

# PECVD barrier coating of plastic bottles

Dr. H.Grünwald

Tetra Pak Plastic Packaging R&D GmbH, Darmstadt, Germany





## **Contents**

- 1. Introduction to plastic containers
  - 1.1 Beverage bottles: advantages, production, problems
- 2. The industry is struggling to offer the best barrier technology, survey
  - 2.1 Effects of permeation and migration
  - 2.2 Improvement of diffusion barrier performance
- 3. Barriers by thin film coating processes
  - 3.1 Plasma chemical deposition from the vapour phase as an example: Glaskin ™ process of Tetra Pak Equipment, process, results
- 4. Recycling of coated plastic containers



etra Pak 5. Conclusion



## 1.Plastics as Container Material

In competition with: Glas

Metal

Paper / Paper board

## **Specific advantages:**

- Design shape (additional functions) and colour flexibility
- Unbreakable
- Corrosion resistance
- Low packaging weight

## **Specific problems:**

- Recycling system
   for such versatile materials
- mechanical stability
- low decomposition rate
- partly insufficient diffusion barrier effect





#### 1.1 Example: Beverage bottles

#### **Base material** (among others):

**PEHD: Milk** 

**PET:** Mineral water

"Carbonated soft drinks" CSD

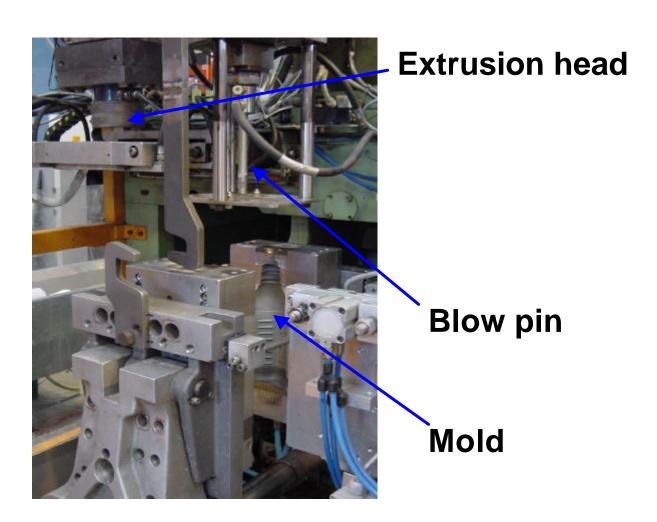
**Beer and Juice** 

#### **Advantages:**

- Design flexibility: Attractive shape Colour
- Additional functions possible (Handle, big-neck, screw closures)
- Light weight of packaging and cover packaging

#### **Problems:**

- Recycling system
- partly insufficient diffusion
   barrier effect against CO<sub>2</sub>, O<sub>2</sub>,
   H<sub>2</sub>O, flavours, plastic
   constituents (acetaldehyde)

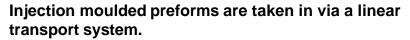

#### **Production:**

- Extrusion Blow Moulding
- Injection moulding followed by Stretch Blow Moulding





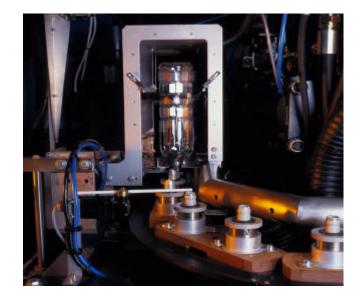
## **Extrusion Blow Molding**












During a transition period in the oven they are conditioned and taken to the moulds.

After an initial mechanical stretching and pre-blow at 10 bar, the preform is fully blown to a bottle at 40 bar.









## Glaskin<sup>™</sup> 2. The industry is taking efforts to offer the best barrier technology

#### 2.1 Effects of permeation and migration on filled beverage bottles

| <u>Substance</u>   | Diffusion fro | m → to    | <u>Effect</u>                                   |
|--------------------|---------------|-----------|-------------------------------------------------|
| O <sub>2</sub>     | outside       | → inside  | Degradation of dyestuff, flavour and vitamine C |
|                    | wall          | → inside  | " "                                             |
| CO <sub>2</sub>    | inside        | → outside | recessive foam and pearl effect                 |
| H <sub>2</sub> O   | inside        | → outside | small (slight) fill level                       |
|                    | outside       | → inside  | Moisturisation of dry goods                     |
| Flavours           | inside        | → outside | Flavour loss                                    |
|                    | wall          | → inside  | Flavour transition from material                |
|                    | inside        | → wall    | Flavour transition from material                |
| Plastic components | wall          | → inside  | Odour debasement                                |

## **Conclusion: Inside coating is preferable!**





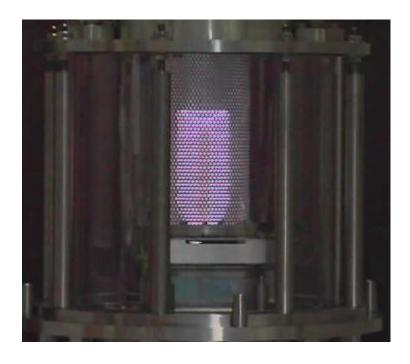
## 2.2 Improvement of diffusion barrier performance

| Methods                     | Basic Material | Barrier against | Application     | Problem             |
|-----------------------------|----------------|-----------------|-----------------|---------------------|
|                             |                |                 |                 |                     |
| Barrier plastic             | PET,PEN        | CO2, O2         | Beverage        |                     |
|                             | PE,PP          | H2O             | Fuel, cosmetics |                     |
| <u>Copolymer</u>            | TPA-IPA        | II II           |                 |                     |
| Polymer mixture             | PET-PEN        | "               |                 | Recycling           |
| Multilayer structure        | PET,           | CO2, O2         | Beer            | Recycling           |
|                             | PET, PA        |                 |                 |                     |
| Nano composites             | PE             |                 |                 | Recycling           |
|                             | PET            | CO2, O2         |                 | Opt. transmission   |
|                             |                |                 |                 | Recycling           |
| "Active" plastics           | PET            | O2              | Beer            | Long-term stability |
| with O2- scavenger          |                |                 |                 |                     |
| Liquid coating              | PET            | 02              | CSD, juice      | Lacquer application |
| (Lacquer)                   |                |                 |                 |                     |
| "Dry"coating<br>(in vacuum) |                |                 | Beer, juice,CSD | Throughput          |





## Glaskin™ 3. Deposition of barrier layers by vacuum thin film **techniques**

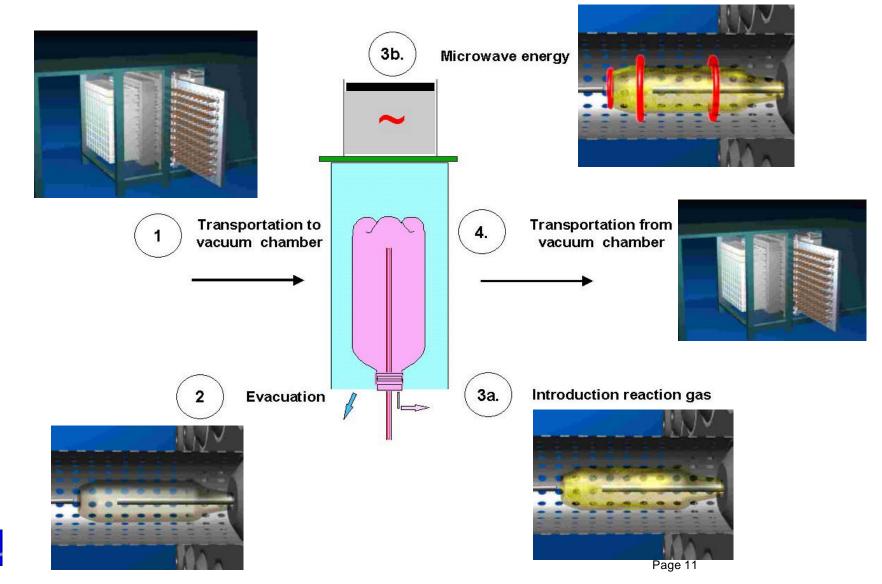

|                          | a) Plasma-assisted Vacuum Evaporation | b) Plasma Chemical Vapour Deposition |  |
|--------------------------|---------------------------------------|--------------------------------------|--|
|                          |                                       | (PCVD)                               |  |
| Basic raw material       | rigid, (liquid) + gaseous             | (rigid), (liquid) + gaseous          |  |
|                          | Si+O <sub>2</sub>                     | Si-compound, hydrocarbons            |  |
| Coating material         | SiO <sub>2</sub>                      | SiO <sub>2</sub> , C:H/DLC           |  |
| Pressure                 | 10 <sup>-4</sup> mbar                 | 10 <sup>-1</sup> mbar                |  |
| Vapour dispersion        | directional                           | not directional                      |  |
| <b>Coating formation</b> | condensation                          | chem. reaction                       |  |
| Coating thickness        | 30-50 nm                              | 20-30 nm/50 nm                       |  |
| Coating side             | outside                               | inside or outside                    |  |





## 3.1.PCVD coating inside PET bottles by Tetra Pak

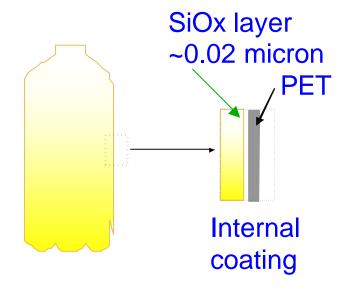





- Proprietary Tetra Pak technology
- Internal deposit of an extremely thin Silicon Oxide coating in a PET bottle
- Cold plasma deposition process






## **Glaskin™ Coating Process Description**







#### Glaskin<sup>™</sup> Coating is thin!



#### **Thinner Coatings have**

- more flexibility
- lower stress

#### One newspaper sheet = 3500 Glaskin<sup>™</sup> coating layers

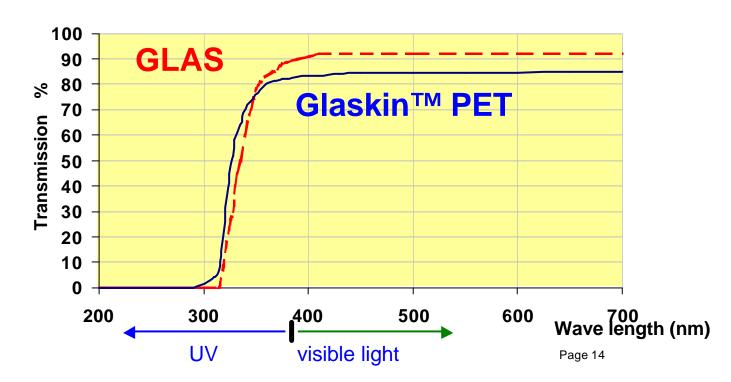
Newspaper sheet thickness = 0.07mm= 70 microns
Glaskin™ coating = 0.02 microns







#### Glaskin™ coating is


- is a glass-like, colourless coating
- an inert food contact surface
- is a high barrier performance
- strong in minimising migration
- compliance with food legislation





#### Glaskin<sup>™</sup> Glaskin<sup>™</sup> is transparent!

- ✓ Transparent Glaskin™ bottles have the same light transmission as transparent glass bottles
- ✓ Glaskin<sup>™</sup> coating is 100% transparent
- ✓ No changes of bottle transparency after coating (no clouding of bottles)







#### Glaskin ™ mechanical characteristics

Glaskin<sup>™</sup> coating is extremely thin and therefore flexible and can resist a high mechanical load with no impact on the barrier performance

#### **Drop tests:**

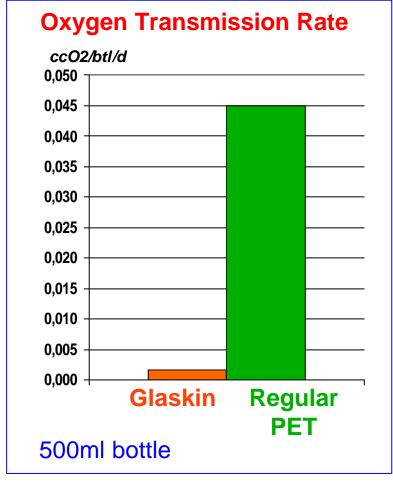
A free fall from a height of 1,5 m has no impact on filled bottles

#### **Deformation tests:**

20% deformation of bottle diameter shows no impact on the properties







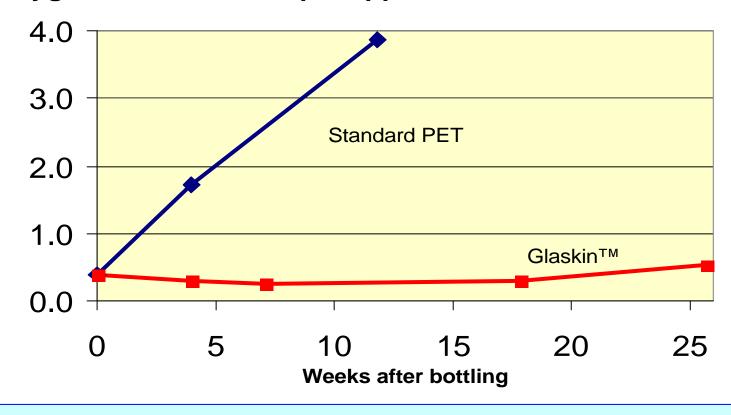

## Glaskin bottle gives high O<sub>2</sub> barrier for demanding products

Glaskin bottles have in various tests proven to have barrier properties as low as **0.0015** cc **O2/bottle/day** 

Barrier Improvement Factor (BIF) **10-30 times** compared to regular PET

BIF factor depends on performance of regular PET bottle, bottle shape, weight etc.



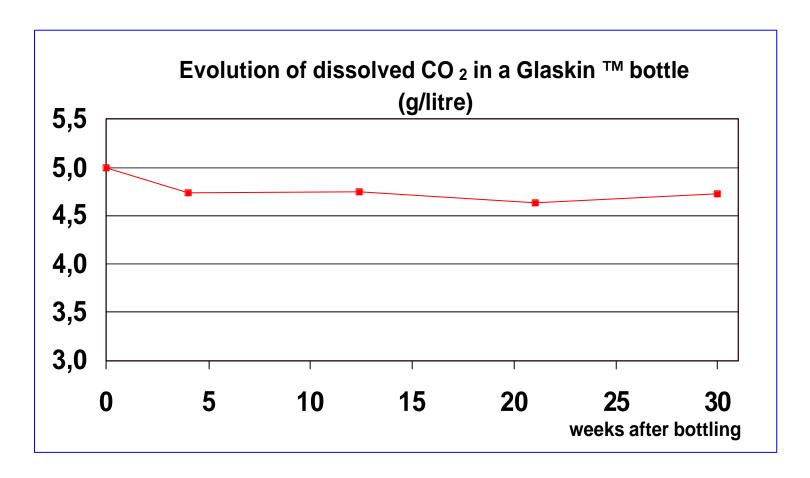





## Glaskin keeps oxygen out longer

Carbonated water

#### Oxygen dissolved in liquid, ppm

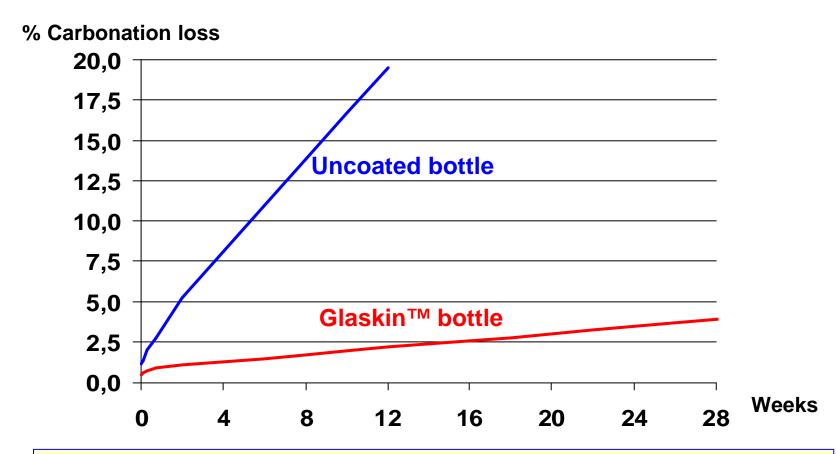



**Test basis**: Orbisphere analysis, 500ml bottles filled in a commercial line with deaerated carbonated water, barrier cap with 0<sub>2</sub> scavenger





#### Glaskin bottles have high CO<sub>2</sub> retention




**Test basis**: Orbisphere analysis, 500ml bottles filled in a commercial line with beer, barrier cap with 0<sub>2</sub> scavenger, storage at 23°C





### Glaskin bottles have high CO<sub>2</sub> retention





Method: Coca Cola FTIR method for CO<sub>2</sub> retention

Conditions: Storage at 23°C, 500 ml bottle, capped empty bottle

Carbonation to approx. 8 g/liter (4 vol/vol)



#### Glaskin™ reduces water loss

#### PET transmits water vapour

Loss depends on temperature and humidity

Water loss 0,5 – 1,0 ml/month at room temperature and 50 % relative humidity (500 ml standard PET bottle)

Glaskin<sup>™</sup> coating reduces water loss by more than a half compared to a standard PET bottle





#### Migration from the liquid into the bottle

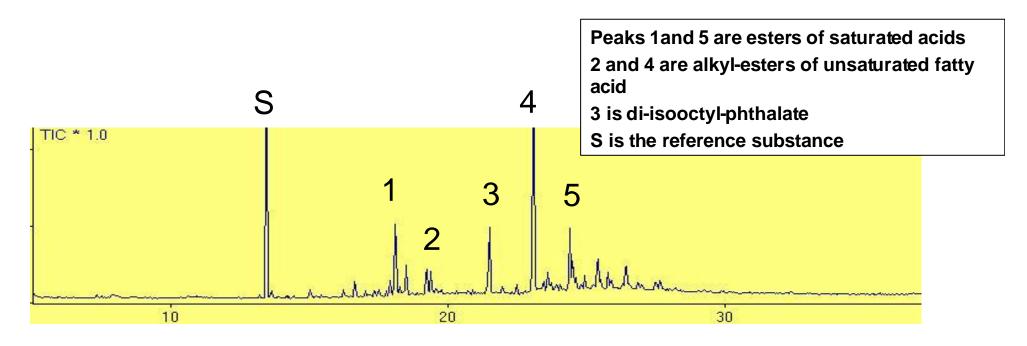
#### Test:

Coated and uncoated bottles were filled with orange juice and stored at 40°C – then analysed by Gas Chromotography.

#### **Result:**

The migration from product constituents (dlimonene) into the Glaskin coated bottle wall is not considerable being




15.000 times less than Mono-PET

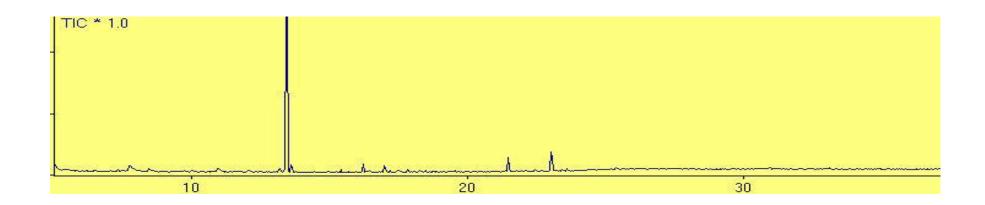




#### Results: Monolayer PET – bottle, uncoated

## **Substances migrated into product**




Concentration : 1=10-20  $\mu$ g/bottle, 2= 1-10  $\mu$ g/bottle, 3= 5-15  $\mu$ g/bottle, 4=100-150  $\mu$ g/bottle, 5=10-20  $\mu$ g/bottle





#### **Result: Glaskin™ inside coated - bottle**

## Nearly nothing has migrated into the product



# Also, acetaldehyde (AA) concentration was reduced at least by 50%





#### Glaskin<sup>™</sup> coating stops migration from PET walls into product

#### **Tests:**

- Coated and non-coated bottles tested
- Bottles filled with 95% ethanol, stored for 1, 5,10 and 20 days at 40°C
- Ethanol solution emptied and analysed by Gas Chromotography (GC)

#### **Results:**

Non-coated bottles: substances migrate from PET surface into ethanol solution

Glaskin™coated bottles: virtually nothing detected by GC





## **Product Launches**

## Spendrups Beer, Sweden:

450 & 500ml bottle, 28mm neck

Two brands in 2 bottle shapes

Supermarket distribution

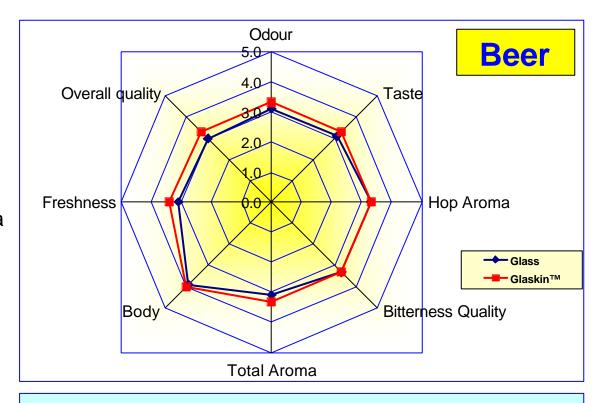
State liquor store distribution

Launched in the first part of 2000





<u>Picture:</u> First beer in Glaskin<sup>™</sup> bottles. Spendrup's "Norrlands Guld" launched March 2000 in Sweden. Second label Spendrup's "Original" launched July 2000.






## **Proven Product Quality:**

## Beer in Glaskin<sup>™</sup> rated equivalent to beer in Glass after 9 months

- Panel of 8 tasters from TUM Weihenstephan
- Blind comparison of glass and Glaskin<sup>™</sup> bottles
- 500 ml bottles, filled in a commercial line with a 12 plato flash pasteurised beer.
- Barrier Cap with O2 scavenger









## **Product Launches**

## Bitburger Beer, Germany:

500ml bottle, 38mm neck

Convenience stores and garage forecourt distribution

Launched in May 2000

Shelf life = 9 months





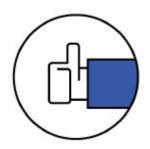


## **Product Launches**

## Zipfer (Brauunion), Austria

330ml bottle, 28mm neck

**Events** 


Launched in August 2001



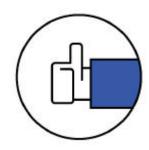




#### **Status of Tetra Pak Recycling Activities**



# Glaskin<sup>™</sup> coating has no effect on PET recycling


Bottle-to-Bottle recycling test with 100 % Glaskin™ was successful

Direct re-injection of 20 % Glaskin<sup>™</sup> production regrind tested successfull





#### **Results of B-to-B Recycling**



## 100% R-PET content:

No effect on any processing parameters attributable to residual Glaskin<sup>TM</sup> coating.

The bottles looked and performed in a virtually identical way compared to bottles from virgin PET.

Bottles were **not visually different** from the control bottles in yellowness.

Conclusion: Glaskin<sup>™</sup> coated recycled PET behaves like standard recycled PET



Source: PTI 2000



### 5. Conclusion

- Plastic with favourable application properties has been widely-used as material for containers, especially in beverage industry.
- Expectations on the barrier performance can be met with very different techniques
- Vacuum deposited thin film barrier coatings proved to be especially effective and recycling-friendly.

