
The Dark Side of Java
Conrad Weisert, Information Disciplines, Inc.
1205 Madison Park, Chicago, Illinois 60615

29August, 1997

I like Java. I use it for real-world applications. I’ve
chosen it as the vehicle for an introductory course in
object-oriented programming (OOP). I can do things
with Java that I can’t do with other tools.

But Java is far from the perfect tool that almost every
article and presentation has led us to expect. Some of
its flaws and shortcomings are minor irritations, but
others impose serious obstacles not only upon software
development and maintenance but also upon learning.

The “Java community” mentality

Java is new. We’re willing to put up with shortcomings
in a new tool, expecting them to get fixed eventually.
But with Java that’s less certain because of attitudes
held by some of its zealous promoters, who:

1. present Java’s major omissions as virtues,

2. justify its most annoying restrictions as protec-
tions against misuse,

3. explain a host of inconsistencies as contribu-
tions to simplicity,

4. assert that anything Java prevents you from
doing can’t be worth doing1.

Anyone who believes such things is hardly likely to
make proposals or initiate actions to fix the problems.

I recall no other language whose inner circle concerned
itself so much with constraining my programming style.
Such constraints might be tolerable if they were reason-
able, but the Java community2 is simply wrong about
much of this. Many of their prescriptions are at odds
with established principles of programming practice3,
which OOP has most certainly not repealed.

Say “No” to primitive data types

When we define an elementary item class in C++ we try
to make it look as much as possible like one of C’s
built-in data types. Thus, we might declare:

double unitPrice;

1 We encountered strikingly parallel attitudes in the Cobol

community of the 1970’s. (“But I’ve never needed to pass a
file name to a subroutine.”)

2 There’s no such body, of course, as a “Java community”, but
it’s a convenient term. I don’t mean open-minded professional
colleagues who use and like Java, but only those who aggres-
sively exhibit the attitudes described above.

3 A 20-year-old classic, Glenford Myers: Composite Structured
Design, Van Nostrand Reinhold, 1978, ISBN 0-442-89584-5,
still offers one of the best summaries of those principles.

and later, upon finding or building a good Money class,
change it to:

Money unitPrice;

confident that references to unitPrice in assignments,
comparisons, arithmetic operations, or function para-
meters that worked before will still work. In Java we
have the opposite extreme: Almost none of those re-
ferences will still work, and we’ll have to change almost
every reference to unitPrice!

The problem is that Java contains two nearly separate
expression languages: one for primitive (built-in) data
types, the other for reference (objects of programmer-
defined or library classes, as well as arrays) data types.

Various Java enthusiasts suggest three drastic remedies:

1. Just avoid primitive types for application-domain
data. Java provides library classes that wrap the
representation of primitive data, e.g. integers, in the
syntax and semantics of reference data. That’s a
high price, since reference data leaves much to be
desired in convenience, intuitiveness, readability,
and for the beginner, ease of learning.

2. Use only primitive data types for elementary items,
i.e. forgo the benefits of object-orientation for things
like amounts of money, dates, distances, and
weights. The benefits they ask us to forgo include
not only type safety, but also the localization of the
choice of data representation, one of the major
advantages of OOP. (Haven’t they heard of the
“Year-2000 crisis”?)

3. Continually convert back and forth between objects
and some publicly known external representation.4

This clumsy technique manages to combine disad-
vantages of OOP with disadvantages of non-OOP.

I explore this issue further in a companion paper, “Con-
ventions for Arithmetic Operations in Java”. which puts
a positive face on a bad situation by proposing a stan-
dard way of making the best of it.

More non-localization of type information

Worse yet, even among the built-in primitive types, Java
violates a basic principle of language design by
requiring the programmer to repeat type dependencies
throughout the program. Consider these four declara-
tions from a Calendar package:

4 A technique also common among beginning Smalltalk program-

mers. Accessor functions called value or getValue usually
indicate the use of this technique.

The Dark Side of Java 2 29 August, 1997

short daysPrYr = 365;
short daysPr4Yrs = daysPrYr * 4 + 1;
int daysPrCent = daysPr4yrs * 25 - 1;
int daysPr4Cents= daysPrCent * 4 + 1;

One of those four lines is illegal in Java5; which one?
Why? How can the programmer fix it?

Surprisingly, the problem is on the second line. For rea-
sons having to do with attributes of literal constants and
the result of arithmetic operations, the programmer
must, to get the code to compile, code an explicit cast:6

short daysPr4Yrs =
 (short)(daysPrYr * 4 + 1);

That’s no minor notational irritation; it’s a major impe-
diment to maintaining large programs. We preach the
virtues of localizing knowledge in a program, a key part
of modularity. For more than three decades every main-
stream programming language has supported the separa-
tion of data declaration from data manipulation. Now,
for no good reason, we’re told that the program must
repeat the type whenever it operates on a data item.

“We can live with that,” says the C programmer. “Just
use typedef to localize the type. We’ll still have to
code the casts, but at least we’ll only have to alter one
line of code if it ever changes.” Alas, not only is there
no typedef in Java, but Java gurus assure us that this
omission is a positive feature!

“Well, OK, but still no problem. Just make it a prepro-
cessor (#define) name.” Sorry, no luck there either.
Java wants to protect us from all those ugly misuses of
#define from misguided C programmers.

Should we just outlaw the short (16-bit) integers and
any other primitive types that cause this problem?

Pointers and references

Java avoids C++’s most cumbersome and error-prone
feature: the need to manage memory through explicit
pointer manipulation. This alone ought to render Java
more attractive as a teaching language than C++.

But Java hasn’t actually done away with pointers, only
with explicit pointer manipulation. Pointers are still
very much present in the guise of reference data, and

5 To conserve space we’ve omitted the usual qualifiers final,

static, and possibly public.
6 In this case, with a constant value that’s never going to change,

it was more expedient just to code:

 short daysPr4Yrs = 1461 but we still have
the problem wherever any program uses this item.

the programmer must be constantly aware of them.
They affect the syntax and semantics of:

1. assignment

2. comparison

3. parameter passing

4. arithmetic operations

Library classes

In characterizing software I reserve the term “abomina-
tion” for truly extreme examples. To my dismay one of
the first Java library classes I looked at turned out to
qualify: the Date class. It’s bad in so many ways, in-
cluding blatant violation of OOP principles, that it takes
a full-page course handout to describe its serious and
amazing flaws.7

I cite this example not because I’m worried about diffi-
culty in manipulating dates; after all, we can always
develop or find some other Date class. We have to
worry, however, about the competence and the attitudes
of the people we’re depending on to define a vital tool.
It’s alarming enough that a mainstream software deve-
loper would propose such an atrocious component, but
it’s truly appalling that so many in the Java community,
including textbook authors, would then embrace it and
present it unapologetically.

Obstacles to packaging reusable code

That example illustrates another Java shortcoming. On
discovering that the library Date class was useless, I
developed my own, modeled after a similar C++ class.
In the C++ version I had captured, using a combination
of macros and source file inclusion, a reusable pattern8

of arithmetic operations common to many numeric
types. So far I’ve found no way of doing that9 in Java;
I have no choice but to repeat the code pattern every
time I need it. If I ever want to make a correction or an
improvement, I’ll have to hunt through a daunting col-
lection of source code files.

Java zealots advise me to use an interface specification,
here, but that’s only an enforcement mechanism, not a
way of packaging actual code for reuse.

7 These comments refer to the Date class in JDK 1.0, now

completely redone (but not a lot better).
8 See my article: “Point-Extent Pattern for Dimensioned

Numeric Classes”, ACM SIGPLAN Notices, November, 1997.
9 As named functions, of course, not overloaded operators.

(Java’s Date class doesn’t support date arithmetic at all!)

The Dark Side of Java 3 29 August, 1997

Java is actually quite good at reuse of entire classes --
that’s inherent in the Java environment. When it comes
to reusing smaller building blocks, however, it’s weaker
than even Cobol.

Pseudo classes and pure object orientation

Java (like Smalltalk) enthusiasts criticize C++ for being
a hybrid language that permits independent functions.
“In Java, everything is in a class,” they proclaim, “so
Java is a pure object-oriented language that enforces the
object paradigm.

Nonsense. Calling a construct a class doesn’t make it
one. Yes, every Java function has to be defined inside a
“class” definition, but what’s the point of a class for
which we neither instantiate objects nor derive other
classes? It’s simply a packaging artifice, one that can
actually complicate procedural programming.

Java’s standard Math and System classes illustrate
such pseudo classes. There are no Math or System
objects. We never derive subclasses from Math or
System. Math and System never enter into polymor-
phism, or any other aspect of OOP. Yes, Math and
system inherit from Object, but what useful effect
does that have?

Java as a teaching language

Such pseudo-classes are another source of confusion for
students. After we teach them about abstract data types
(ADT) and show them that a class is Java’s way of
implementing an ADT, we have to explain that a lot of
everyday “classes” have nothing at all to do with
ADT’s.

The separate and unintuitive reference data expressions
undo a lot of the benefit of concealing pointers. After
introducing our students to C’s operator-rich expres-
sions, we then have to tell them to forget all about most
of it when dealing with objects, and to learn a separate
clumsy and unnatural syntax. Experienced profes-
sionals cope with this duality, even if they don’t like it,
but beginners find it extremely hard to digest and a
source of continuing confusion throughout a course.

As an instructor I’ve felt not only frustrated by these
difficulties but also embarrassed in front of my students,
many of whom are undecided about pursuing a career in
our profession. I want them to respect the leaders of our
field. When I keep having to explain to them how to
circumvent poor tool design that comes from industry
leaders, I can’t help undermining that respect.

So which language, Java or C++, is better suited to
teaching the object-oriented paradigm?10 For program-
mers of limited experience, I still favor Java, mainly to
avoid spending hours on the details of C++ memory
management, a topic irrelevant to OOP. However,
Java’s peculiarities make the choice a closer one than I
originally hoped, and the choice may depend more on
the length of the course than on the background of the
students. A 10-week quarter doesn’t allow enough time
to go into C++ pointer manipulation, and Java is the
clear choice. In a 16-week semester, however, we have
the time to develop fluency in pointer manipulation and
memory management, and the choice is much closer.

For students who are already fluent in C, we can cover
both C++ and Java in 16 weeks. I’ve developed such a
course, in which we use C++ to explore the object para-
digm thoroughly, and then spend the last 4-5 weeks on
Java, emphasizing how it differs from C++.

Summary:

Java’s strengths are well known: a platform-indepen-
dent object-oriented language suitable for server, client,
and web based programs. Furthermore, it’s slightly
easier to teach to inexperienced programmers than C++.

Java’s serious shortcomings, rarely mentioned so far in
the press, are:11

1. A large program developed in Java will tend to
be costlier to maintain than a program developed
in a more structured and internally consistent
language.

2. Except for complete classes, component reuse in
Java ranges from awkward to impossible.

3. Teaching Java to inexperienced programmers de-
mands confronting a number of clumsy and un-
natural constructs.

Java will surely play a growing role, both in major soft-
ware development and in teaching object-oriented pro-
gramming. However, before making any commitment to
Java, we must be aware of the trade-offs and make a
rational choice whether to accept them.

10 Note that no object-oriented language is appropriate for a first

course in programming. See my paper “Learning to Program:
It Starts with Procedural”.

11 The one Java shortcoming that does get mentioned often, over-
head of interpretive execution, is rarely a serious concern.
Machines are getting faster and compilers and interpreters are
getting smarter.

