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Every day, hundreds of thousands of people pass through airport security checkpoints,

border crossing stations, or other security screening measures. Security professionals

must sift through countless interactions and ferret out high-risk individuals who represent

a danger to other citizens. During each interaction, the security professional must decide 

whether the individual is being forthright or decep-
tive. This task is difficult because of the limits of
human vigilance and perception and the small per-
centage of individuals who actually harbor hostile
intent (see the sidebar for more about these chal-
lenges). Security personnel can’t halt the flow of peo-
ple and material to extensively gauge the truthful-
ness of every interaction, so we must do more to help
them identify deception and ill intent.

Our research initiative is based on a behavioral
approach to deception detection. This approach is
appealing for several reasons—foremost because
you can use it unobtrusively without the subject’s
cooperation. For instance, by analyzing a criminal
suspect’s interview video for movement patterns and
comparing it to known deceptive and truthful sub-
jects, you could potentially gain insight into the per-
son’s truthfulness. Such an approach might also have
direct applications in security screening checkpoints,
ticket counters, meetings, speeches, or other situa-
tions where deceptive interpersonal communication
might occur and security is important.

We attempted to build an automated system that can
infer deception or truthfulness from a set of features
extracted from head and hands movements in a video.
A validated and reliable behaviorally based deception
analysis system could potentially have great impacts in
augmenting humans’abilities to assess credibility.

Automated deception-detection
systems

Automated systems can draw upon a wide variety
of potential behavioral indicators of deception. For
example, researchers have shown great interest in
micro-momentary expressions whereby involuntary,
fleeting facial movements reliably suggest deception.1

Although it doesn’t require the polygraph’s invasive
sensors, this approach is hindered in that it requires
unobstructed, high-quality video of the face. To allow
flexibility, our approach is designed to pick up more
easily recognized movements and behavioral patterns
and doesn’t rely on minute movements that might be
difficult to capture. Figure 1 characterizes three gen-
eral approaches to deception detection.

By extensively deconstructing deceptive acts,
researchers have found that deceivers, in an attempt
to retain credibility and deflect suspicion, express
patterns of atypical behavior.2,3 For instance, de-
ceivers often suppress the normal gestures that
accompany interaction and appear overcontrolled.
Moreover, when they do move, the movement tends
to be abrupt. Truth tellers, on the other hand, main-
tain more smooth and congruent presentations. The
discrepancies between the signatures of features
extracted from movement on video can be quite
telling. Figure 2 illustrates the typical differences
between a few simple features extracted from two
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short videos (one of a deceiver and one of a
truth teller).

Automated systems might be able to help
security professionals as they attempt to iden-
tify deception in interpersonal exchanges. For
systems to infer deception in various real-
world situations, they must begin to acquire
some of the perceptual and interpretive pow-
ers that we take for granted in humans. Re-
searchers in computer vision and artificial
intelligence have laid much of the ground-
work. Automated systems can recognize size,
shape, color, movement, and a host of other
attributes that act as a foundation for more
nuanced perception.

Our approach
Our approach in creating a system that can

identify nonverbal indicators associated with
deception or truth is similar to that adopted
in many pattern classification problems. In
the generic model, the system collects raw
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Figure 1. General approaches to deception detection.

In some highly structured interactions such as financial deal-
ings, we build complex systems with checks and balances to
minimize the chances that deception will go unnoticed. In
more spontaneous interactions such as security screenings, the
costs of constant vigilant monitoring are simply too high. More-
over, most people are subject to myriad biases. Research has
revealed that the most common bias is toward simply believing
in messages’ truthfulness. Security personnel, conversely, might
hold the “Othello bias,” where they lean toward doubting
messages’ truthfulness. In any case, when truth and deceit are
equally likely, deception detection is about as accurate as ran-
dom guessing for most humans.1

In response, researchers have sought to better understand
how deception takes place and how to counter it. There are sev-

eral accepted approaches, but the most widely known is the
physiological approach whereby the deceiver exhibits physical
indicators such as increased heart or respiration rates as a result
of the arousal associated with deceiving. The polygraph is the
most prevalent attempt to detect physiological deception indica-
tors. Although many of the deception-detection approaches to
date have demonstrated validity, they often suffer from a level of
impracticality. The polygraph, for example, requires controlled
situations and extensive cooperation on the part of the subject.
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Challenges of Deception Detection

Figure 2. Deceptive and truthful feature signatures.
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data and segments it into discrete units. It
uses general metrics extracted from these
units to compute features. Finally, it uses
these features to classify the raw data.

Our system slightly adapts this general pat-
tern. We collect videos of interactions and
divide them into meaningful segments. An
example of a possible segment might be an
answer to a question or a narrative explana-
tion. Our system then analyzes the segmented
videos to find the positions of the head and
hands in each frame. Using elliptical “blobs”
to approximate the location and size of the
head and hands, the system calculates the cen-
ter point, axes’ lengths, and angle of major
axis for every blob. It calculates additional
features from the basic features extracted
from each blob. We can group these features
using a taxonomy where the two highest-level
categories are single-frame and multiframe
features.4 The system calculates these fea-

tures for each frame in the video clip. It must
then summarize the features so it can classify
them using various classification methods.
Here we utilize an alternating decision (AD)
tree, a neural network, and a support-vector
machine (SVM) and compare results with
those of discriminant analysis. Figure 3 illus-
trates the entire process.

Video input
The preferred input for our system is high-

quality digital video of a single subject in a
sitting position away from any objects, such
as a table, that might hide the hands or head.
Higher-quality video allows for more reli-
able position estimation of the head and
hands. While high-quality video is optimal,
we have also successfully used our system
with converted analog video. Significant
occlusion and a great deal of change in sub-
ject orientation will degrade the results.

Video segmentation
In the prototype system, a system user

must manually specify the beginning and
ending frames of a segment that the system
will review for deception. However, we can
envision a future version of the system that
automatically segments interesting portions
of an interaction.

Hand and face recognition
Although many strategies exist for hand

and face recognition, our system uses algo-
rithms developed at Rutgers University’s
Computational Biomedicine Imaging and
Modeling Center. The recognition algorithms
use color analysis, eigenspace-based shape
segmentation, and Kalman filters to track the
head and hands through each frame of a
video segment. Figure 4 shows a sample
frame that has undergone blob analysis.

To identify the hands and face in a video
sequence, we first use a skin color-identifi-
cation algorithm that extracts hand and face
regions using the color distribution from the
image sequence. We prepare a 3D look-up
table, which we use for setting the color dis-
tribution. We train this 3D LUT, which is
based on histogram back-projection, using
color sample images; we set it with skin color
samples extracted from color images in the
video segment. On the basis of the skin color
segmentation, we can classify all pixels in
the color sequence into either the skin-color
region or the background region.

After extracting the hand and face regions
from an image sequence, the system com-
putes blobs that could represent the face and
hands. This color segmentation process might
incorrectly classify a region as a hand or face
because it has a color distribution similar to
skin color. We use rough searching and fine
segmentation to avoid this misclassification.
In rough searching, we fit the candidate
regions using a simple geometric shape, such
as an ellipse. Only the areas that meet such
standards remain face and hands candidates.

During fine segmentation, we classify the
most face- and hand-like areas as the face and
hand. We accomplish this by comparing sam-
ple skin samples with subspaces of candidate
face and hands in the frame. A feature clas-
sifier finds reliable hand and face areas based
on an eigenspace that includes subspaces
such as face, one-hand, and two-hand. We
train this classifier using the samples we used
to train the 3D LUT.

To separate hands when they overlap the
face, the system computes blobs not only for

H o m e l a n d  S e c u r i t y

38 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Cl
as

si
fic

at
io

n
Fe

at
ur

e
co

m
pu

ta
tio

n
Ha

nd
 a

nd
 fa

ce
re

co
gn

iti
on

Vi
de

o
se

gm
en

ta
tio

n
Vi

de
o 

in
pu

t
Fe

at
ur

e
su

m
m

ar
iza

tio
n

Fe
at

ur
e

se
le

ct
io

n

Video input

Segment video

Extract general metrics (blob data)

Multiframe featuresSingle-frame features

Segment video

Segment videoSummarized features

Segment videoIndependent samples t-test

Support vector
machine

Neural networkAlternating
decision tree

Discriminant
analysis

Figure 3. Steps in classifying truth and deception from nonverbal cues.



a single-frame image but also for a time dif-
ferential image between sequential frames.
First, it binarizes the single-frame and time-
differential images. We use a Kalman filter
to predict each hand’s location. The system
assigns the blob nearest to the predicted loca-
tion to either the left or right hand and labels
it as a hand blob. The system updates each
blob’s observed location. If a hand blob exists
in the frame, the system updates the observed
location using the hand blob. However, if the
hand stops in front of the face, no hand blobs
originating from the hand appear. Here, the
system updates the observed location from
the last hand blob’s location. Shan Lu and
colleagues describe this process in more
detail.5

Feature computation
From the data each blob provides (see fig-

ure 5a), the system calculates a number of
additional features. We use a recently pro-
posed, theory-based taxonomy containing
nonverbal, movement-based features to dis-
criminate between truthful and deceptive
communication.4

The system categorizes each feature as a
single- or multiframe feature. It calculates sin-
gle-frame features using information from a
single video frame. It can further categorize
these features as relational or multirelational
features. The relational features represent
relationships between two objects—either a
blob to another blob or a blob to a reference
point or area. In the former case, the system
calculates the distance between two blobs of
interest using a simple Euclidean distance for-
mula. The distance between the head, the
right hand, and the left hand lets us know

when all three are touching (distance is zero)
or how far apart they are. This feature, which
figure 5b depicts, hints at gestures that might
indicate nervousness (such as preening,
scratching, and rubbing). Figure 5c illustrates
the quadrant feature. The system calculates
this feature on the basis of an estimation of
the width of the shoulders and the bottom of
the head blob. This feature lets us understand
how often each blob is in each quadrant and
can help to discriminate between an open and
closed posture.4 The single-frame, multirela-
tional category contains features that involve
information from all three blobs. An exam-
ple of a single-frame, multirelational feature

is the area of the triangle formed by connect-
ing the head and hands blobs.

Multiframe features require information
from two or more frames. An example of a
multiframe feature is a blob’s velocity. We
can measure velocity by the distance and
direction a blob has traveled between frames.
We can calculate the distance using the
Euclidean distance formula on the center
points of a blob in two successive frames.
Figure 6a illustrates the distance feature. We
capture direction by calculating the polar
coordinate angle of the vector the two cen-
ter points create. We also convert the polar
angle to degrees and then split it into binary-
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value classifications. Figure 6b depicts the
possible directions of movement.

Feature summarization
The system calculates the features calcu-

lated in the previous step for each frame in the
video clip. It summarizes single- and multi-
frame features the blob data provides for every
video clip and calculates means and variances
of these measurements based on the total num-
ber of frames in the video segment.

Feature selection
The complete set of single- and multiframe

features contains over 165 features, which
focus on the head and hands. Although each
feature is meant to single out a particular bit of
information, all of these features are based on
the general metrics extracted during blob
analysis; therefore, they significantly overlap
in many cases. We initially included all fea-
tures when identifying deception. However,
models with a reduced feature set performed
more accurately, likely because of the rela-
tively small training-set size. Therefore, we
adopted a feature-pruning step for the machine
classification methods whereby we included
features in the machine classification on the
basis of statistical significance. This step
increases classification accuracy, decreases
time requirements for training, reduces noise,
and preserves model parsimony.

Classification of truth or 
deception

Our initial approach in evaluating the fea-
tures extracted from the video segments was
through discriminant analysis. This method

is generally accepted as a rigorous technique
for differentiating between two groups within
a population. For our system’s purposes, it
provides an effective benchmark with which
we can compare the results of the machine
classification algorithms.

We chose three machine classification
techniques to investigate which method best
classifies deception from the selected fea-
tures. The first classification method we used
is an AD tree algorithm.6 A decision tree is a
classification method that structures decision
points around the most discriminating fea-
tures. The AD tree algorithm generalizes
both voted stumps and voted decision trees
and uses boosting to simplify classification
rules.

We also used a neural network multilayer
perceptron. The MLP handles continuous
data, works effectively even in the presence
of errors in the training data, and requires lit-
tle processing time in classification after
training. However, MLP training is time
intensive, and node weights are difficult to
interpret. Our system uses an MLP with a
back propagation learning algorithm.

Finally, we included an SVM classifier.
The SVM helps classify complex data
because it supports numerous feature vectors
and is deterministic. The SVM uses a sequen-
tial minimal optimization7 using scaled poly-
nomial kernels. The SMO algorithm breaks
the training problem into a series of small
quadratic programming problems. The train-
ing problem’s decomposition allows for a
potentially large training set. Once the small
quadratic programming problems are solved,
the SVM can classify a population.

Investigating classification
methods for deception detection

To test the classification techniques’
detection ability, we constructed an experi-
ment using videos of deceptive interactions.
The data set’s limited size and scope pre-
cludes drawing many broad, generalizable
lessons; however, it does afford the oppor-
tunity to establish the concept’s viability.
The videos in the data set came from a mock
theft experiment designed to reveal cues that
can be used in deception detection. The
experiment’s design directed randomly
selected undergraduate communication stu-
dents in a large Midwestern university to
steal a wallet that was left unattended in a
classroom. Other students who participated
were present during the theft but didn’t take
the wallet. Trained interviewers later inter-
viewed all participants via chat, audio, and
face-to-face channels and recorded these
interactions.

We used the face-to-face interactions from
this experiment to test our prototype system.
We could have included a total of 42 possi-
ble face-to-face interactions in the study; we 
didn’t use four of them because of technical
problems with the video work or because the
participant didn’t follow instructions. Each
interaction consisted of several question-
answer exchanges. In this study, we included
only the narrative regarding the actual theft in
the analysis. Of the 38 responses, 16 were
truthful and 22 were deceptive.

Feature selection
We reduced the number of features used

in the discriminant analysis and machine
classification techniques by independent
samples t-tests across deceptive and truthful
states. We used all features whose means
were significantly different (p < .05) between
the truthful and deceptive conditions. The
reduced feature set contained five features
including the mean difference in head angles
between frames, the mean difference in right
hand angles between frames, the mean dif-
ference in left hand angles between frames,
variance of the head y position, and variance
of the number of frames the left hand is in
quadrant 4. You could use other methods in
feature reduction; however, simple t-tests
were the most straightforward, and others
have used them successfully in automated
deception-detection systems.8 The feature-
selection strategy has a tremendous impact
on deception-detection ability. Therefore, we
plan to explore additional, more effective
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ways to reduce the number of features used
for each classification method.

Classification methods
We performed a discriminant analysis with

the five selected features, and the model was
not significant (p = .058). We evaluated the
AD tree, SVM, and MLP in a Java environ-
ment using the Weka library.9 The AD tree
had a maximum depth of 3 with 28 total
nodes and 19 predictor nodes. The SVM used
an ADA boosting algorithm to enhance per-
formance. The MLP handled the five single-
and multiframe features as inputs and had
two output nodes (deception, truth) with four
hidden layer nodes.

Classification results
Table 1 contains cross-validated classifi-

cation results. The discriminant analysis we
discuss uses a hold-one-out cross-validation
strategy. To approximate this strategy for 
the other methods, we used a 38-fold cross-
validation model (as N = 38).

The overall correct classification is the
percentage of testing instances that the sys-
tem classified correctly. A naïve or baseline
classifier that assumed that all instances in
the training set should be considered guilty
would attain 57 percent accuracy. The SVM
and the neural network produced the high-
est accuracy at 71.1 percent. We further sup-
ported the SVM’s performance by running
20 repeats of 10-fold cross-validation and
performing a t-test comparing performance
accuracy. The SVM was significantly bet-
ter than the baseline classifier at � = 0.10.
However, none of the other classifiers were
significantly better than the baseline. When
cross-validated, neither the AD tree nor the
neural network did better than the baseline.
Therefore, an SVM might be an effective
classifying technique in identifying decep-
tion from video cues. When an SVM is
used, detection accuracy appears to rise
above that which most humans exhibit. A
larger data set (and therefore training set) is
needed to provide stronger support for this
conclusion.

Precision and recall are measures specific
to each class. For example, in the discrimi-
nant analysis, you can think of the precision
for the guilty class as the probability that the
instances that the system classified as guilty
are actually guilty. You can think of recall for
the guilty class simply as the number of iden-
tified guilty clips divided by the total number
of guilty clips. When cross validated, the

SVM had a precision of 0.667 and perfect
recall in the guilty condition. However, the
SVM’s performance indicates that it would
have a high false-positive rate. The neural net-
work produces a lower false-positive rate but

also classifies more guilty individuals as inno-
cent. In some security situations, such as
transportation screening or border security, a
high false-positive rate would result in a
greater number of unnecessary secondary
screenings and investigations. At the same
time, it would reduce the likelihood of those
with ill intent passing through.

System use
This technological approach to detecting

deception in video has widespread potential
applications. Actual system use will depend
on a number of variables that aren’t entirely
clear. The most important factors are the sys-
tem’s validity and reliability. In addition,
questions exist about cost, system speed,
training, and privacy.

The use with the greatest potential applic-
ability is the personal interview. For exam-
ple, visa interviews take place at embassies
and consulates in large numbers throughout
the world. The process is often slow and
arduous, and neither the interviewers nor the
interviewees are pleased with it. By provid-

ing the interviewers with reliable tools to
help recognize deceivers, the interviews can
become more efficient and effective.

Another high-payoff system application
would be at security checkpoints. At airports,
sporting events, government buildings, and
borders, people are subjected to varying lev-
els of searches and questioning about their
purposes and possessions. An automated sys-
tem that could identify suspicious body
movements and alert security personnel
would be an improvement.

Beyond the attended system, there’s also
great potential for fully automated systems
that could begin to approximate human
behavior for specific tasks. For instance, intel-
ligence analysts have access to video libraries
that go largely ignored because analyzing
video is so labor intensive. An automated sys-
tem could easily pore through thousands of
hours of video looking for and alerting ana-
lysts to specific indicative behaviors.

System limitations
In spite of this system’s potential uses,

many technical and utilization challenges
must be overcome before it can be fielded for
homeland security. Quite possibly the great-
est limitation is that a behavioral system’s
ability to detect deception is rooted in the
need to elicit the same types of deception
across individuals. This often requires exten-
sive interaction that might not be possible at
a security checkpoint or similarly short inter-
action. Although it might be less of a limita-
tion in longer, more deliberate interviews, the
interviewer still needs to probe enough to
force outright deception.

Another issue we’ve identified is the level
of deception detection’s granularity. Ulti-
mately, we’d like to be able to identify decep-
tion on a statement-by-statement basis. Decep-
tion is complex and strategic, and deceivers
often intersperse truth with lies or build lies on
a foundation of truths. This system is trained

SEPTEMBER/OCTOBER 2005 www.computer.org/intelligent 41

In spite of this system’s potential

uses, many technical and

utilization challenges must be

overcome before it can be fielded

for homeland security.

Table 1. Cross-validated classification results.

Classification method Overall correct classification (%) Class Precision Recall

Discriminant analysis 55.3 Guilty 0.609 0.636
Innocent 0.467 0.438

Alternating decision tree 57.8947 Guilty 0.65 0.591
Innocent 0.5 0.563

Neural network 71.0526 Guilty 0.824 0.636
Innocent 0.619 0.813

Support vector machine 71.0526 Guilty 0.667 1
Innocent 1 0.313



on short responses to a single question.
Nonetheless, even within that response, vary-
ing levels of truthfulness exist. We can only
assess the entire segment.

Technically, many issues bound this sys-
tem’s applicability; foremost are the require-
ments for video quality. The color segmen-
tation system compels the use of high-quality
video equipment and good lighting. How-

ever, the video quality requirements aren’t as
high as those for methods that analyze micro-
momentary facial expressions. Additionally,
the subject’s orientation and framing are
important. We can derive little information
if the hands and head aren’t in view. Finally,
the system as currently configured doesn’t
approach the speeds and ease of use neces-
sary for widespread employment.

Even with significant technical chal-
lenges in mind, we believe that this

behaviorally based video deception-detec-
tion system demonstrates preliminary poten-
tial for homeland security applications.
Although we can’t expect any system to
make perfectly accurate judgments on some-
thing as complex as deceptive behavior, we
anticipate relevant improvements. By aug-
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menting security professionals, we can
expect to make them more effective and effi-
cient as systems alert humans to possible
risks. Automated systems might even be-
come reliable enough to replace humans in
certain circumstances, thus allowing a redis-
tribution of human assets.
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