# Fileprints: Identifying File Types by n-gram Analysis

IEEE IAW June 2005

Wei-Jen Li Ke Wang Salvatore J. Stolfo Benjamin Herzog Columbia University

# Agenda

#### The Problem

- Efficiently Identifying file types from content
- Security related issues
- Related Work
- 1-gram models
  - Alternative modeling
- Experiments
- Performance Results

#### The Problem

- Can we categorize the type of an arbitrary file object effectively using (partial) binary content without extensive knowledge of syntax and deep parsing?
- Can we verify the type of file?
- Can we do so *efficiently* without specialized knowledge of every possible file type that exists now and will exist in the future?

## Security Issues

Change the file extension to hide true type

- Malicious executable code can pretend to be a plain .txt
- Document.txt.exe
- By-pass security policy (users may not be allowed to email .doc files)
- Code obfuscation
  - A technique to protect source code
- Network environment
  - Files can be fragmented across packets

# File Types

#### How to identify file types?

- Check the file extension
  - .doc, .pdf, .jpg etc
- Read the file header
  - Unix *file* command (some file types have "magic numbers")

#### Related Research

- N-gram analysis using machine learning [Matthew G. Schultz, Eleazar Eskin, and Salvatore J. Stolfo 2001, Jeremy Kolter and Marcus A. Maloof 2004]
  - Too expensive
- 1-gram analysis of network payload [Ke Wang, Salvatore J. Stolfo 2004]
  - Network packet content analysis
- Generate "fingerprints" of file types using byte-value distributions [Mason McDaniel and M. Hossain Heydari 2004]
  - Single model for each file type
  - Poor performance
  - Normalization issue

# N-gram Analysis

#### 

- An n-gram is a subsequence of N consecutive tokens in a stream of tokens
- Compare the *distributions* of n-grams contained in a set of data to determine how consistent some new data may be with the set of data in question
- Each distribution is the average byte value frequency and their standard deviation

# 1-gram file binary content distribution



Observation:

Each File Type has a distinct Frequency Distribution

### Modeling Methods, Truncation



#### Modeling Methods, Centroids





# Comparing Distributions

 Simplified Mahalanobis Distance – comparing two distributions (mean and variance)

$$D(x, y) = \sum_{i=0}^{n-1} (|x_i - y_i| / (\sigma_i + \alpha))$$

- Compare unknown file distribution F to pre-trained model  $M_t$ , i.e. compute  $D(F, M_t)$  for all models
- The smaller the distance, the more similar to the model
- Classify the file as the type that it has the smallest distance to, i.e.

Type(F) = t if  $M_t$  = argmin { $D(F, M_i)$  | i=1,...,n}

# Experiment

#### Dataset:

- 800 files of 8 different file types
- .EXE, .DLL, .GIF, .JPG, .PDF, .PPT, .DOC, .XLS
- Files were randomly chosen from a Google search
- 80% used for training models, and the remaining 20% for testing

# Modeling methods

- One centroid file type model
  - Use one single model for each file type
  - For each file type T, build a model  $M_t$
  - Build *n* models *M*<sub>1</sub>, *M*<sub>2</sub>...., *M*<sub>n</sub>, from *n* different file types
  - Compute the distance of the testing file F to each model, and then F is classified to the model with the smallest distance

# Modeling methods

Multi-centroids file type model

- For each file type T, build k models  $M_{t1}, M_{t2}...M_{tk}$  using k-means algorithm
- Compute the distance of F to each model, and then F is classified to the model with the smallest distance
- Exemplar files used as centroids
  - Each trained file is an individual model
  - □ The # of models is the same to the number of training files
  - Compute the distance of F to each model, and then F is classified to the model with the smallest distance

## Performance

| One-centroid file type classifying accuracy            |       |       |       |       |       |       |
|--------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Truncation<br>Size                                     | EXE   | GIF   | JPG   | PDF   | DOC   | AVG.  |
| 20                                                     | 98.9% | 100%  | 99%   | 100%  | 98.3% | 98.9% |
| 200                                                    | 98.3% | 91.1% | 97%   | 82.8% | 93.7% | 93.6% |
| 500                                                    | 97%   | 97%   | 93.4% | 80.4% | 96.7% | 94.3% |
| 1000                                                   | 97.3% | 96.1% | 93.5% | 83.4% | 82.6% | 88.2% |
| All                                                    | 88.3% | 62.7% | 84%   | 68.3% | 88.3% | 82%   |
|                                                        |       |       |       |       |       |       |
| Multi-centroids file type classifying accuracy         |       |       |       |       |       |       |
| Truncation<br>Size                                     | EXE   | GIF   | JPG   | PDF   | DOC   | AVG.  |
| 20                                                     | 99.9% | 100%  | 98.9% | 100%  | 98.8% | 99.4% |
| 200                                                    | 97%   | 98.3% | 96.6% | 95%   | 97.2% | 96.9% |
| 500                                                    | 97.2% | 98.4% | 94.8% | 90%   | 96.9% | 96%   |
| 1000                                                   | 97%   | 95.1% | 93.5% | 90.7% | 94.5% | 94.6% |
| All                                                    | 88.9% | 76.8% | 85.7% | 92.3% | 94.5% | 89.5% |
|                                                        |       |       |       |       |       |       |
| Classifying accuracy using exemplar files as centroids |       |       |       |       |       |       |
| Truncation<br>Size                                     | EXE   | GIF   | JPG   | PDF   | DOC   | AVG.  |
| 20                                                     | 100%  | 100%  | 100%  | 100%  | 98.9% | 99.6% |
| 200                                                    | 99.4% | 91.6% | 99.2% | 100%  | 98.7% | 98.2% |
| 500                                                    | 99%   | 93.6% | 96.9% | 99.9% | 98.5% | 98%   |
| 1000                                                   | 98.9% | 94.9% | 96.1% | 86.9% | 98.6% | 96.4% |
| All                                                    | 94.1% | 93.9% | 77.1% | 95.3% | 98.9% | 93.8% |

#### Performance



The classification accuracy -- comparison of three different methods. X-axis: Size of truncation (in bytes). Y-axis: accuracy.



- 1-gram models are effective at identifying file types using purely binary content
- Prefix portion of files reveals their file type quite accurately
- It may be possible to detect ZERO-DAY (new) malcode within portions of files using this technique

# Future and Ongoing Work

Goal: Detecting malware embedded in normal files

Demonstrate it is possible to detect malware using fileprints, not signatures

#### Preliminary experiment:

Inserted viral executables at the head of a random collection of pdf and doc files, tested whether pre-learned fileprints of known malware can be detected within the pdf file.

#### Findings

- Symantec AV missed several embedded viruses
- A few pdf files infected by a virus can still be successfully opened by Acrobat.
- □ For example, Slammer...







### Conclusion

- Efficient 1-gram binary analysis to identify the type of a file from its binary byte-value distribution
  - Useful to detect security policy violations
  - Useful for identifying suspect files with possible malcious code
- The method introduces several nuances
  - the truncated modeling techniques and of multicentroids for increased accuracy