
VisualAge for Java Enterprise
Version 2 Team Support

SG24-5245-00

International Technical Support Organization

http://www.redbooks.ibm.com

Mark Fitzpatrick Uwe Kopf Janice Sullivan
Ueli Wahli

VisualAge for Java Enterprise
Version 2 Team Support

SG24-5245-00

September 1998

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 1998)

This edition applies to Version 2.0 of VisualAge for Java Enterprise, Program Number 5801-AAR, for
use with the OS/2, Windows 95, or Windows NT operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix E, “Special Notices” on page 149.

Take Note!

Some captured windows in this book are based on a pre-GA version of a product and may be
slightly different when the product becomes generally available.

Note

© Copyright IBM Corp. 1998 iii

Contents

Figures. vii

Tables . ix

Preface. xi
The Team That Wrote This Redbook. xii
Comments Welcome . xiii

Chapter 1. Introduction . 1
Overview . 2

Chapter 2. Installation and Setup . 5
Installation of the Team Environment . 6
Accessing the VisualAge for Java Enterprise Server 9
Password Protection for Clients. 11

Chapter 3. Understanding the Basics . 13
Program and System Elements . 14

Program Elements . 14
System Elements . 16

Version Management . 18
Open Edition . 19
Version . 19
Scratch Edition . 21
History of Program Elements . 21

Configuration Management . 22
Releasing Program Elements . 22

Change Management . 25
Ownership . 25
Team Roles. 26

Chapter 4. The Team Development Process 31
Activity Patterns for Daily Development . 32

The Basic Development Pattern . 32
Single Package, Single Developer. 33
Single Package, Multiple Developers . 34
Multiple Packages, Multiple Developers . 38
Multiple Parallel Streams. 41

Project Wrapup and Delivery . 43

iv VisualAge for Java Enterprise Version 2 Team Support

Chapter 5. Team Java in Action . 45
Introducing JUM Software Associates . 46

Current Environment . 46
A New Project for Mr. Bean’s U-Learn 2-Drive School. 47

Application Requirements. 48
The Project Team. 48

Project Life Cycle . 49
Sample Activity 1: Creating an Initial Baseline 50
Sample Activity 2: Developing New Classes . 53
Sample Activity 3: Modifying Existing Program Elements. 54
Sample Activity 4: Consolidating Class Changes for Release. 57
Sample Activity 5: Creating a Final Baseline for Application Delivery . 61

Chapter 6. Workspace Management . 63
Managing Program Elements . 64
Project Organization. 66
Package Organization. 66
Management Query . 67
Project Resources . 70

Managing Resource Files . 72

Chapter 7. Repository Management . 75
The Role of the Administrator . 76
Repository Cleanup. 78

Deleting and Versioning Program Elements . 80
Purging Program Elements. 80
Compacting the Repository . 89
Connect to New Repository . 92

Repository Backup . 92
Scenario 1: Using EMADMIN Copy Command . 93
Scenario 2: Using Operating System Commands 94

Chapter 8. Workspace and Repository Configuration Options . . 95
The Basics of Connecting to a Repository . 96

Remote Connection to a Repository . 97
Connecting to Two Repositories . 97
Switching between Two Clients and Two Repositories 100

Multiple Workspaces . 102

Appendix A. Program Element State Transitions 105
Project State Transitions . 107

Not Existing -> Open Edition (1) . 108
Not Existing -> Repository Only (2) . 108
Repository Only -> Version/Open Edition (3). 109
Version -> Open Edition (4) . 110

Contents v

Open Edition -> Version (5) . 110
Version -> Scratch Edition (6). 111
Scratch Edition -> Open Edition (7) . 111
Scratch Edition -> Not Existing (8) . 111
Version/Open Edition -> Repository Only (9). 112
Repository Only -> Not Existing (10) . 113

Package State Transitions . 114
Not Existing -> Released Open Edition (1) . 115
Not Existing -> Repository Only (2) . 116
Released Open Edition -> Released Version (3). 116
Released Version -> Open Edition (4). 117
Open Edition -> Released Open Edition (5) . 117
Open Edition -> Version (6) . 118
Version -> Released Version (7) . 118
Version -> Open Edition (8) . 118
Version/Released Version -> Scratch Edition (9) 119
Scratch Edition -> Open Edition (10) . 119
Scratch Edition -> Not Existing (11) . 119
(Released) Open Edition/(Released) Version -> Repository Only (12) . 120
Repository Only -> Open Edition/Version (13). 121
Repository Only -> Not Existing (14) . 122

Class State Transitions . 123
Not Existing -> Open Edition (1) . 124
Open Edition -> Version (2) . 124
Version -> Released Version (3) . 124
Version/Released Version -> Open Edition (4). 125
Version/Open Edition/Released Version -> Repository Only (5) 125
Repository Only -> Version/Open Edition (6). 126
Repository Only -> Not Existing (7) . 126

Appendix B. EMSRV . 127
EMSRV Startup Options . 128
Using EMSRV . 130

EMSRV on OS/2. 130
EMSRV on Windows NT . 131
EMSRV on UNIX. 132

Appendix C. EMADMIN . 133
EMADMIN Installation . 134
Using EMADMIN . 134

EMADMIN Commands . 134
EMADMIN Bench . 135
EMADMIN Copy . 136
EMADMIN List . 137
EMADMIN Opts . 138

vi VisualAge for Java Enterprise Version 2 Team Support

EMADMIN Stat . 139
EMADMIN Stop. 140

Appendix D. Migration . 141
Overview . 142
The General Process . 143

Considerations . 146

Appendix E. Special Notices . 149

Appendix F. Related Publications . 153
International Technical Support Organization Publications 154
Redbooks on CD-ROMs. 155
Other Publications . 155

How To Get ITSO Redbooks . 157
How IBM Employees Can Get ITSO Redbooks. 157
How Customers Can Get ITSO Redbooks . 158
IBM Redbook Order Form . 159

Index . 161

ITSO Redbook Evaluation . 165

© Copyright IBM Corp. 1998 vii

Figures

1. VisualAge for Java Enterprise Team Development Environment 2
2. Server Machine Network Address. 6
3. User Administration Dialog. 8
4. VisualAge for Java Enterprise Team Architecture 10
5. Program and System Elements . 14
6. Contained in Relationships between Program Elements. 15
7. Part of Relationship between Packages and Projects in the Repository 16
8. Terms for Editions of Program Elements . 18
9. Versioning Program Elements. 20
10. Releasing Program Elements . 23
11. The Basic Development Pattern for Classes. 32
12. Single Developer Working with a Single Package 33
13. Working Pattern for Class Owners . 34
14. Establishing a Package Baseline. 36
15. Merging Divergent Class Changes . 37
16. Establishing a Project Baseline. 39
17. A Rolling Project Baseline . 40
18. Split Stream Development. 42
19. A View of the JUM Repository. 47
20. Adding a Package from the Repository . 51
21. Released and Unreleased Packages in the Mr. Bean Project 52
22. Versioning Classes . 53
23. SmartGuide for Versioning . 54
24. Browsing Method Editions. 56
25. List of Versions of the Amortization Class . 57
26. Comparing Differences between Two Class Editions. 58
27. Comparing Differences with a Second Version. 59
28. Creating a JAR File of Mr. Bean’s Scheduling System 62
29. Workbench Managing Page . 65
30. Management Query Facility . 67
31. Specifying a Shared Resource Directory . 71
32. Four Steps to Cleaning up the Repository . 79
33. Purging Program Elements from the Repository 82
34. Repository Cleanup When Purging Packages. 83
35. Error Message When Load Failed . 84
36. Information Message When a Package Is Missing. 85
37. Repository Cleanup When Purging Projects. 87
38. Compacting a Repository . 90
39. Error Message When Connecting to a Repository during Compaction . 91
40. Moving Your Work between Repositories . 98

viii VisualAge for Java Enterprise Version 2 Team Support

41. Selection Dialog to Connect to Another Repository 100
42. Copying a Package across Repositories. 101
43. Copying Workspaces . 103
44. Valid State Transitions for Projects . 107
45. Valid State Transitions for Packages . 114
46. Valid State Transitions for Classes. 123
47. Migration from Single-User to Team Environment 143
48. Project Imported from a Version 1.0 Repository. 145
49. Package Versions with the Same Name . 146
50. Package Version 1.1 Imported with the Same Version Name 147

© Copyright IBM Corp. 1998 ix

Tables

1. Administrator’s Checklist for Compacting a Repository 91
2. Repository Backup Using EMADMIN. 93
3. Repository Backup Using Operating System Commands 94
4. EMSRV Startup Options (Part 1) . 128
5. EMSRV Startup Options (Part 2) . 129
6. EMSRV Startup Options (Part 3) . 130
7. Command Modifiers for EMADMIN Bench . 135
8. Command Modifiers for EMADMIN Copy . 136
9. Command Modifiers for EMADMIN List . 137
10. Command Modifier for EMADMIN Opts . 138
11. Command Modifiers for EMADMIN Stop. 140
12. Migration Steps from VisualAge for Java Enterprise Version 1.0 . . . 144

x VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 xi

Preface

This book is intended to familiarize VisualAge for Java developers with the
team programming environment that is part of VisualAge for Java
Enterprise Version 2. This book does not cover the basics of Java
programming using VisualAge for Java or discuss the other features of the
Enterprise product.

The book describes the challenges that a development team faces when
working with VisualAge for Java. The book uses short scenarios to illustrate
the functions and processes that enable team programming, and the different
roles of the team members.

The book covers the complete process of installing and setting up clients and
servers, programming in a team environment, and the administrative
aspects of maintaining multiple versions of application systems in a shared
repository.

xii VisualAge for Java Enterprise Version 2 Team Support

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose
Center.

Mark Fitzpatrick is a Principal Consultant at the Distributed Systems
Technology Centre in Brisbane, Australia. He has worked in the IT business
for 20 years. Mark’s areas of expertise include object-oriented technologies,
distributed architectures such as CORBA, and application development in
languages such as Smalltalk and Java.

Uwe Kopf is an IT Consultant at IBM Germany. He has 12 years of
experience in application development. Uwe’s areas of expertise include
VisualAge for Java, VisualAge for Smalltalk, and object-oriented technology.

Janice Sullivan is an IT Specialist at IBM Canada. She has 7 years of
experience in application development. Janice has worked at IBM for 13
years. Her areas of expertise include VisualAge for Smalltalk, object-oriented
technology, and VisualAge for Java.

Ueli Wahli is a Consultant AD Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 14
years ago, Ueli worked in technical support at IBM Switzerland. He writes
extensively and teaches IBM classes worldwide on application development,
object technology, VisualAge products, data dictionaries, and library
management. Ueli holds a degree in Mathematics from the Swiss Federal
Institute of Technology. His e-mail address is wahli @ us.ibm.com.

Thanks to the following people for their invaluable contributions to this
project:

Maggie Cutler, Elsa Barron, Emma Jacobs, and Alan Tippett
International Technical Support Organization, San Jose Center

Leigh Davidson and Gary Bist
VisualAge for Java Information Development, IBM Toronto Lab, Toronto

Christophe Elek
VisualAge for Java Support Team, IBM Toronto Lab, Toronto

(Ueli Wahli)

 xiii

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 ❑ Fax the evaluation form found in “ITSO Redbook Evaluation” on page 165
to the fax number shown on the form.

 ❑ Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users: http://www.redbooks.ibm.com

For IBM Intranet users: http://w3.itso.ibm.com

 ❑ Send us a note at the following address:

redbook@us.ibm.com

xiv VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 1

1 Introduction
The software development process is becoming more and more complex. End
users are demanding that more function be delivered in less time. Many
companies are extending their core business applications to enable new users
to work in new ways through their intranet and the Internet, and new
applications are required to run on many different platforms. All this often
results in the need for large development teams to design, build, and
maintain applications. Additionally the teams are often forced to maintain or
expand existing code in a very short time.

Java programmers need development tools that enable them to work
together in a highly dynamic environment. They require facilities that easily
allow them to manage multiple versions of their work and switch quickly
between the different versions. VisualAge for Java Enterprise provides an
extremely flexible, productive, and secure built-in team environment for
managing the software life cycle process.

2 VisualAge for Java Enterprise Version 2 Team Support

Overview
At its simplest level, the architecture of the VisualAge for Java Enterprise
team environment is a two-tier client/server model: multiple developer
workstations connected to a single file server.

Residing on the file server is a shared file, which stores all code for all
developers of the development team. This file is called the repository.

Each developer workstation has a set of executable files that are common to
every client as well a unique file that contains a single developer’s working
code set. This file is called the workspace.

The client connection to the server is established over a local area network
(LAN), and communication between client workspaces and the repository
server is through TCP/IP.

Figure 1 shows the VisualAge for Java Enterprise team development
environment.

Figure 1. VisualAge for Java Enterprise Team Development Environment

Local
Workspace
File Shared

Workstations
L

A

N

Developer

Repository

Introduction 3

The repository is a large binary file that stores the source and bytecodes of all
developer workspaces connected to it. It can be thought of as an
object-oriented database that houses all development objects.

The workspace file is unique to each client that is connected to the repository.
It contains the bytecodes for the development environment and all program
elements that the developer has loaded and is working with. A developer
makes changes to code inside the workspace. These changes are always
saved immediately into the repository.

Starting VisualAge for Java causes the local workspace file to be loaded into
memory and connected to the repository. A VisualAge for Java team client
cannot run without a live connection to a repository.

Developers can add program elements, for example, classes or packages, from
the repository into their workspace. Only loaded program elements are
subject to change by a developer. Generally, many more program elements
are stored in the repository than are loaded in a developer’s workspace.
Developers can also delete program elements from their workspace. Deleted
program elements still exist in the repository and can be added back into the
workspace.

The workspace file also defines the context of execution when applets and
applications are tested during development. All classes and packages that
are required to successfully run a program must be loaded into the
workspace.

Adding program elements from the repository is a way of easily sharing code
among developers working with the same repository. In contrast to other
file-based source code management systems, code changes are immediately
available to other developers in the group. This does not mean that each
developer is directly informed about any changes made by other users. A
changed piece of code must be loaded into the workspace in order for it to be
accessible. Therefore each developer has full control over which program
elements reside in the workspace.

A powerful system of ownership supports the dynamic, concurrent VisualAge
for Java team environment. Each program element must have an owner.
Thus developers have the freedom and flexibility to make changes and try
new things, and at the same time the integrity of each program element is
ensured. The ownership model assigns distinct responsibilities to different
team members, imposes discipline on the team during the development cycle,
and facilitates tracking of changes at maintenance time.

In this book we provide details on the concepts, terminology, and use of the
VisualAge for Java Enterprise team environment.

4 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 5

2 Installation and
Setup
In this chapter we provide installation details and information about setting
up the developer workstations and the server program that controls
developer access to the shared repository.

We also cover how to set up client passwords to restrict access to the
repository.

6 VisualAge for Java Enterprise Version 2 Team Support

Installation of the Team Environment
Follow these steps to install the VisualAge for Java Enterprise team
environment:

1. Install the server.

On the server machine, install the server code of VisualAge for Java by
following the instructions in emsrv622.pdf on the product CD. In this
document we assume that a directory named C:\VajSrv is used for the
server code. On NT, the server can be started as a service. See “EMSRV on
Windows NT” on page 131 for detailed instructions.

Create a subdirectory for the repository file, for example,
C:\VajSrv\Repository, and copy the ivj.dat file from the server CD into
that directory.

2. Install a client.

From a client developer workstation, install VisualAge for Java
Enterprise by invoking the setup.exe (or install.exe for OS/2) in the
installation directory of the product CD. One prompt asks if the repository
is on your local machine or on a server. Select server and enter the server
host name (or TCP address) and the file name of the repository (Figure 2).

Figure 2. Server Machine Network Address

Installation and Setup 7

3. Verify the ide.ini file.

On the client machine, edit the ide.ini file in the \ide\program directory
to specify the location of the repository. The only section to change in this
file is the first one; leave all other sections unchanged. Here is a sample:

[JavaDevelopment]
ServerAddress=fundy (or 9.1.150.41)
DefaultName=c:\VajSrv\Repository\ivj.dat
OpenReadOnly=false

Copy the modified ide.ini file to the server as a reference for subsequent
client installations.

For a local repository the ide.ini file would read:

[JavaDevelopment]
ServerAddress=
DefaultName=../repository/ivj.dat

4. Start the ENVY/Manager Server (EMSRV) process on the server.

[A bit of history: The term ENVY/Manager comes from the VisualAge for
Smalltalk environment where it is used to refer collectively to the shared
repository, the EMSRV program, and the client dynamic link libraries
(DLLs) and primitives. In this book we use the phrase VisualAge for Java
Enterprise server (or just team server) to replace the term
ENVY/Manager. However, we retain the term EMSRV because it is the
actual name of the program that runs on the server.]

As an example, you can start EMSRV in the VajSrv directory as:

emsrv -u <username> -p <password>

Read “Accessing the VisualAge for Java Enterprise Server” on page 9 and
refer to Appendix B, “EMSRV” on page 127 before completing this step so
that you will understand the details of running EMSRV.

5. Start the VisualAge for Java client.

You can start the VisualAge for Java client from the IBM VisualAge for
Java icon in the program folder created at installation. An informational
message tells you that the workspace is connecting to a new repository.
Answer OK to proceed with this step. Next a dialog asks you to select a
user for this workspace. There is initially only one choice; select
Administrator and proceed to enter the network login name for this user.
(See “Users” on page 17 for the definition of the network login name.)

6. Create new users.

The administrator creates new users from the Admin menu option of the
Repository Explorer. Select Users... to open the dialog to create, modify, or
delete users (see Figure 3).

8 VisualAge for Java Enterprise Version 2 Team Support

Figure 3. User Administration Dialog

You should add a user definition for each developer that will be installing
VisualAge for Java. Refer to “Users” on page 17 for details on the
attributes of user objects.

If this workspace will belong to another developer, you should Change
Workspace Owner... before exiting and saving VisualAge for Java. The user
will be saved along with the workspace.

7. Install subsequent clients.

Install subsequent clients as in step 1. The developer can edit the ide.ini
file as in step 3 or copy the file from the server where it was saved. The
local repository, d:\IBMVJava\ide\repository\ivj.dat, on all clients can
be deleted if not needed locally. When the client is started, the developer
selects the correct user object for the workspace.

Installation and Setup 9

Accessing the VisualAge for Java Enterprise Server
In VisualAge for Java Enterprise, developers access the common repository
by communicating through EMSRV, a server process that manages multiple
concurrent client access to a single file—the repository.

The EMSRV process, when running on a suitable network machine, provides
access to the repository file for multiple VisualAge for Java clients.

VisualAge for Java Enterprise provides an EMSRV program for the following
environments:

 ❑ OS/2 Warp Version 4.0
 ❑ AIX Version 4.2.1 (including smp)
 ❑ Windows NT Workstation or Server Version 4.0
 ❑ Novell NetWare Version 3.12, 4.1, and 4.11
 ❑ Novell IntranetWare Version 4.11
 ❑ Sun Solaris Version 2.6
 ❑ HP-UX Version 10.20

Typically, EMSRV is installed and maintained by your network or system
administrator with assistance from the VisualAge for Java Enterprise
administrator. Appendix B, “EMSRV” on page 127 and Appendix C,
“EMADMIN” on page 133 provide details of the programs and parameters to
use when you install and maintain EMSRV.

Client developer workstations communicate with EMSRV through TCP/IP.
Figure 4 shows the topology of a VisualAge for Java Enterprise team
environment.

10 VisualAge for Java Enterprise Version 2 Team Support

Figure 4. VisualAge for Java Enterprise Team Architecture

It is possible for a VisualAge for Java developer to connect directly to a
repository by using native file I/O. However, because the file is then locked, it
is not possible for any other client to access the repository. Therefore the use
of EMSRV and its multiuser connection services is mandatory in the
VisualAge for Java Enterprise team environment.

Attention! Do not develop on the server machine

It is possible to install and run a VisualAge client on the server
with EMSRV and the repository, but we do not recommend this
configuration. Applications under development can affect the
operation of a workstation. If development is performed on the
server and the machine crashes, the shared repository could
become corrupted and all team members would be affected.

EMSRV

Shared

workspace
file

workspace
file

primitives
and DLLs

workspace
file

NT
AIX
OS/2

Developer Workstations

TCP/IP

Windows NT, AIX, OS/2, ...

File Server

Repository

primitives
and DLLs

primitives
and DLLs

...

Installation and Setup 11

Password Protection for Clients
To support multiple concurrent developers, each repository contains a
collection of user objects. Each workspace that connects to the repository
must have a valid user object associated with it. It is possible for a developer,
while VisualAge for Java is running, to change the user of the workspace.

Changing the user of the workspace alters the capabilities and permissions of
the developer inside the workspace and the repository. You can imagine that
this may not always be desirable. With VisualAge for Java Enterprise, a user
ID and password can be assigned to each developer defined in the repository.
Password protection is controlled through EMSRV and provides the following
three configurations:

 ❑ No password protection

This is the default behavior of VisualAge for Java Enterprise. Developers
are allowed to switch to other users at will. When VisualAge for Java is
closed and saved, the current user is saved with the workspace and will be
the user associated with the workspace the next time VisualAge for Java
is started.

 ❑ Use VisualAge for Java user IDs and passwords for all developers

This option requires the maintenance of a passwd.dat file in the EMSRV
(VajSrv) directory on the server. To enable user verification with a
passwd.dat file, EMSRV must be started with the -rp parameter. You
should ensure that users do not have access to the file.

The passwd.dat file is a plain text file. Each user needs one line,
consisting of a user name and the associated password. If a VisualAge for
Java user is not in this file, that user will not be authorized to use
EMSRV.

The user name in the passwd.dat file must match the network login name
of the VisualAge for Java user object definition. (Refer to “Users” on
page 17 for a complete description of user objects and their attributes.)
The user name is followed by one space and then the password. Passwords
may not include spaces, and we recommend that they not be the same as
the user’s actual system logon password.

When starting up VisualAge for Java, the developer is prompted for the
password of the current user. After a third try with an invalid password,
VisualAge exits.

Once logged on with the workspace started, the developer can still choose
the Change Workspace Owner option but will have to know the password
of the new user to successfully change the owner of the workspace.

12 VisualAge for Java Enterprise Version 2 Team Support

Here is a sample passwd.dat file:

mark aussie
uwe schwabe
jan canada
ueli swiss

 ❑ Use native operating system user IDs and passwords

This option does not require a passwd.dat file. When starting EMSRV,
specify the -rn parameter on Windows NT and the -v parameter on AIX.
This option is not available on OS/2. When starting VisualAge for Java
Enterprise or using the Change Workspace Owner option, a developer is
prompted for the password of the current user.

When the administrator defines new users to VisualAge for Java
Enterprise, the network login name of the user object must match the
operating system logon ID for this option of user authentication.

Important Info Only one passwd.dat file per EMSRV process

The passwd.dat file is unique to an EMSRV process and not
to a repository. If a single EMSRV is managing access to
multiple repository files, users defined in all of the reposito-
ries must be included in the one passwd.dat file.

© Copyright IBM Corp. 1998 13

3 Understanding the
Basics
In this chapter we describe the concepts and terminology used in the team
environment of VisualAge for Java Enterprise. We explain the four basic
management services that VisualAge for Java Enterprise offers: managing
system and program elements, version management, change management,
and configuration management.

Because VisualAge for Java Enterprise is based on an ownership model, team
members assume specific roles at different times. We give details of these
roles here and explain how they provide the basis for change control in the
VisualAge for Java Enterprise team environment.

14 VisualAge for Java Enterprise Version 2 Team Support

Program and System Elements
VisualAge for Java Enterprise distinguishes between program elements,
which are managed by the developers, and system elements, which are
managed by the administrator of the repository (Figure 5).

Figure 5. Program and System Elements

Program Elements
Program elements are the building blocks of an application and are managed
by the developers. VisualAge for Java Enterprise handles projects, packages,
classes (and interfaces), and methods.

Projects
The project is the unit of organization within VisualAge for Java. Projects are
used to group related packages in a way that is meaningful to the users of
VisualAge. A project has no analogy in the Java language.

Packages
A VisualAge for Java package has exactly the same meaning in VisualAge as
it has in the standard Java language.

Classes
Classes and interfaces are the building blocks in VisualAge just as they are
in the Java language. The VisualAge for Java development environment
sometimes refers to classes and interfaces with the generic term type.
Although we might occasionally adopt the same convention in this book, we
generally prefer to use the term class. Whenever we refer to a class we
implicitly refer to an interface as well. For example, if we talk about

projects

Program Elements System Elements

packages

classes

methods

repositories
users
package groupsinterfaces

types}

Understanding the Basics 15

versioning a class, it is understood that the same operation can be applied to
an interface. If this rule does not apply, we explicitly say so in the text.

Methods
A method in VisualAge for Java is exactly the same as a method in the
standard Java language.

For a complete description of program elements, see Marc Carrel-Billiard
and John Akerley, Programming with VisualAge for Java, Prentice Hall,
1998.

Relationships between Program Elements
When dealing with program elements in VisualAge, it is often helpful to
consider the relationship between the various elements:

 ❑ Inside the workspace there is a contained in relationship between
program elements. Any given element is always contained in another
program element at a higher level. A method is contained in a class, a
class is contained in a package, and a package is contained in a project
(see Figure 6).

Figure 6. Contained in Relationships between Program Elements

Project

Package

Class

Method

contained in

contained in

contained in

16 VisualAge for Java Enterprise Version 2 Team Support

 ❑ When packages and projects reside in the repository, a part of relationship
can exist between them. A part of relationship is less restrictive than a
contained in relationship. For example, a package can be part of several
projects. However, it is not possible to have more than one project with the
same package being loaded in the workspace at a time (see Figure 7).

A package can reside in a repository without being part of a project. For
example, this is the case if you import a package that is not assigned to a
project. When you load a package into the workspace, it must be assigned
to a project.

Figure 7. Part of Relationship between Packages and Projects in the Repository

System Elements
System elements are used to support the team environment itself. They are
maintained by the administrator of the repository.

Repositories
A repository is a binary file where all parts of a software system are stored. It
can be accessed by multiple users concurrently through a LAN. These users
can reside on multiple platforms supported by VisualAge for Java Enterprise.

Each repository is managed by a special user object called the Administrator.
This user preexists in every VisualAge for Java repository and cannot be
deleted. (See “The Role of the Administrator” on page 76.)

Project X Project Y

Project Z

A

B

C

E

D

Package C is part of
- Project X
- Project Y

Package E is part of
- Project Y
- Project Z

Package D is part of
- Project Z

Packages A and B
are part of Project X

- Project Z

F

Package F is not part
of any project

Understanding the Basics 17

Users
VisualAge for Java Enterprise maintains a list of authorized users for each
repository. Only the administrator is allowed to create, change, and delete
users from the repository.

A user is described by three attributes:

 ❑ Unique name

The unique name is the user’s identifier. It must have a unique value. We
suggest using the e-mail address to make sure it is a unique value in your
team or company. Companywide unique names avoid problems when
moving packages between different organizations, because user objects
are also imported when you import a package from another repository.
The unique name is case sensitive.

 ❑ Full name

The full name is used by the system to refer to a particular user. Any list
of users as well as the Properties window of a program element show the
full name of a user. To avoid confusion, we recommend using unique
values for the full names.

 ❑ Network login name

The network login name is the user ID of the user and is used to identify
the user to the repository. If you choose to enable password verification at
logon, the network login name is the user ID against which the password
is verified. For more information about passwords, refer to “Password
Protection for Clients” on page 11. A network login name must be
provided when you create a user. However, if you choose not to use
password verification at logon, the network login name is not used.

Package Groups
Each edition of a package has a package group associated with it. A package
group contains a list of users who are allowed to create classes in this
package. The user who created the package is by default the package group
owner. The owner is the only one who is allowed to add or delete other users
to or from the package group (see “Change Management” on page 25). The
owner can also pass the ownership to another user.

A package that is undergoing split stream development can have different
package groups assigned to each development stream. Each development
stream is represented by a different edition of the package.

Note: The package owner is indicated in the middle lower pane of the
Managing page of the workbench with a leading >. Be aware that this is the
same symbol used for indicating unreleased editions!

18 VisualAge for Java Enterprise Version 2 Team Support

Version Management
Program elements can exist in different states. Once a program element has
reached a certain state that you want to save as a baseline, you can mark the
state as immutable. To apply any changes to this piece of code, you first have
to create a copy of it. This mechanism is commonly known as version control.

VisualAge for Java Enterprise provides three constructs to manage changes
to program elements (see Figure 8):

 ❑ Open edition

 ❑ Version

 ❑ Scratch edition

All three constructs can be treated as editions. In other words, you can think
of a version as an immutable edition.

We refer to a program element that is currently loaded in the workspace as
the current edition. A current edition can be either an open edition or a
version. It can never be a scratch edition, because a scratch edition does not
exist in the repository and therefore cannot be loaded from the repository.
Open editions, versions, and scratch editions represent the status of a
program element.

Figure 8. Terms for Editions of Program Elements

Edition

Scratch EditionOpen Edition Version

released
Open Edition

released
Version

unreleased
Version

unreleased
Open Edition

Current Edition when loaded in workspace

Understanding the Basics 19

Open Edition
An open edition is a program element that you can change. It is indicated by
a time stamp containing the date and time of its creation. You cannot change
this unique identifier. All open editions of program elements have a time
stamp.

You can have more than one open edition of a program element in the
repository, but only one can be loaded in the workspace at any given time.
Thus developers have the flexibility to work down several paths on the same
program element.

You can create an open edition either manually or automatically. Remember
that a version is an immutable program element. You can explicitly create an
open edition from a version. An open edition is automatically created by
VisualAge for Java Enterprise if you make changes to an existing open
edition of a method. When you save the changes, a new open edition of the
method is automatically created. Creating an open edition from an existing
version actually makes an editable copy of the program element. The version,
which is not editable, remains in the repository.

Version
A version is an edition that you cannot change. It is indicated by a version
name.

VisualAge for Java provides automatic naming of versions, starting with 1.0
as the first version name of a new element and then adding one to the last
number (1.1, 1.2). You do not have to accept this default name. Instead you
can use your own, more specific name, that also can include letters. We
suggest using specific prefixes in the version name so it is easy to determine
which version was created by which developer and at what time.

Tip Time stamps

Time stamps of methods are not shown in the various
standard browsers, but they can be seen in method
properties.

Time stamps of open editions are referred to as the Version
Name in the Properties window.

20 VisualAge for Java Enterprise Version 2 Team Support

A version is always created from an open edition. To version a project or
package, all program elements at a lower level have to be versions. In the
case of versioning packages, versioning of the contained classes may result in
interaction with the different class owners, because only the class owner is
allowed to release a class or interface. As a project owner you are allowed to
version the containing packages individually or by versioning the project
itself. Note that older versions still exist in the repository (see Figure 9).

Figure 9. Versioning Program Elements

You can have more than one version of a program element in the repository,
but only one is loaded in the workspace at a time.

When you deploy an application, we strongly recommend that all program
elements be versions.

Tip Version name

Version names should be used carefully. We recommend us-
ing <initial>-<date>-<version number> for a version
name; for example, JS-6Mar-2.1.

Version Scratch EditionOpen Edition
Project

Version Scratch EditionOpen Edition
Package

VersionOpen Edition
Class/Interface

Open Edition
Method

Understanding the Basics 21

Scratch Edition
A scratch edition is a private edition and not visible to other users. It resides
in the user’s workspace, not in the repository.

There are two situations where the construct of a scratch edition is helpful:

 ❑ You want to do some testing with a versioned package that you own.

You have to make changes to a contained class that are not intended to be
visible to other users. When you save the changes made in the class, a new
open edition of the class is created as well as a scratch edition of the
package. Because a scratch edition is a private edition, it is not seen in the
repository. Therefore it will not fill the repository with unnecessary
editions of the package that do not refer to any kind of baseline code. After
testing you can reload the original version of the package.

 ❑ You have to make changes to a class within a package, but that package is
owned by another user.

Usually, the owner has to create a new open edition of the package before
you can start making changes (which also means creating a new open
edition of the class). If the owner of the package is not available to create a
new open edition, you would not be able to continue your work. However,
the concept of scratch editions enables you to work with your own private
edition of the package (which is created automatically by VisualAge for
Java Enterprise).

You can have only one scratch edition of a package or a project in your
workspace at a time. There are no scratch editions of a class. If you make
changes to a version of a class, you always get an open edition. A scratch
edition is indicated by displaying <> around the name of the original version.

History of Program Elements
VisualAge for Java Enterprise keeps track of all states of all program
elements in the repository. They can be viewed by the Repository Explorer. A
complete history of all program elements is available.

VisualAge for Java Enterprise also provides a management query facility to
search for different program elements in different states that are currently
loaded in the workspace. You can add owner and/or class developer
information as additional arguments for the query. For more information
about the query facility, see “Management Query” on page 67.

22 VisualAge for Java Enterprise Version 2 Team Support

Configuration Management
Many different program elements are created during development, and most
of them will exist in many different editions and versions in the repository.
There are relationships among the program elements. For example, a certain
version of a package contains several classes. Each class itself may exist in
multiple editions or versions. A configuration management tool has to keep
track of which version or open edition of each program element is contained
in a particular version or open edition of the containing program element.
The summary of these references is called a configuration. For example, you
can think of a version of a package as a named, versioned configuration of
class versions. VisualAge for Java Enterprise allows multiple configurations
of the same element.

Different configurations are maintained:

 ❑ Each version or open edition of a class represents a configuration of
method editions.

 ❑ Each version or open edition of a package represents a configuration of
class versions or open editions.

 ❑ Each version or open edition of a project represents a configuration of
package versions or open editions.

Releasing Program Elements
A configuration represents the relationship between an open edition or
version of a program element and the open editions or versions of the
program elements that it contains when it is loaded in the workbench. To add
a specific version or open edition of a program element to a configuration is
referred to as releasing (see Figure 10).

In other words, releasing determines which edition of a program element is
loaded when a specific configuration is added to the workspace by a
developer.

Different rules exist for releasing different program elements. The terms of
ownership used in the discussion that follows are described in detail in
“Ownership” on page 25.

Understanding the Basics 23

Figure 10. Releasing Program Elements

Releasing Methods
Each time a method is created or changed, a new edition is created and
automatically released to the edition of the class. There is no explicit release
mechanism for methods.

Releasing Classes
Only versions of a class or interface can be released. Classes are blocks of
executable code in Java. When you work on a class or interface, it is an open
edition, and it may not be in a state where it should be used by other
developers. Once a class or interface is released to a package, it is used by all
developers when they load the current configuration of the package into their
workbench. To ensure that only classes with well-defined and tested behavior
are loaded, only versions of a class can be released.

Important Info Who can release a class?

Only the class owner can release a class version into the
containing package, whereas only the class developer can
version the class.

Version Scratch EditionOpen Edition
Project

Version Scratch EditionOpen Edition
Package

VersionOpen Edition
Class/Interface

Open Edition
Method

Status of program elements
that can be released

24 VisualAge for Java Enterprise Version 2 Team Support

Releasing Packages
A package can be released as an open edition or a version:

 ❑ Releasing an open edition of a package

When you release an open edition of a package, it is not necessary to have
all contained classes versioned and released. However, this does not mean
that open editions of contained classes are going to be released. Instead,
the most recent released version of the classes will be part of the resulting
configuration of the package. For example, say you have an interface,
MyInterfaceA, as an open edition currently loaded in the workbench and a
released Version 5.0 in the repository. When the open edition of the
package is released into the project, the configuration of the project
contains not the current (open) edition of the interface but the released
version in the repository.

 ❑ Releasing a version of a package

Before you can version a package, all contained classes and interfaces
have to be versioned and released. Then you can version the package and
release it into a project.

When you create a new package in a project, the initial open edition of the
new package is automatically released to the project.

Important Info Who can release a package?

The package owner and the owner of the containing
project are allowed to release an open edition or a
version of a package into a project.

Understanding the Basics 25

Change Management
Change Management is implemented by VisualAge for Java Enterprise
through the concept of ownership of program elements.

Ownership
Traditional change management tools are often based on a concept of
reserving elements. A user reserves (or checks out) a program element to
prevent other users from modifying it concurrently. In most of these systems
any user is allowed to reserve elements.

Element ownership as implemented in VisualAge for Java Enterprise is the
basis for an alternative strategy that enables developers in a team to work
dynamically and concurrently but always have the appropriate control over
the development process. For example, multiple developers may change a
class more or less simultaneously and even create versions of it. However,
there is only one individual, the class owner, who is responsible for the main
stream of the development for that class. The class owner is the only one who
can release the class version into the containing package. Therefore,
although more than one developer is allowed to change a class, only the class
owner determines which of the existing versions is visible to the other team
members when they load the containing package.

Owners are typically members who coordinate the work of many developers.
Depending on the size and the complexity of the product, your team might
have one project owner, and a package owner for each package. Each
program element managed by VisualAge for Java Enterprise has an owner.
The owner is responsible for integrity and maintenance during the whole life
cycle of the program element. Certain operations are performed only by an
owner.

Assigning Ownership
Ownership can be assigned to a user explicitly or implicitly. A user gets
implicit ownership of a program element when it is created. A user can get
explicit ownership of projects, packages, and classes by having the ownership
transferred from the current owner. The current owner relinquishes
ownership on that program element. Therefore, although ownership is not
immutable during the development process, only one person at a time is
responsible for the class functionality.

Methods are implicitly owned by the owner of the containing class.

26 VisualAge for Java Enterprise Version 2 Team Support

Scope of Ownership
If you are the owner of a class, you are the owner of all existing editions of
that class within the package edition (see also “Class Owner” on page 27). If
you are the owner of a package or a project, you are the owner of only the
current edition of the package or project. Thus different editions of packages
and projects with different owners exist in the repository.

This different behavior is due to the fact that VisualAge for Java Enterprise
treats classes as elements that have executable behavior. Therefore editions
are single steps to achieve the desired functionality of a class, and only one
user, the class owner, is responsible. In contrast, packages and projects are
constructs used for organizational and administrative purposes. Different
users can be responsible for different editions.

Team Roles
Change control is based on a number of different roles for the developers in a
team:

 ❑ Class developer

 ❑ Class owner

 ❑ Package owner

 ❑ Project owner

Still another role is implemented in VisualAge for Java Enterprise—the role
of administrator. We will discuss this special role in “The Role of the
Administrator” on page 76, because the administrator’s tasks are not tightly
related to the developer’s tasks within a typical development cycle. The
administrator manages the repository as a whole independently from certain
development projects.

Class Developer
A class developer is a user who has created an edition of a class or interface.
Any user registered by the administrator to work with the repository can
make changes to any class or interface. A class developer does not have to be
the class owner. A class developer does not have to be in the package group to
which the class belongs. Creating an open edition of a class automatically
records the current user as the class developer. This behavior provides the
flexibility that is necessary in a highly concurrent development environment.

Understanding the Basics 27

How do I become a class developer?

 ❑ By creating an open edition of an existing class

 ❑ By creating a new class in a package in which you are a package group
member. In this case you also become the owner of the class.

What can I do as a class developer?

 ❑ Add the open edition to your workbench

 ❑ Version the open edition

 ❑ Change the class definition

 ❑ Change, save, delete, or reload a method

Class Owner
A class owner is the team member responsible for the integrity of a class or
interface in a package edition. Class ownership promotes the creation and
maintenance of quality code for the following reasons:

 ❑ Classes are not equivalent to modules in the traditional structured
programming sense. Classes are building blocks for present and future
systems. To improve code quality and reuse, class ownership helps to
ensure the reliability and generality of a class throughout the life cycle.

 ❑ The semantic dependencies of an object-oriented model (such as
inheritance) increase the risk that a poorly considered change could have
a unfortunate ripple effect. Only a class owner can change a class or
interface and be reasonably expected to understand the ramifications of
that change.

 ❑ The semantics of check-in/check-out are unclear when inheritance is used.
If an abstract superclass is checked out, for example, should all of its
concrete subclasses be reserved as well?

 ❑ Long-term class ownership introduces cultural changes in the software
team. When developers know they will be maintaining a class for a
significant period of time, they will be less likely to program short-term
fixes.

Class ownership provides the controls necessary for serious software
development while offering the flexibility to let developers experiment
quickly. The key is that only the class owner can release a class into its
containing package. Other developers can create an open edition of a class,
change the open edition, and even version the open edition. The class owner,
however, determines the main stream of development of the class, through
releasing the class.

28 VisualAge for Java Enterprise Version 2 Team Support

How do I become a class owner?

 ❑ By creating a new class or interface in a package edition in which you are
a package group member (you also become the developer of the class).

 ❑ By explicit change of ownership: any member of the package group
(including you) can set you as the owner of a class in the package.

What can I do as a class owner?

 ❑ Release a version of the class

 ❑ Delete a class

The scope of class ownership is restricted to a single package edition.
Therefore, if a package has multiple streams of development, the class might
have a different owner in each stream.

Package Owner
A package owner is responsible for the overall status of a package. The
package owner also manages the package group and therefore coordinates
the class developers working on that package.

How do I become a package owner?

 ❑ By creating a new package in a project you own

 ❑ By getting the ownership of an existing package transferred by the
current owner of the package. You must be a member of the package
group.

What can I do as a package owner?

 ❑ Add new users to the package group of the package

 ❑ Delete users from the package group, as long as they do not own any class

 ❑ Transfer ownership to another member of the package group

 ❑ Create an open edition of the package

 ❑ Create a version of the package

 ❑ Release an open edition or a version of the package

Important Info Who can change class ownership?

The fact that any member of a package group can reassign
ownership of a class is the sole exception to the concept that
only the owner of an existing program element can change
the ownership.

Understanding the Basics 29

Project Owner
The project owner is responsible for the organization of the project. The
project owner is the only one who can create packages in a project and
maintain the integrity of the whole project.

How do I become a project owner?

 ❑ By creating a new project

 ❑ By getting the ownership of an existing project transferred by the current
owner of the project

What can I do as a project owner?

 ❑ Create an open edition of the project

 ❑ Create a version of the project

 ❑ Create packages in the project

 ❑ Delete packages from the project, which means change the configuration
of the project

 ❑ Transfer ownership of the project to any other user defined in the
repository

These team roles are dynamic in VisualAge for Java Enterprise. Your role
may change many times during development without you being aware of it.
For example, if you are a package owner and you create a class in that
package, you act as a package owner. When editing and versioning the class,
you act as a class developer. When releasing the versioned class to the
package, you are doing that as the class owner. You do not notice all of these
role changes except when you are about to perform a task that requires
privileges from another team role that is not assigned to you.

From the descriptions of the roles, we can deduce that there are two roles
that any developer can automatically assume without regard for any controls
on the repository. They are class developer and project owner. Therefore you
are always allowed to start your own development project and you are always
allowed to work with all released program elements in the repository.
However, you are not allowed to make any changes to a package and its
containing classes if you are not a member of the package group.

30 VisualAge for Java Enterprise Version 2 Team Support

Attention! Can any user delete any project?

We know that deleting from a workspace is the equivalent of
an unload operation and does not delete from the repository.
At this point you may be thinking that deleting projects and
deleting packages are similar operations. They are not.

Deleting a project from your workspace does not change any
configuration. However, unloading a package from your
workspace changes the configuration of the project of which
that package is a part. Therefore any developer can delete
any project from his or her workspace, but only the owner of
a package or the owner of the containing project can delete a
package.

© Copyright IBM Corp. 1998 31

4 The Team
Development
Process
In this chapter we describe the team development process in more detail. To
get the most out of the team programming features of VisualAge for Java
Enterprise, it is important that you adhere to some well-established modes of
operation, which we call development patterns. We examine several such
patterns, ranging from the simple to the complex. We also discuss what
happens when development has finished and your work has to be delivered to
the end user.

32 VisualAge for Java Enterprise Version 2 Team Support

Activity Patterns for Daily Development
In this section we discuss how you can use VisualAge for Java Enterprise for
daily development activities. We first introduce the basic development
pattern, which describes how programmers work with class editions and
versions. We then explore four different development scenarios ranging from
a simple, single developer environment to large projects involving multiple
developers working on multiple packages.

The Basic Development Pattern
Figure 11 shows the most fundamental development pattern in VisualAge for
Java. As a class developer, you move through a cycle of creating a new
edition, making changes to it, and versioning it.

Figure 11. The Basic Development Pattern for Classes

You can enter this cycle at different points depending on the overall context
in which you are working. You leave this cycle having created a new version
of the class. This basic pattern forms the core of all the work you do in
VisualAge for Java and is repeated in all of the scenarios we explore.

The frequency with which you version your class depends on personal style
and the overall team environment. A rule of thumb is to version the class or
interface whenever you reach a known state to which you may want to
return. Versioning classes at least on a daily basis would be typical practice.
This pattern naturally supports an incremental development style that is
usual in object-oriented programming.

When you reach a point in the cycle where you want to preserve your code,
version it and then move on to the next phase with the confidence that if
anything goes wrong you can always return to a known state. If you are
working as part of a team, there may be a requirement to version your

New
Edition

Version

Changes

Create

the Class

Make

The Team Development Process 33

classes at defined intervals, so that your classes can be seen by other
developers or be released by the class owner for the creation of a package
baseline.

Single Package, Single Developer
This scenario, a small application consisting of a single package where only
one person is responsible for all the work, is the simplest way of working with
VisualAge for Java Enterprise. The application may use classes from other
packages but does not have to change them. Figure 12 shows the overall
process. Although this is a simple scenario, it is probably representative of
the many small applications that will be developed in VisualAge for Java.

Figure 12. Single Developer Working with a Single Package

In this scenario you are a single user playing the role of package owner, class
owner, and class developer. The project owner creates a package in the
appropriate project and assigns ownership of the package to you. You create
all the classes and interfaces required for the application. For each class you
cycle through the standard development pattern by creating successive
versions as you develop and debug the application.

Work continues in parallel on each class until you are completely satisfied
that your application works correctly. Now you release all classes and
interfaces into the package edition and create a version of the package.
Finally, either you or the project owner releases the package.

Create
Class-1

Create
Class-n

Release All

Version Package

Release Package

Create
Package

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

34 VisualAge for Java Enterprise Version 2 Team Support

Single Package, Multiple Developers
In this scenario multiple developers work on an application that is being
developed as a single package. The scenario introduces the issues that arise
when developers must cooperate with each other to do their work. Typically,
in this situation, the lead developer acts as the package owner. The project
owner creates the package and assigns ownership to the lead developer.

After the initial analysis of the problem domain has been completed and a
first pass design has been carried out, the set of classes and interfaces that
make up the application are known. The lead developer allocates
responsibility to each developer for a number of classes. The lead developer
adds the users to the package group so that they will have the authority to
create classes and interfaces within the package.

Figure 13 shows the normal working pattern in this scenario.

Figure 13. Working Pattern for Class Owners

When a developer creates a class or interface, he or she becomes the owner of
that type. This is one of the key principles of the team environment. The
ownership model reinforces the notion of responsibility. Other developers can
make changes to a class they do not own, but, as we see later in this scenario,
the owner must eventually accept or reject those changes and make them
available to the rest of the team.

Create
Class-y

Release
Class-x

Release
Class-y

Developer 1

Developer 2

Create
Class-x

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

The Team Development Process 35

Each developer, who is also a class owner, works independently on the classes
for which they have responsibility. The project manager has established a
project plan that lays out various milestones in the application development
process. These milestones generally represent the achievement of a certain
level of functionality within the application and present an opportunity for
all developers to synchronize with each other and have a common view of the
current state of the overall application. This is normally called establishing a
baseline. A baseline allows inconsistencies and discrepancies (which could be
related to analysis, design, or development) to be caught early in the
development process before they have become too entrenched. Baselines also
allow regular deadlines to be set, which is good for programmer productivity!

When approaching a deadline, the lead developer expects programmers to
have all their classes in a working state and instructs them to release the
classes. The lead developer establishes a new package baseline by creating a
new version of the package. Each developer then reloads the new package
version to access the latest version of all classes in the package. This process
is shown in Figure 14.

The class owners resume the normal development pattern until the next
project milestone and the production of a new baseline.

Unfortunately, things do not always proceed smoothly. Invariably a
developer working on a class finds that some new function is needed in
another class or discovers a bug in another class that adversely affects his
or her own progress. In these situations the developer does not have to
immediately bother the owner of the other class in order to move forward.
The developer simply creates a new edition of the class in question and
makes any required changes in that edition. By creating a new edition of
the class, the developer becomes the class developer of that private
edition.

When the developer is satisfied with the changes, he or she creates a new
version of that class and gives it a meaningful name indicating the source
of the changes. The developer consults with the owner to discuss the
changes and the reasons for them. It is now up to the class owner to decide
whether those changes are valid and fit in with the overall purpose of the
class. In a fast-moving development project, it is quite likely that the class
in question has been further developed by the owner in the meantime. In
this situation the owner must reconcile the changes and merge them into
a new version (see Figure 15 on page 37). Once the changes have been
reconciled, the owner resumes a normal development pattern.

36 VisualAge for Java Enterprise Version 2 Team Support

Figure 14. Establishing a Package Baseline

Release
Class-z

Release
Class-y

Release
Class-x

Reload
Package

Version Package

Class Owners

Package Owner

Class Owners

(New Baseline)

Create New Edition

Reload
Package

Reload
Package

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

The Team Development Process 37

Figure 15. Merging Divergent Class Changes

Change reconciliation is made easy through the use of the comparison
browser in VisualAge for Java. The owner views class and method definitions
side-by-side with the differences highlighted. The owner selectively loads one
or the other of the versions into a new edition. Where changes to a single
method clash, the owner must manually edit the method to reconcile the
changes.

Merging changes like this should take place on a regular basis. It is much
less error prone to have frequent small reconciliations than it is to wait for a
long time and try to reconcile a larger set of changes in one operation.

Tip Do you have to wait for a baseline to see changes?

Developers need not wait until a new baseline is established
to see changes made to other classes. Informal interaction
among team members is a normal daily occurrence. A class
owner can announce to the colleagues that a new version of
a class, which is fit for general use, is available. Other devel-
opers may explicitly load that version into their workspace.
Creating a package baseline simply formalizes this process.

Make Changes

Create New
Edition

Version
the Class

Create New
Edition

Class Owner Class Developer
Create
Class

Reconcile
Changes

New
Edition

Version

Changes

Create

the Class

Make

38 VisualAge for Java Enterprise Version 2 Team Support

Multiple Packages, Multiple Developers
We now move on to a more complex scenario, which is typical of a large-scale
project. In this scenario we have simultaneous development of multiple
packages. The scope of the project is such that we have many distinct
subsystems, which are naturally partitioned into separate packages. The
project team is divided into smaller teams, each of which has responsibility
for a particular package. The project owner is likely to be the chief architect
and creates the packages and assigns ownership of each package to the
corresponding team leader. Each team leader adds the team members to the
package group.

All the patterns of development we have seen so far are also present in this
scenario: the basic development pattern for classes; the establishment of
package baselines; and the reconciliation of changes. Change reconciliation
may also be necessary across package boundaries. There are always
interpackage dependencies, and a developer of one package may have to
change a class of another package. This is not a problem. Membership of a
package group is not required in order to create a new edition of a class in
that package and become the edition developer. The process of managing the
reconciliation is exactly the same.

In this large-scale project scenario we now must consider managing project
baselines. We define and discuss two useful and typical kinds of project
baselines: standard and rolling.

Standard Project Baseline
A standard project baseline is directly analogous to a package baseline. With
a standard project baseline you first create baselines of all the packages in
the project. You then release all the package versions to the project. This step
can be carried out by either the individual package owners or, more probably,
by the project owner. Once all the packages have been released, the project
owner creates a new baseline by versioning the project. This version
represents an immutable state of the project, its packages, and all their
classes. It is likely that this step will be carried out only at major project
milestones and, of course, at the end of the project. Figure 16 shows the
complete process.

If work is to continue after the creation of the baseline, a new project edition
is created, and development continues.

The Team Development Process 39

Figure 16. Establishing a Project Baseline

Release
Package3

Release
Package2

Release
Package1

Reload
Project

Version Project

Version
Package3

Version
Package2

Version
Package1

Create Project Edition

Create Pkg1 Edition Create Pkg2 Edition Create Pkg3 Edition

(New Baseline)

Class

Reload
Project

Reload
Project

Project Owner

Package Owners

Project or
Package
Owners

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

Package Owners

Owners

40 VisualAge for Java Enterprise Version 2 Team Support

Rolling Project Baseline
The standard project baseline can be quite a burdensome process. The more
packages you have in the project, the more difficult it is to ensure that you
can produce a baseline for all packages at the same time.

Fortunately VisualAge for Java provides a much more convenient way for
programmers to have access to an edition of the project that provides a
snapshot of the current state of the application. Figure 17 shows the rolling
project baseline process.

Figure 17. A Rolling Project Baseline

Release
Package3

Release
Package2

Release
Package1

Version
Package3

Version
Package1

(Rolling Baseline)

Reload
Project

Reload
Project

Reload
Project

Version
Package1

Class Owners

Package Owners

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

Project or
Package
Owners

The Team Development Process 41

The key to the rolling project baseline process is that packages do not have to
be versioned before they are released to the project edition. (In Figure 17 the
broken boxes indicate optional steps.) The ramifications of this are quite
profound. By releasing an open package edition to the project, you are
ensuring that when a class is released into that package it automatically
becomes available to any developer who reloads the current edition of the
project into the workspace. Hence the use of the term rolling—the project
baseline is constantly changing as new classes and interfaces are released.

Multiple Parallel Streams
This scenario shows the power of VisualAge for Java Enterprise in handling
complex development situations. Suppose you are part of a software house
developing an application for a customer. The application is being developed
as a single package. At a certain stage in the development process, your
salesperson manages to sell the system to another customer. Naturally the
system has to be tailored to the new customer’s needs.

You continue system development until all of the code that is common to both
customers has been written and tested. You are now ready to enter split
stream development mode. Using the tested and stable version of the
package as a base, you create two new editions of the package: one for each
customer. Each edition of the package can have a separate owner and
package group associated with it (see Figure 18).

Tip Use caution with rolling project baselines!

As with any powerful feature, caution should be exercised
when using rolling project baselines. The release of a buggy
class could cause inconvenience for any programmer who
loads it. Releasing a class into a released package has the
effect of bypassing any integration testing that would
typically occur at the package level.

The ability to freely combine the release of versioned
packages and open edition packages into your project
enables you to exercise a degree of fine tuning over the
process. For example, open edition releases could be
restricted to packages where the class owners are senior
programmers and can be trusted to fully test their classes
before release.

42 VisualAge for Java Enterprise Version 2 Team Support

Figure 18. Split Stream Development

Development proceeds as if there were two distinct packages. The same class
or interface can be modified independently in each package edition. The
ownership of common classes can be modified to reflect the changed
responsibilities. In essence, the owner of the class or interface edition is
associated with the package edition that holds that edition.

Release
Class-z

Release
Class-y

Release
Class-x

Work on
Class-x

Version Package (New Baseline)

Create New PKG Edition Create New PKG Edition

Work on
Class-y

Work on
Class-y

Work on
Class-z

Single Stream

Stream A Stream B

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

New
Edition

Version

Changes

Create

the Class

Make

The Team Development Process 43

With split stream development, there is no intention to rejoin the streams.
The advantage is having a common code base from which both streams
developed. If this code base has to change (as it invariably will), a new edition
of the package version at the root of the split stream should be created. Each
of the split streams can then be brought up-to-date by simply reloading the
changed program element in question and performing any reconciliations
that might be required.

Project Wrapup and Delivery
When a project has been completed, you must go through the process of
delivering it to your customer. This process is usually the same whether you
are a software house delivering to an external customer or an IT department
delivering an internal system to your end users.

The first step is to produce a standard project baseline as described earlier.
You may want to leave this version of the project as the reference release
version. Alternatively you may want to set up a special project just to hold
the released version, reinforcing the separation of development and released
versions of the project. Reinforcement would simply be a matter of policy on
your part. VisualAge for Java Enterprise guarantees the separation of
different versions of the same project.

In either event, you should add extensive comments to the project edition,
before versioning. We recommend that you establish a standard format for
comments that must be added to a project edition before it is versioned for
release.

When you have a completed project version, you should choose a delivery
mechanism. VisualAge for Java Enterprise offers a number of options for
exporting your work so that it can be delivered to the customer:

 ❑ Export .class and/or .java files

 ❑ Produce a JAR file

 ❑ Export to another repository

Exporting can include all of the required resources (see “Project Resources”
on page 70) and generate HTML files for applets. These export options are
described in the documentation accompanying the VisualAge for Java
Enterprise product.

44 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 45

5 Team Java in Action
In this chapter we put some of the concepts and tasks that have been
described in the previous sections into action. We start by telling you about
our fictitious software development company that has adopted VisualAge for
Java Enterprise as its standard development environment. We then outline
the requirements for new development that the company is undertaking for
an existing client. This new project gives us a context within which to present
some typical activities as they might occur over the development life cycle.

46 VisualAge for Java Enterprise Version 2 Team Support

Introducing JUM Software Associates
JUM Software Associates is an independent software vendor specializing in
object-oriented systems development. It has historically done both C++ and
Smalltalk development but in the last couple of years has begun to invest in
Java, which is now starting to become a major portion of its business.

JUM sells a couple of software packages that it has developed for small
businesses. The offerings focus on the basics of managing a small business,
implementing traditional general ledger, accounting, and payroll functions.
Although JUM sells its software off-the-shelf, a large portion of its clients
request customization and implementation services, which JUM routinely
performs.

Current Environment
JUM has been using VisualAge for Java for all its Java application
development since the product was initially available. It currently has all of
its projects organized within one central repository. It is likely though that
the company may move to multiple repositories as its team and work
products grow.

For each client deliverable, a project edition is created that contains all of the
required packages for the application. On project completion, the project is
versioned, and the owner is changed to the administrator. When a client
requests an update (either a fix or enhancement), the administrator assigns a
new project owner appropriately. The new owner takes over responsibility for
the new edition of the project through customer delivery.

Figure 19 shows us a view of the JUM Repository.

Team Java in Action 47

Figure 19. A View of the JUM Repository

A New Project for Mr. Bean’s U-Learn 2-Drive School
Mr. Bean’s U-Learn 2-Drive School runs a driver’s education program that
focuses on preparing its students for license testing through road instruction
and practice.

Mr. Bean’s U-Learn 2-Drive School is an existing client of JUM and has
already purchased JUM’s Human Resource Management applications.

48 VisualAge for Java Enterprise Version 2 Team Support

Application Requirements
Mr. Bean has come back to JUM with requirements for a new function to be
added to his current system. He now wants to do online scheduling of his
cars, clients, and instructors. The developers at JUM have analyzed these
requirements, prepared a project plan, and received approval from Mr. Bean
to go ahead with the new development.

The Project Team
With approval from Mr. Bean to proceed with the new development, a project
team consisting of the following members is assembled at JUM. (The titles
we use for the project team members are typical of what we see in many
development organizations.)

 ❑ Project manager - Peter

 ❑ Project leader - Mark

 ❑ Architect - Mark

 ❑ User interface specialist - Janice

 ❑ Database specialist - Uwe

 ❑ Developers - Janice, Uwe, Mark, Luc, Tasha, and Jui

These people form the core team that will be responsible for the design,
development, and delivery of Mr. Bean’s scheduling system. Additionally,
another JUM employee, Anne, is part of the extended team. Anne is a system
administrator and has been managing JUM’s VisualAge for Java Enterprise
development environment.

VisualAge for Java Roles
Now we examine how we can assign each of these team members to the
various roles in the VisualAge for Java Enterprise team environment.
Although some of the role titles are the same as real-world project titles, the
roles are not. Therefore we provide details for each role to distinguish
between real-world project roles and VisualAge for Java Enterprise team
roles. Each team member will play at least one, but probably many VisualAge
for Java roles during the course of a project life cycle.

Administrator: At JUM there is one administrator for all of the VisualAge for
Java development, our system administrator, Anne. Anne manages the
repository files and ensures that the VisualAge for Java Enterprise server
process is running and that new users and passwords are included in the
configuration.

Team Java in Action 49

Project owner: Mark has overall responsibility for all VisualAge for Java
Enterprise aspects of the Mr. Bean project. He creates the project in the
repository and adds packages to it. For each package he defines the user who
will be the package owner and he changes the package ownership to that
user. He is responsible for the integrity of the project (ensuring that correct
versions of all packages are included and at the right version).

Package owners: As the senior developers on the team, Mark, Uwe, and
Janice are package owners. It is their responsibility to ensure that their
packages work correctly and to eventually version and potentially release
them.

Class owners: Any user who creates a class or interface automatically
becomes the owner of that program element. So it is likely that all developers
on the team will be class or interface owners in the packages where they are
a member of the package group.

Class developers: Any developer who creates a new edition of a class or
interface becomes the developer of that program element. All developers on
the Mr. Bean project will be class developers.

Notice that the real-world project manager, Peter, does not have any role to
play in the VisualAge for Java Enterprise world. This is to be expected
because VisualAge for Java is concerned with the project’s implementation,
and Peter is more likely to be carrying out his managerial role.

Project Life Cycle
In this section we describe in detail some activities that would typically be
part of the VisualAge project development phase. You may find it helpful to
step through these activities in your own VisualAge for Java environment.
Although you do not have the same software elements in your repository or
workspaces, you can execute the tasks with any existing packages and
classes, or you can choose to create the software elements as you see them in
the screen images that are presented.

We assume that you know the details of how to complete a specific task. For
example, where we write Create a new project, we omit these details:

 ❑ Go to the Projects view of the Workbench.
 ❑ Bring up the pop-up menu by clicking the right mouse button once.
 ❑ Select Add Project... to bring up the SmartGuide where you enter a new

project name.
 ❑ Click on Finish to have the new project created in your workspace.

50 VisualAge for Java Enterprise Version 2 Team Support

We assume that you can execute these basic tasks without this level of detail.

The sample activities presented here are simplistic in terms of the actual
programming aspects; in fact, they really do not implement any application
function. The Mr. Bean U-Learn 2-Drive School scenario has been created to
illustrate the functions and flexibility of the team development environment;
the actual class and method contents are not important.

A VisualAge for Java Enterprise role and user name in brackets, as in
[Project owner—theUserName], preceding a series of steps indicates that the
subsequent steps are performed in that user’s workspace.

Sample Activity 1: Creating an Initial Baseline
At the beginning of any project, some startup activities must be undertaken
to prepare the environment for the team.

JUM uses projects to manage its customer application deliverables. In this
first activity, we prepare a new project for development and create an initial
baseline.

[Project owner—Mark]

1. From the Projects view of the Workbench, create a new project, Mr. Bean’s
Scheduling System, to contain all packages (new and existing) that make
up this development effort.

2. Add a project comment in the comment source pane of the Projects page of
the Workbench. It is important to use this section of the project to
document the contents, date, purpose, enhancements, fixes, and other
important details. Some of the projects shipped with the VisualAge for
Java Enterprise product have included these comments, and you may
want to use them as a template for your own. See the IBM Enterprise
Access Builder Libraries and the IBM Java Examples projects in the
repository. See Figure 19 on page 47 for a view of the repository which
includes the project comment.

3. Add existing packages to the project.

You will probably want to reuse packages previously developed and stored
in the repository. In our Mr. Bean example, we add three packages from
previous projects:

 •COM.jum.client_management.model 2.1
 •COM.jum.hrm.personnel.model 1.6
 •COM.jum.utilities 3.0

Figure 20 shows the SmartGuide, where you can add existing packages
from the repository to your project.

Team Java in Action 51

Figure 20. Adding a Package from the Repository

4. Add new packages to the project.

In the Add Package SmartGuide (see Figure 20), select Create a new
package named: and give a new package name. Your package name should
be consistent with your existing naming conventions, but this consistency
is not enforced by VisualAge for Java.

5. Add members to the package group.

The SmartGuide gives you the option of adding new members at the time
the new package is created. Alternatively, you can add or delete users at a
later stage. In our example, we will perform our development in the three
new packages that we add:

 •COM.jum.operations.scheduling.model

The group members for this package are Marc, Janice, Luc, and Uwe.

 •COM.jum.operations.scheduling.views

The group members for this package are Mark and Janice.

 •COM.jum.operations.scheduling.dbaccess

The group members for this package are Mark and Uwe.

52 VisualAge for Java Enterprise Version 2 Team Support

6. Set the package owners.

By default the user who creates a package is the owner. In the Mr. Bean
project, Mark is the owner of all our new packages. He can now change
ownership of a package to one of the other group members. Ownership
change is done in the Managing view of the Workbench (Packages >
Manage > Change Owner...).

We now change ownership to Uwe, for the dbaccess package and Janice,
for the views package.

7. Release the existing packages into the project.

When a new package is created within a project, it is automatically
released. This is not the case when you add existing packages from the
repository. Notice in Figure 21 that the packages that already existed are
prefixed with ">". This mark indicates that the software element has not
been released to its containing component.

Figure 21. Released and Unreleased Packages in the Mr. Bean Project

Release the packages by selecting Manage > Release from the pop-up
menu of the Packages pane. By selecting multiple packages, you can
release all of them in one step.

Team Java in Action 53

8. Each member of the team now does an Add Project... from his/her own
Workbench and selects the new Mr. Bean project from the repository. This
project edition represents an initial baseline for the development of the
new application.

Sample Activity 2: Developing New Classes
The most common activity that occurs in any application development project
is the development of new classes and interfaces within your packages.

The package group members are in fact the developers of a package. As a
matter of routine, each of those developers creates classes inside the package,
using the standard class creation mechanisms and VisualAge for Java tools.
When a class is created, the group member who created that class is the
owner and class developer. The class developer versions the class edition
periodically to perform unit testing or in preparation for releasing it into the
package.

[Class developer—Janice]

1. Create the DailyView and WeeklyView classes in the views package. This
is where the actual development of the new code takes place.

2. Version the classes, using the versioning dialog (Figure 22).

Figure 22. Versioning Classes

54 VisualAge for Java Enterprise Version 2 Team Support

In the SmartGuide you decide on the naming convention for the versioned
classes. You can also release your classes at the same time (see Figure 23).

Figure 23. SmartGuide for Versioning

3. Release the classes. If you choose not to release the classes as part of the
versioning SmartGuide, you can explicitly release them from the Manage
> Release menu option.

Sample Activity 3: Modifying Existing Program Elements
Sometimes you have to introduce changes to classes you do not own in order
to make them work with your new classes. You do not have to involve the
class owner at this stage. Instead you can create a new edition of the class
you want to amend and make your changes there.

Recall... Who owns a class edition?

Once a developer has created an edition of a class, he or she
becomes the class developer and essentially “owns” that
edition. No other developer, including the class owner, can
make changes in that edition. Only when it comes time to
release a class into the containing package does the class
owner become involved.

Team Java in Action 55

In the scenario that we step through next, we will be working in the
COM.jum.utilities package, which is owned by Uwe. For illustrative
purposes, we copied a couple of classes into this package from other packages
of the standard VisualAge for Java environment. Once copied, these new
classes became owned by Uwe.

[Class developer—Uwe]

 ❑ If you want to run through this example in your own workspace, you can
copy the classes from the COM.ibm.ivj.examples.vc.mortgageamortizer
package into your own package. Select the classes and use the Reorganize
> Copy... function. Version the COM.jum.utilities package before you
continue.

Mark changes the Amortization applet to change the format that is used to
display results of the calculations.

[Class developer—Mark]

1. Create a new edition of the Amortization class (Manage > Create Open
Edition). This causes a scratch edition of the package to be created in
Mark’s workspace because the package was a version. When opening the
properties of this class, we see that Uwe is the owner and Mark is the
developer.

2. Change the formatRecord(String[]) method. We adjust the initialization of
the columnWidth array just to introduce a small change for illustrative
purposes. On saving the method, a new edition of the method is created.
This is not obvious from the Workbench or Class browser because the time
stamps of the methods are not shown. However, if you select Open To >
Editions from the pop-up menu of a selected method, you open a methods
browser that lists all editions along with their source (Figure 24).

Tip What does the status line display?

When you select a class or interface in any of the Workbench
views, notice that the status line at the bottom shows you some
information about that program element: the fully qualified
name, the edition name, and the name of the developer.

If you select a project or a package in the Workbench, the status
line shows what looks like the same information, but note that
the user name displayed is the owner of the project or package,
not the developer. Opening the properties of any program
element displays all available information.

56 VisualAge for Java Enterprise Version 2 Team Support

Figure 24. Browsing Method Editions

Every save of a method updates the edition in your workspace and creates
a new method edition in the repository. All old method editions remain
visible in the repository until the containing package is purged.

3. Version the Amortization class (Manage > Version)

Although the option to release the class is not grayed out in the dialog, do
not use it because Mark is not the owner of the Amortization class. Only
the class owner can release a class into the containing package.

Team Java in Action 57

Sample Activity 4: Consolidating Class Changes for Release
When changes have been made to a class by a developer who does not own
the class, the class owner must go through a consolidation step in order to
release the class to the package. Recall that the class owner is responsible for
the integrity of that class. Therefore the developer must understand the
changes and how they affect the class as a whole. It is for this reason that
only the owner can release a version so that it is available to other
developers. It is also the reason why we recommend that the number of
developers of a class be kept to a minimum.

The owner of the Amortization class is Uwe. Janice and Mark have advised
him that each of them has made changes to the class, which they have now
versioned. Uwe must now reconcile those changes, which are in two separate
versions, into a single version that can be released. Uwe has the original
version (the one on which both Mark and Janice based their changes) loaded
in his workspace. He uses this version as a base to compare with the others.

[Class owner—Uwe]

1. Compare changes.

With the Amortization class selected in the Workbench, select Compare
With... > Another Edition to present a list of all the editions of this class
(Figure 25).

Figure 25. List of Versions of the Amortization Class

2. Select Mark 1.3 as the edition to compare with first.

The Comparison browser opens showing us the differences between the
two editions (Figure 26).

58 VisualAge for Java Enterprise Version 2 Team Support

Figure 26. Comparing Differences between Two Class Editions

Inside the Comparison browser, there are two source panes where the
differences in the code are highlighted. The left pane shows the version
edition that is loaded in the workspace, and the right pane shows the
version selected for comparison from the repository. There are two arrows
in the top right corner. You can use the arrows to step through the
differences one at a time. In our example there is only one difference.

3. Merge the updates.

After reviewing Mark’s changes, Uwe decides to load them into his
workspace. He positions the cursor in the Differences pane (at the top)
and selects Load Right from the pop-up menu. This action automatically
creates a new edition of the Amortization class and a scratch edition of the
package in Uwe’s workspace.

Team Java in Action 59

4. Repeat this compare and merge process with Janice’s version of the
Amortization class.

Figure 27 shows us that there are now two differences between these
editions. (Janice has added the toString method in the meantime.)

Figure 27. Comparing Differences with a Second Version

Ignore the first difference because it refers to the change we previously
loaded. Select the Ignore option from the pop-up menu when the mouse is
positioned on the first change line. This action removes the line from your
view, but you can have it shown again (in brackets) by selecting Show
Ignored Items. The second difference is the new method that Janice
implemented in her version. To load this new method, select Load Right.

Important Info Merging of changes

In practice the class owner reviews all changes to
understand the impact they may have on one another and on
the behavior of the class as a whole. The class owner resolves
any potential conflicts before merging the changes into a
common version.

60 VisualAge for Java Enterprise Version 2 Team Support

5. Now convert the scratch edition of the COM.jum.utilities package to a
new edition (Manage > Create Open Edition).

This conversion is necessary because you cannot release a class into a
scratch edition of a package.

6. Version and release the Amortization class.

We can do this in one step because Uwe is the class owner.

7. Release the package.

When all classes in a package have been versioned and released, the
package is ready for versioning and/or release into the project. It is not
necessary to create a version before releasing. Releasing the package
without prior versioning allows the project owner to build rolling
baselines for the team throughout the development cycle. These updated
baselines keep developers in step with one another and enable integration
testing across package editions.

Attention! To version or not to version?

At first glance, it may seem inconsistent that VisualAge for
Java Enterprise allows open editions of packages to be
released into a project when you know that only versioned
classes can be released into their containing package. On
closer examination though, this turns out to be a very
powerful feature. It allows package owners to include
editions that are still under development in new project
baseline editions so they can be tested in a comprehensive
manner without cluttering the repository with many
unnecessary package versions.

As a package owner, you should version your package when it
is in a logically completed state that you want to preserve. Do
not version the package if you want only to include the package
edition in a new project baseline.

Team Java in Action 61

Sample Activity 5: Creating a Final Baseline for Application
Delivery

At the end of your project you will have to deliver an application. At JUM the
customer deliverables are organized into VisualAge for Java projects. We
created a project for Mr. Bean’s Scheduling System at project startup, and it
is this project that we will now deliver to Mr. Bean.

As the project owner, Mark is responsible for coordinating the building of this
final project version and ensuring its integrity.

[Project owner—Mark]

1. Ensure that all packages contained in Mr. Bean’s scheduling system are
versioned and released.

Mark meets with Janice and Uwe as the other package owners within this
project and has them update their package comments and release the
correct versions of their packages. As a package owner himself, Mark also
must release his package into the project.

2. Verify that the comments associated with this current project edition are
accurate and up-to-date.

We recommend including the date in the comment section along with a
list of the packages and a description of the project function.

3. Version the project.

4. Export the code from the VisualAge for Java Enterprise environment so
that it can be delivered to Mr. Bean.

There are several export options, but the most common one for this
scenario would be to export to a JAR file. Figure 28 shows the VisualAge
SmartGuide that quickly guides you through this task.

Select the classes and resources that you want included in the JAR file.
Optionally identify classes that should be Java beans and generate HTML
files for the applets. Click on Finish to have the JAR file created.

62 VisualAge for Java Enterprise Version 2 Team Support

Figure 28. Creating a JAR File of Mr. Bean’s Scheduling System

© Copyright IBM Corp. 1998 63

6 Workspace
Management
In this chapter we examine various issues concerning the management of an
individual user workspace. We describe the Managing page of the Workbench
that allows various management operations to be carried out on the standard
program elements. We examine how you might organize your projects and
packages for maximum flexibility.

We then look at the Management Query facility, which enables you to issue
many kinds of search operations over your workspace. Finally we discuss the
issue of external resources and suggest how you might manage them to best
effect.

64 VisualAge for Java Enterprise Version 2 Team Support

Managing Program Elements
VisualAge for Java Enterprise provides one central place where all user
management options can be performed: the Managing page in the
Workbench.

The Managing page is a view of all loaded project, package, and type editions
and the corresponding ownership information. From the Managing page, an
owner of a program element can perform all tasks necessary for version,
configuration, ownership, and element management.

All actions can be performed from the menu items or through the pop-up
menus in the lower three owner panes or in the upper program element
panes. The actions you are allowed to perform on the different program
elements depend on the current role you are playing for a certain element.
For example, if you are the owner of a package, you can add team members to
the package group or transfer ownership to another team member. If you are
not the package owner, these options are grayed out.

Figure 29 shows a view of a repository through the Managing page.

Workspace Management 65

Figure 29. Workbench Managing Page

Remember that this page—as with the other pages of the Workbench—allows
developers to work with items that are currently loaded in their workspace.
The Repository Explorer is used to view other editions of program elements
that are not currently loaded in the workspace.

Together with the management query facility described in “Management
Query” on page 67, the Managing page serves as a source of all team-related
information.

66 VisualAge for Java Enterprise Version 2 Team Support

Project Organization
In VisualAge for Java you can use projects in a number of different ways:

 ❑ As a convenient way of grouping packages that have something in
common

VisualAge for Java Enterprise itself delivers several projects with this
kind of organization. Consider the IBM Java Examples project. It contains
a grouping of unrelated packages, each of which contains sample Java
code demonstrating various aspects of the product.

 ❑ As a way of grouping together all the elements of a real-world project

Because loading a project is a single atomic operation, this organization
provides a simple mechanism to enable all project members to have a
common view of the current state of a project. You are most likely to use
this organization for your projects.

 ❑ As a way of organizing packages before making a delivery to a customer

If a project contains a complete copy of everything that is delivered to a
particular customer (or set of customers), it will be easy to replicate a
customer environment later on for maintenance purposes.

In practice you can use all three ways to organize your projects, because in
VisualAge for Java Enterprise you can specify the same package as part of
multiple projects. The only limitation is that only one such project can be
loaded into your workspace at any given time.

Package Organization
Use packages in VisualAge for Java in exactly the same way as you would in
any other Java development environment. Packages provide a way of
grouping together a set of classes and interfaces that are related in some way.

In the standard Java Developer’s Kit (JDK), the package naming convention
reflects the directory structure in which the classes and interfaces of the
package are stored. The standard Java compiler depends on this structure to
locate the classes for which it is looking. Because VisualAge for Java is
repository-based, rather than file-system-based, the same restrictions do not
apply. However, because the code you develop is likely to be eventually
exported, VisualAge for Java insists that you name your packages in a
conventional way with a dot-separated list of names, each of which
represents a valid directory name.

Workspace Management 67

Management Query
VisualAge for Java Enterprise provides a management query facility (Figure
30) for interrogating the status of the program elements in your workspace.
This facility enables you to manage your workspace and to regulate its
contents. It is an indispensable aid at various stages of the development
process when you need to be aware of the status of all of the program
elements for which you are responsible.

The management query is invoked through the Workspace menu option of
any browser. It is organized as a notebook with three pages: Scope, Owner,
and Developer.

Figure 30. Management Query Facility

The management query facility enables you to make queries on types,
packages, and projects. For each of these program elements, you can search
for elements that are in a particular state, for example, all packages that are
open editions.

68 VisualAge for Java Enterprise Version 2 Team Support

There are 15 possible query combinations. Each of these queries can be
further refined by specifying ownership criteria, and in the case of types, by
specifying class or interface developer criteria. On the Scope page of the
notebook you can specify the kind of elements you want to view. The Owner
and Developer pages provide a list of all users from which you can select a
specific user to refine your query.

We examine here a selection of possible queries and discuss a scenario for
each that illustrates how that query can be used. In the first example we give
details of how to perform the query, but omit the details in subsequent
examples because the mechanics are similar and straightforward.

All types owned by Uwe and developed by Mark
During the course of his normal development activities, Mark has to make
changes to some classes and interfaces owned by Uwe so that he can progress
his own work. When he is satisfied that his changes are complete, he notifies
Uwe so that Uwe can appraise the changes and, if appropriate, incorporate
them into the official version of the types. Mark uses this query to get a list of
all types that have been changed.

To perform this query:

1. Select Type and All on the Scope page of the query browser.

2. Switch to the Owner page by selecting that tab. Make sure the Search for
any owner check box is not selected and then select Uwe from the list of
users.

3. Switch to the Developer page. Deselect Search for any developer and select
Mark from the list of users.

4. Click on the Start Query button in the tool bar.

Query results are presented in the bottom pane of this browser.

All types owned by Janice and developed by any user
Janice is about to leave the project team, and the classes and interfaces for
which she is responsible must be allocated to other team members. You can
run this query to get a list of all such types. You can then step through the
result list (either as Janice or as the administrator) and change the owner of
each type directly from the results pane. As each type has its owner changed,
you can explicitly remove it from the list or you can simply rerun the query to
get an updated list.

Workspace Management 69

All unreleased types owned by any user and developed by any user
As the owner of a package, you want to monitor progress as the deadline for
creating a new package baseline approaches. You can load the latest edition
of the package into your workspace and issue this query. This gives you the
information about which classes and interfaces need to be released before you
can create a new version of your package.

Note that this query—like all others—operates over the entire workspace,
and you cannot restrict your search to only the package of interest. However,
because fully qualified type names are displayed in the results pane, it
should be relatively easy to pick out the types of interest. You can also
explicitly remove unwanted types from the list to make it easy to read.

All undefined types owned by any user and developed by any user
Undefined types can exist when a package that is loaded in your workspace
has types which are in the repository but are not in your workspace. This
situation can arise when there has been a failure while saving your
workspace. It can also arise when you load or reload a package in which
another user has created a type but has not yet released it.

You can use this query to detect all such types and bring your workspace up-
to-date by explicitly replacing the undefined type with another edition of the
type.

All scratch editions of packages owned by any user
At regular intervals you can issue this query to show all scratch editions of
packages in your workspace. Scratch editions are an indication that some
tidying up is required. You may have created a scratch edition of a package
you do not own because you made a temporary change to one of the classes in
that package. If the change is no longer required, you can remove the scratch
edition by replacing it with the current edition. Use the pop-up menu from
the Management Query results pane to immediately update the result set to
reflect the new status of the package.

Alternatively you may have allowed VisualAge for Java Enterprise to
automatically create a scratch edition of a package you own yourself. If the
changes you made are of a permanent nature, convert the scratch edition to
an open edition as soon as possible.

70 VisualAge for Java Enterprise Version 2 Team Support

Project Resources
When developing in Java you sometimes need to use external resources that
are not part of the language. For example, it is quite common to use images
and audio clips in Java applets. VisualAge for Java does not store these
external resources in the repository along with your Java source and
bytecodes. Instead you must create these resource files explicitly outside the
development environment and store them on the standard file system.

VisualAge for Java makes certain assumptions about where resource files are
located. For a project called ProjectX, it assumes that the resource files will
be found in a directory called IBMVJava\Ide\project_resources\ProjectX on
the client machine. In fact, whenever VisualAge for Java creates a new
project, it automatically creates a directory with the same name. VisualAge
for Java uses this resource directory in a number of ways:

 ❑ When running an applet from within VisualAge for Java, the code base for
the applet is specified as the name of the resource directory. The URL of
this directory will be returned by the getCodeBase method of the
java.applet.Applet class.

 ❑ When running an applet or an application from within VisualAge for
Java, the default CLASSPATH contains the resource directory.

 ❑ When exporting a project to a JAR file, all files in the resource directory
for that project can be included in the JAR file, and the JAR file can be
compressed.

 ❑ Skeleton HTML files for all applets are optionally generated.

An alternative to the default resource directory is to explicitly tell VisualAge
for Java in the workspace options (Window > Options) that you want to use
shared resources and indicate the path to the location where those shared
resources can be found (Figure 31).

Workspace Management 71

Figure 31. Specifying a Shared Resource Directory

This path should identify a shared file location. You must manually create a
directory under this path for each project whose resources are to be shared.
Even if this option is set, VisualAge for Java still automatically creates the
default resource directory. This shared resource location is used by VisualAge
for Java when exporting a project in JAR format. In fact it includes all
resource files from both the shared and the default resource directories. The
shared resource directory is not used to establish the code base when running
an applet from within VisualAge for Java.

Resource files must be managed carefully to avoid problems when VisualAge
for Java needs to locate them. Issues that must be considered include:

 ❑ If many developers are working on a single project and each developer
manages resources independently, problems will occur when you attempt
to consolidate the work of separate developers. For example, system
testers will be unable to locate resources when testing a a package that
has many class owners. More fundamentally, a class owner may be unable

72 VisualAge for Java Enterprise Version 2 Team Support

to test a class if it uses another class that has associated resource files and
is owned by another developer.

 ❑ When carrying out certain kinds of export operations, all resource files for
a project must be accessible to VisualAge for Java or they will not be
included in the export.

 ❑ By default, resource files are located by the project in which a package
exists. If you move the package to another project, VisualAge for Java will
not be able to locate the resource files.

In addition to the requirement that VisualAge for Java be able to locate
resource files, it is also important that your applets and applications can find
their resource files in a consistent way.

Managing Resource Files
Here we offer some suggestions for managing your resource files. Many
options are available to you, and you should consider the unique
circumstances of your own environment before deciding which solution will
work best for you. The first scenario makes use of VisualAge for Java’s
shared resources facility. The second scenario manages resources by package.

Using Shared Resources
In this scenario, you want to manage your resources using a shared resources
directory.

 ❑ Create a directory on a shared file system to act as the shared resource
path.

 ❑ Set the VisualAge for Java option to use shared resources as detailed
above.

 ❑ In the shared resource directory, create a subdirectory for each project
that contains resource files to be managed.

 ❑ It is the project owner’s responsibility to maintain the project resource
directories. This is normally done in conjunction with the owner of the
class that uses the resources. It is also the class owner’s responsibility to
copy the required resources into the local project resource directory as
created by VisualAge for Java. Some operating systems (UNIX, for
example) allow you to create a soft link between the master copy and your
local copy. This is the preferred mechanism, but a hard copy is acceptable.

 ❑ All developers and testers are responsible for copying the required
resource files into their personal project resource directory.

 ❑ When it is time to deliver a project through an export operation, the
required resource files are already in place.

Workspace Management 73

Managing Resources by Package
In this scenario, you want to manage your resources by package as it likely
that your packages will be moved among projects for organizational reasons.

 ❑ Establish a directory on a shared file system to store the master copy of all
resource files.

 ❑ In the directory create a subdirectory for each package that contains
resource files to be managed. Use the full name of the package as your
directory name to keep the hierarchy shallow and facilitate retrieval. If
you have a large number of packages, you can group them in arbitrary
subdirectories. By organizing your resource files by package instead of by
project, you avoid problems associated with moving packages among
projects.

 ❑ It is the package owner’s responsibility to maintain the package resource
directories. This is normally done in conjunction with the owner of the
class that uses the resources. It is also the class owner’s responsibility to
copy the required resources into the project resource directory as created
by VisualAge for Java.

 ❑ All developers and testers are responsible for copying the required
resource files into their personal project resource directory.

 ❑ It is the responsibility of the project owner to copy all resource files of all
packages in the project into the project resource directory before exporting
the project as a JAR file.

In both scenarios class developers should access resource files in their code
relative to a common root directory. For applets, this should be the applet
code base. This organization fits in with the code base established by
VisualAge for Java for testing applets. For applications, there is much
greater freedom, and you will probably pass a parameter to your program
indicating where resource files are kept.

74 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 75

7 Repository
Management
In this chapter we discuss the role of the administrator and the different
tasks associated with that role. We also discuss which steps have to be
performed to clean up the repository, and we provide different scenarios for
repository backup.

76 VisualAge for Java Enterprise Version 2 Team Support

The Role of the Administrator
When you install VisualAge for Java Enterprise, one user is predefined, the
administrator. This user plays an important team role and cannot be deleted
from the VisualAge for Java Enterprise repository. The first user of a new
installation is the administrator and has all of the rights necessary to set up
the development environment on the server.

The administrator’s role is primarily one of managing the repository (or
repositories) and includes five major tasks:

 ❑ Set up the VisualAge for Java Enterprise team environment on the server
(see “Installation of the Team Environment” on page 6).

 ❑ Grant users access to the repository. This task consists of two parts:

 • Creating users in the repository

 • Defining user IDs and passwords for EMSRV, if required (see
“Accessing the VisualAge for Java Enterprise Server” on page 9)

 ❑ Maintain existing users

 ❑ Clean up the repository when necessary

 ❑ Back up the repository regularly

We cover the user-related tasks in Chapter 2, “Installation and Setup” on
page 5. In this chapter we focus on the repository-related tasks.

The administrator must be familiar with the VisualAge for Java Enterprise
environment and the server machine environment. The administrator has to
know about the project organization: which developers are part of the project
team with what responsibilities. However, the administrator has no need to
know the details of the projects that are developed with VisualAge for Java
Enterprise.

As an administrator you may also be a member of the development team
itself. In this case you are playing two or more roles, depending on the size of
the development team and/or the complexity of the development project. For
example, the administrator may also be a package owner and a class
developer at the same time.

You must clearly distinguish between the tasks you perform as an
administrator and those you perform as a package owner or class developer.
You will have two users defined for you: the administrator user, and the user
under which you do development. You must switch between these two users
according to the task you are performing. The administrator user should
never author any code on any project!

Repository Management 77

How do I become an administrator?

 ❑ When you are the user performing the initial installation of VisualAge for
Java Enterprise, you become the administrator by default.

 ❑ By changing the workspace owner to administrator. If password checking
is enabled, you have to provide the valid password for the administrator.

What can I do as an administrator?

 ❑ Add new users to the repository

 ❑ Change or delete existing users

 ❑ Compact the repository

 ❑ Change ownership of an existing project

 ❑ Purge open editions and versions of a project

 ❑ Purge open editions and versions of a package

Besides the actions listed above, you can perform other tasks that do not
depend on the administrator role. For example, you can become a class
developer and then do all the things a class developer can do. But, as
mentioned before, do not perform developer tasks as the administrator user.

Important Info Implicit creation of users

There is one exception to the rule that only the
administrator is allowed to create users. When you import a
package, all users in the package group associated with the
package are implicitly created if they do not exist.

Tip Restoring deleted users

When you accidently delete a user that owns program
elements, the user still exists in the repository and is
identified by a unique name. The connections from all
program elements the user owned to the deleted user still
hold. You can restore the user by creating a new user, using
the same unique name of the user you deleted. Deleted users
are removed from the repository after the repository is
compacted.

78 VisualAge for Java Enterprise Version 2 Team Support

Repository Cleanup
Over time the repository grows as a result of the ongoing work of the
developers. Each developer creates new editions of different program
elements. In fact each save of a method creates a new open edition of the
method that is stored in the repository twice: as source code and as compiled
code.

Once the repository has been cleaned up, it contains no obsolete or unwanted
editions of program elements.

There are mainly two reasons for cleaning up a repository:

 ❑ The repository grows to a size that leads to a decrease in performance.
The upper limit size depends on the platform and the file system where
EMSRV is running. For Windows NT, the maximum size is 2 GB for a
partition that uses a file allocation table (FAT) and 16 GB for a partition
that uses the Windows NT file system (NTFS). A repository size of 250 MB
to 300 MB is quite common.

 ❑ If developers tend to version classes or packages too often by versioning
packages that are not baselines, it is useful to clean up the repository.
Cleanup provides better control over elements in the repository and
results in a shorter list of program elements.

Cleaning up the repository is basically a team effort. Even though only the
administrator has authority to begin the compact process, the developers and
the administrator must work closely together to avoid problems that might
result in time-consuming activities to recover work that has been accidently
lost.

There are four steps to achieving a reorganized repository that is free from
unwanted and obsolete program elements. These steps must be performed in
order, and different team members may be responsible for them as shown in
Figure 32.

Repository Management 79

Figure 32. Four Steps to Cleaning up the Repository

1. Delete obsolete packages and projects from the workspace and version
open editions

Each developer who owns a program element that has become obsolete
performs this step. Deleting a program element unloads it from the
workspace. (You do this not only for purging purposes but also to keep
your workspace in good shape.) Open editions should be versioned because
compaction of the repository copies only versions to the new repository.
This first step is performed at any time during the development cycle, not
only just before purging of the program element.

2. Purge obsolete packages and projects from the repository

This step is carried out by the package or project owner or by the
administrator, depending on the size and organization of the development
team. It is important to ensure that no other users require the program
elements you are purging. Although purged elements can be restored,
regard this step as an action you do only to obsolete elements.

3. Compact the repository

The administrator performs this step. Compacting must be scheduled in
advance and cannot be done during development time. Therefore
compacting should be thought of as a batch job. The administrator must
ensure that no other user is working with the repository that is about to
be compacted.

Program Element1

�

Owner

Delete obsolete packages and
projects from workspace

Program Element

2 Owner
or

Administrator

Purge obsolete packages and
projects from repository

Program Element
4 Owner

(Workspace Owner)
Connect to new repository

3 Administrator Compact the repository

Version Open Editions

80 VisualAge for Java Enterprise Version 2 Team Support

4. Connect to new repository

This step is typically done implicitly by each developer when starting
VisualAge for Java Enterprise after the compaction because the
compacted repository is usually renamed to the name of the old repository.

Deleting and Versioning Program Elements
Deleting program elements from the workspace is a routine activity during
development. Program elements are deleted to minimize the size of the
workspace (remember that the workspace is loaded into memory) or because
they are obsolete. Deleted program elements are still in the repository. All
developers must delete program elements before they can be purged.

Open editions of program elements should be versioned because compacting
of the repository copies only versions and not open editions.

Purging Program Elements
Purging program elements logically removes them from the repository. You
purge only those elements that you and your team no longer need. After a
program element is purged, you do not see its name in the Repository
Explorer.

Because purging is a logical delete, it does not free up the disk space occupied
by the program element. However, you can restore the program element. If
you accidentally purge a program element, immediately attempt to restore it.

For large teams we suggest that you not rely on recovery of purged program
elements. Look at the purge process as a process that removes your program
element from your environment, because you are not sure when the
administrator will compact the repository.

Attention! Keep your old repository

Do not delete your old repository after you have compacted it
and all developers have switched over to the new repository.
Murphy’s law tells us that a developer will realize something
was left out as soon as the old repository is deleted!

Store the old repository in a safe place for a predetermined and
agreed on time frame, so that team members have a grace pe-
riod for recovering old items they still need.

Repository Management 81

If program elements are purged with any intent other than permanently
removing them from the repository, the purge function is being used
incorrectly.

Which program elements can be purged?

 ❑ Single open editions and single versions of packages

 ❑ Single open editions and single versions of projects

 ❑ A complete package

 ❑ A complete project

When you purge a complete project or package, you are purging all existing
editions, not just a single edition of that element. When you purge the last
existing edition of a package or project, the complete package or project is
purged.

Who can purge program elements?

 ❑ The owner of the open edition or version of a package or project

 ❑ The administrator

Program elements must be deleted from your workspace before you can purge
them. Purging program elements can be done only from the Repository
Explorer window. You have to choose the appropriate notebook page for
purging projects or packages. Even if you see all package editions when you
are on the Projects page, you have to switch to the Packages page to delete a
package edition.

Figure 33 shows the purging operation with two pop-up menus. The pop-up
menu that is displayed depends on whether you click the right mouse button
on the package name (to purge all editions) or the edition name (to purge a
single edition).

Notes on purging program elements:

 ❑ Make sure other users do not need your program element.

 ❑ Make sure no other user has your program element loaded in the
workspace. You have to ask the other developers, because VisualAge for
Java Enterprise provides no query for that.

 ❑ You do not get a warning if you are deleting a package or project that is
actually loaded in another user’s workspace! When the other user starts to
work with the purged element, he or she is notified that the element is
missing, as shown in Figure 36 on page 85.

 ❑ You get an error if you are deleting a package or project that is actually
loaded in your workspace.

82 VisualAge for Java Enterprise Version 2 Team Support

Figure 33. Purging Program Elements from the Repository

Purging Packages
Packages are structures that contain executable code. If you purge a package
or a certain edition of a package, all editions of the contained program
elements are also purged. Because packages are the smallest unit for purging
pieces of code, there is no other way to remove certain class or method
editions from the repository. After compacting, the purged package and the
contained program elements are no longer available in the new repository.

Purging packages is the only way to reduce the size of the repository
considerably. Although purging packages itself will not free up any disk
space, it is the necessary prerequisite for the compacting step (see Figure 34).

Before you purge a package or a package edition, ensure that no
other users are using it.

Repository Management 83

Figure 34. Repository Cleanup When Purging Packages

User Workspace

2 User Purges
Package A

1
User Deletes
Package A

3

Administrator
Compacts

4

User Connects to
New Repository

Current

Newly

Repository

Repository

Purged

(not visible)

$

A

B
C

B

C

A
B

C
D

D

D

Compacted

Elements

Repository

84 VisualAge for Java Enterprise Version 2 Team Support

Consider the following problem and solution:

Problem: Uwe is owner of the Mr. Bean U-Learn 2-Drive project, and Mark is
owner of the COM.jum.utilities Version 3.1 package. Uwe has added several
packages to his project, one of which is the COM.jum.utilities Version 3.1
owned by Mark. Mark has decided to purge this version of his package, for
some reason, but has not notified the team of his purge.

Now consider two cases:

 ❑ Uwe has loaded the Mr. Bean U-Learn 2-Drive project in his workspace.
He will not run into trouble as long as he does not touch the purged
package. He will be able to change all other packages and even version
and delete his project.

 ❑ Uwe has not loaded the Mr. Bean U-Learn 2-Drive project in his
workspace. He therefore will not run into trouble at this point.

Now Uwe—or any other user—wants to add the Mr. Bean U-Learn 2-Drive
project into the workspace. Because the COM.jum.utilities Version 3.1 package
is part of the project edition but does not exist in the repository (which in fact
means it is not visible in the Repository Explorer), VisualAge for Java
Enterprise does not load the project. Because adding a project in this case is
an atomic operation, even the other existing packages are not added to the
workspace. Instead Uwe gets the message shown in Figure 35.

Figure 35. Error Message When Load Failed

Solution: Be aware that the phrase does not exist in the repository can have
two different meanings:

 ❑ The element is not in the repository at all. Therefore, because Mark
purged the package, the repository must have been compacted. Uwe will
have to look for a backup of the old repository and then follow the
procedure described in “Troubleshooting If Restoring Does Not Work” on
page 88.

 ❑ The element still resides in the repository but is purged and therefore not
visible in the Repository Explorer. In this case, Uwe can restore the
package and then load the Mr. Bean U-Learn 2-Drive project.

Repository Management 85

Remember, you are not notified when a package that is currently loaded in
your workspace has been purged by another user until you perform a
repository operation on it. If you open the Repository Explorer on the project
that contains the package, you get an information message (Figure 36).

Figure 36. Information Message When a Package Is Missing

All you have to do is restore the package as described in “Restoring Program
Elements” on page 88, and you can work with it again.

Attention! Do not try to add missing elements

If you find a missing package when browsing your project in
the Repository Explorer, you still have the pop-up option
Add to Workspace. We strongly recommend not clicking on
the Add to Workspace option. It causes unpredictable results
and your workspace may become corrupted!

86 VisualAge for Java Enterprise Version 2 Team Support

Purging Projects
Purging projects is different from purging packages. Projects are structures
that organize code. If you purge a project or a certain edition of a project, you
logically delete the information about how packages are organized.

From a repository perspective, a project does not contain packages, but
packages are part of one or more projects. Each project is a configuration of
packages. When you purge a project therefore, you delete the information
that certain packages are part of the project configuration. In other words,
you are tidying up the repository rather than removing code elements.

Purging a project does not purge any of the packages that are part of the
project.

You may want to purge a project or a project edition for two reasons:

 ❑ You do not need any of the packages that are part of the project and
therefore they do not have to be copied to the new compacted repository. In
this case you must:

1. Purge all packages that are part of the project or project edition

2. Purge the project or project edition

 ❑ You want to unlink all packages from the project because you no longer
need the project. In this case you only have to purge the project or project
edition.

Therefore if the repository contains some purged projects but no purged
packages, compacting the repository will not result in a considerable
reduction of the required disk space for the new repository because only
configuration information, not code, is removed from the new repository (see
Figure 37).

Repository Management 87

Figure 37. Repository Cleanup When Purging Projects

User Workspace

2 User Purges
Project X

1 User Deletes
Project X

3

Administrator
Compacts

4

User Connects to
New Repository

Current

Newly

Repository

Repository

Y

X

A

B

C

Purged

(not visible)

A

B

CY

Y

X

A

B

C

Compacted

Elements

Repository

88 VisualAge for Java Enterprise Version 2 Team Support

Restoring Program Elements
You can restore program elements that have been purged from the repository
before it is compacted. After you restore them, they are visible in the
Repository Explorer and can be added to the workspace.

Which program elements can be restored?

 ❑ All previously purged program elements as long the repository has not
been compacted and you are connected to the new repository.

Who can restore program elements?

 ❑ Every user can restore any purged program element.

When you restore a program element that you do not own, you will not get
ownership. Restoring only makes a program element visible again in the
Repository Explorer and removes the indicator that it will not be copied in
the new repository when the administrator compacts the current repository.

You can only restore from the Repository Explorer window. Remember that
you have to choose the appropriate notebook page for restoring either
projects or packages.

Troubleshooting If Restoring Does Not Work
Purge only those program elements that are obsolete. Do not use the purging
mechanism as a facility to hide projects or packages in the repository
temporarily. If you accidentally purge a project or a package, try to restore it
immediately. If you do not act immediately, there is no guarantee that you
can restore your work later on through a series of simple mouse clicks.

Consider the following problem and solution:

Problem: You are a developer on a large team. You have purged a package
accidentally and you have not restored it immediately afterward. At the end
of the day, the administrator compacts the repository. When you come back
the next day and start VisualAge for Java Enterprise, you will get connected
to the new repository. You then want to restore the package that you
accidentally deleted, but it is no longer in the repository.

Solution: Ask your administrator to give you access to the “old” repository.
Connect to the old repository either by changing your ide.ini file or by using
the Change Repository option from the Repository Explorer. Then restore the
purged package. You then can export the package into another repository,
connect to the new repository, and import the package from the other
repository.

Repository Management 89

Compacting the Repository
Compacting a repository copies all versioned projects and packages
(including all versioned classes) to a new repository. Compacting therefore
has two aspects:

 ❑ Tidying up the repository

 ❑ Reducing the size of the repository

Only the administrator can compact the repository.

After the repository is compacted, you have two repositories: the unchanged
original repository, and the new, compacted repository that does not contain
any open editions and purged elements. In comparison to exporting versioned
projects or packages, compacting copies all versions of a program element to
the new repository if they have not been purged. Exporting copies only the
released version of contained program elements and acts only on elements
currently loaded in the workspace. Figure 38 gives an overview of the
compacting operation.

Important Info Compacting may remove class versions

Versioned classes are removed from the repository during
compacting if they are contained only in an open edition of a
package! This is due to the fact that classes have to be
contained in a package. If the package is an open edition, it
is removed with all of the contained classes, whether they
are versioned (and released) or not. So versioning a class is
not enough to keep it in the repository when the repository
is compacted.

90 VisualAge for Java Enterprise Version 2 Team Support

Figure 38. Compacting a Repository

When to compact a repository depends on the actual size of the repository
and the resulting decrease in performance on the server machine.
Compacting does not have to be performed at predefined times; rather it is
driven by the development cycle of purging packages.

To avoid problems, plan ahead and discuss the procedure with the team
developers. Besides the actual compacting operation, other considerations
apply. For example, it is absolutely necessary to ensure that no user other
than the administrator has access to the repository during compacting. If
another user works on the repository during compaction, the repository may
become corrupted!

Y

X

A

B

C

E F

Y

X

A

B

C

E F

Y
A

B

C

Current Repository
with Purged Elements

�

Newly Compacted

Repository

Unchanged

Current Repository

Repository Management 91

Table 1 lists the 10 steps to compact a repository in a professional and secure
way.

Table 1. Administrator’s Checklist for Compacting a Repository

If another user tries to connect to the repository while the administrator
holds the only valid connection to it, VisualAge for Java displays the error
message shown in Figure 39.

Figure 39. Error Message When Connecting to a Repository during Compaction

Step Description

1
Communicate to the team that the repository will be compacted and each
package and project owner should purge all obsolete projects and packages.
Ask the owners and developers to shut down when they are done purging.

2
Check that no team member is connected to the repository. Use the
EMADMIN LIST command (see Appendix C, “EMADMIN” on page 133).
No connection should be reported.

3 Stop EMSRV (see Appendix B, “EMSRV” on page 127).

4
Make a backup copy of the current repository (see “Repository Backup” on
page 92).

5
Restart EMSRV with the maximum user option set to 1 to ensure that no
other user can connect to the repository during compaction.

6 Restart VisualAge for Java.

7

From the Repository Explorer window, start compacting the repository
from the Admin menu. Do not use the default name for the new repository
because you cannot compact a repository into itself. The Log window
displays the progress during the operation.

8 After you have terminated the compaction, shut down VisualAge for Java
and stop EMSRV.

9 Rename the original repository to an archive name. Rename the new
repository to the original name. Delete the backup copy from step 4.

10 Restart EMSRV with standard options.

92 VisualAge for Java Enterprise Version 2 Team Support

Connect to New Repository
Connecting to the new repository does not require any developer action if
the compacted repository was renamed to the name of the old repository.

When a developer starts VisualAge for Java Enterprise, a connection to
the compacted repository is performed automatically.

Repository Backup
The repository is the only place where all work of all developers on the team
is saved. It is an extremely powerful concept for sharing work and for
recovery. If one of the team member’s workspace becomes corrupted, it can be
easily recovered from the repository. However, if for some reason the
repository itself becomes corrupted, all work done by all users on the team is
lost! Therefore the administrator has to take care that the work in the
repository is backed up regularly. In addition to backing up the repository,
the administrator has to back up all shared resource files at the same time
(see “Project Resources” on page 70).

Team size, amount of development activity, and the critical nature of your
projects are some of the factors to consider when deciding on a backup
schedule for your team. Certainly an active VisualAge for Java Enterprise
development team should be backing up the repository on a daily basis. You
will also have to decide how long you will save the old repositories.

There are different ways of making backup copies on the server. We provide
two principle scenarios, one using the EMADMIN copy command, and one
using native operating system commands. These scenarios apply for a
Windows NT server machine; they may be slightly different on other server
platforms.

Repository Management 93

Scenario 1: Using EMADMIN Copy Command
EMADMIN provides a copy command to copy a repository (see Appendix C,
“EMADMIN” on page 133). EMADMIN checks that the file you are about to
copy is a VisualAge for Java repository. The EMADMIN copy command also
locks the repository while it is copied. A user connected to the repository has
to wait until the copy has finished before he or she can continue working.

Table 2 shows the steps for the administrator to follow to safely back up
the repository with the EMADMIN copy command.

Table 2. Repository Backup Using EMADMIN

Note: If another user tries to update the repository during a backup process,
VisualAge for Java displays an hour glass and waits for the backup to finish.

Step Description

1
Communicate to the team that the repository will be backed up. This is a
warning because VisualAge for Java does not allow any updates during the
backup operation.

2
At a command prompt type the EMADMIN command to copy the
repository. No other user will be able to update the repository during the
copy process.

Tip Locking out other users during backup

You can stop EMSERV and restart it with the maximum user
option set to 2. This prevents any other users from connect-
ing to the repository while the backup is running.

This precaution is optional because the EMADMIN copy
command locks the repository for updates.

94 VisualAge for Java Enterprise Version 2 Team Support

Scenario 2: Using Operating System Commands
One way of ensuring that no user can access the repository while the
administrator copies it is to shut down EMSRV. All VisualAge for Java
Enterprise client environments should be set up to connect to the repository
through EMRSV (which we strongly suggest), and the server must be set up
such that no direct client access to the repository is possible.

Table 3 shows the steps to back up the repository by using operating system
commands.

Table 3. Repository Backup Using Operating System Commands

Step Description

1
Communicate to the team that the repository will be backed up and each
team member should shut down VisualAge for Java. Close your own
workspace if you have VisualAge for Java running.

2
Check that no team member is connected to the repository. Use the
EMADMIN LIST command (see Appendix C, “EMADMIN” on page 133).
No connection should be reported.

3 Stop EMSRV (see Appendix B, “EMSRV” on page 127).

4 Make a backup copy of the repository, using the copy command of the
operating system.

5 Restart EMSRV with standard options.

© Copyright IBM Corp. 1998 95

8 Workspace and
Repository
Configuration
Options
In this chapter we discuss the different options for managing your client
developer workspace file and the connections that you can make to different
repositories.

We also discuss an approach that uses multiple workspaces for connecting to
multiple repositories.

96 VisualAge for Java Enterprise Version 2 Team Support

The Basics of Connecting to a Repository
First, let us recall that a VisualAge for Java Enterprise client cannot run
without a live connection to a repository. A repository file is always required;
VisualAge for Java fails to start if a valid repository file is not found at
startup.

When VisualAge for Java is started, the ide.exe file reads the ide.ini file that
specifies the location of the repository with which the workspace should
attempt to connect. For each program element in the workspace, VisualAge
for Java maintains pointers to the permanent representation of that element
in the repository. Thus VisualAge for Java can quickly and easily access the
source of each element as you use it in the course of normal development
activities.

If the workspace has not been previously connected to the repository with
which it is currently attempting to communicate, the cache of pointer
information must be reestablished. The term recache is used to describe this
activity. This situation occurs during the initial startup after installation and
after switching to a new repository with the Change Repository option.

Whenever your workspace contains packages that are not in the repository to
which you are connecting, VisualAge for Java cannot reestablish pointers to
the classes and interfaces in those packages. This will generate many log
messages but will not cause any problems until you attempt to access those
classes and interfaces from the Workbench. You will then be advised, quite
rightly, that the source for the program element could not be found. You can
avoid this situation by making sure that your workspace contains only
packages that also exist in the repository you want to connect to, before you
make the connection. However, this solution may be unrealistic, and it is best
to understand the nature of the log messages. If you are aware of the
situation and understand the implications, you may be quite comfortable
proceeding to connect to a new repository, knowing that the new work you
intend to do has no bearing on those elements you know do not exist in the
target repository.

The most typical installation and working environment for VisualAge for
Java Enterprise is a configuration that has the repository installed on a file
server owned and managed at a department level within a development
organization. Multiple developer workstations will be installed with the
client portion of VisualAge for Java Enterprise (this is of course all the
running code!). Much of the day-to-day development work will take place in
this configuration in the office environment. There will, however, be
occasions when work needs to be done offsite—most likely involving a
developer working at home.

Workspace and Repository Configuration Options 97

It is not feasible to expect that a developer will copy the central department
repository to take home. How then can VisualAge for Java Enterprise
accommodate this requirement?

There are three main ways:

 ❑ Work is conducted remotely while the developer is connected to the main
repository

 ❑ Work is conducted on a single machine (a laptop, for example) that can be
connected to the main repository or a local repository

 ❑ Work is conducted on two separate client machines and two separate
repositories

Remote Connection to a Repository
Remote connection to a repository is the simplest case and is essentially an
extension of the standard way of working with VisualAge for Java Enterprise
Provided a fast enough TCP/IP connection is available, a developer can
connect to a remote repository and work as though connected through a LAN.
All that is required is the IP address of the team server and the name of the
repository.

In our experience, a minimum line speed of 28,800 bps is required to connect
to a remote repository. Although reconnecting your workspace to the new
repository will take some time, once you are connected, access to the
repository will be faster. In practice, the nature of the work being carried out
will determine the minimum response time that is acceptable. A slower
connection might be acceptable for low volume maintenance work, while a
faster connection is required for heavy development activities.

Connecting to Two Repositories
A developer uses a single machine to connect to two separate repositories. As
an example, you might use a laptop computer in a docking station in the
office and connect to the main repository and work at home using the laptop
and a local repository (see Figure 40).

98 VisualAge for Java Enterprise Version 2 Team Support

Figure 40. Moving Your Work between Repositories

Follow the steps shown in Figure 40 and detailed below, to move your work
between two repositories.

1. While working in the standard corporate repository, you decide it is time
to go home and you would like to continue working at home the following
day. Create a new version of your package, remembering to first version
and release all classes in the package.

2. Switch to your local repository.

You can switch to your local repository in one of two ways. Use option A
below if you are using Windows 95 as your client or if you prefer not to run
the EMSRV process. Use option B if you are running EMSRV on your
workstation that you are transporting home for work offline.

Version Package

Switch to Local
Repository

Create New
Package Edition

1

4

2

3

Work Connected to
Corporate Repository

Switch to Corporate
Repository

Import Package from
Corporate Repository

Import Package from
Local Repository

Work Connected to
Local Repository

Version Package

Create New
Package Edition

Load Package into
Workspace

Load Package into
Workspace

5

Workspace and Repository Configuration Options 99

A. It is not possible to switch between a repository that was not accessed
through EMSRV and one that is accessed through EMSRV. If you do
not want to run EMSRV on your laptop or you are running Windows 95
where EMSRV is not supported, you must change the ide.ini file to
establish a direct connection to the local repository. It is best to
maintain two separate .ini files (for example, homeide.ini and
workide.ini) and switch between them.

Shut down VisualAge for Java, copy ide.ini to workide.ini, rename your
homeide.ini to ide.ini and restart VisualAge for Java.

B. Use the Change Repository option of the Repository Explorer to connect
to your local repository. Enter your local machine host name or IP
address and specify the file name of your local repository.

You may notice that your log file contains numerous messages that were
generated during the change operation as a result of the recaching of
pointers to program elements that are in your workspace but are not in
the repository to which you are switching. These messages can be safely
ignored.

3. Now you can use the VisualAge for Java import facility to import the
version of the package you have just created in the corporate repository. In
the import SmartGuide, specify that you want to import a package and
select the name and version to import.

4. Add the newly imported package version to your workspace.

5. Create a new edition of the package and continue working connected to
your local repository.

To connect your workspace to a different repository, select Change
Repository... from the Admin menu option of the Repository Explorer. You are
prompted for a host name or IP address of a server to which to connect. By
default you are connected to the current team server. Then you are presented
with a dialog that enables you to traverse the directory structure of the
current drive of the file server to select another repository. Notice in Figure
41 that there may be a multiple repository files that are managed by the
single EMSRV process to which you are connected.

Important Info Importing or exporting?

Importing the package from the source repository into the
target repository is just one way of moving a package between
repositories. It is equally valid to export the package from the
source to the target repository.

100 VisualAge for Java Enterprise Version 2 Team Support

Figure 41. Selection Dialog to Connect to Another Repository

You can also connect to a repository on another drive on the server, but you
have to explicitly enter the fully qualified path and file name in the File name
field.

Switching between Two Clients and Two Repositories
A developer has a machine in the office connected to the corporate repository
for normal development activities but also uses a home PC when working
offline. The workspace on the home PC is connected to a local repository. The
issue is one of moving and synchronizing work between the two
environments.

In this situation it is best to structure the team so that each package is the
responsibility of a single developer. This structure facilitates the
import/export procedure and minimizes the effort required to reconcile
divergent packages. A suggested process is shown in Figure 42. Before such a
process can be followed it is important to synchronize the corporate and home
repositories. The home repository is likely to be much smaller than the
corporate one, but all relevant packages from the corporate repository must
be loaded into the home repository. When new package baselines are
established in the corporate environment, they must also be loaded in the
home environment.

Workspace and Repository Configuration Options 101

Figure 42. Copying a Package across Repositories

1. Before you can carry out a repository style export on a package, the
package must be a version.

2. Export the package using the repository export. Essentially you are
creating a new repository that contains only the package you are
exporting.

3. To easily transport your temporary repository, it must fit on a suitable
medium such as a 1.44 MB diskette. In practice we found that a package
containing about 20000 lines of Java source code fits on a single floppy
disk (remember that the repository contains the Java bytecodes as well).
If your temporary repository is greater than 1.44 MB, you may be able to
use a compression program to fit it on a floppy disk. We found that the
popular Windows utility, WinZip, can achieve compression ratios of about
80% on repository files. Using WinZip, you can export the entire set of
Java 1.1 packages to a single floppy disk. If this still does not satisfy your
requirements, you will have to find an alternative way of transporting
your repository (file transfer, for example) or use a different style of export
(.java files, for example, as discussed in the box below).

Version Package

Version/Release All
Classes in Package

Export Package on
Work Machine

Transport Repository
to Home Machine

Import Package on
Home Machine

Add to Workspace

Create New
Package Edition

Continue Working
on Package

1 5

4

2

3

102 VisualAge for Java Enterprise Version 2 Team Support

4. After importing the package into the home repository, load it into the
workspace to make it available.

5. Create a new edition of your package and continue working on it.

The whole process is repeated in reverse order when you want to move your
package back to your work machine.

Multiple Workspaces
Our discussion has assumed that each developer has his or her own personal
workspace that is constantly changing: Projects and packages are added;
classes and interfaces are created; program elements are deleted; the
workspace is switched between repositories. This is a perfectly normal
scenario and is likely to be the way most work is carried out. However, there
are situations where it makes sense to have multiple workspaces and to
switch among them in appropriate circumstances. We explore some of those
situations here and describe the mechanism of switching workspaces.

Workspaces can be highly dynamic. You can tailor the contents of your
workspace by adding and deleting projects and packages. But these
operations take time and can be prone to human error if the wrong project or
package is accidentally loaded. Sometimes it is useful to establish reference

Warning! Potential complications

Quite often you will find that you have to make changes to
classes in other packages as part of your work at home. When
this happens you need to replicate those changes in your
corporate environment so that the normal reconciliation
process can take place. To replicate, export the changed classes
as .java files and later import them into your corporate
environment. This approach allows the class owners to see the
changes and, if appropriate, merge them into their packages.

You also have to export your classes as .java (and optionally
.class) files if your package is too big for easy transportation.
You must exercise caution when using this mechanism to
ensure that all changed classes are included in your export.
Otherwise your home and corporate repositories will get out
of step. We recommend versioning your classes before
carrying out the export operation even though with
VisualAge for Java you can export a class that is an open
edition.

Workspace and Repository Configuration Options 103

workspaces, which contain a desired configuration of project and package
versions.

A developer can establish reference workspaces by simply making a copy of a
configured workspace and saving it with a different but appropriate name. It
has to be renamed to ide.icx in order to start VisualAge for Java Enterprise in
the usual way. Figure 43 shows a process to store and rename a workspace.

Figure 43. Copying Workspaces

The procedure here is quite straightforward:

1. Take a copy of your workspace file and your .ini file in case they are
needed for recovery. These files are in the x:\IBMVJava\Ide\program
directory where x: is the directory in which the developer installed the
VisualAge for Java client. This step can be omitted if you take a regular
workspace backup.

2. Copy the reference workspace file to your local workspace file.

3. If you are connecting to a different repository, take a copy of the reference
.ini file. If you do not do this, you have to edit your own .ini file to change
the repository details.

Change Workspace
Owner

Start VisualAge for Java

IDE.icx => IDE.bak
Ide.ini => ini.bak

newIDE.icx => IDE.icx

newIde.ini => Ide.ini

Continue Working

1

2

3

4

5

6

104 VisualAge for Java Enterprise Version 2 Team Support

4. Start VisualAge for Java Enterprise.

5. The reference workspace has probably been saved with someone else
(usually the administrator) as the workspace owner. You must change the
workspace owner to yourself.

6. Continue working with your new workspace.

Let us consider some reasons why you and your team may want to maintain
multiple workspace files:

 ❑ Before embarking on a new project, you want to ensure that all developers
start off with a consistent view of the environment. You construct a
workspace with the new project and required packages created and
initialized. You also add any other projects and packages that may be
needed.

 ❑ You could construct a workspace that reflects the delivered state of
software for a particular customer. You can then quickly and easily
replicate that customer’s environment.

 ❑ It is also useful to have a reference workspace that developers can revert
to in situations where their personal workspace has become corrupted.

 ❑ You need to connect to multiple repositories on a regular basis. The
process of changing the repository to which a workspace is connected can
be time consuming, especially if the new repository is located remotely
with a slow connection. The workspace has to be fully synchronized with
the new repository before the change can be completed. A valid
alternative is to have a special workspace file that you use for connecting
with the remote repository. When you need to access the repository, close
your existing VisualAge for Java session, copy the other workspace,
restart VisualAge for Java, and continue working with the new
workspace.

Remember that making use of multiple workspaces in this way is for
convenience only. The repository is where everything is stored, and it is
always possible to reconstruct any workspace given sufficient time and
knowledge about what is to be cached in the workspace.

© Copyright IBM Corp. 1998 105

A Program Element
State Transitions
In this appendix we document the allowable state transitions for projects,
packages, and classes. In Chapter 3, “Understanding the Basics” on page 13,
we state that software elements can exist in three states—as scratch
editions, open editions, and versioned editions or, more simply, versions. We
also describe the notion of releasing, where a program element is made
available to its containing program element. While releasing does not
actually change the state of a program element, it can sometimes be useful to
think about it in that way. For example, releasing is an action on a class that
changes the subsequent actions that can be applied to that class. We
therefore introduce the notion of a released class and, for packages, a
released version and a released open edition.

So far our discussion has assumed that we are talking about program
elements that are present in the workspace. After all, it is only in the
workspace that elements can be changed. However, program elements must
be created at some time and can exist only in the repository after they have
been removed from the workspace. Program elements can also be removed
completely (admittedly with some difficulty) from the repository. Therefore
we introduce the states of not existing for program elements before their

106 VisualAge for Java Enterprise Version 2 Team Support

creation or after their removal, and repository only for elements that do not
exist in the workspace.

We define a transition as the change of a program element from one state to
another. This definition is somewhat loose because the nature of such a
transition can vary. For example, when we talk about moving from an open
edition to a version, the program element remains the same but its name
changes. When we talk about moving from a version to an open edition,
however, we are actually creating a new instance of the program element.
Nevertheless, in all cases, the semantics of the transition should be clear. For
each transition we document the situation in which the transition might
occur, the prerequisites that must be satisfied before it can occur, and the
mechanism by which it occurs.

Program Element State Transitions 107

Project State Transitions
Figure 44 shows the 5 states in which projects can exist and the 10 valid
transitions among them.

Figure 44. Valid State Transitions for Projects

These transitions are listed below and described in the subsequent sections:

1. Not Existing -> Open Edition

2. Not Existing -> Repository Only

3. Repository Only -> Version/Open Edition

4. Version -> Open Edition

5. Open Edition -> Version

6. Version -> Scratch Edition

7. Scratch Edition -> Open Edition

8. Scratch Edition -> Not Existing

9. Version/Open Edition -> Repository Only

10.Repository Only -> Not Existing

Version

Open

Scratch
Edition Not

Existing
Repository

Only

1

2

3

3

4 5

6

8

7
9

9
10

Edition

108 VisualAge for Java Enterprise Version 2 Team Support

Not Existing -> Open Edition (1)

Situation
This is how brand new projects are created.

Prerequisites
 ❑ Any registered team user can create a new project. The user becomes the

owner of the project.

Mechanism
 ❑ From the Project view of the Workbench, bring up a SmartGuide by

selecting Selected > Add > Project... The same SmartGuide can be invoked
by selecting Projects > Add > Project... from the Managing view of the
Workbench.

 ❑ Select the Create a new project named: radio button and type the name of
your new project. If a project of the same name already exists in your
workspace, you are prompted with a message at the bottom of the
SmartGuide and you will not be able to click the Finish button.
Otherwise, click on the Finish button, and the new project is created in
your workspace and in the repository. If the project already exists in the
repository, you will be asked if you want to create a new edition of that
project. You cannot have more than one project with the same name in the
repository.

Not Existing -> Repository Only (2)

Situation
A project is created in the repository as a result of an import operation.

Prerequisites
 ❑ Any registered user can import a project into the repository. The

administrator becomes the owner of such projects.

 ❑ The project to be imported must be a version in the other repository.

Mechanism
 ❑ Select File > Import from the Workbench to invoke the SmartGuide.

 ❑ Complete projects can be imported from another repository by selecting
the Repository radio button.

 ❑ The SmartGuide asks you to provide the IP address and file name of the
other repository.

Program Element State Transitions 109

 ❑ When you have selected a valid repository, you are presented with a list of
projects (and packages) in the other repository, and you can select the
projects and versions you want to import.

Repository Only -> Version/Open Edition (3)

Situation
You must bring a project into the workspace before you can work on any of
its packages. Project versions and open editions are handled in the same
way.

Prerequisites
 ❑ Any registered user can load a project into the workspace. The load will

not be successful if the project to be loaded contains a package that
already exists in the workspace as part of another project. It is a rule in
VisualAge for Java Enterprise that the same package can exist in
multiple projects in the repository, but not in the workspace. The entire
load is an atomic operation, and the operation will either succeed
completely or not load any portion of the project.

Mechanism
 ❑ Invoke the Add Project SmartGuide by selecting Projects > Add > Project...

from the Managing view of the Workbench or Selected > Add > Project...
from the Project view.

 ❑ Check Add projects from the repository and select the projects and the
editions you want to load. Click on the Finish button, and the selected
project editions are loaded into your workspace.

Alternatively:

 ❑ Go to the Repository Explorer and highlight the project and edition you
want to load.

 ❑ Select Editions > Add to Workspace (or use the pop-up menu in the
Editions pane), and the selected project edition is loaded into your
workspace. A project that already exists in the workspace can be replaced
by another version/open edition from the repository.

 ❑ Select Projects > Replace With > Another Edition..., and you are asked to
select from the list of editions in the repository. You can quickly revert to
the previous edition by selecting Projects > Replace With > Previous
Edition or, if you are currently working with an open edition and it has
changed in the repository, you can bring your workspace up-to-date by
selecting Projects > Replace With > Current Edition.

110 VisualAge for Java Enterprise Version 2 Team Support

Version -> Open Edition (4)

Situation
You should create a new edition of a project when you want to make a
change to the project. Remember that a project version is immutable—if
you want to change it in any way such as creating new package editions or
even changing the comment associated with the project, you must first
create a new edition.

Changing the owner of a project, however, does not force you to create a
new edition.

Prerequisites
 ❑ Only the project owner is allowed to create a new edition of the project.

Mechanism
 ❑ Select Projects > Manage > Create Open Edition (or Selected > Manage >

Create Open Edition) to create a new project edition. The edition is named
by appending the current data and time in parentheses to the project
name.

If you attempt to add a new package to a project version, the VisualAge for
Java SmartGuide asks you if you want it to create a new edition of the
project.

(There is actually a way for anyone to create a new edition of a project.
First delete the project from your workspace. Then go into the Add Project
SmartGuide and create a new project of the same name. The SmartGuide
tells you that a version already exists in the repository and asks you if you
want to create a new edition. If you answer yes, a new edition of the
project is created with you as the owner.)

Open Edition -> Version (5)

Situation
You create a new project version from an open edition when you want to
establish a baseline for your entire project. Once versioned, the project is
immutable.

Prerequisites
 ❑ Only the owner of a project can create a new version of the project.

 ❑ All packages in the project must be versioned and must be released
(released versions in our terminology).

Program Element State Transitions 111

Mechanism
 ❑ Select Projects > Manage > Version from the Managing view of the

Workbench.

Version -> Scratch Edition (6)

Situation
A scratch edition of the project is automatically created whenever an open
edition of an existing package is created in a project version.

Prerequisites
 ❑ None. A scratch edition is created for any user. Note that only package

owners are allowed to create an open edition of a package.

Mechanism
 ❑ None. Creating a scratch edition of the project happens automatically.

Scratch Edition -> Open Edition (7)

Situation
Because VisualAge for Java can automatically create scratch editions of a
project, it may be necessary to convert your scratch edition to an open
edition. You do this conversion if you want to eventually release package
elements into the project and thus make them available to other users.

Prerequisites
 ❑ Only the project owner can convert a scratch edition to an open edition.

Mechanism
 ❑ Select Projects > Manage > Create Open Edition from the Managing view

of the Workbench.

Scratch Edition -> Not Existing (8)

Situation
If you do not want to retain the changes you made to the project that
caused the scratch edition to be made, you can completely remove the
scratch edition.

You can remove the scratch edition in two ways. As project owner you can
delete the project and thus remove the project from the workspace.

112 VisualAge for Java Enterprise Version 2 Team Support

Alternatively you can replace the scratch edition with another edition
from the repository and thus remove the scratch edition from the
workspace. Because the scratch edition existed only in the workplace, it is
completely deleted.

Note that nothing ever really disappears from VisualAge for Java! If you
created new package editions in your project scratch edition, they will still
be in the repository after the project scratch edition is deleted. However,
you have to search for the new package editions in the packages list
because they do not belong to any project.

Prerequisites
 ❑ Only the project owner can explicitly delete a project scratch edition.

 ❑ Anyone can replace a scratch edition with another edition from the
repository.

Mechanism
 ❑ To delete a project, select Projects > Delete... from the Managing view of

the Workbench, and the project is completely removed from the
workspace. However, all previous project versions and open editions still
exist in the repository and can be reloaded at any time. Because the
scratch edition existed only in the workspace, it disappears completely.

 ❑ To replace the scratch edition with another edition, select Projects >
Replace With from the Managing view of the Workbench. You have a
choice of three submenus:

 • Current Edition: Load the edition that has the same name as the
edition in your workspace. If the current edition is not a version, its
contents may have changed since you last loaded it.

 • Previous Edition: Load the version of the project that was created
chronologically before the edition currently in your workspace.

 • Another Edition...: This option presents you with a list of all project
editions in the repository. You are invited to select the edition to load.

Version/Open Edition -> Repository Only (9)

Situation
VisualAge for Java provides menu options for deleting program
elements—however, you only delete in the context of your personal
workspace. The elements themselves remain in the repository. You use
this option simply to clear up your workspace. Having a smaller
workspace reduces your startup and shutdown times. So if you are no

Program Element State Transitions 113

longer working on a particular project, you should remove it from your
workspace.

You may also have to remove a project from your workspace if it contains a
package that is also contained in another project that you want to load.
Only one copy of a package can be in your workspace at a time.

Prerequisites
 ❑ None. Any user can delete a project version or open edition from the

workspace.

Mechanism
 ❑ Select Projects > Delete from the Managing view of the Workbench.

Repository Only -> Not Existing (10)

Situation
Eventually you want to remove old projects from your repository.
Otherwise the repository continues to grow.

Prerequisites
 ❑ Only the project owner or the administrator can purge projects or project

editions. A project edition cannot be purged if it is loaded in your
workspace. (Check that there are no asterisks beside any of the project
editions in the Repository Explorer.) Only the administrator can compact
the repository.

Mechanism
 ❑ Completely removing projects is a two-stage process:

 • First you must purge the project and/or project editions. To purge the
entire project, in the Repository Explorer highlight the project and
select Names > Purge. To purge one or more editions, highlight the
required editions and select Editions > Purge. If all editions of a project
are purged, the project is also purged.

 • The second stage involves compacting the repository. See “Compacting
the Repository” on page 89 for more information.

114 VisualAge for Java Enterprise Version 2 Team Support

Package State Transitions
Figure 45 shows the 7 states for packages and the 14 transitions.

Figure 45. Valid State Transitions for Packages

These transitions are listed below and described in the subsequent sections:

1. Not Existing -> Released Open Edition

2. Not Existing -> Repository Only

3. Released Open Edition -> Released Version

4. Released Version -> Open Edition

5. Open Edition -> Released Open Edition

6. Open Edition -> Version

7. Version -> Released Version

8. Version -> Open Edition

9. Version/Released Version -> Scratch Edition

10.Scratch Edition -> Open Edition

11.Scratch Edition -> Not Existing

12.(Released) Open Edition/(Released) Version -> Repository Only

13.Repository Only -> Open Edition/Version

14.Repository Only -> Not Existing

Version

Open

Released
Version

Not
Existing

Repository
Only

Released
Open

Edition

Scratch
Edition

14

5

6

9

9

7

8

12

12

12

12

13

13

14

3

10

Not
Existing

11
2

Edition

Program Element State Transitions 115

Not Existing -> Released Open Edition (1)

Situation
There are two situations where this transition can occur: creating a brand
new package and importing elements (.class files, .java files, jar files) from
outside VisualAge for Java into a package that does not exist.

A package must always be created within the context of a project. You
typically create a new package when a major new work application is
being initiated. You import an existing package when you want to copy
external code into VisualAge for Java. A major difference between
importing directly from another repository and importing files is that in
the former case you import directly into the repository, and in the latter
case you import into a package in your workspace.

Prerequisites
 ❑ The user must be the project owner.

 ❑ The project must be an open edition.

 ❑ For package creation, a package of the same name must not exist in any
project in the user’s workspace.

 ❑ For package import, if a package of the same name already exists in a
project currently loaded in the workspace, the new classes will be added to
it. This applies even if the package is in a project other than the one
specified on import. In this situation, all prerequisites for creating classes
in a package apply.

Mechanism
 ❑ Creating a new package:

 • Select Packages > Add > Package... from the Managing view of the
Workbench. This brings up the Add Package SmartGuide.

 • Select the Create a new package named: radio button and type your
new package name. You may also add new package group members at
this stage if you want. Package group members can create new classes
and release them into your package.

 ❑ Importing from files:

 • Select File > Import... from the Workbench. This brings up the Import
SmartGuide.

 • Select the project to import to and the type of import (class files, java
files, JAR file, or entire directory)

 • The next screen in the SmartGuide allows you to select the files or
directory to import.

116 VisualAge for Java Enterprise Version 2 Team Support

Not Existing -> Repository Only (2)

Situation
This transition occurs when you import a package from another repository
into your VisualAge for Java repository.

Prerequisites
 ❑ Any registered user can import a package into the repository. The

administrator becomes the owner of such packages.

 ❑ The package you want to import must be a version in the other repository.

Mechanism
 ❑ A package can be imported as part of a project as detailed in the

corresponding transition for projects.

 ❑ A package can also be imported independently:

 • Select File > Import... from the Workbench. This brings up the Import
SmartGuide.

 • Select the type of import (Repository).

 • The next page in the SmartGuide asks you to provide the IP address or
host name of the server and the name of the repository file from which
to import.

 • When you have selected a valid repository, you are presented with a
list of packages (and projects) in the repository. Select the package and
package edition you want to import.

Released Open Edition -> Released Version (3)

Situation
You should convert a released open edition to a released version when you
want to make a new package baseline. Once versioned, the package
cannot be changed.

Prerequisites
 ❑ You must be the package owner.

 ❑ All classes in the package must be released (which also implies that they
must be versioned).

Program Element State Transitions 117

Mechanism
 ❑ Select Packages > Manage > Release from the Managing view of the

Workbench.

Released Version -> Open Edition (4)

Situation
You can create an open edition of a package from a released version when
you want to make changes to the package.

Prerequisites
 ❑ You must be the package owner.

 ❑ The owning project must be an open edition. If not, a scratch edition of the
project will be created. You do not need to be the project owner to create a
new package edition.

Mechanism
 ❑ Select Packages > Manage > Create Open Edition from the Managing view

of the Workbench.

Open Edition -> Released Open Edition (5)

Situation
This transition allows you to release a package to its project before you
have versioned the package. This is a very useful facility when you want
to create a rolling baseline from which all developers can synchronize
their workspaces. When a developer loads the project, only classes that
have been released to the package are visible. As other classes are
released, the developer can reload the project to update the workspace.
This facility avoids cluttering the repository with package versions that
are created with the sole purpose of establishing a baseline.

Prerequisites
 ❑ You must be the project owner or package owner.

Mechanism
 ❑ Select Packages > Manage > Release from the Managing view of the

Workbench.

118 VisualAge for Java Enterprise Version 2 Team Support

Open Edition -> Version (6)

Situation
You should create a package version from an open edition when you want
to freeze the contents of the package before releasing it into its project.

Prerequisites
 ❑ You must be the package owner.

 ❑ All classes in the package must be released (which also implies that they
must be versioned).

Mechanism
 ❑ Select Packages > Manage > Version from the Managing view of the

Workbench.

Version -> Released Version (7)

Situation
You can release a version of your package when you want to make it
available to the enclosing project.

Prerequisites
 ❑ You must be the project owner or package owner.

Mechanism
 ❑ Select Packages > Manage > Release from the Managing view of the

Workspace.

Version -> Open Edition (8)

Situation
You can create an open edition of a package from a version when you want
to make changes to the package.

Prerequisites
 ❑ You must be the package owner.

 ❑ By definition, the owning project will already be an open (or scratch)
edition.

Program Element State Transitions 119

Mechanism
 ❑ Select Packages > Manage > Create Open Edition from the Managing view

of the Workspace.

Version/Released Version -> Scratch Edition (9)

Situation
This transition occurs automatically whenever a new edition of an
existing class or interface is created in a versioned package.

Prerequisites
 ❑ None. A scratch edition will be created for any user, even if that user is a

member of the package group.

Mechanism
 ❑ None. The transition happens automatically.

Scratch Edition -> Open Edition (10)

Situation
The scratch package edition exists because you created new classes or
interfaces in a versioned package. You have to convert the scratch edition
to an open edition to make the new classes or interfaces available to other
users.

Prerequisites
 ❑ You must be the package owner.

 ❑ The project must be an open edition. If not, VisualAge for Java creates a
scratch project edition.

Mechanism
 ❑ Select Packages > Manage > Create Open Edition from the Managing view

of the Workspace.

Scratch Edition -> Not Existing (11)

Situation
You can remove the package scratch edition if you do not want to retain
the changes you made to the package that caused the scratch edition to be
created.

120 VisualAge for Java Enterprise Version 2 Team Support

You can remove the scratch edition in two ways. As package owner, you
can delete the package and thus remove the package from the workspace
and disassociate it from its project. However, this is unlikely to be the
behavior you want. The simplest approach is to replace the scratch edition
with another edition from the repository. As the scratch edition is not
stored in the repository, the replace deletes the scratch edition.

As with scratch project editions, removing a scratch package edition does
not completely remove any of its class editions. These are still stored in
the repository. To see them you must use a class browser and examine
editions of the class.

Prerequisites
 ❑ To explicitly delete a scratch edition, you must be the package owner.

 ❑ Anyone can replace a scratch edition with another edition from the
repository.

Mechanism
 ❑ To delete a package select Packages > Delete... from the Managing view of

the Workbench.

 ❑ To replace with another edition select Packages > Replace With from the
Managing view of the Workbench. You have a choice of four submenus:

 • Released Edition: Load the edition that has been released to the
project.

 • Current Edition: Load the edition that has the same name as the
edition in your workspace. If that edition is not a version, its contents
may have changed since you last loaded it.

 • Previous Edition: Load the version of the package that was created
chronologically before the edition currently in your workspace.

 • Another Edition...: This option presents you with a list of all package
editions in the repository. You are invited to select the edition to load.

(Released) Open Edition/(Released) Version -> Repository Only
(12)

Situation
You can delete a package if you have the correct privileges. Deleting a
package has two effects:

Program Element State Transitions 121

 • The package is no longer loaded into your workspace. However, it still
exists in the repository and can be accessed through the Repository
Explorer.

 • The association between the project and the package is removed, even
in the repository. In the repository, a package can be part of zero, one,
or many projects. In a workspace it must belong to a single project.

Prerequisites
 ❑ You must be the package owner, project owner, or administrator.

 ❑ The project must be an open edition.

Mechanism
 ❑ Select Packages > Delete... from the Managing view of the Workbench.

Repository Only -> Open Edition/Version (13)

Situation
A package can be loaded from the repository into a specific project in the
workspace. Typically this will be an infrequent operation carried out when
a project is being set up and defined. When package editions are loaded in
this way, they retain their original package owner and package group
members.

Prerequisites
 ❑ You must be the owner of the project or the administrator.

 ❑ The project must be an open edition.

 ❑ A package of the same name must not exist in the same or any other
project in the workspace.

Mechanism
 ❑ From the Managing view of the Workbench select Packages > Add >

Package. This brings up the Add Package SmartGuide.

 ❑ Select the Add packages from the repository radio button and a list of
available packages and editions will be displayed.

 ❑ Select any number of package editions and click on the Finish button.

122 VisualAge for Java Enterprise Version 2 Team Support

Repository Only -> Not Existing (14)

Situation
Packages can be purged from the repository if they are no longer required.
You can also purge individual package editions. Even when purged,
packages can be restored, provided that the repository has not been
compacted.

Prerequisites
 ❑ Only the package owner or the administrator can purge packages or

package editions.

 ❑ The package must not be currently loaded into the workspace.

 ❑ Only the administrator can compact the repository.

Mechanism
 ❑ Completely removing a package from the repository is a two-stage

process:

 • First you must purge the package and/or package editions. In the
Packages view of the Repository Explorer, select Names > Purge... to
purge a complete package or select Editions > Purge... to purge a single
edition.

 • The second stage involves compacting the repository. See “Compacting
the Repository” on page 89 for more information.

Program Element State Transitions 123

Class State Transitions
Figure 46 shows the 5 states in which classes and interfaces can exist and the
7 valid transitions among them.

Figure 46. Valid State Transitions for Classes

These transitions are listed below and described in the subsequent sections:

1. Not Existing -> Open Edition

2. Open Edition -> Version

3. Version -> Released Version

4. Version/Released Version -> Open Edition

5. Version/Open Edition/Released Version -> Repository Only

6. Repository Only -> Version/Open Edition

7. Repository Only -> Not Existing

Version

Open

Released
Version

Not
Existing

Repository
Only

1

2

3

4

5

5

6

6

7

5

Edition

124 VisualAge for Java Enterprise Version 2 Team Support

Not Existing -> Open Edition (1)

Situation
This is how brand new classes and interfaces are created.

Prerequisites
 ❑ The package in which the class is being created must be an open edition.

If it is not, the SmartGuide will change the package to an open edition for
you automatically. You must be the package owner.

 ❑ If the package is already an open edition, you must be a package group
member to create a new class.

Mechanism
 ❑ Classes are created using the Create Type SmartGuide. One way to create

a new class is through the Types > Add > Class/Interface menu option in
the Managing view of the Workbench. The creator of the class becomes the
class owner and the class developer of the new edition.

Open Edition -> Version (2)

Situation
You create a new version of a class from an open edition when you want to
freeze the definition of the class. Versioned classes cannot be changed.

Prerequisites
 ❑ Only the class developer can version a class.

Mechanism
 ❑ Select Types > Manage > Version... from the Managing view of the

Workbench. You can version multiple classes at a time and apply the same
or individual version numbers to each class.

Version -> Released Version (3)

Situation
You release a class to its enclosing package when you want to make it
available to other users who load that edition of the package.

Program Element State Transitions 125

Prerequisites
 ❑ Only the class owner can release a class.

 ❑ The enclosing package must be an open edition.

Mechanism
 ❑ Select Types > Manage > Release from the Managing view of the

Workbench

Version/Released Version -> Open Edition (4)

Situation
If you want to make changes to a versioned class, you must first create an
open edition of the class.

Prerequisites
 ❑ Anyone can create an open edition of an existing class. If the package to

which the class belongs is not an open edition, a scratch edition is created
automatically.

Mechanism
 ❑ Select Types > Manage > Create Open Edition from the Managing view of

the Workbench.

Version/Open Edition/Released Version -> Repository Only (5)

Situation
You can delete a class when it is no longer required. Deleting a class
removes it from the enclosing package and from the workspace. The class
remains in the repository and is still implicitly associated with the same
package. You can load the class from the repository back into any edition
of the same package at a later stage.

Prerequisites
 ❑ Only the class owner can delete a class.

 ❑ The enclosing package must be an open edition.

Mechanism
 ❑ Select Types > Delete... from the Managing view of the Workbench.

126 VisualAge for Java Enterprise Version 2 Team Support

Repository Only -> Version/Open Edition (6)

Situation
This is how you retrieve a previously deleted class from the repository.

Prerequisites
 ❑ The enclosing package must be an open edition. VisualAge for Java does

not automatically create a scratch edition for you.

 ❑ You must be a group member of the enclosing package. You automatically
become the new owner of the class you load in this way. The class
developer remains the same, so when you load an open edition that has
another user as its developer, you cannot change the class.

Mechanism
 ❑ Select Types > Add > Class/Interface... > Type from Repository... from the

Managing view of the Workbench. You will be presented with a list of
classes and interfaces that belong to the currently selected package in the
repository.

 ❑ Select a class and an edition of the class to load.

Repository Only -> Not Existing (7)

Situation
This transition is shown as a broken line because it is not possible to
explicitly remove classes from the repository. Classes are purged when the
package they belong to is purged.

© Copyright IBM Corp. 1998 127

B EMSRV
In this appendix we provide details for running the EMSRV program on your
VisualAge for Java server machine. Examples are also provided showing
different uses on the different operating platforms.

128 VisualAge for Java Enterprise Version 2 Team Support

EMSRV Startup Options
Tables 4–6 describe the parameters that can be used to manage the operation
of EMSRV. Not all options are available on all platforms.

The key to the Platform column is as follows:

all all platforms
NetWare Novell NetWare
NT Windows NT
OS/2 OS/2 Warp
UNIX IBM AIX, Sun Solaris, and HP-UX

Table 4. EMSRV Startup Options (Part 1)

Parameter Platform Description

-A<0,1> all The file system requires locks. The default value is 0,
indicating that the file system does not require locks.

-a <seconds> UNIX Sets the number of seconds before a connection is
deemed inactive. The default is 360.

-b <kbytes> all Sets the low-volume threshold warning in kilobytes.
The default is 10,000 KB. If the available disk space
is less than the low-volume threshold value, EMSRV
logs warning messages to the log file.

-f UNIX Sets EMSRV to run in the foreground

-h all Displays the help text listing valid options

-i<q,t> UNIX Ignores signals: q = ignore SIGQUIT; t = ignore
SIGTERM. By default either of these signals causes
EMSRV to terminate.

-install NT Installs EMSRV as a service

-lc all Logs messages to the console. By default messages
are not written to the console.

-lf <name> OS/2, NT Writes the log file to file <name>. By default
messages are logged to the emsrv.log file. Specify a
valid path for which the EMSRV account has
sufficient rights.

-lp <scnds> UNIX Sets the maximum number of seconds to wait for a
lock. The default is 15 seconds.

-ls UNIX Logs messages to stdout instead of a log file. EMSRV
must be run in the foreground (using -f).

EMSRV 129

Table 5. EMSRV Startup Options (Part 2)

Parameter Platform Description

-lt <scnds> UNIX Sets the maximum number of seconds to hold a lock

-M<n> all Specifies the maximum number of connections that
can be established with EMSRV. The default is 256.

-n UNIX Turns off statistics gathering

-P <port #> all Specifies the port number that the EMSRV process
uses. The default is 4800.

-p <passwd> OS/2,
NT,
NetWare

Specifies the password for the EMSRV user account
in order to restrict repository file access. This
password is used for EMADMIN functions such as
shutting down EMSRV remotely. In a Windows NT
environment you must specify -p with no parameter
if the user account has no password.

-R<0,1> all The file system releases locks on file close. The
default setting is 1, which indicates that the file
system releases locks when a file is closed.

-r UNIX Rejects users who are not in the passwd.dat file

-rd OS/2, NT Disables password checking of clients. This is the
default setting.

-remove NT Removes the EMSRV service from the registry

-rn NT,
NetWare

Rejects users who do not supply a valid user name
and password. EMSRV validates using the native
user profiles on the server. The default grants access
to all users without a user name and password.

-rp OS/2,
NT,
NetWare

Rejects users who are not in the passwd.dat file. The
default grants access to all users without checking
this password file.

-s<0,1,2> all Sets the reporting level to the specified severity level:
0 = log all operations; 1 = log warnings and error
messages; 2 = log errors only. On PC platforms the
default is 2. On UNIX the default is 1.

-t all Protects existing libraries from truncation. By
default, libraries can be created over existing ones
(truncated to 0).

-u <user> NT,
NetWare

Specifies the EMSRV account name to be used

130 VisualAge for Java Enterprise Version 2 Team Support

Table 6. EMSRV Startup Options (Part 3)

Using EMSRV
In this section we provide some examples of using EMSRV. We present the
examples by platform to highlight the differences.

EMSRV on OS/2
On OS/2, EMSRV does not require a user logon account to start. A password
can be provided to prevent unauthorized shutdown. The following examples
are run from the OS/2 command line in the directory where EMSRV is
installed:

 ❑ emsrv -p rainy -W c:\VajSrv\Repository -lc

This command starts EMSRV with a work directory c:\VajSrv\Repository,
and messages are logged to the console. The directory must already have
been created. To shut down EMSRV, the password rainy has to be
included as a parameter of the EMADMIN command. Refer to Appendix
C, “EMADMIN” on page 133 for details on using EMADMIN.

 ❑ emsrv -p rainy -lf c:\logs\vaemsrv1.log -rp -M40

This command starts EMSRV, allowing a maximum of 40 concurrent
client connections to the repository file. EMADMIN counts as one
connection. The log file to be used for messages is c:\logs\vaemsrv1.log.
The work directory is the directory where EMSRV is installed, for
example, c:\VajSrv. Users are required to log on to VisualAge for Java,
using a valid user name and password that is in the passwd.dat file. This
file must be located in the work directory.

Parameter Platform Description

-v UNIX Verifies password using system authorization

-W<path> OS/2,
NT,
NetWare

Specifies the EMSRV work (repository) directory. The
directory <path> must be a valid path for which the
EMSRV account has read/write access.

-w all Specifies that EMSRV should track locks for each
connection

-xd UNIX Specifies valid devices for the database

-xn UNIX Allows databases to be opened on nonnative devices

EMSRV 131

EMSRV on Windows NT
In a Windows NT environment, a user account must be defined to run
EMSRV. This user is referred to as the EMSRV account and must be granted
the Advanced User Right “Act as part of the operating system.” The user
must also be a member of the administrators group and have read-write
access to the directory where EMSRV is installed.

The program can be started in two ways; from the command line, or as a
Windows NT service.

Start EMSRV from the Command Line
To following example is run from the command line in the directory where
EMSRV is installed:

emsrv -u EMSRVUSER -p rainy -W d:\VajSrv\Repository -s1 -rp

This command starts EMSRV with user EMSRVUSER, password rainy, and
work directory d:\VajSrv\Repository. Warning messages are logged along
with error messages to emsrv.log in the work directory. Users are required to
enter a password each time they start VisualAge for Java or attempt to
change the workspace owner. EMSRV validates the user name and password
on the server machine.

Install and Start EMSRV As an NT Service
From the directory where EMSRV is installed, enter emsrv -install at a
command prompt. This installs EMSRV into the Windows NT registry.

Startup parameters can be entered as emsrv -install <parms>:

emsrv -install -u EMSRVUSER -p rainy -rp

To start the EMSRV service, use one of the following methods:

 ❑ From the Control Panel:

 • Open the Services window.

 • Select the EMSRV process.

 • Select Automatic for the startup type if suitable parameters were
entered with the emsrv -install <parms> command.

 • Optionally add startup parameters, for example: -s1 -M40 -lc

To enter a working directory with the -W parameter, include an extra
backslash for each backslash in the path.

 • Click on Start and EMSRV starts as a service.

132 VisualAge for Java Enterprise Version 2 Team Support

 ❑ Using the Service Controller utility (sc.exe). This utility is available for
Windows NT 4.0 as part of the Resource Kit.

 • Enter sc start -u EMSRVUSER -p rainy from the command line.

 • Query the service status, using sc query EMSRV.

 • Stop the service, using sc stop EMSRV.

When running as a service, EMSRV does not have to interact with the
desktop, and any error messages about startup or low disk space are written
to the Event Log.

EMSRV on UNIX
On UNIX platforms, the EMSRV process has the file access permissions of
the UNIX account that starts it. The account name that is used to start
EMSRV is referred to as the EMSRV account. The EMSRV account must
have sufficient rights to read, write, and create files in the directory where
the repository exists, and read and execute access on all parent directories.

Before running EMSRV you must determine whether your UNIX system is
using shadow passwords or not. If your system is using shadow passwords,
use emsrv.shadow. Otherwise, use EMSRV.

To run EMSRV, change to the directory where EMSRV is installed and start
the program. For example:

 ❑ Start EMSRV with lock tracking turned on and with logging of messages
to the console as well as the log file named logfile.

emsrv -w -lc -lf logfile
or
emsrv.shadow -w -lc -lf logfile

 ❑ Start EMSRV with native password verification, ignoring SIGQUIT
signals, and logging only error messages.

emsrv -v -iq -s2
or
emsrv.shadow -v -iq -s2

To shut down EMSRV on UNIX, the account password is required.

© Copyright IBM Corp. 1998 133

C EMADMIN
In this appendix we describe the details of the EMADMIN utility and provide
examples of its use.

The EMADMIN command utility enables you to communicate with EMSRV
from a workstation. EMADMIN runs on Windows 95, Windows NT 4.0, OS/2
Warp 4.0, AIX 4.2.1, HP-UX 10.20, and Sun Solaris 2.6.

134 VisualAge for Java Enterprise Version 2 Team Support

EMADMIN Installation
The EMADMIN utility is provided in the directory on the server where
EMSRV was installed, for example, C:\VajSrv. Copy the emadmin.exe file to
the workstation where you want to run this utility. You can install it on the
EMSRV server, or on a separate system where the administrator is working.
Do not install it on client developer workstations.

Using EMADMIN
The EMADMIN command has the following syntax:

emadmin [command] [host] [command modifier] [option]

Each command allows a host name or IP address to be specified if EMADMIN
is not run on the same machine as EMSRV. Additionally, each command
accepts the -P option to specify a port number other than the default 4800.

EMADMIN Commands
The EMADMIN program requires a valid command as a parameter. Running
just EMADMIN with no command line parameters lists the valid commands
and their options. The commands are:

Command Description

bench Run bench tests between the client TCP stack and the server
stack. These tests can help investigate performance problems.

copy Copy a VisualAge for Java repository on the server.

list Display the current EMSRV connection list, or information about
a specific connection.

opts Display current EMSRV options.

stat Display EMSRV statistics.

stop Shut down EMSRV remotely or kill an active connection.

We describe each command below and provide examples.

EMADMIN 135

EMADMIN Bench
The bench command enables IBM to determine whether there are
performance problems between the client and server TCP stacks. It may take
up to 5 minutes to run, depending on the machine.

The command runs a series of read tests on a temporary repository to
determine the performance for different client buffer sizes. Delete this
temporary repository after the test has been completed.

You may be asked to perform this test and submit the log files to IBM
technical support for analysis if they suspect a performance problem between
the client and the server.

Command modifiers are listed in Table 7.

Table 7. Command Modifiers for EMADMIN Bench

Example:

emadmin bench 9.1.150.42 -t mytest.dat -l mytest.log -s 10000

This command runs a bench test between the client where the command is
executed and the server at 9.1.150.42. The bench sweep size is 10 KB and the
files created are as named. They are created in the current directory where
EMADMIN is installed.

Command
Modifier

Description

-t <tname> Specifies the name of the test library to create. The default name is
testlib.dat.

-l <lname> Specifies the name of the log file to which to write results. If the file
exists, it will be overwritten. By default, a log file, embench.log, is
created.

-s <size> Specifies the size of the sweep. The size must be between 4096 and
65536.

136 VisualAge for Java Enterprise Version 2 Team Support

EMADMIN Copy
The copy command enables you to make a copy of a valid VisualAge for Java
repository. You can copy within a single EMSRV process or between different
EMSRVs running on different machines. The command locks the repository
to prevent it from being changed while the copy is in progress.

The syntax of the command is:

emadmin copy <source> <dest> [command modifiers]

where <source> is a valid VisualAge for Java repository, and <dest> is a file
specification for the copy. The destination repository file must be accessible to
the EMSRV account. The format is: ip_address:filename.

Command modifiers are listed in Table 8.

Table 8. Command Modifiers for EMADMIN Copy

Example:

emadmin copy 9.1.15.2:d:\repos\ivj.dat 9.1.15.2:d:\repos\backup.dat -p mypw

This command copies ivj.dat to backup.dat on 9.1.15.2. The repository will be
locked to prevent any access from clients while the copy takes place. The copy
command can be run in a batch file with the password supplied as part of the
command line, which, along with the quiet option, ensures that no prompting
occurs during the batch process.

Sample output of a local copy operation run on the server:

D:\VAJSRV>emadmin copy ivj.dat ivjcopy4.dat
...
Enter the password of the user who started EMSRV : *******

Copying localhost:ivj.dat => localhost:ivjcopy4.dat

Locking entire source file
[0:52233776] <=== running counter during copy operation
Unlocking source

Repository localhost:ivj.dat copied to localhost:ivjcopy4.dat.

Command
Modifier

Description

-o Specifies that the destination file may be overwritten without
prompting

-p <pwd> Specifies the password of the user who started EMSRV

-q Indicates a quiet copy without prompting about potential problems
from low disk space

EMADMIN 137

EMADMIN List
The list command lists all current connections to an EMSRV. The command
modifiers allow requesting more information about connections.

Use this command to verify that all clients are disconnected before stopping
EMSRV.

Command modifiers are listed in Table 9.

Table 9. Command Modifiers for EMADMIN List

Example:

emadmin list 9.1.150.42

This command lists all currently active connections. Each connection has an
associated ID, which you can use as the connection number in subsequent list
commands, for example:

emadmin list 9.1.150.42 -s5

This command displays statistics for connection ID 5.

Sample output:

D:\VAJSRV>emadmin list 9.1.150.42

EMADMIN 6.22
Copyright (C) IBM Corporation 1989-1998
Server Type : EMSRV
Server Version : EMSRV 6.22 for Windows NT Apr 4 1998 15:36:56 (AEST)
==
EMSRV Connection list for: 9.1.150.42

 Active Last
 ID IP Address Locks Request Repository
--
 0 9.1.150.41 0 09:06:34 ivj.dat
 2 9.1.150.66 0 09:04:42 ivj.dat
--
==

Command
Modifier

Description

-s <cnum> Displays the statistics for the connection specified by the connection
number

-l <cnum> Displays the active locks for the connection specified by the
connection number

138 VisualAge for Java Enterprise Version 2 Team Support

EMADMIN Opts
The opts command enables you to display the current options on an EMSRV
process. The command modifier is listed in Table 10.

Table 10. Command Modifier for EMADMIN Opts

Example:

emadmin opts 9.1.150.42

This command displays the current options on the EMSRV running on the
specified host machine.

Sample output:

EMSRV Options for: 9.1.150.42
--
EMSRV 6.22 for Windows NT Apr 4 1998 15:36:56 (AEST) Options

Maximum number of concurrent connections = [256]
Working directory = [d:\emsrv622\repository]
Password checking = [Disabled]

Logging level = [Error]
Log file name = [emsrv.log]

Allow connection to truncate libraries = [true]
Track EMSRV statistics = [true]
Track process file locking statistics = [false]
Process activity timeout value = [360] sec.
Sleep on lock value = [1000] msec.
Free disk space warning threshold = [10000] KBytes
Restrict libraries to local filesystems = [false]
--

Command
Modifier

Description

-s <level> Specifies a new logging level for EMSRV and enables you to change
the logging level without having to access the machine where
EMSRV is running. Valid levels are:
0 Log all operations and messages
1 Log warnings and error
2 Log only errors

EMADMIN 139

EMADMIN Stat
The stat command displays statistics for an EMSRV process. There are no
command modifiers for the stat command.

Example:

emadmin stat 9.1.150.42

This command displays statistics for EMSRV running on the specified host
machine. Sample output is provided here to show the information produced
by the command:

EMADMIN 6.22
Copyright (C) IBM Corporation 1989-1998
Server Type : EMSRV
Server Version : EMSRV 6.22 for Windows NT Apr 4 1998 15:36:56 (AEST)
==
EMSRV Statistics for: localhost
--
EMSRV 6.22 for Windows NT Apr 4 1998 15:36:56 (AEST)

Total Connects: 33 Total Disconnects: 30
Total Opens: 42 Total Closes: 38
Active Locks 0 Unexpected Connection Closes: 0
Total Locks: 4696 Total Unlocks: 4696
Total Reads: 48051 Total Writes: 7270
Total Reads Failed On Lock: 0 Total Locks Failed On Lock: 25
Times Lock Limit Hit: 0
Total Requests Serviced: 68114 Requests in last interval: 0
Largest Packet Sent: 32780 Largest Packet Received: 32784

Server Has Been Alive For: 2 Days 0 Hours 34 Minutes 13 Seconds
Server Working Directory : f:\VajSrv\repository
--
==

140 VisualAge for Java Enterprise Version 2 Team Support

EMADMIN Stop
The stop command is used to close a connection to EMSRV. It can be used to
terminate a connection that can no longer communicate with the client.

The command modifiers are listed in Table 11.

Table 11. Command Modifiers for EMADMIN Stop

Example:

emadmin stop 9.1.150.42 -k5

This command terminates connection number 5. Use the list command to
determine which connection number you want to terminate.

The EMSRV process is stopped completely if no connection number is
provided.

Sample output:

F:\VAJSRV>emadmin stop 9.1.150.42

EMADMIN 6.22
Copyright (C) IBM Corporation 1989-1998
Server Type : EMSRV
Server Version : EMSRV 6.22 for Windows NT Apr 4 1998 15:36:56 (AEST)
Enter the password of the user who started EMSRV : *****

Server has been scheduled to stop.

Command
Modifier

Description

-k <cnum> Specifies the connection number to terminate

-p <pwd> Specifies the password of the user who started EMSRV

© Copyright IBM Corp. 1998 141

D Migration
In this appendix we cover migration considerations when you move from a
stand-alone VisualAge for Java Professional or VisualAge for Java
Enterprise Version 1.0 environment to the VisualAge for Java Enterprise
Version 2 environment.

142 VisualAge for Java Enterprise Version 2 Team Support

Overview
The team enhancements to VisualAge for Java Enterprise Version 2 bring
new and powerful capabilities to Java developers. We have long known that
enterprise application development, using Java or any other language, is not
done by a single developer. Now we have a robust set of tools that enable
many developers to concurrently access a shared repository.

We know that managing multiple users working at the same time on
program elements stored in a common repository brings along the
requirement for functions like version control and change management.
VisualAge for Java Enterprise team delivers these constructs by building on
the basis that we already know and are comfortable with from Version 1.0.

Probably the most prevalent change that we see in VisualAge for Java
Enterprise team support is the idea of ownership. In the Version 1.0 single
developer environment, we had no ownership imposed on our program
elements because we did not have to concern ourselves with other developers
accessing them. Now we can think of all elements as having a single owner.
When we export our packages and projects to a team repository, we see that
they have a single user object associated with them—the administrator.

Migration from a stand-alone environment can be simply stated as the
process of importing your work from a single user repository and then adding
the appropriate team and ownership information so you can work with your
program elements in a team environment.

In the remainder of this appendix, we detail the steps to take when moving
your work products from a single user to a team repository. As with most
migrations, there are several strategies. We present the options, and your
project environment and policies will help you decide which strategy is best
for you. The process is independent of whether you are migrating from
VisualAge for Java Enterprise Version 1.0 before the availability of the team
support, or VisualAge for Java Professional, which is a stand-alone
environment.

Migration 143

The General Process
Figure 47 shows in a high-level diagram how individual developers can
migrate their work from a stand-alone repository to a multiuser repository.

Figure 47. Migration from Single-User to Team Environment

You should merge in the way you merged your team work before creating a
code baseline. Therefore the merging environment does not necessarily reside
on a separate machine. It could be either any appropriate developer

Single-User Environment

Merge Environment

Team Environment

shared
repository

export

A B

B

144 VisualAge for Java Enterprise Version 2 Team Support

workstation or any other workstation you usually use for merging your team
work. This scenario typically applies to large teams, where the package and
project owners are responsible for the integrity of the program elements, and
the administrator is not necessarily involved in the development.

In Figure 47, A and B are indications of alternatives that are available
depending on whether or not you want to create an extra repository
containing only the program elements you want to migrate. If you create a
separate repository to import from, you have an additional backup copy of all
of your work done with VisualAge for Java Enterprise Version 1.0.

Detailed migration steps are provided in Table 12.

Table 12. Migration Steps from VisualAge for Java Enterprise Version 1.0

Step Description

1

Version and release all program elements you want to migrate into the
team environment. Merge all work of existing repositories into one
repository, using the process you have already established in your team.
Make a backup copy of the repository.

2

Copy your Version 1.0 repository to a another directory or another drive to
ensure that it will not be deleted accidentally when you install the new
version of VisualAge for Java Enterprise. It must be a directory that you
can access afterwards from the newly installed VisualAge for Java
Enterprise version.

3

Uninstall Version 1.0 of VisualAge for Java Enterprise and install the new
team-enabled version.
Note: Uninstall is necessary only when installing the new version on the
same machine.

4

Start the new version of VisualAge for Java Enterprise.
Set up the team environment and define all users who will work with the
new repository.
Note: You can start VisualAge for Java Enterprise with or without EMSRV
running. This does not affect the next steps.

5
Use the Import option to connect to your old Version 1.0 repository and
import all projects and packages into your new repository.

6
All imported program elements are owned by the administrator by default.
Add the appropriate user names to the different package groups. Assign
ownership to projects and packages and types.

7
If necessary, repeat steps 5 and 6 for other repositories your team used
before.

Migration 145

Some steps may vary depending on the machine on which the new version is
installed. Steps 1 and 2 will be different if you decide to export your work
from the old repository into another repository and import from that
repository.

Whether you export from a stand-alone repository into a multiuser
repository, or import into your team repository from a stand-alone repository,
the resulting ownership of your program elements is the same. They will be
owned by the administrator.

Figure 48 shows a project after it was imported from a VisualAge for Java
Enterprise Version 1.0 repository. We are browsing this project from the
Managing pane of the team-enabled version. Note the ownership of all
program elements as shown in the bottom three panes of this browser. Also
notice that the version information is retained with the elements as they are
migrated.

Figure 48. Project Imported from a Version 1.0 Repository

146 VisualAge for Java Enterprise Version 2 Team Support

Considerations
If you work in a small team, you may consider importing from each of the
developer workspaces separately and consolidating all work directly in the
new team repository. This is a valid procedure if the administrator knows
which edition of which program elements make up the new baseline.

You may find when you import projects or packages from different developer
workspaces that they have the same version name. As long as the creation
dates of these versions are different, the VisualAge for Java Enterprise
server loads multiple versions with the same name into the repository
without overriding existing code. As a result you can have two (or more)
versions of a program element with the same name but different creation
dates. Each of these program elements is handled as a different edition.

Figure 49 and Figure 50 show us a package that first existed in the
repository as Version 1.1 and then was imported again having the same
version name but different class versions.

Figure 49. Package Versions with the Same Name

Migration 147

Figure 50. Package Version 1.1 Imported with the Same Version Name

When you notice two versions of a package with the same version name, open
the properties of each of the versions, as we have done here, and you will see
that the creation time stamp is different. Of course only one of these
packages can exist in any workspace at any one time.

148 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 149

E Special Notices
This publication is intended to help VisualAge for Java developers work in a
team using the team support provided by VisualAge for Java Enterprise. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge for Java Enterprise.
See the PUBLICATIONS section of the IBM Programming Announcement
for VisualAge for Java for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which
IBM operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the

150 VisualAge for Java Enterprise Version 2 Team Support

IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and
integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX IBM
OS/2 VisualAge

Special Notices 151

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

152 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 153

F Related Publications
The publications listed in this appendix are considered particularly suitable
for a more detailed discussion of the topics covered in this redbook.

154 VisualAge for Java Enterprise Version 2 Team Support

International Technical Support Organization
Publications

For information about ordering these ITSO publications, see “How To Get
ITSO Redbooks” on page 157.

 ❑ Programming with VisualAge for Java, published by Prentice Hall, ISBN
0-13-911371-1, 1998 (IBM order number SR23-8478)

 ❑ Application Development with VisualAge for Java Enterprise, SG24-5081

 ❑ Creating Java Applications with NetRexx, SG24-2216

 ❑ Unlimited Enterprise Access with Java and VisualAge Generator,
SG24-5246

 ❑ VisualAge Generator Client/Server Communications, SG24-4237

 ❑ VisualAge Generator Version 3.0 System Development Guide, SG24-4230

 ❑ From Client/Server to Network Computing, A Migration to Java ,
SG24-2247

 ❑ CBConnector Overview, SG24-2022

 ❑ CBConnector Cookbook Volume 1, SG24-2033

 ❑ Connecting the Enterprise to the Internet with MQSeries and VisualAge for
Java, SG24-2144

 ❑ Factoring JavaBeans in the Enterprise, SG24-5051

 ❑ JavaBeans by Example: Cooking with Beans in the Enterprise, SG24-2035,
published by Prentice Hall, 1997

 ❑ Java Network Security, SG24-2109, published by Prentice Hall, 1998

 ❑ Building AS/400 Applications with Java, SG24-2163

 ❑ Accessing the AS/400 System with Java, SG24-2152

 ❑ World Wide Web Programming: VisualAge for C++ and Smalltalk,
SG24-4734, published by Prentice Hall, 1997

 ❑ Programming with VisualAge for C++ for Windows, SG24-4782, published
by Prentice Hall, 1997

 ❑ Object-Oriented Application Development with VisualAge for C++ for OS/2,
SG24-2593, published by Prentice Hall, 1996

 ❑ VisualAge and Transaction Processing in a Client/Server Environment,
GG24-4487, published by Prentice Hall, 1995

Related Publications 155

Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

Other Publications
This publication is also relevant as a further information source:

 ❑ Developing JavaBeans Using VisualAge for Java, Dale Nilsson and
Peter Jakab, published by John Wiley, ISBN 0-471-29788-7

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

156 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 157

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • PUBORDER – to order hardcopies in United States

 • GOPHER link to the Internet – type GOPHER WTSCPOK.ITSO.IBM.COM

 • Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

 • IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

 • REDBOOKS category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 • Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the
keyword subscribe in the body of the note (leave the subject line blank). A category form and
detailed instructions will be sent to you.

158 VisualAge for Java Enterprise Version 2 Team Support

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders (Do not send credit card information over the Internet) – send orders to:

 • Telephone orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • Direct Services – send note to softwareshop@vnet.ibm.com

 • On the World Wide Web

 • Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the
keyword subscribe in the body of the note (leave the subject line blank).

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer
Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

 159

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Quantit

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to

160 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 161

Index

A
administrator

compacting repository 79
definition 16
purge 113
role 48, 75, 76
tasks 77

applet
code base 70

architect 48
automatic naming 19

B
backup

repository 92
baseline 35, 43, 143

final 61
initial 50
rolling 38, 40
standard 38

C
change

management 25
reconciliation 38
repository 96

class 14
add from repository 126
compare 57
create 124
developer 49
owner 49
reconciliation 37
release 23, 60, 124
scratch edition 125
state transitions 123
version 53, 124

CLASSPATH 70
compacting

repository 79, 89
compare

classes 57
configuration 95

management 22

D
database specialist 48
developer 48
development

patterns 31
split stream 17, 41

E
edition 18

open edition 19
scratch edition 21

EMADMIN 91, 92, 133
bench command 135
copy command 93, 136
installation 134
list command 137
opts command 138
stat command 139
stop command 140

EMSRV 91, 99, 127
ENVY/Manager Server 9
installation 7
NT service 131
OS/2 130
parameters 128
repository size 78
server platforms 9
UNIX 132
Windows NT 131

export 43, 61

F
full name

user definition 17

H
history

program elements 21
HTML

162 VisualAge for Java Enterprise Version 2 Team Support

generate 61

I
ide.ini 8, 96
import 108, 115
installation 5, 6

J
JAR 61, 70
JDK 66
JUM

introduction 46
repository 47

JUM Software Associates
see JUM

M
management

query 65, 67
repository 75
workspace 63

managing page 64
merge 37, 58
method 15

browse editions 56
release 23

migration 141

N
network name 12

user definition 17

O
open edition 18
organization

projects 66
ownership 3

P
package 14

add from repository 51, 121
baseline 36

copy between repositories 101
create 51, 115
delete 79, 120
import 116
management 73
open edition 115
organization 66
owner 49, 52
purge 82
release 24, 52, 60, 116
same name 146
scratch edition 119
state transitions 114
version 118

package group 17, 53
owner 17

passwd.dat 11
password 11

file 11
protection 11

program elements 14
delete 79
history 21
managing 64
migration 144
purge 80
relationships 15
release 22
restore 88
state transition 105
version 18

project 14
add from repository 109
baseline 43
create 49
delivery 43
import 108
leader 48
life cycle 49
manager 48
open edition 108
organization 66
owner 49
purge 86, 113
resources 70
scratch edition 111
state transition 107
team 48
version 61, 110

Index 163

purge
program elements 80

R
reconciliation 37, 57
release

program elements 22
repository 2, 9, 16

accessing through EMSRV 9
backup 92
change command 96, 100
cleanup 78
compacting 79
configuration 95
connect 96
delete 80
explorer 65, 88
local 97
management 75
migration 144
remote 97
size of 78

requirements 48
resource files

managing 72
resources 63

files 70, 72
project 70
shared directory 70

roles 48
administrator 76

S
scratch edition 18, 21, 55, 111, 119
server

platforms 9
split stream development 41
state transitions 105
system elements 14, 16

T
TCP/IP 2, 9, 97
team environment

architecture 10
installation 6
overview 2

team server 7
type 14

management query 68

U
unique name

user definition 17
user 17

administrator 7, 76
attributes 17
creating 7, 77
deleting 77
implicit creation 77
package group owner 17

user interface specialist 48

V
version

automatic naming 19
control 18
management 18
proposed naming 20

W
workspace 2

configuration 95
connect 96, 97
copy 103
management 63
managing page 64
multiple 104
owner 8

164 VisualAge for Java Enterprise Version 2 Team Support

© Copyright IBM Corp. 1998 165

ITSO Redbook Evaluation

VisualAge for Java Enterprise Version 2 Team Support
SG24-5245-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

24
5-

00

VisualAge for Java Enterprise Version 2 Team Support SG24-5245-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	1 Introduction
	Overview

	2 Installation and Setup
	Installation of the Team Environment
	Accessing the VisualAge for Java Enterprise Server
	Password Protection for Clients

	3 Understanding the Basics
	Program and System Elements
	Program Elements
	System Elements

	Version Management
	Open Edition
	Version
	Scratch Edition
	History of Program Elements

	Configuration Management
	Releasing Program Elements

	Change Management
	Ownership
	Team Roles

	4 The Team Development Process
	Activity Patterns for Daily Development
	The Basic Development Pattern
	Single Package, Single Developer
	Single Package, Multiple Developers
	Multiple Packages, Multiple Developers
	Multiple Parallel Streams

	Project Wrapup and Delivery

	5 Team Java in Action
	Introducing JUM Software Associates
	Current Environment

	A New Project for Mr. Bean’s U-Learn 2-Drive School
	Application Requirements
	The Project Team

	Project Life Cycle
	Sample Activity 1: Creating an Initial Baseline
	Sample Activity 2: Developing New Classes
	Sample Activity 3: Modifying Existing Program Elements
	Sample Activity 4: Consolidating Class Changes for Release
	Sample Activity 5: Creating a Final Baseline for Application Delivery

	6 Workspace Management
	Managing Program Elements
	Project Organization
	Package Organization
	Management Query
	Project Resources
	Managing Resource Files

	7 Repository Management
	The Role of the Administrator
	Repository Cleanup
	Deleting and Versioning Program Elements
	Purging Program Elements
	Compacting the Repository
	Connect to New Repository

	Repository Backup
	Scenario 1: Using EMADMIN Copy Command
	Scenario 2: Using Operating System Commands

	8 Workspace and Repository Configuration Options
	The Basics of Connecting to a Repository
	Remote Connection to a Repository
	Connecting to Two Repositories
	Switching between Two Clients and Two Repositories

	Multiple Workspaces

	A Program Element State Transitions
	Project State Transitions
	Not Existing -> Open Edition (1)
	Not Existing -> Repository Only (2)
	Repository Only -> Version/Open Edition (3)
	Version -> Open Edition (4)
	Open Edition -> Version (5)
	Version -> Scratch Edition (6)
	Scratch Edition -> Open Edition (7)
	Scratch Edition -> Not Existing (8)
	Version/Open Edition -> Repository Only (9)
	Repository Only -> Not Existing (10)

	Package State Transitions
	Not Existing -> Released Open Edition (1)
	Not Existing -> Repository Only (2)
	Released Open Edition -> Released Version (3)
	Released Version -> Open Edition (4)
	Open Edition -> Released Open Edition (5)
	Open Edition -> Version (6)
	Version -> Released Version (7)
	Version -> Open Edition (8)
	Version/Released Version -> Scratch Edition (9)
	Scratch Edition -> Open Edition (10)
	Scratch Edition -> Not Existing (11)
	(Released) Open Edition/(Released) Version -> Repository Only (12)
	Repository Only -> Open Edition/Version (13)
	Repository Only -> Not Existing (14)

	Class State Transitions
	Not Existing -> Open Edition (1)
	Open Edition -> Version (2)
	Version -> Released Version (3)
	Version/Released Version -> Open Edition (4)
	Version/Open Edition/Released Version -> Repository Only (5)
	Repository Only -> Version/Open Edition (6)
	Repository Only -> Not Existing (7)

	B EMSRV
	EMSRV Startup Options
	Using EMSRV
	EMSRV on OS/2
	EMSRV on Windows NT
	EMSRV on UNIX

	C EMADMIN
	EMADMIN Installation
	Using EMADMIN
	EMADMIN Commands
	EMADMIN Bench
	EMADMIN Copy
	EMADMIN List
	EMADMIN Opts
	EMADMIN Stat
	EMADMIN Stop

	D Migration
	Overview
	The General Process
	Considerations

	E Special Notices
	F Related Publications
	International Technical Support Organization Publications
	Redbooks on CD-ROMs
	Other Publications

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Index
	ITSO Redbook Evaluation

