
Slide: 1

GNAT: On the Road to Ada 2005
Edmond Schonberg and Javier Miranda

SIGAda 2004
Atlanta, Georgia

Presentation cover
page EU

www.adacore.com

Slide: 2

Ada 2005: The language revision process

• The ARG has been at work for 10 years.

• Ada issues classified as:

– Confirmation (the ARM is correct and clear)

– Ramifications (the ARM is correct but obscure)

– No action

– Binding interpretations (the ARM was wrong)

– Amendments

– Corrigendum 2000 (WG9 approved, published, implemented)

– Corrigendum 200Y (WG9 approved, will be in new ARM)

– Working items (still under discussion)

Total of 384 Ada Issues (AIs):

22 high priority issues, 47 medium priority issues

Slide: 3

GNAT and Ada 2005 High Priority Issues

• 85: Append_File, Reset, and positioning for Stream_IO

• 147: Optimization of controlled types

• 195: Streams 'Input and initialization

• 204: Language interfacing support is optional

• 214: Distinct names for compilation units

• 217: Limited with clauses

• 220: Subprograms within private compilation units

• 235: Resolving ‘Access

• 239: Controlling inherited default expressions

• 243: Is a subunit of a subunit of L also a subunit of L?

• 249: Ravenscar profile for High-Integrity systems

Issues in Blue = supported by GNAT

Slide: 4

• 251: Abstract interfaces to provide multiple inheritance

• 252: Object.Operation notation

• 254: Anonymous access to subprogram types

• 265: Partition elaboration policy for high-integrity systems

• 266: Task termination procedure

• 270: Stream item size control

• 280: Allocation, deallocation and use of objects after finalization

• 297: Timing events

• 305: New pragma and additional restriction identifiers for RT-Systems

• 310: Execution-time clocks

• 353: New restrictions identifier: No_Synchronous_Control

• 363: Eliminating access subtype problems

Issues in Blue = implemented in GNAT

GNAT and Ada 2005 High Priority Issues

Slide: 5

GNAT and Ada 2005 Medium Priority Issues

• 161: Default-initialized objects

• 185: Branch cuts of inverse trigonometric and hyperbolic functions

• 209: pragma Reviewable; can objects become uninitialized

• 216: Unchecked unions: variant records with no run-time
discriminant

• 218: Accidental overloading when overriding

• 221: Default bit-order is static

• 224: Pragma unsupress

• 225: Aliased current instance for limited types

• 227: Behavior of Ada.Streams.Read when at the end of stream

• 229: Accessibility rules and generics

• 230: Generalized use of anonymous access types

Issues in Blue = implemented in GNAT

Slide: 6

• 231: Access to constant parameters and null-excluding

 access subtypes

• 233: Inheritance of components of generic formal derived types

• 241: Testing for Null_Occurrence

• 242: Surprising behavior of Update

• 246: View conversions between arrays of a by-reference type

• 247: Alignment of composite types

• 248: Directory operations

• 258: Behavior of Interfaces.C.To_C when the result is null

• 259: Can accesses to volatile objects be combined?

• 262: Access to private units in the private part

• 263: Scalar formal derived types are never static

Issues in Blue = (known to be) supported by GNAT

GNAT and Ada 2005 Medium Priority Issues

Slide: 7

• 267: Fast float-to-integer conversions

• 268: Rounding of real static expressions

• 272: Pragma atomic and slices

• 280: Assert pragma

• 287: Limited aggregates allowed

• 296: Vector and matrix operations

• 298: Non-preemptive dispatching

• 301: Operations on language-defined string types

• 316: Return accessibility checks and value conversions

• 317: Partial parameter lists for formal packages

• 318: Returning limited objects without copying

Issues in Blue = supported by GNAT

GNAT and Ada 2005 Medium Priority Issues

Slide: 8

• 321: Definition of dispatching policies

• 326: Incomplete types

• 327: Dynamic ceiling priorities

• 329: Pragma No_Return

• 340: Mod attribute

• 344: Allow nested type extensions

• 345: Protected and task interfaces

• 348: Null procedures

• 351: Time operations

• 360: Types that need finalization

GNAT and Ada 2005 Medium Priority Issues

Slide: 9

• 361: Raise with message

• 362: Some predefined packages should be recategorized

• 364: Fixed-point multiply/divide

• 376: Interfaces.C works for C++ as well

• 381: New restrictions identifier: No_Dependence

Issues in Blue = supported by GNAT

GNAT and Ada 2005 Medium Priority Issues

Slide: 10

Sectional cover - Embedded board

Brief Overview of Implemented Ada
2005 Issues

200Y Amendments

Slide: 11

• AI-217: Limited-with clause

• AI-262: Private with clause
• AI-217: Limited-with clause

• AI-262: Private with clause

200Y Amendments

Slide: 12

AI-217: Limited With Clause

• Ada 95

package Mutually_Recursive_Types Is
 type T1;
 type T2;

 type Acc_T1 is access T1;
 type Acc_T2 is access T2;

 type T1 is record
 Ref : Acc_T2;
 . . .
 end record;

 type T2 is record
 Ref : Acc_T1;
 . . .
 end record;
end Mutually_Recursive_Types ;

Problem: Software Structure

• Ada 2005

Does not create a semantic dependence !
 (and hence no elaboration dependence)

limited with Q;
package P is
 type Acc_T2 is access Q.T2;
 type T1 is record
 Ref : Acc_T2;
 . . .
 end record;
end P;

limited with P;
package Q is
 type Acc_T1 is access P.T1;
 type T2 is record
 Ref : Acc_T1;
 . . .
 end record;
end Q;

200Y Amendments

The limited view provides
incomplete visibility of:

– Type declarations
– Nested packages

Slide: 13

AI-262: Private with clauses

package Lib.P is

private
 -- Use Internal_Type
 . . .

end Lib.P;

private package Lib.Q is
 -- Internal_Type should
 -- be declared here

end Lib.Q;

package Lib is
 . . .
private
 type Internal_Type is …
end Lib;

• Ada 95

• Ada 95

private with Lib.Q;
package Lib.P is

private
 -- Use Internal_Type
 . . .

end Lib.P;

Entities in private-withed units can

be used in the private part

• Ada 2005

package Lib is
 . . .
end Lib;

private package Lib.Q is
 type Internal_Type is …

end Lib.Q;

200Y Amendments

Slide: 14

AI-217 plus AI-262

limited private with Parent.Q;
package Parent.P is

private
. . .Parent.Q.QT
end Parent.P;

limited private with Parent.P;
package Parent.Q is

private
 type QT is ...
end Parent.Q;

package Parent is
 . . .
end Parent;

200Y Amendments

Slide: 15

Ada 2005: Access type issues

• AI-230: Generalize anonymous access types
• AI-231: Access to constant parameters and null-excluding
 access subtypes
• AI-254: Anonymous access to subprogram types

200Y Amendments

Slide: 16

AI-230: Generalize Anonymous
Access Types

• Ada 95:

type Root_Ref is access all
Root’Class;

Table : array (1 .. 2) of Root_Ref

 := (Root_Ref (new D1),

 Root_Ref (new D2));

type My_Rec is record

 Data : Root_Ref := Root_Ref (new
D1);

end record;

type Root is tagged record . . .

type D1 is new Root with . . .

type D2 is new Root with . . .

Table : array (1 .. 2) of access Root’Class

 := (new D1, new D2);

type My_Rec is record

 Data : access Root'Class := new D1;

end record;

Farm_1 : access Root’Class renames Table (1);

Rec : My_Rec;

My_Best : access Root’Class renames
Rec.Component;

• Ada 2005:

200Y Amendments

Slide: 17

AI-231: Null-excluding access subtypes and access to
constant parameters

• Ada 95

function Lowercase

 (Name : access String)

 return String;

function Lowercase

 (Name : not null access
constant String)

 return String;

• Ada 2005

– The anonymous access CAN
NEVER be null

– Anonymous access to constants is
not provided

– Null-exclusion under control of the
programmer

– Anonymous access to constants
allowed

200Y Amendments

Slide: 18

AI-254: Anonymous access to subprogram types

• Ada 2005:

function Integrate (Fn : access function (X: Float) return Float;
 From : Float;
 To : Float) return Float is
begin
 -- Fn (X) callable
 . . .
end Integrate;

-- Use of a local function
Result := Integrate (My_Double'Access, From => 3.0, To => 9.0);

-- Use of a library function
Result := Integrate (Ada.Numerics.Elementary_Functions.Sqrt'Access, 3.0, 9.0);

200Y Amendments

Slide: 19

All together (230, 231, 254)

• Ada 2005

type Farm_1 is array (1 .. 2) of not null access Root’Class := . . .

type Farm_2 is array (1 .. 2) of access constant Root’Class := . . .

type Farm_3 is array (1 .. 2) of not null access constant Root’Class := . . .

type Funcs is array (1 .. 2) of not null access function (X : Float) return Float;

-- Available also for array components, discriminants, and record
components (AI-230)

type My_Rec is record

 Pet _1 : not null access Root’Class := . . .

 Pet _2 : access constant Root’Class := . . .

 Pet _3 : not null access constant Root’Class := . . .

 Evaluate : not null access function (X : Float) return Float;

end record;

200Y Amendments

Slide: 20

Ada 2005: Aggregates

• AI-287: Aggregates for limited types

200Y Amendments

Slide: 21

AI-287: Aggregates for Limited Types

200Y Amendments

Slide: 22

AI-287: Aggregates for Limited Types

• Example (Ada 95): Some package version 1

package body ADT is

 function New_Data (Value : …)

 return T_Data_Ptr is

 begin

 return new Data’(Info => Value);

 end New_Data;

end ADT;

200Y Amendments

package ADT is
 type Data is limited private;
 type T_Data_Ptr is access Data;

 function New_Data (Value : …)
 return T_Data_Ptr;
private
 type Data is record

 Info : … ;
 end record;
end ADT;

Slide: 23

AI-287: Aggregates for Limited Types

• Example (Ada 95): Some package version 2

package ADT is
 type Data is limited private;
 type T_Data_Ptr is access Data;

 function New_Data (Value : …)
 return T_Data_Ptr;
private
 type Data is limited record
 Info : … ;

 Lock : … ; -- Protected object
 end Data;
end ADT;

package body ADT is
 function New_Data (Value : …)
 return T_Data_Ptr
 is

 Aux : T_Data_Ptr := new T_Data;

 -- Lock is silently default-initialized

 begin
 Aux.Info := Value;
 return Aux;
 end New_Data;

end ADT;

Why is this dangerous?

200Y Amendments

Slide: 24

AI-287: Aggregates for Limited Types

• Example (Ada 95): Some package version 3

package ADT is
 type Data is limited private;
 type T_Data_Ptr is access Data;

 function New_Data (Value : …)
 return T_Data_Ptr;
private
 type Data is limited record
 Info : … ;

 Lock : … ; -- Protected object
 More_Info : … ;
 end Data;
end ADT;

Because we can forget to initialize additional components

200Y Amendments

package body ADT is
 function New_Data (Value : …)
 return T_Data_Ptr
 is

 Aux : T_Data_Ptr := new T_Data;

 -- Lock is silently default-initialized

 -- More_Info is orphaned
 begin
 Aux.Info := Value;
 return Aux;
 end New_Data;

end ADT;

Slide: 25

AI-287: Aggregates for Limited Types

• Example (Ada 2005): New package version

package ADT is
 type Data is limited private;
 type T_Data_Ptr is access Data;

 function New_Data (Value : …)
 return T_Data_Ptr;
private
 type Data is limited record
 Info : … ;

 Lock : … ; -- Protected object
 More_Info : … ;
 end Data;
end ADT;

package body ADT is

 function New_Data (Value : …)
 return T_Data_Ptr is
 begin
 return new Data’
 (Info => Value,
 Lock => <>,
 others => <>);
 end New_Data;

end ADT;

Default initialization can be specified by the programmer

200Y Amendments

Slide: 26

• AI-249: Ravenscar profile for high-integrity systems

• AI-305: New pragma and additional restriction identifiers for
real-time systems

200Y Amendments

Slide: 27

AI-305: New Pragma and Additional Restriction Identifiers
for RT Systems

• New pragma:
– pragma Detect_Blocking

• New static restriction identifiers:
– No_Calendar
– No_Dynamic_Attachment
– No_Local_Protected_Objects
– No_Protected_Type_Allocators
– No_Relative_Delay
– No_Requeue_Statements
– No_Select_Statements
– No_Task_Attributes_Package
– Simple_Barriers

• New dynamic restriction_identifier:
– No_Task_Termination

• New parameter identifier for dynamic restrictions:
– Max_Entry_Queue_Length

200Y Amendments

Slide: 28

• AI-252: Object.Operation notation

• AI-251: Abstract Interfaces
• AI-252: Object.Operation notation

• AI-251: Abstract Interfaces

200Y Amendments

Slide: 29

AI-252: Object.Operation notation

package P is
 type T is tagged record
 Component : Integer := . . . ;
 end record;
 function F (X : T) return Integer;
 function Self (X : T'Class) return T'Class;
end P;

with P; use P;
procedure Test_Ada95 is
 type Ptr_Obj is access all P.T'Class;
 Obj : P.T;
 Ptr : Ptr_Obj := new P.T;

 O_1 : P.TP'Class := Self (Obj);
 O_2 : Integer := F (Self (Obj));
 O_3 : Integer := Self (Obj).Component;
 O_4 : Integer := F (Self (Ptr.All));
begin
 null;
end Test_Ada95;

with P;
procedure Test_Ada2005 is
 type Ptr_Obj is access all P.T'Class;
 Obj : P.T;
 Ptr : Ptr_Obj := new P.T;

 O_1 : P.TP'Class := Obj.Self;
 O_2 : Integer := Obj.Self.F;
 O_3 : Integer := Obj.Self.Component;
 O_4 : Integer := Ptr.Self.F; -- Implicit
dereference
begin
 null;
end Test_Ada2005;

• Ada 95

200Y Amendments

Slide: 30

AI-252: Object.Operation notation

package P is
 type T is tagged record . . . ;
 procedure Init (X : access T);
end P;

with P;
package Q is
 type T_Ptr is access all P.T;
end Q;

with Q;
procedure Test_2 is
 Ptr : Q.T_Ptr;
begin
 Ptr.Init; -- accessible!
end Test_2;

• Ada 95

with Q; with P;
procedure Test_2 is
 Ptr : Q.T_Ptr;
begin
 P.Init (Ptr.all);
end Test_2;

200Y Amendments

Slide: 31

AI-251: Abstract Interfaces

type I1 is interface;
procedure P (A : I1) is abstract;
procecure Q (X : I1) is null;

type I2 is interface I1;
procedure R (X : I2) is abstract;

type T1 is new I2 with . . . ;
-- It must implement P, Q and R

type T2 is tagged record . . . ;
type DT2 is new T2 and I1 and I3 with . . . ;
. . .
type DT3 is new DT2 with . . . ;
-- Inherits all the primitive operations and
interfaces
-- of the ancestor

procedure Dispatch_Call (O : I1'Class) is
begin
 if O in I2’Class then -- Run-time check
 R (O); -- Dispatching call
 else
 P (O); -- Dispatching call
 end if;
end Dispatch_Call;

-- Dispatching call to predefined operations
I1'Class’Write (. . .)

200Y Amendments

Slide: 32

• AI-216: Unchecked unions: variant records with no run-time
discriminant
• AI-216: Unchecked unions: variant records with no

run-time discriminant

200Y Amendments

Slide: 33

AI-216: Unchecked Unions: no run-time discriminant

type T_Data (Discr : Boolean) is
 Name : Interfaces.C.Strings.Char_Ptr;
 case Discr is
 when False =>
 F_1 : Float;
 when True =>
 F_2 : Integer;
 end case;
end record;

pragma Unchecked_Union (T_Data);

struct T_Data {
 char *name;
 union {
 float f_1;
 int f_2;
 };
};

Binding Interpretation

• C • Ada 2005

C unions can be mapped into Ada records

Slide: 34

• The Ada Conformity Assessment
Test Suite (ACATS) is the test suite
used for Ada processor conformity
testing

• In addition to the implementation of
the new Ada 2005 issues, we have
submitted 44 new tests to the ARG
that help to verify Ada 2005
compilers

• The Ada Conformity Assessment Test Suite (ACATS) is the test suite
used for Ada processor conformity testing

• In addition to the implementation of the new Ada 2005 issues, we have
submitted 44 new tests to the ARG that help to verify Ada 2005
compilers

Slide: 35

Sectional cover - Embedded board

Summary

Slide: 36

Summary: GNAT and Ada 2005

High Priority AIs: 22 issues

13 fully implemented, one prototype: Ravenscar, Limited with clause,
enhancements to access types, object notation, interfaces, and
profiles.

Pending: execution-time clocks, task termination procedure, optimization
of controlled types, etc.

Hopefully simpler than previous set

Slide: 37

Medium priority AIs: 47 issues

5 implemented in GNAT: private with clauses, limited aggregates,
unchecked union, non-null access types, access to constants.

Pending:

– Heavy implementation work: nested type extensions, partial parameter

lists for formal packages, overriding / non-overriding declarations,

protected interfaces, functions returning limited values

– No implementation work: vector and matrix operations

– Needs study: accessibility rules for generics, default initialized objects,

pragma atomic and slices, etc.

Summary: GNAT and Ada 2005

Slide: 38

• Ada 2005 issues already available in the GNAT Academic Program
(GAP)

• Major GAP objectives:

– Encourage and prolong the use of Ada in Academia by providing

quality-assured software packages, amongs other materials, that

facilitate Ada programming for students

– Create a collaborative platform for the Ada academic community

– Create stronger links between academia and the professional Ada

community

Summary: GNAT and Ada 2005

Slide: 39

GNAT: On the Road to Ada 2005
Edmond Schonberg and Javier Miranda

End of talk

Presentation cover
page EU

www.adacore.com

Slide: 40

Sectional cover - Embedded board

Brief Overview of Implemented Ada
2005 Issues

Binding Interpretations

Slide: 41

AI-220: Subprograms within private compilation units

package A is
 . . .
end A;

private package A.B is
 . . .
end A.B;

package A.B.C is
 . . .
end A.B.C;

A public declaration can never depend on a private unit

with A.B.C; -- Unclear in Ada 95
 -- Not legal in Ada 2005

procedure A.X is
begin
 . . .
end A.X;

Binding Interpretation

GNAT implemented this rule as it was originally intended in Ada 95
(not as it was written in the Reference Manual)

Slide: 42

AI-235: Resolution of 'Access

with P;

procedure AI_235 is
 type Int_Ptr is access all Integer;
 Value : aliased Integer := 10;
begin
 -- qualification needed

 P.Proc (Int_Ptr'(Value'Access));

end AI_235;

In Ada 2005 the prefix of the access attribute resolves the call

Binding Interpretation

 package P is
 procedure Proc (X : access Integer);

 procedure Proc (X : access Float);

 end A;

• Ada 95 • Ada 2005

with P;

procedure AI_235 is
 Value : aliased Integer := 10;
begin
 P.Proc (Value'Access);

end AI_235;

Slide: 43

AI-310: Ignore non-dispatching operations during overloading

Amendment

package P is
 type Some_Unit is new Float;
 -- Make some predefined operator unavailable to force descendants to
 -- declare their own non-abstract version
 function “*” (Left, Right : Some_Unit) return Some_Unit is abstract;
 function Image (X : Some_Unit) return String;

 type Derived_Unit is new Some_Unit;

 function “*” (Left, Right : Derived_Unit) return Derived_Unit;

end A;

use P;
X : Some_Unit := 1.0;
S : String := Image (X * X); -- Ambiguous in Ada 95

Slide: 44

Sectional cover - Embedded board

GNAT and Ada 2005
Technical Details

Slide: 45

AI-216: Unchecked unions: varian records with no
run-time discriminant

 Technical Details
200Y Amendments

• Simple implementation available in GNAT for several years

• The notion of inferrable discriminant complicates the implementation:

 Initialization, assignment, and equality are all impacted by the
possible presence of such discriminants. Temporaries must be

created for them, and they must be used selectively in the expansion

• Instead of a simple mechanism to interface to common C unions, this AI
makes Unchecked_Union types into full-blown varian records with off-line
discriminants (unclear whether this level of complication is justified by the gain
in functionality)

• This is a reminder that grafting small semantic changes into a large compiler
may have surprisingly complex consequences!

Slide: 46

AI-217: Limited With Clause

package Q is
 type T_1; -- Incomplete type
declaration

 package Local is
 type T_2 is tagged;
 end Local;
end P;

package Q is
 type T_1 (D : Integer) is record
 . . .
 end record;

 package Local is
 type T_2 is tagged record

. . .
 end record;
 end Local;
end P;

Limited
 View

Full
View

• GNAT builds the two views:
– Non-limited view
– Limited view

• Visibility analysis uses one of
these views

• For code generation purposes,
entities in the limited-view
reference their counterparts in the
non-limited view

Package Specification

 Technical Details
200Y Amendments

Slide: 47

AI-217: Limited With Clause (example)

limited with Departments;
package Employees is
 . . .
end Employees;

limited with Employees;
package Departments is
 . . .
end Departments;

with Departments;
package body Employees is
 . . .
end P;

with Employees;
package body Departments is
 . . .
end Departments

with Employees;
with Departments;
procedure Main is
 . . .
end Main;

 Technical Details
200Y Amendments

Slide: 48

AI-262: Private with clause

• In case of private with clause found in a package specification GNAT installs
the context clauses in two stages:

– Non-private with-clauses (before compiling the public part of the

package)

– Private with-clauses (before compiling the private part of the package)

• In case of private with-clause found in a library subprogram the private with-
clauses are installed after the specification of the subprogram has been
analyzed

• In case of limited-private-with clauses, GNAT builds the incomplete view of
the named compilation unit and installs it as described above

 Technical Details
200Y Amendments

Slide: 49

AI-230: Generalize anonymous access types

• Relax the strictness of the semantic analyzer to allow the use of access
types in:

– Component definitions (thus covering array types and record

components)

– Discriminants of non-limited types

– Object renaming declarations

• Incorporate the following operators for the universal-access type in package
Standard

function “=” (Left, Right : Universal_Access) return Boolean;

function “/=” (Left, Right : Universal_Access) return Boolean;

 Technical Details
200Y Amendments

Slide: 50

• Set the accesibility level of the anonymous access type:

– For an access object that cannot be altered during its lifetime

(parameter of mode IN or discriminant of a limited type), its level is

determined by the accessibility level of its initial value

– For a component definition or a discriminant of a non-limited type, the

level is the same as that of the enclosing composite type

– For renamings the level is the same as the level of the type of the

renamed object

 These rules are necessary to simplify the implementation and to avoid

dangling references when an access object is updated while being

viewed at a deeper level that it truly is.

AI-230: Generalize anonymous access types

 Technical Details
200Y Amendments

Slide: 51

• Access to constant parameters: the semantic analyzer just has to
remember that the designated object is not allowed to be modified

• Null-excluding access subtypes

– Propagation of the null-excluding attribute to subtypes, objects and

components

– Addition of new checks to the semantics to detect bad usages of null-

excluding types

– Generation of the nul-exclusion run-time check when required

– Relax the semantics to permit the null value in anonymous access

types

AI-231: Access to constant parameters and null-
excluding access subtypes

 Technical Details
200Y Amendments

Slide: 52

• Ada 2005 rules ensure that accessibility checks are never required for
anonymous access to subprograms; thus they don't need to carry an
accessibility level

• Given the Ada 2005 semantic rules, anonymous access to subprograms
can be represented by its code address (thus allowing easy interfacing
with C function pointers)

• Only modification: remove several GNAT semantic checks !

AI-254: Anonymous access to subprogram types

 Technical Details
200Y Amendments

Slide: 53

• The initialization of limited components of aggregates must be carried out in
their final destination ---no copying can take place

• Limited aggregates adds no special complexity to the compiler: initialization
in place is already required for controlled objects by the ARM (Section 7.6)

• The semantic analysis and expansion of aggregates is an extremely complex
portion of the semantics (the initialization of limited components adds
infinitesimally to this complexity)

• GNAT converts the aggregate into a set of individual assignments. In case of
limited components, we generate calls to default initialization subprograms

AI-287: Limited Aggregates

 Technical Details
200Y Amendments

Slide: 54

• Add no special complexity to the compiler:

 If the new restrictions are specified in the source, the front-end

increases its strictness and reduces the set of Ada allowed in the
applications

AI-249 and AI-305: Real-Time and High-Integrity Issues

 Technical Details
200Y Amendments

Slide: 55

• Simple support for the basic functionality:

 When the analysis of a selected component fails, instead of

immediately generate an error message, the frontend rewrites it
using the standard functional Ada notation and repeats the

analysis

 Object.Operation (. . .) ----------> Operation (Object, . . .)

• Class-wide calls require more work because the scope of the type of the
object does not necessarily designate the scope of the operation: it may be
declared in the scope of some ancestor

AI-252: Object Operation Notation

 Technical Details
200Y Amendments

package P is
 type T is tagged record . . . ;
 procedure Init (X : access T);
end P;

with P;
package Q is
 type T_Ptr is access all P.T;
end Q;

with Q;
procedure Test_2
is
 Ptr : Q.T_Ptr;
begin
 Ptr.Init;
end Test_2;

Slide: 56

• Prototype implementation that uses a combination of dispatch table for the
primitive operations of the type, and permutation maps to establish how a
given interface is satisfied by existing primitive operations

• We are currently evaluating alternatives that may be more efficient at run-
time and simplify interfacing to C++, so that simple cases of multiple
inheritance in C++, involving only one non-abstract ancestor can be mapped
into Ada hierarchies.

AI-251: Abstract Interfaces

 Technical Details
200Y Amendments

Slide: 57

• Ranging from major to trivial

• A few might still be accepted into the corrigendum

• Several are major enhancements – heavy implementation issues

– Returning limited objects without copying

– Protected and task interfaces

– Priority-specific dispatching

– Support for deadlines and EDF scheduling

• Miscellanea:

– Container library

– Tag read by T´Class´Input

Working Items: 43 issues

Summary: GNAT and Ada 2005

Slide: 58

How much work to get to GNAT 2005?

• Need to review every entry in Corrigendum 2000

• Need to design and implement remaining Corrigendum 200Y (and a few
or the working items)

• Need to develop minimal ACATS tests (44 tests submitted)

• Need to update ASIS

• No major redesign of core technology, but several person-years of work
to complete all AI´s

• GNAT Pro can already claim bragging rights for most important AI´s

