream development where it incurs
costs but leads to results that range from indifferent to disaster; “home
runs” are rare. The net result is most often negative.

✥ ✥ ✥

A project must accommodate major innovations but must also
keep an eye on risk. It is too risky to innovate too much in project
development. Some projects have “innovation programs” that value
divergent thinking. The fruits of these efforts often make their way

Piecemeal Growth Pattern Language 169

into development. It is only rarely that an organization does an honest
evaluation of whether such ideas actually added value; the value is
often taken on faith. For example, the latest technologies are always
held to have value in their own right; conversion to OO, or to compo-
nents, or to patterns, is considered “good” without a second thought.
Too often, these new ideas have either indifferent results or in fact
increase cost. They may decrease time to market or decrease cost, but if
they decrease cost at the expense of time to market, then the overall
effect is disastrous if time to market is the highest business priority.
And, in fact, any new idea can both increase time to market and cost in
ways that may never be noticed, in part because of the stock taken in
the buzzword value of the idea.

Yet projects become dead if there is no way to get paradigm shifts
into the project now and then.

Therefore:
Allow a limited-cost SKUNK WORKS to form (as a SELF SELECTING

TEAM (4.2.11)) to develop an idea outside the constraints of project
development, to build confidence in the idea. Give the SKUNK WORKS

organization ownership and credit for the idea.
The organization is sustained by strong FIRE WALLS (4.2.9) that insu-

late it from the scrutiny of upper management and funders; in fact, the
very existence of the SKUNK WORKS should be a secret. The idea is to
keep the project off of management radar screens to foster the kind of
innovation that leads to success before tradition and its constraints, as
embodied in managers, can dampen innovation.

The success of the idea is assessed according to the fruits of the
SKUNK WORKS effort: the ability of the resulting product to attract cus-
tomers willing to invest time, money or people in building the product
or in otherwise furthering the idea. The product must tangibly show
positive results that differentiate it from the mainstream product line;
if it is to thrive over existing external and internal competitors, it must
demonstrate distinguishing market superiority. Directly moving new
ideas into the business units rarely works. As a practical matter, this
evaluation of success and the ensuing steps to act on it happen at
unusual places in the management structure: at a higher level of man-
agement, in an organization that has venture funding, or by using the
leverage that marketing can bring from customer needs statements
and customer commitments. However, the technology’s chance of
long-term success is much higher if the skunkworks team includes

170 Chapter 4 Organization Design Patterns

developers who also have product responsibilities in existing prod-
ucts. They can become seeds for new development teams for the new
products or, if they are very lucky, they can be conduits for introduc-
tion of the new technology into development organizations. Therefore,
this pattern also depends on giving some small set of interested devel-
opers some limited amount of time to work with the SKUNK WORKS

team in a GATE KEEPER (4.2.10) capacity.
The SKUNK WORKS organization itself rarely can take a product all

the way into production. It usually lacks the infrastructure, and some-
times the skill set, to build a solid product. This phenomenon is at the
root of many well-known stories about large companies not being able
to capitalize on their greatest inventions.

If the idea succeeds, the team should reap the benefits of the idea.
The organization subsidizes some of the risk of the team under the
sponsorship of a PATRON ROLE (4.2.15), so that the risk-takers are guar-
anteed some minimum level of security even if they fail. However,
they are not guaranteed the same level of rewards as people who suc-
ceed in lower-risk ventures; see COMPENSATE SUCCESS (4.2.25).

✥ ✥ ✥

This pattern is a bit different from BUILD PROTOTYPES (4.1.7). Proto-
typing is one strategy towards running a SKUNK WORKS; however, a
SKUNK WORKS project may just buy an existing product and integrate it
with existing products or market it differently without doing any pro-
totyping.

This pattern does not integrate with the other scheduling and orga-
nizational structures in the pattern language because it’s a decoupled
effort. The effort should evolve into a product over time and eventu-
ally incorporate patterns like SIZE THE SCHEDULE (4.1.2) and SIZE THE

ORGANIZATION (4.2.2), but only after it’s on its feet and has proven itself.
It is important that the SKUNK WORKS be organizationally separate

from the mainline organization. This allows so-called disruptive tech-
nologies to flourish within the company. (For further information on
disruptive technologies, see works by Clayton Christiansen, professor
at Harvard [Christianson1997].)

Though it’s clear how SKUNK WORKS fit into a large organization, it
can work on a smaller scale in small organizations as well. A couple of
team members can develop innovative ideas “in the margins” as a side

Piecemeal Growth Pattern Language 171

activity. This may be a particularly good outlet for employees whose
skills are high enough that they seek challenges beyond those offered
by day-to-day business.

172 Chapter 4 Organization Design Patterns

4.2.15 PATRON ROLE **

...the development organization has come to the point where DEVEL-

OPER CONTROLS PROCESS (4.1.17), and now additional roles are being
defined.

✥ ✥ ✥

It is important to give a project continuity. But centralized control
can be a drag. And anarchy can be a worse drag. However, most soci-
eties need a king/parent figure and an organization needs a single,
ultimate decision-maker. The time to make a decision should be less
than the time it takes to implement it.

Therefore:
Give the project access to a visible, high-level manager, who

champions the cause of the project. The patron can be the final arbiter
for project decisions, which provides a driving force for the organiza-
tion to make decisions quickly. The patron is accountable to remove
project-level barriers that hinder progress, and is responsible for the
organization’s “morale” (sense of well-being).

✥ ✥ ✥

Piecemeal Growth Pattern Language 173

Having a patron gives the organization a sense of being, and a focus
for later process and organizational changes. Other roles can be
defined in terms of the patron’s role. The manager role is not to be a
totally centralized control, but rather a champion. That is, the scope of
the manager ’s influence is largely outside those developing the
product itself, but includes those whose cooperation is necessary for
the success of the product (support organizations, funders, test organi-
zations, etc.). This role also serves as a patron or sponsor; the person is
often a corporate visionary.

We have observed this in Philippe Kahn in QPW; in Ravi Sethi and
others in early C++ efforts in AT&T; for a manager in a high-produc-
tivity Network Systems project at AT&T; and in another multi-location
AT&T project.

This relates to the pattern FIRE WALLS (4.2.9) which in turn relates to
the pattern GATE KEEPER (4.2.10). Patrons are central to the success of
SKUNK WORKS (4.2.14). They can help arbitrate the membership of SELF

SELECTING TEAMS (4.2.11) to guard against exclusivity.
Block talks about the importance of influencing forces over which

the project has no direct control [Block1983].
In a Joint Application Development (JAD [Kendall2002], pp. 132-

135) session, one of the key roles is a “tie breaker” who is usually a
manager who appears only occasionally at the meetings.

The etymology of Patron is instructive:

 The term pattern comes from Middle English patron (and the
more ancient French patron) which still means both ‘patron’
and ‘pattern.’ In the 16th century, patron, with a shifted
accent, evidently began to be pronounced patrn, and spelt
patarne, paterne, pattern. By 1700 the original form ceased to
be used of things, and patron and pattern became differenti-
ated in form and sense.

 1 a ‘The original proposed to imitation; the archetype; that
which is to be copied; an exemplar’ (J.); an example or model
deserving imitation; an example or model of a particular
excellence. aC. 1369 CHAUCER Dethe Blaunche 910 Truely
she Was her chefe patron of beaute, And chefe ensample of al
her werke.

174 Chapter 4 Organization Design Patterns

From a dictionary of medieval terms, related by Aamod Sane at
University of Illinois.

Piecemeal Growth Pattern Language 175

4.2.16 DIVERSE GROUPS *

... a development team is coming together, and Birds of a Feather
tend to Flock Together.

✥ ✥ ✥

Homogeneous teams that comprise too many of the same kind of
people easily fall into groupthink-like dysfunction.

Design is the act of making change to the world. In software, it usu-
ally means changing the literature of an author who came before and
encoded a solution in a programming language. That author usually
remains as part of the community that retains an interest in the code
(see CODE OWNERSHIP (5.2.13), and the combination of CONWAY’S LAW

(5.1.7) and ORGANIZATION FOLLOWS MARKET (5.1.9) (which implies that
architecture follows market).

Change is a process that has several phases, starting with compla-
cency, which is upset by an opportunity or realization of an oversight.
There is a struggle to identify solutions, the process of realizing the
solution, culminating in deployment.

Different people are more comfortable with some parts of this pro-
cess than with others. Some people are good at identifying problems,
others with the innovative processes of identifying solutions. Yet
others are good at focusing on implementation. The variance in com-
fort comes from variance in experience and individual background
and temperament. This is true even when programmers in their role as

176 Chapter 4 Organization Design Patterns

designers, making a change, are the same programmers who were the
original authors of the code.

Therefore:
Consider temperaments and diverse experience backgrounds

when assembling a team. This diversity sometimes lines up with
social classifications like age and gender, but more generally can be
assessed on a personal level.

✥ ✥ ✥

One source of variation is the variety of domains in the application
itself; see DOMAIN EXPERTISE IN ROLES (4.2.22). There is an open question
whether a SELF SELECTING TEAM (4.2.11) prejudices a homogeneous
group outcome; in any case, DIVERSE GROUPS (4.2.16) can be a good
audit of a SELF SELECTING TEAM (4.2.11).

Another source of variation is the variation in roles. In a vestigial
pattern DIVERSITY OF MEMBERSHIP, the pattern recommends building a
requirements teams from diverse roles:

 The team should include a developer, a user or user’s repre-
sentative, and a system tester (at least one of each). These
individuals will work through the issues surrounding prod-
uct requirements, often using small prototypes to identify the
requirements and determine testing criteria. The user of pro-
totypes can be closely tied to using use cases or similar usage
scenarios as analysis and validation tools.

 One area in which this approach is especially useful is in the
specification and design of the user interface. The developer
creates mock-ups of the user interface, and the user and sys-
tem tester examine them. In this way, this small subteam can
go through many different designs of the user interface and
select the best one.

See more about this kind of diversity in HOLISTIC DIVERSITY (4.2.19).
Sometimes teams form around mutual interest and talent in a

domain, as in SUBSYSTEM BY SKILL (4.2.23), and diversity falls along other
dimensions of interest.

Yet another kind of diversity is ethnic diversity. The oft-touted
value of ethnic diversity is that it brings together people who can think
about problems differently, from much different perspectives, which

Piecemeal Growth Pattern Language 177

improves the chance of finding a good solution. But there are other
subtle advantages. In a large multinational corporation, we found that
each department had a few members of French national origin. The
French all ate lunch together, which provided a natural path of com-
munication flow between departments.

One kind of person you want in the mix is a PUBLIC CHARACTER

(4.2.17).
However, one must guard against stereotyping people; e.g., using

personality instruments or other information to limit the roles of
people in organizations. See [KerthCoplienWeinberg1998].

See the related pattern BALANCED TEAM (10.5.5) in [Bramble2002].

178 Chapter 4 Organization Design Patterns

4.2.17 PUBLIC CHARACTER *

...an organization structure is emerging, both formally and infor-

mally, and frequent contact at the workplace cultivates friendships as
well as a social context that begs for support of common social graces
and functioning.

✥ ✥ ✥

An organization is a social entity whose smooth functioning
depends on more than professional relationships.

Much of what defines “culture” is the widely known but rarely
spoken myths, tidbits, history, and interpretations of these stories.
However, most professional organizations are built around the
exchange of more structured information in blatantly public forums:
memoranda, meetings, explicit policies, and executive pronounce-
ments.

Yet the daily small pieces of information, details, and deep insights
are the glue that hold the organization and its systems together. Fur-
thermore, this information might include insights on shortcuts and
other expediencies that serve the culture and its value system while
falling short of the “letter of the law.” The formal organization rarely
has any organ that legitimizes the exchange of such information, yet
such information is crucial not only to the smooth operation of the
enterprise, but to its very survival.

Such information includes information outside of the primary busi-
ness goals, but which is nonetheless important to the support of the

Piecemeal Growth Pattern Language 179

work environment: where to find a good place for lunch, how to find
the boss when she’s not in the office, who knows how to fix the jam in
the copy machine. It also includes meta-knowledge, how to find out
where to find out certain kinds of information: who would know how
to find answers to questions about the web server machine? who
would know where to direct questions about personnel issues.

Therefore:
One or more people serve in the role as PUBLIC CHARACTER to help

social processes both behind the scenes and through social events.
There may be socio-technological role combinations. For example,

an Architect role might spend time passing information between
development coordinators who otherwise wouldn’t take the initiative
to talk with each other [CoplienDevos2000]. We wrote up this pattern
as “Shmoozing Architect” at OT ’99.

✥ ✥ ✥

MATRON ROLE (4.2.18) and GATE KEEPER (4.2.10) are examples of
PUBLIC CHARACTERS.

From Jane Jacobs’s The Death and Life of Great American Cities,
[Jacobs1961]:

 The social structure of sidewalk life hangs partly on what can
be called self-appointed public characters. A PUBLIC CHARAC-

TER is anyone who is in frequent contact with a wide circle of
people and who is sufficiently interested to make himself a
PUBLIC CHARACTER. ... His main qualification is that he is pub-
lic, that he talks to lots of different people. In this way, news
travels that is of sidewalk interest.

Jacobs goes on to say that, once the neighborhood recognizes a
PUBLIC CHARACTER, people consciously tell him gossip (meeting dates,
lost items) that they want propagated. A PUBLIC CHARACTER is a sort of
living bulletin-board, with highly advanced search capabilities.

One finds a similar function in the Maven role in The Tipping Point
[Gladwell2000].

In our experience, large software projects usually have at least one
PUBLIC CHARACTER, and s/he is critical to project success. When you
want to know who understands the persistence layer, you don’t ask
the architect; he’s too busy. You ask the PUBLIC CHARACTER, who won’t

180 Chapter 4 Organization Design Patterns

know beans about persistence, but will know that Mary knows a lot
about databases, and that she will either understand the persistence
layer or know who does.

One interesting form of PUBLIC CHARACTER is the Jester or WISE FOOL

(4.2.21). In medieval courts, the Jester was a person who could make
fun of the king with impunity. The king was not obliged to follow the
jester’s insights; rather, these insights provided stimulus for thought.
A jester PUBLIC CHARACTER can incite the organization to introspection
and care; again, part of their qualification is that they are public. Such
a person might be instrumental in facilitating workshops using cre-
ative techniques, visual meeting, system envisioning, and games—as
well as reporting on user fears and expectations and being a change
agent. This is also reminiscent of the “laughing uncle” configuration
Bateson talks about in his writings of Pacific cultures [Bateson1958].
This uncle advised a child’s father of feelings that the child might not
convey to the father directly.

Project members are often penalized for being PUBLIC CHARACTERS —
“Oh, Mary never gets anything done, she’s always gossiping.” PUBLIC

CHARACTERS are a vital part of keeping large projects connected and
successful. In a number of cases, we have seen that the disappearance
of a single public character caused a major turn in morale and culture
in the organization, to a much greater degree than the loss of a key technical
person might do. The role is essentially informal; a project manager can’t
successfully assign somebody to this role. Rather, the role is something
that is recognized and taken advantage of when already present. The
recognition can help sustain the role.

If you see a team member “always gossiping”, consider whether the
team member has become a PUBLIC CHARACTER. Ask him or her a couple
of team-related questions (“Where can I find out more about the gar-
bage collection? Who understands the compiler tools”?) If he or she
can handle these, as well as other questions (“Where’s the best place to
have lunch?” “How can I find Phil if he isn’t at his desk?” “And what
about... Naomi?”), you’ve found your PUBLIC CHARACTER.

It is instructive to compare the PUBLIC CHARACTER, MATRON ROLE

(4.2.18), and GATE KEEPER (4.2.10); the PUBLIC CHARACTER is related to,
but different from, both. The MATRON ROLE is concerned with the nur-
turing of the organization, and is inward-focused. On the other hand,
the GATE KEEPER is outward focused; always looking forward for the
next great direction. The PUBLIC CHARACTER is somewhat in the middle

Piecemeal Growth Pattern Language 181

of these two, but separate from each. An ideal project has each of these
roles, filled by different people.

A good place for the PUBLIC CHARACTER to hang out is at THE WATER

COOLER (5.1.20).

182 Chapter 4 Organization Design Patterns

4.2.18 MATRON ROLE *

One of the members of my group was a woman named Anita. She was cer-
tainly technically competent, but I remember her more for the non-technical
things she did for the group. For birthdays, Anita was almost always the one
who brought cakes, pies, or other treats to celebrate. Because she liked to cook,
many treats were homemade; in fact, she occasionally brought something just
because she had tried out a new recipe. She did other things for the group too.
She was often on picnic committees, and helped arrange “take our daughter to
work” days.

Anita eventually moved on to another group, and our group has since been
fragmented into other groups. But we still remember ourselves as a cohesive
team, and Anita is a major part of the team.

...once a team is established, it needs regular care and feeding to
maintain the unity of the team.

✥ ✥ ✥

Teams do not survive simply on the work they do. Some social
activities are necessary to keep the team going on the technical
work.

Piecemeal Growth Pattern Language 183

“All work and no play makes Jack a dull boy.” This is also true of
teams; unless teams play together some, they have trouble main-
taining healthy interpersonal relationships, even in work situations.

But many people are not particularly adept at arranging social func-
tions for their teams. This is particularly true among software organi-
zations, which are dominated by introverts. In fact, some people are
not even sufficiently aware of such things to be of any use in planning
them.

Therefore:
Make sure that the team contains a Matron who will do the social

and interpersonal things necessary to keep the team unified.
The Matron keeps track of birthdays and other occasions for cele-

bration. The Matron is often willing to plan activities, and usually
finds himself/herself on party committees.

Note that you can’t force this role on someone; a person is either
naturally a Matron or not. Therefore, you need to find one rather than
manufacture one.

✥ ✥ ✥

With a MATRON ROLE, the team is much more likely to be cohesive
through thick and thin.

Don Olson’s PEACE MAKER (10.5.21) pattern ([Olson1998a], p. 168) is
similar ([Rising2000], p. 131):

 A peacemaker is a placeholder in an organization who tries to
calm and hold things together until a leader can be found or a
reorganization is complete. The peacemaker should be some-
one who is well liked but who is not necessarily technically
proficient. Usually this individual has many years with the
company, knows the political ropes, and can buy time for a
team as well as the team’s management.

MATRON ROLE is a broadening of PEACE MAKER.
The MATRON ROLE is usually a PUBLIC CHARACTER (4.2.17).

184 Chapter 4 Organization Design Patterns

4.2.19 HOLISTIC DIVERSITY *

Even the manager pulls his weight in this small team cooking up some new
concoction.

...during the course of a project, groups of people begin to spe-
cialize. Teams are structured by specialty or by phase deliverables.
This leads to bureaucratic processes, lack of inter-team communica-
tion, and a “throw it over the wall” style of development. As a result,
teams don’t trust each other, and product quality and efficiency suffer.

✥ ✥ ✥

Development of a subsystem needs many skills, but people spe-
cialize.

Project development demands fast feedback, with fast, rich commu-
nications, on decisions. Feedback is fastest and within one person’s
head, then slows with distance (room / floor / building/ city) and
medium of expression (interactive spoken face-to-face / video /
written).

Multiple skills are needed to develop a piece of the system, particu-
larly the user functions; it is hard to find people with those multiple
specialties. In addition, people tend to specialize, and even protect
their own unique skills against others; it’s a natural self-preservation
mechanism. This leads to teams that tend to specialize.

So a project requires multiple skills, that tend to reside in separate
teams. But this is not optimal. People within a team are more likely to

Piecemeal Growth Pattern Language 185

help each other. People in different teams blame each other. Communi-
cation across teams tends to be inefficient and incomplete.

The obvious approach is to create one giant team for the project; this
should solve the problem, right? But if the team is too large to put in
one room, it tends to fragment naturally — along lines of specializa-
tion.

Therefore:
For each function or set of functions to be delivered, create a

small team (2-5 people) which is responsible for delivering that
function. That team can be given or can evolve specialists in require-
ments gathering, user interface design, technical design and pro-
gramming, databases and testing. Evaluate the team as a single unit,
so there is no benefit to hiding within a specialty. Arrange the team
size and location so they can communicate directly with each other,
instead of by writing. The team has no internal documentation
requirements, although they do have documentation requirements
responsibility to the rest of the project. However they choose to split
up their work is their choice.

Note that this leads to organizing teams along architectural lines,
namely CONWAY’S LAW (5.1.7). This means that it is necessary to coordi-
nate the teams to get consistency of deliverables (requirements docu-
ment, user interface design, software architecture, etc.) across teams.

Beware of making teams too small. If the team size is one person,
that person will have difficulty mastering all the specialties, and
changing mental context to perform well in the different specialties
(meetings take quite a different temperament and more concentration
than designing OO frameworks). (See SOLO VIRTUOSO (4.2.5)) On the
other hand, if the team size is large, the communications will lag.

See also OWNER PER DELIVERABLE (10.5.19), that ensures that some-
body owns each function, class, and required deliverable.

This is similar to DIVERSITY OF MEMBERSHIP [Harrison1996], to ensure
that requirements gathering teams include users.

Jim McCarthy [McCarthy1995] wrote Feature Teams as a best prac-
tice, with much the same intent.

✥ ✥ ✥

Try to create one person with several bodies. It is hard to find single
individuals who can master the needed specialties and change work

186 Chapter 4 Organization Design Patterns

contexts as needed. Creating a small, co-located, mixed-specialty team
with no written deliverables between them increases the communica-
tion bandwidth between people, while letting the individuals develop
their strengths. Rewarding them as a team keeps them motivated to
help each other deliver, rather than hide behind their specialty.

There is a tight connection between the specialties. A designer or
programmer may discover something that reveals that the require-
ments are more difficult that thought. The analyst may have a flawed
view of the business. The final code must be a valid business model.
The suggested user interface may be impractical to implement, or per-
haps the user interface designer knows best how to implement it. Put-
ting the people on the same team speeds the feedback from
programming back up the chain to requirements. Separating those
same people and putting written deliverables between them slows
that feedback.

Alistair Cockburn tells of experiences with a project:

 Project Winifred was initially structured by function, which
produced the trouble that many people were altering one
class at any moment in time (see Function / Component
Owners).

 It was next structured by phase deliverables, requirements/
analysts separated from designers and programmers. The
analysts produced ineffective models, communications
between the people became sluggish, the analysts and pro-
grammers looked down on each other, and the analysts’
designs did not match the final system design (the program-
mers ended up designing it as they needed to make it work).

 There was a very brief period of “everyone does everything”.
It did not last long because the mental load was too great on
each person trying to do everything, and people rapidly fell
into the specialties they could handle.

 The fourth, and successful arrangement, was HOLISTIC DIVER-

SITY (4.2.19). Those who could do the requirements gathering
and analysis went to meetings, interviewed people, and
investigated interfaces and options. They communicated the
results rapidly, face-to-face, with the people who navigated
the class library and designed classes and frameworks. A

Piecemeal Growth Pattern Language 187

function team consisted of a combined requirements gatherer
/ analyst with two to four programmer designers.

 The team used JUST DO IT to move rapidly through the design.
They had no internal deliverables, but created the deliver-
ables as required by the project for interteam communication
and maintenance. Most of the communication within the
team was verbal. They talked several times a day, either in
one-hour mutual-education sessions, or in small, several
minute interchanges to mention a recent discovery. This
amount of communication could not have been handled
through formal deliverables.

See also DIVERSE GROUPS (4.2.16).
This pattern was originally written by Alistair Cockburn

[Cockburn1996].

188 Chapter 4 Organization Design Patterns

4.2.20 LEGEND ROLE *

Baseball legends George Sisler, Babe Ruth, and Ty Cobb

The hero Westley had returned in the guise of the Dread Pirate Roberts. He
explained to Princess Buttercup that he had been trained by the previous
Dread Pirate Roberts: "One day Roberts pulled me aside. I’m not the Dread
Pirate Roberts, said he. And the man before me wasn’t either. Then he
explained that the name was important. You see, no one would surrender to
the Dread Pirate Westley." (From The Princess Bride, [MGM1987])

...over time in a project, certain people really excel in their jobs.
They become real masters, and take on many important jobs in the
project.

✥ ✥ ✥

Certain individuals take on so many jobs, and become so impor-
tant to the project that when they leave, the project is in more than
just serious trouble.

These individuals are generally the elder statesmen and women in
the project. They have been around longer than most anybody else,
and their depth of experience is invaluable. But because of their age,
they are the ones most likely to retire.

Piecemeal Growth Pattern Language 189

Not all people are like this. These are the ones who tend to pick up
extra work and the associated expertise. So their absence is felt all the
more. In fact, it seems like it would take two or more people to fill their
shoes.

Therefore:
Name a role after the person, and make it an honor to fill that role.

People will want to emulate the legendary person, and do just as
good a job.

In many cases, the role named after the person will naturally
emerge. Then it is a matter of formalizing it a bit, and filling it as the
legend retires.

There must be training provided for the person filling the role. Ide-
ally, it is offered by the original legend, as part of turning over the role
to the new person. This is as important as naming the role itself.

A software company we analyzed had a role named “Simon”. They
told us that Simon had been a key player in the project, and had done
seemingly everything. They kept the name, and the jobs he had done.

Some corporate cultures are built around archetypes, like electric
power companies built around the heroic acts of linemen working
during threatening weather.

Emulation can be encouraged with an award. This author wrote
some patterns of shepherding. Later, the Neil Harrison Shepherding
Award was established, which encourages people to be better shep-
herds.

✥ ✥ ✥

This helps maintain project knowledge and expertise over time,
helping to keep a MODERATE TRUCK NUMBER (4.2.24). Note that there is a
useful lifetime of legend roles; they will fade over time, which is gen-
erally all right.

There is a subtle but important difference between having a legend
role and having the actual legendary person on staff. CULT OF PERSON-

ALITY from Don Olson ([Olson1998a], 154-155) offers this advice:

 A tight schedule, poorly defined requirements, uneven distri-
bution of skills among the development team, and new tech-
nologies has put a project in jeopardy. To save the day, bring
in a legendary figure among the developers to take over the

190 Chapter 4 Organization Design Patterns

lead. Team members who are not impressed may need
removal or reeducation.

LEGEND ROLE looks longer term and intends to be an inspirational
rather than remedial pattern. CULT OF PERSONALITY can work if the leg-
endary figure offers true leadership and develops growth in the team;
but then, it is no longer a “personality cult” in the vernacular sense. It
is dangerous for a team to develop too much dependency on a single
power figure, because the team has difficulty adjusting to a new com-
munication structure, authority and control structure, and culture,
when the legendary figure is gone. Also, the LEGEND ROLE could
become a bottleneck under these situations; see DISTRIBUTE WORK

EVENLY (5.1.13).
This in fact was noted by Alistair Cockburn as being a problem in

the XP-based [Beck1999] C3 project, where he characterizes XP as a
high-discipline methodology and likens it to Humphrey’s Personal
Software Process. [Humphrey1995] This commentary comes from the
WIKI WIKI Web (http://c2.com/cgi/wiki?HighDisciplineMethod-
ology , 27 May 2001):

 I consider XP a HIGH DISCIPLINE METHODOLOGY, one in which
the people will actually fall away from the practices if they
don’t have some particular mechanism in place to keep them
practicing. Ron [Jeffries] is that mechanism at the moment.
Should (when) Ron leave, then unless he is replaced in his
role, I quite expect to see the team not following the practices
properly in less than 6 months.

Ron did leave the project and we find on the CTHREE PROJECT TERMI-

NATED page:

 ... It wasn’t “to live” it was to stop following all of the practices.

• “unless [the coach] is replaced in his role, I quite expect
to see the team not following the practices properly in
less than 6 months. I think that is a fair test of a HIGH

DISCIPLINE METHODOLOGY. — ALISTAIR COCKBURN”

• “I’m no longer on C3 full time. Alistair’s six-month
clock has started. — RON JEFFRIES 6/25/99”

Piecemeal Growth Pattern Language 191

• “As of the first of February, 2000, the C3 project has
been terminated without a successful launch of the next
phase.”

The coach in fact does figure strongly in the XP organization
([Beck1999], 145-146). The coach is “responsible for the process as a
whole” and sometimes must intervene to the point of “rudeness.”
However, XP as published recognizes both the danger and difficulty of
interventions that are overly direct and immediate. But our study of
several projects claiming to be using XP practices found strong ele-
ments of a personality cult. In one case, in an XP project in an insur-
ance company, the team leader became more assertively involved
when the project got behind schedule (the project dutifully and effec-
tively uses the XP planning game).

If instead the legendary figure consults with the team, with the aim
of helping the team members to grow, this can be an effective
approach. See [Weinberg1986] for ideas.

192 Chapter 4 Organization Design Patterns

4.2.21 WISE FOOL *

 I marvel what kin thou and thy daughters are: they’ll have me
whipped for speaking true, thou’lt have me whipped for lying; and
sometimes I am whipped for holding my peace.

 — The fool, King Lear, act 1, scene 3.

...a team has been established and is functioning. It is faced with a
continual barrage of technical and non-technical challenges, about
which it must make decisions.

✥ ✥ ✥

Interpersonal dynamics often discourage good ideas from being
aired, and bad ideas from being weeded out.

There are two dynamics at work here, depending on the persons
involved. Authority figures are often unchallenged: you might be
reluctant to challenge your boss because of the perceived danger to

Piecemeal Growth Pattern Language 193

your employment. People are also loathe to challenge the word of a
respected elder in the organization for slightly different reasons. But
this tends to keep allow bad ideas promoted by authority figures to
promulgate without sufficient challenge and discussion.

The other dynamic is the group itself. It is difficult to stand up in the
face of the entire group to challenge an idea. These days, such trouble-
makers are rarely tarred and feathered, but they might be ostracized,
or labeled “not a team player.”

Yet somebody needs to be the catalyst to cause occasional group
introspection. Someone needs to shout the warning when the group
heads in the wrong direction.

Therefore:
Nurture the role of the wise fool, who can raise uncomfortable

truths with impunity.
The WISE FOOL asks the questions that may be unpopular or seem

politically risky, but they make the project pause and reexamine deci-
sions. Often, many people want to ask the same question, but do not
dare. Wise fools have a mix of insight, candor, and foolhardiness.

The Wise Fool is legendary. The most famous Wise Fool may well be
found in the story of the Emperor’s New Clothes. It was a small boy
who had the courage to point out the obvious.

The WISE FOOL is much like a PUBLIC CHARACTER (4.2.17). But it differs
in that the PUBLIC CHARACTER makes the group function smoothly, while
the WISE FOOL focuses mainly on the outputs of the group—mainly
technical. But like the PUBLIC CHARACTER, the WISE FOOL is not desig-
nated, but emerges. A WISE FOOL is usually highly respected techni-
cally, and may been be (or become) a LEGEND ROLE (4.2.20), but is
known for lack of tact. They usually eschew managerial opportunities,
and may even show disdain for management. An acquaintance of the
author was once honored with the words, “In the face of management
opposition, he charged ahead and did what was right.”

Some organizations recognize WISE FOOLS. One organization we
studied included a role called “Agitator”.

A WISE FOOL needs to recognize the difference between asking legit-
imate questions and whining. Questioning things that one has no con-
trol over is often construed as whining. With too many such questions,
the court of public opinion can demote a WISE FOOL to a Whiner rather
quickly.

194 Chapter 4 Organization Design Patterns

✥ ✥ ✥

Organizations who have the good fortune to have a WISE FOOL in
their midst are likely to make fewer wrong decisions than other orga-
nizations. However, the WISE FOOL may not receive the recognition
they deserve; they may be perceived as troublemakers. This is slightly
reminiscent of SACRIFICE ONE PERSON (4.1.22), in a strange sort of way.
Managers should be sensitive to this, and make sure that WISE FOOLS

are supported.
Note that the key here is that the organization itself must be willing

to accept criticism from within. There will always be people around
willing to fill this role, but only the healthy organizations benefit from
their insights. In fact, it often doesn’t come naturally even to healthy
organizations. Some organizations within Siemens hold workshops to
help create a culture where people can speak out [Ackermann2002].
Unhealthy organizations may ignore, or even worse, actively suppress
criticism. This creates a climate of fear of speaking out, which leads to
widespread cynicism. In such cases, a few WISE FOOLS will refuse to be
silenced, and become whistleblowers. When they report illegal con-
duct to authorities, they may even need laws to protect their actions.

Piecemeal Growth Pattern Language 195

4.2.22 DOMAIN EXPERTISE IN ROLES **

Naval air base, Corpus Christi, Texas. A top notch mechanic, Mary Josephine
Farley expertly rebuilds airplane engines. Although she’s only twenty years

old she has a private pilot’s license and has made several cross country flights.

...you know the key atomic process roles (FORM FOLLOWS FUNCTION

(5.1.11)) including a characterization of the Developer role.

✥ ✥ ✥

Matching staff with roles is one of the hardest challenges of a
growing and dynamic organization. All roles must be staffed, and, all
roles must be staffed with qualified individuals. Just as in a play, sev-
eral actors may be assigned to a single role, and any given actor may
play several roles.

You’d like to use domain-inspecific qualification criteria like college
grades or years of experience to qualify people for jobs. Such an
approach gives the project flexibility in staff allocation; it helps it avoid
being overly dependent on individual skill sets and experience. In
short, the hope that such criteria might work provides project man-
agers a basis for keeping the project from becoming overly dependent
on certain individuals; such individuals may leave or may hold the
organization hostage for higher salaries or to see their own policies
implemented unilaterally. Yet successful projects tend to be staffed
with people who have already worked on successful projects.

196 Chapter 4 Organization Design Patterns

Spreading expertise across roles complicates communication pat-
terns. It makes it difficult for a developer or other project member to
know who to turn to for answers to domain-specific requirements and
design questions.

Therefore:
Hire domain experts with proven track records, and staff the

project around the expertise emodied in the roles. Teams and groups
will tend to form around areas of common domain interest and focus.
Any given actor may fill several roles. In many cases, multiple actors
can fill a given role.

Domain training is more important than process training.
Local gurus are good, in all areas from application expertise to

expertise in methods and language.

✥ ✥ ✥

This is a tool that helps assure that roles can be successfully carried
out. It also helps make roles autonomous. Empirically, highly produc-
tive projects (e.g., QPW) hire deeply specialized experts. OLD PEOPLE

EVERYWHERE ([Alexander1977], ff. 215), talks about the need of the
young to interact with the old. The same deep rationale and many of
the same forces of Alexander’s pattern also apply here.

This is also a systems principle that one finds in software develop-
ment; see http://gee.cs.oswego.edu/dl/rp/roles.html .

A seasoned manager writes, “The most poorly staffed roles are
System Engineering and System Test. We hire rookies and make them
System Engineers. (In Japan, only the most experienced person inter-
acts with customers.) We staff System Test with ‘leftovers’; after we
have staffed the important jobs of architecture, design, and devel-
oper.”

Other roles (ARCHITECT CONTROLS PRODUCT (5.2.3), DEVELOPER CON-

TROLS PROCESS (4.1.17), MERCENARY ANALYST (4.1.24), and others) are pre-
scribed by subsequent patterns.

If expertise becomes too narrow, the organization is at risk of losing
key expertise if a single person leaves, is promoted, etc. Temper this
pattern with MODERATE TRUCK NUMBER (4.2.24).

Domain experts can naturally come together in PROGRAMMING EPI-

SODES (4.1.19). The pattern APPRENTICESHIP (4.2.4) helps maintain this

Piecemeal Growth Pattern Language 197

pattern in the long term. DIVERSE GROUPS (4.2.16) is, in some sense, a
more general version of this pattern.

See also SUBSYSTEM BY SKILL (4.2.23) and UPSIDE DOWN MATRIX MAN-

AGEMENT (5.1.19).

198 Chapter 4 Organization Design Patterns

4.2.23 SUBSYSTEM BY SKILL *

...an organization of developers exists. They have different skills
and specialties, but there is not yet any structure in the organization,
nor in the system architecture, that reflects such specialization or
interest.

✥ ✥ ✥

Birds of a feather flock together. By CONWAY’S LAW (5.1.7), you want
the architecture and organization to match each other. Yet there are
many possible principles of organizing both the software and the orga-
nization that builds it. There is one structure that relates to domain
knowledge and the system architecture; there is also a business struc-
ture, and a geographic structure as found in ORGANIZATION FOLLOWS

LOCATION (5.1.8). But in ORGANIZATION FOLLOWS LOCATION, each location
is largely autonomous and has its own organizational decisions to
make, so the issue remains of how to modularize the organizational
structure locally. ORGANIZATION FOLLOWS LOCATION conveys global con-
straints that relate to business priorities and concerns; CONWAY’S LAW

offers guidance in the large, but doesn’t extend as well to the fine
structure at the group level. And that structure—the primary low-level
structure of the organization—relates to the subsystem structure. So:
how do we help CONWAY’S LAW with a set of partitioning criteria?

Therefore:
Separate subsystems by staff skills and skill requirements.

Piecemeal Growth Pattern Language 199

✥ ✥ ✥

This is a refinement of the pattern CONWAY’S LAW; it tells what crite-
rion by which the structures of the organization should be aligned
with those of the product.

People skills tend to be relatively stable over time, so this organiza-
tion protects against shifts in staff.

The variation protected against here is the variation in staff skills
over time. On a small enough project, the few people may have mul-
tiple skills that enable them to mix UI design with infrastructure
design with domain design. Unhappily, their successors may not,
which makes system evolution more difficult and costly.

On larger projects, the many people are more likely to have single
skills and specialties. If their code is intermingled, two expensive diffi-
culties accrue: getting the different people to learn to understand each
other and come to common decisions, and the same system evolution
difficulty as with the smaller system.

Separating their specialties into different subsystems lets them
work with their special issues in their special vocabulary, lets their suc-
cessors see those issues in isolation, and makes the project easier to
staff, since the staff need not be so multidisciplinary. Once the sub-
systems are identified, various forms of teaming may be used to
develop them.

The pattern of course should be applied in moderation; too many
subsystems means complex, slow software. And too fine of an organi-
zation structure is unwieldy and cumbersome.

Note the relationship to DOMAIN EXPERTISE IN ROLES (4.2.22). This pat-
tern removes one degree of freedom in DIVERSE GROUPS (4.2.16).

Related subsystems may be connected, while still providing a
degree of independence between teams by using STANDARDS LINKING

LOCATIONS (5.2.12) from ORGANIZATIONAL MULTIPLEXING PATTERN LAN-

GUAGE.
UPSIDE DOWN MATRIX MANAGEMENT (5.1.19) is a way of handling SUB-

SYSTEM BY SKILL.
Discussion
Alistair Cockburn offers the following analysis of the relationship

between HOLISTIC DIVERSITY (4.2.19) and SUBSYSTEM BY SKILL (4.2.23):

200 Chapter 4 Organization Design Patterns

 HOLISTIC DIVERSITY is aimed at streamlining communication:
“For each function or set of functions to be delivered, create a
small team... evolve specialists in requirements gathering, UI
design, technical design, ...” “Evaluate the team as a single
unit. Arrange the team size and location so they can commu-
nicate directly.” “You will have to coordinate the teams to get
the ... UI design, software architecture and so on consistent
across teams.”

 SUBSYSTEM BY SKILL is aimed at protecting the system against
“variation in staff skills over time” — I thought of it primarily
as a software design pattern, rather than a project manage-
ment pattern, which is why I hadn’t thought of them
together. “Many people are more likely to have single skills
and specialties... Separate their specialties into different sub-
systems”

 What happens if you put the two together? You get the team
structuring I described in my book ([Cockburn1998], p. 88)
for a 40-person project: function teams (using HOLISTIC DIVER-

SITY), infrastructure teams, ARCHITECTURE TEAM, and technol-
ogy teams. The UI gets its own subsystem, the domain model
gets it own subsystem, the database gets its own subsystem...
and now you have to use HOLISTIC DIVERSITY to get all the parts
put back together to make a working system. Expertise from
each specialty on each team (some team members bring more
than one specialty with them). And you also have to run a UI
group across function teams to get consistent UIs; a persis-
tence and a domain group similarly to get consistency there,
too. The software ends up partitioned by skill. So you work
extra hard to see that the teams don’t get similarly segre-
gated. This is the stuff that my book covers, in its tiny way.

 What happens if you don’t put the two together? If you don’t
do SUBSYSTEM BY SKILL, then you get UI, domain, persistence,
networking code all mixed together. Yuck, but that’s well
known. Why have we long separated these things? Because
they change independently or because they capitalize on dif-
ferent specialties?, or we have those specialties because they
change independently or they change independently because
we have those specialties?

Piecemeal Growth Pattern Language 201

 I don’t know and won’t guess.

 What if you don’t do HOLISTIC DIVERSITY? Then you get a room
full of UI designers, another room full of domain modelers,
another room full of persistence designers / db designers,
etc. I think we have all seen enough of this and its negative
consequences. I am, by the way, currently in an organization
separated this way, and trying to get the people, who sit only
steps apart, to talk to each other on microteams.

 So I think we need both: a project management pattern and a
software architecture pattern, that work together.

202 Chapter 4 Organization Design Patterns

4.2.24 MODERATE TRUCK NUMBER

In an insurance company we studied, the project scheduled some of their
release dates around the vacation times of a small number of key staff. While
this is much better than constraining vacation times to the release schedules,
it would have been better if the project had been less dependent on those
employees. As should have been predicted, the release date slipped and inter-
fered with the vacation dates, anyhow.

... you have built an organization around specialists whose back-
ground and training match the expertise required by the application
and market, DOMAIN EXPERTISE IN ROLES (4.2.22).

✥ ✥ ✥

A project cannot become overly dependent on any small number
of individuals. It’s important to have specialization. No amount of
general accomplishment can compensate for experience. And this
experience is embodied not in any abstract concept of roles, nor is it
often found in any supporting document or knowledge base that a
plug-compatible-interchangeable-developer could leverage. The
expertise is most often embodied in a living human being who can
make choices.

Such human beings may make unpleasant choices, such as leaving
the organization for another company. Or they may make silly choices,

Piecemeal Growth Pattern Language 203

like walking out in front of a truck at a busy intersection, never to
return to the project again.

And life may make choices for such individuals, such as giving
them prospects for promotion. Sadly enough, there is a high correla-
tion between an individual’s perceived expertise and the chances that
a company will offer them promotion to optimize the chances for the
PETER PRINCIPLE to have its way. Or another project within the organiza-
tion may take them away.

It is a risk if there are too many cases where your project depends
on such individuals for singular knowledge. You know you’re in
trouble if your project keeps a list of people and schedules release
dates around their vacation times.

Yet it’s still important to embody expertise in individuals, since it
reduces communication between individuals regarding decisions
within a certain business area and ensures that the right experience is
brought to bear in such decisions.

And it’s important to recognize that everyone brings some expertise
to the table; if everyone were the same, there would be useless redun-
dancy in the organization (see DIVERSE GROUPS (4.2.16), HOLISTIC DIVER-

SITY (4.2.19)).
Yet not everyone can know everything. Being a true expert in a

topic requires all of one’s attention, and it is difficult to sustain mul-
tiple areas of expertise.

Define the truck number as being the number of people in the organi-
zation who have unique critical domain expertise. You don’t want the
truck number to be large, because that means that the probability is
large that the loss of any given team member would mean the loss of
critical expertise. The risk would be too high. Yet it’s impossible to
make the truck number very small (it’s almost impossible to make it
zero). Even if you could make it small, you probably wouldn’t—
because if it were one, then everyone but the critical resource is intel-
lectually redundant, and by some rationale, all the other members of
the organization could turn into just overpaid worker bees or software
assembly line workers.

Therefore:
Keep the truck number low; retain a small number of key experts

with unique knowledge. Build a culture of shared knowledge that
increases the breadth of knowledge over time, particularly for

204 Chapter 4 Organization Design Patterns

knowledge that easily can be codified, taught, or otherwise con-
veyed.

How do you do this? One way is to use DEVELOPING IN PAIRS (4.2.28).
Another is to make sure the experts rub shoulders with the mere mor-
tals. Use ARCHITECT ALSO IMPLEMENTS (5.2.10). Of course, you retain a
non-zero truck number by keeping the architects from becoming mere
mortals themselves; see ARCHITECT CONTROLS PRODUCT (5.2.3).

✥ ✥ ✥

Cross-training can be an effective technique for sharing knowledge.
In particular, APPRENTICESHIP (4.2.4) is an effective form of cross-
training. However, some of the deepest knowledge and “good guts”—
gut feeling—cannot be conveyed from an expert to an apprentice.

A pattern language of the organization’s key competencies can pro-
vide some relief for experts and can reduce the risk for the organiza-
tion. Collect patterns from domain experts.

It is not the goal to level the playing field. You still need DOMAIN

EXPERTISE IN ROLES (4.2.22). It is too expensive (in time and talent) to
guard against any possible staff loss by completely replicating talent.
You want enough cross-training to control the costs of recovery from
losing a person. Trying to spread expertise too broadly will in fact just
dilute the overall expertise by detracting from each expert’s focus.

Truck Number is a measure of vulnerability of an organization. It’s
usually pretty easy to calculate it: just ask yourself, “Which people in
my project can we absolutely not do without?” It’s likely that several
names immediately come to mind. These people are the key architects,
programmers, or perhaps even testers. And they are critical in part
because they know things that others don’t. So we try to get them to
share that knowledge with the rest of the team.

Note that although we speak of the Truck Number as a number, it
has a subjective qualitative aspect to it as well. In other words, not all
critical experts are created equal. The loss of some experts may cause
serious problems, but the loss of others may be absolutely devastating!

One of the authors once studied a small software company. While
the company and its (single) product looked good, one particular
employee seemed to be unusually dominant. If he were to leave, the
company would be in serious jeopardy. Unfortunately, he did leave,

Piecemeal Growth Pattern Language 205

and the company suffered greatly. The moral is to watch closely for
such individuals, and make sure they continually share their expertise.

Why doesn’t DEVELOPING IN PAIRS (4.2.28) solve the problem com-
pletely? It certainly helps, but people are still individuals, and have
different skills. You can have a pair in which each member is good at
something different; the pair is greater than the sum of the individuals.

As with any risk reduction activity, reducing the Truck Number is
an exercise in trade-offs. You may find that duplicating the expertise of
certain people just isn’t cost — or time — effective. So you live with
the risk. Maybe you try to reduce it in other ways, such as creating
incentives for those people to stay on the team (see, for example, COM-

PENSATE SUCCESS (4.2.25).)

206 Chapter 4 Organization Design Patterns

4.2.25 COMPENSATE SUCCESS **

When I was in fourth grade (about 9 years old), we had a spelling test
every Friday. Our teacher told us that if everyone got a perfect score on a
spelling test, she would bring each of us a candy bar the following Monday.
We were excited about the prospect, but as time went on, it seemed that it
might never happen. There were always some who just couldn’t seem to spell.
Jimmy was probably the worst speller of all. He typically missed about half the
words. There was no hope with him in the class.

But one week the words were particularly easy. In the practice test on
Wednesday, everyone except Jimmy got all the words right. And Jimmy
missed only four words. The anticipation in the class was electric, as we all
gave special help and encouragement to Jimmy. On Friday, when everyone
got a perfect score, it was hard to tell whether we were more excited about the
upcoming candy bar or for Jimmy’s success.

...a group of developers is striving to meet tight schedules in a high-
payoff market. It is important to reward individuals in a way that
motivates them to do things that achieve business objectives in line
with the value system of the enterprise.

✥ ✥ ✥

Successful projects remain successful by rewarding behaviors
that lead to success.

Piecemeal Growth Pattern Language 207

Schedule motivations tend to be self-fulfilling: a wide range of
schedules may be perceived as equally applicable for a given task.
And schedules are poor motivators.

Some organizations count on altruism, but altruism and egoless
teams are quaint, Victorian notions.

Companies often embark on make-or-break projects, and such
projects should be managed differently from others.

You need both to reward teams and outstanding individuals. Yet
disparate rewards motivate those who receive them, but may frustrate
their peers.

You need both to reward solid workers and risk-takers; yet from an
economic perspective, you need to manage the risk of any investment
into speculative work. And if speculative work fails, and the contribu-
tors are rewarded according to performance, it will disincent the orga-
nization from embarking on future risk-taking projects.

Some contributions are difficult to quantify, such as those of THE

CATALYST (see Peopleware by De Marco and Lister) who facilitates
communication between team members and perhaps helps morale.

Therefore:
Establish lavish rewards for individuals contributing to suc-

cessful make-or-break projects. The entire team (social unit) should
receive comparable rewards, to avoid de-motivating individuals who
might assess their value by their salary relative to their peers. “Very
special” individuals might receive exceptional awards that are tied les
strongly to team performance.

A ce lebra t ion i s a par t i cu lar ly e f f ec t ive reward
[ZuckermanAndHatala1992].

✥ ✥ ✥

As a result, you get an organization that focuses less on schedule
(but see SIZE THE SCHEDULE (4.1.2)) and more on customer satisfaction
and systemic success.

In most enterprises you do not want to reward risk-taking in a way
that encourages people to take risks that don’t serve the long-term via-
bility of the enterprise. The reward should always be more focused on
meeting the organization’s goals than on how the goals are met. If the
organization’s job is to produce a product, then reward people for
what they do in support of delivering the product. Sometimes this

208 Chapter 4 Organization Design Patterns

includes an element of risk-taking, and to that degree risk-taking
should be rewarded. However, you want to remove obstacles to risk-
taking. That will allow people to take appropriate risks motivated by
meeting organizational objectives, rather than for the sake of having
taken a risk. See more about this in the pattern SKUNK WORKS (4.2.14).

Similarly, most software development organizations shouldn’t
encourage people to seek crisis situations as opportunities for the con-
tributions that will receive the highest reward. That almost guarantees
that the project will become crisis driven. There are some jobs that are
legitimately built around a hero culture, such as (real-world) fire
fighters and their figurative namesakes inside software projects, but
these are the exception rather than the rule. Be sure to reward what the
organization values, knowing that people will tend to do what they
are rewarded to do.

Similarly, it can be problematic to reward those who work for the
sake of the work ethic alone. Reward working smart more than
working hard; there should be no prize for the most hours worked.
Paul Bramble relates:

 Working for stock options that could be expected to turn into
$12 million was a horrible experience. And having peers with
similar expectations only made it worse. It clouded their
judgment and they stopped using DOMAIN EXPERTISE IN ROLES
(4.2.22). Instead, they started giving the more difficult assign-
ments to the perceived “gung-ho” crowd rather than to the
people most likely to be able to do them. ... Some of the fanat-
ics were regularly working 80-hour weeks and used the
reward system as leverage to exact punishment against those
who tried to work reasonable hours and balance work and
family life.

The liability of high rewards for meeting key corporate objectives is
that people who take on those responsibilities can over-extend them-
selves, leading to personal stress with potential risk to the project. This
is particularly problematic for rewards to management staff who run
the risk of developing a burnout culture in their subordinates to meet
the objectives (see “The Psychology of Burnout” in THE OPEN CLOSED

PRINCIPLE OF TEAMS (6.1.4)).
There are factors that lead to success that are difficult to measure or

even identify, so it’s best to orient the rewards around the organiza-

Piecemeal Growth Pattern Language 209

tion’s shared value system of what is important to achieve. Scoping
the concern of “organization” in this context is key to the long-term
success of the enterprise; a closed group can’t sustain values that are
inconsistent with those of the enclosing organization or the next
higher level of management.

Success makes it possible to build up the work environment infra-
structure, making it a more attractive place to work. This is a form of
long-term compensation or of recognition of success and is particu-
larly important in team settings. In one organization we used windfall
funds to buy an interactive terminal which, in that era (about 1974)
was a treat for the staff. On a broader scale you can buy an espresso
machine (for which Bell Labs computer science research was famous),
just a coffee machine, or a water cooler—or build an entire culture of
food. See the pattern THE WATER COOLER (5.1.20).

High rewards to some individuals may still de-motivate their peers,
but rewarding on a team basis helps remove the “personal” aspect of
this problem, and helps establish the mechanism as a motivator, in
addition to being just a postmortem soother. On the other hand, see
the discussion in THE ROLE OF MANAGEMENT (6.3.7) that puts individual
contributions in a broader perspective: are individual successes really
just team success in misleading packaging?

The grounding for this pattern is empirical. There is a strong corre-
lation between wildly successful software projects, and a lucrative
reward structure. Cases include QPW, cases cited at the Risk Deriva-
tives Conference in New York on 6 May 1994; see Pay and Organization
Development, by Edward E. Lawler, Addison-Wesley, 1981. The place of
reward mechanisms i s wel l -es tab l i shed in the l i t e ra ture
[Kilmann1984].

Dennis DeBruler noted at the PLoP review of this pattern, that most
contemporary organization culture derives from the industrial com-
plex of the 1800s, which was patterned after the only working model
available at the time: military management. (One common model of
military management is: REWARD INDIVIDUALLY PUNISH CORPORATELY,
which leads to fear of failing and resentment towards those who fail.)
He notes that most American reward mechanisms are geared more
toward weeding out problems than toward encouraging solutions. A
good working model is that of groups of doctors and lawyers, where
managers are paid less than the employees.

210 Chapter 4 Organization Design Patterns

Paul Bramble adds, “The trick is to be discerning—sometimes it’s
the quiet plodders who generate the success, and you have to be able
to see past the self-promoting employees to see who really gets the
work done.”

See also COMPENSATE RESULTS [Beedle1997].

Piecemeal Growth Pattern Language 211

4.2.26 FAILED PROJECT WAKE *

The Trident project was the most exciting project I had ever worked on. We
were a small team with an aggressive schedule, but we made good progress
and were actually ahead of schedule. Then one day the the company made a
major business decision that meant that the Trident project was probably
unnecessary. Sure enough, the project was canceled a few days later. We all
agreed that it was probably the right decision, and we appreciated the speed
with which it was made, but it still hurt.

For a week we walked around in a fog. We did nothing. Finally, we took the
afternoon off, and had a party at someone’s home. We brought our families
and played croquet in the back yard. After that it was much easier to move on
to the next project.

...projects fail for a variety of reasons. Many of these are attributable
to the team involved in the project; in fact, this pattern language is
designed to help with many such problems. But software developers
don’t work in a vacuum. There are many external factors that con-
tribute to the success or failure of any project. Changes in the market,
for example, can doom a product before it ever gets out the door. You
can have the greatest, hardest working team in the world, and their
project still might get canceled, in spite of their best efforts.

✥ ✥ ✥

212 Chapter 4 Organization Design Patterns

Canceling a project, even for the best external reasons, is particu-
larly demoralizing to a team that has put its heart and soul into it.

It doesn’t matter much that the team members fully understand the
reasons behind the cancellation, they still feel bad. They feel power-
less, somewhat apathetic, and sometimes betrayed. At best, they will
have some “down” time, even if they have another project to jump
into immediately. At worst, they may quit.

They may note that successful projects are rewarded, but it wasn’t
their fault that their project was canned. This feeling of inequity can be
strong.

Therefore:
Hold a wake for the failed project. This should be much the flavor

of an Irish wake; a party for the dead.
Don’t try to placate them with false statements of “success.” They

all know the project bombed, so just hold a party over that.
Go ahead and make it a big party; make it more than just cake and

punch in the cafeteria. And make it a real party; it shouldn’t be a
project retrospective. There is a time and a place for retrospectives, and
this isn’t it. (Gerhard Ackermann [Ackermann2002] points out that it is
possible to combine the two, if you have a strong facilitator, and the
main purpose continues to be the wake.)

It’s best to hold the wake off-site. That helps people break from the
old project, and avoids even the appearance of a retrospective.

It’s even more helpful to hold the wake during working hours; an
afternoon works well. Holding the wake during work hours sends a
subtle “thank-you” message: everyone knows they don’t get a bonus
(see COMPENSATE SUCCESS (4.2.25)), but they appreciate some acknowl-
edgment of their efforts.

✥ ✥ ✥

Just like the death of a loved one, the death of a project causes a
period of mourning. A wake helps people get through the stages of
mourning.

It also serves as a bit of a catharsis. People will come out of it much
more ready to attack the next project, “and this time we’ll succeed!” It
is particularly important for upper management explicitly to express
appreciation for the effort, especially when the failure owes to busi-
ness decisions rather than to decisions owned by the development

Piecemeal Growth Pattern Language 213

team. Paul Bramble notes that this helps “calm people down and to be
less worried about their future at the company.”

4.2.27 Dont Interrupt An Interrupt
See Section 4.1.26.

214 Chapter 4 Organization Design Patterns

4.2.28 DEVELOPING IN PAIRS **

Randy and I work on a software tool together. Over the years that we have
developed it, we have found that we spend a lot of time at each other’s desks.
We often write code, debug, and test together. It is not uncommon for one of
us to be typing, while the other one tells what to type. And often, the one not
typing will point out typos or logic errors. That can be annoying, but it cer-
tainly reduces the cycles of compiling and debugging.

Nobody told us to work this way. We just found that it works well.

...a development organization is in place, and people have started to
commit to work and are about to start building the work artifacts.
Some of the work may be allocated on the basis of CODE OWNERSHIP

(5.2.13). There is enough understanding about overall requirements to
start work, though many requirements may have loose ends.

✥ ✥ ✥

Some people don’t want to work alone, and working alone has
great risks of blindsiding and misfits. And you need to provide for
people who don’t want to work alone, and in general engage people
who are working alone but probably shouldn’t be.

People sometime feel they can solve a problem only if they have
help. Some problems are bigger than an individual, so even people
who are comfortable working alone should work closely with

Piecemeal Growth Pattern Language 215

someone else who at least provides another set of eyes to look over the
work.

It takes extra resources to do this in real time; one might argue that
code walkthroughs and inspections and reviews are enough to com-
pensate for these problems. But these reviews are usually analytical
rather than opportunistic. And reviews set up an adversarial context
where the critics don’t have the same stake as the programmers. And
reviews catch problems after the programmer has committed to the
corresponding structures and algorithms and expended a lot of effort
in elaborating them, rather than stopping them at the conceptual
stage. And many of these decisions are too detailed to arise in design
reviews or simply can’t be foreseen until the programmer grapples
with implementation, yet are weighty enough that they might threaten
the viability and long-term health of the code.

Only a limited number of people can sit in front of a keyboard and
screen. Communication and coordination effort increase nonlinearly
with number of people. So you can’t always create a team that works
together as a unit to contribute to an artifact in front of a single screen.

Therefore:
Pair compatible designers to work together; together, they can

produce more than the sum of the two individually.
There are two keys to making this successful. First, the individuals

must be able to work well together. This means that pair assignments
must not be made arbitrarily. In fact, because a pair is in reality a small
team, SELF SELECTING TEAM (4.2.11) must be applied. The chief consider-
ation for creating a pair is that the two want to work together.

Second, the style of pair development must not be dictated; it
should be left up to the individuals. Simply put, there should not be a
rule that no line of code is written unless both people are at the key-
board. Instead, give the pair the assignment, and let them figure out
how to do the development. Note that this practice supports FEATURE

ASSIGNMENT (5.2.14).
The pair needn’t always comprise developers only. In BUILD PROTO-

TYPES (4.1.7), and in many other activities, one of the pair can be a cus-
tomer, systems engineer, or technologist representing an area of risk
being explored by the prototype. At Mediagenix, a tester sometimes
pairs with a developer as the tester drives with tests, and the devel-
oper fixes bugs. This makes it possible to circumvent the project’s

216 Chapter 4 Organization Design Patterns

formal bug reporting bureaucracy, reducing the time to a stable load
(see also COUPLING DECREASES LATENCY (5.1.22)).

✥ ✥ ✥

Overall, this leads to a more effective implementation process.
Experience has shown that, contrary to simplistic reasoning, it may
cost less overall to program in pairs than to have one coder work on
code at a time. In an analogous study, it was just found that it actually
saves money in a hospital to have a pharmacist follow doctors on their
rounds as they make prescriptions. The pharmacist’s insights in cor-
recting the doctor’s errors (e.g., prescribing drugs that are incompat-
ible with each other) saved more money (in additional health costs)
than the pharmacist cost; plus, it capitalized on the pharmacist’s dead
time between activities.

A pair of people is less likely to be blindsided than an individual
developer.

You help ensure that SOMEONE ALWAYS MAKES PROGRESS (4.1.20).
If enough people use DEVELOPING IN PAIRS, and if the pairs rotate

occasionally, you get an emergent structure and emergent organiza-
tional behavior that contributes to cross-training, information sharing,
and trust.

Compare this pattern with GROUP VALIDATION (4.2.32) and RESPONSI-

BILITIES ENGAGE (5.1.14). One special case of DEVELOPING IN PAIRS occurs
when one developer asks another developer (or other suitable expert)
do a desk check of recently written code. This is much less costly and
not less effective than the traditional code inspections, code walk-
throughs, and code reviews. Though probably less effective than the
“canonical” form of DEVELOPING IN PAIRS, its worth has empirically been
validated [Votta1993].

There are other configurations which have much of the dynamics of
DEVELOPING IN PAIRS but which are not strictly just a dynamic duo. At
Mediagenix we found teams that “programmed with the projector”
where the computer screen was projected onto a wall, and a team
jointly commented and guided the work as one person sat at the key-
board. In Bell Laboratories, Joe Davison, Ricky Spiece and Martin
Biernat worked on a team with one at the white board, one at the ter-
minal “thinking out loud” and representing the customer. In this case,

Piecemeal Growth Pattern Language 217

the code was written on the board, transcribed into the computer (in
Smalltalk) and the third person did a real-time code review.

And in what might be viewed as another slant on pair program-
ming, Doug Lea used a variant of the clean room methodology that
employed a single programmer: once in a role as programmer, and
once in a role as tester. Clean room techniques separate these two roles
to make sure one’s knowledge doesn’t unduly influence the assump-
tions of the other. In the extreme application of clean room, developers
are not allowed to use the compiler to check their own code, but await
such feedback from the tester. Doug mimicked this behavior by
wearing two hats. In one sense, this is as unlike popular pair program-
ming as one can get: each “side” of Doug worked in isolation. But the
interplay between the two perspectives was where the power lies:
bringing multiple perspectives to bear on the same artifact with tight
coupling of minds. Doug’s mind provided the tight coupling.

218 Chapter 4 Organization Design Patterns

4.2.29 ENGAGE QUALITY ASSURANCE **

FSA (Farm Security Administration) supervisor and farmer-client exam-
ining quality of silage from trench silo. Sheridan County, Kansas

...you have a development organization mature enough that roles
have been congealed and a customer has been engaged (ENGAGE CUS-

TOMERS (4.2.6)). You need some filter between the two to both facilitate
and regulate interactions between them.

✥ ✥ ✥

Customer engagement is a key element of quality assurance.
Though developers feel they get everything right, a good dose of cus-
tomer reality helps bring the perspective that perfect software is hard.

Too many organizations defer quality until “later” or equate quality
assurance with the late activity of testing. Yet success depends on high
quality, and early feedback is important to address fundamental
quality problems.

It’s important to do testing, and most developers do their own
testing. But individuals easily get blindsided by their own design
thinking in terms of what needs to be tested. And they may use testing

Piecemeal Growth Pattern Language 219

as their quality criterion; yet, you can’t test quality into a product: you
can only build a product and test its quality.

Therefore:
Make QA a central role. Couple it tightly to development as soon

as development has something to test. Test plan development can
proceed in parallel with coding, but Developers declare the system
ready for test.

Quality Assurance (QA) was central to the development of Bor-
land’s Quattro Pro for Windows:

The QA organization should be outside the context of the project:
the planning and reporting of tests should not be accountable to the
development organization. The development organization develops a
sense of accountability for delivering quality product, since their own
view of their reputation is linked to minimizing the bugs that “those
people in QA” find.

QA should be engaged with marketing to understand the needs
and challenges a system will face.

QA people have skills and perspectives that allow them to view
customer needs from a perspective that may not be reflected in
requirements or other articulations of needs. A good example is secu-
rity companies that develop security software utilities for commercial
operating; their own probing of the operating system often uncovers
security holes, and then they work with the vendor to fix the prob-
lems.

220 Chapter 4 Organization Design Patterns

✥ ✥ ✥

Having engaged QA, the project will be ready to approach the Cus-
tomer. With QA and the Customer engaged, the quality assurance pro-
cess can be put in place (use cases gathered, etc.).

There are at least two reasons for making QA a separate organiza-
tion from that holding Developers’ allegiance. First, test development
shouldn’t be blind-sided by the Developer perspective. If both the
Developer and QA perform their own tests, testing becomes a double-
blind experiment with the software as a subject. Second, QA should be
put outside the domain of influence by the development organization
in the interest of objectivity. This is an obvious pattern in QPW.

Indeed, ENGAGE QUALITY ASSURANCE requires a separate QA organi-
zation. This is in contrast to the ideals espoused in Extreme Program-
ming. XP advocates extensive unit testing, but in the words of Kent
Beck, “documentation, design, formal review, separate QA; it’s all a
waste of our time.” [Waters2000] This may be a reaction to organiza-
tions that have a separate QA organization, but do not engage it.
That’s a recipe for disaster: you have the overhead of a separate orga-
nization, but not the benefits. In order for a separate QA organization
to be effective, it must have frequent and positive interaction with
development.

Note that quality assurance should be engaged early in the project;
by the time testing starts it is too late to build the trust needed for
quality assurance to happen smoothly. This is spelled out in GET

INVOLVED EARLY (10.5.13) [Delano1998]. It is not just the developers’
responsibility to engage the testers; the testers must reach out to the
developers as well (see DESIGNERS ARE OUR FRIENDS (10.5.10)
[Delano1998].)

See also APPLICATION DESIGN IS BOUNDED BY TEST DESIGN (4.2.30).

Piecemeal Growth Pattern Language 221

4.2.30 APPLICATION DESIGN IS BOUNDED BY TEST DESIGN *

An M4 tank tops the ridge on a test course. The tank was designed to meet all
the challenges of the test course — the test course should simulate all the

extremes of the field.

...a development organization has mechanisms to document and
enforce the software architecture, and developers to write the code.
You are planning how to engage your customer. A Testing role is being
defined.

✥ ✥ ✥

When do you design and implement test plans and scripts?
Test development takes time, and cannot be started just when the

coding is done (“when we know what we have to test”).
Scenarios are known when requirements are known, and many of

these are known early (see SCENARIOS DEFINE PROBLEM (4.2.8)).
Test implementation needs to know the details of message formats,

interfaces, and other architectural properties in great details (to sup-
port test scripts and test jigs). Both software developers and testers
need to work closely together from the same “script”—the Use Cases
that define customer needs.

222 Chapter 4 Organization Design Patterns

Yet external tests are largely ignorant of the internal software struc-
ture, so much test development can take place in parallel with design
and implementation of the deliverable software. Implementation
changes daily; there should be no need for test designs to track ephem-
eral changes in software implementation.

Therefore:
Use case-driven test design starts when the customer first agrees

to use case requirements. Test design evolves along with software
design, but only in response to customer use case changes: the
source software is inaccessible to the tester. When development
decides that architectural interfaces have stabilized, low-level test
design and implementation can proceed.

Software designers can and should use test specifications as a major
touchstone for requirements.

✥ ✥ ✥

This provides a context for SCENARIOS DEFINE PROBLEM and comple-
ments ENGAGE QUALITY ASSURANCE (4.2.29). Once the expectations are
established between the testers and developers in the context of cus-
tomer expectations (perhaps through FIRE WALLS (4.2.9) and GATE

KEEPER (4.2.10)) you can approach the customer to capture Use Cases.
Making the software accessible to testers causes them to see the

developer view rather than the customer view, and leads to the chance
they may test the wrong things, or at the wrong level of detail. Fur-
thermore, the software will continue to evolve from requirements until
the architecture gels, and there is no sense in causing test design to
fishtail until interfaces settle down.

In short, test design kicks off at the end of the first major influx of
requirements, and touches base with design again when the architec-
ture is stable.

4.2.31 Mercenary Analyst
See Section 4.1.24.

Piecemeal Growth Pattern Language 223

4.2.32 GROUP VALIDATION *

Testing homemade screen door for strength.

...an activity such as analysis, design, or implementation has been
completed and is to be assessed.

✥ ✥ ✥

Product quality is crucial to the success of the enterprise. The job
of QA is to assess quality. QA usually assesses the quality of the end
product, doing only black-box validation and verification. A group
setting brings many insights on product problems and opportunities.
Individuals may not have the insight necessary to discover the bug
plaguing the system (this may be an issue of objectivity).

Therefore:
Even before engaging QA, the development team—including the

Customer—can validate the design. Techniques such as CRC cards
and group debugging help socialize and solve problems. Members of a
validation team can also work with QA to fix root causes attributable
to common classes of software faults.

The software shouldn’t be the only focus of debugging and review.
Recurring types of software bugs may point to systemic problems in

224 Chapter 4 Organization Design Patterns

the structure of the organization itself. For example, if the project is
seeing a high rate of mismatches in interfaces between components, it
might be that integration is taking place too quickly for all the team
members to keep in step with the current state of the architecture. The
organization can write new patterns to solve these systemic problems
(UPDATING THE PATTERNS (3.3)). See [Fagan1976].

✥ ✥ ✥

One can create a culture where the quality of the system is con-
stantly brought into focus before the whole team. Problems will be
resolved sooner than if they are deferred to the “official” Quality
Assurance function, which typically interacts with the project at the
boundaries of design and coding. The cost of this pattern is the time
expended in group design/code debugging sessions.

The CRC design technique has been found to be a great team-
building tool and an ideal way to socialize designs. Studies of projects
inside AT&T have found group debugging sessions to be unusually
productive. Bringing the customer into these sessions can be particu-
larly helpful. The project must be careful to temper interactions
between Customer and Developer, using the patterns mentioned in
the Resulting Context.

There is an empirical research foundation for this pattern. See “An
implementation of structured walk-throughs in teaching COBOL pro-
gramming,” CACM, Vol. 22, No. 6, June, 1979, which found that team
debugging contributes to team learning and effectiveness. A contrary
position can be found in [Meyers1978], though this study was limited
to fault detection rates and did not evaluate the advantages of team
learning.

There are times when reviewing need not be a group effort; some-
times, all it takes is a little help from a friend. DEVELOPING IN PAIRS

(4.2.28) is one example; the kind of desk checks mentioned in
[Votta1993], where one person liberally marks up the work of another,
also can be effective (Votta shows that this mode of review is almost as
effective and much less costly than a meeting). The CREATOR- REVIEWER

(10.5.8) pattern [Weir1998] calls this a “distribution review” as
opposed to a “meeting review”. Doug Lea once took this approach to
an extreme, working on a one-person Clean Room programming team
where he played the roles both of programmer and of reviewer, with

Piecemeal Growth Pattern Language 225

no use of a compiler to validate the code between the steps (see DEVEL-

OPING IN PAIRS). We imagine the psychological forces must have been
both interesting and compelling.

STAND UP MEETING (5.2.7) is an informal form of this pattern.

226 Chapter 4 Organization Design Patterns

Piecemeal Growth Pattern Language 227

CHAPTER 5 Organization
Construction Patterns

Once design is done—the organization is conceptualized and has
been framed out—it’s time to start putting it together. We hire people,
fine-tune teams, and put processes in place. The patterns in this
chapter are construction patterns: patterns for dealing with day-to-day
realities and the real stuff of building an organization.

There are two pattern languages here: one is about Organizational
Style, and the other is about PEOPLE AND CODE. Organizational Style is
akin to management style. Each manager will use different techniques
to help an organization unfold.

The PEOPLE AND CODE pattern language talks about the day-to-day
impact of CONWAY’S LAW (5.1.7). As the code takes shape the organiza-
tion should track it. There are architectural artifacts which themselves
have achieved the stature of patterns and, by CONWAY’S LAW (5.1.7), we
might expect to find analogous structures in the organization. And we
do. These are those organizational patterns, patterns that one allows to
take shape piecemeal in the organization as the code itself changes. Of
course, it can work the other way, too: coding structures and interfaces
can reflect business structures that are reflected in the organization or
in the geographical distribution of the development groups.

228 Chapter 5 Organization Construction Patterns

5.1 Organizational Style Pattern Language

The Pattern Language

Organizational Style Pattern Language 229

Conways
Law

Organization
Follows
Location

Deploy
Along
The

Grain

Loose
Interfaces

Owner
Per

Deliverable

Standards
Linking

Locations

Subsystem
By

Skill

Coupling
Decreases

Latency

Hub
Spoke
And
Rim

De
Couple
Stages

Distribute
Work

Evenly

Responsibilities
Engage

Three
To

Seven
Helpers

Per
Role

Divide
And

Conquer

Organization
Follows
Market

Face
To

Face
Before

Working
Remotely

Shaping
Circulation

Realms

Lock
Em
Up

Together

Unity
Of

Purpose

Few
Roles

Producer
Roles

Form
Follows
Function

Hallway
Chatter

Move
Responsibilities

Upside
Down
Matrix

Management

Producers
In

The
Middle

Stable
Roles

Domain
Expertise

In
Roles

Developer
Controls
Process

Work
Flows
Inward

The
Water
Cooler

230 Chapter 5 Organization Construction Patterns

Our organizational analyses have uncovered various styles of orga-
nization. Our studies of these organizations captured these patterns of
roles and communication links between them. Some style work better
than others in their respective contexts. There is no single right style,
but different kinds of organizations suggest elements of style suitable
to their success.

A Story About Organizational Style
One of the most fun projects I ever worked on was code-named Tri-

dent. We started out with about ten people (see SIZE THE ORGANIZATION

(4.2.2)), but we had FEW ROLES (5.1.2). Nearly all the roles were PRO-

DUCER ROLES (5.1.3). As a result, the producer roles were at the center of
communication — they got the information they needed (PRODUCERS IN

THE MIDDLE (5.1.4)). The roles remained stable throughout the life of
the project (STABLE ROLES (5.1.5)).

We were making significant modifications to an existing product, so
naturally our organization mirrored the architecture of the product
(CONWAY’S LAW (5.1.7)). We had a single market, but it was different
from the market for the existing product, which was why we were
formed as a separate organization in the first place. (ORGANIZATION FOL-

LOWS MARKET (5.1.9)).
The organization, small as it was, was split across two locations. We

began with FACE TO FACE BEFORE WORKING REMOTELY (5.1.10), and then
split the work along geographical lines (ORGANIZATION FOLLOWS LOCA-

TION (5.1.8).) One person agreed to a temporary move to the other loca-
tion, which was a form of SHAPING CIRCULATION REALMS (5.1.12), and
helped HALLWAY CHATTER (5.1.15).

There was no overloaded central role (DISTRIBUTE WORK EVENLY

(5.1.13)); this was helped by keeping THREE TO SEVEN HELPERS PER ROLE

(5.1.21). The smallness of the team allowed high coupling, which con-
tributed to efficiency (COUPLING DECREASES LATENCY (5.1.22)).

Ultimately, shifts in the marketplace caused the project’s demise.
Fortunately, the decision was made quickly, and until that point, the
project was on or ahead of schedule.

5.1.1 Community Of Trust
See Section 4.1.1.

Organizational Style Pattern Language 231

5.1.2 FEW ROLES **

Actors rehearsing a new play by Langston Hughes, Chicago, Illinois, 1942.

...as an organization establishes its identity, the roles that the mem-
bers of the project assume begin to take shape. The roles emerge from
project needs as well as from individual preferences. Project members,
playing these roles, pass information among themselves..

✥ ✥ ✥

People in a project must communicate with each other for the
project to make progress. Yet the overhead of this communication
can hinder the very progress it should facilitate.

The number of possible communication paths among roles
increases quadratically with respect to the number of roles. Five roles
have ten communication paths, but ten roles have 45 paths. And
twenty roles have 190 possible communication paths. It is clearly not
possible to have every role communicate with every other. Therefore,
information often reaches roles indirectly; through other roles. But this
increases both latency (delay) and overhead.

It is true that individuals may play several roles and receive infor-
mation destined for one role that is useful for other roles. Our experi-
ence, however, is that in such cases, there are enough different
communication needs in the different roles that it does not appreciably
decrease the number of communication paths required. The source of

232 Chapter 5 Organization Construction Patterns

information is sometimes as important as the information content
itself.

Therefore:
Identify the roles in the organization. Try to keep the number of

roles to about sixteen or less. If you have more, try to reduce the
number of roles by identifying the value of various roles, and con-
solidating or eliminating roles that add less value.

We have found that the healthiest and most productive organiza-
tions tend to have around sixteen to twenty roles. Aiming for the lower
bound gives one space to allow additional roles to emerge as needed.

The combinatorics of communication encourages few roles. Fewer
roles means that communication becomes more efficient, both in
resources consumed and in speed.

Roles tend to be stable in an organization over time, more so than
processes, and even personnel. Roles are a reflection of the culture and
the values of the organization. Keeping the number of roles low makes
it easier for new people to assimilate the organizational culture, and
become part of it.

Roles are not the same as people. Several people may play the same
role; most organizations have several people in the Developer role, for
example. Conversely, one person may fill more than one role. For
example, a person may be mainly a developer, but may function part
time as the project manager. Multiple roles per person is common in
small teams, but is often seen in large organizations as well.

How do you determine what the roles of an organization are? In
particular, how do you know whether certain tasks are responsibilities
of a role, or whether those tasks form a new role? One can examine the
collaborations that emanate from those tasks, and see whether they
correspond to the role in question, or have a different pattern of com-
munication. In practice, though, it is simpler than that. Just ask the
organization to identify their own roles. Every organization we have
ever studied knew what their roles were. Organizational health seems
to closely track the crispness with which project members can delin-
eate roles.

✥ ✥ ✥

Organizational Style Pattern Language 233

Large organizations may find themselves with large numbers of
roles. One can then approximate FEW ROLES (5.1.2) by applying DIVIDE

AND CONQUER (5.1.6).
After you have identified the roles, it may not be obvious which

roles can be combined or eliminated. Use PRODUCER ROLES (5.1.3) to
characterize the roles.

As you keep the roles down, communication saturation will stay
high, and communication patterns will resemble RESPONSIBILITIES

ENGAGE (5.1.14).
Note that this is different from SIZE THE ORGANIZATION (4.2.2). It deals

with the number of people on the project; FEW ROLES (5.1.2) is about the
number of roles, regardless of the number of people.

This is closely tied to PRODUCER ROLES (5.1.3). It also makes DISTRIBUTE

WORK EVENLY (5.1.13) possible.

234 Chapter 5 Organization Construction Patterns

5.1.3 PRODUCER ROLES *

...once you have identified the roles in the organization, you are in a
position to optimize the role structure. This usually involves reducing
the number of roles, particularly for mature organizations.

✥ ✥ ✥

The overhead and bureaucracy in the organization is excessive, as
manifest by the presence of too many roles. Yet all the roles seem
important. It looks like there is no way to reduce the bureaucracy.

An organization needs some bureaucracy to keep projects running
smoothly; there is much administrative work to be done. Program-
mers don’t want to bother with it. But left unchecked, bureaucracy
tends to grow: new roles get created and the communication overhead
increases.

People tend to gravitate to those roles they are most comfortable
with. This is healthy. However, some people need the recognition asso-
ciated with titles (German: Titelsucht), and roles are obligingly created
to fill that need. Such roles have no intrinsic value to the project.

Over time, the responsibilities of roles evolve. In some cases, the
real benefit of a role drains off to other roles, leaving little more than a
shell behind. In one organization, the chief responsibility of a partic-
ular role was “worry.” It added no value to the project. But because of

Organizational Style Pattern Language 235

the history of the role, it is easy to simply assume that the role is
important.

Therefore:
Identify each role as a producer, supporter, or roles that add no

value to the project (deadbeats). Eliminate the deadbeats, and in
some cases, eliminate or consolidate some supporters. Nurture the
producer roles; they are the ones that pay the bills.

Producer roles are those roles that contribute directly to the end
product; there is an obvious connection between their work and the
revenue of the company. The canonical producer role in software orga-
nizations is “developer”.

An organization has numerous support roles. These roles con-
tribute to the effectiveness of the producer roles, but don’t directly
develop the products. Many support roles are vitally important, such
as FIRE WALLS (4.2.9), GATE KEEPER (4.2.10), and PATRON ROLE (4.2.15).
Roles that provide computing support, for example, are also essential.
But support roles are inherently higher in overhead than producer
roles. There may be opportunities to gain efficiency by combining sup-
port roles.

Deadbeat roles, as other types of roles, can be identified by their
responsibilities. They may do nothing more than receive information
and pass it on without adding any value to it. Watch for other respon-
sibilities that add no value to the project, such as the aforementioned
“worry.” If a role truly adds no value to the project, it should be elimi-
nated.

Note that in some cases, a role that passes information adds value
by doing so. For example, a person who passes information by
“pushing” it to those who would normally not get the information
may prevent project inconsistencies, or might even detect such incon-
sistencies before they get out of hand (see WISE FOOL (4.2.21)). Such a
role is an important support role.

✥ ✥ ✥

Although eliminating roles fosters greater organizational efficiency,
it may lead to bruised egos, or even feelings of insecurity. In some
cases, roles might be preserved, but reshaped to contribute more
directly to the project. Refer to FORM FOLLOWS FUNCTION (5.1.11) and
SHAPING CIRCULATION REALMS (5.1.12) for further help.

236 Chapter 5 Organization Construction Patterns

It sets up PRODUCERS IN THE MIDDLE (5.1.4). There is a link to DOMAIN

EXPERTISE IN ROLES (4.2.22). See also FIRE WALLS (4.2.9), GATE KEEPER

(4.2.10), and PATRON ROLE (4.2.15).

Organizational Style Pattern Language 237

5.1.4 PRODUCERS IN THE MIDDLE **

The chef, the producer of food, is often the center of attention.

...one of the first steps a project takes in self-understanding is the
identification of roles, and in particular, which roles are the PRODUCER

ROLES (5.1.3). But it is the information flow among the roles that helps
get the work done.

✥ ✥ ✥

In a project, not all roles hear everything. But much of the infor-
mation communicated has important implications for the product.

Within any software project, there are many activities, roles, and
individuals competing for attention. Of course, there are the devel-
opers. But project managers have a need to be at the center of every-
thing. They need to have their finger on the pulse of the project; to
know everything that is going on. That’s their job. In a similar manner,
perhaps to a lesser degree, other roles also need to be involved in the
project.

But all roles are not equal. Certain roles (developer and a few
others) contribute directly to the product; they create it. Most other
roles contribute indirectly to the product; they (should) exist only to
help the producers do their job. The producer roles need information
in order to do their job.

Therefore,

238 Chapter 5 Organization Construction Patterns

The producer role(s) must be at the center or very near the center
of the hive of communication. Make sure the producers are party to
all, or nearly all communication about the project.

The role at the center of the project must be a producer role (in fact,
it should be the producer role that gets the most done — like devel-
oper.) Consider the developer roles at the center of this healthy organi-
zation, an organization that develops financial trading software on
tight schedules:

The role at the center shows the focus of the project. In most cases, it
is a role like Developer or Coder. In a few cases, the most central role is
a management role (we have seen this, but rarely.) In this case, the
focus of the project is not on developing the product, but rather it is on
managing the development of the product.

If you find that your most central role is not a producer, you need
to, as a project, sit down and do some soul searching. Why isn’t your
focus on the product, like it should be? What is getting in the way? For
example, are you so preoccupied with something like ISO 9001 certifi-
cation that you have lost your focus?

Note that this can be taken to an extreme. If you have too many
roles, and they all focus on the Coder, for example, (see picture), the
coder will have so much communication that they can’t get anything
done. So this must be applied together with FEW ROLES (5.1.2). See also
DISTRIBUTE WORK EVENLY (5.1.13).

✥ ✥ ✥

Organizational Style Pattern Language 239

The natural tendency when this pattern is applied is toward WORK

FLOWS INWARD (4.1.18) — the developers will tend to get the informa-
tion they need. This is not always true, as it can get sidetracked by
managers who are overly meddlesome. However, left alone, devel-
opers will evolve naturally to this pattern, and then to WORK FLOWS

INWARD.
This pattern is closely related to DEVELOPER CONTROLS PROCESS

(4.1.17). If the developer — a producer role — controls the process, he
or she is likely to be a hub of communication. In fact, allowing the
developer to control the process is one way to help make this pattern
happen.

240 Chapter 5 Organization Construction Patterns

5.1.5 STABLE ROLES *

No, not THAT kind of stable!

In our organization studies, we ask teams to simulate their typical develop-
ment experience. During one such exercise, the team described a quality
crisis, and how they formed a task force to handle the problem. I was struck
that the team seemed to thrive on crisis; crisis management was valued and
rewarded. When I mentioned this during the debriefing, the architect said,
“Yes, we run on crises like a car runs on gasoline.”

... a team has been formed, and the PRODUCER ROLES (5.1.3) are in
place. During the course of development, disruptions and distractions
are common. The team’s response to them can have long-term impact
on the health of the organization.

✥ ✥ ✥

If a team overreacts to disruptions, the team can become perpetu-
ally dysfunctional.

A well-functioning team is like a spring, stretched over some dis-
tance. A disruption is like a wave induced in the spring; it travels
along the spring for a while, keeping things from working as they did
before. The right response damps the wave and life returns to normal.
But the wrong response tends to amplify the wave and keep it going.
In organizations, the danger is twofold: first, that the disruption inter-

Organizational Style Pattern Language 241

rupts the team more than it should, and second that the team members
begin to see the disruption response as the normal way of life.

Disruptions to teams come in many flavors. The most obvious ones
are crises such as emergency bug fixes. But team growth, changes in
requirements, reorganizations are also disruptions.

Each disruption requires action which takes attention away from
the task at hand. So the challenge is to take the appropriate action
while minimizing the attention it draws away from the main job. An
important aspect of this challenge is rewards: dealing with disrup-
tions, particularly crises, deserves rewards, but one must be careful
not to value fire fighting over fire prevention. People have been known
to commit software development arson in order to become software
fire fighting heroes.

Therefore,
Whenever possible, keep people in roles for at least the duration

of the project release. Avoid elevating transient tasks dealing with
disruptions to the status of roles.

Obviously, in order for this to work, the roles themselves must be
around for the duration of the project.

The key is that as a disruption comes up, don’t create a new role to
handle it. Handling disruptions, particularly crises, has a certain status
to it. If you allow a role to emerge, then the role institutionalizes the
behavior, which tends to encourage the disruptions to happen. So
instead, focus on nurturing the PRODUCER ROLES (5.1.3). This can be
done carefully in the rewards (see COMPENSATE SUCCESS (4.2.25).)

Beyond typical crises, this pattern can be used as the team composi-
tion changes. Such disruptions may be less dramatic, but often are
more devastating. Even team growth can cause serious disruption. So
as the team changes, keep the remaining people in the same roles as
much as possible. Instead, try to keep the role changes to the natural
breaks in the project, such as just after the project ships.

✥ ✥ ✥

The impact of this action is manyfold. If you keep people in the
same roles, the learning curve is obviously flattened. It helps maintain
DOMAIN EXPERTISE IN ROLES (4.2.22). If people’s roles don’t change when
they must deal with a crisis, they still retain their primary focus. Fur-

242 Chapter 5 Organization Construction Patterns

thermore, the organization keeps its values focused on the long-term
solutions, and not on the short-term disruptions.

This may seem like simple common sense, and it is. But the trouble
with common sense is that it is, well, so uncommon.

Organizational Style Pattern Language 243

5.1.6 DIVIDE AND CONQUER **

...the roles have been defined for a process and organization, and
the interactions between them are understood. The organization has
grown to a point where it cannot easily manage itself. Perhaps there
are too many people or, more seriously, too many roles, for the organi-
zation to hang together. The organization’s decision process breaks
down and progress bogs down for more and more decisions. Or the
organization can foresee growth to a point where these problems arise.

For example, this organization has no apparent regular structure,
and though it is productive, it is not likely to evolve well.

✥ ✥ ✥

244 Chapter 5 Organization Construction Patterns

Successful projects must learn to accommodate the growth that
accompanies success in projects and that outstrip team dynamics. If
an organization is too large, it can’t be managed. Incohesive organiza-
tions are confusing and engender dilution of focus.

Separation of concerns is good. Even distribution of responsibility
is good because it distributes the work load. Regular structures, such
as hierarchies, can easily be grown by adding more people, without
destroying the spirit of the original structure. But a regular hierarchical
structure does not distribute responsibility evenly.

It is useful to have organization boundaries that are somehow light-
weight.

Therefore:
Find clusters of roles that have strong mutual coupling, but that

are loosely coupled to the rest of the organization. Form a separate
organization and process around those roles. Make sure the organiza-
tion has identifiable sub-domains that can grow into departments in
their own right as the project thrives and expands to serve a main-
tained market.

It is sometimes easiest to do this by identifying core roles that can
form the root of sub-organizations that precipitate from a larger orga-
nization. Let the sub-organizations cluster around these roles.

You should apply this pattern between releases so as to minimize
turmoil that might confuse work in progress.

This organization has no well-partitioned structures, but one can
identify logical partitions within it (Customer, Developer, Management,
etc.)

✥ ✥ ✥

Organizational Style Pattern Language 245

This establishes an overall organizational framework as a basis for
organizational growth. Each new sub-organization is a largely inde-
pendent entity to which the remaining patterns in this language can be
independently applied. It makes it possible to have FEW ROLES (5.1.2) in
any given closure of interaction.

Implement this pattern using ORGANIZATION FOLLOWS MARKET (5.1.9),
ORGANIZATION FOLLOWS LOCATION (5.1.8), and SACRIFICE ONE PERSON

(4.1.22).
In the forces, note that each sub-organization that arises from this

pattern is fodder for most other patterns, since each subsystem is a
system in itself. Also, to see an organization that has been reverse engi-
neered and redivided into new processes, see the picture for the pat-
tern MOVE RESPONSIBILITIES (5.1.18).

The business structure is a key consideration in building an organi-
zational structure. Much of the business structure becomes articulated
in the architecture, so CONWAY’S LAW (5.1.7) is an important pattern
supporting this one. If you can find no core roles around which sub-
organizations might form, then the organization may not be partition-
able. For example, it is difficult to grow a Chief Programmer Team
organization.

If you need to divide things up in time, rather than across team
structure, see GET ON WITH IT (4.1.3).

246 Chapter 5 Organization Construction Patterns

5.1.7 CONWAY’S LAW **

Construction of the Lincoln Memorial, 1916.

...an Architect and development team are in place. The architecture
is fairly well-established.

✥ ✥ ✥

If the parts of an organization—such as teams, departments, or
subdivisions—do not closely reflect the essential parts of the
product, or if the relationships between organizations do not reflect
the relationships between product parts, then the project will be in
trouble.

The system architecture shapes the communication paths in an
organization. De facto organization structure shapes formal organiza-
tion structure. Formal organization structure shapes architecture.
Early architectural formulations are only approximations and are
unstable. However, there are major rhythms in the architecture that
reflect areas of core business competency, and that level of concern is
more closely tied to organizational structure than the broader concerns
of the whole architectural structure.

Therefore:
Make sure the organization is compatible with the product archi-

tecture. At this point in the language, it is more likely that the architec-
ture should drive the organization than vice versa.

Organizational Style Pattern Language 247

An organization will have periodic reviews of the architecture, and
potentially of project management strategies (see STAND UP MEETING

(5.2.7)). At each of these meetings (if indeed they are separate) care
should be taken to align the structure of the architecture with the
structure of the organization, by making piecemeal changes to one or
the other.

✥ ✥ ✥

The organization and product architecture will be aligned. It
becomes easier for the pattern DEVELOPER CONTROLS PROCESS (4.1.17) to
succeed.

One reason to let the architecture dominate more than organiza-
tional concerns is that the architecture is more often constrained by the
problem, and that ties into the core reasons for the existence of the
enterprise; see ORGANIZATION FOLLOWS MARKET (5.1.9), for example.
However, political forces are also powerful and may dominate even
over core business needs; however, that usually bodes for serious
organizational struggles.

The best structure in the long term is one that comes from a three-
way alignment between the main structures of the business (domain),
the structure of the organization, and the structure of the software.
One approach is to design the major software artifacts around domain
analysis considerations and to align the organization with the architec-
ture accordingly; this works best for greenfield projects and where the
original design team is small. Another approach is to design the orga-
nization around the business needs and let the architecture follow the
organization; this is more important in legacy organizations where
“expertise tradition” may suggest both organizations and architec-
tures that don’t follow more standard domain analyses.

Of course, all three of these structures must change over time to
deal with evolution in the market, technology, and staff, though the
fundamental assumptions about relationships between parts are
unlikely to change frequently in a successful business. But even less
momentous changes must be dealt with and, more importantly, the
project must take opportunities to leverage its growing understanding
of the business, of the suitability of specific technologies to support the
business, and the organizational and system structures that can sup-
port the business. Much of this pattern language aims at maintaining

248 Chapter 5 Organization Construction Patterns

the project communication essential to the long-term alignment of
these structures. Specific patterns like STAND UP MEETING (5.2.7) should
be viewed as opportunities not only to review the architecture, but to
review the organizational structure and business strategies as well.

Gerard Meszaros (formerly of Nortel) notes that you want to bind
the organization to the architecture only after the architecture has sta-
bilized. If you bind the organization to the architecture too early, archi-
tectural drift will lead to interference between individuals’ domains of
control. On the other hand, Alistair Cockburn points out in SKILL MIX

(10.5.28) [Cockburn1996] that it is sometimes necessary to separate
subsystems according to the staff skills you have, since it takes advan-
tage of the skills the team already has.

SUBSYSTEM BY SKILL (4.2.23) addresses finer team structure with
regard to architectural considerations. DEPLOY ALONG THE GRAIN (5.2.8)
or, more specifically, OWNER PER DELIVERABLE (10.5.19) and CODE OWNER-

SHIP (5.2.13), are CONWAY’S LAW in the small. Use STANDARDS LINKING

LOCATIONS (5.2.12) to overcome the isolationism of CONWAY’S LAW.
The rationale is historical, from Conway’s timeless paper “How do

committees invent?” [Conway1968].

Organizational Style Pattern Language 249

5.1.8 ORGANIZATION FOLLOWS LOCATION **

Different parts of the country may have different cultures and architectural
styles.

I was once involved in planning a large project that was to be split between
two locations. My organization was located in a new building in Colorado
with blue carpet. The other half of the project was in New Jersey; their
building had green carpet. When I presented our plan to my organization, I
showed slides with different parts of the architecture colored blue or green,
depending on where the development was to take place. The organization got
the message immediately.

...a product must be developed in several different hallways, on dif-
ferent floors of a building, in different buildings or at different loca-
tions. This may owe to political reasons or to the need to have some
development teams colocated with remote markets, or for reasons of
standards or the distribution of physical facilities (e.g., the separation
between different trading centers, or between a radio telescope site
and a research university that uses its data), or even economic or trade
issues that drive development to a different country.

There needs to be a degree of trust and camaraderie within an orga-
nization, since an organization is a decision-making body that must
converge on and buy into joint decisions. Allegiance to an organization
falls strongly along the lines of geographic distribution.

250 Chapter 5 Organization Construction Patterns

✥ ✥ ✥

It is important to assign tasks and roles insightfully across a geo-
graphically distributed work force.

Communication patterns between project members follows geo-
graphic distribution. Coupling between pieces of software must be
sustained by analogous coupling between the people maintaining that
software. People avoid communicating with people who work in other
buildings, other towns, or overseas (see below). People in an organiza-
tion usually work on related tasks, which suggests that they communi-
cate frequently with each other.

Therefore:
The architectural partitioning should reflect the geographic parti-

tioning, and vice versa. Architectural responsibilities should be
assigned so decisions can be made (geographically) locally.

This is a variant of CONWAY’S LAW (5.1.7). Since the organization will
follow the architecture, you want the organization, architecture, and
geography to line up. Geographical considerations are often the most
severe, and since architecture can be a strong lever for organization, it
is a good tool to bring these three aspects into alignment.

One of the most significant characteristics of geographic differences
is allegiance: people are naturally more loyal to local managers than to
remote managers. This is even more extreme if a remote location is
part of a company as a result of a merger or acquisition. If work is split
between two locations where the work itself does not split cleanly, one
or the other location must be in charge. And that naturally causes
resentment on the part of the other location. Instead, try to make the
work assignments as autonomous as practical; this instills trust.

✥ ✥ ✥

Sub-organizations that can be further split or organized by market
or other criteria (see ORGANIZATION FOLLOWS MARKET (5.1.9), WORK FLOWS

INWARD (4.1.18), and others). You still need someone to break logjams
when consensus can’t be reached, perhaps using ARCHITECT CONTROLS

PRODUCT (5.2.3) or PATRON ROLE (4.2.15). If the organization is modular-
ized along geographic boundaries, and the architecture is not then it
will be impossible to apply ARCHITECT ALSO IMPLEMENTS (5.2.10): it’s dif-
ficult for the architect at one location to oversee and contribute to the
code at another.

Organizational Style Pattern Language 251

Thomas Allen [Allen1977] has found that social distance goes up
rapidly with physical separation (see also “House Cluster”
([Alexander1977], ff. 197) of Alexander). We have noted frequent cases
of international collaboration (usually overseas) that strongly exhibit
symptoms of this problem and which have had low prospects for suc-
cess owing to just such separation. This is a crucial pattern that is often
overlooked or dismissed out of consideration for political alliances or
fashion (for example, outsourcing software development is very fash-
ionable in management circles at this writing). Peter B¸rgi’s studies of
geographically distributed organizations in AT&T bore out the impor-
tance of this pattern.

We have seen few geographically distributed organizations that
exhibit positive team dynamics. There are exceptions, and there are
rare occasions when this pattern does not apply. Steve Berczuk (then at
MIT) notes: "... communications need not be poor between remote sites
if the following items are true:

1. The number of developers on a project, including all sites is
small;

2. Most of the communication is done via something like email
(wide distribution and asynchronous communication—in [one
case of his experience] ... more people were in the loop than if the
primary means of communication had been hallway chats);

3. The people involved have been together for some time so that
they feel like they know each other (this can be as short as a
kickoff meeting; see FACE TO FACE BEFORE WORKING REMOTELY

(5.1.10));

4. Folks aren’t so burned out by “unnecessary” travel that they are
willing and happy to travel when it is needed. In some situations
[complete work split by location] is not possible because of the
nature of the project, so we need a way to address the issue of
remoteness." (Personal communication with Steve Berczuk,
August, 1994.)

There are times when the market demands geographic distribution;
see ORGANIZATION FOLLOWS MARKET (5.1.9) and [Berczuk1996]. In these
cases you need FACE TO FACE BEFORE WORKING REMOTELY (5.1.10).

As an organization grows, it may want to split geographically for a
number of marketing and political reasons (DIVIDE AND CONQUER

252 Chapter 5 Organization Construction Patterns

(5.1.6)). The OTI corporation relates how it splits organizations geo-
graphically to keep reusable assets uncontaminated by each other.

That people be colocated within a building is probably more impor-
tant to organizational effectiveness than to allocate offices as perks of
seniority. Senior staff may have a need for larger or more secure offices
than junior staff, but not for an office near the rest room or an office
with a window.

See STANDARDS LINKING LOCATIONS (5.2.12) as a technique supporting
this organizational structure in the PEOPLE AND CODE PATTERN LANGUAGE

(5.2).

Organizational Style Pattern Language 253

5.1.9 ORGANIZATION FOLLOWS MARKET *

Vegetable market, San Diego, California.

....the market comprises several customers with similar but con-
flicting needs. The project has adopted sound architectural principles,
and can organize its software according to market needs.

✥ ✥ ✥

There needs to be an identified role or organization with account-
ability to each market segment.

For example, AT&T used to market both private branch exchanges
(PBXs), which customers owned and administered on site, and a fea-
ture called CENTREX that ran on telephone company switches to offer
PBX-like features to its customers. Different organizations marketed
CENTREX and PBXs, which caused confusion about how best to serve
the company’s markets.

The development organization should track and meet the needs of
each customer. Customer needs are similar, and much of what they all
need can be done in common. Different customers expect results on
different schedules.

Therefore:
In an organization designed to serve several distinct markets, it is

important to reflect the market structure in the development organi-
zation. One frequently overlooked opportunity for a powerful pattern
is the conscious design of a “core” organization, that supports only
what is common across all market segments. Ralph Johnson calls this a

254 Chapter 5 Organization Construction Patterns

framework team. It is important to put this organization in place up
front.

✥ ✥ ✥

Note that since CONWAY’S LAW (5.1.7) states that organization and
architecture are isomorphic, that the architecture must follow the
market. In reality, if the organization is set up to follow the market, it
makes it easier to have a clean architecture that follows the market
lines. The success of this pattern is necessary to the success of ARCHI-

TECT ALSO IMPLEMENTS (5.2.10), since the architect’s focus and intent are
driven much by the market. ARCHITECT ALSO IMPLEMENTS (5.2.10) should
be seen as an audit, refinement, or fine-tuning of this pattern.

Once taken care of, this pattern allows the organization to start
forming around patterns like FORM FOLLOWS FUNCTION (5.1.11) to flesh
out the structure at a finer level.

AT&T actually solved this problem in an extreme way—by spin-
ning off its PBX organization as a separate company.

Most of the rationale is in the forces. Two of the major forces relate
to individual customer schedules, and to posture the organization to
respond quickly to customer requests. Two important aspects of
domain analysis are broadening the architecture (e.g., by working at
the base class level), and ensuring that architectural evolution tracks
the vendor understanding of customer needs. A single organization
can’t faithfully track multiple customer needs, and this organization
allows different arms of the organization to track different markets
independently.

Organizational Style Pattern Language 255

5.1.10 FACE TO FACE BEFORE WORKING REMOTELY **

Camp Carson, Colorado. Colonel Wilfrid M. Nlunt, the commanding officer
shakes hands with Colonel Denetrius Xenos, military attache of the Greek
ambassador to the United States — a face-to-face meeting before working

remotely.

Designing a new aircraft is a big deal. A very big deal. It’s very involved,
very expensive, and pretty risky. It takes the coordinated efforts of many dif-
ferent teams. When the Boeing Corporation began work on the new 777 air-
plane, it brought everyone on the project together for a kickoff meeting. There
were thousands of people, all together, to get the project off on the right foot.
Fortunately, Boeing owns many large aircraft hangers, so it could accommo-
date a meeting of that size.

...market or personnel conditions sometimes require that a project
be geographically distributed. In such cases, ORGANIZATION FOLLOWS

LOCATION (5.1.8) is used to partition the work. But even when the work
is partitioned in this manner, it is a challenge to actually implement the
partitioning effectively. It may look good on paper, but the real people
will run into a host of difficulties as they work it out.

✥ ✥ ✥

256 Chapter 5 Organization Construction Patterns

The pull of local organizations is so strong that it can overwhelm
common architecture, market, and social aspects of a project.

Geographic distance makes communication harder. Different time
zones create logistical difficulties for conversations. The cultural differ-
ences that often go hand-in-hand with long-distance cooperative work
are sometimes staggering. The obvious problem is finding common
times, but there are more subtle forces at work. One project was split
between the United States and England. Conference calls took place in
the morning in the U.S., which was late afternoon in England. Conse-
quently, the U.S. people were fresh, but their colleagues in England
were winding down, ready to hit the local pub.

Difficulties in communication often weaken direct, effective com-
munication paths, shunting communications to more indirect paths
through the organization. Local leaders receive marching orders and
pass them to their colleagues, but unintentionally add their own inter-
pretation. Some may remember the children’s game, “gossip” where a
message is whispered from one player to another until it bears no
resemblance to the original message.

Although partitioning the project along geographic lines is neces-
sary it has the side effect of isolating one location from another. They
must communicate at defined interfaces (see STANDARDS LINKING LOCA-

TIONS (5.2.12)), and this results in people working on these interfaces
without being able to get to know the person at the other end. People
naturally tend not to work as well with those they don’t know. It’s
hard to work with someone who is no more than a remote keyboard or
a faceless voice on the phone.

Therefore:
Begin a distributed project with a fact-to-face meeting for

everyone. This meeting should establish project unity, as well as
give people a chance to get to know those they work with.

The meeting establishes unity by talking about project goals,
intended markets, competitors, and the project architecture (impor-
tant). (It isn’t necessary that the architecture be nailed down yet; in
fact, this can be a springboard for LOCK ’EM UP TOGETHER (5.2.5).)

The social aspects of a meeting are vitally important. Betsy Hanes
Perry notes, “It is vital to leave at least half of the on-site time as
UNSCHEDULED TIME. This allows group members to have impromptu
conversations with the people they’re closely coupled to. If you don’t
provide time for these conversations, you will find that bathroom

Organizational Style Pattern Language 257

breaks stretch on forever, and that the visitors leave frustrated.” Steve
Berczuk adds: “At Kodak we once had a group meeting of everyone in
the division, from every location. The agenda was packed so tightly
that we never really got a chance to meet each other.” These social
interactions are one of the reasons that videoconferences are no substi-
tute for the face-to-face meeting.

Every organization needs a place to call “home”. Hold the meeting
in a place that is memorable because of its uniqueness, beauty, great
food, or other memorable quality, so that the group can identify with
that place and its good memories. Hold group activities at that place,
beyond the drone of everyday business activities, that will make the
place memorable.

In a large project, the prospect of an initial face-to-face meeting may
be daunting. But the Boeing company brought thousands of people
together at the inception of the 777 project. Of course, they do own a
few planes...

✥ ✥ ✥

The importance of this initial meeting should not be underesti-
mated. For a distributed project, it may be the very best way to estab-
lish UNITY OF PURPOSE (4.2.12). Furthermore, the social aspects of
people getting to know each other go a long way toward resolving the
tension between ORGANIZATION FOLLOWS LOCATION (5.1.8) and STANDARDS

LINKING LOCATIONS (5.2.12). It sets up an environment where you can do
SHAPING CIRCULATION REALMS (5.1.12) successfully.

An initial meeting of everyone can easily be followed (often imme-
diately) by a LOCK ’EM UP TOGETHER (5.2.5) architectural session.

It may not stop with a single meeting. You may find that regular “all
hands” meetings are worth the transportation expenses.

258 Chapter 5 Organization Construction Patterns

5.1.11 FORM FOLLOWS FUNCTION

Visitors’ overlook building at Kentucky Dam. This structure is in the form of
an open shed because the other functions of TVA (Tennessee Valley Authority)

visitors’ buildings being accommodated in the nearby construction village,
there was need for shelter only at this point. Since the project is in a hot cli-
mate, ample ventilation is promoted by the open front, a balustrade height
opening toward the back underneath the display and grilles to ventilate the

roof space. Most of the displays are arranged as transparencies, with natural
illumination during the day, and with floodlights used as substitutes during

the night.

...you know the key atomic process activities, but there is little spe-
cialization and few well-defined roles. People don’t know where to
turn for answers to questions.

✥ ✥ ✥

A project must delineate well-defined roles to help identify and
leverage expertise relevant to emerging problems.

Individual activities are too small, and their sequencing relation-
ships too dynamic, to be useful process building blocks.

You could build talent lists of the individuals in an organization
and partition the work among them, but that makes the organization
sensitive to personnel changes. And it would be nice to sometimes be

Organizational Style Pattern Language 259

able to talk about the organization structure at a higher level of
abstraction than individuals.

You could organize around classical roles such as “developer” and
“designer” and “manager,” but that’s only a partial solution. These
roles don’t apply to all organizations, and stereotypical roles can’t gen-
eralize to a wide range of domains.

Activities often cluster together by related artifacts or other domain
relationships.

You want to match up specialization, expertise and experience
when staffing an organization.

Therefore:
Group closely related activities (that is, those mutually coupled in

their implementation, or which manipulate the same artifacts, or
that are semantically related to the same domain). Name the abstrac-
tions resulting from the grouped activities, making them into roles.
The associated activities become the responsibilities (job description)
of the roles. Roles, rather than activities, become the basic project
building blocks.

✥ ✥ ✥

For example, if a project depends heavily on a software library,
there should be some ownership (see CODE OWNERSHIP (5.2.13))
embodied in a role such as Librarian. The Librarian has responsibilities
and social communication patterns distinct from those of a developer,
which makes it a separate role. Other roles such as Vendor Coordinator,
Rules Developer, or Computer Graphics Artist speak to the function of the
organization and its product.

Other roles convey more subtle aspects of organizational function
and structure. One organization featured the roles Code Police and Agi-
tator, reflecting a lighthearted attitude towards what might otherwise
be considered onerous functions.

This approach yields a partial definition of project roles. Some roles
(MERCENARY ANALYST (4.1.24), developer, architect, GATE KEEPERETC.) are
canonical, rather than deriving from this pattern. Those roles, too, are
in concert with this pattern, though at a more generic level.

The idea was used in a large project re-engineering effort that Jim
Coplien worked with in March of 1994.

260 Chapter 5 Organization Construction Patterns

Louis Sullivan is the architect credited with the primordial architec-
tural pattern of this name ([Rybczynski1989], p. 162).

This pattern interacts with other structural patterns such as ORGANI-

ZATION FOLLOWS LOCATION (5.1.8), ORGANIZATION FOLLOWS MARKET (5.1.9),
and ARCHITECT ALSO IMPLEMENTS (5.2.10). Also see ENGAGE CUSTOMERS

(4.2.6).
One manager notes: “In my experience from Project Management

Audits ... projects both leave out roles (e.g., no named architect) and
define several people with the same role. The second is most problem-
atic, since it causes staff confusion. But the missing role also occurs
because projects have inexperienced managers. This is a big
problem...around System Engineering roles, or lack thereof.”

Organizational Style Pattern Language 261

5.1.12 SHAPING CIRCULATION REALMS *

Square dancing — overt shaping of circulation realms.

...in the application of communication patterns, you need to
reshape the social network of the organization to move roles closer or
further to the center, or closer or further from the customer, or to bal-
ance load, or to otherwise support some pattern of communication
structure in the organization.

✥ ✥ ✥

One cannot just expect communications to happen spontane-
ously; more so, one cannot expect any particular configuration of
communication to arise in an arbitrary social environment.

Proper communication structures between roles are key to organi-
zational success. Communication can’t be controlled from a single
role; at least two roles must be involved. Communication patterns
can’t be dictated; some second-order force must be present to
encourage them. Communication follows semantic coupling between
responsibilities.

Therefore:
Create structures in the organization or in the work space that

encourage the communication connections that support other pat-
terns.

Give people titles that creates a hierarchy or pecking order whose
structure reflects the desired taxonomy. Give people job responsibili-

262 Chapter 5 Organization Construction Patterns

ties that suggest the appropriate interactions between roles (see also
MOVE RESPONSIBILITIES (5.1.18)).

Physically collocate people whom you wish to have close communi-
cation coupling (this is the dual of the pattern ORGANIZATION FOLLOWS

LOCATION (5.1.8)).
Tell people what to do and with whom they should interact; people

will usually try to respect your wishes if you ask them to do something
reasonable that is within their purview and power.

✥ ✥ ✥

This pattern is a building block for other patterns in the language,
including ORGANIZATION FOLLOWS MARKET (5.1.9), DEVELOPER CONTROLS

PROCESS (4.1.17), DECOUPLE STAGES (5.1.16), ARCHITECT ALSO IMPLEMENTS

(5.2.10), ENGAGE QUALITY ASSURANCE (4.2.29), ENGAGE CUSTOMERS (4.2.6),
RESPONSIBILITIES ENGAGE (5.1.14), THE WATER COOLER (5.1.20), HALLWAY

CHATTER (5.1.15), SUBSYSTEM BY SKILL (4.2.23), and others. This pattern
may also apply to circulation realms outside the project through pat-
terns like FIRE WALLS (4.2.9), and many others. The goal is to produce
an organization with higher overall cohesion, with sub-parts that are
as internally cohesive and externally de-coupled as possible.

This follows an Alexandrian pattern ([Alexander1977], ff. 480) of the
same name, and has strong analogies to the rationales of “House
Cluster” ([Alexander1977], ff. 197). An analogous rationale for organi-
zational structures can be found in [Allen1977]. In fact, the organiza-
tional structure may be homomorphic with the structure of the
buildings and rooms in which the organization lives and works, so
Alexander’s pattern of the same name may be a crucial driving force
behind this ostensibly organizational concern.

Note that MOVE RESPONSIBILITIES (5.1.18) is a closely related pattern.
See related notes in the Rationale for GATE KEEPER (4.2.10).

Organizational Style Pattern Language 263

5.1.13 DISTRIBUTE WORK EVENLY *

A twenty-mule team distributes work and communication evenly.

...an organization is working to organize in a way that makes the
environment as enjoyable as possible and which makes the most effec-
tive use of human resources.

✥ ✥ ✥

It is easy to depend on just a few people to carry most of the orga-
nization’s burdens. Managers like this because it minimizes the
number of interfaces they need to manage. And some employees strive
to do all they can out of a misplaced feeling of monumental responsi-
bility. In fact, we find that PRODUCER ROLES (5.1.3) tend to have stronger
communication networks than other support roles.

But if this unevenness continues, it is difficult for a heavily loaded
role to sustain the communication networks necessary to healthy func-
tioning of the enterprise as a whole. Resentment might build between
employees who don’t feel like they are central to the action. And the
central people may easily burn out.

Define the communication intensity ratio as the ratio of the number of
communication paths of the busiest role to the average number of
communication paths per role. Empirically, one finds that the organi-
zation has a problem—some unhealthiness—if this ratio becomes too
large.

Therefore:
Try to keep the communication intensity ratio to two or less. (We

have found that it isn’t easy to get much below two.) The easiest way
to do it is to have FEW ROLES (5.1.2). It also helps to identify the PRO-

DUCER ROLES (5.1.3) and eliminate any deadbeat roles. You can also

264 Chapter 5 Organization Construction Patterns

identify all the communication to the most central role and see which
are really necessary.

Some of this communication overhead isn’t very subtle, and these
cases are easy to identify. You can eliminate redundant or misdirected
communication using simple and direct methods, without going to the
level of deep structure or principles of the organization, in these cases.

Other situations take more finesse and generativity, building on
other patterns in this pattern language.

✥ ✥ ✥

If an organization becomes so out of balance that the work is con-
centrated in a few people, the organization is more likely to have spots
of burnout. Such unevenness might also point to deeper problems in
the organization. For example, the more lightly loaded people may not
have the technical skills or the human interaction skills to be able to
integrate into the larger team or organization. Personality differences
can be compensated for with human effectiveness training programs
that help communication from the level of appreciating differences to
the level of effective presentation. Skill mismatches can be dealt with
by re-assigning people or by training.

Unbalance may also point to insecurity in the person or clique that
tries to take on all the work. Such insecurity may manifest itself as lack
of trust of others. Encounters between the insecure parties and the rest
of the project polarizes the positions of each, and a form of schismo-
genesis may set in—the rise of factions in the organization (see THE

OPEN CLOSED PRINCIPLE OF TEAMS (6.1.4)). It may show up either as the
insecure subgroup withdrawing, or as in the insecure subgroup trying
to hijack the project by strong-arming people into doing their bidding.
This may be accompanied by some of the dynamics of burnout; e.g.,
shutting down communication with “outsiders.” Patterns like GATE

KEEPER (4.2.10), JESTER ROLE, and Patron can help avoid this.
In any of these dysfunctions, it is the job of the MANAGER ROLE to

counsel the insecure or dysfunctional parties and to take strong inter-
vention. The fix is often intricate and time-consuming.

This pattern follows PRODUCER ROLES (5.1.3) and PRODUCERS IN THE

MIDDLE (5.1.4), which are prerequisite to SHAPING CIRCULATION REALMS

(5.1.12). This pattern itself is a refinement of SHAPING CIRCULATION

REALMS (5.1.12). FEW ROLES (5.1.2) makes this pattern happen.

Organizational Style Pattern Language 265

This pattern can be implemented and elaborated by using THREE TO

SEVEN HELPERS PER ROLE (5.1.21) and RESPONSIBILITIES ENGAGE (5.1.14).
Here are data on communication intensity ratio for some of our

early research subjects. We find that the successful organizations tend
to be near the origin of the graph.

266 Chapter 5 Organization Construction Patterns

5.1.14 RESPONSIBILITIES ENGAGE

The responsibilities of raising children encourage parents to be actively
engaged in their children’s lives.

...the organization has been established, and people have settled
into their roles. Communication tends to be centralized.

✥ ✥ ✥

If communication predominately flows through the center of the
organization, two things happen: communication takes too long,
and the most central roles become overburdened with communica-
tion

The most central roles in an organization have the most information
about the project, thus they are the most logical ones to transmit and
receive information. However, they are also the key producer roles in
the organization as well. So time they spend in communication
directly impacts their development productivity.

Organizational Style Pattern Language 267

But there must be central coordination (which is a weak form of
control) or some other acceptable point of control. Fully distributed
control tends to lead to control breakdown. Coordination helps
accountability, efficiency, camaraderie, can reduce decision time for
changes in the business environment (such as requirements changes),
and so forth.

Therefore:
Shuffle responsibilities among roles in a way such that outer roles

collaborate with roles other than the most central roles.

268 Chapter 5 Organization Construction Patterns

For example, a tester role may be isolated from the project. It would
be well for the tester to learn which areas of the project are especially
troublesome, so they can be tested especially rigorously. But this infor-
mation is often not forthcoming. The tester could ask the key devel-
opers what the project “hot spots” are, but this would be inefficient
and cause bottlenecks. Therefore, give the tester some project manage-
ment responsibilities, where they actively participate in status meet-
ings. They will pick up information relevant to testing through the
project management responsibilities.

Note that in some cases, moving responsibilities will actually cause
roles themselves to migrate, and even merge. In most cases, that is
actually a good thing.

✥ ✥ ✥

This infuses a level of “distributed control with central tendency”
that lends overall direction and cohesion to an organization. It comple-
ments DIVIDE AND CONQUER (5.1.6), both by providing for bonds within
organization clusters and by providing linkages between sub-clusters,
linkages less formal than a GATE KEEPER (4.2.10) role. It adds symmetry
to DIVIDE AND CONQUER.

This pattern can stand on its own, but it is nicely completed by the
application of HALLWAY CHATTER (5.1.15).

Laurie Williams notes that DEVELOPING IN PAIRS (4.2.28) achieves
some of the same effect. When she uses this in a pedagogical setting,
students learn to rely more on each other and less on the teacher for
answers to common questions.

Organizational Style Pattern Language 269

5.1.15 HALLWAY CHATTER *

One day a friend came into my office, depressed about her project. She was
in a test group, and their group was essentially shut off from the rest of the
project. They didn’t get timely information about what was happening; they
didn’t hear the latest project gossip. The only people they could talk to were
each other. Following the anthropologist Bateson, we call this condition
“schismogenesis”—the creation of schisms. Her situation was the most
striking example I had ever seen. She went on to other projects, so I didn’t find
out what ever happened with the organization. I suspect the problem wasn’t
fixed until the project was reorganized, or until a quality crisis forced them to
involve the testers better.

...the organization has been established, and people have settled
into their roles. This has led to uneven communication among the
team members, and some members do not feel a part of the team.

✥ ✥ ✥

If people are left out of the main communication flow, they
become dissatisfied, gripe among themselves, and may even leave
the project. And by the way, they can’t do their jobs as well.

When people become disengaged from communication networks,
they can feel alienated from the community. They sometimes commis-
erate with others in the same situation, forming alliances with others
who are equally distant from the center of the community. This phe-

270 Chapter 5 Organization Construction Patterns

nomenon was first observed by Bateson in the Sepik tribes in New
Guinea, and was named “schmismogenesis.” [Bateson1958]

The following interaction grid (see SOCIAL NETWORK THEORY FOUNDA-

TIONS (7.5.2)) shows an organization exhibiting schismogenesis. One
can see interactions along, but not on, the diagonal. These are best
explained as “comfort groups” that differentiate themselves according
to their shared centrality (or relative lack thereof) with respect to the
organizational structure. See THE OPEN CLOSED PRINCIPLE OF TEAMS

(6.1.4) for more on schismogenesis.

For any given role, there is a certain amount of information which is
formally required for that role to be fulfilled. But this is usually insuffi-
cient for optimal efficiency; we tend to do better when we have contex-
tual information as well as essential information.

But the hard thing is knowing what that additional information is.
It’s elusive: for example, a project might be officially on schedule, but
the developers are murmuring among themselves that development
isn’t going so well. There is nothing concrete to put one’s finger on, but
something isn’t quite right. This is important information if you are
the tester waiting for delivery.

Therefore:

Organizational Style Pattern Language 271

Move team members physically as close to each other as possible.
Be sure that people with outer roles are located close to the central
roles.

Thomas Allen [Allen1977] gives guidelines for physical distance.
Of course, some projects, for various reasons, are split geographi-

cally. This can lead to exactly this problem unless ORGANIZATION FOL-

LOWS LOCATION (5.1.8) and CONWAY’S LAW (5.1.7) are followed.
Note that it is a misapplication of this pattern to apply it to only a

subset of an organization responsible for a project. If for example, one
clusters all the developers together in a “developer’s ghetto”, and for-
gets System Test or Marketing, you violate ENGAGE QUALITY ASSURANCE

(4.2.29) and ENGAGE CUSTOMERS (4.2.6). And you actually create, rather
than alleviate schismogenesis. In addition, communication with indi-
viduals outside the project is also important. Allen [Allen1977] points
out that the high performers had significantly more communication
outside the project than low performers. See THE WATER COOLER (5.1.20)
for additional ways to encourage communication, particularly outside
the project.

✥ ✥ ✥

272 Chapter 5 Organization Construction Patterns

The pattern complements DIVIDE AND CONQUER (5.1.6) both by
encouraging symmetries within local groups, and establishing path-
ways between groups.

There are two complementary effects of this action. First, the people
in the outer roles feel like they are a part of the project, and their
morale improves. They are less likely to gripe about the project with
other outsiders because they are no longer outsiders. The second thing
that happens is that they pick up more technical information through
informal means, such as the chatter in the hallways, and they can do
their jobs better. This secondary effect is the generative nature of this
pattern: As communication improves quality and time-to-market are
improved, which tends to reduce the number of people needed for the
project, which reduces communication overhead, which helps
improve communication, and so on.

An organization consists of both roles and the people who fill those
roles. Both must be considered. While most of the patterns in this lan-
guage address one or the other, this pattern is unusual in that it
bridges the two.

A PUBLIC CHARACTER (4.2.17) such as a MATRON ROLE (4.2.18) or GATE

KEEPER (4.2.10) can be a catalyst for HALLWAY CHATTER.

Organizational Style Pattern Language 273

5.1.16 DECOUPLE STAGES

...a design and implementation process have been established for a
well-understood domain. Well-understood, high-context domains
have less need for patterns like BUILD PROTOTYPES (4.1.7) and can actu-
ally proceed well according to a standard waterfall model.

✥ ✥ ✥

Development stages should be independent to reduce coupling
and promote autonomy of teams and developers. There is a tradition
of decoupling architecture, design, and coding in a development pro-
cess. While this doesn’t make sense for most software development —
and is especially suspect for greenfield development — it sometimes
makes sense in mature, high-context development projects. But there
is still a trade-off: while independence creates opportunities for paral-
lelism, it also hampers information flow.

Therefore:
For known and mature domains, serialize the steps. Hand offs

between steps should take place via well-defined interfaces. This
makes it possible to automate one or more of the steps, or to create a
pattern that lets inexpert staff carry out the step.

274 Chapter 5 Organization Construction Patterns

✥ ✥ ✥

The new organization allows for specialization in carrying out parts
of the process, rather than emphasizing specialization in solving the
customer problem.

This approach is “safe” only for well-understood domains, where
the mapping from needs to implementation is straightforward.
Domains that are well-understood are also good candidates for mech-
anization. For less mature domains, the process should build on the
creativity of those involved at each stage of the process, and there
should be more parallelism and interworking.

You can afford to do this in high-context, mature areas because the
patterns of work are repeatable and rarely bring surprises. That means
that each stage can be carried out independently. That means less com-
munication between stages, which means better efficiency. One can
further raise the efficiency by building on specializations and domain
knowledge pertinent to individual stages. Example domains include
database administration (with steps such as database modeling, nor-
malization, and query optimization), packaging, delivery and installa-
tion, and many administrative functions like bug tracking or the high-
level business processes supporting field error report resolution.

Though interfaces between process steps help insulate the steps
from each other, these interfaces should also be effective and useful.
These interfaces shouldn’t exist for their own sake or empire-building,
or even to establish formal organization boundaries. They should
encapsulate well-understood domains of control that ease hand offs
between stages. If the interfaces increase cost and latency, they are
wrong: either they have been implemented improperly or they
shouldn’t be there at all.

This pattern prepares for HUB SPOKE AND RIM (5.1.17).

Organizational Style Pattern Language 275

5.1.17 HUB SPOKE AND RIM

...you have a design and implementation process in a well-under-
stood domain, and want to implement the principles of DECOUPLE

STAGES (5.1.16). The organization is mature and the process well-under-
stood; it is fairly well optimized and has good partitioning in the spirit
of DIVIDE AND CONQUER (5.1.6). Mature development organizations
have well-defined development stages—such as requirements acquisi-
tion, design, and coding.

✥ ✥ ✥

Some processes can almost be automated, but still require a
degree of human intervention and coordination. This is particularly
true for highly detailed processes.

For example, even if a process is mature enough to have well-delin-
eated development phases, it may need additional mechanisms to
integrate these stages and coordinate the interactions between them.

Process stages should be decoupled to reduce the communication
associated with hand offs and promote independence between stages.
Such independence creates opportunities for parallelism and increased
throughput. Yet independence generally hampers information flow.

276 Chapter 5 Organization Construction Patterns

Therefore:
Link each role to a central role that orchestrates process activities,

with the activities taking place serially. The hub plays a simple coor-
dination and management function to ensure all steps are completed
successfully, while the work is done in the rim. The “rim” carries the
hand off and its associated information between roles. The “spokes”
provide the link to the central coordinating agent, and are lighter links
of communication than between the “rim” roles.

This organization, a front-end process for a large development
project, exhibits HUB SPOKE AND RIM:

The process supports sales and marketing activities and is highly
responsive.

The hub role should be encouraged to avoid micro-managing, par-
ticularly with respect to the mechanisms individual rim roles use in
achieving their tasks. The hub role should scrutinize deadlines and
schedules and should be in close enough contact with the rim roles to
facilitate hand offs from role to role if necessary, and to communicate
the state changes to other parts of the project as necessary. In this
sense, the hub role can also act as a natural FIRE WALL for the rim roles.

✥ ✥ ✥

Organizational Style Pattern Language 277

The rim roles still maintain a good modicum of autonomy; each can
focus on its own domain-specific task. There need not be any essential
domain coupling between the roles on the rim; the only coupling is
with respect to sequencing. The hub can coordinate that coupling and
can optimize it (juggle priorities, give different projects or customers
different priority) to meet project priorities. The hub is a management
role rather than a development role—a controller or sequencer. The
hub role holds things together and ensures that progress ensues from
state to state. Here, we want to ensure progress in the process; compare
with the design pattern SOMEONE ALWAYS MAKES PROGRESS (4.1.20). HUB

SPOKE AND RIM is an implementation pattern that achieves the intent of
SOMEONE ALWAYS MAKES PROGRESS (4.1.20) in a limited context.

Prof. Aaron Gelman (Northwestern University) notes that in the
contemporary airline market, the hub pattern contributes to conges-
tion. Many airlines are acquiring small planes that can take small num-
bers of passengers directly between end destinations, acting as “hub
busters” and relieving such congestion. The analog is a concern for
over-application of this pattern. (WBBM Radio News, Chicago, IL,
Sep. 30, 2000)

The organization must be wary of the central role becoming a bot-
tleneck, and address such bottlenecks with other patterns (e.g., MOVE

RESPONSIBILITIES (5.1.18)).
This configuration has higher latency than a highly coupled pro-

cess, but it is likely to be able to support higher throughput (see COU-

PLING DECREASES LATENCY (5.1.22)). However, it cannot easily support
essentially creative processes that are common to design, coding, and
testing. In the creative process of design, communication is more
important than sequencing, since a repeatable sequence is unlikely to
be found in such a creative process.

In a less mature domain, it is more appropriate to apply DEVELOPER

CONTROLS PROCESS (4.1.17) as the alternative. Most domains in fact lack
the maturity for HUB SPOKE AND RIM to be appropriate.

Parallelism can be re-introduced if the central role pipelines activi-
ties become a bottleneck.

278 Chapter 5 Organization Construction Patterns

5.1.18 MOVE RESPONSIBILITIES *

Moving responsibilities among roles is a delicate balancing act.

...you want to change the communication patterns of the organiza-
tion as a whole, not in a way that depends on a specific role, but in a
way that optimizes the effectiveness of communication of an entire
organization.

✥ ✥ ✥

Unscrutinized relationships between roles can lead to poor
overall patterns of coupling in the greater organization.

In the spirit of CONWAY’S LAW (5.1.7), organizations tend to form
around loci of communication; that is, the roles tend to communicate
chiefly with each other, rather than to other (small) organizations in
the larger enterprise. But some roles find themselves pulled in two dif-
ferent directions: they have substantial communication needs outside
the organization.

You want cohesive roles. And you want cohesive organizations. De-
coupled organizations are more important than cohesive roles. And
there may be fundamental trade-offs between coupling and cohesion.

Organizational Style Pattern Language 279

Moving an entire role from one process or organization to another
doesn’t reduce the overall coupling, but only moves the source. You
could move a person from one organization to another organization to
make things more balanced, but responsibilities don’t always align
with individuals. You could replicate responsibilities across multiple
roles or organizations to increase locality; however, that tends to con-
fuse ownership and coordination, and is not guaranteed to decrease
the coupling, anyway.

Therefore:
Move responsibilities from the role that creates the most undesir-

able coupling, to the roles coupled to it from other processes. Simply
said, this is load balancing. The responsibilities should not be shifted
arbitrarily; a chief programmer team organization is one good way to
implement this pattern (in the context for Developer role responsibili-
ties).

✥ ✥ ✥

The new process may exhibit more highly de-coupled groups. It is
important to balance group cohesion with the de-coupling, so this pat-
tern must be applied with care. For example, the Developer role is
often the locus of a large fraction of project responsibilities, so the role
appears overloaded. Arbitrarily shifting Developer responsibilities to
other roles can introduce communication overhead. A chief pro-
grammer team approach to the solution helps balance these forces.

HALLWAY CHATTER (5.1.15) is an alternative load-balancing pattern;
RESPONSIBILITIES ENGAGE (5.1.14) can be seen as a refinement of this pat-
tern that evens load. UPSIDE DOWN MATRIX MANAGEMENT (5.1.19) is a
refinement of this pattern that’s particularly applicable across enter-
prise boundaries.

Most of the design rationale follows from the forces themselves.
This is isomorphic to Mackenzie’s model that task interdependen-

cies, together with the interdependencies of task resources and their
characteristics, define project roles [Mackenzie1986].

280 Chapter 5 Organization Construction Patterns

This organization can be improved by redistributing some of the
responsibilities of Tester at the bottom center.

Organizational Style Pattern Language 281

5.1.19 UPSIDE DOWN MATRIX MANAGEMENT *

A rowing team has a single point of reporting and allegiance, embodied by the
coxswain.

...you are assembling teams, and tend to build teams and organiza-
tions within the framework of the indigenous corporate structure.

✥ ✥ ✥

Sometimes it is difficult to reconcile a task or work function with
the existing organization of the enterprise.

Assigning work to groups within your own organization may
starve them from resources or expertise that they need. While GATE

KEEPER (4.2.10) and other roles can deal with this problem in degree,
sometimes the need is so great that no existing organizational struc-
ture seems to fit the need.

For example, you may not have staffing resources that fit a given
profile of domain expertise, which makes it difficult to achieve DOMAIN

EXPERTISE IN ROLES (4.2.22). Or you may not be able to achieve sched-
uling goals with the staffing constraints of your organization. Or the
problem may beg interdisciplinary solutions that don’t fit your current
structure: the logical and physical business architectures may not be
aligned.

You could reorganize into a new set of disjoint groups that are a
better fit for the problem, but there are always concerns that cut across

282 Chapter 5 Organization Construction Patterns

others, so there is no guarantee that a useful disjoint partitioning even
exists.

Any team assignments you make may have long-term repercus-
sions for the organization and architecture (per CONWAY’S LAW (5.1.7)).
While some teams can be created to address intermittent problems,
some of these “misfit” needs reflect bona fide long-term core compe-
tencies or business concerns. That begs an organization to nurture
such work.

Therefore:
Form new groups from the right roles and people in a way that

may cut across the current organizational structure. Temper legacy
structures that owe to casuistic barriers (historical, political, or organi-
zational boundaries). Challenge financial barriers that keep the dys-
functional partitionings in place by adjusting funding models.

Often these new structures can be found in organizations other than
your own. Consider creating these structures in the customer space, or
partner with other internal organizations, external contractors, and
suppliers to fill these organizational needs. However, beware of
jumping to the outsourcing solution. Carefully create groups and
teams around key areas of competency and concern, letting the parti-
tioning fall across enterprise boundaries where it may. Temper with
the pattern ORGANIZATION FOLLOWS LOCATION (5.1.8); its forces are prob-
ably more powerful than those at work here.

Note the name of this pattern. In a matrix-management paradigm,
individuals or groups are asked to report to two (or more) managers in
an attempt to solve this problem. This turns that notion on its head:
instead of multiple reporting roles, a separate team is formed, so that
the team members have a single point of reporting and allegiance.

✥ ✥ ✥

In his pattern WORK ALLOCATION (10.5.29), which is related to this
one, Beedle reports use of this pattern between Navistar and Good
Year. Navistar has shifted some of its work back to its suppliers.
Instead of managing its own warehouse inventory of tires to be
installed on the trucks it manufactures, it delegates Good Year, its sup-
plier to do that, because they have better inventory management
methods. He also reports similar arrangements between Wal Mart and
its suppliers, and between Ford and its suppliers.

Organizational Style Pattern Language 283

THE WATER COOLER (5.1.20) is similar to this pattern, but works in the
space of everyday social life rather than in institutional structures.

284 Chapter 5 Organization Construction Patterns

5.1.20 THE WATER COOLER *

Boys cooling off around a fire hydrant, Chicago, Illinois, 1941. The cool water
of the fire hydrant created a setting for social interaction among the boys.

When I transferred to the Forward Looking Work department at Bell Labo-
ratories, I eventually found myself working for a manager who was a fanatic
hobby runner. Each day, instead of taking lunch he would take a five-mile run
outside, even in inclement weather. Several of his group members, not to men-
tion several of his peer managers, were also runners. There was a culture of
cross-organizational communication both in the locker room (a makeshift con-
verted service corridor) and on the running trails that surrounded the site. I
quickly learned that becoming a runner was a good way to have communica-
tions with the boss that could venture into topics that would be difficult in the
office.

...your teams are starting to build identities. Team locality and iden-
tity lead to isolation and insularity in team dynamics.

✥ ✥ ✥

Organizations need cross-team structures that guard against isola-
tion.

In a large organization, individual teams build their identity around
their team or geographic location. In a large building it is difficult to
support frequent interaction across teams; most “excuses” to visit
another team arise in the forms of meetings and other formalisms that

Organizational Style Pattern Language 285

don’t support spontaneous communication. Distance, inconvenience,
or xenophobia (a “belonging at home” feeling) discourage such
informal interactions.

Yet people need to have social contact with each other. And in fact
people want to “get out” now and again to see what life is like on the
other side of the fence, in other organizations.

Therefore:
Encourage social structures that are unrelated to workplace struc-

tures and which will likely cut across the formal partitioning of the
organization.

The Water Cooler is the time-honored example of this pattern. One
Alliance site in Vienna has a strong coffee culture that revolves around
coffee machines on each floor of each wing of the building and one can
find small groups congregating there all day, especially mid-morning
and mid-afternoon. Another common (but dieing) practice is the
smoker’s area; in Schlumberger in Houston, members of this group
would gather at an outside terrace; in another company, they met
secretly in the stairwell.

At the Navision company in Copenhagen, there was a strong food
culture: the company served breakfast and lunch. Breakfast in partic-
ular was a time of social connection, a relaxed beginning to the day.
The company also had well-stocked refrigerators and pantries for
snacks during the day, and many of these were enjoyed in a group set-
ting. Food is fun, and is a key element of any culture, but the main con-
tribution to the communication network comes from the social
structures built around food.

Corporate clubs, singing groups, running clubs, chess clubs, and a
million other social structures can also help serve this purpose. What
can you do to encourage such structures? Give them a place to be.
Buying a coffee machine or water cooler provides a place for the social
dynamics to unfold. Make it special. People won’t come by for coffee
that is worse than instant coffee they can make in their office. Investing
in quality also has the benefit of demonstrating a sense of caring
within the organization.

Remember: location, location, location! You can’t just plop a water
cooler down in a hallway and expect people to congregate around it;
you must put it in a place where people can sit or stand comfortably
for a time. You may wish to incorporate several of Alexander’s pat-
terns [Alexander1977] as you lay it out. The research department in

286 Chapter 5 Organization Construction Patterns

AT&T where both authors worked for a time had a room with com-
fortable furniture and a pleasant ambiance. As an added draw, it had a
small library. On the other hand, one facility had a water cooler stuffed
in a back storeroom of a lab with restricted access—it was no more
than a place to get (or perhaps just store) cold water.

✥ ✥ ✥

This pattern not only gives people a break during the day, but it
contributes to fundamental human needs and desires that lie in the
deep foundations of any human culture. And it will contribute
strongly to inter-team communication: most professional communica-
tion takes place outside formal channels [GrinterHerbsleb2000].

One potential danger in this pattern is "cliquishness,’’ a form of
schismogenesis (see THE OPEN CLOSED PRINCIPLE OF TEAMS (6.1.4)). If the
group is in any way exclusive, some people will feel left out; the locker
room example is one such example. A runners’ club may literally leave
non-members (and even novice members) behind. Coffee clubs might
be uncomfortable for those who do not drink coffee. Problems of com-
plementary schismogenesis can be solved by having a bounty of such
cross-cutting organizations, but that can also lead to symmetrical
schismogenesis. A better solution, where feasible, is to broaden the
base of the organization (e.g. the coffee corner can also offer tea and
juice). But a healthy environment should be able to sustain even highly
specialized groups. In all cases: build on the local culture and its
mores.

This pattern rounds out UPSIDE DOWN MATRIX MANAGEMENT (5.1.19)
by going outside the context of the business interests of the enterprise,
building on potentially deeper social relationships and normative
practices of the culture of the area, town, or other constituency. It com-
plements and rounds out RESPONSIBILITIES ENGAGE (5.1.14) as an inde-
pendent pattern.

This pattern is similar to HALLWAY CHATTER (5.1.15); in fact, both
work to improve informal communication. But notice the difference:
HALLWAY CHATTER moves people close so that they will go to each
others’ offices or cubicles. That communication, while informal, is
planned, and tend to be more of a technical nature. On the other hand,
THE WATER COOLER enables chance meetings and non-technical conver-
sations. Both are necessary and these patterns are complementary.

Organizational Style Pattern Language 287

Combined with an application of ENGAGE CUSTOMERS (4.2.6) where
you seat your developers in the customer work space, THE WATER

COOLER can be a powerful way to uncover important requirements
details. Beyer and Holtzblatt ([BeyerHoltzblatt1998], p. 37) relate:

 Many of the important aspects of work are invisible, not
because they are hidden, but just because it doesn’t occur to
anyone to pay attention to them. Intuition doesn’t help make
these aspects explicit:

 An entire project team hangs out in the hallway outside their
offices every morning and chats over coffee and donuts. Does
anyone on the team know this is a critical project coordina-
tion session?

 A worker in accounting calls a friend in order processing to
gossip and mentions that a rush order is on its way. Does his
manager know this informal communication is the only thing
keeping the company’s rush orders on time?

288 Chapter 5 Organization Construction Patterns

5.1.21 THREE TO SEVEN HELPERS PER ROLE

Chef and helpers in the camp kitchen. Allegan project, Michigan, 1937.

...the organization has a basically functional social network. The
organization shows overly strong centrality; individual roles are over-
loaded while others are starved for communication.

✥ ✥ ✥

An effective organization has a well-balanced distribution of
communication.

You don’t want to overload specific roles with interrupts, chatting
with people, and meeting, which is a waste of resources. That causes
the organization to be limited by overutilized resources. Manager roles
often suffer from this problem, but so do roles staffed by domain
experts. On the other hand, you must not starve other roles of human
interaction, which drives them to work ineffectively and which results
in a lowered process efficiency. Underutilization relates to information
starvation and poor coupling to other roles. Overutilization can be
caused by having too many suitors, particularly in the case where pro-
ductivity falls because of thrashing, context switching, or indecision.

Therefore:
Organize the enterprise so each role has three to seven long-term

stable relationships.

Organizational Style Pattern Language 289

You can do this using MOVE RESPONSIBILITIES (5.1.18) and other ORGA-

NIZATION CONSTRUCTION PATTERNS (CHAPTER 5). Most of this load bal-
ancing can build on intuitive and innovative shifting of work.

✥ ✥ ✥

This leads to a more balanced organization, with better load-
sharing and fewer isolated roles. It helps DISTRIBUTE WORK EVENLY

(5.1.13).
It is possible, with a lot of focus and energy, to increase coupling

and decrease latency, particularly for short periods of time; see COU-

PLING DECREASES LATENCY (5.1.22).
For roles such as domain experts that become magnets for people,

use a pattern like SACRIFICE ONE PERSON (4.1.22) or DAY CARE (4.1.23) to
balance load.

Our empirical results from the organizations studied in the Pasteur
project show that, in most projects, any given role can sustain at most 7
long-term relationships. In particularly productive organizations, the
number can be as high as 9. Particular needs might suggest that the
process designer go outside these bounds, if doing so is supported
with a suitable rationale.

The following histogram presents a distribution of collaborations
per role for the roles in our early organizational analyses:

The highest number of organizations (ten of them) is able to sup-
port four collaborators per role. As the number of collators per role
increases we find fewer and fewer organizations are able to sustain

290 Chapter 5 Organization Construction Patterns

those levels. But about 75% of the organizations can sustain three to
seven helpers per role.

Communication between roles is complete in an organization if
every role communicates with every other role. As stated in DISTRIBUTE

WORK EVENLY (5.1.13), the communication intensity ratio of an organiza-
tion is the ratio of the number of communication paths of the busiest
role to the average number of communication paths per role. For a
given project size, Harrison has found this ratio to be lower in highly
product ive organiza t ions than in average organiza t ions
[HarrisonCoplien1996].

Organizational Style Pattern Language 291

5.1.22 COUPLING DECREASES LATENCY *

Northern Pacific freight train going over Bozeman Pass. Gallitan County,
Montana.

...the organization supports a service process or, in some special
cases, a small design/implementation process using an iterative or
incremental approach. Responsiveness is important, but you note that
development intervals are too long and market windows are not met.

✥ ✥ ✥

The structure of an organization can artificially reduce the
throughput and increase the latency of business processes. And in
some business processes, speed (time-to-market, service responsive-
ness) are of the essence. An organizational structure that causes infor-
mation to flow through many roles not only increases latency (delay),
but can cause loss of information fidelity. Like light, as information
passes through many filters, it loses definition and accuracy.

Process stages should be independent to reduce coupling and
thereby promote developer independence; developers can be more
effective the less that their work is encumbered by communication.
Furthermore, independence improves opportunities for parallelism.
But independence hampers information flow.

Therefore:
Open communication paths between roles to increase the overall

coupling/role ratio, particularly between central process roles. Com-

292 Chapter 5 Organization Construction Patterns

munication between roles can be shaped using patterns such as WORK

FLOWS INWARD (4.1.18), which helps concentrate more communication
on the core of the organization, and RESPONSIBILITIES ENGAGE (5.1.14),
which deals with the issue more broadly. Both of these can be helped
more generally with MOVE RESPONSIBILITIES (5.1.18).

This pattern suggests either increasing the density of the communi-
cation network, or finding the key communication paths that are
important to market success and focusing on making them more effec-
tive (e.g., communications between marketing and engineering). This
organization, a support organization, has a highly responsive process,
which owes in part to its high degree of internal coupling:

The second approach is more difficult because it’s difficult in gen-
eral to know which communication links are more important than
others. Organizational introspection can help identify such links, how-
ever.

✥ ✥ ✥

Coupling of course increases dependence between roles, which
may not always be a good thing.

This pattern is somewhat related to INTERRUPTS UNJAM BLOCKING

(4.1.25). Information flow in an organization can be compared to a
batch processing system or a timesharing system. In the batch mode of
communication, information comes through certain central roles in the

Organizational Style Pattern Language 293

organization (generally manager-type roles), and then is disseminated
to the producer roles. In a timesharing mode of communication, inter-
rupts drive the communication, thus decreasing communication
latency, as information flows to the producer roles directly and in a
timely manner.

Hand offs can increase latency. The number of “hops” between
roles should be kept small for any given problem. Eliminating “pipe-
line” and “deadbeat” roles helps eliminate hops. One way to do so is
to use HUB SPOKE AND RIM (5.1.17), where appropriate. In fact, that pat-
tern is a logical step from this one. Occasional close coupling between
developers and testers reduces administrative overhead, which
reduces latency.

The pattern is based on a basic software engineering principle that
reflects itself in the organization.

5.1.23 Standards Linking Locations
See Section XXX.

294 Chapter 5 Organization Construction Patterns

5.2 People And Code Pattern Language

The Pattern Language

A Story About People and Code
“The system engineer wrote a set of requirements, then left the

project.” That was hardly an auspicious beginning to a project. Yet in
spite of this initial setback, or perhaps in part because of it, the team
came together in a remarkable way to complete the project on time. We
learned much from analyzing this team.

Project development began with designing an architecture, but
there was no single architect; instead there was an ARCHITECTURE TEAM

(5.2.4). (A manager later commented that he could not identify a single
architect, because the team knew the architecture so well. See MOD-

ERATE TRUCK NUMBER (4.2.24).) The team met numerous times to create
the architecture, but made little progress until they isolated themselves
(LOCK ’EM UP TOGETHER (5.2.5)). When they came out, they had an archi-
tecture that guided them through the project (ARCHITECT CONTROLS

PRODUCT (5.2.3)). As importantly, they had a very high degree of UNITY

Architect
Also

Implements

Feature
Assignment

Generics
And

Specifics

Developing
In

Pairs

Architect
Controls
Product

Architecture
Team

Deploy
Along
The

Grain

Owner
Per

Deliverable

Stand
Up

Meeting

Lock
Em
Up

Together

Code
Ownership

Function
Owner

And
Component

Owner

Private
Versioning

Subclass
Per

Team

Variation
Behind

Interface

Factory
Method

Distribute
Work

Evenly

Team
Per
Task

Hierarchy
Of

Factories

Parser
Builder

Incremental
Integration

Private
World

Smoke
Filled
Room

Unity
Of

Purpose

Loose
Interfaces

Standards
Linking

Locations

People And Code Pattern Language 295

OF PURPOSE (4.2.12). All the architects practiced ARCHITECT ALSO IMPLE-

MENTS (5.2.10).
The project was geographically split, which created a natural orga-

nization break. They recognized the need for CONWAY’S LAW (5.1.7) and
ORGANIZATION FOLLOWS LOCATION (5.1.8). In practice, this led to CODE

OWNERSHIP (5.2.13) and FEATURE ASSIGNMENT (5.2.14). They defined inter-
faces over time (LOOSE INTERFACES (5.2.17)), and while they hardened
the interfaces, they allowed VARIATION BEHIND INTERFACE (5.2.15).

The project had a unique twist to DEVELOPING IN PAIRS (4.2.28). They
had group debugging! In fact, the entire team at one of the locations
would all gather around one person’s computer to debug problems. It
didn’t turn out to be any less efficient than single-person debugging,
but it had the benefits of maintaining a MODERATE TRUCK NUMBER and
preserving the architectural integrity of the system. Interestingly, since
the entire team was present, the group debugging sessions also served
many of the purposes of the STAND UP MEETING (5.2.7).

The team had some novices, and used GENERICS AND SPECIFICS

(5.2.11) to help make the novices productive.
At the end of the project, personnel from a partner company paid

them a very high compliment: “We don’t believe any other company
could have pulled it off.”

5.2.1 Community Of Trust
See Section 4.1.1.

5.2.2 Conways Law
See Section 5.1.7.

296 Chapter 5 Organization Construction Patterns

5.2.3 ARCHITECT CONTROLS PRODUCT **

...an organization of developers exists and needs strategic technical
direction.

✥ ✥ ✥

Even though a product is designed by many individuals, a project
must strive to give the product elegance and cohesiveness. One
might achieve this by centralizing control, but totalitarian control is
viewed by most development teams as a draconian measure. One
person can’t do everything, and no single person has perfect foresight.
However, the right information must flow through the right roles;
individual areas of competency and expertise must still be engaged.

Furthermore, there needs to be some level of architectural vision.
While some domain expertise is distributed through the ranks of the
development team (DOMAIN EXPERTISE IN ROLES (4.2.22)), the system
view — and in particular, the design principles that create a common
culture for dialogue and construction — usually benefit from the con-
ceptual integrity we associate with a single mind or small group.

Therefore:
Create an Architect role as an embodiment of the architectural

principles that define an architectural style for the project, and of the
broad domain expertise that legitimizes such a style. The Architect
role should advise and influence Developer roles, and should commu-
nicate closely with them. The Architect doesn’t dictate interfaces

People And Code Pattern Language 297

(except in cases where arbitration is necessary). Instead, the Architect
builds consensus with individual developers, developer sub-teams,
and if necessary with the entire development staff, commensurate
with the architectural style. The Architect is the principal bridge-
builder between development team members.

The Architect should also be in close touch with Customers so the
domain expertise is current, detailed, and relevant.

✥ ✥ ✥

This does for the architecture what the PATRON ROLE (4.2.15) pattern
does for the organization: it provides technical focus, and a rallying
point for technical work as well as market-related work.

The architect doesn’t control the product in any dictatorial sense; it
is more inspirational guiding and leadership. We could have called
this “ARCHITECT LEADS PRODUCT” or “ARCHITECT GUIDES PRODUCT” but all
these words have their own problems.

Resentment can build against a totalitarian Architect; use patterns
like STAND UP MEETING (5.2.7) to temper this one.

Intellectually large projects can build an ARCHITECTURE TEAM (5.2.4).
We have no role called Designer because design is really the whole

task. Managers fill a supporting role; empirically, they are rarely seen
to control a process except during crises.

While the Architect controls the architectural direction, the DEVEL-

OPER CONTROLS PROCESS (4.1.17), and there is still an OWNER PER DELIVER-

ABLE (10.5.19). The Architect is a “chief Developer” (see pattern
ARCHITECT ALSO IMPLEMENTS (5.2.10)), or as Alexander thinks of himself,
a “master builder.” Their responsibilities include understanding
requirements, framing the major system structure, and guiding the
long-term evolution of that structure. The Architect controls the
product in the visualization accompanying the pattern ENGAGE QUALITY

ASSURANCE (4.2.29).
Because ORGANIZATION FOLLOWS LOCATION (5.1.8) and CONWAY’S LAW

(5.1.7), there should probably be an architect at each location. Archi-
tects can be the focus of local allegiance, which is one of the most pow-
erful of cultural forces in geographically distributed development.

A more passive way of implementing this is to have the architect
review everything. We have seen this work in several projects. How-
ever, in most of these projects, we fear that it put the “truck number”

298 Chapter 5 Organization Construction Patterns

in danger (see MODERATE TRUCK NUMBER (4.2.24)). Also, if there is a con-
scious plan for the architect to review everything, the architect — in
capacity as a developer (see ARCHITECT ALSO IMPLEMENTS (5.2.10)) may
“swoop” and fix things that are the responsibility of others (see CODE

OWNERSHIP (5.2.13)). Such “swooping” can be demoralizing to the orig-
inal code author. The architect can review everything if that role still
defers to the implementor for execution and even for the decision
about making the change. See, of course, STAND UP MEETING (5.2.7).

Architectural control must balance developer authority, and this
role of being “keeper of the flame” and of the principles should tread
neither on developers’ feelings of ownership of their code, nor on their
ownership of the code development processes. Architects intervene in
processes largely at the business level, and should meddle in imple-
mentation processes only in exceptional circumstances.

“Les oeuvres d’un seul architect sont plus belles...que ceux d’ont
plusiers ont taché de faire.” (“The works of a single architect are more
beautiful than those that several have tried to achieve”) — Pascal, Pen-
sées.

People And Code Pattern Language 299

5.2.4 ARCHITECTURE TEAM *

Architects and engineers studying plans for Greenhills project, Ohio. 1936

...you have a project direction defined, and now you need to come
up with a structure for the system.

✥ ✥ ✥

You need to create an architecture that is simple and cohesive, but
which accommodates a variety of constituencies.

Most systems are too large for a single mind to analyze and resolve.
Not only is the system to complex for a single person but the architec-
ture must accommodate multiple viewpoints to be successful. You can
solve this with a team of architects who bring diverse views, but the
collision of diverse views brings difficulties of its own.

A design by committee usually looks that way. It tends to result in
everything being added, even the kitchen sink! (Try to get a picture of
the Denver Public Library here.)

Committees are inherently less efficient than individuals (see SOLO

VIRTUOSO (4.2.5) for example.) Yet there is safety in a team; it makes it
possible to keep a MODERATE TRUCK NUMBER (4.2.24).

The entire organization will need to accept the architecture. The
more people that are involved in the architecture, the better chance
one has of “selling” the results. But the more constituencies involved,
the more difficult it is to come to agreement in the first place.

Therefore:

300 Chapter 5 Organization Construction Patterns

Create a small team of resonating minds to define the initial archi-
tecture, in such a way that the team covers the expected partitioning
of the system. The key idea is that most or all the team members
should come away with a piece of the system for which they have
architectural responsibility. While this may appear to be trying to pre-
dict the future, one can usually easily identify the areas of grossest par-
titioning beforehand. For example, it is probably easy to guess a
system might have a user interface, back-end storage, and internet
communication areas. The careful selection of the team is aimed at pre-
venting the “designed by committee” look.

Other representatives may be needed to round out the team. Luke
Hohmann notes the difference between the technical architecture and
the marketing architecture; the marketing viewpoint may be very
valuable in this team.

The ARCHITECTURE TEAM’s task is to create a high level partitioning.
There remains much architectural work to be completed at lower
levels. Charles Weir designates the high level architecture team as the
“Master”, while “Journeyman architects” take on the design of the
smaller pieces. The Master-Journeyman (10.5.17) pattern also suggests
typical partitioning of core architecture, architectural vision, interfaces,
and specification control [Weir1998].

✥ ✥ ✥

Legitimizing this activity as a team, with organizational structure,
lends support to the social interaction necessary to forming and sus-
taining the shared vision (see UNITY OF PURPOSE (4.2.12)).

The team should have a periodic STAND UP MEETING (5.2.7) to main-
tain the architectural integrity of the system. Early in the project, these
meetings can take place daily.

Note that an architecture team focuses on the initial architecture. The
result should be a gross partitioning of the system, allowing members
of the architecture team to be architects of their own subsystems (see
also CONWAY’S LAW (5.1.7).)

The best way to accomplish a shared architectural vision is prob-
ably through the use of LOCK ’EM UP TOGETHER (5.2.5).

HOLISTIC DIVERSITY (4.2.19) is a pattern that ties together the multiple
teams such as infrastructure teams and other teams relating to indi-
vidual domains and technologies. The ARCHITECTURE TEAM may either

People And Code Pattern Language 301

be such a team or contribute to a cross-disciplinary team that goes
beyond architectural issues into issues of business and implementa-
tion.

This pattern is a refinement of Harrison’s “Diversity of Member-
ship” [Harrison1996].

This pattern draws heavily on Gerard Meszaros’ ARCHITECTURE DEFI-

NITION TEAM (10.5.4). Gerard further suggests that there be a separate
ARCHITECTURE ORGANIZATION that owns the architecture. Here, we pro-
pose that ownership and function be tied together. This pattern also
arises in Alistair Cockburn’s analysis of the interaction between
HOLISTIC DIVERSITY (4.2.19) and SUBSYSTEM BY SKILL (4.2.23). See also
ARCHITECT CONTROLS PRODUCT (5.2.3) and ARCHITECT ALSO IMPLEMENTS

(5.2.10).

302 Chapter 5 Organization Construction Patterns

5.2.5 LOCK ’EM UP TOGETHER *

...you have an ARCHITECTURE TEAM (5.2.4) to pull together the initial
structure of the project, and need to get off top dead center and move
toward production.

✥ ✥ ✥

A team of different people must come up with a single, coherent
architecture.

A product needs a single architecture that is self-contained and con-
sistent. But programmers have a (strong) tendency to work separately.
Each person’s design bears that person’s unique signature; many
people working on separate parts of an architecture will produce parts
that do not necessarily work well together. Designs by committee usu-
ally look that way. You can allow a single person to create the architec-
ture, but then not everybody will understand it (and follow it), and
you are vulnerable to that person getting hit by a truck.

Therefore,
Gather everyone together to work out the architecture (or some

other strategic issue). Put them all in the same room (literally.) Every

People And Code Pattern Language 303

person must commit to total participation until the architecture is com-
plete enough that a clear picture has emerged.

There are two keys to this pattern. The first is that everyone must be
physically together, in the spirit of FACE TO FACE BEFORE WORKING

REMOTELY (5.1.10). This is necessary to ensure good communication at
this critical time. Teleconferences are not sufficient.

The second key is that the architecture team must commit totally;
the team members must be insulated from distractions and interrupts.
In effect, a temporary organization is created for the architecture effort:
previous responsibilities are suspended, and existing collaborations
are broken for a time.

Both these keys are critical to provide continuity of ideas, so that the
architecture can coalesce.

Note that like ARCHITECTURE TEAM (5.2.4), this work is only to create
an initial architecture, resulting in a gross partitioning of the system.

✥ ✥ ✥

This pattern is superficially very similar to FACE TO FACE BEFORE

WORKING REMOTELY (5.1.10), but they are essentially different, and both
are vital. The purpose of FACE TO FACE BEFORE WORKING REMOTELY is the
establishment of roles, allegiances, and building teams. The purpose of
LOCK ’EM UP TOGETHER is to hammer out technical issues. However, the
two might happen at the same time.

This pattern works best when UNITY OF PURPOSE (4.2.12) is in effect,
although the LOCK ’EM UP TOGETHER patern can help achieve UNITY OF

PURPOSE.
Variants of LOCK ’EM UP TOGETHER can bring teams together in other

development phases, too. In Western Geco (a Schlumberger company)
the development team sometimes spends days together in cramped
quarters at their deployment site: a ship at sea. This experience inevi-
tably helps team members to get to know each other better, and leads
both to team binding and a binding between the team and its end-user
constituency on the boat.

This approach also works well for other combinationss of constitu-
encies: not only architects and coders, but architects and users, mar-
keting folks and customers and end users, and so forth. This approach
is central to Joint Application Development (JAD, [Kendall2002], p.

304 Chapter 5 Organization Construction Patterns

132). See also ARCHITECT ALSO IMPLEMENTS (5.2.10). PATRON ROLE (4.2.15)
helps make this happen.

SMOKE FILLED ROOM (5.2.6) is a dark variant of this pattern.

People And Code Pattern Language 305

5.2.6 SMOKE FILLED ROOM

Alias: Brown Bar, Cabale

Smoking room, Paul Smith’s Casino, Adirondack Mountains

...as in LOCK ’EM UP TOGETHER (5.2.5), an enterprise comprises a
diverse group of people with varying positions, and find themselves
in a context where they are a bit afloat with respect to their assump-
tions about going forward. This may be precipitated during the early
stages of a new group or as a result of a externally imposed policy
change.

✥ ✥ ✥

An organization must make a timely decision about urgent stra-
tegic directions.

You would like everyone involved to have a say in the decision, and
in particular, would like all stakeholders to have a say in the decision.

However, in organizations where accountability does not naturally
align with authority and responsibility, a consensus process is not
favorably viewed. For example, if team members are not viewed as
having the legal power, or positional authority, or even the experience
to make a key business decision, their participation in a consensus pro-
cess is viewed as that of a “loose canon on deck.”

And sometimes the need for expediency thwarts a consensus pro-
cess, or even a socialized accounting of the decision process. And addi-

306 Chapter 5 Organization Construction Patterns

tional political forces can cause individuals or groups to want to keep
secret the rationales for a given decision, or to eliminate some people
from the decision process because they may be affected by the decision
in ways that power holders feel would weaken their objectivity.

Therefore:
Make the decision among power brokers as in the storied smoke-

filled rooms stereotypically associated with tycoon businessmen.
Publicize the decision, but either keep the rationale private or ratio-
nalize why selected stakeholders were prevented from being part of
the process. Note that having to keep the rationale private because of
political concerns indicates significant problems in the culture.

✥ ✥ ✥

This is a pattern to be used sparingly in the right context to balance the
right forces. Overuse of this pattern strains patterns such as ENGAGE

CUSTOMERS (4.2.6), DOMAIN EXPERTISE IN ROLES (4.2.22), ENGAGE QUALITY

ASSURANCE (4.2.29), ARCHITECT CONTROLS PRODUCT (5.2.3), etc.
Examples include most decisions about corporate takeovers and

mergers, which are viewed more as business phenomena than as
domain phenomena. Another example is project cancellations, for the
same reason.

People And Code Pattern Language 307

5.2.7 STAND UP MEETING **
Alias: DAILY MEETING

...a project is in the early architecture stage, a period of high stress,
or a period of quick change. Or it might just be a period of high stakes,
even though you don’t expect things to change rapidly—but change
must be dealt with responsively, as during the end game.

✥ ✥ ✥

At times of fast change or high stress, it is essential that all mem-
bers of the organization receive the same information.

When a project is changing quickly, information gets out of date
almost instantly. People must have the latest information, or else they
risk making obsolete or incorrect decisions. Early in a project; during
initial architecture, decisions are made that have lasting impact on the
product. These decisions tend to be based on incomplete information;
on assumptions which must be validated with others. Because these
architectural decisions tend to build on each other, an early incorrect
assumption can cause significant directional errors.

308 Chapter 5 Organization Construction Patterns

At times, the change is dictated by stress or a crisis. Crisis manage-
ment demands quick response. But quick response demands a coordi-
nated effort—things can go terribly wrong if people don’t have the
latest information. Architects as well as individual developers can
develop tunnel vision, and the low-level decisions can be just as
important as the more visible “architectural” ones. As Ed Yourdon
said, all things are deeply interwingled. Interdependencies affect both
the long-term integrity of the product functionality and structure, as
well as the smooth day-to-day functioning of a team that has a shared
vision.

Some organizations simply operate at a high change velocity. This
requires very tight communication coupling, or else chaos ensues. The
most productive organizations we have seen operate this way,
although this not their only distinguishing characteristic.

Yet in all these cases, because the need for communication is high,
the communication overhead will also be high. And this overhead
detracts from the very thing you are trying to accomplish. How can
you balance this?

Therefore:
Hold short daily meetings with the entire team to exchange crit-

ical information, update status, and/or make assignments. The meet-
ings should last no more than 15 minutes, and generally happen first
thing in the morning.

The focus of the meetings is on the technical progress in the archi-
tecture and the work plan. Obviously, these work best with small
teams comprising mostly developers and architects. If the project is
too large for a single meeting, sub-teams may meet instead. The
project is probably already partitioned appropriately. However, the
STAND UP MEETING is as much an opportunity to revisit the organiza-
tional structure as to revisit the system architecture, after CONWAY’S

LAW (5.1.7). For this reason—and because resource reallocation is also
a concern in these meetings—regular management presence at these
meetings is also important.

Early in the project, these meetings may be held for the purpose of
reviewing the architecture. Architectural decisions may be examined,
tweaked, and re-reviewed very quickly. If the architecture team is
“sequestered” with LOCK ’EM UP TOGETHER (5.2.5), the daily reviews can
be used as a sanity check, and to allow them to come up for air. Or it
can be used instead of LOCK ’EM UP TOGETHER (5.2.5), if the team prefers.

People And Code Pattern Language 309

Near the end of the delivery cycle, these meetings can keep the team
focused on the delivery, and they can help the project to shift assign-
ments quickly to meet project needs. Near the beginning of a project,
the code changes quickly; near the end, you may want to be able to
shift assignments quickly as the product starts to move toward the
shipping dock and out the door, and roles may shift accordingly
(developers become testers, connections with beta sites intensify, etc.)

Such meetings can be used for other technical decisions as well.
One team reported having meetings almost daily with human factors
engineers and SURROGATE CUSTOMERS (4.2.7) as part of an iterative
approach to user interface design.

✥ ✥ ✥

Other daily meetings are used for status and assignments. Beedle et
al. describe these as “SCRUM” Meetings [Beedle1999, 644-649], daily
meetings to report progress, make assignments, and replan if neces-
sary [Rising2000, 147]:

 To control an empirical and unpredictable development pro-
cess, meet with the team in a short daily meeting where par-
ticipants say: (1) what they have done since the last meeting,
(2) what roadblocks were encountered, and (3) what they will
be doing until the next meeting.

SCRUM meetings mention technical issues as forces, but provide
only project management solutions. A STAND UP MEETING deals with all
these issues as inseparable, but its first focus is on the most volatile ele-
ment of change and the project component closest to the largest num-
bers of technical staff: the artifact being delivered to the customer.

This is reiterated almost exactly in Extreme Programming
[Beck1999]. In the Borland Quattro Pro For Windows project
[Coplien1994b], the architecture team met in the morning to socialize
problems from the previous day. The system was updated to reflect the
meeting decisions and implementation and testing proceeded the
remainder of the day in preparation for the next morning’s meeting.

This is similar to the meetings held at the beginning of every shift in
hospitals and police stations. (“... be careful out there...”) Note, though,
that in these cases, there is an explicit hand off of work from one shift
to the next. It might exactly match meetings of the postulated interna-

310 Chapter 5 Organization Construction Patterns

tional software teams, where teams in different locations in the world
take advantage of time zones, and work on a piece of software 24
hours a day. However, the authors are unaware of any team where this
has actually worked (and see, for example, Architecture—and ORGANI-

ZATION FOLLOWS LOCATION (5.1.8).)
A short daily meeting is an efficient way of transmitting informa-

tion to the entire team with the minimum communication overhead.
This helps overcome some of the tunnel vision problems that can come
from CODE OWNERSHIP (5.2.13).

Beyond the benefits of communication, it has a salutary effect on
morale. It is a slightly institutionalized form of HALLWAY CHATTER

(5.1.15), while being an informal form of GROUP VALIDATION (4.2.32),
and helps maintain UNITY OF PURPOSE (4.2.12).

But there is a potential danger with such meetings. In some organi-
zations, particularly where such tight communication is not the norm,
daily meetings are instituted in response to a crisis. While the meetings
give morale a temporary lift, they are subject to — and contribute to —
burnout. Conversely, one must be careful that the purpose of regular
daily meetings is to exchange information, and not to create an artifi-
cial crisis mentality in order to elevate performance. Such a purpose is
not only unsustainable, it is a little bit dishonest.

When should the meeting take place? In California shops, where
people can wander into work any time from 8:00 A.M. until noon, you
want to schedule the meeting carefully.

Use MERCENARY ANALYSTS (4.1.24) to make a record of the fast-paced
changing decisions.

Ward Cunningham’s Ep isodes pa t te rn l anguage
[Cunningham1996] suggests weekly, personal interviews over the full
meeting format. The pattern WORK QUEUE REPORT suggests “Collect
status in regular personal interviews conducted at weekly intervals.
Solicit days of remaining effort estimates using contrasts with Compa-
rable Work.” It presents the following example:

 “I put two full days into the new tax calculations, and one day with
Joe on his U/I.”

 “How many uninterrupted days do you think you need to finish the
calculations?”

 “Oh, say two. It’s no different from the accruals.”

People And Code Pattern Language 311

 “And, working with Joe?”

 “Well, we didn’t get to the real work. I had three down last week?
Must still be three days.”

Ward then goes on to say:

 Use these estimates along with individual dilution factors
(how many uninterrupted days of development does the
individual have access to a week) to predict elapsed days to
completion for each assigned deliverable. Compute and pub-
lish COMPLETION HEADROOM (4.1.10) from this data. Include a
cover page with a few sentences explaining numbers that
might have shifted in an interesting way.

This pattern derives from the above citations as well as from REVIEW

THE ARCHITECTURE [Coplien1995]. Luke Hohmann’s input in particular
is greatly appreciated.

312 Chapter 5 Organization Construction Patterns

5.2.8 DEPLOY ALONG THE GRAIN **
Alias: DEPLOY PEOPLE ALONG THE GRAIN OF THE DOMAIN, One Person

/ Many Hats

One person, many hats.

... in the past, the roles of analysis, design and implementation have
been split among different people.

✥ ✥ ✥

Some of the most powerful design insights come late in the
design cycle, particularly during the phase we affectionately call
“maintenance.” But traditional staffing profiles deploy the most
skilled designers at the front-end of the life cycle, leaving the later
phases to “maintenance engineers.”

Valuable architectural insight tends to emerge late in the life cycle,
as a result of having addressed requirements from concrete, successive
problems drawn from a given domain. It is then that a system can be
refactored to consolidate design insight and polish reusable artifacts.
(More can be said about this, but that’s another tale.)

Such insight can best be harvested if people are deployed along the
grain of the domain, and a given individual has responsibility for a
well-defined part of it. Organizational categories like Analyst,
Designer, Coder, Maintainer, and Reuse Expert can cut across the
grain, and greatly increase organizational communication overhead
and inertia. However, when responsibility for all these functions for a

People And Code Pattern Language 313

given part of the system is vested in a single person, the communica-
tion overhead for redesign with that part of the system can be largely
intracranial. This is a one person/many hats strategy. A single indi-
vidual can cope far more quickly with on-going bi-directional tensions
between top-down elegance and bottom-up detail than can a function-
ally partitioned organization. Such a person can develop a more com-
prehensive sense of the possibilities that the design space allows, and
exploit these to develop more genuinely durable artifacts.

A reusable API or object-oriented framework is, in many respects, a
domain-specific language. Given this, Wirth’s classic admonition that
language design is better done by a single guiding intelligence, rather
than by a committee, applies. (See the Pascal quote in ARCHITECT CON-

TROLS PRODUCT (5.2.3).)
Small teams deployed along the grain should be able to glean sim-

ilar benefits. Team members would be responsible for distinct parts of
their team’s domain. Metafunctions like pure management and docu-
mentation might be factored and assigned to additional individuals.
Interpersonal communication would primarily be concerned with
interface negotiation, and not become mired with approving changes
to internals.

The key here is committing talented designers to a part of the
system, and keeping them there until late in the life cycle, when hind-
sight is available from addressing a range of design issues.

There is some commonality between this and Alexander’s Archi-
tect/Builder notions as well, as in ARCHITECT ALSO IMPLEMENTS (5.2.10).
This sort of personnel deployment strategy is a de facto favorite in aca-
demic environments and in some small organizations, both of which
often exhibit marked productivity advantages over traditional indus-
trial organizations. If an organization really wants to get truly reusable
software, it will have to be willing to budget time and talent in such a
way as to exploit the insights that lead to it at the point in the life cycle
where they become available. But reuse isn’t something that can itself
easily be factored into its own department. The people who build and
maintain something in the first place have the best, most intimate
knowledge of how to generalize it.

There is certain amount of Alexandrian wiggle room with regard to
the question of how one knows where the grain is, especially at the
onset of a project. Often its something people settle into.

Therefore:

314 Chapter 5 Organization Construction Patterns

Deploy people along the grain of the domain. That is to say, give
them dedicated, long term responsibility for a manageable piece of the
system, thereby enabling them to exploit opportunities to consolidate
and improve the reusability of their parts of the system as experience
accrues.

Frequently, there will be significant degree of self-selection at work
when this patterns is employed, a variation on SELF SELECTING TEAM

(4.2.11). Managers should keep a watchful eye open for the emergence
of new roles, as people elect to spontaneously fill them.

✥ ✥ ✥

This pattern plays out in specializations such as OWNER PER DELIVER-

ABLE (10.5.19) and more specifically CODE OWNERSHIP (5.2.13). It should
be contrasted with the approach suggested by Extreme Programming
[Beck1999] advocates, though the effective divisions of labor may not
be as different as a simple-minded comparison might suggest.

This pattern is constrained by the forces of CONWAY’S LAW (5.1.7); or
perhaps it is the embodiment of it. You also need to take people’s skills
into account, as stated in SKILL MIX (10.5.28) [Cockburn1996] or as in
SUBSYSTEM BY SKILL (4.2.23).

This pattern originally appeared as Brian Foote’s DEPLOY PEOPLE

ALONG THE GRAIN OF THE DOMAIN at PLoP 2000. The material was
drawn largely intact from a discussion of Reuse Teams that took place
in early December of 1993 in either comp.object or on an early incarna-
tion of the patterns mailing list.

5.2.9 Subsystem By Skill
See Section 4.2.23.

People And Code Pattern Language 315

5.2.10 ARCHITECT ALSO IMPLEMENTS **

Architects of a housing development working on-site, 1942.

...an organization is being built to serve an identified market (ORGA-

NIZATION FOLLOWS MARKET (5.1.9)) or markets. Going forward, the
project needs the necessary architectural breadth to cover its markets
and to ensure smooth evolution, but it can’t be blindsided by prag-
matic engineering and implementation concerns. Furthermore, the
project needs to carry through a singular architectural vision from con-
ception to implementation if it is to have conceptual integrity.

✥ ✥ ✥

A software project must broaden the scope of leadership without
sacrificing depth and attention to pragmatics. Though developers are
good at making individual design and implementation decisions, a
project needs an overall guiding strategic technical direction. This usu-
ally comes from the architect. However, too many software architects
limit their thinking and direction to abstractions, and abstraction is a
disciplined form of ignorance. Too many projects fail on “details” of
performance, subtleties of APIs, and interworking of components—or,
at best, they discover such problems late.

If an omniscient plan were possible, one could solve this with total-
itarian control. But even if that were possible, totalitarian control is
viewed by most development teams as a draconian measure.

316 Chapter 5 Organization Construction Patterns

The right information must flow through the right roles; in partic-
ular, the developers must latch onto the strategic vision and carry
responsibility for implementation. The architect, and to some degree
the developers, must also understand the application needs and what
they portend for the long-term structure of the system. But there
should be a more centralized locus of strategic direction that keeps the
project from floundering, makes sure the necessary details are
attended to, and keeps track of the emerging “fit” of all the pieces into
a whole. Sometimes this “fit” requires understanding low level details
of component interaction, protocols, APIs, performance, or reliability
concerns.

Therefore:
Beyond advising and communicating with Developers, Architects

should also participate in implementation.
The Architect should be organizationally engaged with Developers

and should himself or herself write code. The Architect may imple-
ment along with a developer using DEVELOPING IN PAIRS (4.2.28).

✥ ✥ ✥

If the architect implements, the development organization perceives
buy-in from the guiding architects, and that can directly avail itself of
architectural expertise. The architects also learn by seeing, first-hand,
the results of their decisions and designs: an important place for feed-
back in the development process.

The importance of making this pattern explicit arose recently in a
project I work with. The architecture team was being assembled across
wide geographic boundaries with narrow communication bandwidth
between them. Though general architectural responsibilities were
identified and the roles were staffed, one group had expectations that
architects would also implement code; the other did not.

One manager suggests that, on some projects, architects should
focus only on the implementation of a common infrastructure, and
that the implementation of non-core code should be left solely to the
Developer role. This may work in some projects; however, it is crucial
that the architect have a strong feel for the application needs. It is by
understanding recurring application needs that the architect can build
long-term robust frameworks. If architects work only on infrastructure
without an engaged appreciation of application needs, there will be a

People And Code Pattern Language 317

disconnect between the infrastructure (framework, middleware) and
the application.

 “It would be convenient if architecture could be defined as
any building designed by an architect. But who is an archi-
tect? Although the Academie Royale d’Architecture in Paris
was founded in 1671, formal architectural schooling did not
appear until the nineteenth century. The famous Ecole des
BEAUX- ARTS was founded in 1816; the first English-language
school, in London, in 1847; and the first North American uni-
versity program, at MIT, was established in 1868. Despite the
existence of professional schools, for a long time the relation-
ship between schooling and practice remained ambiguous. It
is still possible to become an architect without a university
degree, and in some countries, such as Switzerland, trained
architects have no legal monopoly over construction. This is
hardly surprising. For centuries, the difference between mas-
ter masons, journeymen builders, joiners, dilettantes, gifted
amateurs, and architects has been ill defined. The great
Renaissance buildings, for example, were designed by a vari-
ety of non-architects. Brunelleschi was trained as a gold-
smith; Michelango as a sculptor, Leonardo da Vinci as a
painter, and Alberti as a lawyer; only Bramante, who was also
a painter, had formally studied building. These men are
termed architects because, among other things, they created
architecture—a tautology that explains nothing.” —
[Rybczynski1989, p. 9].

 [Vitruvius1960] notes: “...[A]rchitects who have aimed at
acquiring manual skill without scholarship have never been
able to reach a position of authority to correspond to their
pains, while those who relied only upon theories and scholar-
ship were obviously hunting the shadow, not the substance.
But those who have a thorough knowledge of both, like men
armed at all points, have the sooner attained their object and
carried authority with them.”

 John Thomas [mail of 18 Mar 1997] writes: "C. E. Walston and
C. P. Felix did an extensive multiple regression study of soft-
ware productivity — reported in the IBM Systems Journal,

318 Chapter 5 Organization Construction Patterns

vol.16, 1977, pp. 54-73 ’A method of programming measure-
ment and estimation.’ [WalstonFelix1977]

 John continues, “As I recall, the proportion of architects who
were also on the implementation team had a very large coeffi-
cient. It was a much more powerful variable, e.g., than use of
a high level language or use of structured programming.”

Though the architect should be able to understand the minutiae of
development, it is not necessarily the architect’s business to deal with
detail day in and day out. Much of what the architect does is to be the
keeper of the flame, the owner of the principles that the project fol-
lows: principles that in turn shape structure. Much of the structure can
come out of a consensus process guided by the architect; in fact, in
practice, that’s much of what architects do. [CoplienDevos2000]

A related pattern is GURU DOES ALL (10.5.15) from the collection of
Don Olson [Olson1998a, 153-154], which states [Rising2000, 130]:

 A newly formed team is given a project with a tight schedule,
uncertain requirements, uneven distribution of skills, and
new technologies. Let the most skilled and knowledgeable
developer drive the design and implement the critical pieces.
This can be an antipattern.

The important element of this pattern is to give the critical pieces to
the most skilled and knowledgeable practitioners (DOMAIN EXPERTISE IN

ROLES (4.2.22) and, of course, ARCHITECT ALSO IMPLEMENTS). But it also
has elements of SOLO VIRTUOSO (4.2.5), and can be thought of as an
interim application of SOLO VIRTUOSO in the context of a project that will
mature out of the need for such a pattern. This pattern should be tem-
pered with APPRENTICESHIP (4.2.4), PHASING IT IN (4.2.3), DAY CARE

(4.1.23) and others to move toward more of a peer team over time.
(DAY CARE, in fact, talks explicitly about problem of people starting to
say that “a few experts could get the project done faster”). Putting too
much burden on one developer can lead to early burnout (see THE

OPEN CLOSED PRINCIPLE OF TEAMS (6.1.4)). It is sometimes difficult for a
lead developer to give up the SOLO VIRTUOSO behavior on a given
project once having filled that role, so this pattern should be applied
with care.

People And Code Pattern Language 319

5.2.11 GENERICS AND SPECIFICS

Erecting a framework.

...most projects, particularly early in the development cycle, have a
mix of novices and experts. Of course, even the novices are expected to
come up to speed quickly and contribute to the project.

✥ ✥ ✥

Novices, even when mentored, tend to produce weak designs and
cut and paste code.

One does not acquire design prowess overnight; it takes years of
experience. Even expert designers look back on their early work and
shudder at how bad it was. Design, like every other skill, requires
practice to attain proficiency.

But we need the novices. Few projects have the luxury of being
staffed entirely by highly experienced people. And even if it is pos-
sible, is that what we want? Novices come in with fresh ideas, unen-
cumbered by narrow viewpoints honed through years of experience.
And they will eventually become the experts; lack of novices now
means a dearth of experts in a few years.

Like everyone else, novices do the best they can. They try to learn
from what they see. Unfortunately, this leads to cutting and pasting
code, a maintenance nightmare. And where there is no guidance from
existing code, their designs tend to be weak.

Therefore:

320 Chapter 5 Organization Construction Patterns

Separate generic from specific parts of problems. Use an expert, a
framework designer to design generic parts. Let the novice program-
mers design the specific parts.

GENERICS AND SPECIFICS (5.2.11) is derived from SUBSYSTEM BY SKILL

(4.2.23), and SUBCLASS PER TEAM (5.2.18). It is applicable to any tech-
nology, such as object orientation, that permits plug-in frameworks.

A framework can provide a generic solution to a problem, which
can be completed, extended or tailored in the specific by subclassing.
The generic solution, residing at the higher level of the class hierarchy,
is considerably more difficult to design than any one specific solution.
Once programmed, it is considerably quicker and easier to complete
than the specific solutions would be to design.

Therefore, use the experts’ extra skill to design a generic framework
solution, and use the novices to use and tailor it for a specific solution.
This fits well with the SUBCLASS PER TEAM principle, since the expert will
be optimizing using slightly different concerns than the novice.

✥ ✥ ✥

Generics were used in all the OO systems. In a UI system, it was
used for generic displays, search collection, transaction backout, and
error handling. In the domain, it was used for generic transaction,
error, persistence and model behavior. In the infrastructure, it was
used for error handling and the persistence mechanism. In each case,
novices were able to use the generic/specific structure to accomplish
their tasks in less time, and keep to a more subtle architecture than
they would have thought up.

This pattern was originally written by Alistair Cockburn, in SOCIAL

ISSUES AND SOFTWARE ARCHITECTURE [Cockburn1998].

People And Code Pattern Language 321

5.2.12 STANDARDS LINKING LOCATIONS **

Standards in cartography allow people in different nations to use the same
maps.

We once worked with a project doing a wireless communications architec-
ture. The project was spread across three states and two countries, though
most of the work centered in two states. Each of those two locations built soft-
ware for the locations’ respective hardware boxes, and those boxes communi-
cated closely with each other. There of course was a standard message
protocol, but it wasn’t articulated anywhere: each location used its own C lan-
guage structures to define its understanding of the messages. Each location
emphasized the message fields most of interest to it; in some cases, one loca-
tion would give a field one name while another location gave it another name.
It doesn’t take much imagination to envision the confusion that ensued.

...a product must be developed in several different hallways, on dif-
ferent floors of a building, in different buildings or at different loca-
tions. Their code must interact.

✥ ✥ ✥

It is difficult for geographically distanced teams to find opportu-
nity or time to meet and interact for reasons of geographic distance.
Yet the system must act as a system, and to do that the parts must talk
to each other. There must be a common convention for the parts to talk
to each other. The many parties could come to an agreement in a
common meeting, but that is too much master planning and doesn’t

322 Chapter 5 Organization Construction Patterns

build on experience enough, and also doesn’t leave much room for
correction and iteration.

Communication patterns between project members follows geo-
graphic distribution. Local groups should be as autonomous as pos-
sible. Coupling between pieces of software must be sustained by
analogous coupling between the people maintaining that software.
People avoid communicating with people who work in other build-
ings, other towns, or overseas (see below). People in an organization
usually work on related tasks, which suggests that they communicate
frequently with each other.

Therefore:
Use standards to express architectural concerns that cross geo-

graphic boundaries. The technique may extend to organizational
boundaries, which can be as severe as distant geographic location. It
might extend to organizations separated only by one floor in a
building; small geographic distances can loom large if the building
architecture doesn’t support close interworking.

One of the good things about standards is that they are almost con-
text-free. They at least give the illusion of a shared context across orga-
nizations that otherwise can find little in common.

✥ ✥ ✥

This is a variant of CONWAY’S LAW (5.1.7). There is low cultural con-
text between locations, so the interaction between locations is medi-
ated at a technical level using the most vernacular approach: industry
or corporate standards.

Local groups have higher context and more effective communica-
tion within themselves. Use of standards within a location or within
groups can actually reduce understanding, add overhead, and compli-
cate communication.

Be sure to use FACE TO FACE BEFORE WORKING REMOTELY (5.1.10) to
temper what can too easily become a sterile exchange of standards-
based communications.

The problem described in this pattern might, in extreme cases,
extend to work between adjacent cubicles—but in that case, there may
be nothing that can help, and such a technological solution to this cer-
tainly won’t solve the underlying organizational or personality prob-
lems.

People And Code Pattern Language 323

Example:
A project might use standards like XML and RM/ODP to commu-

nicate between corporate subsidiaries working on a project. But to use
a standard within one of the subsidiaries would be counterproductive.
For example, reducing all inter-object communications to use CORBA
would both complicate architectural understanding and put system
performance at jeopardy.

Standards such as protocols and conventional data formats can pro-
vide cultural context that lowers the need for communication between
remote sites.

324 Chapter 5 Organization Construction Patterns

5.2.13 CODE OWNERSHIP **

Box Elder County Utah, 1940. Ownership of his farm allows E. O. Stenquist
to build a chicken coop with his own labor.

Paul Bramble relates, "Code Ownership: Boy, can you say that again. I
have been in a place without code ownership. We had token code ownership in
that we were generally held responsible for some products—and hence the
code. But others could and would change the code to add new features pro-
vided that you weren’t updating the code during a release cycle. Part of that
was nice, as I would be busy doing other things, and didn’t need the aggrava-
tion of figuring out the details necessary to implement their changes (which
could be complex). But this positive effect was far less than the havoc these
changes could wreak. While my general framework was only adequate (it
could have been better), it became rather disjoint with several encapsulation
and abstraction problems once other developers finished changing things—
beyond repair, short of a major refactoring effort involving several people."

...a project is underway, and mechanisms are in place to document
and guide the software architect, and to support coding and unit
development activities. The project is too large for one person to com-
prehend. No single developer can keep up with the changes being
made across the system.

✥ ✥ ✥

People And Code Pattern Language 325

Something that’s everybody’s responsibility is no one’s responsi-
bility.

You want parallelism between developers, so multiple people can
be coding concurrently.

Most design knowledge lives in the code. Navigating unfamiliar
code to explore design issues takes time. Beyond that, changing unfa-
miliar code is dangerous; one does not know what the impact of the
changes are.

Provisional changes never work.
Not everyone can know everything all the time. Even the architect

does not know the code well enough to be proficient in all corners of
the project (although an architect should understand some coding
issues through ARCHITECT ALSO IMPLEMENTS (5.2.10).)

Therefore:
Each code module in the system is owned by a single Developer.

Except in exceptional and explicit circumstances, code may be modi-
fied only by its owner. Anyone else wanting changes must approach
the owner and get approval.

Note that ownership implies responsibility for the quality and
architectural integrity of the module. This encourages the owner to
gain a deep understanding of the module. For an owner new to the
module, this means learning the code in depth, usually quickly. Paul
Taylor, in his pattern ARRANGING THE FURNITURE (10.5.1), suggests that
new owners can gain familiarity and confidence by starting with
making cosmetic changes to the code [Taylor1999]. (As authors of this
book, we noticed the same phenomenon working with this manu-
script!)

How large should a project be to use CODE OWNERSHIP? Gerhard
Ackermann points out that it doesn’t matter: code ownership is a prin-
ciple of honoring another person’s work. We have seen benefits in
projects as small as two persons. In such cases, ownership may not be
formally conferred, but each person knows who owns what, and con-
sults with the other before changing the code (see also DEVELOPING IN

PAIRS (4.2.28)).
This pattern is very similar to OWNER PER DELIVERABLE (10.5.19).

There is, however, a subtle but significant difference. Ownership of
deliverables is for the duration of release; its purpose is for account-
ability in project management. Ownership of code modules, on the
other hand, is for long term; ideally the duration of the software. Its

326 Chapter 5 Organization Construction Patterns

goal is to maintain quality and architectural integrity, and to improve
speed by reducing discovery costs. This can be helped by the related
pattern, DEPLOY ALONG THE GRAIN (5.2.8).

Arguments against code ownership have been many, but empirical
trends uphold its value. Typical concerns include the tendency toward
tunnel vision, the implied risk of having only a single individual who
understands a given piece of code in-depth, and breakdown of global
knowledge. Other patterns temper these problems:

The pattern STAND UP MEETING (5.2.7) helps keep Designers and
Architects from developing tunnel vision from strict application of this
pattern.

CODE OWNERSHIP can lead to bottlenecks, as all changes to a module
must funnel through the owner. Furthermore, CODE OWNERSHIP can
tend to focus critical information in individuals, violating MODERATE

TRUCK NUMBER (4.2.24). Both these can be counteracted by DEVELOPING

IN PAIRS (4.2.28), as well as practices such as design reviews and code
inspections. In addition, one can implement CODE OWNERSHIP with
some flexibility to allow exceptions if needed to resolve bottlenecks
(with approval by the owner after the fact.) Gerard Meszaros also
notes that the owner may be an single person or a group, with a desig-
nated “group head”. This is especially helpful in large projects. (Note
that ownership by a group should not be construed to be the same as
“Collective Ownership”, as advocated by some [Beck1999]. Owner-
ship by everybody is ownership by nobody.)

Empirical support for this pattern is strong, although the most
striking examples are the problems encountered when there is no CODE

OWNERSHIP.
Neil Harrison describes living a “nightmare” with a code module

that nobody owned. Because everybody could — and did — refactor
the code at will, the architecture changed constantly. Keeping up with
changes that others made became a significant chore. Ironically, the
project had a policy of code ownership, but nobody had taken on own-
ership of this module. “At length,” he notes, “we volunteered to take
ownership of the module, even though we were not part of the project
it belonged to.” At the time of this writing, the offer is being consid-
ered.

Lack of code ownership is a major contributor to discovery effort in
large-scale software development today. Note that this goes hand-in-
hand with architecture: to have ownership, there must be interfaces.

People And Code Pattern Language 327

This is a form of Conway’s-law-in-the-small (see also ARCHITECT ALSO

IMPLEMENTS (5.2.10)).

✥ ✥ ✥

The architecture and organization will better reflect each other
(CONWAY’S LAW (5.1.7)). Related patterns include ARCHITECT ALSO IMPLE-

MENTS (5.2.10), ORGANIZATION FOLLOWS MARKET (5.1.9), and INTERRUPTS

UNJAM BLOCKING (4.1.25).
Tim Born argues that there is a relationship between code owner-

ship and encapsulation, in the sense that C++ protection keeps one
person from accessing the implementation of another’s abstraction.

One can tie this concept all the way back to philosophy of law. In
L’Esprit des Lois, Rousseau argues that law is property, and the lack of
identifiable property leads to anarchy [Rousseau1972].

It has been argued that code ownership should be applied only to
reusable code. Such a constraint would be worthy of consideration if
someone comes up with a good distinction between usable code and
reusable code.

GERARD MESZAROS wrote a related pattern called ARTIFACT OWNERSHIP

[Meszaros1999].
People can abuse code ownership to protect their artifacts from

inspection by colleagues or to take unilateral control of system level
issues whose changes fall into their domain. Temper these problems
with COMMUNITY OF TRUST (4.1.1) and DEVELOPING IN PAIRS (4.2.28). FEA-

TURE ASSIGNMENT (5.2.14) brings a review perspective that cuts across
the code partitioning, and that, too, can help avoid blindsidedness on
the part of the code owner.

328 Chapter 5 Organization Construction Patterns

5.2.14 FEATURE ASSIGNMENT *

Day laborers waiting to be assigned work, Raymondville, Texas, 1939.

...in a multi-person project of medium size or larger, one gets to the
point that the work must be partitioned among team members. The
initial architecture is complete; where do we go from here?

✥ ✥ ✥

For every non-trivial project, it is impossible to partition the work
cleanly.

You have to get the work done; you need to get the new release out
the door. And you need everyone working on it. Yet no matter how
you slice the work, people will find themselves working on the same
piece of code. The essential complexity of the problem (see
[Brooks1995]) means this will happen in all but the most trivial devel-
opments.

The partitioning of the problem through the architecture is mainly
for people’s benefit — the code doesn’t care. We maintain the integrity
of the architecture in order to attempt to maintain the comprehensi-
bility of the problem, and we do this through CODE OWNERSHIP (5.2.13).
But to a greater or lesser extent, features cut across the architecture. So
CODE OWNERSHIP is not the right model for developing the features.

Take, for example, the canonical example of an automatic teller.
There are natural architectural entities such as the display subsystem,
the input subsystem, and the communication layer, among others. Yet
the feature “Display Account Balance” cuts across all of them.

People And Code Pattern Language 329

Therefore:
Assign features to people for development. A feature develop-

ment has a finite duration, and is therefore an assignment, not a role.
Feature assignment works together with the role of CODE OWNERSHIP

(5.2.13) to develop the product and maintain its architectural integrity.
The developer of a feature will consult with the code owner about
changes.

The owner of the code affected most by a particular feature is often
the natural person to receive the assignment of that feature, although it
doesn’t have to be.

Features may be assigned to more than one person, or better still,
developers may choose to work together to accomplish it (see DEVEL-

OPING IN PAIRS (4.2.28).)
There is some danger that FEATURE ASSIGNMENT (5.2.14) and CODE

OWNERSHIP (5.2.13) together will tend to encourage excessive manage-
ment bureaucracy, but that doesn’t need to be the case. Features are a
natural unit of project tracking, and CODE OWNERSHIP (5.2.13) need not
add anything substantial to the project overhead.

✥ ✥ ✥

The temporary nature of FEATURE ASSIGNMENT (5.2.14), coupled with
the role nature of CODE OWNERSHIP (5.2.13) strikes a balance between
maintaining architectural integrity and getting the work done. Note
how they together complete DEPLOY ALONG THE GRAIN (5.2.8).

Note that some project methodologies advocate making assign-
ments every day, with chunks of work that can be completed in a
single day. If the project is small, and the work can be appropriately
partitioned, this approach may work well. FEATURE ASSIGNMENT (5.2.14)
is broader; it encompasses this approach, but extends to large complex
projects, and those where work is so complex that it cannot be broken
into such small chunks.

330 Chapter 5 Organization Construction Patterns

5.2.15 VARIATION BEHIND INTERFACE **

Identical houses on the outside, but you can be sure that the interior decora-
tion varies.

...the architecture has been established, and CODE OWNERSHIP (5.2.13)
has been put in place. Features have been assigned. Now the easy part
is over.

✥ ✥ ✥

Once you start developing software, you find that things change.
And these changes can affect not only your software, but software
written by others as well.

A typical scenario plays out like this: You are working on a feature,
and you need to change a certain file. Unfortunately, someone else is
working on a different feature, but needs the same file. Good configu-
ration management and work space tools can use file locking to pre-
vent one of you from undoing the other’s work, but there is still a
problem with merging your modifications together. Or perhaps you
just wait for the other person to complete before you start your work
on that file.

A similar problem is this: You are working on a feature, and call a
function that someone else is working on. When you build against the
official base, you find that the function has changed, and you need to
change how you call that function.

We can turn that problem around: You are working on a function
that others call. When you build against the official base, you find that

People And Code Pattern Language 331

your changes cause build errors in others’ code — where they call your
function.

These problems illustrate the technical problems that arise from
multiple people working on a software project.

Even worse, you may be waiting for someone to check in their code
so you can make your own changes to it. After they check in their copy
and you check out the image for editing, you find out that they have
added some things you would like to use and have deleted some
things you need, both in the same unit of editing. This is a funda-
mental dilemma that tools and technology alone cannot solve.

Therefore:
Create interfaces around predicted points of variation.
Note that this requires one to predict, or at the very least, make edu-

cated guesses about what will change, and what will remain constant.
This can be called commonality and variability analysis, or domain
analysis, and is described in various places such as [Weiss1999] and
[Coplien1999].

In spite of our best efforts at analysis, it will be necessary to change
the interfaces on occasion. These changes impact others; to minimize
the impact, use NAMED STABLE BASES (4.1.4) to manage these changes.

This is really nothing more or less than information hiding, as origi-
nally described by Parnas [Parnas1978]. Here the motivation for infor-
mation hiding is to insulate others from expected changes. It was also
behind Alan Kay’s work in object-oriented programming.

This pattern forms the basis for SHEARING LAYERS (10.5.26)
[Foote2000], which states that you should factor your system so that
the artifacts that change at similar rates are together. One difference is
that SHEARING LAYERS (10.5.26) is often applied at the system level,
rather than the module level, as this pattern is.

✥ ✥ ✥

So what does this pattern have to do with creating effective soft-
ware development teams? Quite a bit, actually. Of course, a project is
partitioned among team members. The team members depend on each
other’s software; therefore the connection points of the software — the
interfaces — must change as seldom as possible. Otherwise, people
find themselves spending much time rewriting parts of code that once

332 Chapter 5 Organization Construction Patterns

worked. And people begin to get testy with each other. The way to
minimize interface changes is to hide variations behind interfaces.

Don’t get too carried away. Too many interfaces cause the system to
be slow.

Designers sometimes try to anticipate all variations. The extra inter-
faces slow down and complicate the software. Often the situations
they hoped to anticipate never happen, so the interface serves no
useful purpose. The trick in good design is to correctly anticipate the
changes, or the cost of the interface against the cost of the change.

See HIERARCHY OF FACTORIES (5.2.19) and PARSER BUILDER (5.2.20) as
examples of this approach.

People And Code Pattern Language 333

5.2.16 PRIVATE VERSIONING **

“Solitude”, an outhouse on the property of Frank Weeks, Willston, North
Dakota, 1937. A place for anyone’s private version...

...a developer should have a way to checkpoint changes without
making these changes available to the development team at large. We
want to implement CODE OWNERSHIP (5.2.13) but subsystems never
work entirely in isolation.

✥ ✥ ✥

Periodic integration of a developer’s work with that of other
members of the development team is important for ensuring sta-
bility.

Checkpointing only after completing major changes can make it dif-
ficult to back off of one phase of a change. Using the revision control
area for this can lead to changes being “published” before they are
ready for integration. Also, publishing intermediate changes can lead
to a deceptive number of revisions listed in the SCM system. It is nec-
essary to be able to save intermediate steps in a change in case a
coding step results in an error. This is particularly important when:

• The mechanism for specifying that a version is ready for integra-
tion is primitive, and another developer has access to a version
as soon as it is checked in.

• There is a desire to keep the revision history database “unclut-
tered” with only significant changes logged.

334 Chapter 5 Organization Construction Patterns

Therefore:
Developers should be provided with a mechanism for check

pointing changes at a granularity that they are comfortable with.
This can be provided for by a local revision control area, Only stable
code sets are checked into the project repository

Add a private repository to the developer work space so that a
developer can save intermediate versions before checking them in to
the repository. The private repository can use the same mechanisms as
the project repository (i.e., RCS) or can simply be a means of main-
taining copies of intermediate files.

The key point is to provide a way for developers to use revision
control to save changes in increments which make sense to them,
without any risk of the changes being available to other developers
until the developer decides to publish a consistent and correct version.
Some SCM tools support this without a need for physically separate
repository area.

It is important to make sure that developers using PRIVATE VER-

SIONING remember to migrate changes to the shared version control
system at reasonable intervals.

The revision control mechanism could also provide a means for
restricting access to checked-in versions that are not yet ready for use
by others, and could also provide a mechanism for filtering log mes-
sages to eliminate trivial changes.

✥ ✥ ✥

Note that PRIVATE VERSIONING works together with VARIATION BEHIND

INTERFACE (5.2.15) to help prevent developers step on each others’ toes,
but they come about it in very different ways. Code owners (CODE

OWNERSHIP (5.2.13)) can work together to do coordinated development
and testing of private features before they are released to the project as
a whole.

People And Code Pattern Language 335

5.2.17 LOOSE INTERFACES **

Cattle exiting through a “loose interface”.

...sometimes architecture and organization are aligned in a partic-
ular manner (CONWAY’S LAW (5.1.7)) because of geographical and orga-
nizational constraints.

✥ ✥ ✥

To avoid development bottlenecks, we need to be able to limit the
effect one team’s work will have on another.

To help development of a system with many teams proceeding at a
reasonable pace it is important to keep interfaces between systems
somewhat flexible. This is particularly important in a situation where
there are teams of developers that are geographically distributed
(ORGANIZATION FOLLOWS LOCATION (5.1.8)) and where rapid turnaround
time for design and development is important. As an example, con-
sider a project trying to build a prototype for an early customer dem-
onstration to support a tender for bid.

Communication is difficult. If requirements are changing and the
teams are located in a variety of places then the poor communication
can stall a project. This can be particularly problematic when an orga-
nization does not have an architectural center, such as described by
ARCHITECT CONTROLS PRODUCT (5.2.3).

This is particularly applicable in a research, pilot, or new tech-
nology application where teams are small, requirements are changing,
and the potential for gridlock is great if dependencies are too high.

336 Chapter 5 Organization Construction Patterns

There is typically an administrative or organizational center of the
architecture, but does not always have the capability to design a com-
plete system.

Therefore:
Limit the number of explicit, static, interfaces. Define large

grained interfaces which allow developers to code against interfaces
defined early, but which do not overly constrain functionality. Use
LOOSE INTERFACES (5.2.17) like Callback, PARSER BUILDER (5.2.20) and
HIERARCHY OF FACTORIES (5.2.19) to achieve this.

✥ ✥ ✥

Decoupling interfaces in this way will also simplify the develop-
ment of EARLY AND REGULAR DELIVERY (10.5.11), since it makes it easier
to build incremental systems. It can also make it easier to set up an
environment where DEVELOPER CONTROLS PROCESS (4.1.17) by defining
independent features at a small enough scale that they can be con-
trolled by a developer or group. The end result is that as long as the
components meet interface, quality, and other requirements, teams in
different organizational units can implement them using any micro-
process which suits them.

Take care that the empire that supports the interfaces doesn’t itself
become a dominating focus that can drain project energy or create
accidental coupling across the project. Brokers and other large commu-
nication frameworks have this danger. Keep the interfaces simple and
in concert with business needs.

Related Patterns: SUBSYSTEM BY SKILL (4.2.23) addresses a similar situa-
tion, where the driving force is the skill set of the various teams.

People And Code Pattern Language 337

5.2.18 SUBCLASS PER TEAM

A small team of students with a common interest in photography

...dividing up work among different teams is less straightforward
than it looks. It is simply impossible to partition the work perfectly;
teams will always have some overlap in each others’ work.

✥ ✥ ✥

Subsystem teams have differing interests and design points.
When two teams work in the same class definition, they will be

optimizing for different maintenance and performance characteristics.
Besides being in conflict as to which way to optimize, they will also
lose track of which parts of the module are used by whom (see OWNER

PER DELIVERABLE (10.5.19), above).
Therefore:
Where two subsystems collide in one class, factor their code into

separate classes that separate development teams’ interests. Each
class can be owned by its respective team (OWNER PER DELIVERABLE)
and the classes can be combined with inheritance and design pat-
terns to integrate functionality.

Object-oriented programming gives a particularly nice way to split
a class along lines of separate interests—the class hierarchy. It is appro-
priate that different interests reside in different places (VARIATION

BEHIND INTERFACE (5.2.15), since a change to one team’s module should
not damage the other teams’ modules). Where inheritance is not avail-

338 Chapter 5 Organization Construction Patterns

able (in non-OO development), it sometimes can be mimicked using
call delegation.

Various design patterns can be used to support flexible and conve-
nient combination of such classes; in particular, see TEMPLATE METHOD

in [GOF1995].
An example of teams’ interests mixing is at the root domain class.

Here is where the domain team puts its generic behavior. Here also is
where the persistence team puts generic transaction behavior. Ideally,
the two are independent. Further, by job description and expertise, the
domain class person is different from the persistence mechanism
person. The teams will be making changes to their interfaces and
implementations concurrently. They have different interests, and dif-
ferent ideas as to what is best. Introducing layers of subclassing allows
the groups to hone their designs with minimal impact on each other.
HIERARCHY OF FACTORIES (5.2.19) [Berczuk1996] illustrates a specializa-
tion of this pattern for the case where the application is a creational
system where different subsystems control the format of different
types of products. PARSER BUILDER (5.2.20) is an example of providing a
single base class interface to variant implementations in derived
classes.

✥ ✥ ✥

Beware of over-applying this pattern: excessive levels of inheritance
make the system harder to understand and potentially slower.

The principle would make a wonderful, universal argument media-
tion technique, except that addition of a new level of subclassing for
every disagreement would produce a system difficult to understand.

This pattern was originally written by Alistair Cockburn in SOCIAL

ISSUES AND SOFTWARE ARCHITECTURE, published in [Cockburn1998].

People And Code Pattern Language 339

5.2.19 HIERARCHY OF FACTORIES

Alias: COMPOSITE FACTORY

Making cheese in a small rural cheese factory.

Cheeses in a larger cheese factory.

...once we decide that the PARSER BUILDER (5.2.20) is the right way to
create objects, we need to partition the details of how to construct
objects of various classes into the various groups responsible for this
construction, in other words we need to have LOOSE INTERFACES (5.2.17).
We want to complete FORM FOLLOWS FUNCTION (5.1.11) or ORGANIZATION

FOLLOWS LOCATION (5.1.8). On a lower level we want to implement
DEVELOPER CONTROLS PROCESS (4.1.17) for a system which creates objects
of various types.

✥ ✥ ✥

In a distributed work group it is important to divide responsibili-
ties for creational systems as cleanly as possible and reduce cou-
pling.

Sometimes the secrets of classifying elements in a data stream are
divided between various groups. The reasons for this partitioning can

340 Chapter 5 Organization Construction Patterns

involve company politics, or simply that the knowledge of the telem-
etry formats is distributed and there is a strong desire to reduce cou-
pling. We need a way to partition the responsibilities for classifying
the telemetry packets, while maintaining a centralized client interface,
and keeping VARIATION BEHIND INTERFACE (5.2.15).

In a telemetry application, various instruments can generate telem-
etry which is then fed into one stream. The instruments are developed
by different teams (at different institutions, for example), and these
teams have control over the format of the telemetry that they generate
(after taking some standard headers into account).

We want a way to isolate the details for identifying each team’s
objects, while at the same time allowing the objects to be identified and
created in a single application. The scheme that we develop should be
layered so that the main factory needs to know only of the existence of
a class of objects, but need not know how deep the hierarchy below
that class is. Packets created from the hierarchy are processed in a
generic way, perhaps by using virtual functions.

One way to address the classification problem is to put all the classi-
fication/dispatch logic into a single PARSER BUILDER (5.2.20) (combining
the Interpreter [GOF1995] pattern with a Builder [GOF1995])—perhaps
by using a big switch statement—and rely on communications
between groups to ensure that the details make it into the master code
through some communications method. This is error prone, and sub-
ject to delays. We could also divide the processing into a number of
factories and have the client call each in turn. This violates our require-
ment of transparency, and the client needs to know when a new class
of object is added.

It would be useful to have a way to have the client interface emulate
a single Factory, but hide the details of the construction hierarchy.

To summarize the forces:

• Division of responsibilities (ORGANIZATION FOLLOWS LOCATION

(5.1.8)).

• A need for a central interface for parsing data streams and build-
ing objects.

• A need to add objects to the construction hierarchy in a manner
transparent to clients.

• The ability (or requirement) to process entities by virtual func-
tions.

People And Code Pattern Language 341

• Each class of object can know about its immediate derived
classes.

Therefore:
Use a hierarchy of factories, each of which understands the cri-

teria for making a packet of its type, and knows about the imme-
diate subtypes. The client invokes the make method with the base
class factory instance. That factory checks to see that there is indeed an
object of class packet in the stream, based on some attributes. The fac-
tory then passes the data stream to the factories of each of its imme-
diate subclasses, which check the appropriate data fields in the
manner of the PARSER BUILDER (5.2.20) pattern.

The Singleton pattern [GOF1995] can be used to access the factories
for the derived classes, or the members of the hierarchy can be regis-
tered with the master factory at run time.

While this pattern violates encapsulation to some extent by
requiring that a base class know about its immediate subclasses, it can
be made acceptable by agreeing on generic interface classes (say, one
per team) and allow each team free reign to subclass these interface
classes. Also in this application this requirement is not terribly lim-
iting, since the top level operations team knows about the basic instru-
ment team interfaces and the number of instrument teams is fixed by
contract when the project begins.

Hierarchy of Factories

An example implementation in C++ is:

//Base class factory method
Packet* PacketFactory::make(Stream* dataStream){
Packet* pkt=0;
if(isAPacket(dataStream) {

if(! pkt = APacket::factory()->make(dataStream))
if(!pkt = BPacket::factory()->make(dataStream)) {

342 Chapter 5 Organization Construction Patterns

pkt = new Packet(dataStream);
}

return pkt;
}

The result of applying this pattern is that each class needs to know
only:

• The criteria for what constitutes a member of that class in terms
of elements in the data stream.

• The immediate subclasses.

It is possible to use a Registration mechanism to inform the base
class of what the subclasses are rather than hard coding the relation-
ship. (This pattern is not yet written, but would specify a mechanism
for notifying a base class factory that a derived class factory has been
created. The basic idea would be similar to the View/Model connec-
tion in a Model/View/Controller mechanism, but would also address
issues of uniqueness (only one instance of each derived class can
notify a base class) and guaranteed notification: The construction of
any object/factory of the derived classes would generate a registration
event automatically).

It is also possible to implement this pattern using containment
rather than inheritance.

Other uses:
This pattern is also useful for isolating the definition of packets for

which a single team is responsible, so the information can be encapsu-
lated, making it easier to work on a project with large or widely dis-
tributed teams.

Related Patterns
This is similar to the Builder [GOF1995] pattern in that it has a hier-

archy of “factories.” It is different in that the data stream defines what
is made rather than the application explicitly specifying what objects
to construct by arguments to the factory.

It is also similar to CHAIN OF RESPONSIBILITY [GOF1995]. This pattern
specializes CHAIN OF RESPONSIBILITY for a creational system, and uses the
different handlers to facilitate separation of design responsibilities.

This pattern helps us realize ORGANIZATION FOLLOWS LOCATION (5.1.8)
and CODE OWNERSHIP (5.2.13) [Coplien1995]. This pattern implements
SUBCLASS PER TEAM (5.2.18) for a creational system.

People And Code Pattern Language 343

5.2.20 PARSER BUILDER *

Fort Riley, Kansas. Decoding a message at the message center which was
established by the Signal Corps during a field problem. (Parsing is a form of

decoding.)

...many systems need to read data from a stream and classify ele-
ments on the steam as objects. Many times the knowledge of how to
interpret a stream is know by a different group than the knowledge of
how to use that stream, making LOOSE INTERFACES (5.2.17) advanta-
geous.

Given a data stream, we want to interpret it, classifying the ele-
ments into the appropriate class of object. The data stream contains
tags that can be used to identify the raw data, and we want to convert
the stream into object form, so we can process the data.

We need a way to create arbitrary objects based on tokens in the

data stream.

✥ ✥ ✥

For example consider the problem of reading in raw UNIX files and
classifying them into types of files based on their “magic number” —

344 Chapter 5 Organization Construction Patterns

as in the tags in the /etc/magic file. You could create the appropriate
subclass of File and then invoke its virtual edit() method, bringing up
the appropriate editor.

In a telemetry processing system each telemetry packet has identi-
fying information in its header. The telemetry processing system
design requires that an object, once created, knows how to process
itself (i.e., we will not use a dispatch table, or a switch on type—this is
to satisfy the ORGANIZATION FOLLOWS LOCATION (5.1.8) pattern). At the
lowest level objects will be created using a FACTORY METHOD

[GOF1995]. Each class of packets will be processed differently; some
will assemble themselves into larger units, others will issue messages.
Consider the following hierarchy, for a spacecraft that there are two
subclasses of Packet:APackets and BPackets:

Sample Packet Hierarchy

We want each Packet, once created, to process itself by using a vir-
tual method, process(). If we pass a data stream into a factory, we want
to return a pointer to a Packet that has the appropriate type. To sum-
marize the forces:

• There is a need to interpret a raw data stream.

• There is a generic way to process the packets once they are
returned from the factory.

• The raw data contain tags which can be used for classification.

Therefore:
Use a PARSER BUILDER which reads the identifying information

from the header of the packet, and creates an object of the appro-
priate type, removing only one object’s worth of data from the
stream.

An example of a client interface in C++ is:

People And Code Pattern Language 345

while (!dataStream.empty()) {
PacketFactory f;
Packet* p = f.make(dataStream);
if(p) p->process()

}

This is a variant of ABSTRACT FACTORY [GOF1995] but the object to be
created is defined in the data stream, rather than by the client. HIER-

ARCHY OF FACTORIES (5.2.19) and PARSER BUILDER can be used to imple-
ment LOOSE INTERFACES (5.2.17) by providing a means of separating
clients from producers of data (assuming that data producers also
define the factories).

Other uses:
In some object persistence mechanisms, objects are assigned class

Id’s which are placed in the storage stream. These Ids are restored first
to allow the system decide what class object to make from the restored
stream.

P A R S E R B U I L D E R i s used in in the pat tern Q U E R Y O B J E C T S

[BrownWhitenack1999] to convert SQL statements to QUERY objects.
(Query Objects addresses the problem of handling the generation and
execution of SQL statements in an object-oriented way, when you are
trying to use a relational database to store objects.) [Riehl1999] dis-
cusses similar issues, building objects on a desktop using specifica-
tions.

The distinction between this pattern, Builder [GOF1995] and FAC-

TORY METHOD [GOF1995] is that in this pattern the factory reads from a
stream and the client does not know which type of object will be
returned. For text interpretation, PARSER BUILDER can be a front end to
the Interpreter [GOF1995] pattern.

5.2.21 Incremental Integration
See Section 4.1.5.

5.2.22 Private World
See Section 4.1.6.

346 Chapter 5 Organization Construction Patterns

5.2.23 Named Stable Bases
See Section 4.1.4.

People And Code Pattern Language 347

PART III. Foundations And
History

Anthropology can’t claim to be the oldest profession, or even the
second oldest, but people have been thinking about the structure of
human organizations for thousands of years. Many of the ancient texts
on organizational structure deal with military organizations, and most
of them are rooted in hierarchy.

In the next two sections, we investigate principles behind organiza-
tional structure. These sections will give you a deeper appreciation of
how organizations work and of how organizational change happens.
The first section, ORGANIZATIONAL PRINCIPLES, gives some practical
insights that will help you use these patterns more effectively. The
second section, ANTHROPOLOGICAL FOUNDATIONS, looks at the ties
between our work using patterns and CRC cards, and the classic tech-
niques and models of anthropology.

348 Chapter 5 Organization Construction Patterns

Priming The Organization For Change 349

CHAPTER 6 Organizational Principles

This chapter offers some practical advice and insight that will make
it easier to apply the patterns. You need to know when an organization
is ready to try out patterns and, once it has started, you need to know
how to apply the patterns. You need to know what to do when a pat-
tern doesn’t seem to be working. This isn’t just an academic exercise:
your organization is on the line. Success often comes in the details.
Here, we offer some insight on the most important contextual factors
that contribute to the long-term success of the patterns themselves.

6.1 Priming The Organization For Change

All patterns build on the ability to reflect on the state of the world
and to take reasonable steps of progress. The organizational patterns
in this book probably feature that property more strongly than any
software design patterns or perhaps even more than Alexander’s pat-
terns of urban design, because the structure undergoing evolution is
human structure, the structure of an organization. An organization has
to have reached a certain baseline of organizational health to do this
and, in fact, a large fraction of the organizations out there do not have
this ability. How do you know whether you’re ready to use these pat-
terns? And, if you’re not yet there, how do you get there?

350 Chapter 6 Organizational Principles

If you’re not ready to deal courageously with your shortcomings
and to embrace organizational change, then you need to get to a space
where there is enough mutual trust and respect to lay a foundation for
introspection and dialogue. Without trust and respect, there cannot be
deep enough communication to get beyond discussion about process
(which often reduces to blaming the role or person responsible for a
given step of the process) to discussion about structure and ultimately
about principles. Structure is about relationship. Principles, which
generate these structures and relationships, relate directly to the orga-
nizational value propositions and what they portend for trust between
roles and individuals. See BEYOND PROCESS TO STRUCTURE AND VALUES

(7.2).
To increase trust and respect means to engage people who are not

currently in dialogue; to engage them, you need to persuade them to
become involved in something they currently aren’t involved in. Block
[Block1983] defines politics as the attempt to have influence over that
which one cannot control directly. So this problem is fundamentally
political in nature.

There are two major attacks on this problem. The first attack would
have your organization go through team-building exercises, would
suggest changes in reward mechanisms to encourage risk-taking, or
might suggest a change in management. The second approach
assumes that such a core exists somewhere within the structure of the
larger organization, and uses it as the target for the patterns, with hope
that the health can spread to neighboring organizations.

Yet before any positive change can happen, the organization must
be ready to change. In our studies, we have seen organizations in var-
ious states of readiness for change. Let’s explore the most common
conditions that prime an organization for change.

6.1.1 Dissonance Precedes Resolution
In the timeless play, “Fiddler on the Roof,” Tevye comments about

his daughter and son-in-law in Siberia, “They’re so happy, they don’t
know how miserable they are.” Many organizations are not suffi-
ciently self-aware to realize the problems they have. More commonly,
though, there are individuals in the organization who are aware of the
shortcomings in the organization. They may or may not know exactly
what the problems are, but they do know that something is wrong. But

Priming The Organization For Change 351

unless enough key people in the organization acknowledge the organi-
zation’s problems, things are unlikely to change.

In some cases, such as ParcPlace, the problems are already
apparent. But other organizations need prodding to face up to their
problems. The TEAM BUILDING (6.1.5) exercises help people come face to
face with their problems. In effect, the TEAM BUILDING (6.1.5) exercises
create a crisis in the organization. The dissonance of a crisis is often a
prerequisite for large scale cultural change. In Virginia Satir’s model of
organizational change, such a stimulus is called a foreign element
[Satir1991]. It takes a foreign element to get an organization off of top
dead-center.

One organization we studied was mired in cumbersome processes
and overly focused on management. It was clear that most of the
troops chafed under their development processes, but the manager
roles did not see the problem. The team building exercise made the
managers see things as the developers saw them; it removed a blind-
ness to a reality they couldn’t see. This resulted in serious introspec-
tion among the managers. It wasn’t clear whether they changed their
organization, but it did provide a golden opportunity to do so.

While we don’t advocate looking for trouble, dissonances that
present themselves may lead to opportunities for improvement. Disso-
nances that are vague, such as feelings that something somewhere
isn’t right, invite introspection exercises to help sharpen the focus of
pattern application.

6.1.2 Team Burnout
One of the biggest problems with teams is burnout. Organizations

experiencing burnout may be particularly ready to change: they are
looking for relief from any source. Yet the path to organizational
improvement for the team in burnout is fraught with danger: the very
conditions that make the team open to change may sabatoge such
change. Let’s explore burnout in more detail, and consider some pat-
terns that might be useful for teams that are burning out.

The Psychology of Burnout
Sometimes ill feelings can arise across the scope of an entire group

or team, and the dynamics can often be laid at the feet of first- and
second-level management. If a team as a whole or the team’s manager

352 Chapter 6 Organizational Principles

feel threatened, the team is in danger of succumbing to two near-term
countermeasures that often go hand in hand. The first is: work harder.
Hard work, overtime, and shortened schedules are a common reaction
to a wide spectrum of threats. The second is: hunker down. A team will
close in on itself in the interest of completely shutting off detractions
that could sap its time and energy or in any way detract from a
focused effort to maintain control. It is an over-application of the pat-
tern FIRE WALLS (4.2.9). This can put the team at odds with influences
that it should be heeding but which it feels it can resist. It can become a
spiral that leads to increased desperation, harder work, and more
overtime. These are the dynamics of burnout.

An organization that is burning out can’t learn. It doesn’t take the
time to learn; all the time is focused on the deliverable. It may make
stupid mistakes for failing to step back and see the big picture. This is
why patterns like COMPLETION HEADROOM (4.1.10) and RECOMMITMENT

MEETING (4.1.12) are crucial to a healthy organization. They keep the
organization open to other individuals and teams—both teams they
depend on, and teams that depend on them.

A group in burnout often tries to take control of everything it can
because its members need the comfort of being in control. It may over-
step its domain of authority and claim ownership for parts of the
system outside its usual domain. A dysfunctional services group may
rewrite parts of the operating system because it feels it can’t trust the
operating system people to do it right or to do it fast enough; in these
scenarios, no one wins.

A worrisome sociological configuration arises in cases of extreme
burnout. One strong team member—usually, but not always, a man-
ager or lead technical person—takes charge, usually by creating a cul-
ture of fear, intimidation, co-option, or coercion. The resulting
configuration, fed by the controlling individual, discourages social dis-
course, openness, and interactions outside the group. The group turns
inward for all of its needs. In the most extreme cases of burnout where
people are now spending much of their lives at the office, the team-
centeredness extends beyond professional relationships to personal
relationships. People start deriving their personal identity from work
and from the team. Work relationships displace family relationships.
The organization becomes ingrown, and incest becomes a good meta-
phor for what happens to the organizational family. The health of the
organization and its individuals deteriorate, and there often is no

Priming The Organization For Change 353

turning back. Family and personal lives suffer. Eric Fogelin, a devel-
oper on the first release of Windows NT, had this experience
[Zachary1994]:

 In the final push for the July release, however, he ... worked
every day during the month of June, some days as long as
twenty hours. He took most of his meals at Microsoft; the caf-
eterias on campus served breakfast and lunch, and a special
meal was prepared for those working late on NT in building
Two. Since he lived on an island about ninety minutes away,
requiring a ferry ride to and from work, Fogelin never went
home for thirty days during the height of the push. He slept
on a cheap green cot he’d bought. It was nothing more than a
piece of canvas stretched over a narrow metal frame. By day
it stood upright near his desk, a sturdy reminder of the forfei-
ture of creature comforts for the soul of a computer program.

There is a small body of fascinating literature on this phenomenon
to which we refer the interested reader; in particular, see the analyses
by Bill White [White1997], [White1986]. You’ve probably heard the
term: “get a life.” People working in healthy organizations have “a
life.” They have outside interests, and their identity doesn’t draw
solely from work. A healthy work environment—one that can sustain
its employees, learn, and grow—gives people the time and freedom
for this individuation.

Crisis Management and Burnout
Ask a software professional about burnout, and crisis management

or “death march” projects often come to mind. Some projects are
poorly managed, particularly with respect to matched expectations
between the customer and provider, and that can lead to obvious
burnout.

However, some organizations manage by crisis. It is exactly this
mentality that Deming railed against: to drive fear from an organiza-
tion, to take the power of crisis away. Some popular methods today,
such as Extreme Programming, offer this fear of fear as one of their
prime drivers. But if one looks deeper one can find a deeper form of
crisis management.

A protracted crisis mentality creates burnout, even in the absence of
a real crisis. For example, daily status meetings are a hallmark of orga-

354 Chapter 6 Organizational Principles

nizations in crisis. However, if the organization adopts a policy of
daily status meetings, it perpetuates the crisis mode, or even creates a
crisis mode. This can incent people to work harder. Even when not at
work, the people will have work on their mind so they can look good
at the morning status meeting. Other aspects of XP—such as the ability
never to work alone, but to always have your thought processes open
to a pair programmer—help sustain the crisis mentality.

Our studies have shown that crises strengthen management roles.
In crises, managers tend to move toward the center of the organiza-
tion, displacing the domain expert roles that carry the organization
through everyday business. (You can see a social network diagram
depiction of this phenomenon in the section STABILITY AND CRISIS MAN-

AGEMENT (6.1.3), below).

6.1.3 Stability And Crisis Management
Stewart Brandt [Brandt1995] describes “sheer layers” of change in a

building that evolve at different rates. The foundation changes rarely;
the plumbing and wiring change exhibit similarly seldom change; the
wall paper and paint change quite a bit more frequently, and the inte-
rior decor is almost always in flux. Each one of these layers is part of
the system we call a building. A crisis is perhaps a change that hap-
pens at a deep enough level to go beyond routine experience where it
touches the structure of the building—or organization—but a shallow
enough change that it doesn’t stop the organization dead in its tracks.
Moving the furniture wouldn’t be construed as a crisis; fixing a leak in
the plumbing would.

A crisis is almost always a surprise: an unforeseen glitch in the sta-
bility of the organization. What makes a crisis a crisis is that it upsets
stability, and that it does so precipitously. (We sometimes talk of the
“software development crisis,” but something that has gone on for 30
years can hardly be called a crisis!)

In the same sense that you want to build a new organization on the
stable core inside the existing organization, you want to hold the envi-
ronment stable while you are making change. You don’t want con-
stantly to be changing the foundations. If the environment is noisy,
and if the organization exhibits arbitrary behaviors, then you can
never know whether a given change resulted in an improvement or
made things worse, or neither! This is a fundamental principle of orga-

Priming The Organization For Change 355

nizational change; it is one of the deepest principles of Deming’s
approaches to organization management [Deming1986] and one finds
it at the foundations of ISO process improvement methods.

The pattern approach to organizational improvement is attentive to
the stable parts of an organization and attempts to detach itself from
noisy, day-to-day variations. Part of this stability comes from atten-
tiveness to the deep structure that ties to values and relationships;
these tend to change less frequently than practices, policies, and pro-
cesses. Part of this stability comes from role normalization.

Crises can and will arise, and some of the patterns (e.g., SACRIFICE

ONE PERSON (4.1.22), DAY CARE (4.1.23)) specifically address contexts
with a crisis component. However, these crises are relatively small rel-
ative to the overall organizational structure and to the goals of the
enterprise. Most of the patterns instead strive to head off crises; most
of the scheduling patterns (e.g., COMPLETION HEADROOM (4.1.10)) are of
this nature as are some of the structural patterns (FIRE WALLS (4.2.9),
ENGAGE CUSTOMERS (4.2.6)).

Software development, like mountain climbing, is an inherently
risky undertaking. Yet there are two types of risks: there is risk that
you won’t reach the summit, or that your product is a flop in the mar-
ketplace. These are risks we must take; in fact, we not only take them,
we enjoy these risks! We view them as opportunities rather than risks.
On the other hand, though, there are risks that the whole undertaking
will go to ground because we didn’t plan for the weather, or more sig-
nificantly, the team doesn’t function well in the face of unforeseen dif-
ficulty (see, for example, [Krakauer1997]). These are the true risks we
must avoid.

There is no pattern—or pattern language—for risk management.
Risk averseness is an emergent property of healthy organizations. As in
Alexander there are no patterns for “safe house”, safety is an emergent
property of houses built around concepts of appropriately joined
spaces that draw on human context. We have provided this one section
on Crisis Management in the book to tie together this popular concern
and to draw out the principles we believe address the concern. Most of
the solutions to so-called crisis management are distributed through
the patterns:

• COMPENSATE SUCCESS (4.2.25) talks about the problem of rewarding
people who excel under crisis situations

356 Chapter 6 Organizational Principles

• THE OPEN CLOSED PRINCIPLE OF TEAMS (6.1.4), above, talks about the
danger of a crisis becoming a way of life (because in a culture
where everything is a crisis, nothing is a crisis, and that’s not
healthy!)

• The same section talks about the psychology of burnout, which is
closely tied to crisis management styles.

• STAND UP MEETING (5.2.7) takes a current crisis as its context.

• TEAM PER TASK (4.1.21) is one way of isolating crises.

There are some things to be aware of in crisis situations.

• Contraction of organization and stronger management influence
during crises. Consider this sociogram of a regression testing
organization showing the relationships between roles under
“normal” operations (connections between roles have been
removed for clarity):

: The arrows depict how the roles are displaced in the social net-
work diagram when the organization goes into a crisis. Note that local
control roles take over (Project Management, the Program Change
Committee (PCC), Team Leader), while technical roles (like the Lab
Architect) and even Line Management get out of the way. The process
gurus (the Process Management Team or PMT) are among the first to
go! Coupling between roles skyrockets under stress, and the organiza-

Priming The Organization For Change 357

tion’s “diameter” sharply decreases. We find this is a typical pattern,
and it is a great expediency as long as it does not become the norm for day-
to-day business. Note that one way this is accomplished is through a
STAND UP MEETING (5.2.7), where managers get frequent status from
everyone. That pattern highlights the dangers of allowing ongoing
daily meetings to perpetuate the crisis mentality. Such meetings are
fine for redressing short-term crises—but prolonged recurrence of very
frequent status meetings can create a crisis mentality: a problem that
every developer can relate to.

• Suspension of the normal organization, replaced by artificial
temporary one. For example, a “firefighting” team might be
organized to deal with a sudden serious quality problem in the
software. Note that firefighting can easily become a way of life:
firefighting teams usually get special rewards, which make fire-
fighting desirable. Before long, the team is lurching from one cri-
sis to another. Instead, you want to isolate fire-fighting; see TEAM

PER TASK (4.1.21).

Last, crisis can be a good thing. We don’t believe that organizations
should seek crises, but neither should they be so risk-averse that crises
create fear. Crises create opportunities for learning; a postmortem of a
crisis can sow seeds of great organizational learning.

• Crises can create opportunities for large-scale culture changes. A
perceived (and probably real) crisis at ParcPlace Systems precipi-
tated a focused introspection and post-mortem exercise that led
to organizational renewal [Gabriel1996].

• Crises create learning opportunities. A crisis in a healthy organi-
zation provides an “opportunity” for a retrospective [Kerth2001].

In summary: crises can and will happen, and they provide opportu-
nities for learning. The learning should drive the organization into a
better sense of order and stability, but not to the point where other
changes can’t surprise the organization into learning again!

6.1.4 The Open Closed Principle Of Teams
Change is disruptive, yet most people adapt to new situations

extremely well. However, change is more disruptive to teams than to
individuals, because there is an additive effect of the disruption to the
individual members of the team. When change violates the Open/

358 Chapter 6 Organizational Principles

Closed Principle of Teams, the team may be ready for positive change
with these patterns.

Or not. Read on.
Bertrand Meyer teaches a rule of object-oriented design called the

open/closed principle [Meyer2000]. It combines two ideas:

• that a class should be closed so that other classes don’t come to
be preoccupied with or otherwise depend on its internals

• that a class should be open to extension by inheritance, so it can
evolve into a new entity with both new structure and behavior.

Team evolution is the same way. If a team does not have final say
over its membership (SELF SELECTING TEAM (4.2.11)), focus (TEAM PER

TASK (4.1.21)), and direction, resentment will build and the team will
lose its sense of identity. Teams of course must sometimes negotiate
with other individuals and organizations and sometimes must com-
promise, but as a rule teams should conduct their own business.

This is why CONWAY’S LAW (5.1.7) is such a key pattern in two of the
pattern languages in this book. Teams and groups are built around
domains of specialization and expertise. And teams are staffed with
the people who can serve that discipline (DOMAIN EXPERTISE IN ROLES

(4.2.22)). Meddling from the outside only detracts from the team’s
focus.

So a team enjoys some autonomy in reaching a healthy steady state.
But what about dealing with growth and dysfunction? And how about
dealing with change? The outside world is always changing: the
market, the technology, everything! The team must be open to external
communication.

We can talk about this openness at two levels. As the software
evolves, the architecture inevitably evolves and the teams must align
their software to track architectural creep. (Actually, each team’s soft-
ware causes the collective architectural creep, but from the perspective
of any single team it appears as though it is the rest of the world that is
changing things out from underneath them.) So though the team is
closed to meddling with the invariants related to its core competencies,
it must be open to changes in interactions with other parts of the
system. Such architectural changes may change the organization’s
communication network.

For example, let’s say that you’re working on a telephone switching
system and your company is incorporating a new integrated circuit to

Priming The Organization For Change 359

accommodate market demand for a new protocol. The expertise about
that chip resides in the heads of some people somewhere, and if you
are going to be developing software that interfaces with that chip
you’re going to be talking to those people. Conway runs rampant in
dynamic projects.

That’s a simple example based on software change. Organizational
change can be much more subtle. Technological change (like adding
the new integrated circuit) doesn’t hit people very deep with respect to
their averseness to change. Organizational change, on the other hand,
can be a strong threat. It can make people feel that their power base is
threatened if they are made to report to a new manager. It can make
people feel their job security is challenged if a new person is hired into
the same area of specialty.

Empowerment
Sometimes the best laid plans of mice and men go astray. In com-

plex systems such as human organizations, cause and effect can be far
from each other in time and space [Senge1990, 63]:

 ... a fundamental characteristic of complex human systems ...
[is that] “cause” and “effect” are not close in time and space.
By “effects,” I mean the obvious symptoms that indicate that
there are problems—drug abuse, unemployment, starving
children, falling orders, and sagging profits. By “cause” I
mean the interaction of the underlying system that is most
responsible for generating the symptoms, and which, if rec-
ognized, could lead to changes producing lasting improve-
ment. Why is this a problem? Because most of us assume they
are—most of us assume, most of the time, that cause and
effect are close in time and space.

Introducing an empowerment program is supposed to increase the
energy level, to remove constraints that will free people to do what the
enterprise needs to have done, and to give people a sense of control
over their destiny.

Think about this from the perspective of the open-closed principle.
Empowerment increases the degree of closedness of a team. Giving a
team autonomy might cause the team to weaken its interactions with
important stakeholders and with sources of information and con-
straints that are important to the successful operation of the team.

360 Chapter 6 Organizational Principles

Empowerment might be particularly effective in diluting information
exchanges with roles that exercise control in general, and with man-
agement in particular. In theory, this might create problems with
respect to the open closed principle. Unfortunately, that is exactly
what we find in practice. We have seen this in some of our organiza-
tional studies, but there is also research from Rutgers that concludes
that this is a general outcome of empowerment programs [Yates1995].

Empowerment is an attempt to achieve an effect (increasing indi-
vidual leverage) by directly attacking its cause (the “distractions” of
coupling and communication that “get in the way of work”). But this
is not a system view; the solution cuts off the very nurturing that may
have powered the team to its level of performance in the first place.
Empowerment is a possible contributor to burnout.

Schismogenesis
We have also seen a lighter but almost equally deadly form of this

phenomenon which we describe as schismogenesis. The term dates back
to the work of Gregory Bateson [Bateson1958] in 1936 in his work with
tribes along the Sepik River in New Guinea. Symmetrical schismogenesis
occurs when two factions each rise in power, or fear or distrust of each
other, and form cliques or splinter groups that tend to focus inward
rather than resolve issues in dialogue with each other. This is also a
natural outgrowth of efforts to merge separate companies: the separate
groups already exist with different values and cultures. The merger,
with the spectre of job cuts, sows fear and distrust just at the time the
organizations need to learn to work with each other.

Complementary schismogenesis occurs when a stronger side is com-
pelled to actions by its fear of being taken down by a weaker side. We
have seen this in organizations under the stress of an impending
downsizing program, where the core members of the organization
become disconnected from the support arms of the organization. It
also occurs in mature organizations, where power structures have
become entrenched. This is the main reason for the patterns RESPONSI-

BILITIES ENGAGE (5.1.14) and HALLWAY CHATTER (5.1.15), which came out
of an earlier pattern named “Buffalo Mountain” that was designed in
part to address schismogenesis. The pattern THE WATER COOLER (5.1.20)
can also help reduce tensions between constituencies by creating a
“place” for new social structures that are allowed to violate institu-

Priming The Organization For Change 361

tional structures. The HALLWAY CHATTER pattern gives an example of an
organization exhibiting schismogenesis.

It may be obvious at this point, but such organizations are not can-
didates for the patterns in this book. To apply the patterns requires
dialogue and interaction; that’s the “open” part. It also requires focus
and a healthy sense of team pride (see UNITY OF PURPOSE (4.2.12)). There
is of course no black and white here. The balance between open and
closed is subjective. It is also true that burnout is a spectrum: of course
organizations put in long periods of hard work. But to go more than a
month with consistent 60-hour weeks is a real danger sign. Even if the
organization is not going into burnout, individual effectiveness and
efficiency wears down very quickly after too long of a death march.

Many of the patterns in this book address this issue, keeping the
organization vibrant and healthy so that it can adapt to change. A closed
organization has difficulty changing effectively. Look at PUBLIC CHAR-

ACTER (4.2.17), who helps information flow efficiently. Or at GATE

KEEPER (4.2.10), who explicitly breaks down walls around the organiza-
tion, and helps balance the FIRE WALLS (4.2.9) pattern. HALLWAY

CHATTER reflects an informal social infrastructure of both technical and
friendly exchanges in the workplace. Even DEVELOPING IN PAIRS (4.2.28)
can be a useful pattern for the exchange of ideas and information
across groups if the pairing is done across team and organizational
boundaries. And of course it’s important to keep in contact with the
people who pay the bills through patterns like ENGAGE CUSTOMERS

(4.2.6).

6.1.5 Team Building
There is an aspect of team building in every organizational inter-

vention we’ve done. After all, the goal of an organizational study is to
analyze the communication in the organization, and such communica-
tion is the foundation of team dynamics. Team building can have the
unanticipated side-effect of pointing out the necessity of change:
hidden wounds come to the surface, where they can receive the treat-
ment they need.

As described above in HOW THE PATTERNS CAME TO US (CHAPTER 2),
role playing is a staple of our research technique. We bring the organi-
zation together in one room where they role-play one of their pro-
cesses: the design-coding process, or the testing process, or the

362 Chapter 6 Organizational Principles

acquisition process, or the analysis process, or the field support pro-
cess, or whatever it is the organization believes needs attention.

One goal of the role-play is to put the team members into the psy-
chological roles they play on a day-to-day basis. If one succeeds in
doing this in a large group, it helps the group as a whole see itself in
action and see the patterns of interaction that emerge. Reflecting on
those patterns, those communication structures in the group, is the
main foundation of organizational growth and renewal.

But the formal role-play can sometimes be the key to more powerful
modes of introspection or to ways that are more suitable to the organi-
zation’s culture or comfort zones. At Allianz, we did some initial role-
play exercises with two of the development teams. Those exercises
supported a bit more dialogue and interest in the groups on organiza-
tional issues but themselves did not cause major changes in ways of
doing business. However, those initial studies led to follow-up work
to explore the application of DEVELOPING IN PAIRS (4.2.28) and other
ideas from Extreme Programming [Beck1999] under the leadership of
Thomas Tik of Allianz, Jim Coplien, and Laurie Williams of North
Carolina State University. We decided to have an off-site meeting with
the engineering teams, where we created an environment for open,
constructive criticism of management and a lot of unstructured time.
In addition, we spent time teaching them about DEVELOPING IN PAIRS.
Those activities led to some management insights and realizations.
Later, we were able to act on that experience to leverage change at the
next higher level of management, and that broke a logjam that opened
the floodgates of dialogue at the next level. Organizational improve-
ment followed in its wake.

Similarly, at ParcPlace Systems [Gabriel1996], we held a team role-
play exercise. The vice-president of engineering, Richard Gabriel, had
already started creating history time lines and having other forums
that built on the team’s frustration with its state and its desire to return
to the environment of its glory days. The role-play was a watershed
event to the extent that it underscored much of the dysfunction in the
organization at that time and provided an external corroboration of
the state of the organization. It also provided a forum where the team
members could start thinking about patterns and talking about their
dysfunction in terms of patterns. While the role-play exercise was only
a fraction of the introspection, it was one of the main introspective
events that involved the entire team, and offered foundations to sup-

Priming The Organization For Change 363

port ongoing dialogue and organizational renewal. Yes, they even
used some of the patterns in turning the organization around. But
more important, they wrote their own organizational patterns and took
charge of their destiny. This sense of ownership and taking charge, tied
with the creation of a tangible body of patterns that they stood by,
were perhaps the centerpiece of the organizational turnaround.

Techniques such as the organizational role-play can help develop
the models and shared perspectives that can be seeds for the dialogue
that strengthens a team. A retrospective [Kerth2001] is a powerful team-
building tool that yields both explicit and implicit benefits; the role-
playing exercise described above is a form of retrospective. Most
importantly, retrospectives help build a foundation for trust between
the members of an organization. Seeing one’s self in relationship to
others helps people establish models of expected behaviors. These
models either open communication paths or show where communica-
tion paths have broken down because of mistrust, environmental fac-
tors, temperament mismatches, and other factors. Team dialogue alone
can identify environmental factors and some of the other factors, but it
can actually strengthen the first and most important factor: trust.
Using patterns such as those in this book can offer a rallying point for
the team and can offer vocabulary for talking about the team’s prob-
lems and potential solutions. But there are many other team-building
techniques that can be equally effective.

6.1.6 Building On The Solid Core
Awareness of the need to change does not mean that the organiza-

tion is ready for change. The team (not just the individuals) must be
willing to change. Many teams are lucky enough to have a solid core of
people. This tends to make it easier to change: the team members are
more secure in each other; less worried about the impact of change.

In the case of both ParcPlace Systems and of Allianz, we found a
solid core of people to start working with. This is almost always a pre-
ferred mode to doing team building for its own sake, because the
structures are already in place to support the communication and dia-
logue necessary to reason about improving communication and dia-
logue!

In the case of ParcPlace Systems, the engineering group was drawn
together by a common sense of disappointment and by a desire to

364 Chapter 6 Organizational Principles

have a feeling of control. From one perspective it wasn’t an ideal orga-
nization for the application of organizational patterns. But on the other
hand, desperation can drive out fear. One thing we did when we vis-
ited the organization for the role-playing exercise and initial round of
evaluations was to leave them with the thought that they were indeed
in very bad shape. It wasn’t an exaggeration, but coming to grips with
that fact perhaps gave the group courage to do things it otherwise
wouldn’t have done.

In the case of Allianz, the engineering group was one of several
groups that had difficulty integrating their processes in the work envi-
ronment. There was strong support for organizational work in second-
level management and to some degree in third-level management,
while first-level management (team leaders) were more focussed on
technical solutions than organizational solutions. But the support for
organizational work was stronger in engineering than in the other
organizations. This concern for human issues was evident in the engi-
neering work environment; a high degree of camaraderie and inter-
working could be found within the engineering team—and with their
colleagues in the other teams—and their concerns about organiza-
tional health related more to the interactions between teams than to
the dynamics within their own teams, as they had already reflected on
those and had come to a point of satisfaction with their operation.

In both cases, the adoption of patterns in the small cohesive teams
gave those teams tools for dealing with other organizations in the
enterprise. This gave those teams a firmer foundation for congruent,
productive relationships with the other organizations instead of the
more contentious and sometimes combative (either openly or subver-
sively) behaviors of the past. The congruence was a face-off of sorts: it
provided a hard wall of integrity and well-reasoned behavior that was
more difficult to subdue than in the past. That, in turn caused behavior
changes and even doubts in the other organizations, and led to the
eventual spread of the change culture to those organizations as well.

The key in both cases was to start with the healthiest team—in
terms of its ability to introspect and learn—and to nurture it.

Piecemeal Growth 365

6.2 Piecemeal Growth

Once your organization is primed for change, where do you go
from there? How do you start applying the patterns?

The answer is simple: pick a pattern to start with, and then apply
the patterns one at a time. We will go into more detail in a few
moments, but first a warning: Do not attempt to apply these patterns
at once! Do not sit down with the pattern book in one hand, and your
organizational plan in the other, and attempt to design your whole
organization. These patterns must be applied in a piecemeal fashion.
In fact, that is the only way an organization can change effectively; it
must grow and mature organically.

There is a style of organizational design that believes in formalism,
repeatability, and control. This school of organizational design is typi-
fied by ISO 9001 compliance programs as they are usually carried out.
Perhaps Osterweil’s (now quite out-of-vogue) Process Programming
[SuttonLernerOsterweil1997] is the epitome of this school of organiza-
tional design. Such approaches suggest that if we get everything right
up front, all else will follow.

Unfortunately, it is impossible to foresee the complexities that beset
even the healthiest organization. Human behavior is one of the most
pernicious things to predict because it emerges from thousands of con-
siderations and inputs, each weighted differently, that feed the deci-
sion processes behind organizational evolution. This makes it difficult
to plan organizational structure. Changing economic conditions and
markets, changes in the employment roll, in the law, and even the
national mood can upset organizational design.

Some organizational structures change slowly and can be depended
on as foundations for the evolution of an organizational design. These
structures come not from an analysis of the future, but from an anal-
ysis of the past. Such structures can be formalized using techniques
such as domain analysis and, in this case, one can make an analogy
between domain analysis and patterns. Some of the patterns in this
book are like that; more so those in the PROJECT MANAGEMENT PATTERN

LANGUAGE (4.1) than those in other parts of the book.
But most of the time, successful organizational growth takes place

in a piecemeal fashion, in real time. One of the pattern chapters is
called PIECEMEAL GROWTH PATTERN LANGUAGE (4.2), which contains pat-
terns about how an organization grows and develops — gradually.

366 Chapter 6 Organizational Principles

Note, however, that although you apply the patterns one at a time,
they do not operate in isolation from one another. You must consider
applying all patterns in a process of piecemeal growth.

In a piecemeal growth environment, the focus is on ongoing repair
rather than on forecasting and anticipating. In fact, all design is in
some respect an act of ongoing repair; we employ the feedback that
comes to our senses from the emerging design to modulate the direc-
tion of design from that point on. So much the better that one is
dealing with a live system and receiving its feedback than when
working in the abstract with just “a design.” Nature works the same
way. Organizations, and their evolution, seem more to follow the laws
of nature than the laws of modular design of design in any field with
human-created artifacts. And nature works in the now, with feedback,
employing repair.

The piecemeal growth philosophy comes from Alexander’s vision
of how patterns should be used, and pervades his work. The 6-step
process below is derived from his yet unpublished work The Nature of
Order. (Volume one has been published so far [Alexander2003].) But
piecemeal growth also surfaces frequently as a key management
strategy. One of the main principles of organizational change in AT&T
organizations in the 1980s was that one shouldn’t try to change more
than three things at once. Culture can change, but it loves stability.

More broadly, the pattern philosophy of piecemeal growth is a
broadening of the popular notion (particularly during the late 1980s)
of organizational learning. There are several excellent books on organi-
zational learning; our favorite is “Becoming a Learning Organization:
Beyond the Learning Curve,” by Joop Swieringa and Andre Wierdsma
[SwieringaWierdsma1992]. There are strong parallels between the
organizational learning field and patterns. For example, each believes
in building on a small number of principles that generate rich emer-
gent behav ior ; complex sys tems o f ru les don ’ t work
[SwieringaWierdsma1992, 9].

A pattern-based piecemeal-growth repair process is robust for two
major reasons. The first reason is that we don’t do random things at
random times. The patterns encode wisdom born of experience and
follow sequences that have repeatedly worked in the past. Second, the
patterns build structures which themselves offer a degree of resiliency
under change. DOMAIN EXPERTISE IN ROLES (4.2.22) and FUNCTION OWNER

AND COMPONENT OWNER are good examples of patterns that help an

Piecemeal Growth 367

organization ride through common changes. If one organized around
expertise related to a given product, the organizational structure
would be sensitive to changes in the market. The market can be fickle
and tends to change much more rapidly than the expertise associated
with a given domain. FUNCTION OWNER AND COMPONENT OWNER honors
the tradition of giving focus to the marketable item; after all, that’s
where the money is. At the same time it guards the long-term stable
structure of the system, its underlying knowledge, and the organiza-
tion that sustains it by also according ownership on the basis of compo-
nents. DOMAIN EXPERTISE IN ROLES helps the organization build
foundations around core competencies rather than around current
market (or management) fads. The organizational patterns encode that
robustness and experience.

The PROJECT MANAGEMENT PATTERN LANGUAGE can be an inspiration for
principles and structures to get you started. It offers many long-term
stable domain structures having to do with organizational structure,
certainly for software development. Rough forms of these patterns
will fall in place early in the formation of a new organization, and
these patterns can be honed, fine-tuned and polished over months or
maybe years to make them really shine. While DEVELOPMENT EPISODE

(4.1.15) can be an almost methodological construct, one that can be
implemented almost overnight, patterns like WORK FLOWS INWARD

(4.1.18) have more emergent results that come about over time. And
even the seemingly simpler patterns like DEVELOPMENT EPISODE are cul-
tural changes that will breed discomfort and take some getting used
to. Each pattern is a small foreign element—an upsetting even—in its
own right (see DISSONANCE PRECEDES RESOLUTION (6.1.1)). Still, the
PROJECT MANAGEMENT PATTERN LANGUAGE is a good “starter set” for most
organizations. But your mileage will vary, and you should defer to your
instinct and insight.

That foundation in place, you can slowly make improvements by
applying one, or maybe two, patterns at a time. Fundamental to the
nature of patterns is that each can be applied in its own right without
undue consideration of other patterns. Each pattern encapsulates a set
of forces, or trade-offs (see WHAT ARE PATTERN LANGUAGES? above) that
are as independent as possible from the forces in other patterns. Ide-
ally, each can be applied in isolation. Ideally, there is no backtracking.

There are of course limits to this idealism. An organization is a
system and a system view can be important to keep you from being

368 Chapter 6 Organizational Principles

blindsided. There is no formula or recipe for combining pattern appli-
cation with insight; it is indeed your deeper insight that will tell you
what the proper mix is. We as authors of this book trust you as shep-
herd of your organization to build on that insight. We provide some
hints in the form of patterns, some insights on how the world tends to
work well, and trust that those will serve as inspiration for you. This
book is not a medicine cabinet. Patterns are not magic remedies to cure
ills (more on this in ORGANIZATIONAL PATTERNS ARE INSPIRATION RATHER

THAN PRESCRIPTION (6.3.2)).

6.2.1 The Fundamental Process
There is a rhythm to the application of patterns and people tend to

underestimate the process that makes patterns work. That process is a
process of piecemeal growth. One follows a sequence through the pat-
tern language to increase wholeness, one pattern at a time. How, basi-
cally, does this work? Here is a synopsis of the process:

1. Consider your organization as a whole; get a feeling for how the
entire enterprise (development group, department, etc.) is
working. Get a feel for its “weak spots.” Maybe you just applied
another pattern. That left you in a new context. What forces are
unresolved in that context, either from incompleteness in the pat-
tern you just applied, or from other forces in the system that have
now become visible or of higher priority?

2. Focus on what can be done to increase wholeness. “Wholeness”
here reflects your personal and corporate values. Are you
striving for profitability? Then what are the weaknesses in your
organization related to profitability? And is profitability really
what’s killing you right now, or is morale affecting productivity
which is in turn affecting profitability? Dig deeper. Reading
through the patterns—and particularly their forces—can help
you sort this out. Reflection is key: it is important to focus on
recurring issues and to avoid reacting to immediate concerns or
ones that bear a high priority in the moment.

3. Find a place where the application of a new pattern—the creation
of a new role, the addition of a new group, the restructuring of
things — will achieve that goal. Will any of the patterns help
that? Do you know of other techniques that will help that—

Piecemeal Growth 369

whether they bear the pattern banner or not? (We don’t get paid
by how many patterns we sell; our satisfaction comes from
helping organizations succeed!) Don’t get stuck in pattern tunnel
vision. But if you do this, take good notes—today’s odd heuristic
might be tomorrow’s pattern, and we want you to write it down.

4. Apply that pattern or technique locally: think locally, act locally
[Gabriel2000]. But do it in a way that might also increase the
wholeness at the next level in the organizational structure, or in
the next larger context or scope.

5. Strive for balance. Most of the patterns here are communication
patterns. Communication is rarely a one-party phenomenon; it
affects at least two loci. That means that when you apply most of
these patterns there will be some kind of local symmetry. Be
attentive to the symmetry and make sure both sides of the com-
munication, structure, or other facet of the pattern are attended
to.

6. Reflect—does it feel right? Does it work? Filter the feedback from
the organization; people will generally resist change, but are
structure and behavior trending in a direction that increases the
wholeness? If not, back out. It is much better to back out at this
local level, with respect to the application of a single pattern,
than it is to forge blindly ahead and do more damage. Eventu-
ally, a good pattern will lead you to a new context—and a new
set of forces to balance, and problems to which you can attend.

This process iterates after the pattern has had time to settle in and
gain acceptance in the culture. That might take days; it might take
months. Again, use your judgement.

Piecemeal growth is guided by sequences. A pattern language is a
graph, and there are almost innumerable useful paths through it.
There are two cues you can use to know which pattern to apply next.
One is to look at the structure of the pattern language. The individual
patterns tell about what patterns should come next as refinements and
progressive steps, and the numerous figures of the pattern language
graphs can also be a guide. The other guides that are useful are the
sequences that other organizations have followed. The section on CASE

STUDIES looks at the paths followed by several organizations on their
rough road to success. They are stories. Stories can offer powerful

370 Chapter 6 Organizational Principles

insights into business choices, and we offer them to you for that
reason. Read them through and look for things that hit home.

6.2.2 When do I apply these patterns?
If you are familiar with Design Patterns in software architecture,

you probably feel it is obvious when to apply a pattern: when a
problem arises during design or implementation. When do you apply
organizational patterns?

Remember that the system you are building is more that of a human
organization than a software artifact. Change upsets organizations.
Good change comes from a process of consensus, and it takes time and
focus to develop consensus. Project retrospectives [Kerth2001] are an
opportune time to consider the new application of organizational pat-
terns to the organization. Retrospectives are an opportunity to sit back
and consider the organization as a whole, to find the pressure points of
change that will give rise to the right kinds of emergent structure and
behavior. Making changes during a consciously planned retrospective
helps avoid making decisions in the heat of battle; it can help lead the
team to changes that are more systemic and less reactionary in nature.

It is better to introduce organizational patterns between develop-
ment cycles than in the middle of a cycle; this may coincide with a
project delivery, or a change in technology, or perhaps an externally
imposed change in organizational structure. Remember to make
changes piecemeal and local.

The patterns in the chapter PEOPLE AND CODE PATTERN LANGUAGE (5.2)
might be applied as problems arise during development cycles; they
are a hybrid between organizational patterns and software design pat-
terns.

6.2.3 Writing your own patterns
Each organization has its own patterns of effective communication

and development. There are many different kinds of software develop-
ment organizations: an organization that develops embedded software
is likely to be quite different than one that develops in-house interac-
tive tools. Each of these organizations is typified by its patterns.

The patterns in this book are neither universal individually, nor
complete as a set. Each organizational can augment this book’s pat-

Piecemeal Growth 371

terns with their own patterns. Again, retrospectives provide an oppor-
tunity to capture good patterns and add them to the repertoire of good
organizational practices.

See the story of the resurrection of the ParcPlace Systems team in
[Gabriel1996] for a story of a team that rebuilt itself around a pattern-
writing effort.

6.2.4 Master Planning And The Theory Of Constraints
One contemporary management fad is Goldratt’s Critical Chain

and Theory of Constraints [Goldratt1999] which has some similarities
to the process mentioned above, but which also has some stark differ-
ences. It is similar in that the focus at any given time is local, at a par-
ticular juncture of problems. But the pattern approach differs from
Goldratt’s approach in that there is a broader theory and structure
guiding the process, a structure based not only on action/reaction but
on encoded experience. Goldratt’s techniques are more applicable to
industrial and inventory processes that are less tainted by human
emotion and dynamics. The pattern process is more suitable to organi-
zations, which have a life of their own.

The greatest danger is to try to take control and to foresee exactly
how patterns will work together, and to plan now in a way that antici-
pates how you will plan in six months’ time. The world is more com-
plex than that (see PEOPLE ARE LESS PREDICTABLE THAN CODE (6.3.6),
below). An organization is an ever-evolving structure and organiza-
tional process improvement happens in the now. It pays to know his-
tory, and one shouldn’t ignore the market and technological trends
coming over the horizon, but to plan structure based on predicting
human behavior is usually a mistake. This is a difficult thing for most
managers: it requires a “letting go.” Let go; think locally and act
locally; trust your instinct and experience and the experience encoded
in the sequences of the pattern language for the rest.

6.2.5 Communication and Organizational Learning
We mentioned above that organizational learning is a key property

of effective organizations. Many of the patterns in this book concern
effective communication in an organization. But communication can’t
have long-term impact unless there is group learning. That takes intro-

372 Chapter 6 Organizational Principles

spection. So the second main component of long-term viable teams is
that they take time to introspect. That, of course, builds on good com-
munication skills—and leads to UNITY OF PURPOSE (4.2.12), which is one
of the core properties of any effective team.

6.3 Some General Rules

We wish organizational science were a science, but it’s not. Organi-
zational improvement is an art. It requires craftsmanship in building
the right structures. It requires a fine human touch. And it requires
innovations — some of which have come to us in dealing with organi-
zations over time.

In this section we offer some brief, general rules for how to apply
the patterns. Most of these have come from our experience of the past
ten years, but others come from more general principles of patterns.

6.3.1 Make Love Not War
The great Chinese generals observed that he who achieves his goals

without fighting is the most victorious. When one starts a war, there
are few winners and less winning than if things are dealt with peace-
fully. Most people are well-intentioned, given reasonable hope of a
secure future, and are driven by seeing their needs met. The art of
negotiation is to bring as many peoples’ needs, and then desires, into
alignment as possible.

Sometimes there are circumstances that make it impossible to avoid
fundamental conflict. If the enterprise is cutting staff, it is rare that any
amount of negotiation will be able to save everyone’s job and position
in the company. In these situations people are driven by needs lower
on the Maslow hierarchy and will act in ways that others may find less
civilized. These situations call for particularly strong leadership and
tough decisions. These situations call for constructive action: inaction
is sometimes worse either than going to war or avoiding war. The
worse thing that can happen is that people sit around and plan their
investment strategies for survival and life after the organization goes
bankrupt; it is important for leadership to keep a vibrant focus on
solving the problem. The goals of this leadership and of these deci-
sions is to get to a place where dialog can take place among people

Some General Rules 373

who are concerned about their joint welfare all at the same level of the
Maslow comfort hierarchy. If one can build on health at lower levels of
the hierarchy and carry on this dialogue at higher levels, so much the
better.

Having achieved that level of stability, the process of inclusion and
dialogue can start. It needn’t always be genteel and high-brow; per-
haps everyone is worried about the company going bankrupt within a
few months, or about the parent company firing all of the employees.
Such desperate measures have, in fact, proven to be great rallying
forces in the organizations we have worked with. Desperation is the
mother of invention—or it can be, under leadership that can rally such
a group to introspection and dialogue. But success comes from dealing
constructively with the problem rather than by making war on a
shared enemy.

6.3.2 Organizational Patterns Are Inspiration Rather Than
Prescription

The first thing to remember is that these organizational patterns,
like all patterns, are not to be applied blindly or exactly. The patterns
are synthesized from many experiences, no one exactly like the other.
And your situation will surely be different than those we have
observed. Therefore, the patterns serve as inspiration, rather than a
blueprint to be followed exactly.

Most of us tend to be solution-oriented, and we naturally focus on
the solutions in patterns. Yet the problem in a pattern is as important as
the solution. The insights we gain about the problem—captured most
often in the forces—can be just as helpful as the solution itself. In many
cases, once we understand the problem thoroughly, the solution
becomes clear.

As you read the patterns, look for problems that are similar to prob-
lems you now have or once had. But don’t look for exact matches; they
won’t be there. You unleash the power in the patterns when you learn
to adapt them to your own situation.

6.3.3 It Depends On Your Role In Your Organization
As you read these patterns, it will soon be apparent that there are

many patterns that you can do nothing about. For example, few of us

374 Chapter 6 Organizational Principles

are in a position to do something about COMPENSATE SUCCESS (4.2.25);
we don’t hold the purse strings of the organization. Frankly, many of
these patterns have management overtones, and non-managers are
relatively powerless to change them. Furthermore, many of the “non-
management” patterns apply to specialized roles; ARCHITECT ALSO

IMPLEMENTS (5.2.10) applies to only a few roles.
You can react to this fact in one of two ways. One way is to become

angry and frustrated. You identify yourself with Dilbert, and begin to
see your boss with pointy hair. “Why can’t my company’s upper man-
agement get a clue?”

There is a much better way, though. Instead of focusing on what
you can’t change, focus on the patterns that may apply to you. That set
varies depending on your role. For example, you might find it useful
to ENGAGE QUALITY ASSURANCE (4.2.29), or ENGAGE CUSTOMERS (4.2.6). Per-
haps you see yourself as a GATE KEEPER (4.2.10) or a MATRON ROLE

(4.2.18). It may be worthwhile to strive to become so good at what we
do that we eventually become a LEGEND ROLE (4.2.20).

In reality, we will react both these ways; we’re human. The trick is
to try to let go of the things we can’t change. Or at least, they become
filtering mechanisms when we consider taking a position in a new
organization.

6.3.4 It Depends On The Context Of The Organization
Obviously, every organization is different. Therefore, every organi-

zation will use these patterns somewhat differently. For a given orga-
nization at a given time, certain patterns may be very important,
others may be only somewhat useful, while others may not apply at
all. But given this fact, how do you use these patterns to best advan-
tage?

Note that every pattern has a context, which defines the boundaries
of usefulness for that pattern. The context generally shows up at the
top of the pattern, although some context is buried in the exposition of
the problem. It is often difficult to separate the context and the
problem. So you should read the context and problems with an eye to
how they fit your particular organization. Note that the context of an
organization changes over time. In particular, consider the following:

Some General Rules 375

How large is your organization? In addition, how large and com-
plex is the software you are working on? Several of these patterns
apply best to large or small organizations.

How mature is your the organization? How long have people
worked together? In mature organizations, the roles tend to be well
understood. New organizations will be find the patterns of piecemeal
growth of the organization more useful.

How mature is the software under development? This is different
from the maturity of the organization. Mature software is more appro-
priate for HUB SPOKE AND RIM (5.1.17), for example.

What is the culture of the organization? Sometimes, the organiza-
tion’s culture makes easier — or harder — to apply certain patterns.

6.3.5 Organizational Patterns Are Used By Groups Rather
Than Individuals

There are many things we can do as individuals to become more
effective. We can improve our knowledge through study and practice.
We can improve the way we do things; we might, for example, follow
Watts Humphrey’s personal software process [Humphrey1995].
Applying organizational patterns is not something we do alone.

There are indeed some patterns that are oriented toward individ-
uals. The GATE KEEPER (4.2.10) and MATRON ROLE (4.2.18) patterns, for
example, describe single-person roles. Yet on closer examination, these
roles are useful because of how they interact with others — they cease
to exist in isolation. Even a SOLO VIRTUOSO (4.2.5) is set up and managed
by another person. Furthermore, and this is important, one of the keys
to the power of patterns is that they establish a shared high-context
vocabulary. That’s a group thing.

So the question becomes not only how to disseminate knowledge of
the patterns throughout the organization, but to also how to get people
to use them. While nothing replaces the hard work of old-fashioned
evangelism, we can offer a few specific suggestions.

One approach is to spread the word pseudo-subversively.
Remember the description of Dick Gabriel leaving the patterns by the
printer. You can also call out the patterns as you see them (or see their
need) in your organization. People will become curious what
CONWAY’S LAW (5.1.7) is, and ask questions.

376 Chapter 6 Organizational Principles

The most effective way we have seen to introduce these patterns is
through the organizational studies. This not only provides a natural
forum for introducing the patterns, but also exposes the need for them.
We heartily recommend this experience.

6.3.6 People Are Less Predictable Than Code
Perhaps the biggest challenge of organizations is that they are made

up of people. And people are not as well behaved as computers are!
Although we may not like to admit it, computers do pretty much what
we tell them to. But people on the other hand don’t necessarily do
what we want, or even expect.

This means that the results of applying organizational patterns are
going to be inherently less predictable than applying object-oriented
design patterns, for example. Imagine that your organization uses the
RESPONSIBILITIES ENGAGE (5.1.14) pattern to help communication. But
perhaps two people involved simply don’t like each other? Personali-
ties play a large part in organizations.

Organizational patterns have everything to do with the culture of
the organization. Remember that applying these patterns requires, in
many instances, changing the organization’s culture. And because cul-
ture is deeply ingrained in organizations, this can be difficult and
sometimes even painful.

6.3.7 The Role Of Management
Managers are in a unique and paradoxical position with respect to

organizational effectiveness. On the one hand, they have little or no
direct impact on the product being developed. Manager roles are sup-
port roles, rather than PRODUCER ROLES (5.1.3). The only way managers
can contribute value to the corporation is through the producers they
manage. Management is limited to changing policies and organiza-
tional structure in order to influence the behaviors of individuals and
groups. They are particularly powerless.

Furthermore, it may be the case that great managers are the product
of the great organizations they head as much as organizations are the
product of their own talents. Kroeber (see PATTERNS IN ANTHROPOLOGY

(7.1)) talks about the role of genius in culture. We think of Aristotle and
Plato as exemplifying the greatness of Greek philosophy, and we think

Some General Rules 377

of them as having produced the philosophy ([Kroeber1948], p. 145). But
it is more likely that it is the culture that produced the philosophers,
and that the philosophers articulated latent structures and concepts
that the culture was primed to deliver. Aristotle and Plato are therefore
remembered as great leaders, while the masses fade into collective
obscurity.

Along similar lines of reasoning, Kroeber argues that great inven-
tions such as the telescope, logarithms, the calculus, photography, the
telephone, and exploration of the North Pole are products of culture
and not the individuals usually associated with them. As evidence, he
notes that each of these landmarks were achieved by at least two dis-
coverers in the same era, and in almost all cases by individuals whose
efforts were unknown to each other. The telescope was independently
invented by Jansen, Lippershey, and Metius in 1608; logarithms, by
Napier in 1614 and Burgi in 1620; the calculus, by Newton in 1671 and
Leibnitz in 1676; photography by Daguerre and Niepce, and Talbot, in
1839; the telephone, by Bell and Gray, both in 1876. He lists about 20
other such coincidences known to history ([Kroeber1948], p. 140).

By similar reasoning, great corporate managers—and even great
line management supervisors—might be as much a product of the cul-
ture of their groups and corporations as the groups and corporations
are products of their excellence. It is the patterns and the culture that
lead an organization to excellence; the manager is the figurehead,
mouthpiece, or icon that serves as the catalyst for the process towards
excellence. (This same reasoning has sobering repercussions for
common American interpretations of COMPENSATE SUCCESS (4.2.25).)

Therefore, we feel that the best thing a manager can do is to lead a
culture where it wants to go. It is true that this role wields a great deal
of power in shaping the organization, and helping both individuals
and the organization be effective. They can instill vision, they can
sponsor the organization, and they can protect the organization from
distractions. Although their contributions are indirect, they can be
sizeable.

Many of our patterns are best applied by managers. This should
come as no surprise, since the creation, care and feeding of organiza-
tions tends to be responsibilities of management. Even those applied
by individual developers are usually influenced in some way by
nearby manager roles.

378 Chapter 6 Organizational Principles

Managers can use some of our patterns by themselves, or on them-
selves. For example, managers should protect developers from distrac-
tions by becoming FIRE WALLS (4.2.9). They might be an advocate of the
group and the project as a PATRON ROLE (4.2.15). They can mold roles in
their organization with OWNER PER DELIVERABLE (10.5.19), TEAM PER TASK

(4.1.21), and SIZE THE ORGANIZATION (4.2.2). To a certain extent, they
may be able to effectively COMPENSATE SUCCESS (4.2.25), although some
reward policies are dictated from stratospheric levels in the corpora-
tion.

Note that most of these activities can be viewed as keeping the
organization in its own element, focused on what makes it good,
rather than as activities that attempt to bring good or guidance to the
organization. That is a guiding principle in these patterns. A corollary
for managers is that a great manager probably cannot save a dysfunc-
tional culture, but a poor manager might be able to keep an otherwise
viable culture from thriving. We view these patterns as tools that help
the manager help the organization to find its way, at the system level,
partly by moving the manager away from practices that would stunt
organizational growth.

Managers can nurture such critical roles as MATRON ROLE (4.2.18),
PUBLIC CHARACTER (4.2.17), LEGEND ROLE (4.2.20), and WISE FOOL (4.2.21),
which are outside their own sphere. They cannot force these or other
patterns to be adopted by the team, but they might encourage it.
Often, a team is primed to make a change and just needs a light to
show the way to what then becomes obvious to the team, and one
might argue that if major changes aren’t already in the soul of the
organization, they can’t happen, anyhow. Dick Gabriel made copies of
an early copy of the patterns in this book and left them by the printer.
He encouraged the team to pick them up and read them, and they did
so. Then they applied the patterns themselves; Dick didn’t (and
couldn’t) force-feed the patterns to the group.

One key idea is that managers realize the limitations of their influ-
ence—exercise that influence when appropriate, but don’t try to do
more than is possible. We might remember the example of Oscar Ham-
merstein, collaborator with Richard Rodgers on many Broadway
musicals. Once when a friend asked Hammerstein what it was like to
work with Rodgers, he said, “I just hand him a lyric and jump out of
the way.” [Linkletter1968] An internal AT&T management publication
once featured a cartoon with a manager standing at the podium of an

Some General Rules 379

orchestra, clearly having been called to do something above his station
and outside his experience, where we find he has opened the score to
find the words: “Wave the baton until the music stops, and turn
around and bow.”

380 Chapter 6 Organizational Principles

Some General Rules 381

CHAPTER 7 Anthropological
Foundations

Software development cultures have culture. In fact, most organiza-
tions have cultures and styles they can call their own. Yet we can talk
about software cultures that map onto technologies or industry seg-
ments and which cross organizational, corporate and national bound-
aries, and we dare even speak of a “software development culture” at
the highest level.

Too often, computer people use their own tools—processes, tasks,
functions—to describe the structure and practices of their organiza-
tions. Since we followed cultural leadings in writing this book, we
thought it would be good to build on insights and foundations from
anthropology, the formal world of the study of culture.

There is certainly much more work that can be done in this area,
and some anthropologists are pursuing study of such organizations
(for example, [Brajkovich1994]). There are broad cultural findings that
might be turned into relevant insights. For example, we find that most
of the patterns we have discovered have a strong element of poly-
chronic culture in them: cultures that value personal relationships over
objects, and which value broad social networks over punctuality. That
seems paradoxical in a world of introverted engineers working toward
deadlines and schedules; the contrast is striking. Anthropological tools

382 Chapter 7 Anthropological Foundations

can highlight and perhaps explain these contrasts in ways that prior
models cannot, and should not.

We look at a few interesting aspects of culture and anthropological
foundations in the next few sections. We also look at closely related
patterns in other contemporary pattern languages. These sections are
supplementary to understanding and applying the patterns, but they
offer interesting historical context.

7.1 Patterns In Anthropology

Most software designers ascribe the origins of the contemporary
pattern discipline to the building architect Christopher Alexander,
whose works (e.g., [Alexander1977], [Alexander1979]) are often cited
as the inspiration for software patterns. However, patterns have
broader and much older roots than Alexander’s work, finding expres-
sion in mathematics and the natural sciences. One of the most inter-
esting, and certainly most relevant to our interests here, is the work on
anthropological patterns by early anthropologists like A. L. Kroeber
[Kroeber1948].

Kroeber writes:

 Patterns are those arrangements or systems of internal rela-
tionship which give to any culture its coherence or plan, and
keep it from being a mere accumulation of random bits. They
are therefore of primary importance. ([Kroeber1948], p. 119)

He talks about several levels of patterns. Universal patterns are those
that fit a general culture scheme that more or less fits all cultures. Sys-
temic patterns talk about broad but more normative groupings around
collections of beliefs, behaviors, alphabets, or economics Of systemic
patterns, Kroeber writes:

 A second kind of pattern consists of a system or complex of
cultural material that has proved its utility as a system and
therefore tends to cohere and persist as a unit; it is modifiable
only with difficulty as to its underlying plan. Any one such
systemic pattern is limited primarily to one aspect of culture,
such as subsistence, religion, or economics; but it is not lim-
ited areally, or to one particular culture; it can be diffused

Patterns In Anthropology 383

cross-culturally, from one people to another. . . . What distin-
guishes these systemic patterns of culture—or well-patterned
systems, as they might also be called—is a specific interrela-
tion of their component parts, a nexus that holds them
together strongly, and tends to preserve the basic plan... As a
result of the persistence of these systemic patterns, their sig-
nificance becomes most evident on a historical view.
([Kroeber1948], pp. 120-121)

This description is of course reminiscent of pattern languages:
descriptions of systems, or “wholes”, that grow piecemeal from tightly
knit patterns. In this book, each pattern is part of a pattern language, a
systemic pattern that is part of some whole. It is the whole and the
interweaving of individual patterns that corresponds to culture—not
just a loose collection of individual patterns.

Our everyday vernacular use of the word “culture” most closely
corresponds to what Kroeber calls total culture patterns that give a cul-
ture its identity, and to styles that reflect further localization and spe-
cialization. Total culture patterns might be what distinguish C++
developers from Smalltalk developers — not only from the perspec-
tive of language, but from consideration of the normative behaviors,
beliefs, and practices that relate to the languages and environments of
these languages and their associated technologies. Kroeber talks in
particular of how style changes over time (for example, clothing style).

Patterns also figure strongly in isolated examples of more contem-
porary organizational literature. Senge talks about patterns of organiza-
tion in Chapter 6 of [Senge1990]. There are other examples in more
obscure literature as well. Our point here is that patterns are not just
about software or even building architecture, but have deeper and per-
haps even more suitable roots in the human sciences. That is the
approach we have followed in this book: not just to capture ideas in
pattern clothing, but to apply the systems principles of the human sci-
ences to express the structure and practices of a culture that has been
the topic of our study and experience, that of software development
organizations.

384 Chapter 7 Anthropological Foundations

7.2 Beyond Process To Structure And Values

A good organization isn’t just about process, at least not in the sense
that the term is used in ISO 9000 series organizational work. Process
emerges from structure, and structure from values.

Swieringa and Wierdsma are systems thinkers who describe several
types of organizations [SwieringaWierdsma1992]. They describe orga-
nizations as organisms that exhibit certain behaviors, driven by princi-
ples, insights, and rules, with the goal of producing certain results.
Organizational learning shows up as a change in behavior. There are
three kinds of learning: single-loop, double-loop, and triple-loop
learning.

In single loop learning, collective learning causes the rules to
change ([SwieringaWierdsma1992], p. 37). They note that “[m]any of
the measures applied in industry to improve quality, service and cus-
tomer relationships take place at the level of single loop learning.” But
they note that it is a surface effect: “No significant changes take place
in the strategy, the structure, the culture or the systems of the organiza-
tion.” It is a question of changing the how, but hardly ever the why.
There is a hope to improve, largely by doing more of the same, but
doing it better.

In double-loop learning, the focus is on learning at the level of insight.
Now the focus moves to why, on knowledge and understanding rather
than just “improving.” They also call this renewal learning since it
relates to a renewal of insights in the organization.

Last is triple-loop learning, which is about the organization’s iden-
tity, which they call organizational development. It asks: what kind of
business do we want to be? It asks: what are our values and princi-
ples?

All of these modes can be beneficial. The deeper one goes into
learning, the longer it takes (single loop can take place over days,
double loop over months, triple loop over years.) Whereas single loop
is about process and reaction, the other levels deal with the structure
of the organization and with learning how to learn.

Learning is a process, and one must learn how to learn. The pat-
terns in this book are learning tools, and moving from pattern to pat-
tern is a learning experience. Most of the patterns tend to be double-
loop. At the core of this learning process is the Fundamental Process of
PIECEMEAL GROWTH (6.2). This focus on organizational learning distin-

Beyond Process To Structure And Values 385

guishes organizational patterns from other organizations such as
Extreme Programming [Beck1999] which, though rooted in principles,
imposes the principles from without instead of from within the organi-
zation. And it offers no process for “learning” one’s way to success,
supposing instead that the incorporation of all of the principles and
practices (in some unspecified order over some unspecified amount of
time) can lead to success. Patterns put the organization and its mem-
bers, and their collective talents, insights and intelligence, at the center
of the learning process.

7.2.1 The Shortcomings of Process
Many traditional approaches to software productivity have focused

on processes; what steps are taken, and how they are executed. Indeed,
the implication is that if the process is followed, then the software will
be high quality, and will be developed efficiently. Let’s examine this
premise in more detail.

If following the process produces high quality software, then what
is the cause of failures in the software? It must be either that the pro-
cess is not being followed, or that the process is deficient somewhere;
the process missed something. If you think this is far-fetched, think
again: one of the authors once attended a briefing session for an
upcoming ISO 9001 audit. The leader stated that everyone should
remember that the person was not being audited, but rather the pro-
cess and compliance to it. This statement was given to reassure people,
and it probably did provide comfort—temporarily. For after all, if pro-
cesses can be tweaked to handle every eventuality, then developers
stand in grave danger of being replaced by programming robots.

But we all know that software developers are in no danger of being
replaced by robots, because software design is such a highly creative
activity, done by highly intelligent people. And this makes process
much less relevant. In fact, highly intelligent people have been known
to ignore or subvert the official process when it does not apply to
them. Every organization has two processes: the official process, and
the one actually followed. One of the authors once interviewed a
group of key developers from several different projects. Although
used processes that called for design documents and design reviews to
precede coding, each one admitted that they completed the code first,
and then wrote the design document and reviewed it — “so we can

386 Chapter 7 Anthropological Foundations

check off the design review box.” They had found that for them,
design documents were not relevant, and it was easier to write them
once the design was instantiated in the code.

7.2.2 Structure
So if process has little impact on organizational effectiveness, what

does? It turns out that the structure of the organization is more stable
over time, and is a better indicator of effectiveness. This is the break
between single-loop learning and higher order feedback loops. One
reason for this is that the structure of an organization reflects its
values, or principles, and values drive the organization. Some exam-
ples illustrate this.

Prior to the breakup of AT&T in 1984, the Bell System was a
monopoly, and one of its core values was to provide telephone service
to everyone, all the time, at a reasonable cost. This philosophy led to
groups dedicated to extremely high availability hardware and soft-
ware. On the other hand, because cost and speed were non-issues in a
monopoly, organizations became bloated, and were not structured for
speed.

In 1993, Borland was in the midst of developing QuattroPro for
Windows (QPW). Risk taking, hard work, and individual closeness
were important, even to the point that employees played jazz with
Philippe Kahn, the president. Not surprisingly, the QPW team showed
some of the tightest communication coupling we have ever seen.

Organizations that have a strong commitment to satisfaction of cus-
tomers often have customer, surrogate customer, product support, and
customer service roles that are tightly coupled to the rest of the organi-
zation. A thread that runs through all our patterns, and which is fun-
damental to the principles of the pattern languages presented here, is
that the focus is on product. Neither the development processes, nor
the internal documentation are delivered to the customer. The cus-
tomer does not pay for elaborate project plans or architecture docu-
ments or, if they do, it is probably a sign that something is more deeply
wrong than such measures can ever address. These patterns don’t
focus on the development of a process, nor do they advocate having a
process organization. The patterns strive to manage the resources that
go into internal documentation. The focus is always on product. A
product has strong structural elements, and that structure reflects itself

Beyond Process To Structure And Values 387

in the organization. Aligning these structural elements through good
communication practices is what we believe offers the key to effective
development.

7.2.3 Values: The Human Element
Heeding the communication problem implies attentiveness to

human issues. While individuals sometimes stand out in history for
their accomplishments, most great things are done in groups, teams,
and societies, guided by cultural or societal norms. To the degree the
group has a common goal, a common vision — a UNITY OF PURPOSE

(4.2.12) — the organization can come together to do great things. This
is perhaps the deepest hallmark of a great organization: it works as
one mind, to some purpose: triple-loop learning. Perhaps the second
deepest hallmark is the dedication and care with which they pursue
this vision, including a dedication to learning and improvement.

Once in a great while, great minds think alike. But for the rest of us,
it takes communication to align minds, motives, and methods to build
an effective team. Communication is a complex human activity, filled
with social context, psychological complexity, and emotion. So
building a communication structure that supports the building of a
product is also a complex activity. It requires a cultural setting condu-
cive to effective communication. There is no guarantee that any set of
guidelines can produce such an environment. However, these patterns
can provide one foundation for an effective communication environ-
ment by defining a development culture suited to the needs of soft-
ware development, taken from projects attentive to human needs.
They also provide structures that can contribute to reduction in time to
market, in solving the right problem, and in meeting other customer
expectations. The patterns can contribute to a high(er) context culture
where there are shared patterns, and therefore a shared vocabulary
and shared culture, rather than a mechanical or bureaucratic environ-
ment full of rules that are either inhuman or arbitrary.

The focus explicitly is not on process. Process is a good tool in
mature domains with predictable steps. In other domains, it’s not clear
what good process portends for product quality. A flexible process can
reduce interval and contribute to good communication in a domain
that must deal with change. But one can’t just install a process; a pro-
cess must emerge from the structures of communication and produc-

388 Chapter 7 Anthropological Foundations

tion beneath it. And the structures, in turn, are held in place by the
values of the organization. Thus the values of an organization are the
foundation of not only what is done, but how it is done.

Some organizations’ values are rooted in making money. If such
values are pervasive, the organization may have strong links to mar-
keting or sales roles. Customer roles are likely to be present, but less
central than customer satisfaction-oriented organizations.

Many organizations we see value management highly. Manager
roles show up in the middle of organizational diagrams, sometimes
even trumping the critical producer roles such as developer. When we
probe, we often find that people are rewarded more for management
than for development.

It shouldn’t be surprising that most of our patterns have a strong,
although not obvious impact on the values of the organization. They
go beyond the superficial processes to get at the heart of an organiza-
tion. Yet changes at this level do not come easily. It may take years, or
perhaps a crisis, to shake the foundation of the organization—its
values.

7.3 Roles And Communication

 All the world’s a stage, and all the men and women merely players:
They have their exits and their entrances; And one man in his time
plays many parts, His acts being seven ages.

 — As You Like It, act 2, scene 7.

Within every organization, every person plays one or more roles.
We have found that the roles people play are very significant: they are
an important indicator of what really happens in the organization.

Why are roles so significant?
First, the roles define what is done in the organization. This is more

important, and lasting, than how things are done, which is captured in
the organization’s processes. This what helps shape the organization’s
identity. It also illuminates the organization’s values.

Roles And Communication 389

Second, people identify with roles. You may hear someone say, “I’m
a developer,” or “I’m a tester.” They occasionally may change roles,
but there is generally a great deal of stability among roles. People often
carry roles from project to project; in that sense, roles are more stable
than the projects themselves. It is through these roles that people use
their creativity to develop software.

Third, communication flows among roles, thus information is
linked to roles. Information flow is one of the biggest factors in an
organization’s success — or failure.

We have learned much about organizations by examining their
roles and communication among those roles. Presence or absence of
certain roles tells a lot about the project. Occasionally we notice that a
role is missing; this may indicate that the organization does not see
that role as important. For example, a few organizations have not
included “Customer” as a role. One wonders how responsive such
organizations are to customer problems. Some organizations have no
“Architect” role. And they probably feel that software architecture is
unimportant.

Amount of communication, and to whom, among roles, is signifi-
cant. A “Developer” role should be well connected to other roles. But a
“Manager” role that is too well connected may indicate an overly med-
dlesome manager. A “System Test” role that has few connections to the
rest of the project may spell trouble. It could even indicate that the
development organization does not see the value is rigorous system
testing — bigger trouble.

Communication among roles can form groups — cliques, if you
will. Sometimes those are optimizations of communication, but other
times they are tantamount to social cliques. And such cliques can be
very damaging to the organization in a number of ways. We can gain
clues as to which they are by examining the particular roles involved
in the communication groups.

Many of the patterns in the patterns chapters describe the character-
istics of roles. Some describe communication among roles. Each of
these can be vital to the success of an organization.

390 Chapter 7 Anthropological Foundations

7.4 Social Network Analysis

Once we identified the roles, we elaborated the relationships
between roles using a group role-play exercise based on CRC cards
[Beck1991]. We then built organizational models based on these data,
drawing heavily on social network theory and social network analysis.
Social network theory was first developed by Moreno [Moreno1934] to
build models of the structure of interacting groups of people. We
sought patterns across the models of numerous organizations, and
that is the basis for the material in this book.

We presented an overview of the social network analysis techniques
earlier in the book (HOW THE PATTERNS CAME TO US (CHAPTER 2)). In the
following sections, starting with DISTILLING THE PATTERNS (7.5), we
describe our research methodology in more detail.

7.5 Distilling The Patterns

When we set out to write this book, we were determined to make a
pattern language—not just a list of patterns. Why?

• An organization is a system. Most organization problems are sys-
tem problems. Pattern languages are about systems; individual
patterns don’t rise to the system level

• Patterns need each other. No pattern stands alone, but must be
tailored by smaller patterns. A pattern language is a structure
that guides the reader through the patterns

• A pattern language implies choice. Users of a pattern language
can choose patterns that fit their needs and can skip others. They
can tailor patterns to their needs with confidence.

7.5.1 CRC- Cards And Roles
Sociometric modeling can be based on several varieties of network

relationship data. These differences correspond to properties of formal
graphs in graph theory. The relationships between roles can be labeled
(e.g., with a number that indicates the strength of the interaction) or
unlabeled, directed or undirected, and so forth. During the CRC inter-
view, we collected only dichotomous network data: in other words, a

Distilling The Patterns 391

relation either exists between two roles, or it doesn’t. We take care to
capture directed lines to support studies of information flow. A
directed line is called an arc, and a graph of arcs is called a digraph.
Participants annotate the arcs at the end of the interview, giving them
strengths so they become valued arcs.

CRC cards had some unanticipated benefits as well. They can be
used as a therapy session that helps an organization introspect about
itself in real time. Our CRC sessions usually served as mirrors in
which organizations could see themselves in a new light. As such, the
data gathering technique itself played out the sociodrama and laid the
seeds of group therapy.

CRC cards have some drawbacks as well, including groupthink,
consistency, and granularity. Perhaps the most serious problem is the
opportunity for groupthink: the tendency for a group to fall into
modes of social conformity [Janis1971]. Most of the organizations we
visited had a diverse collection of strong personalities that avoided
many of the problems of self-censorship found in organizations domi-
nated by groupthink. We avoided the problems of “mindguards”
(those who protect the power holders in the organization from painful
truths) by asking that the subject organizations not send process pro-
fessionals from their organization, since they usually perform a
policing function and frown on departures from stipulated practice.
Most groups viewed the exercise as an opportunity to help their self-
improvement efforts, and didn’t seem to be blind-sided by illusions of
invulnerability. We observed rationalization-based groupthink in
some groups that participated in these studies because they perceived
an allied group—such as the organization that created or managed
their development process—as an “enemy”. While we feel these fac-
tors would have affected our results if we were explicitly looking for
process compliance, we don’t feel that it affected our models of role
relationships within these organizations. For more on groupthink, see
[Janis1971].

The second problem is consistency. Each group has its own culture
that colors the meaning of common role names: Is it fair to compare
the “Developer” role in a start-up company to the role of the same
name in a legacy organization? Is there a commonly understood
meaning for “role” itself? Different organizations produce different
products that solve problems of widely varying difficulty: Is it fair to
compare otherwise similar teams if one produces aerospace software

392 Chapter 7 Anthropological Foundations

and the other produces biomedical engineering control software? Such
problems plague most software studies; the number of control vari-
ables is large.

Granularity is another issue. A complete understanding of process
incorporates roles, actors, artifacts, and other dimensions; we are
focusing on roles. It is difficult to define a role formally (we “define”
them in terms of their responsibilities). A given person may play sev-
eral roles, and a given role may be played by more than one person.
For example, one person might be both a Developer and a Tester, and
of course several people may adopt the Developer role. The Pasteur
tools (see SOCIAL NETWORK THEORY FOUNDATIONS (7.5.2)) has an option to
combine selected roles, which helps us evaluate some actor-to-role
mappings. The general problems of granularity and mapping remain
research issues.

7.5.2 Social Network Theory Foundations
For those of you interested in the social network theory foundations

and techniques for analyzing the data, we provide a short summary
here.

We collected the CRC data in a database, and created an environ-
ment called Pasteur [CainCoplien1993] to analyze the data. The data
were stored as a digraph representing a social network. Each node in
the graph corresponds to an organizational role as characterized by a
CRC card. Each arc in the graph corresponds to a collaboration
between roles, starting from the role that initiates a collaboration and
terminating on the “helping” role of the collaboration. Subjects in the
organizational studies assign a weighting value to each arc to express
how dependent one role is on the other with respect to the corre-
sponding interaction.

Pasteur supports a variety of network data visualization tech-
niques. The visualization techniques rely on graphical placement algo-
rithms, each of which accentuates different organizational
characteristics. The technique we used most often is a natural force-
based placement technique. The technique employs a simple relax-
ation algorithm:

1. All nodes are assigned random coordinates on a segment of a
plane.

Distilling The Patterns 393

2. A repelling force is set up between all pairs of nodes, following
an inverse square law.

3. Arcs exert an attracting force between the nodes they connect;
the stronger the interaction between a pair of nodes, the stronger
the force.

4. The graph reaches a stable state when all the nodes migrate to
positions where their forces balance.

(The parallels to the use of the term “forces” in pattern parlance
here is striking, and though unintentional, is certainly no coincidence.)

There are other fine points of the algorithm that avoid anomalous
“cornering” of nodes that suffer an unfortunate initial placement. This
algorithm creates a spatial representation of an organization’s interac-
tion graph in two-dimensional space (so far, we have not resorted to
multi-dimensional scaling). Pasteur supports other placement algo-
rithms as well, such as two-dimensional hierarchies (created by a topo-
logical sort that employs heuristic cycle-breaking techniques) and
automatic graph partitioning around selected “seed” roles. The frame-
work accommodates customized rendering techniques for individual
experiments, using a rich programming environment based on the
experimental languages GIL and Romana-I [Burrows1986].

Pasteur displays the graph on either an interactive graphical dis-
play or a color printer. Nodes are color-coded according to their inten-
sity of interaction with neighboring nodes, relative to the organization
as a whole. The graphical interface allows researchers to directly
interact with the model. A user can interactively remove nodes or arcs,
create annotations, merge graphs, or invoke any placement algorithm.
While analytical techniques can be applied to sociometric data to dis-
cover cliques, cutsets, cutpoints, and the like, visual techniques offer
the researcher quick intuitive insights into many facets of organiza-
tional structure at once. Social psychologists use a pictorial social net-
work called a sociogram, a network analysis technique developed by
Moreno in the 1930s [Moreno1934]. Like our visualizations, socio-
grams graphically depict network data. This is a sociogram as used in
the social sciences:

394 Chapter 7 Anthropological Foundations

Sociograms lack the spatial cues of the visualized placement algo-
rithms. The placement techniques amplify the sociogram data, pre-
senting it in a format where patterns can be directly observed by the
organizational analyst. We call these diagrams amplified sociograms for
that reason. The Pasteur social network visualizations depict interac-
tions as simple lines rather than directed arcs, focusing on the cou-
pling between roles rather than on the flow of information:

Few human interactions are truly directed, but usually involve
“dialogue” or “meetings”: the Pasteur diagrams emphasize that aspect
of organization structure. Whether the interactions are directed or not,

Distilling The Patterns 395

they are a good depiction of the major highways of interaction
between roles. One powerful way to interpret sociograms is as work-
flow diagrams. Workflow models have been around for a long time as
ways of studying a wide variety of processes. Workflow has recently
resurfaced in the contextual design discipline as exemplified in the
book Contex tua l Des ign by Beyer and Hol tzb la t t
([BeyerHoltzblatt1998], p. 92). Their workflow models are striking
similar to the sociograms that we used. Their models are in fact based
on several of the same principles and concepts that underly our work:
individuals (which become roles in their “consolidated models”),
responsibilities of the role, and flow (which for us are helping relation-
ships). To these concepts they add five more: groups, artifacts, commu-
nication topic, places, and breakdowns. Our models took this aspects
into account only informally. We commend Contextual Design to practi-
tioners seeking a more extensive taxonomy of flow model properties
than our roles and responsibilities alone provide. Workflow considers
the same structures we examine in social network analysis. It is per-
haps not a coincidence that Contextual Design claims that "[w]ork flow
is the rich pattern [emphasis ours] of work as it shuttles between
people, the interweaving of jobs and job responsibilities that gets the
work done." (BeyerHoltzblatt1998], p. 91)

We also employ interaction grids, a technique inspired by the work
of Church and Hel fman a t AT&T Be l l Labora tor ies
[ChurchHelfman1992]. Each of these diagrams is reminiscent of the
structure of a sociomatrix: a square matrix whose columns are the roles
that initiate collaborations, and whose rows are the roles receiving the
collaborations. Here is a simple sociomatrix for the same organization
as depicted in the sociogram above:

396 Chapter 7 Anthropological Foundations

Here is the corresponding interaction grid from the Pasteur tools:

The sociomatrix—and hence the interaction grid—has information
that is isomorphic to that in the social network diagram. The socioma-
trix and interaction grid communicate patterns of directed interac-
tions, something that is present but difficult to read in sociograms, and
which is missing entirely in the force-based network visualizations.
Shading makes it easier to recognize patterns in the interaction grids
than can be found in the numbers of the sociomatrix. The ordinate axis
of the interaction grid enumerates roles that initiate interactions; the
coordinate axis enumerates (the same) roles as they are the targets of
interactions.

Distilling The Patterns 397

Visualizations are an intuitive presentation of more formal under-
lying concepts. We can analytically measure the centrality of an orga-
nization using several formal definitions. The centrality of the
organization is often given as a number: let’s say, 5.76. Which do you
find more convincing: the number or the picture? Instead of explaining
sociometric vocabulary to team members (particularly to managers),
we appeal to their intuition and imagination with these organizational
portraits.

These visualizations support the second phase of introspection by
the subject organizations: they are data that help the organization face
and understand its problems. The location of key roles in the diagram
usually confirms the development team’s expectations or helps team
members explain exceptional or problematic behavior. For example,
one organization immediately noticed the remoteness of its architec-
tural role in the social network diagram, and explained that was one of
the reasons for the lack of product focus in the organization. A crucial
point here is that an individual sociogram or interaction grid alone
doesn’t pinpoint organizational problems; it is a mirror in which team
members can see themselves better, and thereby better understand
their problems.

We collected pictures into a catalogue and categorized them. Fol-
lowing Gamma’s [Gamma1992] studies of recurring, re-used patterns
of code in software systems, we wanted to find the recurring patterns
of communication in software organizations. One goal of the study
was to collect and catalog typical recurring patterns from a wide spec-
trum of organizations: a social anthropology of software development.
Such studies would form an empirical basis for models of contempo-
rary software development as it really happens, as opposed to ideal
models built from first principles.

We were particularly interested in finding the patterns peculiar to
successful, productive organizations, to investigate whether any orga-
nizational “shapes” correlated to productivity or success. We quanti-
fied “successful” or “productive” only informally or through very
coarse-grained metrics. For example: Like everyone else, we used
thousands of non-commentary lines of code (KNCSL) per staff-month
as raw productivity data, but we thought of these data in terms of met-
rics like log10(KNCSL) / staff-month. We also took note of remarkably
short development intervals. Patterns did emerge over time; that is the
bulk of what we present to you in this book. At about the same time,

398 Chapter 7 Anthropological Foundations

we started extracting sociometric parameters from the sociograms.
These parameters include standard sociometric data such as graph
density and graph centrality. Some of these data correlated well to pro-
ductive organizations, and some of the data are interesting in their
own right.

7.5.3 Scatterplots And Patterns
Many of the patterns in this book came from insights offered by a

tool called Dot, a public domain tool authored by Steve North [is this
true?]. We used scatterplots to find patterns in the data. For example,
we could plot the Communication Intensity Ratio against the number
of roles in the corresponding organization, against the number of com-
munication links, against other sociometric quantities—anything and
everything. We created dozens of these plots for many data sets and
then looked at them to find patterns. Some scatterplots showed a
roughly linear correlation, as in this plot of the number of roles as a
function of Communication Intensity ratio:

Other plots showed polynomial trends; many others showed linear
trends.

Distilling The Patterns 399

PART IV. Case Studies

The patterns in this book were drawn from empirical studies of
about a hundred organizations in dozens of companies in several
countries around the world. To bring the patterns more down to earth,
this chapter looks at two actual case studies of organizations we have
worked with.

The first organization is Borland Quattro Pro for Windows. Much
has already been published in the literature about this study; we
include the same information here for convenience and completeness.

The second organization is a project in Lucent Technologies called
SNAP. It is probably the second most productive organization we have
studied.

Yes, these case studies are old in terms of Internet years. But they
reflect a culture of using timeless practices. We believe that today’s
organizations, a few years later, would demonstrate no major depar-
tures from the practices of these organizations if they were operating
at these levels of effectiveness. Furthermore, the distance of time
allows us to reflect on these organizations and their practices in the
context of history, rather than in the heat of the moment. Such consid-
eration bears out the conclusions and findings. Last, we continue to
find similar configurations and practices in the few high-productivity
organizations we work with in the years closer to the publication of

400 Chapter 7 Anthropological Foundations

this book (200 - 2003), and find that most organizations that follow
these agile practices also enjoy a level of success far above average.

Introduction To The QPWCase Study 401

CHAPTER 8 Borland Quattro Pro For
Windows

Adapted from an article in Dr. Dobb’s Journal of Software Tools, written
by Jim Coplien [Coplien1994].

8.1 Introduction To The QPWCase Study

 Jim — Thanks again for speaking at BIC ’93. I’m also glad you
could stop by Borland and experience what we call Borland Soft-
ware Craftsmanship. We are a young company, started by a French-
man, with young bright and excited developers. In my 8 years at
Borland I have been in the center of it all and can’t imagine another
place to be. — David Intersimone, Director of Developer Relations,
Borland

In 1993, Borland invited me to speak at the Fourth Annual Borland
International conference in San Diego, California, and to visit their
location in Scotts Valley, California. I made arrangements with David
Intersimone, Director of Borland Developer Relations, to speak at the
conference in exchange for access to one of their development organi-
zations. Interviews with such development organizations have helped

402 Chapter 8 Borland Quattro Pro For Windows

the process community better understand the high-level characteris-
tics of software development organizations. We can use this under-
standing to help projects assess their development methods against
those used in other development cultures. I was enthusiastically
received and graciously hosted, a harbinger of other positive signs of
the Borland culture that I would observe that day. I was treated to
insights into one the most stunning development efforts I have had the
pleasure to study.

In this chapter, I relate what I learned while meeting with the devel-
opment team for Borland’s Quattro Pro for Windows 1.0 (QPW) on
May 20, 1993, in Scotts Valley. I feel there is much to be learned about
their process, technology, and organization that we can apply to
projects across the industry, including large projects and perhaps even
embedded and real-time system developments such as we have in
AT&T. This chapter is distilled from a paper published in Dr. Dobb’s
Journal in 1994 [Coplien1994]—before the organizational patterns
were first published!

It is important to understand that this is a retrospective on the
development of the software for the initial offering of QPW. There was
little or no embedded base, and the project didn’t face the constraints
one finds in the legacy code projects common in large, traditional tele-
communication projects. Even so, the phenomenal productivity of this
group and the factors contributing to that productivity are thought-
provoking. Most organizations should be able to take a page from Bor-
land’s book as a basis for their own process improvements.

This chapter starts with a high-level description of the project and
describes the personalities in the development effort. Analyses of the
data from our process analysis technique follow in the next section.
Subsequent sections of the paper describe aspects of the QPW devel-
opment that stood out as contributing to its success.

Origins And Description Of QPW 403

8.2 Origins And Description Of QPW

HIGH- LEVEL Business Flow of the Borland QPW Development
————————-
Borland launched development for QuattroPro for Windows as a

natural follow-up to their DOS spreadsheet offering. QPW offers
spreadsheet and database functionality in the spirit of most spread-
sheet products on the market today. The team I interviewed created
QPW 1.0, the so-called base generic development for the product.

The initial development was to be heavily loaded with features. The
project goal was to produce a product with the maturity and feature
richness of a third- or fourth-release product. The team felt they had
achieved that goal when the product shipped.

Like most Borland products, QPW is designed to be a self-contained
deliverable that is compatible with other members of a product family.
Its human interface is consistent with other Borland products. Its data-
base interfaces allow it to interwork with other Borland products. Bor-
land views itself as a vendor of individual business solution

404 Chapter 8 Borland Quattro Pro For Windows

components, from which a customer can select combinations to meet
their needs. The total code volume of all Borland products, expressed
as original source lines, is huge: tens, if not hundreds, of millions of
lines of code (my estimate). Products are largely independent of each
other, yet share common infrastructure and look-and-feel (and, conjec-
turally, the code providing this functionality).

QPW had a small core team—four people—who interacted
intensely over two years to produce the bulk of the product. Proto-
typing was heavily used: Two major prototypes were built and dis-
carded (the first in C; the second, called “pre-Crystal,” in C++). Four
core developers defined an architecture, built early prototypes and the
foundation code for the product, and participated in implementation
through its delivery. Additional programmers were added after about
six months of intense effort by the core of four. This is experience was
one of our initial substantiations for the pattern BUILD PROTOTYPES

(4.1.7).
The methodology was iterative. Except for the architectural dia-

logue, the core developers worked independently. Early code can be
viewed as a series of prototypes that led to architectural decisions, and
drove the overall structure of the final system. This supports not only
BUILD PROTOTYPES (4.1.7), but also patterns outside the language like
Cockburn’s EARLY AND REGULAR DELIVERY (10.5.11) [Cockburn1996].

The programming language was C++. The final implementation
stages of QPW stressed their C++ compiler—which was being devel-
oped in parallel with QPW—to its limits. There was uncharacteristi-
cally tight coupling between the QPW group and the language group.
QPW was one of the largest and earliest projects to stress their C++
compiler release. Cooperation between the two allowed each to con-
tribute to the quality of the other.

After the product took shape (after about a year), additional roles
were engaged in development activities. QA (quality assurance),
testers, and others were at last allowed to see and exercise copies of the
code that had been kept under wraps during early development.
These roles had been staffed earlier, but engaged in development only
when the developers felt they had something worthy of testing. This
gave us foundations for patterns such as ENGAGE QUALITY ASSURANCE

(4.2.29) and APPLICATION DESIGN IS BOUNDED BY TEST DESIGN (4.2.30).
While the QA organization conducts its own testing, there is an

active beta program to uncover bugs as only real users can. This is a

Origins And Description Of QPW 405

luxury that tool purveyors enjoy to a greater extent than most telecom-
munications companies can (and that we enjoy to a greater extent than
some contractors in, say, the aerospace industry). Beta programs are a
form of ENGAGE CUSTOMERS (4.2.6) and, specifically, of SURROGATE CUS-

TOMER (4.2.7). Beta customers are “surrogate” because they are not
paying customers and aren’t really in a position to expect any level of
performance or quality.

The QPW product entered the market to high acclaim. PC Source s
said, “Borland International Inc’s Quattro Pro for Windows spread-
sheet software package makes better use of the Windows graphical
user interface (GUI) than any other spreadsheet package to date”
[OMalley1993]. PC User says that “Borland International’s Quattro Pro
for Windows (QPW) is the world’s best spreadsheet software”
[Whitehorn1992]. Computer Shopper quips, “Borland International Inc’s
Quattro Pro for Windows spreadsheet software outperforms the
standing champion of Windows spreadsheet management, Microsoft
Corp’s Excel 4.0” [Bonner1992]. INFO WORLD [Walkenbach1992], PC
Magazine [Stinson1992], and many others also offer positive reviews,
which dominate the press perspective on the product. I found other
reviews that are more balanced, but uncovered no reviews that found
the product lacking in key areas.

The team members I interviewed included:

• Charlie Anderson, the Director of Applications for Borland, who
was one of the QPW architects. He is experienced and thought-
ful, the apparent “spiritual leader” of the group, but only in a
subtle sense.

• Weikuo Liaw, a renowned expert on spreadsheet engines and
one of the QPW architects. Wei is a highly revered developer,
almost to the point of inspiring awe, but rather shy and among
the most introverted of the group.

• Murray Low, an energetic, darting, bright and witty engineer
who worked on the QPW/UI side (user interface stuff) and who
was a QPW architect.

• David Intersimone, Borland Developer Relations, who facilitated
my appearance at Borland but who was not part of the QPW
development.

406 Chapter 8 Borland Quattro Pro For Windows

• Dan Horn, also from Developer Relations. He helped put me in
touch with the Borland people while I was at the conference to
make final arrangements.

From almost any perspective (except gender) we found this to be a
diverse team, with variation in experience, chronological age, eth-
nicity, and domain expertise: both DIVERSE GROUPS (4.2.16) and HOLISTIC

DIVERSITY (4.2.19). In particular, there was a very strong sense of
DOMAIN EXPERTISE IN ROLES (4.2.22).

8.3 Analysis Of QPWData

We most frequently use a natural force-based network analysis to
analyze organization data collected in the Pasteur data base. This anal-
ysis produced an adjacency diagram. In these diagrams, a default repel-
ling force is established between each pair of roles. There is also an
attracting force between pairs of roles that are coupled to each other by
collaboration or mutual interest; a stable placement occurs when these
forces balance.

Here is the picture that results by applying this analysis to QPW:

Each rectangle represents a role. Each role is colored proportional to
how much it is coupled to the rest of the organization as a whole. Roles
are connected with lines that indicate the strength of interaction

Analysis Of QPWData 407

between the respective roles. The thick, yellow lines indicate strong
interaction; medium red lines are moderate interaction; and thin,
green lines are the weakest interaction. Roles are grouped so that the
ones that interact most closely with each other are closest to each other
on the diagram, while those with the least mutual coupling are the fur-
thest from each other in the diagram.

There are several things worth noting in these pictures that set them
apart from most other organizational process models we’ve made.
Here is a summary of those properties:

• The QPW process has a higher communication saturation than 89% of
the processes we’ve looked at. The adjacency diagram shows that all
roles have at least two strong connections to the organization as a
whole. The project’s interaction grid is dense. The coupling per
role is in the highest 7% of all processes we have looked at. This
is a small, intensely interactive organization. We find patterns
like THREE TO SEVEN HELPERS PER ROLE (5.1.21), COUPLING DECREASES

LATENCY (5.1.22), FEW ROLES (5.1.2) and PRODUCER ROLES (5.1.3) in
this structure.

• There is a more even distribution of effort across roles than in most
other processes we’ve looked at. The roles in the adjacency diagram
are shaded according to their intensity of interaction with the rest
of the organization. In the QPW process, Project Manger and QA
glow brightly; Coders a little less so; Architect, Product Manager,
and Beta Sites are “third magnitude stars”; and Tech Support, Doc-
umentation, and VP still show some illumination. Most “tradi-
t ional” processes we’ve studied show a much higher
concentration of interaction near the center of the process. That
is, most other processes comprise more roles that are loosely cou-
pled to the process than we find in QPW. That may be because
QPW is self-contained, or because it is small. It may also be
because the process was “intense”: a high-energy development
racing to hit an acceptable point on the market share curve. We
see the patterns DISTRIBUTE WORK EVENLY (5.1.13) and FEW ROLES

(5.1.2).

• Project Manager and Product Manager are tightly coupled, central
roles in the process. These managerial roles were filled by individ-
uals who were also key technical contributors to the project (they

408 Chapter 8 Borland Quattro Pro For Windows

wrote real code), which contributed to their acceptance and suc-
cess as process hubs.

• Product Manager was a role that was employed only after a year
of development.

• Quality Assurance is a tightly coupled and central role. Many organi-
zations consider QA to be an external function, outside their
organization and process. At Borland, QA becomes a way of life
after development has converged on a good design and a stable
user interface. For QPW, this was about 12 months into develop-
ment. Again, this is ENGAGE QUALITY ASSURANCE (4.2.29).

• The CEO (Philippe) figures strongly in the organization. In a com-
pany of thousands of employees, it is unusual to find the CEO as
tightly coupled to development as we find in QPW. It is instruc-
tive to examine the responsibilities associated with Philippe
Kahn’s role: Ensure product is commensurate with current mar-
ket environment; ensure product market coordination is done in
a timely and cost-effective manner; determine pricing, product
positioning; shape public perceptions and handle PR for the
product prior to and after ship; determine cosmetic changes to
keep consistency among all Borland products and to call out cer-
tain features (in other words, usability testing); playing jazz to
avoid press questioning on ship dates. This is a combination of
PATRON ROLE (4.2.15), LEGEND ROLE (4.2.20) (Philippe Kahn was an
icon of 1980s software culture), and FIRE WALLS (4.2.9).

• The overall interaction grid pattern is uncharacteristic of what is found
in other processes:

Analysis Of QPWData 409

 Interaction grids show patterns of interactions in an organi-
zations, and are particularly useful when the organization is
large or when its interactions are dense. We most often use an
interaction grid where roles are ordered on both axes by their
degree of coupling to the organization as a whole. The most
integral roles are placed near the origin. Most other processes
exhibit a characteristic pattern of points along the axes, with
lower point density and lower intensity for increasing dis-
tances from either axis. In QPW, there is a general lessening
of density and intensity as one moves toward the northeast
quadrant of the interaction grid. The northwest and southeast
quadrants of the Borland grid remain more dense than we’ve
seen in other processes. This is a combination of DISTRIBUTE
WORK EVENLY (5.1.13) and RESPONSIBILITIES ENGAGE (5.1.14).

Between 30% and half of the processes we’ve studied exhibit a pat-
tern called schismogenesis ([Bateson1958]; see also THE OPEN CLOSED

PRINCIPLE OF TEAMS (6.1.4)). To summarize, schismogenesis is a term
from classic anthropological literature that describes a tendency for
societies to stratify into sociological “comfort zones.” This phenom-
enon appears in interaction grids as a clustering of points around the
diagonal. For organizations where this phenomenon is present, the

410 Chapter 8 Borland Quattro Pro For Windows

effect is particularly pronounced in the northeast quadrant of the inter-
action grid. It indicates that organizations contain splinter groups.

The QPW process is characteristically “anti-schismogenetic.” That
is, there is blank space around the diagonal of the interaction grid, par-
ticularly in the northeast quadrant. While we have seen graphs with
random scatterings of points, the QPW graph is the first where the
points seem to abhor the diagonal, yet fill out the rest of the graph.

8.4 Personal Excellence And Integrity

The initial QPW development team comprised highly productive
professionals who viewed each other with the highest respect. These
perhaps sound like hollow words that most managers would apply to
their organizations, until one looks more deeply into what “highly
productive” and “respect” mean.

The QPW development team has chronologically mature member-
ship by industry standards. “We have professionals, not hired guns”
noted one member of the development team. People are brought into
the team for their recognized expertise in domains of central impor-
tance to the project: spreadsheet engines, graphics, databases, and so
forth. No one is viewed as a warm body, or general engineer, or inter-
changeable employee: Each brings special talents to the effort: DOMAIN

EXPERTISE IN ROLES (4.2.22). Implicit here is that developers were trusted
to conduct their business: DEVELOPER CONTROLS PROCESS (4.1.17).

QPW had a small core team—four people—who interacted
intensely over two years to produce the bulk of the product (ARCHITEC-

TURE TEAM (5.2.4); ARCHITECT ALSO IMPLEMENTS (5.2.10)). Prototyping was
heavily used: Two major prototypes were built and discarded (the first
in C; the second, called “pre-Crystal,” in C++). Additional program-
mers were added after six months or so of intense effort by the core of
four (BUILD PROTOTYPES (4.1.7)). These prototypes drove architectural
decisions that were discussed in frequent (almost daily) project meet-
ings (STAND UP MEETING (5.2.7)). Based on feedback from these meet-
ings, the team made architecture and implementation changes and re-
integrated and tested before the next meeting—usually the next day.
This cycle closely approximates the patterns surrounding PROGRAM-

MING EPISODE (4.1.19) and, in a broader sense, DEVELOPMENT EPISODE

(4.1.15). A million lines of code were written over 31 months by about

Do One Thing And Do It Well 411

eight people: that’s about 1000 lines per person per week. And that
doesn’t include the code in the prototypes.

The trust level is so high that developers felt code reviews are
unnecessary. But while reviews are rare, group buy-in and trust are
important. Each project member must personally sign off on a set of
project delivery media before they can be released to the next stage
(e.g., beta test or to the “street”). This is a strong sign of CODE OWNER-

SHIP (5.2.13) and OWNER PER DELIVERABLE (10.5.19); both of these were
strong in the project, partly because of the high degree of specializa-
tion, and partly because of a high degree of personal pride in crafts-
manship. Personal evaluation of the software, as well as informal
dialogue, build the confidence for such a sign-off.

There is a complex and highly non-linear relationship between
project productivity, programmer skill, and project organization. There
will always be debate about how much of the phenomenal produc-
tivity of QPW owes to its culture, how much to its choice of staff, and
how much to other factors.

8.5 Do One Thing And Do It Well

The phrase “Do one thing and do it well” is an admonition from C
language expert Brian Kernighan about how to write good functions
(and more recently from Arthur Riel’s heuristic that each class should
manage one key abstraction [Riel1996], in addition to what are doubt-
less many other parallels). Analogous advice is starting to appear for
classes in object-oriented systems. And the same might apply to the
people who write those classes.

QPW is organized along lines of domain specialization. Domains
important to QPW are dependency registration software, human inter-
faces, databases, and a few others. An individual was identified for
each of those domains.

In their domain, each individual does what they are good at. They
excel at bringing their domain expertise to the table in architecture
meetings. They know what the right abstractions are. They know how
to implement those abstractions. They bring C++ or DOS or Windows
proficiency to the project, or quickly develop it (through analogy to
related domain experience).

412 Chapter 8 Borland Quattro Pro For Windows

Equally important is what these individuals are not good at, and
that they are not expected to take responsibility for domains not
related to their specialization. Instead of working in these domains,
hey work with these domains. One good example is documentation.
Developers are supported by a documentation organization that
develops internal and external documentation. The time spent by
developers in conveying this information to the documentation orga-
nization is far less than it would take for them to commit it to writing,
put it into an acceptable format, and have the work edited for lin-
guistic elegance.

By contrast, we knew that most of our AT&T developers wrote most
of their own memos. It’s not clear whether this owes to our history, our
organizational boundaries, the nature of our business, or to reward
mechanisms. Nevertheless, a deeply rooted cultural behavior at AT&T
is that engineers draft their own memos. Developers spend much time
(roughly 13% of total development time creating and refining memos
in AT&T). In Borland, that job is deferred to people who are expert at
it. (AT&T information from process researchers Larry Votta and Nancy
Staudenmayer (MIT), 1993.)

8.6 A Piecemeal Architecture Process

QPW development was highly iterative. To understand the nature
of the iteration, one must understand its ramifications for architecture
and implementation. One must also understand the culture by which
changes were approved and how decisions were made. This takes us
into the realm of project meetings, always a topic of interest in a large
development organization.

The core architecture team met daily to hammer out C++ class inter-
faces, to discuss overall algorithms and approaches, and to develop
the basic underlying mechanisms on which the system would be built.
These daily meetings were several hours in duration; from what I
heard, the project was made more of meetings than anything else.
Everyone’s external interfaces were globally visible, and were globally
discussed. The product structure was built on the domain expertise
brought to the table by domain experts, but it was socialized and tem-
pered by the needs of the product as a whole.

A Piecemeal Architecture Process 413

In spite of the intense meeting-oriented development culture the
project built around its architectural development, class implementa-
tions were fleshed out in private. Individuals were trusted with doing
a good job of implementation: after all, project members were
acknowledged experts in their domains. Code reviews were rare. The
trust and respect engendered by this domain expertise made it pos-
sible to focus meetings on system-level issues.

There are three project principles worth noting about the QPW
organization’s communication architecture:

1. Meetings are not a bad thing. While we all cringe at the thought of a
project centered on a meeting that carries over from one day to
the next throughout early development. But our fear of meetings
likely comes more from our memories of the ineffectiveness of our
meetings, not from their frequency. At the First International
Workshop on Software Process, I polled several process lumi-
naries with the following question: Suppose I am among the
most mature software organizations in the world (a CMM Level
5). [Humphrey1992]. How much of my time do I spend in meet-
ings? Responses from Vic Basilli, Watts Humphrey, and Barry
Boehm ranged from 30% to 50%. Project communication, a
shared vision, and meetings are important and productive if
meetings are properly conducted.

2. Development takes place on two levels: architecture and implementa-
tion. There is an architectural thread, and a development thread;
both are ongoing, and they interact with each other strongly.
New implementations suggest architectural changes, and these
are discussed at the daily meetings. Architectural changes usu-
ally require radical changes to the implementation. The imple-
mentors’ ability to quickly reflect those changes in their
implementation is key to turning around architectural changes
quickly; this is due in large part to ARCHITECT ALSO IMPLEMENTS

(5.2.10). This is where the outstanding productivity of the project
members comes into play: Their incredible productivity supports
iterative development. There may be a third development
thread—product management and marketing—that goes beyond
the scope of this inquiry.

3. The development interaction style is a good match for the implementa-
tion technology the group had selected. Object-oriented development

414 Chapter 8 Borland Quattro Pro For Windows

leads to abstractions whose identity and structure are largely
consistent across analysis, design and implementation. Classes
hide implementations and localized design decisions, though
their external interfaces are globally visible. Mapping C++
classes and people close together made it possible for developers
to reason about the implementation off-line, away from the meet-
ings that dealt with interface issues.

Notice this is contrary to the commonly presumed model that the
object paradigm makes it possible for an individual to own a class,
interface and all, with a minimum of interaction with other class
owners in the organization. It should be emphasized that classes are
good at hiding implementation and detailed structure (e.g., in derived
classes) but that they are not good at reducing the ripple effect of inter-
face changes. In fact, because interactions in object-oriented systems
form an intricate graph, and interactions in structured procedural sys-
tems usually form a tree, the ripple effect of interface changes in an
OO system can be worse than in a block-structured procedural design.

A question frequently posed to organizations using iterative tech-
niques is: “How do you mark progress or do scheduling?” For QPW,
there are two parts to the answer. First, they relied on experience
sizing similar jobs, and found the overall estimates to be satisfactory.
Second, they kept multiple sets of books internal to Borland to achieve
different goals. The hardest of the dates was owned by (and not
divulged by) the parts of Borland that own the financial books. A
“real” street date was needed so the company could provide planning
and resource support to the development. But internal scheduling pro-
vided incentive, focus, and pressure for development to move ahead.
Project management and corporate executives presented deadlines to
the development teams that failed to telegraph the business view of
the schedule, presenting a more compressed schedule for develop-
ment than the business case allowed for. You see this approach
reflected in the SIZE THE SCHEDULE (4.1.2) pattern.

8.7 Personality And Development

Thomas Allen at MIT has noted the correlation between effective
communication skills and prospects for advancement and success in

No Wine Before Its Time 415

technical organizations. [Allen1977] Individuals exhibiting extraordi-
nary communications skills, and exercising those skills outside their
line organization, he refers to as gatekeepers (see GATE KEEPER (4.2.10)).
They “control”—or, more accurately, facilitate—the flow of informa-
tion between the development organization and scholastic and com-
petitive sources.

One might expect a team of developers of a highly successful
product such as QPW to follow this model. My observations of the
QPW team were brief, but I was left with the impression that their per-
sonalities run contrary to this stereotype. “Nerds” would be a more
apt characterization. However, individuals were able to communicate
intensely with each other as a group, with intense stereotypical male-
style communication dynamics. Only David Intersimone—an out-
sider—took the role of posing pointed questions to the group (prob-
ably to make sure certain points were clear to me).

While it is unclear exactly what their communication behavior
would portend for success in a more structured setting, their technical
prowess has earned them the highest positions of esteem at Borland.
Perhaps one needs to bring Allen’s models into question, at least as
they apply to small, inbred developments (most of Allen’s organiza-
tions were large, government or military contract projects).

One might consider evolutions of the AT&T development culture
where such technical expertise could be a better harbinger of advance-
ment. Different AT&T organizations have emphasized different pro-
fessional qualities at different times as criteria for supervisory
promotion: technical ability, coordination and interworking skills,
administrative skills, and so forth. There is a common perception that
in our current business environment, technical skills don’t dominate
considerations for reward or advancement to the same extent that they
did in the heyday of academia in the 1960s and 1970s. They are clearly
key to success in the Borland value system.

8.8 No Wine Before Its Time

QPW used iteration from early in its development cycle through the
latest stages of development, increasing the stability of their software
and decreasing iteration over time. This iteration took place in what
might be described as a traditional corporate context. From its outset,

416 Chapter 8 Borland Quattro Pro For Windows

QPW was a strategic, visible product in the company. That meant that
all development areas were primed for its deployment, including
quality assurance, documentation, and product management.

Though these areas were staffed from the outset, they were denied
access to the details of the product until about a year into its develop-
ment. That gave the architect/developers room to change the func-
tionality, interface, and methodology of the project before interfacing it
with the corporate culture and ultimately with the “street.” Quality
Assurance, Product Management, and documentation were allowed
access to the project only after it had “conceptually congealed,” about
a year into the development schedule.

8.9 Create Rather Than Conform

Even though Microsoft’s Excel may have been a significant market
motivator to start the QPW program, QPW developers paid it little
heed during the design of their code and human interfaces. Function-
ality and interface were derived from first principles (project members
were strongly conversant in spreadsheet issues) and from consider-
ation for compatibility with other Borland interfaces.

One major distinction between QPW, and most of the work done in
large telecommunications projects we studied at AT&T, is that QPW
wasn’t working to a customer requirements document. They simply
knew what needed to be done. This owes to DOMAIN EXPERTISE IN ROLES

(4.2.22) and can be viewed as a special kind of SURROGATE CUSTOMER

(4.2.7).

8.10 California Gold Rush?

One cannot ignore the motivating power of bonuses that are of the
same order of magnitude as annual compensation. While much of cor-
porate America is turning more and more to “egalitarian” compensa-
tion structures, other companies strive to tie personal financial
rewards tangibly to the market success of the fruits of an individual’s
labor. The stereotype may actually be true that bonuses and rewards
for jobs well done are higher west of the Rockies than elsewhere.

Introspection By The Team 417

While I did not explore this with the Borland crowd, one might
imagine that the west coast bonus stereotype extended to the QPW
culture. The prospects for such rewards may make it easier for individ-
uals to justify the energy and commitment they must commit to a
high-intensity development for it to succeed.

See additional thoughts about this in COMPENSATE SUCCESS (4.2.25).

8.11 Introspection By The Team

Can an organization without an explicit, conscious process effort
enjoy the same process benefits as an organization with full process
certification? Though there may be a tendency for certified organiza-
tions to experience stronger process benefits than those lacking any
formal concern for process, this Borland project had many of the hall-
marks of a mature development organization.

Borland is not subject to the ISO 9000 series process standards, has
no concept of its SEI CMM rating, and is not conversant with the soft-
ware development process lingo being used increasingly in large soft-
ware organizations. For someone interested in process to visit them
was a rare event. Before going through the CRC card exercise, my
presence as a process guru was viewed with a range of responses that
ranged from intrigued interest, through curiosity, to suspicious doubt.
By the time the exercise ended, those involved were able to identify
some parts of their value system and culture with what we call pro-
cess. (By the way, the doubters went away saying, “You know, I think
you’ve got something there.”)

So even though the organization has no codified system of process,
it is keenly aware of what it does, how it does it, and what works. It
views software development as something fundamentally driven by
special cases (at least for initial generic development) and repeatability
is not an important part of their value system. Members of the organi-
zation were nonetheless able to articulate in great detail aspects of
their process that demonstrated to my satisfaction that they shared a
single model, perhaps based on development rules, of how develop-
ment should be done.

Many organizations we have interviewed have a weak or confused
notion of what their roles are, what the responsibilities of the roles are,
and how the roles interact. Most AT&T organizations with a weak

418 Chapter 8 Borland Quattro Pro For Windows

notion of process are those who have not gone through an ISO audit,
yet developers’ notions of their roles even in some ISO-certified orga-
nizations are fuzzy at best. Other organizations that do not have any
conscious process culture are nonetheless able to articulate their pro-
cess in explicit terms, at a level of abstraction that transcends tech-
nology, tools, or methodology (UNITY OF PURPOSE (4.2.12)). In our other
studies, we found that this consistency correlated to organizational
health.

Borland’s QPW development was one such organization. When I
asked what their development roles were (with a short definition of
what I meant by role) the answers were immediate, intuitive, and
reflected a single model of the organization shared by its members.
Team members required little thought to come up with roles. Few roles
were added during the role-playing exercise, and only one role was
substantially redefined. The organization knew itself well, and was
conscious of how people interacted with each other at an abstract
level.

In his book, Gerry Weinberg suggests that there is a paradigm shift
between Level 2 and Level 3 of the SEI Capability Maturity Model
(CMM) [Weinberg1991]. He believes that organizations at Levels 1 and
2 need strong (managerial) direction, while organizations at level 3
and above are self-directing. Borland clearly appears to be in this latter
category—though it may not register a Level 3 rating according to
commonly accepted criteria.

Charlie Anderson entertained us with a thoughtful monologue on
how the project felt about itself and its accomplishments. “We are sat-
isfied by doing real work,” he noted as he thought about how the
project dovetailed daily architectural meetings with implementation.
They learned how to improve the structure of their product, and how
to improve their process, as they went through development. “Soft-
ware is like a plant that grows,” he mused. You can’t predict its exact
shape, or how big it will grow; you can control its growth only to a
limited degree. In the same vein, “There are no rules for this kind of
thing—it’s never been done before.” In retrospect, though, he notes
that there are a few things that every project should have. At the top of
his list was that every project should have a good documentation
department. This sounded intriguing to me (as it wouldn’t have been
first on my list) but I didn’t get a chance to follow it up with Charlie
(but see DO ONE THING AND DO IT WELL (8.5) above). This, of course, is

Process And Quality 419

MERCENARY ANALYST (4.1.24) — and, as we’ll discuss below, it is argu-
ably a strong foundation for the Borland success.

8.12 Process And Quality

One widely-held stereotype of companies that build PC products
(or of California-based companies) is that they hire “hackers” and that
their software is magic, unreadable spaghetti. Meeting with this group
broke that stereotype for me. Their constant attention to architectural
issues (ARCHITECT CONTROLS PRODUCT (5.2.3), ORGANIZATION FOLLOWS

ARCHITECTURE), their efforts to build an evolvable structure, their care to
document the system well (both externally and internally: MERCENARY

ANALYST (4.1.24)), are all hallmarks of the highest professionalism.
Those attitudes, coupled with the phenomenal general-purpose pro-
gramming talents of the staff, plus the high level of domain-specific
expertise (DOMAIN EXPERTISE IN ROLES (4.2.22)), defined the kind of
quality value system necessary to an effective and productive process.
There were few gratuitous shortcuts and few novice errors. From what
I saw, these people produce very high quality code.

If there was any disappointment on the project, it was in their
inability to bring down the bug curve in the project end game as fast as
they wanted to. They noted that the shapes of software development
bug curves are well-known, so there is hope of predicting how long it
will take to ferret out an acceptable fraction of the remaining errors.
However, the boundary conditions for the curve aren’t known at the
outset, so it is difficult to predict the exact shape of the curve until
developing experience with bug discovery and resolution. Inability to
predict the exact shape of this curve resulted in a modest schedule slip
(SIZE THE SCHEDULE (4.1.2); DEVELOPMENT EPISODE (4.1.15)).

Other questions about the project can be answered only over time.
The process described here was for initial product development. Can a
similar process be used for ongoing maintenance? Probably not,
though vestiges of the original process will certainly live on. How will
maintenance affect productivity? Can the dual-line development con-
tinue to support architectural change with rapid alignment of the cor-
responding implementation? Initial experience is good; the first round
of QPW changes earned it a PC Magazine Editor ’s Choice award
[PCMag1994]. The editors were astounded by the amount of function-

420 Chapter 8 Borland Quattro Pro For Windows

ality that had been added so quickly. Maintenance questions will
become increasingly important to Borland, as we already recognize
them as crucial in telecommunications systems with long service life-
times.

8.13 Concluding Thoughts About QPW

Many other patterns came out of our understanding of the QPW
project. The project got a start even while the compiler was not fin-
ished; this is an example of GET ON WITH IT (4.1.3). NAMED STABLE BASES

(4.1.4) reflects the daily builds the project did to incrementally add
functionality. They had WORK FLOWS INWARD (4.1.18), particularly
during testing: information came in from beta users through the Help
Desk to the development team. The team was strongly supported by
management and other support functions during the earlier periods as
well. We find SACRIFICE ONE PERSON (4.1.22) in many instances, the most
graphic of which is Philippe Kahn’s interactions with the press and
market; he also acted as a FIRE WALL and PATRON ROLE (4.2.15) in this
capacity.

This was a SELF SELECTING TEAM (4.2.11) with strong UNITY OF PURPOSE

(4.2.12). It operated much as a SKUNK WORKS (4.2.14): small and iso-
lated, though strategically its focus was much shorter term.

The team had a very low “truck number” (see MODERATE TRUCK

NUMBER (4.2.24)), however, because of the high specialization. But there
was very strong commitment to the project and good communications
that suggest that there may have been more cross-fertilization than we
could see. While architects (and other roles) maintained their special-
ization, they also maintained an uncharacteristically high level of com-
munication among themselves. This balance is rare in organizations
and we have found it only in the strongest, “hyperproductive” organi-
zations. We originally captured this structure in a pattern called BUF-

FALO MOUNTAIN [Coplien1995] that was later split into RESPONSIBILITIES

ENGAGE (5.1.14) and HALLWAY CHATTER (5.1.15). Communication was
the glue that held this organization together.

Can we capture the architecture of the Borland development orga-
nization and process, and expect phenomenal results if we apply it to
large development projects such as we have at AT&T? Probably not.
However, its staggering productivity offers a target to shoot for, and

Concluding Thoughts About QPW 421

some aspects of its management policies and process guidelines may
serve small- to medium-sized developments well. To the extent large
jobs can be partitioned into small ones, the Borland approach may be
suitable for individual parts of large developments.

Borland develops products for a domain and market which, today,
has little overlap with the traditional telecommunications market. As
large software development organizations move into new markets—
such as software development environment platforms and soft human
interfaces—the techniques used at Borland will become increasingly
difficult to dismiss out-of-hand as irrelevant for large system develop-
ment.

The software industry has long embraced rationales that dismiss
the productivity of stereotypical “Silicon Valley” cultures. We tended
to think of PC development efforts of that era as small and simple. We
say they have limited markets and don’t need to evolve. Borland
defies these stereotypes. The QPW product needed to move into a
market supported by Windows, Windows/NT, Pink, and conjecturally
others including Macintosh—and maybe even UNIX. It will need to
interface to a host of different windowing systems and hardware tech-
nologies. It is not small, even by AT&T standards (it was larger than
the first release of the flagship AT&T local switching product). Borland
was able to coax 1 million lines of production code from about eight
people in 31 months. Perhaps a PC-based development environment
and PC-based deployment platform make developers more effective,
and perhaps QPW doesn’t have the same fault-tolerance requirements
one finds in large telecommunications systems. But those consider-
ations alone don’t seem to account for figures that are orders of magni-
tude above industry norms.

Software maintenance is of critical important to today’s large, com-
plex software developments. One suspects that the same will be true
for QPW as it offers new features, runs on new platforms, and adapts
itself to new operating systems and windowing environments in the
market place. One might guess that foreseeing such evolution is one
reason for Borland to have chosen object-oriented development tech-
niques and C++ as the basis for their development.

The Borland process operates at an extreme point in our continuum
of development organizations. Having a set of extreme data points can
be of use to us in our process research, as it helps bound the models we
make. We hope the Borland model will provide data that will help us

422 Chapter 8 Borland Quattro Pro For Windows

calibrate our process models, and help us better correlate properties of
other models we study.

A great big thanks to Carol Johnson at Borland for taking care of
most of the local arrangements. I’m indebted to Ruby Chu at AT&T for
chasing down QPW product reviews. A special thanks to Doug
McIlroy and Peter Weinberger for their critical comments.

Concluding Thoughts About QPW 423

CHAPTER 9 A Hyperproductive
Telecommunications
Development Team

This chapter is distilled from a paper prepared in the spring of 1994
shortly after Jim Coplien studied the team in question.

The exact identity of the team is withheld for two reasons. One
relates to the propriety of information about the product at the time
the study was done. But, furthermore, the team asked not to be identi-
fied. They were concerned at the time that if they were identified as
having built a better mouse trap, that the world would beat a path to
their door asking them for process advice. They didn’t want to be in
that business; they didn’t want to be distracted from doing what they
enjoyed doing. But other than omitting the name of the product, we’ve
included many particulars of data that we hope will make the group
more tangible, and that will answer questions about the viability of the
group’s approaches.

The report, as originally written follows:
I had the pleasure of meeting with the entire development team for

a small network platform being built by a Network Systems organiza-
tion in AT&T Bell Laboratories on February 17, 1994. This project is
among the most interesting I have studied. The organization has some

424 Chapter 9 A Hyperproductive Telecommunications Development Team

of the best team dynamics of any I have observed anywhere. The
people find their work challenging, stimulating, and rewarding. This
organization is likewise productive, with 200 KNCSL to their credit at
the hands of six developers over 15 months. That interval includes
conceptualization and design. That code count does not include a sim-
ilar number of lines purchased externally or reused from existing
internal projects.

Many of the tenets, practices, and characteristics of this project are
eerily reminiscent of Borland’s Quattro Pro for Windows (QPW) team,
the most highly productive organization I have studied [Coplien1994].
he project is unique in many of its own ways, too—unique, perhaps, in
the sense that the experience could not be easily reproduced else-
where. Nonetheless, this project provides another data point in our
study of hyperprogramming (very productive) organizations (for a
current total of two such data points). We noted that the two organiza-
tions resemble each other in many ways, ways that perhaps portend
high productivity and quality of work life. These factors are worth
exploring.

Might their development process have something to do with all
this? Contemporary management thinking holds process to be a domi-
nant factor in quality and productivity. The organization’s process and
organization are indeed the source of their power, but the process is off
the beaten path. Our research was attracted to the organization
because of its emphasis on parallelism, taken almost to extremes, with
astounding results.

9.1 The Culture

This organization has been around in one form or another for about
15 years. They have a long history of prototyping and building small
systems. About four years ago, the organization started working on
trials to prove in their product concepts. Development started in ear-
nest about two years ago. The development team currently has about 8
people. Most (all but two at the debriefing) have families. The group is
demographically diverse.

The project has an excellent history of meeting impossible delivery
dates, owing to much hard work. The team typically works 50- to 60-
hour weeks, some working 60- to 70-hour weeks over a five-month

The Culture 425

spurt. The team is egalitarian in the sense that everybody writes code,
but is non-egalitarian in that everybody brings their own realm of
expertise to the table (which is an important factor we explore later
under “Code Ownership.”)

People do much of their own risk management. As the meeting got
started, Peter told how he was going to add line splitting to the archi-
tecture. That was going to make more work for Pat. Pat was playfully
unhappy about the change, but it was a design change the team had
decided some time ago that it had wanted. The project had been
granted a one-month extension in its schedule, and Peter had taken the
initiative to do a redesign of the part of the system that had been
causing them to use resources inefficiently.

Parallelism is key to the organization’s success. The organization
got its start when presented with an ambitious scenario: Conceptu-
alize and deliver a system prototype in four to five months. Almost
coincidentally, the requirements, testing, and design all converged on
the same date. It worked, and converged faster than anyone imagined
possible. The small team size, the excellence in systems engineering,
and lack of dogmatism among team members were major factors in
the success of the prototype. The organization became more introspec-
tive about their concurrent engineering approach to development, and
turned it into a way of life for themselves. The technique that made the
prototype successful was carried into the development of the product
itself. It is this way of life that I had come to study.

And the introspection isn’t complete. There is still a feeling that part
of what makes them successful is purely instinctive. Peter even wor-
ried that if I surfaced process understanding into their consciousness,
that it would affect the way they worked—because it would establish
a new introspection framework—and potentially damage the delicate
balance of magic that propelled them to success. While there is a slight
chance that the Heisenberg phenomenon could take them in that direc-
tion, there is equal or greater probability that such a discussion could
open their eyes to possibility for improvements.

The programming language is C, the development environment is
UNIX. (Note that they use neither object-oriented approaches nor
C++, staples that have become stereotypically associated with high
productivity and best current practices.) The product has performed
well in the field. Three installations have been running for 7 months,
with only 3 unplanned outages to their credit totaling less than 8

426 Chapter 9 A Hyperproductive Telecommunications Development Team

hours: better than 99.94% uptime. The total number of faults found in
the field has been about 25, out of which 20 have been addressed at
this writing.

The organization’s culture, self-image, and process have a rich
human element that precipitates from the small team environment.
These issues merit their own section later in this chapter.

9.2 The Development Process

The Development Process 427

428 Chapter 9 A Hyperproductive Telecommunications Development Team

Write
Documen-

tation

Bound
Delivery

Date Starts
Development

Plan

Identify
Require-
ments

Estimate
Cost Initial

Time/Cost
Assesment

Allocate
Funds

Convey
Req’s

Change

Generate
BWM

Estimate
Cost

Estimate
Cost

Estimate
Cost

Integrate
Cost

Estimates

Manage &
Disburse
Funding

Formulate
Schedule

Hand
Out

Assignments
Start

System
Engineer-

ing

Design
Dialogue

Consult
on

Schedule

Consult
on

Schedule

Consult
on

Schedule

Start
Design

Write
Test

Plans

Design
Dialogue

Deployment
Decision

Design
and

CodingGet Info
from

Developers

Performance
Verification

Customer
Hand-

Holding

Project
Management

Mad
Architect

Service
Development

Product
Management

System
Engineering

Performance
Verification

Document Ambassador Developer

The Pasteur Analysis Of The Process 429

Figure 1: RAD of the Process

Figure 1 shows a structured flowchart of the process, called a ROLE-
ACTIVITY Diagram or RAD. The diagram misses many of the interesting
interactions between people enacting the Developer role. It also misses
the richness of interaction between the Ambassador and his 50 or so
contacts external to the project. The Ambassador, like Allen’s gatekeeper
[Allen1977], handles most of the external project technical interfaces.

Parallelism can be seen throughout. Design might start before
system engineering. Requirements continue to change and accumulate
after coding has started, and sometimes after performance verification.

9.3 The Pasteur Analysis Of The Process

Figure 2: Adjacency Diagram (Natural FORCE- BASED Placement)

I analyzed the interview data using the Pasteur organizational anal-
ysis tools [CainCoplien1993]. Figure 2 shows the adjacency diagram,
or force-based communication network diagram, for the development
organization. The graph has two communication “hubs” at the Devel-
oper and Ambassador roles, respectively. We generate coupling metrics
from the same model used to build the adjacency diagram. Coupling
per role is 41%, about at the median but far above the mode and mean

430 Chapter 9 A Hyperproductive Telecommunications Development Team

for all processes we have studied. It is about half the value of 89% for
QPW.

There is an amazingly even distribution of work across the project.
The Mad Artichoke, Ambassador, Manager, and Service Development roles
all share the same degree of coupling to the process as a whole. Hacker,
Domain Experts, Service Management, Product Management and Perfor-
mance Verification are slightly less coupled. As we have found in most
organizations, the Developer role is more tightly coupled to the process
as a whole than any other single role.

It is rare that we find an organization with an architect, and rarer
still that the architect occupies a central position. In this network plat-
form development, the Mad Artichoke (architect) role is more coupled
to the process as a whole than any role except Developer, which links
every role in the communications model (This, again, is reminiscent of
QPW.) Much of the communication burden that normally falls on the
developer’s shoulders is taken on by Ambassador, which is a secondary
hub in the organization structure. This role fits Allen’s description of
the ‘‘gatekeeper’’ role exactly: again, reminiscent of QPW.

The centrality of the architect is reminiscent of QPW. In QPW,
Quality Assurance was more central than we find in this organization.

Figure 3: Interaction Grid

The Human Side 431

Figure 3 shows the interaction grid for the project. The picture is
curiously asymmetric. The large blank space at the top occurs because
roles outside the process are not approached to do work; they supply
work, constraints, and input to the project. That anomaly aside, com-
munication patterns are distributed evenly across the organization.
Such an even spread of connectivity is rare in the processes we have
studied, but it was a characteristic of the Borland QPW organization.

9.4 The Human Side

The process and culture have a richly human side. This shows up in
how the group talks about itself, as well as in its organization and pro-
cess. I explore three aspects of the human issue here. how people
issues are integrated into the process, the anthropomorphizing of
code, and management practices.

9.4.1 Engineering people issues into the process
The “high touch” flourish in this “high tech” environment became

clear from the outset [Naisbitt1984]. People invented outrageous role
names to describe themselves: Mad Artichoke for the architect; Agitator;
Code Police, Damage Control.

The “person-ality” of the project goes deeper. Consider the per-
ceived responsibilities of role Agitator:

• Keep team from getting too comfortable

• Trigger discussions

• Say things nobody wants to say

“Say things nobody wants to say”? Many conservative develop-
ment organization cultures are loaded with “unmentionables” that
plague progress by cutting off painful avenues of progress with
taboos. In this organization, everything is open to criticism by anyone.
As Steve Bauman (then a director at Bell Laboratories) once said, it is
not “warm and fuzzy”; it is “open and productive.” This behavior can
be found in patterns like WISE FOOL (4.2.21) and PUBLIC CHARACTER

(4.2.17). The Damage Control role has the following responsibility:
“Repair inter-organizational and inter-personal damage”.

432 Chapter 9 A Hyperproductive Telecommunications Development Team

The first-level manager plays a less authoritarian role in the process
than in a typical corporate development setting. Most of his role is to
provide support and to track project status, but “twisting arms” of
people outside the team is also among his responsibilities. He sees his
job as ensuring that the team has the best people possible, that they
have the resources and time necessary to do a good job, and that out-
side interference and roadblocks are kept out of the developers’ way.
He also fills the Damage Control role.

9.4.2 Code Ownership and Programming
Anthropomorphism

The project has strong code ownership that transcends release
cycles. Everybody knows what everybody else is working on. Nobody
changes anyone else’s code, except in an emergency. If one pro-
grammer finds a bug in another’s code, the person finding the bug
asks the owner to make the change.

Code ownership creates an interesting project mentality that is diffi-
cult to codify, but which might be summed up in a wry comment from
one developer: “We don’t use ECMS or Sablime, [source management
tools] so we need code ownership.” Code ownership makes job
responsibilities visible in the culture, rather than burying them in a
tool.

Code ownership goes so deep that the project has anthropomor-
phized their software. Software anthropomorphizing is something
taught in some analysis techniques, including the popular CRC tech-
nique for object-oriented analysis, [Beck1991] but this project takes this
to an unparalleled extreme. During scenario walk-throughs, you don’t
hear them saying, “the X module sends this message to the Y module,”
but rather, “A message comes in from Dara and goes over to Roman”
or something analogous. “Now, Peter kills Pat” describes a signal sent
between processes. One can go by the lab at night, and hear a pro-
grammer scream “Oh, Peter! Why did you do this?” as “Peter’s” code
reaches out and creates some system atrocity that makes the tester’s
life difficult. The code is strongly identified with the individual
owning it.

Responsibility is a deep underlying value in this project. Ownership
exists for its own sake, but if you own something, and you make a
change, you have responsibility for it. Code ownership and the associ-

The Human Side 433

ated culture raise everybody’s awareness, expectation, and assurance
that such responsibility will be carried forward. It seems more pow-
erful than having a tool to track down a change to an accountable indi-
vidual: there is a mind-set that transcends the need or such version
management tools in a small project. This makes site support and FOA
activities easier: when a problem is found in the field, it is usually clear
who needs to be brought in to fix it.

Will the project need version management as it grows? Possibly, but
the market is constrained enough that multi-featurism may not
become a serious problem. If they can coordinate releases for all sites
(the market is believed able to bear 11 systems) then versioning may
never be needed.

9.4.3 Growing a Garden
After the group session, I stopped by to debrief the department

head on my findings. She briefly described her management philos-
ophy, which she likened to gardening. Her main job, however, is to
“keep the pests away.” That, she said, is what a good project manager
should do as well. Curiously enough, the role we ended up calling
“project manager,” we were initially going to call “smoke screen,”
because it distanced the development community from surrounding
organizations.

On the way out, I ran into a manager from another project who in
an unrelated context talked about “controlling the people who sit in
the bleachers and throw rocks.” Insulation appears to be an important
and successful management strategy in our culture.

9.4.4 Rewarding Excellence
Traditional rewards like money and promotions are in short

supply—but that doesn’t constrain the intrinsic motivators which can
be equally direct and even more effective. People enjoy their work
here. Their talents are appreciated and the people are respected as
individuals. The people are trusted: they are given much latitude,
much responsibility, and are trusted to talk directly to customers. The
issue of trust was also central to the Borland QPW team.

Their department head had this to say:

434 Chapter 9 A Hyperproductive Telecommunications Development Team

 [M]uch of the reward is intangible...not something I as a man-
ager give, but something I allow them to achieve. I give lots
of personal attention to them mostly and try to create a fun,
creative environment with challenging assignments. I try to
personalize the whole set of interactions so that everyone
thinks they are doing this to better ourselves and better our
chances of getting more challenging, fun, creative work.

This approach is reminiscent of the “getting one’s ticket punched”
concept described in Soul of a New Machine, [Kidder1981] a mentality
common to Silicon Valley companies as well. The close coupling
between influential management (in this case, a widely respected
department head) and their reports is also reminiscent of the Borland
environment.

9.5 The Small Team Spirit

As was true for Borland’s QPW, this product is developed by a
small team. Small teams can achieve results that would be impossible
in a traditional organization. It makes anthropomorphism feasible. It
gives everyone a feeling of connectedness. It smooths communication,
and in fact enables communication dynamics that may lie at the heart
of concurrent engineering.

“I think I’m going to need this soon,” Bryan yells down the hall to
Dave about a module with changes that must be coordinated with
Bryan’s fixes. It’s mid-morning, and he knows that before the morning
is over, he’ll need Dave’s module so he can test his own work out.
Dave knows that unless he stops what he’s doing and turns to the
module Bryan asked for, that Bryan will become blocked. Dave drops
what he’s doing and moves to finish up the work he needs to do to
support Bryan. At about 2:00, Dave yells down the hall, “Here it is.”
Bryan is now in shape to test after only a short delay, and Dave goes
back to what he’s doing, without ever having been idle.

An exceptional instance? No: interrupt mode is the modus operandi
of the whole group, in the interest of minimizing wait states. It is the
INTERRUPTS UNJAM BLOCKING (4.1.25) pattern. Wait states can add sub-
stantially to product interval. The micro-parallelism of this process
alleviates much of the blocking one finds in large projects. Just as in

Process Improvement Opportunities 435

processor scheduling, interrupts reduce the latency to service a
request. If the context-switch overhead is low enough, an interrupt-
driven development’s throughput will be about the same as for any
other approach. It takes close-knit communications to make it work.

How do these communications take place? I asked if they held peri-
odic team meetings. “Not if we can help it,” was the reply. Team mem-
bers have a small number of small three- or four-person meetings
during the day. Yelling up and down the hallway is de rigueur. It is
unlike Borland, where much more of the dialogue seems to have taken
place at a round table under the banner of architecture. But the under-
lying principle—close-knit communication—is the same.

This approach leads to an unconventional view of time and
schedule. Most software development projects are monochronic soci-
eties: They believe time adds up algebraically. This organization seems
to be more polychronic: with parallelism and task shuffling, time
becomes fluid and can be manipulated. The interrupt-driven nature
can be somewhat nerve-racking, and carrying on in parallel with
people outside the team (e.g., in front-end and back-end processes) can
be uncomfortable. But the resulting productivity gains are high.

9.6 Process Improvement Opportunities

Code ownership can be maintained in the long term only if there is
a solid high-level architecture with clear, explicit interfaces. This
project should work to make their architecture more explicit, and to
better formalize the interfaces. This will become increasingly impor-
tant as development moves from initial product formulation to
ongoing evolution.

Right now, there is no clearly identified role in this project to con-
duct arms-length black-box testing for faults. They are aware of this
problem and are addressing it.

Bell Laboratories modular building construction may not be the
most conducive to the team interactions that seem to nourish this
team. Alternative architectures and room configurations might sup-
port the necessary interworking while maintaining the sense of
“space” and privacy that has long been a valued aspect of the Bell Labs
culture.

436 Chapter 9 A Hyperproductive Telecommunications Development Team

9.7 Thoughts And Conclusions

On a person-for-person basis, this organization is one of the most
productive organizations we’ve studied. Such high productivity usu-
ally comes not only from good development and management prac-
tices, but from a high commitment of time and energy from its
developers. Such behavior should be encouraged through the reward
system, and by recognition, as it was at Borland.

The small team dynamics of this organization have been the domi-
nant factor in its prodigious success: The high degree of parallelism,
the interrupt-driven development, and the use of concurrent engi-
neering, are all related to the team size. Other similarities to Borland
QPW include the high degree of trust between members of the project;
the tight coupling with respected and influential management; the
centrality of the architecture function; tight code ownership and soft-
ware anthropomorphism; and the even distribution of communication
across all roles in the organization. These latter factors characterize a
true team. Such distinguishing characteristics of organization and pro-
cess should be carefully considered as key factors that differentiate
highly productive organizations from most contemporary software
development efforts, and the mature practices they use.

Thoughts And Conclusions 437

PART V. Appendices

438 Chapter 9 A Hyperproductive Telecommunications Development Team

Project Management Patlets 439

CHAPTER 10 Summary Patlets

A patlet is a short summary of the problem and solution for a pat-
tern. Patlets are often used as an aid to discovering patterns to solve a
particular problem at hand. Here, we use the patlets as a way for you
to find patterns you are looking for.

10.1 Project Management Patlets

These patlets point to patterns for initial organizational design. You
can find the patterns in the section PROJECT MANAGEMENT PATTERN LAN-

GUAGE (4.1).

440 Chapter 10 Summary Patlets

COMMUNITY OF TRUST (4.1.1):
If you are building any human organization, Then: you must have a

foundation of trust and respect for effective communication at levels
deep enough to sustain growth.

SIZE THE SCHEDULE (4.1.2):
If the schedule is too long, developers become complacent; but if it

is too short, they become overtaxed. Therefore: reward meeting the
schedule, and keep two sets of books.

GET ON WITH IT (4.1.3):
If you are starting a project and have enough information to get

started on parts of it, Then: don’t wait until you have a complete
schedule before starting to do parts of the project

NAMED STABLE BASES (4.1.4):

Build
Prototypes

Surrogate
Customer

Completion
Headroom

Recommitment
Meeting

Work
Split

Day
Care

Developer
Controls
Process

Programming
Episode

Work
Flows
Inward

Developing
In

Pairs

Fire
Walls

Development
Episode

Implied
Requirements

Feature
Assignment

Dont
Interrupt

An
Interrupt

Get
On

With
It

Informal
Labor
Plan

Interrupts
Unjam

Blocking

Mercenary
Analyst

Scenarios
Define

Problem

Named
Stable
Bases

Take
No

Small
Slips

Incremental
Integration

Private
World

Team
Per
Task

Sacrifice
One

Person

Size
The

Schedule

Someone
Always
Makes

Progress

Work
Queue

Compensate
Success

Early
And

Regular
Delivery

Phasing
It
In

Project Management Patlets 441

If you want to balance stability with progress, Then: have a hier-
archy of named stable bases that people can work against.

INCREMENTAL INTEGRATION (4.1.5):
If you want developers to be able to test changes before publishing

them, Then: allow developers to build the entire product code inde-
pendently to allow testing with the very latest base (not the latest
Named Stable Base).

PRIVATE WORLD (4.1.6):
If you want to isolate developers from the effects of changes, Then:

allow developers to have private work spaces containing the entire
build environment.

BUILD PROTOTYPES (4.1.7):
If early acquired requirements are difficult to validate without

testing, Then: build a prototype, whose purpose is to understand
requirements.

TAKE NO SMALL SLIPS (4.1.9):
If you are getting behind schedule and need additional time

resources, Then: take one large planned slip instead of allowing your-
self to nickel and dime yourself to death with small, unanticipated
slips.

COMPLETION HEADROOM (4.1.10):
If work is progressing against a set of hard dates, Then: make sure

there is COMPLETION HEADROOM (4.1.10) between the completion dates of
the largest task and the hard delivery dates.

WORK SPLIT (4.1.11):
If people too close to the problem are escalating their problems,

either as a “pork barrel” issue or as something well-intentioned, Then:
split work into an urgent and deferred component, with less than half
of development work in the urgent half.

RECOMMITMENT MEETING (4.1.12):
If: the schedule can’t be met with simple adjustments to the work

queue and staffing, Then: assemble developers and interested man-
agers to recommit to a new strategy based on doing the minimal
amount of work to reach a satisfactory conclusion

WORK QUEUE (4.1.13):
If deliverables are ill-defined, you need to allow time to do every-

thing. Therefore: produce a schedule with less output than you have
input. Use the list of IMPLIED REQUIREMENTS (4.1.16) (really just names) as

442 Chapter 10 Summary Patlets

a starting point and order them into a likely implementation order
favoring the more urgent or higher priority items.

INFORMAL LABOR PLAN (4.1.14):
If developers need to do the most important thing now, Then: let

developers negotiate among themselves or “just figure out the right
thing to do” as regards short term plans, instead of master planning.

DEVELOPMENT EPISODE (4.1.15):
If we overemphasize individual contributor skills, work suffers.
Therefore: approach all development as a group activity as if no one

had anything else to do.
IMPLIED REQUIREMENTS (4.1.16):
If you need a way to nail down the functionality that needs to be

covered, Then: make a list of functional areas and domains instead of
breaking it down into traditional requirements.

DEVELOPER CONTROLS PROCESS (4.1.17):
If you need to orchestrate the activities of a given location or fea-

ture, Then: put the Developer role in control of the succession of activi-
ties.

WORK FLOWS INWARD (4.1.18):
If you want information to flow to the producing roles in an organi-

zation, Then: put the developer at the center and see that information
flows toward the center, not from the center.

PROGRAMMING EPISODE (4.1.19):
If you need to split up work across time, Then: do the work in dis-

crete episodes with mind share to commit to concrete deliverables.
SOMEONE ALWAYS MAKES PROGRESS (4.1.20):
If Distractions constantly interrupt your team’s progress, Then:

whatever happens, ensure someone keeps moving toward your pri-
mary goal.

TEAM PER TASK (4.1.21):
If a big diversion hits your team, Then: let a sub-team handle the

diversion, the main team keeps going.
SACRIFICE ONE PERSON (4.1.22):
If a smaller diversion hits your team, Then: assign just one person to

it until it gets handled.
DAY CARE (4.1.23):
If your experts are spending all their time mentoring novices, Then:

put one expert in charge of all the novices, let the others develop the
system.

Piecemeal Growth Patlets 443

MERCENARY ANALYST (4.1.24):
If you want to keep documentation from being a critical path road-

block for developers, Then: hire a MERCENARY ANALYST.
INTERRUPTS UNJAM BLOCKING (4.1.25):
If you need to schedule urgent development activities according to

some reasonable priority scheme, Then: use an interrupt scheme to
keep individual problems from blocking the entire project.

DON’T INTERRUPT AN INTERRUPT (4.1.26):
If you’re in the middle of handling an interrupt to keep the project

from getting stuck, and a new urgent need arises, Then: continue han-
dling the current issue before moving on to the new one.

10.2 Piecemeal Growth Patlets

These patlets summarize patterns for the growth of an organization
once it is up and running. You can find the patterns in the section
PIECEMEAL GROWTH PATTERN LANGUAGE (4.2).

444 Chapter 10 Summary Patlets

A
pp

lic
at

io
n

D
es

ig
n

Is
B

ou
nd

ed
B

y
Te

st
D

es
ig

n

S
ce

na
rio

s
D

ef
in

e
P

ro
bl

em

A
pp

re
nt

ic
e

S
hi

p

D
ev

el
op

in
g

In
P

ai
rs

D
ay

C
ar

e

G
en

er
ic

s
A

nd
S

pe
ci

fic
s

C
om

pe
ns

at
e

S
uc

ce
ss

Fa
ile

d
P

ro
je

ct
W

ak
e

T
he

W
at

er
C

oo
le

r

G
ro

up
V

al
id

at
io

n

D
iv

er
se

G
ro

up
s D

om
ai

n
E

xp
er

tis
e

In
R

ol
es

H
ol

is
tic

D
iv

er
si

ty
P

ub
lic

C
ha

ra
ct

er

M
od

er
at

e
Tr

uc
k

N
um

be
r

S
ub

sy
st

em
B

y
S

ki
ll

E
ng

ag
e

C
us

to
m

er
s

E
ng

ag
e

Q
ua

lit
y

A
ss

ur
an

ce

S
ur

ro
ga

te
C

us
to

m
er

U
ni

ty
O

f
P

ur
po

se

F
ire

W
al

ls

G
at

e
K

ee
pe

r
M

an
ag

er
R

ol
e

S
ta

nd
U

p
M

ee
tin

g

Le
ge

nd
R

ol
e

W
is

e
F

oo
l

M
at

ro
n

R
ol

e

P
at

ro
n

R
ol

e

P
ha

si
ng

It In

S
el

f
S

el
ec

tin
g

Te
am

S
ku

nk
W

or
ks

S
iz

e
T

he
O

rg
an

iz
at

io
n

S
ol

o
V

ir
tu

os
o

F
ew

R
ol

es

B
ui

ld
P

ro
to

ty
pe

s

Piecemeal Growth Patlets 445

SIZE THE ORGANIZATION (4.2.2):
If an organization is too large, communications break down, and if it

is too small, it can’t achieve its goals or easily overcome the difficulties
of adding more people. Therefore: start projects with a critical mass of
about 10 people.

PHASING IT IN (4.2.3):
If you can’t always get the experts you need, Then: grow new

experts from new hires.
APPRENTICESHIP (4.2.4):
If you have difficulty retaining expertise, Then: grow expertise inter-

nally from existing employees or even new hires.
SOLO VIRTUOSO (4.2.5):
If a project is intellectually small, then overstaffing it is a waste of

time and money. Therefore: staff small projects with SOLO VIRTUOSOS.
ENGAGE CUSTOMERS (4.2.6):
If you want to manage an incremental process that accommodates

customer input, and if you want the customer to feel loved, Then:
engage customers after Quality Assurance and project management
are prepared to serve them.

SURROGATE CUSTOMER (4.2.7):
If you need answers from your customer, but no customer is avail-

able to answer your questions, Then: create a surrogate customer role
in your organization to play advocate for the customer.

SCENARIOS DEFINE PROBLEM (4.2.8):
If you want a good characterization of customer needs, Then: use

scenarios to define the problem.
FIRE WALLS (4.2.9):
If you want to keep your developers from being interrupted by

extraneous influences and special interest groups, Then: impose a Fire
Wall, such as a manager, who “keeps the pests away.”

GATE KEEPER (4.2.10):
If you need to keep from being inbred, Then: use a GATE KEEPER

(4.2.10) role to tie together development with other projects, with
research, and the outside world.

SELF SELECTING TEAM (4.2.11):
If you appoint people to a team, it doesn’t come together as a team.

But people with outside interests and who wish to joint a team make
the best team members. Therefore: teams should be largely self-

446 Chapter 10 Summary Patlets

selecting with limited screening on the basis of track record and out-
side interests.

UNITY OF PURPOSE (4.2.12):
If a team is beginning to work together, Then: make sure all mem-

bers agree on the purpose of the team.
TEAM PRIDE (4.2.13):
If a team needs to perform above and beyond the call of duty, Then:

instill a well-grounded sense of elitism in its members.
SKUNK WORKS (4.2.14):
If a project innovates too much, then it increases its risk; yet there is

a place for innovation. Therefore: give innovation an organizational
space and time.

PATRON ROLE (4.2.15):
If you need to insulate Developers so DEVELOPER CONTROLS PROCESS

(4.1.17) and provide some organizational inertia at the strategic level,
Then: identify a patron to whom the project has access, who can cham-
pion the cause of the project.

DIVERSE GROUPS (4.2.16):
If everyone has similar views, you have a good team, but too much

normalization leaves important problem areas unaddressed. Therefore:
assemble a diverse team, based on different experiences, cultures, and
genders.

PUBLIC CHARACTER (4.2.17):
If you need a catalyst to bring people together, Then: recognize some

roles as PUBLIC CHARACTERS.
MATRON ROLE (4.2.18):
If your team needs ongoing care and feeding, Then: include a

Matron in the team who will naturally take care of social needs of the
team.

HOLISTIC DIVERSITY (4.2.19):
If Development of a subsystem needs many skills, but people spe-

cialize, Then: create a single team from multiple specialties.
LEGEND ROLE (4.2.20):
If a key person will leave the organization soon, Then: train a key

replacement, and have them assume a role named after the key
person.

WISE FOOL (4.2.21):
If critical issues do not get aired easily, Then: nurture a Wise Fool to

say the things nobody else dares say.

Piecemeal Growth Patlets 447

DOMAIN EXPERTISE IN ROLES (4.2.22):
If you need to staff all roles, it’s difficult to determine how to match

people to roles to optimize communication. Therefore: match people to
roles based on domain expertise, and emphasize that people play
those roles in the organization.

SUBSYSTEM BY SKILL (4.2.23):
If you need to organize subsystems for the long haul, Then: divide

them up by skills.
MODERATE TRUCK NUMBER (4.2.24):
If you can’t eliminate having a single point of failure in allocating

expertise to roles, Then: spread expertise as far as possible, but not
more so.

COMPENSATE SUCCESS (4.2.25):
If enterprises are to succeed, they must reward the behaviors that

portend for success; but, these behaviors are varied, and success is dif-
ficult to measure. Therefore: establish a spectrum of reward mecha-
nisms that reward both teams and individuals.

FAILED PROJECT WAKE (4.2.26):
If people have put their hearts and souls into a project, only to have

it canceled, Then: celebrate its demise; hold a “wake” for it.
DEVELOPING IN PAIRS (4.2.28):
If you want to improve the effectiveness of individual developers,

Then: have people develop in pairs.
ENGAGE QUALITY ASSURANCE (4.2.29):
If developers can’t be counted on to test beyond what they already

anticipate what might go wrong, Then: engage Quality Assurance as
an important function.

APPLICATION DESIGN IS BOUNDED BY TEST DESIGN (4.2.30):
If you want to organize the interworking between test developers

and software developers, Then: organize the process so APPLICATION

DESIGN IS BOUNDED BY TEST DESIGN.
GROUP VALIDATION (4.2.32):
If you want to avoid being blindsided in quality assurance, Then:

ENGAGE CUSTOMERS (4.2.6) and DEVELOPING IN PAIRS (4.2.28) and others to
validate the system.

448 Chapter 10 Summary Patlets

10.3 Organizational Style Patlets

Good design lends a sense of style to anything we build. Each great
organization has its own style. These patterns shape the “style” of an
organization. Different organizational styles fit different needs, so
these patterns provide a good foundation for tailoring an organization
to your business and market. The patterns can be found in the section
ORGANIZATIONAL STYLE PATTERN LANGUAGE (5.1).

Organizational Style Patlets 449

Conways
Law

Organization
Follows
Location

Deploy
Along
The

Grain

Loose
Interfaces

Owner
Per

Deliverable

Standards
Linking

Locations

Subsystem
By

Skill

Coupling
Decreases

Latency

Hub
Spoke
And
Rim

De
Couple
Stages

Distribute
Work

Evenly

Responsibilities
Engage

Three
To

Seven
Helpers

Per
Role

Divide
And

Conquer

Organization
Follows
Market

Face
To

Face
Before

Working
Remotely

Shaping
Circulation

Realms

Lock
Em
Up

Together

Unity
Of

Purpose

Few
Roles

Producer
Roles

Form
Follows
Function

Hallway
Chatter

Move
Responsibilities

Upside
Down
Matrix

Management

Producers
In

The
Middle

Stable
Roles

Domain
Expertise

In
Roles

Developer
Controls
Process

Work
Flows
Inward

The
Water
Cooler

450 Chapter 10 Summary Patlets

FEW ROLES (5.1.2):
If your organization has high communication overhead and latency,

Then: identify the roles in the organization, and keep the number of
roles to sixteen or fewer.

PRODUCER ROLES (5.1.3):
If your organization has too many roles, but does not know which

to eliminate, Then: identify roles as Producers, Supporters, or Dead-
beats; eliminate the Deadbeats, and combine some of the Supporters.

PRODUCERS IN THE MIDDLE (5.1.4):
If your developers are somewhat lost, Then: make sure the producer

roles are at the center of all communication.
STABLE ROLES (5.1.5):
If you have to deal with project disruptions, Then: keep people in

their primary roles, and deal with disruptions as temporary tasks.
DIVIDE AND CONQUER (5.1.6):
If an organization is getting too large for communications to be

effective any more, Then: try partitioning it along lines of mutual
interest and coupling, forming a separate organization and process.

CONWAY’S LAW (5.1.7):
If organization structuring concerns are torn between geography,

expertise, politics, and other factors, Then: align the primary organiza-
tional structuring with the structure of the business domains, the
structure that will be reflected in the product architecture.

ORGANIZATION FOLLOWS LOCATION (5.1.8):
If you need to distribute work geographically, communications

suffer, but you can limit the damage if work is partitionable. Therefore:
organize work at locations so groups of people that work together are
at the same location.

ORGANIZATION FOLLOWS MARKET (5.1.9):
If there is no clear organizational accountability to a market, Then:

make some organization accountable for the market to assure that the
market’s needs will be met.

FACE TO FACE BEFORE WORKING REMOTELY (5.1.10):
If a project is divided geographically, Then: begin the project with a

meeting of everyone in a single place.
FORM FOLLOWS FUNCTION (5.1.11):
If there is little specialization, and people don’t know where to turn

for answers to technical questions, Then: Create domains of expertise
called roles that cluster around artifacts or specialization.

Organizational Style Patlets 451

SHAPING CIRCULATION REALMS (5.1.12):
If you need mechanisms to facilitate the communication structures

necessary for good group formation, Then: shape circulation realms.
DISTRIBUTE WORK EVENLY (5.1.13):
If you want to optimize utilization of human resources, Then: alle-

viate hot spots of overload on specific groups and individuals in your
organization by Distributing Work Evenly

RESPONSIBILITIES ENGAGE (5.1.14):
If central roles are overloaded but you don’t want to take them out

of the communication loop Then: intensify communication more
among non-central roles to lighten the load on the central roles

HALLWAY CHATTER (5.1.15):
If developers tend to huddle around the organizational core or sup-

porting roles are inadequately engaged with each other, Then: re-
arrange responsibilities in a way that encourages less isolation and
more interworking among roles and people.

DECOUPLE STAGES (5.1.16):
If stages are too interleaved for the good of some high-context

development where phases can be separated to increase parallelism,
Then: serialize process steps, with well-defined hand-offs between
steps.

HUB SPOKE AND RIM (5.1.17):
If you want to DECOUPLE STAGES in a high-context development pro-

cess, Then: orchestrate the process with a hub role, and minimize cou-
pling between other roles, in a hub-spoke-and-rim geometry.

MOVE RESPONSIBILITIES (5.1.18):
If you want to change coupling between roles (particularly if you

want to decouple roles), Then: move responsibilities from one role to
another.

UPSIDE DOWN MATRIX MANAGEMENT (5.1.19):
If the right skills and resources don’t seem to be applied to a partic-

ular aspect of the work, Then: go beyond corporate structures to
leverage teams in other organizations (customer, partners, other
internal organizations)

THE WATER COOLER (5.1.20):
If you need more communication between institutionalized organi-

zations, Then: leave space for everyday human activities at the work-
place that can provide more complete and informal communication

THREE TO SEVEN HELPERS PER ROLE (5.1.21):

452 Chapter 10 Summary Patlets

If you want to even out communication, Then: at least try to limit
communication to THREE TO SEVEN HELPERS PER ROLE, and to pull up the
outliers to the same level of engagement.

COUPLING DECREASES LATENCY (5.1.22):
If you need a high throughput development process, Then: increase

coupling between roles to decrease latency.

10.4 People And Code Patlets

People and code are the two most important components of a soft-
ware development organization. Customers wouldn’t exist without
code to sell to them, and code wouldn’t exist without people. People
write code, and the structure of code in turn affects how people orga-
nize. These patlets point to patterns that help an organization align the
people and code structures properly. The patterns themselves can be
found in the section PEOPLE AND CODE PATTERN LANGUAGE (5.2).

ARCHITECT CONTROLS PRODUCT (5.2.3):

Architect
Also

Implements

Feature
Assignment

Generics
And

Specifics

Developing
In

Pairs

Architect
Controls
Product

Architecture
Team

Deploy
Along
The

Grain

Owner
Per

Deliverable

Stand
Up

Meeting

Lock
Em
Up

Together

Code
Ownership

Function
Owner

And
Component

Owner

Private
Versioning

Subclass
Per

Team

Variation
Behind

Interface

Factory
Method

Distribute
Work

Evenly

Team
Per
Task

Hierarchy
Of

Factories

Parser
Builder

Incremental
Integration

Private
World

Smoke
Filled
Room

Unity
Of

Purpose

Loose
Interfaces

Standards
Linking

Locations

People And Code Patlets 453

If a project has a long life, Then: use the architect to carry the vision
forward and serve as the long-term keeper of architectural style.

ARCHITECTURE TEAM (5.2.4):
If you are building a system too large or complex to be thoroughly

understood by a single individual, Then build a team that has both the
responsibility and the power to create the architecture.

LOCK ’EM UP TOGETHER (5.2.5):
If your team is struggling to come up with an architecture, Then: iso-

late them physically for several days where they can work uninter-
rupted.

SMOKE FILLED ROOM (5.2.6):
If you need to make a decision quickly and there are reasons to

exclude others, Then: make the decision covertly so that the rationale
remains private, though the decision will be publicized.

STAND UP MEETING (5.2.7):
If there are pockets of misinformation or people out of the loop:

Then: hold short daily meetings to socialize emerging developments.
DEPLOY ALONG THE GRAIN (5.2.8):
If reuse is suffering from fragmentation of responsibilities for an

artifact, Then: give people dedicated, long term responsibility for a
management piece of the system.

ARCHITECT ALSO IMPLEMENTS (5.2.10):
If an architect is on an ivory tower, they are out of touch; yet

someone needs to take the big and long view and reconcile it with
practice. Therefore: the architect is materially involved in day-to-day
implementation.

GENERICS AND SPECIFICS (5.2.11):
If you have many new people, Then: put the experienced people on

generic parts of the work, and give specific assignments to the new
people.

STANDARDS LINKING LOCATIONS (5.2.12):
If you have geographically separated development, Then: use stan-

dards to link together parts of the architecture that cross geographic
boundaries.

CODE OWNERSHIP (5.2.13):
If you need responsibility for code and want to build on DOMAIN

EXPERTISE IN ROLES (4.2.22), Then: give various individuals responsibility
for the overall quality of the code.

FEATURE ASSIGNMENT (5.2.14):

454 Chapter 10 Summary Patlets

If you are trying to partition work in a large project, Then: make
assignments of features to people.

VARIATION BEHIND INTERFACE (5.2.15):
If more than one person is developing software, then changes affect

not only the code, but people as well. Therefore: create interfaces
around predicted points of variation.

PRIVATE VERSIONING (5.2.16):
If you want to enable incremental changes without publishing

them, Then: set up a mechanism for developers to version code
without checking it in to a public repository.

LOOSE INTERFACES (5.2.17):
If you need to develop systems rapidly in an environment where

communication is less than optimal, Then: limit the number of explicit,
static, interfaces. Use loose interfaces like callbacks.

SUBCLASS PER TEAM (5.2.18):
If subsystem teams have different Design points, Then: where two

subsystems collide in one class, assign them to different layers of the
class hierarchy.

HIERARCHY OF FACTORIES (5.2.19):
If you have a creational system which creates different products

specified by different groups, Then: set up factories in a hierarchical
arrangement, where each knows about 1 level below only.

PARSER BUILDER (5.2.20):
If you need you create objects based on type information in an input

stream, Then: use a parser builder which reads type information from
the stream and builds the appropriate objects based on this informa-
tion.

10.5 Patlets From Other Pattern Languages

This book has been a team effort, incorporating pattern material
from many sources including works by Alistair Cockburn, Ward Cun-
ningham, Steve Berczuk, and others. Sometimes we have included
other patterns almost intact, and in other cases we have updated or
edited the patterns to fit into the format or the context of the pattern
languages in this book. For example, many of Alistair Cockburn’s pat-
terns have essentially the same content here as in their original publi-

Patlets From Other Pattern Languages 455

cation, but have been radically reformatted from their original form
for the sake of consistency.

Some patterns, while still relevant to the topic of organizational
structure, didn’t quite fit in the pattern languages here. That might be
because they describe process instead of structure, or because they are
idioms sensitive to particular situations, or because they are off-topic,
or because they are proto-patterns awaiting broad substantiation. But
we still refer to some of those patterns and we commend them to you
as great reading.

Here, we provide patlets for those patterns to which we refer, but
which didn’t make it into the book. Because these are often quotes
from others, they do not follow the patlet style we used in our own
patlets. Some of the patlets come verbatim from Linda Rising’s Pattern
Almanac [Rising2000]—which is a great source of other organizational
pattern reference material.

10.5.1 Arranging The Furniture
Your established team is entering a transition period where mem-

bers are replaced by newcomers who must quickly come to grips with
large and complex software modules. People are territorial and need
to mark their intellectual territory to establish a feeling of ownership.
Newcomers should move in by cosmetically arranging code. This
must be a background, incremental task and should not be used as an
excuse to trash the backyard. Verbatim from [Rising2000], p. 27. From
[Taylor1999], pp. 632-635. Referenced in CODE OWNERSHIP (5.2.13).

10.5.2 Ad- Hoc Corrections
It’s difficult to keep documents up to date. Keep a master hard copy

of the design accessible to the entire team. Anyone who updates the
design must make corrections in the margin, delete sections that no
longer apply, or write a description of the change. Ultimately, one team
member should update on-line copies to reflect the corrections. (Ver-
batim from [Rising2000], p. 119.) From [Weir1998]. Referenced in MER-

CENARY ANALYST (4.1.24).

456 Chapter 10 Summary Patlets

10.5.3 All At Once
If your downstream implementation teams are ready to get started

even though requirements aren’t ready, Then let them go ahead and
make progress based on their instinct and information at hand.
[Cockburn2003] Referenced in GET ON WITH IT (4.1.3).

10.5.4 Architecture Definition Team
You don’t want the architecture to become convoluted, so create a

small team of resonating minds charged with the job of defining the
initial architecture. [Meszaros1997] Referenced in ARCHITECTURE TEAM

(5.2.4).

10.5.5 Balanced Team
Using teams of similar, like-minded individuals to develop use

cases can result in a set of limited, narrowly ranged use cases that do
not satisfy everyone’s needs. Therefore: Staff the team with people from
different specialties to champion the interests of the stakeholders in
the development process. Make sure the team contains both devel-
opers and end users. From [Bramble2002], p. 39. Referenced in DIVERSE

GROUPS (4.2.16).

10.5.6 Business Process Model
If you need to understand requirements and business needs beyond

the use cases, Then:

 Understand first the network of agents and commitments
that make up the business. Specify the conversations that
take place at an appropriate level of abstraction, so that they
are stereotypes for actual stories. Get people to tell these sto-
ries. Ensure that you produce both ’before’ and ’after’ busi-
ness process models. Eliminate conversations that do not
correspond to business objectives (or discover the missed
objective). Ensure every objective is supported by a conversa-
tion.

The solution is verbatim from [Graham2003], p. 59. Referenced in
WORK SPLIT (4.1.11).

Patlets From Other Pattern Languages 457

10.5.7 Clear The Fog
You don’t know the issues well enough to put together a sound

plan, so deliver something. This will tell you the real issues. (Verbatim
from [Rising2000], p. 168.) From [Cockburn1998]. Referenced in BUILD

PROTOTYPES (4.1.7) and in the patlet MICROCOSM (10.5.18), below.

10.5.8 Creator- Reviewer
People make mistakes. It’s difficult to see problems and errors in

your own work. When one or two designers are producing a design,
there is a strong likelihood of undetected errors. Have each designer
produce a draft or a complete design. Each of one or more reviewers
receives a copy and provides feedback. (Verbatim from [Rising2000], p.
119.) From [Weir1998]. Referenced in GROUP VALIDATION (4.2.32).

10.5.9 Demo Prep
This pattern language is a “preparation for customer demonstra-

tions” ([Rising2000], p. 48). The pattern language comprises seven pat-
terns named ELEMENT IDENTIFICATION, CATALYTIC SCENARIOS, MUTABLE

CODE, PROTOTYPING LANGUAGES, LIGHTWEIGHT USER INTERFACES, JUDICIOUS

FIREWORKS, and ARCHIVE SCENARIOS. From [Coram1996]. Referenced in
BUILD PROTOTYPES (4.1.7) and SCENARIOS DEFINE PROBLEM (4.2.8).

10.5.10 Designers Are Our Friends
How should testers work with designers? Build rapport with

designers. Approach designers with the attitude that the system has
problems that require cooperation to resolve. Designers and testers
have a common goal. Use GET INVOLVED EARLY (10.5.13) and DOCUMENT

THE PROBLEM. (Verbatim from [Rising2000], p. 126.) From [Delano1998].
Referenced in ENGAGE QUALITY ASSURANCE (4.2.29) and in the patlet GET

INVOLVED EARLY (10.5.13), below.

10.5.11 Early And Regular Delivery
You don’t know what problems you will encounter during develop-

ment, so deliver something early. Discover what you don’t know you
don’t know. Deliver regularly and improve each time. CLEAR THE FOG

458 Chapter 10 Summary Patlets

(10.5.7) is the general expression of this strategy. (Verbatim from
[Rising2000], p. 168.) From [Cockburn1998]. Referenced in BUILD PRO-

TOTYPES (4.1.7), SIZE THE SCHEDULE (4.1.2), LOOSE INTERFACES (5.2.17), and
in the full text of CLEAR THE FOG (10.5.7), which is abstracted above.

10.5.12 Establish The Business Objectives
People tend to over-emphasize Use Cases as the final authority on

requirements at the expense of other considerations and particularly of
business needs. Therefore:

 Hold a workshop involving as many stakeholders as possi-
ble. Make sure that potential users are represented by mar-
keting personnel or the results of focus groups, surveys, etc.
Find a good facilitator. Agree a mission statement. Find mea-
sures for each objective. Agree a numerical rank ordering of
the priorities.

The solution is verbatim from [Graham2003], p. 54. Referenced in
WORK SPLIT (4.1.11).

10.5.13 Get Involved Early
You’re a system tester working on a large software project. To maxi-

mize support from the design community, establish a working rela-
tionship with the designers early in the project, for example, learn the
system and the features along with the designers or attend reviews of
requirements and design documentation. Invite designers to reviews
or test plans. Use DESIGNERS ARE OUR FRIENDS (10.5.10). Don’t wait until
you need to interact with a designer; by that time it’s too late. Trust
must be built over time. (Verbatim from [Rising2000], p. 126.) From
[Delano1998]. Referenced in DESIGNERS ARE OUR FRIENDS (10.5.10),
above, and in ENGAGE QUALITY ASSURANCE (4.2.29).

10.5.14 Gradual Stiffening

 The requirements and use cases may evolve during the life-
time of the project. How do you respond to such develop-
ments? Should you adhere strictly to the original plan? If not,
what is fixed and what should be allowed to vary?

Patlets From Other Pattern Languages 459

 Therefore:

 A web site development project should start with loose
design but clear business objectives, defined use cases and
types and a sound project plan. Allow the site structure to
stiffen the design only as the site unfolds and only completely
towards the end of the project.

The entire patlet is abstracted verbatim from [Graham2003], p. 77.
Referenced in WORK SPLIT (4.1.11).

10.5.15 Guru Does All
A newly formed team is given a project with a tight schedule,

uncertain requirements, uneven distribution of skills, and new tech-
nologies. Let the most skilled and knowledgeable developer drive the
design and implement the critical pieces. (Verbatim from [Rising2000],
p. 130.) From [Olson1998a], pages 153-154. Referenced in ARCHITECT

ALSO IMPLEMENTS (5.2.10).

10.5.16 Market Walk-through
When PRODUCT INITIATIVE (10.5.22) has been followed, hold a walk-

through of program and product concepts with both the development
and business sides of an organization. When this pattern has been fol-
lowed, use IMPLIED REQUIREMENTS (4.1.16). (Verbatim from [Rising2000],
p. 52.) From [Cunningham1996], p. 375. Referenced in IMPLIED REQUIRE-

MENTS (4.1.16) and in PRODUCT INITIATIVE (10.5.22), below.

10.5.17 Master- Journeyman
You need to partition the design work for a large system. There

must be a chief architect or small team to provide design integrity. Yet
in a large development project, it might be possible for this core team
to do all the design work. The core team should provide an overview
of the system architecture and divide the system into independent
components. Journeymen architects then design the components and
act as chief architects for the components. (Verbatim from
[Rising2000], p. 118.) From [Weir1998]. Referenced in ARCHITECTURE

TEAM (5.2.4).

460 Chapter 10 Summary Patlets

10.5.18 Micro Cosm
You have to create a plan but have never done this sort of project, so

run an 8- to 12-week instrumented pilot to get productivity and
throughput data for your plan. CLEAR THE FOG (10.5.7) is the general
expression of this strategy. (Verbatim from [Rising2000], p. 168.) From
[Cockburn1998]. Referenced in BUILD PROTOTYPES (4.1.7).

10.5.19 Owner Per Deliverable
Be sure every deliverable has one and only one owner. This is a gen-

eral strategy with specializations: DAY CARE (4.1.23), FUNCTION OWNER

AND COMPONENT OWNER, and TEAM PER TASK (4.1.21). (Adapted from
[Rising2000], p. 169.) From ([Cockburn1998], p. 220-221). Widely refer-
enced in many patterns, but key to CODE OWNERSHIP (5.2.13), FUNCTION

OWNER AND COMPONENT OWNER, SUBCLASS PER TEAM (5.2.18), and TEAM

PER TASK (4.1.21).

10.5.20 Participating Audience
You cannot satisfy stakeholders’ needs without their input and

feedback. Therefore: Actively involve your customers and internal
stakeholders in the use case development process when possible. From
[Bramble2002], p. 35. Referenced in ENGAGE CUSTOMERS (4.2.6).

10.5.21 Peace Maker
A peacemaker is a placeholder in an organization who tries to calm

and hold things together until a leader can be found or a reorganiza-
tion is complete. The peacemaker should be someone who is well liked
but who is not necessarily technically proficient. Usually this indi-
vidual has many years with the company, knows the political ropes,
and can buy time for a team as well as the team’s management. Usu-
ally PEACE MAKER (10.5.21) follows SACRIFICIAL LAMB and precedes CULT

OF PE R S O N A L I T Y or GU R U DO E S AL L (10.5.15). (Verbatim from
[Rising2000], p. 131.) From [Olson1998a], p. 168. Referenced in MATRON

ROLE (4.2.18). In this book, SACRIFICE ONE PERSON (4.1.22) is an alias for
SACRIFICIAL LAMB.

Patlets From Other Pattern Languages 461

10.5.22 Product Initiative
When a wish list of features and functions is created for a product,

clearly define an initiative for product improvement and be sure
everyone understands the initiative. When this pattern has been fol-
lowed, use MARKET WALK-THROUGH (10.5.16). (Verbatim from
[Rising2000], p. 52.) From [Cunningham1996], pp. 374-375. Referenced
in IMPLIED REQUIREMENTS (4.1.16) and in MARKET WALK-THROUGH (10.5.16),
above.

10.5.23 Proto Types
To avoid the risk of commiting to production decisions prematurely

and the problems of long-term maintainability of code, work with cus-
tomers to initially build LO FIDELITY PROTOTYPES using paper widgets,
drawings, paper stickies, and index cards. If the skill and tools are
present, build HIGH FIDELITY PROTOTYPES. From ([Whitenack1995], p.
288). Referenced in BUILD PROTOTYPES (4.1.7).

10.5.24 Query Objects
You’re using REPORT OBJECTS and need to create queries for reports at

run-time. Create objects that represent queries. Define operations on
these objects and a method to return query results. (Verbatim from
[Rising2000], p. 41.) From [BrantYoder1999]. Historically from
[BrownWhitenack1999]. Referenced by PARSER BUILDER (5.2.20).

10.5.25 Shared Clear Vision
The lack of a clear vision about a system can lead to indecision and

contrary opinions among the stakeholders and can quickly paralyze
the project. Therefore: Prepare a statement of purpose for the system
that clearly describes the objectives of the system and supports the
mission of the organization. Freely distribute it to everyone involved
in the project. From [Bramble2002], p. 80. Referenced in UNITY OF PUR-

POSE (4.2.12).

462 Chapter 10 Summary Patlets

10.5.26 Shearing Layers
Software systems cannot stand still, but different components

change at different rates. Factor the system so that components that
change at similar rates are together. (Verbatim from [Rising2000], p.
21.) From [Foote2000]. Referenced by VARIATION BEHIND INTERFACE

(5.2.15).

10.5.27 Small Writing Team
Using too many people to write a use case is inefficient, and the

compromise made to align the many different points of view may
result in a less than satisfactory system. Therefore: Restrict the number
of people refining any one work product to just two or three people.
From [Bramble2002], p. 31. Referenced in SIZE THE ORGANIZATION (4.2.2).

10.5.28 Skill Mix
When team membership is likely to change, separate subsystems by

staff skill requirements. This allows specialists to work in their area of
expertise and enables successors to see the results of these special abil-
ities in isolation. (Verbatim from [Rising2000], p. 135.) From
[Cockburn1996]. Referenced by CONWAY’S LAW (5.1.7) and DEPLOY

ALONG THE GRAIN (5.2.8).

10.5.29 Work Allocation
Work is not always assigned to right place, done at the right time

and assigned to correct people. Go beyond the historical, organiza-
tional, financial or political barriers and allocate work to produce the
most effective outcome. Unpublished; see [Beedle2000]. Referenced in
UPSIDE DOWN MATRIX MANAGEMENT (5.1.19).

Patlets From Other Pattern Languages 463

CHAPTER 11 Bibliography

[Ackermann2002] Ackermann, Gerhard. Personal communication,
2002.

[Alexander1977] Alexander, Christopher, et al. A Pattern Language.
Oxford University Press: 1977.

[Alexander1979] Alexander, Christopher The Timeless Way of Build-
ing. Oxford University Press: 1979.

[Alexander2003] Alexander, Christopher The Phenomenon of Life: The
Nature of Order, Book 1. Center For Environmental Structure:
2003.

[Allen1977] Allen, Thomas. Managing the Flow of Technology, The MIT
Press, Massachusetts, 1977.

[Ambler1999] Ambler, Scott. Process Patterns: Building Large-Scale
Systems Using Object Technology. Cambridge University
Press, 1999.

[AmHeritage1982] The American Heritage Dictionary, Second College
Edition. Boston, Houghton Mifflin Company, 1982.

464 Chapter 11 Bibliography

[Barshefsky1992] Barshefsky, A. “On the Road to Software Automa-
tion,” Proceedings of ISS 92.

[Bateson1958] Bateson, Gregory. Naven. Cambridge: Cambridge Uni-
versity Press, 1936. 2nd edition, Stanford: Stanford University
Press, 1958.

[Beedle1997] Beedle, Michael. BPR Pattern Language, unpublished,
1997.

[Beedle1999] Beedle, Mike et al “SCRUM: A Pattern Language for
Hyperproductive Software Development”. In Neil Harrison,
Brian Foote and Hans Rohnert, eds., Pattern Languages of Pro-
gram Design 4, Addison-Wesley, 1999, Chapter 28, 637-651.

[Beedle2000] Beedle, Mike. “Work Allocation”. In the BPR Pattern Lan-
guage, http://www.bell-labs.com/cgi-user/OrgPatterns/
OrgPatterns?WorkAllocation, 9 November 2000, accessed 8
September 2003.

[Beck1991] Beck, Kent. Think Like an Object. In UNIX Review, Septem-
ber, 1991, ff. 41.

[Beck1999] Beck, Kent. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[Berczuk1996] Berczuk, Stephen. Organizational Multiplexing: Pat-
terns for Processing Satellite Telemetry with Distributed
Teams. In John Vlissides et al, eds., Pattern Languages of Pro-
gram Design - 2, Addison-Wesley, 1996.

[BerczukAppleton2002] Berczuk, Steve, and Brad Appleton. Software
Configuration Management Patterns: Effective Teamwork,
Practical Integration. Reading, MA: Addison-Wesley, 2002.

[BeyerHoltzblatt1998] Beyer, Hugh, and Karen Holtzblatt. Contextual
Design. San Francisco: Morgan Kauffman, 1998.

[Block1983] Block, R. Politics of Projects. Yourdon Press, 1983.

Patlets From Other Pattern Languages 465

[Boehm1976] Boehm, B. W. “Software Engineering.” IEEE Transactions
on Computers 25(12), pp. 1226—1241.

[Boehm1981] Boehm, Barry W. Software Engineering Economics, Pren-
tice-Hall, Englewood Cliffs, NJ, 1981.

[Bonner1992] Bonner, Paul. “Quattro Pro for Windows.” Computer
Shopper, vol. 12, no. 11, p. 605, Nov, 1992.

[Brajkovich1994] Brajkovich, Leo F. Sources of social structure in a
start-up organization: Work networks, work activities, and
job status. Social Networks 16 (Aug.), August 1994, 191-212.

[Bramble2002] Bramble, Paul, Alistair Cockburn, Andy Pols, and Steve
Adolph. Patterns for Effective Use Cases. Reading, MA: Add-
ison-Wesley, 2002.

[Brandt1995] Brandt, Stewart. How buildings learn: what happens to
them after they’re built. New York: Penguin, 1995.

[BrantYoder1999] Brant, John, and Joseph Yoder. Query Objects pat-
tern, in “Creating Reports with Query Objects.” In Neil Har-
rison et al., eds., Pattern Languages of Program Design - 4.
Reading, MA: Addison-Wesley, 1999, p. 378.

[Brooks1995] Brooks, Frederick P., Jr. “The Mythical Man-Month”, 25th
Anniversary Edition, Addison-Wesley, Reading, MA, 1995.

[BrownWhitenack1999] Brown, Kyle, and Bruce Whitenack. Crossing
Chasms: A Pattern Language for OBJECT- RDBMS Integration.
In John Vlissides et al., eds., Pattern Languages of Program
Design - 2. Reading, MA: Addison-Wesley, 1999, ff. 227.

[Burrows1986] Burrows, T. A, D. Brown, and P. M. Zislis: GOS: A Tool
Providing Support for Graphical HUMAN- MACHINE Interfaces.
Proc. of the 1986 International Zurich Seminar on Digital Commu-
nications.

[CainCoplien1993] Cain, B. G., and J. O. Coplien. “A Role-Based
Empirical Process Modeling Environment.” Proceedings of
the Second International Conference on the Software Process,

466 Chapter 11 Bibliography

Berlin, February 25-6, 1993, 0-8186-3600-9/93 $3.00 ©1993
IEEE.

[Christianson1997] Christianson, Clayton M. “The Innovator’s
Dilemma”, Harvard Business School Press, 1997.

[Clavell1989] Sun Tzu. The Art of War. James Clavell, trans. 1989.

[Cockburn1996] Cockburn, Alistair. Prioritizing Forces in Software
Design. In John Vlissides, Jim Coplien and Norm Kerth, eds.,
Pattern Languages of Program Design 2. Reading, MA: Addi-
son-Wesley, 1996.

[Cockburn1998] Cockburn, Alistair. Surviving Object-Oriented
Projects: A Manager’s Guide. Addison-Wesley, 1998.

[Cockburn2000] Cockburn, Alistair. Writing Effective Use Cases (The
Crystal Collection for Software Professionals). Reading, MA:
Addison-Wesley, 2000.

[Cockburn2003] Cockburn, Alistair. All At Once. In The Risk Manage-
ment Catalog, n.d., http://members.aol.com/acockburn/
riskcata/allatonc.htm, accessed 3 September 2003.

[ConstantineLockwood1999] Constantine, Larry L, and Lucy A. D.
Lockwood. Software for Use: A Practical Guide to the Models
and Methods of USAGE- CENTERED Design. Reading, MA: Add-
ison-Wesley, 1999.

[Conway1968] Conway, Melvin E. How do Committees Invent? Data-
mation 14(4), April, 1968.

[Coplien1994] Coplien, James O. Borland Software Craftsmanship: A
New Look at Process, Quality and Productivity. In Proceedings
of the Fifth Borland International Conference, Orlando, Florida,
USA, June 1994.

[Coplien1994b] Coplien, James O., and Jon Erickson. Examining the
Software Development Process. Dr. Dobb’s Jouurnal of Software
Tools, 19(11):88-95, October, 1994.

Patlets From Other Pattern Languages 467

[Coplien1995] Coplien, James O. A Development Process Generative
Pattern Language. In James Coplien and Doug Schmidt, eds.,
Pattern Languages of Program Design, Addison-Wesley, 1995.

[Coplien1999] Coplien, James O. Multi-Paradigm Design for C++, Addi-
son-Wesley, 1999.

[Coplien2000] Coplien, James O. “C++ Idioms”. In Neil Harrison, Brian
Foote and Hans Rohnert, eds., Pattern Languages of Program
Design 4, Addison-Wesley, 1999, Chapter 29, 167-198.

[CoplienDevos2000] Coplien, James, and Martine Devos. Architecture
as Metaphor. Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, Orlando, FL, 24 July
2000, Institute of Informatics and Systemics, p. 737-742.

[Coram1996] Coram, Todd. Demo Prep: A Pattern Language for the
Preparation of Software Demonstrations. In John Vlissides et
al., eds., Pattern Languages of Program Design - 2, Addison-
Wesley, 1996, 407—416.

[Csikszentmihalyi1990] Csikszentmihalyi, M. Flow: The Psychology of
Optimal Experience, Harper Perennial, 1990.

[Cunningham1996] Cunningham, Ward. EPISODES: A Pattern Lan-
guage of Competitive Development. In John Vlissides et al,
eds., Pattern Languages of Program Design - 2, Addison-Wesley,
1996, 371-388.

[Daley1977] Daley, E. “Management of Software Development.” IEEE
Transactions on Software Engineering 3(3), pp. 229-242.

[Delano1998] Delano, David E. and Linda Rising. Patterns for System
Testing. In Robert Martin, Dirk Riehle, and Frank Buschmann,
eds., Pattern Languages of Program Design 3. Reading, MA:
Addison-Wesley, 1998, 503-525.

[DeMarcoBoehm1986] De Marco, T., and B. W. Boehm. Controlling
Software Projects: Management, Measurement and Estima-
tion, Yourdon Press, 1986.

468 Chapter 11 Bibliography

[DeMarco1993] De Marco, Tom. Talk at Case World, Boston, Mass., Jan-
uary, 1993.

[DeMarcoBoehm1986] De Marco, T., and B. W. Boehm. Controlling
Software Projects: Management, Measurement and Estima-
tion, Yourdon Press, 1986.

[DeMarcoLister1976] De Marco, T., and Tom Lister. Peopleware: Pro-
ductive Projects and Teams, Dorset House, 1976.

[Deming1986] Deming, W. Edwards.: Out of the Crisis. Cambridge:
MIT Center for Advanced Entineering Study, 1986.

[Dikel2001] Dikel, David M., David Kane, and James R. Wilson Soft-
ware Architecture: Organizational Principles and Patterns.
Prentice Hall PTR, 2001.

[Fagan1976] Fagan, M., “Design and Code Inspections to Reduce
Errors in Program Development.” IBM Systems Journal 15, 3,
1976, 182-211.

[Floyd1992] Floyd et al., eds. Software Development and Reality Construc-
tion. Berlin: Springer-Verlag, 1992.

[Foote2000] Foote, Brian, and Joseph Yoder “Big Ball of Mud”. In Neil
Harrison, Brian Foote and Hans Rohnert, eds., Pattern Lan-
guages of Program Design 4, Addison-Wesley, 1999, Chapter 29,
653-692.

[Fraser1994a] Fraser, Steven, Kent Beck, Grady Booch, Derek Coleman,
James Coplien, Richard Helm, and Kenneth Rubin. How do
teams shape objects? - how do objects shape teams? Position
papers, in OOPSLA 1994 Proceedings, 29(10), 468-473, October
1994.

[Fraser1994b] Fraser, Steven, Kent Beck, Grady Booch, Derek Coleman,
James Coplien, Richard Helm, and Kenneth Rubin. How do
teams shape objects? - how do objects shape teams? Panel
report, in OOPS Messenger (Addendum to the Proc. of OOPSLA/
94), 5(20), 63—67, October 1994.

Patlets From Other Pattern Languages 469

[Gabriel1994] Gabriel, Richard P. “Productivity: Is there a silver bul-
let?” Journal of Object-Oriented Programming 7(1), March/April
1994, 89-92.

[Gabriel1995] Gabriel, Richard. Electronic mail of May 8, 1995.

[Gabriel1996] Gabriel, Richard P. Patterns of Software : Tales from the
Software Community. New York: Oxford University Press,
1996.

[Gabriel2000] Gabriel, Richard P., and Ron Goldman. Mob Software:
The Erotic Life of Code. Dreamsongs Press, 2000. ISBN 0-
9705795-0-0, http://www.dreamsongs.com/MobSoft-
ware.html.

[Gamma1992] Gamma, Erich.: Object-oriented software development
based on ET++: Design patterns, class library, tools. Springer-
Verlag, Berlin, 1992.

[GOF1995] Gamma, Erich, Richard Helm, Ralph Johnson and John
Vlissides. Design Patterns: Elements of Reusable Object-Ori-
ented Software. Reading, MA: Addison-Wesley, 1995.

[Goffman1959] Goffman, E. ’"The Presentation of Self in Everyday
Life’’. Garden City, NY: Doubleday.

[GoldbergRubin1995] Goldberg, Adele, and Kenneth Rubin. Succeed-
ing with Objects: Decision Frameworks for Project Manage-
ment. Reading, MA: Addison-Wesley, 1995.

[Goldman1975] Goldman, William The Princess Bride: S. Morgen-
stern’s Classic Tale of True Love and High Adventure, 25th
anniv. ed., Ballantine Books, 2000.

[GoldrattCox1986] Goldratt, E., and J. Cox. The Goal. Great Barrington,
MA: North River Press, 1986.

[Graham1991] Graham, Ian. Specification in Expert Systems and Con-
ventional IT Projects, Computing and Control Engineering Jour-
nal 2(2), 1991, 82-89.

470 Chapter 11 Bibliography

[Graham2003] Graham, Ian. A Pattern Language for Web Usability.
Reading, MA: Addison-Wesley, 2003.

[Grant1966] Grant, E., and H. Sackman. “An Exploratory Investigation
of Programmer Performance Under On-line and Off-line
Conditions,” Report SP-2581, System Development Corp.,
September 1966.

[GrinterHerbsleb2000] Herbsleb, J. D. & Grinter, R. E. Architectures,
Coordination, and Distance: Conway’s Law and Beyond.
IEEE Software, Sept/Oct 1999, pp. 63-70.

[Harrison1996] Harrison, Neil B. Organizational Patterns for Teams. In
John Vlissides, James Coplien and Norm Kerth, eds., Pattern
Languages of Program Design 2, Addison-Wesley, 1996.

[HarrisonCoplien1996] Harrison, Neil B. and James O. Coplien. “Pat-
terns of Productive Software Organizations” Bell Labs Techni-
cal Journal Volume 1, Number 1. Murray Hill, New Jersey,
1996. pp. 138-145.

[Hartley1992] Hartley, John. Concurrent engineering: shortening lead
times, raising quality, and lowering costs. Cambridge, MA:
Productivity Press, 1992.

[HsiaSamuelGaoKung1994] Hsia, Pei, Jayaranan Samuel, Jerry Gao,
and David Kung. “Formal Approach to Scenario Analysis,”
IEEE Software, March, 1994, Vol. 11, No. 2, ff 33.

[Humphrey1992] Humphrey, W. “Introduction to Software Process
Improvement.” Pittsburgh, Pa: Carnegie Mellon University,
Software Engineering Institute, 1992.

[Humphrey1995] Humphrey, Watts S. “A Discipline for Software Engi-
neering.” Reading, Ma: Addison-Wesley, 1995.

[Jacobs1961] Jacobs, Jane. The Death and Life of Great American Cities,
1961, p. 68.

[Jacobs1978] Jacobs, Herbert. Building with Frank Lloyd Wright.
Chronicle Books, 1978.

Patlets From Other Pattern Languages 471

[Janis1971] Janis, Irving L. ‘‘Groupthink. In Psychology Today’’,
November, 1971, pp. 43-46, 74-76.

[KatzKahn1978] Katz, Daniel, and Robert L. Kahn. The Social Psychol-
ogy of Organizations, 2d ed. 1978, John Wiley and Sons.

[KeilCarmel1995] Keil, M., and E. Carmel. Customer-Developer Links
in Software Development. Communications of the ACM 38(5),
pp. 33-44.

[Kendall2002] Kendall, Kenneth E,and Julie E. Kendall. Systems Analy-
sis and Design. Upper Saddle River, NJ: Prentice Hall, 2002
(fifth edition).

[Kerth1995] Kerth, Norm. Caterpillar’s Fate: A Pattern Language for Trans-
formation from Analysis to Design. In Coplien and Schmidt,
eds., Pattern Languages of Program Design, Addison-Wesley,
1995.

[Kerth2001] Kerth, Norm. Project Retrospectives: A Handbook for
Team Reviews. Dorset House, 2001.

[KerthCoplienWeinberg1998] Kerth, Norman L., James O. Coplien and
Jerry Weinberg. “Call for the Rational Use of Personality Indi-
cators.” Computer 31(1), 147-7, January 1998.

[Kidder1981] Kidder, Tracy. Soul of a New Machine. Little and Com-
pany, 1981.

[Kilmann1984] Kilmann, R. H. Beyond the Quick Fix. San Francisco:
JOSSEY- BASS, 1984.

[Krakauer1997] Krakauer, Jon Into Thin Air. New York: Villard Books,
1997.

[KrishnamurthyRosenblum1991] Krishnamurthy, Bala, and David
Rosenblum.: An EVENT- ACTION Model of Computer-Sup-
ported Cooperative Work: Design and Implementation. Proc.
of the International Workshop on Computer Supported Cooperative
Work, April 1991.

472 Chapter 11 Bibliography

[Kroeber1948] Kroeber, Alfred L. Anthropology: Culture, Patterns and
Process. New York: Harcourt, Brace and World, 1948.

[Kuhn1996] Kuhn, Thomas S. The Structure of Scientific Revolutions.
Chicago, IL: University of Chicago Press, 1996.

[Lave1991] Lave, Jean and Etienne Wenger “Situated Learning: Legiti-
mate Peripheral Participation (Learning in Doing: Social,
Cognitive and Computational Perspectives)”, Cambridge
University Press, Cambridge UK, 1991.

[Linkletter1968] Linkletter, Art, compiler. I Wish I’d Said That! My
Favorite AD- LIBS of All Time. Doubleday & Company, Gar-
den City, New Jersey, 1968.

[Mackenzie1986] Mackenzie, K. D. “Organizing High Technology
Operations for Success.” Managing High Technology Decisions
for Success, J. R. Callahan and G. H. Haines, eds., 1986.

[Manzoni1984] Manzoni, Alessandro; Bruce Penman, designer. The
Betrothed. Penguin, 1984.

[Maranzano1992] Maranzano, Joe. Personal communication, 1992.

[McCarthy1995] McCarthy, J., Dynamics of Software Development,
Microsoft Press, 1995.

[Meszaros1997] Meszaros, Gerard. ARCHI- PATTERNS. In Proceedings of
the conference on Pattern Languages of Programming, 1997.
St.Louis: Washington University Technical Report 97-34,
1997.

[Meszaros1999] Meszaros, Gerard. ARTIFACT OWNERSHIP. From http://
www.bell-labs.com/cgi-user/OrgPatterns/OrgPat-
terns?ArtifactOwnership, 30 April 1999, accessed 6 October
2003.

[Meyers1978] Meyers, G. J. A Controlled Experiment in Program Testing
and code walk-throughs/inspections, CACM 21(9), September
1978.

Patlets From Other Pattern Languages 473

[Meyer2000] Meyer, Bertrand Object-Oriented Software Construction,
2nd edition Prentice-Hall PTR, 2000.

[MGM1987] “The Princess Bride”, MGM Pictures, 1987, based on
[Goldman1975].

[MorabitoSackBhate1999] Morabi, Joseph, Irta Sack and Anilkumar
Bhate. Organization Modeling: Innovative Architectures for
the 21st Century. Prentice-Hall, 1999.

[Moreno1934] Moreno, J. L.: Who shall survive?: foundations of sociome-
try, group psychotherapy, and sociodrama. Washington, D.C.:
Nervous and Mental Disease Publishing Co., 1934.

[Naisbitt1984] Naisbitt, J. Megatrends: Ten New Directions Transform-
ing our Lives. Warner Books, 1984.

[Olson1998a] Olson, D. S. Pattern on the Fly. PHand, 141-170, 1998.

[OMalley1993] O’Malley, Christopher “Borland turns the Windows
page: Quattro Pro for Windows.” PC Sources, vol. 4, no. 1, p.
281, January, 1993.

[Papert1980] Papert, Seymour A. Mindstorms: Children, Computers,
and Powerful Ideas. Basic Books, 1980.

[Parnas1978] Parnas, David “Designing Software for Ease of Extension
and Contraction”. Proc. 3rd Int. Conf. Soft. Eng. Atlanta, GA.
May 1978. pp. 264-277.

[PCMag1994] —. PC Magazine, Vol. 13 No. 1, 11 January 1994, page 191.

[Putnam1992] Putnam, Lawrence H. “Measures for Excellence: Reliable
Software on Time, Within Budget” (Yourdon Press Comput-
ing Series), Yourdon Press, 1992.

[Recer2003] Recer, Paul. NASA ’Culture’ Blamed in Shuttle Report.
Associated Press Wire Services, 26 August 2003.

474 Chapter 11 Bibliography

[Riehl1999] Riehl, Dirk. Patterns for Encapsulating Class Trees. In John
Vlissides et al., eds., Pattern Languages of Program Design -
2. Reading, MA: Addison-Wesley, 1999, ff. 87.

[Riel1996] Riel, Arthur J. Object-Oriented Design Heuristics. Reading,
MA: Addison-Wesley, 1996.

[Rising2000] Rising, Linda. The Pattern Almanac. Addison-Wesley,
2000.

[Rousseau1972] Rousseau, Jean-Jacques. Discours sur l’origine de l’ine-
galité. Sorbonne: Nouveaux Classiques Larrouse, 1972.

[Rybczynski1989] Rybczynski, Witold. The Most Beautiful House in the
World. New York: Penguin, 1989.

[Satir1991] Satir, Virginia, J. Banmen, J. Gerber and M. Gomori. The
Satir Model. Palo Alto, CA: Science and Behavior Books, 1991.

[Schwaber2003] Schwaber, Ken. Scaling Agile Processes. In the Agile
Project Management E- MAIL Advisor, 3 April 2003, http://
www.cutter.com/project/fulltext/advisor/2003/
apm030403.html, accessed 27 August 2003.

[Senge1990] Senge, Peter. The Fifth Discipline: The Art and Practice of
the Learning Organization. Doubleday, 1990.

[Senge1994] Senge, Peter. The Fifth Discipline: The Art and Practice of
the Learning Organization. Doubleday, 1994.

[Stinson1992] Stinson, Craig. “Quattro Pro for Windows.” PC Maga-
zine, vol. 11 no. 19, p. 162, 10 Nov, 1992.

[Sutherland2003] Sutherland, Jeff. SCRUM: Another Way to Think
about Scaling a Project. http://jeffsutherland.org/scrum/
2003_03_01_archive.html, March 11, 2003, accessed 23 July
2003.

[SuttonLernerOsterweil1997] Sutton, S. M., Jr., B. S. Lerner and L. J.
Osterweil. Experience Using the JIL Process Programming
Language to Specify Design Processes. UM- CS-1997-068,

Patlets From Other Pattern Languages 475

December, 1997. http://www.cs.umass.edu/Dienst/UI/2.0/
Describe/ncstrl.umassa_cs%2FUM-CS-1997-068.

[SunTzu1989] Sun Tzu. The Art of War. James Clavell, trans. 1989.

[SwieringaWierdsma1992] Swieringa, Joop, and Andre Wierdsma.
Becoming a Learning Organization: Beyond the Learning
Curve. Reading, MA: Addison-Wesley, 1992.

[Taylor1999] Taylor, Paul “Capable, Productive, and Satisfied: Some
Organizational Patterns for Protecting Productive People”. In
Neil Harrison, Brian Foote and Hans Rohnert, eds., Pattern
Languages of Program Design 4, Addison-Wesley, 1999, Chapter
27, 611-636.

[Vitruvius1960] Marcus Vitruvius Pollio. The Ten Books of Architecture,
trans. Morris Morgan. New York: Dover, 1960.

[Vlissides1998] Vlissides, John. Pattern Hatching. Reading, MA: Addi-
son-Wesley, 1998.

[Votta1993] Votta, Lawrence G. “Does Every Inspection Need a Meet-
ing?” ACM SIGSOFT Software Engineering Notes 18(5),
December 1993, 107—114.

[Walkenbach1992] Walkenbach, John, et al. “Quattro Pro for Windows
Version 1.0.” INFO WORLD, vol. 14 no. 41, 12 Oct., 1992.

[WalstonFelix1977] Walston, C. E., and C. P. Felix. “A method of pro-
gramming measurement and estimation.” IBM Systems Jour-
nal, vol.16, 1977, pp. 54-73.

[Wasserman1994] Wasserman, Stanley, Katherine Faust, and Dawn
Iacobucci. Social Network Analysis. Cambridge: Cambridge
University Press, 1994.

[Waters2000] Waters, John K. Extreme Method Simplifies Development
Puzzle. in “Application Development Trends”, July 2000.

476 Chapter 11 Bibliography

[Weinberg1986] Weinberg, Gerald M. The Secrets of Consulting: A
Guide to Giving and Getting Advice Successfully. Dorsett,
1986.

[Weinberg1991] Weinberg, Gerry. “Quality Software Management, Vol.
1.” New York: Dorset House, (c)1991.

[Weir1998] Weir, Charles. Patterns for Designing in Teams. In Robert Mar-
tin, Dirk Riehle, and Frank Buschmann, eds., Pattern Lan-
guages of Program Design 3. Reading, MA: Addison-Wesley,
1998, 496-499.

[Weiss1999] Weiss, David M., and Chi Tau Robert Lai. Family Based
Domain Engineering, Addison-Wesley Longman, 1999.

[White1986] White, William L. Incest in the Organizational Family: The
ecology of burnout in closed systems. Bloomington, IL: The
Lighthouse Training Institute, 1986.

[White1997] White, William L. The Incestuous Workplace: Stress and
Distress in the Organizational Family. Bloomington, IL:
Lighthouse Training Institute, 1997.

[Whitehorn1992] Whitehorn, Mark. “Vorsprung durch spreadsheet.”
PC User, no. 195, p. 54, 7 Oct., 1992.

[Whitenack1995] Whitenack, Bruce G. “RAPPeL: A Requirements
Analysis Process Pattern Language for Object Oriented
Development”. In James Coplien and Doug Schmidt, eds.,
Pattern Languages of Program Design, Addison-Wesley, 1995,
Chapter 15, 259-291.

[Yates1995] Yates, Ronald E. “Employee Empowerment Efforts Found
to be Weak.” Chicago Tribune, December 26, 1995.

[Zachary1994] Zachary, G. Pascal Showstopper! New York, The Free
Press 1994.

[ZuckermanAndHatala1992] Zuckerman, M. R., and Lewis J. Hatala.
Incredibly American. Milwaukee: AASQC Quality Press, 1992,
p. 81-83.

Patlets From Other Pattern Languages 477

478 Chapter 11 Bibliography

Patlets From Other Pattern Languages 479

CHAPTER 12 Photo Credits

COMMUNITY OF TRUST (4.1.1): Photograph by Marion Post Wolcott,
1940, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 053354-D.

SIZE THE SCHEDULE (4.1.2): Photograph by Arthur Rothstein, 1940,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 029863-D.

GET ON WITH IT (4.1.3): Photograph by Russell Lee, 1940, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF33-012898- M1.

GET ON WITH IT (4.1.3): Photograph by Russell Lee, 1940, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF33- 012918-M4.

NAMED STABLE BASES (4.1.4): Photograph by John Collier, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3- 001418-C.

INCREMENTAL INTEGRATION (4.1.5): Photographed between 1933 and
1945, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USW33- 015690-ZC.

PRIVATE WORLD (4.1.6): Lufthansa German Airlines. Used by permis-
sion.

480 Chapter 12 Photo Credits

BUILD PROTOTYPES (4.1.7): Photograph by Jack Delano, 1942, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USW3- 000839-D.

TAKE NO SMALL SLIPS (4.1.9): Photograph by Esther Bubley, 1943,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3- 038325-E.

WORK SPLIT (4.1.11): Photograph by Russell Lee, 1940, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF33- 012776-M5.

RECOMMITMENT MEETING (4.1.12): Photograph by Russell Lee, 1940,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 037337-D.

WORK QUEUE (4.1.13): Photograph by Marjory Collins, 1942, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USF34- 100280-D.

INFORMAL LABOR PLAN (4.1.14): Photograph by Russell Lee, 1940,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF33- 012826-M3.

DEVELOPMENT EPISODE (4.1.15): Photograph by Arthur Rothstein,
1941, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 024397-D.

IMPLIED REQUIREMENTS (4.1.16): Photograph by Marion Post Wolcott,
1940, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 055949-D.

DEVELOPER CONTROLS PROCESS (4.1.17): Photograph by Alfred T.
Palmer, 1942, Library of Congress, Prints & Photographs Division,
FSA/OWI Collection, LC- USE6- D-002685.

WORK FLOWS INWARD (4.1.18): Photograph by Russell Lee, 1941,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 070365-D.

PROGRAMMING EPISODE (4.1.19): Photograph by Russell Lee, 1941,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF33- 013079-M4.

SOMEONE ALWAYS MAKES PROGRESS (4.1.20): Photograph by John
Vachon, 1942, Library of Congress, Prints & Photographs Division,
FSA/OWI Collection, LC- USW3-009386- D.

TEAM PER TASK (4.1.21): Photograph by David Bransby, 1942, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USE6- D-004089.

Patlets From Other Pattern Languages 481

SACRIFICE ONE PERSON (4.1.22): Photograph by John Vachon, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34-065548- D.

DAY CARE (4.1.23): Photograph by Gordon Parks, 1943, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USW3- 034217-E.

MERCENARY ANALYST (4.1.24): Library of Congress, Prints & Photo-
graphs Division, Lomax Collection, LOT 7414-F, no. N7. May have
problems ordering this one — no reproduction number. No copy-
right restrictions, though.

INTERRUPTS UNJAM BLOCKING (4.1.25): Photograph by John Collier,
1943, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USW3- 034313-C.

DON’T INTERRUPT AN INTERRUPT (4.1.26): Photograph by John Vachon,
1940, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 060537-D.

SIZE THE ORGANIZATION (4.2.2): Photograph by Marjory Collins, 1943,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 100540-E.

PHASING IT IN (4.2.3): Photograph by John Vachon, 1939, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF33- 001509-M1.

APPRENTICESHIP (4.2.4): Photograph by Alfred T. Palmer, 1942?,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USE6- D-000148.

SOLO VIRTUOSO (4.2.5): Photograph by Russell Lee, 1940, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF34-036598- D.

ENGAGE CUSTOMERS (4.2.6): Photograph by Russell Lee, 1939, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USF34-033032- D.

SURROGATE CUSTOMER (4.2.7): Photograph by John Collier, 1941,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34-081569- E.

SCENARIOS DEFINE PROBLEM (4.2.8): Photograph by Jack Delano, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3-001663- D.

482 Chapter 12 Photo Credits

FIRE WALLS (4.2.9): Photograph by Jack Delano, 1942, Library of Con-
gress, Prints & Photographs Division, FSA/OWI Collection, LC-
USW3-000320- D.

GATE KEEPER (4.2.10): Photograph by Russell Lee, 1939, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF34-034339- D.

SELF SELECTING TEAM (4.2.11): Photograph 1943, Library of Congress,
Prints & Photographs Division, FSA/OWI Collection, LC- USE6- D-
010189 .

TEAM PRIDE (4.2.13): Photograph by Russell Lee, 1942, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF34- 072474-D.

SKUNK WORKS (4.2.14): Photograph by John Vachon, 1940, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF33- 001945-M2.

PATRON ROLE (4.2.15): Library of Congress, Prints & Photographs
Division, FSA/OWI Collection, LC- USE6- D-009365.

DIVERSE GROUPS (4.2.16): Photograph by Howard Lieberman, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USE6- D-004480.

PUBLIC CHARACTER (4.2.17): Photograph by Roger Smith, 1943,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3- 031897-C.

MATRON ROLE (4.2.18): Photograph by John Collier, 1941, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF34- 081012-E.

HOLISTIC DIVERSITY (4.2.19): Photograph by Russell Lee, 1942, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USW3-003770- D.

LEGEND ROLE (4.2.20): Library of Congress, Prints & Photographs
Division, LC- USZ62-103759.

WISE FOOL (4.2.21): Photograph by Russell Lee, 1937, Library of Con-
gress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF34- 010273-E.

DOMAIN EXPERTISE IN ROLES (4.2.22): Photograph by Howard R.
Hollem, 1942, Library of Congress, Prints & Photographs Division,
FSA/OWI Collection, LC- USE6- D-007049.

Patlets From Other Pattern Languages 483

SUBSYSTEM BY SKILL (4.2.23): Photograph by Alfred T. Palmer, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3-055143- C.

MODERATE TRUCK NUMBER (4.2.24): Photograph by John Vachon, 1943,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3- 018497-D.

COMPENSATE SUCCESS (4.2.25): Photograph by Russell Lee, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 072226-D.

FAILED PROJECT WAKE (4.2.26): Photograph by Russell Lee, 1941,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 038817-D.

DEVELOPING IN PAIRS (4.2.28): Photograph by Arthur Rothstein, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 022054-D.

ENGAGE QUALITY ASSURANCE (4.2.29): Photograph by Lee Russell,
1939, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 034109-D.

APPLICATION DESIGN IS BOUNDED BY TEST DESIGN (4.2.30): Photograph
by William M. Rittase, 1942, Library of Congress, Prints & Photo-
graphs Division, FSA/OWI Collection, LC- USE6- D-005139.

GROUP VALIDATION (4.2.32): Photograph by Marion Post Wolcott,
1941, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 057706-D.

FEW ROLES (5.1.2): Photograph by Jack Delano, 1942, Library of Con-
gress, Prints & Photographs Division, FSA/OWI Collection, LC-
USW3- 000678-D.

PRODUCER ROLES (5.1.3): Photograph by Arthur S. Siegal, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3-009444- C.

PRODUCERS IN THE MIDDLE (5.1.4): Photograph by Alfred T. Palmer,
1943, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USE6- D-010081.

STABLE ROLES (5.1.5): Photograph by Marion Post Wolcott, 1939,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 051788-D.

DIVIDE AND CONQUER (5.1.6): Photograph by Russell Lee, 1940,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF33- 012796-M1.

484 Chapter 12 Photo Credits

CONWAY’S LAW (5.1.7): Library of Congress, Prints & Photographs
Division, LC- USZ62-77389.

ORGANIZATION FOLLOWS LOCATION (5.1.8): Photograph by Marion Post
Wolcott, 1941, Library of Congress, Prints & Photographs Division,
FSA/OWI Collection, LC- USF34- 058783-D.

ORGANIZATION FOLLOWS MARKET (5.1.9): Photograph by Russell Lee,
1941, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF33- 013047-M3.

FACE TO FACE BEFORE WORKING REMOTELY (5.1.10): Library of Con-
gress, Prints & Photographs Division, LC- USW33- 023716-C.

DIVIDE AND CONQUER (5.1.6): Library of Congress, Prints & Photo-
graphs Division, FSA/OWI Collection, LC- USW33- 015705-C.

SHAPING CIRCULATION REALMS (5.1.12): Photograph by Ben Shahn,
1943, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF33- 006275-M5 .

DISTRIBUTE WORK EVENLY (5.1.13): Photograph by Russell Lee, 1941,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 039855-D.

HALLWAY CHATTER (5.1.15): Photograph by Russell Lee, 1941, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USF33-011743- M2.

DECOUPLE STAGES (5.1.16): Photograph by Jack Delano, 1943, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USW3- 019552-E.

HUB SPOKE AND RIM (5.1.17): Photograph by Howard R. Hollem,
1942, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USE6- D-004435.

MOVE RESPONSIBILITIES (5.1.18): Library of Congress, Prints & Photo-
graphs Division, Edward S. Curtis Collection, LC- USZ62-117709.

UPSIDE DOWN MATRIX MANAGEMENT (5.1.19): Library of Congress,
Prints & Photographs Division, GOTTSCHO- SCHLEISNER Collection, LC-
USZC2-4505.

THE WATER COOLER (5.1.20): Photograph by John Collier, 1943,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3- 015264-C.

WORK SPLIT (4.1.11): Photograph by Russell Lee, 1937, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USF34- 030069-D.

Patlets From Other Pattern Languages 485

COUPLING DECREASES LATENCY (5.1.22): Photograph by Arthur Roths-
tien, 1939, Library of Congress, Prints & Photographs Division, FSA/
OWI Collection, LC- USF34- 027252-D.

ARCHITECT CONTROLS PRODUCT (5.2.3): Library of Congress, Prints &
Photographs Division, Theodor Horydczak Collection, LC- H814- T-
1849-031- A. Double check photo. It appears that it is in public
domain, but there are restrictions in this collection.

ARCHITECTURE TEAM (5.2.4): Photograph by Theodor Jung, 1940,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34-002702- C.

LOCK ’EM UP TOGETHER (5.2.5): Photograph by John Vachon, 1943,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3- 025304-D.

SMOKE FILLED ROOM (5.2.6): Library of Congress, Prints & Photo-
graphs Division, Detroit Publishing Company Collection, LC- D4-
62045.

STAND UP MEETING (5.2.7): Photograph by Walker Lewis, 1944,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USW3-055963- D.

DEPLOY ALONG THE GRAIN (5.2.8): Photograph by Marjory Collins,
1943, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USW3- 003097-D.

ARCHITECT ALSO IMPLEMENTS (5.2.10): Photograph by Russell Lee,
1942, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 072428-D.

GENERICS AND SPECIFICS (5.2.11): Photograph by Russell Lee, 1939,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF33- 012474-M2.

STANDARDS LINKING LOCATIONS (5.2.12): Library of Congress, Prints &
Photographs Division, FSA/OWI Collection, LC- USF345- 007754-ZA .

CODE OWNERSHIP (5.2.13): Library of Congress, Prints & Photographs
Division, FSA/OWI Collection, LC- USF34- 014122-D.

FEATURE ASSIGNMENT (5.2.14): Photograph by Russell Lee, 1939,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF33- 012033-M4.

VARIATION BEHIND INTERFACE (5.2.15): Photograph by Carl Mydans,
1939, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 000650-D.

486 Chapter 12 Photo Credits

PRIVATE VERSIONING (5.2.16): Photograph by Russell Lee, 1937,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF33- 011316-M5.

LOOSE INTERFACES (5.2.17): Photograph by Russell Lee, 1939, Library
of Congress, Prints & Photographs Division, FSA/OWI Collection,
LC- USF33- 012300-M1.

SUBCLASS PER TEAM (5.2.18): Photograph by Alfred T. Palmer, 1942,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USE6- D-007624.

HIERARCHY OF FACTORIES (5.2.19): Photograph by Arthur Rothstein,
1937, Library of Congress, Prints & Photographs Division, FSA/OWI
Collection, LC- USF34- 026129-D.

HIERARCHY OF FACTORIES (5.2.19): Photograph by John Vachon, 1941,
Library of Congress, Prints & Photographs Division, FSA/OWI Collec-
tion, LC- USF34- 063633-D.

PARSER BUILDER (5.2.20): Photograph by Jack Delano, 1942, Library of
Congress, Prints & Photographs Division, FSA/OWI Collection, LC-
USW3- 004283-D.

Patlets From Other Pattern Languages 487

CHAPTER 13 Parking Lot

NBH - 10/17/03: As far as I can tell, everything is done except:
Reference to be verified in SIZE THE SCHEDULE (4.1.2)
(My note: Check the book; if we can’t, we can refer to a talk I heard

by Tom De Marco in 1984.)
————————-
Here are things we need to remember, either in the BOOK OUTLINE or

the book itself. Add to this list as needed.
Important: CONTEXT AUDIT
Need stars on patterns.
Short Stories and Anecdotes
These are not full case studies, but rather short stories that might

end up as sidebars or fillers (maybe transitions) between patterns, or
something like that.

1. Story of group therapy debugging (for GROUP VALIDATION (4.2.32)
or maybe DEVELOPING IN PAIRS (4.2.28))

2. Crisis-oriented organization (see CRISIS MANAGEMENT)

3. Group that came together to for a week to hammer out architec-
ture. (LOCK ’EM UP TOGETHER (5.2.5))

4. The Simon Role (LEGEND ROLE (4.2.20))

5. Personal experience (NBH) — what it’s like to develop in pairs.

488 Chapter 13 Parking Lot

Other Stuff We Shouldn’t Forget

1. Schmismogenesis (done — see THE OPEN CLOSED PRINCIPLE OF

TEAMS (6.1.4))

2. Symmetry (old AESTHETIC PATTERN)

3. Say something about CRISIS MANAGEMENT (done: see STABILITY AND

CRISIS MANAGEMENT (6.1.3))

4. Review PATTERNS TO BE CATALOGUED and NEILS ORPHAN LIST

5. Reference to be verified in SIZE THE SCHEDULE (4.1.2)

Gratuitous reference to MASTER PLANNING AND THE THEORY OF CON-

STRAINTS (6.2.4) [fixed — JOC 2002/8/29]
These are things we need to remember...

