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Abstract

Based on the recent surge in interest in both academia
and the games industry in character-based AI, and in-
spired by work from a range of literature from animal
learning and psychology to classic AI, we suggest some
potential “next steps” towards the creation of virtual
autonomous characters that are lifelike, intelligent and
convey empathy. We believe that character-based AI
systems can draw from and contribute to the state of the
art in such areas as pattern recognition and planning.

Introduction: AI’s Next Steps
First things first: what is meant by character-based AI?

It is a category that is especially meaningful in games, to
distinguish systems that seek to simulate the behavior of a
single agent from strategic AIs or turn-based game-opponent
AIs. These latter categories might be considered attempts
to codify and emulate high-level logical human thinking.
Character-based AI, on the other hand, is an exercise in cre-
ating complete brains. Strategic and logical thinking in this
type of work usually takes a back seat to issues of low-level
perception, reactive behavior and motor control. Since the
creatures in these character-based systems often have graph-
ical bodies (a sort of virtual embodiment) the work is often
rendered with an eye toward recreating life-like behavior,
and emotion-modelling and robustness are often also central
issues.

There are many examples of character-based AI work in
both academia and the computer game industry. Well known
academic projects include the Biomechanical fish of Tu and
Terzopoulos (Tu & Terzopoulos 1994), Bates’ Oz Project
on interactive story-telling (Bates 1993) and Hayes-Roth’s
Virtual Theater Project (Hayes-Roth et al. 1995). The work
of Blumberg ((Blumberg 1994) and (Blumberg 1996))and
his Synthetic Characters Group at the MIT Media Lab has
for some years explored the application of animal learning
and psychology to computational decision-making systems
in the form of virtually-embodied animals.

From the computer games industry there has been a recent
surge in interest in character-based AI. An early example
of this was the game Creatures (Grand, Cliff, & Malhotra
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1997), whose “Norns” were driven by simple synthetic per-
ception, a neural-network learning mechanism and a sim-
ulated biochemical system. Two recent games, impressive
in both their technical sophistication and their commercial
success are Will Wright’s The Sims and Peter Molyneux’s
Black and White, the latter of which also featured impres-
sive learning.

All of these projects, academic and industrial, show a con-
cern for the same general issues: how do the simulated crea-
tures perceive their world, and how is their perception of the
word-state limited realistically? How are the creature’s re-
actions handled, and how do they go about satisfying their
goals? What are their goals?

Having gotten to where we are, the principle question we
now face is: where do we go from here?

This is a singularly appropriate time to be asking this
question, since both academia and industry are closer than
ever to be being in a position to attempt an answer. Graph-
ics and animation, long a stumbling block for academic re-
searchers, have finally become cheap, due not only to the
recent abundance of graphics-related tools and platforms
((Laird 2000), for example, was implemented on top of the
Quake engine) but also to the recent abundance of graphics
and animation talent. At the same time, game-designers are
finally getting to the point where they can afford to spend
significant numbers of execution cycles on AI-processing.
Perhaps most crucially of all, the game industry now pro-
vides an economic impetus to conduct this type of research.
Computer games, after all, sell.

This paper makes some concrete – and very subjective
– suggestions about where character-based AI, whether in
academia or in the games industry, can go. At the heart of
all these suggestions lies the important idea that tackling the
many problems of intelligent behavior in an integrated way
– in a single brain that handles everything from perception
to memory to action selection – makes those problems easier
to solve, and results in more compelling behavior.

The topics that are covered in this paper might prompt
some to observe that game AI is fated to recapitulate the
development of classical academic AI. We agree with this
assessment, and consider it a necessary but fruitful process.
For in recapitulating classical AI from a new perspective and
with different goals, the ultimate effect will be not just reca-
pitulation but reinvention.



Perception
It is through perception that a character receives input from
the world. It is on the basis of this input that the character
will make decisions and act. As we will discuss, there are a
number of interesting issues that arise from the design of a
character’s perceptual system.

Sensory Honesty
One of the fundamental issues of perception is “what should
the character be able to perceive?” As the complexity of
our characters’ brains has increased, we have found it in-
creasingly useful to treat the mechanisms of perception in
a more principled manner. This entails an attempt at re-
alism in terms of both what things a character can per-
ceive (visual events that occur behind a wall should not be
perceived) and how it perceives them (locations of visual
events might be passed to a character in that character’s eye-
coordinates, rather than in world-coordinates to which the
character should rightfully have no access). We call this the
principle of sensory honesty.

A fundamental aspect of sensory honesty is that it forces a
separation between the actual state of the world and a partic-
ular character’s view of the state of the world. The most ob-
vious reason is that a character’s perception can only cover
a small part of that world-state (Black and White’s creatures,
for example, cannot see events that take place behind them).
By keeping separate the state of the world and the character’s
beliefs about that state, we open the door for these two rep-
resentations to occasionally diverge. This forces a character
to make intelligent assumptions about aspects of the world-
state that it cannot directly observe. A character should not
lose track of an object that it has been observing, simply
because it has been hidden by an occluder. Rather, a reason-
able guess as to the object’s location should be maintained.
As will be shown in later sections (for example, Anticipation
and Imagination) this ability to maintain reasonable assump-
tions can in turn lead to some very interesting and life-like
behavior.

Pattern Recognition
Perception also subsumes the larger problem of pattern
recognition, where the patterns in question might be visual
scenes, sounds, gestures, etc. In (Tu & Terzopoulos 1994),
the artificial fish recognize other fish through shape recog-
nition and extraction from a rendering of the fishtank from
each individual’s point of view. In Sheep—Dog, a virtual
sheep-herding installation built by the Synthetic Characters
Group, the user (playing the part of a shepherd) would com-
municate with Duncan (the autonomous sheepdog) through
a voice interface. In both these cases, the pattern recognition
mechanism is integrated as a part of the creature’s perception
system.

Luckily there are many existing algorithms for all forms
of pattern recognition that can be used for these types of
problems – the challenge, and a very surmountable one,
is simply to provide an architecture into which these algo-
rithms can be seamlessly integrated. The structure that we

use is a Percept Tree (Burke et al. 2001).
The utility of these algorithms might be increased by tak-

ing into account high-level feedback from the rest of the
brain. Two forms that this feedback might take include:

� Reward: Pattern classifiers are data-driven subdivisions
of a multi-dimensional perceptual input space. While
there exist unsupervised techniques for automatically
finding useful divisions of this space, some amount of
supervision can usually improve an algorithm’s perfor-
mance by indicating roughly how important certain re-
gions of the input space are. In the case of an embod-
ied character, that supervision might take the form of re-
ward (the reward depending on the character’s success
at satisfying its drives). Thus the classification mecha-
nism might model important regions of the input space
(i.e. regions critical to the discrimination of reward and
non-reward situations) at a higher resolution than other
regions that are unimportant in predicting reward (though
the data itself might support high-resolution modelling of
the region). The result is a subdivision of the input space
that is both data-driven and reward-driven. See (Burke
et al. 2001) for a description of the Sheep—Dog acous-
tic pattern matcher that operates on this principle using a
hierarchical clustering technique.

� Priming: Priming corresponds roughly to the incorpora-
tion of high-level expectation information into the low-
level recognition process. These expectations cause per-
ception to be more forgiving of ambiguity for certain
strongly-anticipated sensory experiences, resulting in a
priori biases towards certain data classifications.
If, for example, a certain utterance has been repeated over
and over again recently, then the introduction of a new
utterance that would normally be too vague to classify
might nonetheless be taken as a new instance of the same
utterance. Note that the converse phenomenon is also ac-
ceptable – that perceptual categories that are long out of
use might take longer to function, just as it might take us
slightly longer to recognize a friend whom we have not
seen for years (and whom we do not expect to see) than to
recognize a friend we see every day.
The important lesson is that expectations and emotions
can strongly influence the perceptual experience of a char-
acter. Thus the paranoid character jumps in fright at the
slightest motion, and the character in love momentarily
mistakes every woman he passes as the object of his affec-
tion. Priming is an interesting phenomenon to explore for
Character-based AI systems precisely because it requires
a behavioral/emotional infrastructure that an abstract ma-
chine learning system does not provide.

It is notable that these two feedback channels are related
in their overall effect, since the first leads to long-term per-
ceptual adaptation and the second is a form of short-term
perceptual adaptation.

Anticipation and Imagination
A large part of appearing intelligent is not only the ability to
be predictable (in the sense of Dennett’s intentional stance,



(Dennet 1987)) but also the ability to form predictions, and
to act in anticipation of those events predicted. If an ani-
mal is attacked by a predator whenever it visits a given food
source, the animal will, before long, begin avoiding that food
source. Similarly, if a character is hit in the head by a flying
brick every time it opens the window, then it would simply
appear broken if the character continued to open the window
with no anticipation of being hit. As can be imagined the ca-
pacity to form predictions can be essential in maintaining the
appearance of common sense.

Note that these rules about what should be anticipated
given a sequence of events could be hand-coded (as was
done in (Laird 2000)). In other cases, we would like our
characters to form these types of expectations on the fly, es-
pecially if we foresee the player being the source of some of
these event correlations. If the player always acts in a certain
predictable way in a certain situation, we might like the sim-
ulated character to pick up on that and react appropriately.

How do we go about forming predictions about the fu-
ture? If the specific quality or state that we are tracking
takes the form of a scalar or vector, we might use standard
function-extrapolation techniques to predict future values in
the near-term. Those values might be bounded or modi-
fied by higher-level concepts of what we know to be rea-
sonable (even if an object was last observed flying upwards,
we should still expect it to eventually come down).

One very important form of expectation formation is pro-
vided by the classical or Pavlovian conditioning paradigm.
If a stimulus A reliably precedes stimulus B, where B is
some salient event (such as the appearance of food), then
the appearance of A should be enough to cause the antici-
pation of B. In Pavlov’s famous example, a group of dogs
were conditioned to expect food upon the ringing of a bell
(the expectation being shown by salivation in response to
the ringing of the bell). (Burke 2001) describes a system in
which statistically reliable correlations between salient stim-
uli are used to infer apparent causality rules. These expecta-
tions are represented by cause-effect pairs with an associated
temporal delay (if the causal conditions are observed, the ef-
fect conditions are expected after the temporal delay). Thus
if every time the button is pushed (causal condition) the el-
evator doors open (the effect condition) then the character
can form a very specific expectation that the elevator doors
will open when it sees the button pushed, and it can react
appropriately before the fact (approach if it wants to use the
elevator, flee if it knows that there is a lion inside, etc.).

As already discussed in the section Sensory Honesty, any
form of expectation – an assumption about something that
will happen in the world – can sometimes prove false. When
this occurs, the result is an expectation violation. These vi-
olations can play an extremely important role in focusing
a character’s attention (such that an explanation of why the
expectation turned out false might be sought) and in refining
cause-effect hypotheses. (Kline 1999) contains an excellent
discussion of expectation theory.

Note also that the ability to anticipate and occasionally be
mistaken has the potential to open up a whole new range of
potential interactions. A character that can make mistakes
(and be surprised when it does so) is a character that can

be tricked, teased, out-smarted, or even lied to. The hope
is that this could add an additional layer of sophistication to
the autonomous characters, friend or foe, that a player might
encounter.

Imagination, or Planning
In confronting a problem, we often think through multi-
ple scenarios before actually attempting a solution. This
amounts to running simplified simulations in our heads.
These simulations are governed by the expected results of
actions that we consider taking, expectations based both on
common sense and on observed reliable cause-effect corre-
lations (as described above). If the elevator doors reliably
opened whenever the button was pushed, then that cause-
effect correlation can probably be incorporated into a plan.
There already exist, of course, many algorithms for perform-
ing planning. Simply incorporating these existing technolo-
gies is problematic, however, due to run-time considerations
– with problems of any non-trivial complexity, the cause-
effect search spaces become enormous and hence very diffi-
cult to search efficiently.

Planning in character-based AIs might be made easier by
bringing to bear some constraints of character and situation
to prune the search space. Here, the psychology of percep-
tion and attention can be used to expand only regions of the
tree that seem relevant. Emotional state might also influ-
ence the search path, perhaps resulting in “optimistic” and
“pessimistic” plans, depending on the character’s state of
mind. Just as evolution has provided us with certain “cheats”
for focusing our mental power, embodied characters with
perceptual, attentional, emotional and motivational models
should be able to find convenient ways to avoid searching
likely uninteresting regions of the search space. Clearly, the
plans that result will sometimes not be optimal. But then so
are many of the plans that we come up with.

Theory of Mind
The plans and expectations that a synthetic character might
form would be further improved through special treatment of
a special class of objects in the world whose behavior is less
easy to predict based on observed event-correlations, namely
other characters. In this case however, we have another
source of predictive power available to us, namely the char-
acter’s own behavior given a context and emotional state. In
other words, the character can make use of a theory of mind,
predicting the actions of other characters by in effect imag-
ining “what would I do in that situation, given the state of
mind that I presume that character to be in?”. Incorporat-
ing theory of mind into the types of plans described in the
previous section would amount to a sort of character-based
Alpha-Beta algorithm (see (Nilsson 1998) for an overview).

A theory of mind might be useful in other types of prob-
lems as well. It might be used in inferring intentionality
(“Character B kicked a lamppost. I only kick lampposts
when I am angry. Therefore Character B must be angry”)
or in imitation learning (“Character B has kicked the lamp-
post and Character B is angry. Perhaps when I am angry,
kicking the lamppost will help”).



Theory of mind represents a significant jump in sophisti-
cation in terms of how a character deals with predictions for
objects in the world. Clearly, it should not be applied to all
objects, since the results would be both inaccurate and com-
putationally expensive. On the other hand, one of the im-
portant aspects of the intentional stance (Dennett’s take on
theory of mind (Dennet 1987)) is that it can occasionally be
applied fruitfully to objects that we know do not have minds
of their own – the point being that as long as the attribution
of intentionality is useful in predicting the object’s behavior,
then it is as good a model as any. Initially, we expect, it will
be convenient to tag explicitly objects in the world for which
a theory of mind should be assumed. However, it would be
interesting in the long-run to see whether a character can
learn which types of objects should be so treated.

Emotion Modelling
In much of the work done in characters, emotion modelling
has been used primarily as a diagnostic channel. Emotions,
after all, are convenient indicators of overall system state.
Emotional levels are easily routed to the facial or emotion-
parameterized animation engine in order to let both develop-
ers and users know what, at a high-level, is going on inside
a character.

However, emotions clearly play a far larger role in our be-
havior than simply coloring our physical motion and stance.
Emotions influence the way that we make decisions, the way
we think about and plan for the future and even the way we
perceive the world.

Similarly, for synthetic characters, emotions should be
used to their full effect, influencing the way that action-
selection functions, the way that plans are formed, the
salience of different sensory stimuli, and so on. Levels of
frustration, for example, could be used as a signal to the
action-selection system that “this strategy is not working, try
another”. Since most action-selection schemes incorporate
some form of anti-dithering mechanism (to keep a character
from flipping too rapidly between alternative actions), levels
of “urgency” or “desperation” might influence the degree of
dithering allowed (a desperate character might be expected
to dither more in its choice of actions) just as they might in-
fluence the depth to which a multi-step sequence of actions
might be planned (and thus the speed with which an answer
is found). A very interesting use of emotions is found in
(Burke 2001), where a curiosity emotion is used to influence
exploration/exploitation decisions made by the character (a
curious character is one more likely to test out its ideas about
action-stimulus correlations, whereas a non-curious one will
tend to pick at each moment the action that is expected to
render the greatest amount of reward).

Beyond Happiness and Sadness
Curiosity, mentioned in the example above, is a good ex-
ample of a secondary emotion. These emotions go beyond
the traditional happiness/sadness models (such as in (Ekman
1992)) to express more subtle aspects of a character’s mental
state. In this case, curiosity represents the character’s overall

willingness to experiment.
There are a number of emotions that might be derived

from a system that can form expectations. (Isla 2001),
which describes a system for forming and maintaining ex-
pectations about location, notes that emotions such as sur-
prise (when an unexpected value is observed) and confusion
(when an expected value is observed to be false) can be de-
rived from explicit representations of expectations. These
emotions could further be modulated according to emotional
attitudes towards the objects whose location are being antic-
ipated, such that “surprise” can become “fear surprise” or
“pleasant surprise”, and “confusion” can become “relief” or
“worry”. All these emotions, again, should have effects not
just on the quality of the character’s motion, but also on the
character’s basic decision-making processes.

Learning and Memory
The heading of this section is somewhat of a misnomer,
since almost every section so far has dealt in some way
with the problem of learning. As should already be obvi-
ous, “learning” does not refer to any one process, but rather
to many individual adaptation processes that occur through-
out a character’s brain. “Learning at multiple levels” is a
primary feature of the C4 brain (Isla et al. 2001), where
perceptual refinement, behavioral adaptation, environment
mapping and motor learning all act concurrently. Another
example are the creatures of Black and White, who learn
at the same time “how to be nice” and who to be nice to
(Evans 2001). Both of these models go significantly beyond
the classic reinforcement learning paradigm of “action A in
state S leads to reward R and state S‘”.

One relationship that has yet to be explored thoroughly is
the one between learning and explicit memory formation.

Learning through Episodic Memory
There are many forms of memory (see (Reisberg 1997) for
an overview). Procedural memory allows us to practice and
improve specific skills over time. Short-term memory is a
recent perceptual history of the world and working memory
is a slightly higher-level recent history of the objects rele-
vant to the current task or behavioral context. The colloquial
use of the word “memory” refers to long-term or Episodic
Memory, in which explicit sequences of events are stored for
later conscious recall. These memories often detail archety-
pal event-sequences whose outcomes can be used to inform
subsequent similar experiences. This is, of course, the very
definition of learning. However, few behavior simulation
systems to date have made explicit use of episodic memory
as a learning mechanism.

Learning through episodic memory might be considered
a variant on the observation-based rule inference of the
section on Anticipation and Imagination. However, rather
than simply keeping statistical models of causes, effects and
cause-effect probabilities, an Episodic memory-based mech-
anism might keep around specific example episodes. These
episodes would be exemplary event sequences that would be
used to predict future sequences with similar starting condi-



tions. Thus if the last time the button was pushed the eleva-
tor doors opened, then next time the door must be opened,
pushing the button might be a good way to do this.

The advantage of this type of learning is speed: use-
able hypotheses about causality could be formed after just
one observation. Furthermore, the causality models that are
formed could be accompanied by specific remembered in-
stances in which the hypothesis succeeded or failed, thereby
providing a pool of data to support generalization or discrim-
ination of the cause and effect models.

A number of issues quickly arise when we begin to
consider an episode-based learning mechanism: how are
episodes recognized? How are they matched? How are the
circumstances of one episode generalized to affect similar
episodes? When can we safely forget an episode? These
questions can likely only be answered by building more
characters with functional episodic memory capabilities and
seeing what kinds of heuristics are useful.

Conclusions
While the authors are excited about the developments that
lie on the horizon, there are three crucial questions that have
yet to be addressed:

� How are these capabilities integrated into a game? To
what extent must they be “designed for”?

� How do they impact gameplay? What new varieties of
gameplay are possible?

� Do they result in “deeper” gameplay experiences?

Indeed, this last question represents best the motivation
for following this line of research at all. Unfortunately, we
must leave its definitive answer to our colleagues in the game
industry, whom we wish the best of luck.
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