The proof of conjecture 36 from Ralf Stephan's "Prove or Disprove 100 Conjectures from the OEIS" found at http://front.math.ucdavis.edu/math.CO/0409509.

Conjecture 1 Let $t(n)=|\phi(n)-n|$. Then for any $n>0$ we have that

$$
\begin{equation*}
t(n)=t(t(n)-n) \tag{1}
\end{equation*}
$$

iff

$$
n=5 \cdot 2^{k} \text { or } n=7 \cdot 2^{k} \text { for some } k>0
$$

Proof. We first note that (1) is equivalent to

$$
\begin{align*}
n-\phi(n) & =t(-\phi(n)) \\
n-\phi(n) & =|\phi(-\phi(n))+\phi(n)| \\
n-\phi(n) & =\phi(\phi(n))+\phi(n) \\
n & =\phi(\phi(n))+2 \phi(n) \tag{2}
\end{align*}
$$

Henceforth, we instead work to show that (2) is true only iff $n=5 \cdot 2^{k}$ or $n=7 \cdot 2^{k}$ for some $k>0$.

If $n=2^{k} 5$, with $k \geq 1$ then $\phi(n)=4 \cdot 2^{k-1}=2^{k+^{`}}$ and $\phi(\phi(n))=2^{k}$ which clearly satisfies (2).

If $n=2^{k} 7$, with $k \geq 1$ then $\phi(n)=6 \cdot 2^{k-1}=3 \cdot 2^{k}$ and $\phi(\phi(n))=2 \cdot 2^{k-1}=$ 2^{k} which again satisfies (2).

We show that all other values for n fail.

- The cases $1 \leq n \leq 6$ fail by inspection.
- If $n \geq 7$, then $\phi(\phi(n))+2 \phi(n)$ is even so (2) fails for all odd n.
- If $n=2^{k}$ for $k \geq 2$, then $\phi\left(\phi\left(2^{k}\right)\right)+2 \cdot \phi\left(2^{k}\right)=2^{k-2}+2 \cdot 2^{k-1} \neq 2^{k}$. So $n=2^{k}$ fails for all $k \geq 0$.
- If $n=2^{k} M$ where $M>1$ is odd and $k \geq 1$,

$$
\begin{aligned}
n & =\phi(\phi(n))+2 \phi(n) \\
2^{k} M & =\phi\left(\phi\left(2^{k} M\right)\right)+2 \phi\left(2^{k} M\right) \\
2^{k} M & =\phi\left(2^{k-1} \cdot \phi(M)\right)+2^{k} \cdot \phi(M) \\
2^{k} M & =2^{k-1} \cdot \phi(\phi(M))+2^{k} \cdot \phi(M) \text { since } \phi(M) \text { is even }
\end{aligned}
$$

so we get the following further refinement of (2).

$$
\begin{equation*}
2 M=\phi(\phi(M))+2 \phi(M) \tag{3}
\end{equation*}
$$

- If there exist two different odd primes p and q such that $p q \mid M$, then $\phi(p) \phi(q) \mid \phi(M)$ so it follows that $4 \mid \phi(M)$. In fact, we can write

$$
\phi(p) \phi(q)=(p-1)(q-1)=2^{\ell} N
$$

for some $\ell \geq 2$ and odd N. Therefore

$$
\phi\left(2^{\ell}\right) \phi(N)=2^{\ell-1} \phi(N) \mid \phi(\phi(M)) .
$$

If $N=1$, then $p=2^{\alpha}+1$ and $q=2^{\beta}+1$ for some $\alpha \neq \beta$ so that $\ell=\alpha+\beta \geq 3$. If $N>1$ then $\phi(N)$ is even. For both cases $N=1$ and $N>1$, we will have $4 \mid \phi(\phi(M))$. So we conclude that (3) fails because 4 divides the RHS of (3) but not the LHS
Now we only need consider the case where M is an odd prime power..

- If $n=2^{k} p$, where $k \geq 1$ and p is an odd prime, then (3) reduces to

$$
\begin{aligned}
2 p & =\phi(p-1)+2(p-1) \\
2 & =\phi(p-1)
\end{aligned}
$$

which fails for all cases other than $p=5$ or 7 .

- If $n=2^{k} p^{j}$, where $k \geq 1, j \geq 2$ and p is an odd prime, then (3) reduces to

$$
\begin{aligned}
2^{k} p^{j} & =\phi\left(\phi\left(2^{k} p^{j}\right)\right)+2 \phi\left(2^{k} p^{j}\right) \\
2^{k} p^{j} & =\phi\left(2^{k-1} \cdot(p-1) p^{j-1}\right)+2 \cdot 2^{k-1}(p-1) p^{j-1} \\
2^{k} p^{j} & =2^{k-1} \cdot \phi(p-1) \cdot(p-1) p^{j-2}+2^{k}(p-1) p^{j-1}(\text { since } p-1 \text { is even and }(p-1, p)=1) \\
2 p^{2} & =\phi(p-1) \cdot(p-1)+2 \cdot\left(p^{2}-p\right) \\
2 p & =\phi(p-1) \cdot(p-1)
\end{aligned}
$$

this fails for all odd p since p is clearly not a factor of the RHS.

Lawrence Sze
Cal Poly Department of Math
lsze@calpoly.edu

