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This annotated bibliography is a complement to a set of course notes for CS
279, System Support for Scientific Computation, taught in Spring 2001 by W.
Kahan at UC Berkeley. It is meant to be representative, not comprehensive,
and includes pointers to survey works and online bibliographies which cover the
literature in various areas in more depth. In the hope of making the bilbiography
simpler to use, the notes are partitioned by topic. The categorization is far from
precise, but where a reference provides pertinent coverage of multiple topics, I
have tried to provide appropriate cross-references in the section text.

This bibliography is based largely on the bibliography assembled by Judy Hu
for the Spring 1992 version of this course. Other major sources for annotated
entries include the bibliography of the Apple Numerics Manual and bibliogra-
phies from the papers of W. Kahan. Annotations attributable to those sources
are clearly labeled.

1 General interest

One of the most popular introductions to floating point arithmetic at this time
is David Goldberg’s article [1]. Goldberg based his article on the contents of a
1988 class taught at Sun Microsystems by W. Kahan. The notes from a similar
class taught in 1973 [4] provide a much more dated coverage of some of the same
topics. The article “A Survey of Error Analysis” [3] is recommended by David
Hough in a foreword to the 1973 course notes as a summary. The current reader
inclined to delve further into topics covered in this course should seek out the
article before ordering the 1973 course notes, and would be best advised not to
seek either until after reading Goldberg’s articles and the articles on Kahan’s
web page.

The book by Sterbenz [6] is a dated, but still useful, introduction to some
of the topics of floating-point analysis discussed in class. The second volume of
Knuth’s opus magnus [5] covers floating point arithmetic and related matters,
though from a rather different perspective than most of the work cited here.
Knuth also has a very thorough bibliography.

Finally, a recently translated volume by Ifrah [2] gives a historical account of
computing, from the rise of various number systems around the world through
the present day.
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References

[1] David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

Judy Hu A tutorial on IEEE 754/854 Standard and other software
and hardware issues of floating point arithmetic that have a direct
impact on computer system designers. A version augmented by D.
Priest’s comments is available on-line at http://www.validlab.
com/.

[2] Georges Ifrah. The Universal History of Computing: From the Abacus to the
Quantum Computer. Wiley, New York, 2001. Translated from the French
and with Notes by E. F. Harding.

[3] W. Kahan. A survey of error analysis. In Proc. IFIP Congress, Ljubljana,
Information Processing 71, pages 1214–1239. North Holland, Amsterdam,
1972.

[4] W. Kahan. Implementation of algorithms (lecture notes by W. S. Haugeland
and D. Hough). Technical Report 20, Department of Computer Science,
University of California, Berkeley, CA, 1973.

[5] Donald E. Knuth. The Art of Computer Programming, Volume 2, Seminu-
merical Algorithms. Addison-Wesley, Reading, MA, second edition, 1981.

Judy Hu (Is the 3rd edition out yet?) Includes two chapters
about floating-point arithmetic and multi- precision arithmetic,
and many references to earlier literature.

[6] Pat H. Sterbenz. Floating-Point Computation. Prentice Hall, Englewood
Cliffs, NJ, 1974.

Judy Hu: A good text book on floating-point computation. In-
cludes a detailed discussion of the arithmetics of IBM’s 7094 and
/360, and CDC’s 6600.
Apple: This book is obsolescent. It describes some things you have
to know and others you used to have to know; it gives a good idea
of why floating-point computation is simpler nowadays.
W. Kahan: From quick courses for IBM’s customers in the 1960s;
instructive but out of print.

2 Major online resources and bibliographies

A wealth of material pertaining to floating point computation and error analysis
is available online. Many articles and writings by W. Kahan, most of which are
relevant to topics from this class, are available at his web page [9]. Specific
papers will be cited in other sections of the bibliography. Jean-Michel Muller’s
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page [11] includes pointers to a variety of web pages of people, conferences,
journals, and books. David Hough’s page [8] contains the highly popular survey
article by David Goldberg with the appendix by Doug Priest, as well as pointers
to references on a variety of topics and archives of the numerics mailing list he
maintains.

Muller’s page contains pointers to extensive bibliographies compiled by Muller [12],
Kornerup [10], and Beebe [2, 1, 3]. The bibliography from Higham’s recent book
is also available online [7]. More generally, the Collection of Computer Science
Bibliographies [5] provides access to many relevant bibliographies. Citeseer [4]
is valuable not only for providing bibliographic information for various papers,
but also abstracts, information about where papers were cited, and pointers to
online versions.

The Netlib repository [13] hosts many numerical packages (often with accom-
panying documentation) along with a few online books. The Guide to Available
Mathematical Software [6] is a useful index of mathematical software available
online.

References

[1] Nelson Beebe. Elementary function bibligraphy. http://www.math.utah.
edu/ftp/pub/tex/bib/elefunt.html.

[2] Nelson Beebe. Floating-point bibliography. http://www.math.utah.edu/
ftp/pub/tex/bib/fparith.html.

[3] Nelson Beebe. Interval arithmetic bibligraphy. http://www.math.utah.
edu/ftp/pub/tex/bib/intarith.html.

[4] ResearchIndex: The NECI scientific digital library. http://www.
citeseer.com/.

[5] Collection of computer science bibliographies. http://liinwww.ira.uka.
de/bibliography/index.html.

[6] Guide to available mathematical software. http://gams.nist.gov/.

[7] Nicholas Higham. Bibliography for Accuracy and Stability of Numerical
Algorithms. http://www.ma.man.ac.uk/~higham/asna-bib.html.

[8] David Hough. http://www.validlab.com/.

[9] W. Kahan. http://www.cs.berkeley.edu/~wkahan.

[10] Peter Kornerup. http://www.ira.uka.de/bibliography/Theory/
arith.html.

[11] Jean-Michel Muller. http://www.ens-lyon.fr/~jmmuller/.

[12] Jean-Michel Muller. http://www.ens-lyon.fr/~jmmuller/biblio.

[13] Netlib software repository. http://www.netlib.org.
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3 IEEE 754 and 854

Early public debates about the IEEE 754 standard were published in a spe-
cial issue of the SIGNUM Newsletter, number 14 in October of 1979. Shortly
after (January of 1980), an article describing the KCS proposal by Jerome Coo-
nen [6] appeared in Computer. In March of the following year, another issue of
Computer carried several articles describing various aspects of the draft stan-
dard [11, 5, 7, 10]. A technical report by Kahan [12], also in 1981, detailed some
of the guiding rationale behind the evolving standard and provided examples of
its use. The final draft of the standard [1] was released by the IEEE in 1985;
Jerome Coonen’s thesis [8], published the year before, elaborated on the stan-
dard. Even before the 754 standard was officially published, a proposed version
of the radix-independent 854 standard was published in IEEE Micro [3].

Gradual underflow was (and two decades later remains) one of the most
controversial features of the 754 standard. A paper by on gradual underflow by
Coonen [7] in the 1981 Computer article series notes that

In fact, underflow should not be an important issue. ... Ironically,
gradual underflow was expected to go unnoticed by most users, com-
ing into view only when potentially dangerous underflow errors were
flagged.

An article by Demmel [9] further analyzed the difference made by gradual un-
derflow.

References

[1] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985. Institute of Electrical and
Electronics Engineers, New York, 1985. Reprinted in SIGPLAN Notices,
22(2):9–25, 1987.

[2] W. J. Cody. Floating-point standards—Theory and practice. In Ramon E.
Moore, editor, Reliability in Computing: The Role of Interval Methods in
Scientific Computing, pages 99–107. Academic Press, Boston, 1988.

[3] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan,
R. Karpinski, J. Palmer, F. N. Ris, and D. Stevenson. A proposed radix-
and word-length-independent standard for floating-point arithmetic. IEEE
Micro, 4(4):86–100, 1984.

Judy Hu: The most readable and precise exposition of the IEEE
854 standard to date; some implementation problems and how
to overcome them are also discussed.
Apple: This article makes the proposed IEEE 854 Standard avail-
able for public comment and discusses implementation problems.
SANE implementations conform to the more general propsed
Standard 854, as well as to standard 754.
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[4] W. J. Cody and Jerome T. Coonen. ALGORITHM 722: Functions to
support the IEEE standard for binary floating-point arithmetic. ACM
Transactions on Mathematical Software, 19(4):443–451, 1993.

[5] William J. Cody, Jr. Analysis of proposals for the floating-point standard.
IEEE Computer, 14(3):63–69, March 1981.

Apple: This paper compares the several contending proposals
presented to the Working Group.

[6] J. T. Coonen. An implementation guide to a proposed standard for floating-
point arithmetic. Computer, 13(1):68–79, 1980.

Now of primarily historical interest, this paper describes the fea-
tures of an early draft of the 754 standard (which changed sub-
stantially before the final draft), along with some notes on pos-
sible implementation strategies.
Judy Hu: Provides reasonable algorithms for arithmetic opera-
tions and exception handling that implement the IEEE standard.
Apple: This paper is a forerunner to work on the draft Standard.

[7] Jerome T. Coonen. Underflow and the denormalized numbers. Computer,
14:75–87, 1981.

Apple: These two papers examine one of the major features of the
proposed Standard, gradual underflow, and show how problems
of bounded exponent range can be handled through the use of
denormalized values. (The other paper referred to is [9].)

[8] Jerome Toby Coonen. Contributions to a Proposed Standard for Binary
Floating-Point Arithmetic. Thesis (ph.d. in mathematics), Department of
Mathematics, University of California at Berkeley, Berkeley, CA, USA,
December 1984.

Apple: This thesis, developed alongside the standard itself, is a
set of clarifications and elaborations of the terse 754 document;
it is an aid to implementors and a demonstration that the imple-
mentation is feasible.

[9] James W. Demmel. Underflow and the reliability of numerical software.
SIAM Journal on Scientific and Statistical Computing, 5(4):887–919, 1984.

Judy Hu: Examines the effects of different underflow mechanisms
(mainly store zero and gradual underflow) on the reliability of
numerical software.
Apple: These two papers examine one of the major features of the
proposed Standard, gradual underflow, and show how problems
of bounded exponent range can be handled through the use of
denormalized values.
W. Kahan: ... Gradual underflow beats flush-to-zero
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[10] David Hough. Applications of the proposed IEEE 754 standard for floating-
point arithmetic. Computer, 14:70–74, 1981.

Apple: This paper is an excellent introduction to the floating-
point environment provided by the proposed Standard, showing
how it facilitates the implementation of robust numerical com-
putations.

[11] IEEE Computer Society Microprocessor Standards Committee, Floating-
Point Working Group. A proposed standard for binary floating-point arith-
metic, Draft 8.0 of IEEE Task P754 (with introductory comments by David
Stevenson). Computer, 14:51–62, 1981.

Apple: This is draft 8.0 of the proposed Standard, which was
offered for public comment. The final standard is substantially
simpler than this draft; for instance, warning mode and projec-
tive mode have been eliminated, and the definition of underflow
has changed. However, the intent of the Standard is basically
the same, and this paper includes some excellent introductory
comments by David Stevenson, Chairman of the Floating-Point
Working Group.

[12] W. Kahan. Why do we need a floating-point arithmetic standard? Tech-
nical report, University of California, Berkeley, CA, February 1981.

Self-described as “a travelogue about the computer industries
arithmetic vagaries,” this document gives examples of the chal-
lenges facing the would-be designer of portable numerical soft-
ware, and discusses how the features of the IEEE standard might
make the task easier. Though the electronic original was lost, a
recently re-typed version will soon be available.

[13] Michael Overton. Numerical Computing with IEEE Floating Point Arith-
metic. SIAM, Philadelphia, 2001.

This recently-published textbook describes the fundamental fea-
tures of the IEEE 754 standard, and how these features can be
used in Fortran 2000 and C99.

4 Arithmetic texts

The recommended arithmetic texts for the course were by Scott [5], Koren [3],
and Parhami [4]. The appendix by David Goldberg [1] in Patterson and Hen-
nessey’s popular book provides a somewhat less in-depth treatment. A recent
book by Oberlyn and Flynn looks interesting, but I have not read it, nor have
I read or heard any reviews of it.
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The two-volume set Computer Arithmetic [6, 7], edited by Swartzlander, is
a collection of classic papers on computer arithmetic, many of them otherwise
difficult to track down.

References

[1] D. Goldberg. Computer arithmetic. In Computer Architecture: A Quantita-
tive Approach by J.L. Hennessy and D.A. Patterson, chapter Appendix A,
pages A–1–A–66. Morgan Kaufmann Publishers, San Mateo, CA, 1990.

Judy Hu: An introduction to algorithms for fixed and floating
point arithmetic, with emphasis on the IEEE 754 standard.

[2] K. Hwang. Computer Arithmetic. John Wiley and Sons, New York, 1979.

[3] Israel Koren. Computer Arithmetic Algorithms. Prentice Hall, Englewood
Cliffs, NJ, 1993.

A more detailed introduction to computer arithmetic than the one
by Scott [5].

[4] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, 2000.

A recent, very in-depth reference on computer arithmetic. Though
this text goes into much more detail than the books by Koren [3]
or Scott [5], it says some things about the IEEE standard which
are incorrect: for instance, it characterizes gradual underflow as
an optional feature.

[5] Norman R. Scott. Computer Number Systems and Arithmetic. Prentice Hall,
Englewood Cliffs, NJ, 1985.

A very short introductory text on computer arithmetic. This
would have been the recommended textbook for the purposes of
this course.

[6] Earl E. Swartzlander, Jr. Computer Arithmetic, volume 1 of IEEE Computer
Society Press tutorial. IEEE, New York, 1990.

A collection of classic papers in computer arithmetic, with a strong
emphasis on computer hardware. Besides the expected papers on
addition, multiplication, division, and computation of the elemen-
tary functions, there is a special section on logarithms and loga-
rithmic arithmetic, and another section on “floating-point arith-
metic” with papers largely treating the statistical analysis of float-
ing point.

7



[7] Earl E. Swartzlander, Jr. Computer Arithmetic, volume 2 of IEEE Computer
Society Press tutorial. IEEE, New York, 1990.

A follow-up volume to [6], this collection of influential arithmetic
papers includes sections on VLSI implementation of floating point
hardware; error detecting and correcting codes and their use in
error-tolerant arithmetic units; online arithmetic; and “number
representation.” The number representation section includes pa-
pers on floating point representation in various bases and on al-
ternate representations like floating slash, continued fraction rep-
resentations, and SLI.

5 Floating point hardware

The bi-annual IEEE Symposia on Computer Arithmetic and the journal IEEE
Transactions on Computers both contain a wealth of articles on computer arith-
metic, and particularly on computer arithmetic hardware. Unfortunately, I
consider myself (at present) unqualified to judge their relative merits. The ref-
erences in this section were lifted primarily from Judy Hu’s notes. See also the
volumes by Swartzlander referenced in the second section.

References

[1] D. E. Atkins. Higher radix division using estimates of the divisor and
partial remainders. IEEE Transactions on Computers, C-17(10), October
1968. Reprinted in Computer Arithmetic, ed. by Swartzlander.

Judy Hu: Reviews the theory of the SRT division technique,
develops analytic expressions for determining the number of bits
of divisor and partial remainder which must be inspected for a
given radix.

[2] A. D. Booth. A signed binary multiplication technique. Quarterly Journal
of Mechanics and Applied Mathematics, 4(2):236–240, 1951. Reprinted in
Computer Arithmetic, ed. by Swartzlander.

Judy Hu: Describes a two’s complement multiplication algorithm
that avoids the need to correct the product when either input is
negative.

[3] T. C. Cheng and I. T. Ho. Storage-efficient representation of decimal data.
Communications of the ACM, 18(1):49–52, 1975.

Judy Hu: Presents a simple binary encoding scheme of decimal
digits which achieves high storage efficiency.
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[4] L. Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34:349–
356, 1965. Reprinted in Computer Arithmetic, ed. by Swartzlander.

Judy Hu: Describles the parallel multiplication process in more
detail than Wallace’s paper.

[5] R. Duncan. Numeric data processor: the intel 8087. Dr. Dobb’s Journal,
7(8):47–49, 1982.

[6] P. Y. Lu and K. Dawallu. A VLSI module for IEEE floating-point mul-
tiplication/division/square root. In Proceedings. 1989 IEEE International
Conference on Computer Design: VLSI in Computers and Processors (Cat.
No.89CH2794-6), pages 366–368, Washington, DC, USA, ???? 1989. IEEE
Comput. Soc. Press.

Judy Hu: A hardware implementation of division and square
root using Newton-Ralphson method and a rounding algorithm
are presented.

[7] J. E. Robertson. A new class of digital division methods. IRE Transactions
on Electronic Computers, EC-7(3):88–92, September 1958. Reprinted in
Computer Arithmetic, ed. by Swartzlander.

Judy Hu Describes the SRT division method and presents exam-
ples Radix 4 and Radix 10 dividers.

[8] G. S. Taylor. Radix 16 SRT dividers with overlapped quotient selection
stages. In Kai Hwang, editor, IEEE 7th Symposium on Computer Arith-
metic, pages 64–71, 1985.

Judy Hu: Several SRT division methods and their implementa-
tion alternatives are compared for performance and costs.

[9] K. D. Tocher. Techniques of multiplication and division for automatic bi-
nary computers. Quarterly Journal of Mechanics and Applied Mathematics,
11(3):364–384, ???? 1958.

Judy Hu: A survey of some possible schemes for fast multipli-
cation. Applies mathematical analysis to the problem of making
fast multipliers and dividers.

[10] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, pages 14–17, February 1964. Reprinted in Computer
Arithmetic, ed. by Swartzlander.

Judy Hu Introduces the notion of a fully parallel multiplier im-
plemented with carry-save adders.

[11] T. E. Williams and M. A. Horowitz. A zero-overhead self-timed 160-ns 54-b
CMOS divider. IEEE Journal on Solid State Circuits, 26(11):1651–1661,
November 1991.
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Describes several performance enhancements used to make this
self- timed SRT division implementation one of the fastest to
date.

6 Language support

Though every major hardware vendor now supports IEEE arithmetic, language
implementors have been much slower to provide the support necessary for pro-
grammers to easily exploit the capabilities of their hardware. Many of the issues
involved in proper support at the language level were explored in the early days
of the standard [7, 11, 6]. Often these concerns often still remain unaddressed
two decades later.

When language support is available, it is possible not only to write more
robust codes, but also to write codes that run more quickly. One paradigm
which remains nearly impossible to write portably is to run a fast common-case
computation and only recompute more slowly and carefully if an exceptional
condition occurs in the fast computation. This paradigm was described in [4],
and also in [10], where it was used in elementary function routines. Hauser [8]
investigates language mechanisms for handling IEEE exceptions, and pays at-
tention to how the “careful only when needed” paradigm might be portably
supported.

The availability of multiple precisions in the IEEE standard is not only to
allow programmers to trade speed for accuracy. In fact, the use of multiple
precisions in a single code often increases both robustness and performance in
surprising ways. Some examples are given in [12]. Expression evaluation policies
and the use of mixed precision are treated in [1, 9, 5]. Related material on
techniques for implementing and using arbitrarily extended precisions is covered
later in this bibliography.

Specific proposals for how to support floating point in Java [2, 12] and lan-
guages such as Ada [3] have recently been proposed. The C99 language also
provides much-improved support for IEEE 754.

References

[1] R. P. Corbett. Enhanced arithmetic for fortran. ACM SIGPLAN Newslet-
ter, 17(12):41–48, 1982.

Also in ACM Signum Newsletter, 18.1 (1983) Judy Hu The prob-
lems of interpreting mixed-precision arithmetic expressions are
introduced, a strategy – widest need evaluation – is discussed,
and its application to Fortran is presented.

[2] Joseph Darcy. Borneo: Adding IEEE 754 floating point support to
Java. Master’s thesis, Computer Science Division, University of California
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at Berkeley, 1998. http://www.cs.berkeley.edu/~darcy/Borneo/spec.
html.

Describes an upward-compatible language extension to Java
which provides structured access to IEEE 754 features to which
the original Java specification forbade any access. See also [12].

[3] Samuel A. Figueroa del Cid. A Rigorous Framework for Fully Support-
ing the IEEE Standard for Floating-Point Arithmetic in High-Level Pro-
gramming Languages. PhD thesis, Department of Computer Science,
New York University, January 2000. http://www.cs.nyu.edu/csweb/
Research/Theses/figueroa_sam.pdf.

Describes generally what languages should do to support floating-
point. A set of interfaces is proposed for Ada, and Ada and Java
are used for specific examples. Goes into less specific detail about
tradeoffs and implementation issues than [2] does.

[4] James W. Demmel and Xiaoye Li. Faster numerical algorithms via excep-
tion handling. IEEE Transactions on Computers, 43(8):983–992, 1994.

Describes a programming paradigm in which a fast common-
case routine which may over/underflow is run, exception flags
are tested, and a slower code with careful scaling is run only if
necessary. See also [8].

[5] Charles Farnum. Compiler support for floating-point computation.
Software—Practice and Experience, 18(7):701–709, 1988.

Judy Hu: Addresses a number of issues that compiler writers
should know in order to produce good floating-point code.
Apple This paper describes many of the things a compiler writer
should know about floating point arithmetic.
W. Kahan: Advice to compiler writers from a classroom project.

[6] Richard J. Fateman. High-level language implications of the proposed IEEE
floating-point standard. ACM Trans. Program. Lang. Syst., 4(2):239–257,
1982.

Apple: This paper describes the significance to high-level lan-
guages, especially Fortran, of various features of the IEEE pro-
posed standard.

[7] Stuart Feldman. Language support for floating point. In The Relationship
between Numerical Computation and Programming Languages, pages 263–
273. North Holland, Amsterdam, 1982.

Examines support for floating point in languages of the time, and
considers features for future languages in the light of the IEEE
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754 standard. Some of the suggestions made, such as structured
access to modes and flags and widest-need expression evaluation,
continue to be echoed (and too often ignored) two decades later.

[8] John. R. Hauser. Handling floating-point exceptions in numeric programs.
ACM Transactions on Programming Languages and Systems, 18(2):139–
174, 1996.

Examines the ways in which a conscientious programmer can
avoid overflow and underflow exceptions, with an eye toward
what gains the programmer could make if standardized exception
handling constructs were available in programming languages.
Without such support, techniques like those proposed in [4, 10]
cannot be portably programmed.

[9] T. E. Hull, A. Abraham, M. S. Cohen, A. F. X. Curley, C. B. Hall, D. A.
Penny, and J. T. M. Sawchuk. Numerical TURING. ACM SIGNUM
Newsletter, 20(3):26–34, 1985.

Judy Hu Describes the Numerical Turing language with empha-
sis on its new features: clean decimal arithmetic and complete
precision control of variables and operations.

[10] T. E. Hull, T. F. Fargrieve, and P. T. Tang. Implementing complex ele-
mentary functions using exception handling. ACM Transactions on Math-
ematical Software, 20(2):215–244, 1994.

See also [4]. Evaluates elementary functions using fast formulas
which nearly always works, and uses exception handling to handle
cases when scaling is needed or when an exception should be
passed on to the user.

[11] W. Kahan and J. T. Coonen. The near orthogonality of syntax, semantics,
and diagnostics in numerical programming environments. In The Relation-
ship between Numerical Computation and Programming Languages, pages
103–115. North Holland, Amsterdam, 1982.

Judy Hu: Shows that language syntax, arithmetic semantics, and
execution-time diagnostics are approximately independent fea-
tures of the numerical programming environment, and suggests
that each should be dealt with by experts in that area.
Apple: This paper describes high-level langauge issues relating
to the proposed IEEE standard, including expression evaluation
and environment handling.

[12] W. Kahan and Joseph Darcy. How Java’s floating-point hurts everyone
everywhere. http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf.
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Describes problems with Java’s support for floating-point compu-
tation, and gives some examples of how they manifest themselves.
Some suggestions are proposed for how to remedy Java’s floating
point. Also in this document are written some “rules of thumb”
for best use of moder floating-point hardware.

7 Elementary functions and approximation

References

[1] J. M. Borwein and P. B. Borwein. The arithmetic-geometric mean and fast
computation of elementary functions. SIAM Review, 26(3):351–366, 1984.

A very readable and self-contained introduction to the use of the
arithmetic-geometric mean sequence to compute elementary func-
tions. Assumes no prior knowledge of the theory of elliptic func-
tions.

[2] E. W. Cheney. Introduction to Approximation Theory. Chelsea Publishing
Company, New York, 1982.

[3] W. J. Cody. Implementation and testing of function software. In Paul C.
Messina and Almerico Murli, editors, Problems and Methodologies in Math-
ematical Software Production, volume 142 of Lecture Notes in Computer
Science, pages 24–47. Springer-Verlag, Berlin, 1982.

[4] William J. Cody Jr. and William Waite. Software Manual for the Elementary
Functions. Prentice Hall, Englewood Cliffs, NJ, 1980.

A classic reference for the computer approximation of the ele-
mentary functions. Though the software included was once par-
ticularly important, at a time when many standard elementary
functions libraries were crummy, this book is now mostly useful
for its treatment of methods of computer approximation. Associ-
ated with this book was the ELEFUNT test suite, still available
at http://www.netlib.org/elefunt/.

[5] W. Kahan. Branch cuts for complex elementary functions or much ado about
nothing’s sign bit. In A. Iserles and M. J. D. Powell, editors, The State of the
Art in Numerical Analysis, pages 165–211. Oxford University Press, 1987.

Judy Hu Discusses the impact of signed and unsigned zeros on
complex arithmetic, and supplies formulas to compute complex-
valued inverse elementary functions correctly and accurately on
their slitted domains.

[6] Peter Markstein. IA-64 and Elementary Functions: Speed and Precision.
Prentice Hall, Upper Saddle River, NJ, 2000.
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Discusses the architecture of the IA-64 and methods to take
advantage of IA-64 features for fast computation of elementary
functions. Not only transcendental functions, but also hardware-
assisted iterative division and square root algorithms are treated.
Transcendental function approximation is handled entirely by ta-
bles of polynomials; CORDIC style methods are not treated.

[7] Jean-Michel Muller. Elementary Functions: Algorithms and Implementa-
tion. Birkhäuser, Boston, 1997.

A modern treatment of a variety of algorithms for computing ele-
mentary functions. Unlike previous treatments (e.g. [4]), Muller
does not assume pure software implementations, and discusses
hardware support in various places.

[8] John R. Rice. The Approximation of Functions, volume 2. Addison-Wesley,
Reading, MA, 1969 (vol. 2).

8 Major vendors

References

[1] P. H. Abbott, D. G. Brush, C. W. Clark III, C. J. Crone, J. R. Ehrman,
G. W. Ewart, C. A. Goodrich, M. Hack, J. S. Kapernick, B. J. Minchau,
W. C. Shepard, R. M. Smith, Sr., R. Tallman, S. Walkowiak, A. Watanabe,
and W. R. White. Architecture and software support in IBM S/390 Paral-
lel Enterprise Servers for IEEE floating-point arithmetic. IBM Journal of
Research and Development, 43(5/6):723–760, 1999. http://www.research.
ibm.com/journal/rd/435/abbott.html.

Describes a recent retrofit which allows IBM’s latest mainframe
to use IEEE arithmetic rather than the old hexadecimal system.
The new capabilities are grafted onto the old data path, making
the IEEE instructions slightly slower than their hex arithmetic
equivalents.

[2] Apple Computer. Inside Macintosh: PowerPC Numerics. Available online
at
http://developer.apple.com/techpubs/mac/PPCNumerics/PPCNumerics-
2.html.

(David Bindel) Documents the evolution of the SANE environ-
ment. The first appendix, “SANE vs PowerPC Numerics”, tells
what has changed. Sadly, the extended precision available in
SANE is replaced in PowerPC Numerics by doubled-double.

[3] Apple Computer. Apple Numerics Manual. Addison Wesley, Reading, MA,
1988.
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(David Bindel) Documents the Standard Apple Numerics Environ-
ment (SANE), a high-quality floating point software and hardware
environment once supported by Apple.

[4] R.K. Montoye, E. Hokenek, and S.L. Runyon. Design of the ibm risc sys-
tem/6000 floating-point execution unit. IBM Journal of Research and De-
velopment, 34(1):59–70, 1990.

[5] J. Palmer and S. Morse. The 8087 Primer. Wiley, New York, 1984.

Describes the 8087 coprocessor architecture and how to program
it. Also provides a good description of the rationale behind the
arithmetic design. The 8087 design predates the final IEEE stan-
dard, and so has certain features (like projective mode) not found
in the final draft.

[6] Sun Microsystems. Numerical Computation Guide, 1996. ftp://192.18.
99.138/802-5692/802-5692.pdf
Also linked from http://www.validlab.com/.

Includes a description of the IEEE standard features and the
way Sun’s numerical computing environment accomodates them.
David Goldberg’s popular article is included as an appendix.

9 Floating-point models

References

[1] W. S. Brown. A simple but realistic model of floating-point computation.
ACM Transactions on Mathematical Software, 7(4), 1981.

This model of floating point computation was much simpler than
that of van Wijngaarden [4], and enjoyed success as one of the
main inspirations for the treatment of floating point in Ada and
in the Language Independent Arithmetic standard.

[2] ISO. Information technology– language independent arithmetic – part 1:
Integer and floating point arithmetic, 1994. ISO/IEC 10967-1:1994(E).
ftp://crl.dec.com/pub/misc/lia-1-is.ps.Z.

The successor to the LCAS, LIA-1 proposes a parameterized
floating-point environment model similar in spirit to Brown’s
model. See also [3].

[3] W. Kahan. Analysis and refutation of the LCAS. ACM SIGNUM Newsletter,
26(3):2–15, 1991.
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Also published in SIGPLAN Bulletin 27.1(1992):61-74.
Judy Hu Points out serious flaws in LCAS, analyses why it will
discourage the promulgation of portable software.

[4] A. van Wijngaarden. Numerical analysis as an independent science. BIT,
6:66–81, 1966.

Judy Hu: Tries to define computer arithmetic upon real numbers
in 32 axioms.

10 Error analysis

Nicholas Higham’s book Accuracy and Stability of Numerical Algorithms [5]
covers a great deal of error analytic lore, including tricks for highly accurate
summations, issues relating to IEEE standard arithmetic, and the analysis of
problems from numerical linear algebra. Besides being remarkably clear and
thorough, particularly for an area with such a reputation for inscrutability,
Higham’s book has a bibliography of over a thousand entries, and his chapter
end notes contain exposition on those references.

Higham’s book is billed by SIAM Publishing as an excellent companion to
the LAPACK guide []. LAPACK, a linear algebra package that superseded
the well-respected LINPACK [3] and EISPACK [4] libraries, is very carefully
engineered to work on a variety of platforms, not all of them IEEE compliant.
The LAPACK guide, along with the working notes, describes some of the error
analysis, software engineering, and general cleverness that went into making a
package which is simultaneously reliable and portable.

References

[1] James W. Demmel. The geometry of ill-conditioning. Journal of Complexity,
3:201–229, 1987.

[2] James W. Demmel. On condition numbers and the distance to the nearest
ill-posed problem. Numerische Mathematik, 51:251–289, 1987.

See also ”Geometry of ill-conditioning”

[3] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK
Users’ Guide. SIAM Press, Philadelphia, PA, 1979.

LINPACK has since been superseded by LAPACK, q.v.

[4] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrix Eigen-
system Routines—EISPACK Guide Extension, volume 51 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1977.

[5] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1996.
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[6] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied
Science No. 32, Her Majesty’s Stationery Office, London, 1963. Also pub-
lished by Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover,
New York, 1994.

Shows how to apply error analysis of the individual arithmetic
operations to the error analysis of large-scale problems.

11 Compensated sums and simulated multipreci-
sion

A variety of techniques for accurate summation are explored by Higham in
a paper from 1993 [9], and more recently in chapter four of his book (cited
elsewhere in this bibliography). Douglas Priest’s thesis [21] and an earlier pa-
per [20] demonstrate algorithms that allow simulated precision bounded only by
under/overflow. Papers by Shewchuk [24, 22, 23] treat the use of simulated high
precision in geometric computation; see also the notes of Kahan [10, 11]. Pop-
ular packages for extended precision computation include Brent’s package [6],
and more recently Bailey’s package [3, 4, 1]. Another package is MPFR [18].
Use of extended precision in the new BLAS standard is described in [13].

References

[1] David Bailey. Multiprecision software directory. http://www.nersc.gov/
~dhbailey/mpdist/mpdist.html.

Extended precision and multiprecision software and documenta-
tion.

[2] David H. Bailey. The computation of π to 29,360,000 decimal digits using
Borweins’ quartically convergent algorithm. Mathematics of Computation,
50(181):283–296, 1988.

Judy Hu: See pp. 287-289 for more discussion on multi-precision
multiplication algorithms including Complex Fourier Transform
and Prime Modulus Transform methods.

[3] David H. Bailey. Algorithm 719: Multiprecision translation and execution
of FORTRAN programs. ACM Transactions on Mathematical Software,
19(3):288–319, 1993.
Online at http://www.nersc.gov/~dhbailey/dhbpapers/dhbpapers.
html.

Judy Hu Describes the MPFUN multiprecision package of For-
tran routines that perform a variety of arithmetic operations and
transcendental functions on floating point numbers of arbitrarily

17

http://www.nersc.gov/~dhbailey/mpdist/mpdist.html
http://www.nersc.gov/~dhbailey/mpdist/mpdist.html
http://www.nersc.gov/~dhbailey/dhbpapers/dhbpapers.html
http://www.nersc.gov/~dhbailey/dhbpapers/dhbpapers.html


high precision. Includes a discussion of some advanced multipreci-
sion multiplication algorithms employed.
W. Kahan: High Performance Multiprecision Package” Research
Center ... Uses Fortran’s REAL data-type for the multi-word in-
teger argument upon which his otherwise conventional floating
point is based. This package is still being refined and enhanced.
Also cf. Brent (1978) (1991) in Progress dated Sept 16, 1991 spe-
cial commments, up ordinary REAL and DOUBLE PRECISION
at no cost but the time conversions, unlike Brent (1978).

[4] David H. Bailey. A fortran-90 based multiprecision system. ACM Trans-
actions on Mathematical Software, 21(4):379–387, 1995.
Online at http://www.nersc.gov/~dhbailey/dhbpapers/dhbpapers.
html.

More recent multiprecision software in the vein of [3].

[5] G. Bohlender. Floating-point computation of functions with maximum
accuracy. IEEE Transactions on Computers, C-26(7):621–632, 1977.

W Kahan: “... One improvement was an elegant formalism by
which to prove the convergence of distillation iterations. The
other was a family of stopping criteria suitable for use when less
than full accuracy is required in the final sum.”

[6] Richard P. Brent. A Fortran multiple-precision arithmetic package. ACM
Transactions on Mathematical Software, 4(1):57–70, 1978.

Judy Hu: Describes the MP package of Fortran subroutines for
performing multi- precision floating point arithmetic, and some
of the algorithms are presented.
W. Kahan: Describes the MP Package, which uses Fortran’s IN-
TEGER data type to implement the multi-word integer arith-
metic upon which his otherwise conventional floating-poing is
based. Also available through netlib. C.f. Bailey (1990-91)

[7] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18:224–242, 1971.

Judy Hu: A technique is described for expressing multilength
floating-point arithmetic in terms of single length floating-point
arithmetic. See also D. Priest’s article.

[8] Richard J. Fateman. The MACSYMA big-floating-point arithmetic sys-
tem. In R.D. Jenks, editor, Proceedings of the 1976 ACM Symposium on
Symbolic and Algebraic Computation. ACM, New York, 1976.

Judy Hu: Describes the bigfloat data type and arithmetic system
in MACSYMA.

18

http://www.nersc.gov/~dhbailey/dhbpapers/dhbpapers.html
http://www.nersc.gov/~dhbailey/dhbpapers/dhbpapers.html


[9] Nicholas J. Higham. The accuracy of floating point summation. SIAM Jour-
nal of Scientific Computing, 14(4):783–799, July 1993. http://citeseer.
nj.nec.com/higham93accuracy.html.

Describes and analyzes several summation techniques, including
compensated summation. Includes a thorough bibliography.

[10] W. Kahan. Miscalculating area and angles of a needle-like triangle. http:
//www.cs.berkeley.edu/~wkahan/Triangle.pdf.

[11] W. Kahan. What has the volume of a tetrahedron to do with com-
puter programming languages? http://www.cs.berkeley.edu/~wkahan/
VtetLang.pdf.

[12] W. Kahan. Further remarks on reducing truncation errors. Communica-
tions of the ACM, 8(1):40, 1965.

[13] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskander,
A. Kapur, M. C. Martin, T. Tung, and D. J. Yoo. Design, implementation
and testing of extended and mixed precision blas. Technical Report LBNL-
45991, Lawrence Berkeley National Lab, 2000. Submitted to ACM TOMS.

[14] S. Linnainmaa. Analysis of some known methods of improving the accuracy
of floating-point sums. BIT, 14:167–202, 1974.

W. Kahan: “A thorough analysis, validation, and comparison of
tricks like these...”

[15] Seppo Linnainmaa. Software for doubled-precision floating-point computa-
tions. ACM Transactions on Mathematical Software, 7(3):272–283, 1981.

Generalized Dekker’s algorithms, proofs, etc.

[16] Ole Møller. Note on quasi double-precision. BIT, 5:251–255, 1965.

[17] Ole Møller. Quasi double-precision in floating point addition. BIT, 5:37–50,
1965. See also [16] for remarks on this article.

[18] Mpfr library. http://www.loria.fr/projets/mpfr/.

Another multi-precision floating point library, the apparent suc-
cessor of the corresponding module in GMP (the GNU Multi-
precision Package).

[19] M. Pichat. Correction d’une somme en arithmétique à virgule flottante.
Numerische Mathematik, 19:400–406, 1972.

W. Kahan: “It is astonishingly simple, without the presort and
backward pass in my algorithm; yet his will distill a large number
N of summands in not much more time on average than twice
what mine takes. In the worst case his scheme can take time
proportional to N2, whereas the worst case for mine, though far
better than that, has yet to be determined.”
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[20] Douglas M. Priest. Algorithms for arbitrary precision floating point arith-
metic. In Peter Kornerup and David W. Matula, editors, Proc. 10th IEEE
Symposium on Computer Arithmetic, pages 132–143. IEEE Computer So-
ciety Press, Los Alamitos, CA, USA, 1991.

Judy Hu: Presents techniques to perform computation of high ac-
curacy using floating-point operations of limited precision. Points
out that it is cost, not precision, that limits accuracy. W. Kahan:
... Portable, not fast

[21] Douglas M. Priest. On Properties of Floating Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations. PhD thesis, Mathematics
Department, University of California, Berkeley, CA, November 1992. ftp:
//ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z.

See also [20]. Besides presenting algorithms for arbitrary preci-
sion and examining the cost of using (or sometimes of not using)
simulated extended precision, Priest gives a critique of various
models of floating-point, which in some cases are too pessimistic
to accomodate the style of simulated higher precision he studies.

[22] Jonathan Richard Shewchuk. Robust Adaptive Floating-Point Geometric
Predicates. In Proceedings of the Twelfth Annual Symposium on Compu-
tational Geometry, pages 141–150. Association for Computing Machinery,
May 1996. http://www.cs.cmu.edu/~jrs/jrspapers.html.

[23] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arith-
metic and Fast Robust Geometric Predicates. Discrete & Computational
Geometry, 18(3):305–363, October 1997. http://www.cs.cmu.edu/~jrs/
jrspapers.html.

[24] Jonathon Shewchuk. Fast robust predicates for computational geometry.
http://www.cs.cmu.edu/~quake/robust.html.

Contains pointers to [22, 23]. Describes fast algorithms based
on Priest’s techniques, and their use to test the sign of certain
determinants describing, for instance, whether a point is inside
or outside of a circle. The software is also available on this page.

12 Interval arithmetic and Kulisch-Miranker the-
ory

References

[1] Göltz Alefeld and Jürgen Herzberger. Introduction to Interval Computa-
tions. Academic Press, New York, 1983.
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Judy Hu: A systematic introduction to the concepts and appli-
cations of interval analysis.
Apple: This book presents a mathematically rigorous description
of interval arithmetic.

[2] J. H. Bleher, A. E. Roeder, and S. M. Rump. ACRITH: High-accuracy
arithmetic. An advanced tool for numerical computation. In Kai Hwang,
editor, Proceedings of the 7th Symposium on Computer Arithmetic, pages
318–321. IEEE Computer Society Press, Silver Spring, MD, USA, 1985.

Judy Hu The IBM ACRITH package of numerical software
is introduced, its application environment and underlying 20-
instruction facility are described. See the critique by Kahan and
LeBlanc.

[3] J. H. Bleher, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich, and
W. Walter. A study of a FORTRAN extension for engineering/scientific
computation with access to ACRITH. Computing, 39:93–110, 1987.

Judy Hu Describes the language FORTRAN-SC, and features
intended to facilitate engineering and scientific computation as
well as the use of the ACRITH subroutine library.

[4] Paul Jansen and Peter Weidner. High-accuracy arithmetic software—some
tests of the ACRITH problem-solving routines. ACM Transactions on
Mathematical Software, 12(1):62–70, 1986.

Judy Hu Test results for most of the routines in the ACRITH
package are presented, comments on the quality and reliability
of these routines are given.

[5] W. Kahan. Interval arithmetic options in the proposed IEEE floating point
arithmetic standard. In Karl L. E. Nickel, editor, Interval Mathematics
1980, pages 99–128. Academic Press, New York, 1980.

Judy Hu Exposes common misconceptions about computation,
interval arithmetic, and the proposed IEEE standard. Explains
some controversial features of that standard. Apple This paper
attempts to allay certain widespread misconceptions about com-
puter arithmetic.

[6] W. Kahan and E. LeBlanc. Anomalies in the IBM ACRITH package. In Kai
Hwang, editor, Proceedings of the 7th Symposium on Computer Arithmetic,
pages 322–331. IEEE Computer Society Press, Silver Spring, MD, USA,
1985.

Questions the reliability of ACRITH and its underlying method-
ology to manage extra-precise arithmetic.

21



[7] R. B. Kearfott. Interval computations: Introduction, uses, and resources.
Euromath bulletin, 2(1). http://interval.louisiana.edu/preprints/
survey.pdf, ftp://interval.louisiana.edu/pub/interval_math/
papers/.

As the name suggests, this article provides an overview of interval
analysis and areas where it has been successfully applied, along
with a substantial list of additional sources of information on the
topic.

[8] Ulrich W. Kulisch and Willard L. Miranker. Computer Arithmetic in The-
ory and in Practice. Academic Press, New York, 1981.

Judy Hu As the title suggests, the book deals with both the
theory and implementation of computer arithmetic taking for
granted the alleged advantages of a ”super-accumulator”.

[9] Ulrich W. Kulisch and Willard L. Miranker, editors. A New Approach to
Scientific Computation. Academic Press, New York, 1983.

Includes a collection of papers about the concepts of a new theory
of computer arithmetic including a ”super-accumulator” (which
forms the theoretical basis of ACRITH), and its software and
hardware implementation.

[10] Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, 1979.

Judy Hu A survey/text of the principal methods and applications
of interval analysis.
Apple This is a good introductory book, helpful to someone im-
plementing an interval arithmetic.

13 Alternate arithmetic systems
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[1] M. G. Arnold, T. A. Bailey, J. R. Cowles, and J. J. Cupal. Redundant
logarithmic number systems. In M. D. Ercegovac and E. Swartzlander,
editors, Proceedings of the 9th IEEE Symposium on Computer Arithmetic,
pages 144–151, 1989. Also available online via IEEE.

(W Kahan) Advocates fast but inaccurate subtraction

[2] G. Bohlender, W. Walter, P. Kornerup, and D. Matula. Semantics for
exact floating point operations. In P. Kornerup and D. Matula, editors,
Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages
22–26, 1991. Available on line through IEEE.
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(W Kahan) Once again the easier almost-right is not quite right.

[3] C. W. Clenshaw and F. W. J. Olver. Beyond floating point. Journal of the
ACM, 31(2):319–328, 1984.

A new number system – level-index arithmetic – is proposed for
computer arithmetic based on iterated exponential functions to
eradicate over/underflow. See also Demmel’s critique.

[4] George F. Corliss and Louis B. Rall. Automatic generation of Taylor series
in Pascal-SC: Basic operations and applications to differential equations. In
Trans. of the First Army Conference on Applied Mathematics and Comput-
ing (Washington, DC, 1983), pages 177–209. ARO Rep. 84-1, U. S. Army
Res. Office, Research Triangle Park, NC, USA, 1984.

[5] James W. Demmel. On error analysis in arithmetic with varying relative
precision. In Mary Jane Irwin and Renato Stefanelli, editors, Proceedings of
the Eighth Symposium on Computer Arithmetic, Como, Italy, pages 148–
152. IEEE Computer Society, Washington, D.C., 1987.

Judy Hu Illustrates that nonconventional floating-point represen-
tations proposed by Clenshau/Olver and Iri/Matsui require extra
effort in error analysis; they are not shortcuts to writing reliable
numerical code. (W. Kahan) ... Don’t try.

[6] James W. Demmel. On the odor of IEEE arithmetic. NA Digest, Volume
91, Issue 39, 1991. (Response to a message “IEEE Arithmetic Stinks” in
Volume 91, Issue 33).

[7] Hozumi Hamada. A new real number representation and its operation. In
Mary Jane Irwin and Renato Stefanelli, editors, Proceedings of the Eighth
Symposium on Computer Arithmetic, Como, Italy, pages 153–157. IEEE
Computer Society, Washington, D.C., 1987.

Judy Hu An internal representation called URR is proposed for
real numbers. A variable length exponent part is used to ”elimi-
nate” overflow and underflow. See Demmel’s critique.

[8] P. Kornerup and D. W. Matula. A bit-serial arithmetic unit for rational
arithmetic. In M. J. Irwin and R. Stefanelli, editors, Proceedings of the 8th
IEEE Symposium on Computer Arithmetic, pages 204–211, 1987.

[9] P. Kornerup and D. W. Matula. Exploiting redundancy in bit-pipelined
rational arithmetic. In M. D. Ercegovac and E. Swartzlander, editors, Pro-
ceedings of the 10th IEEE Symposium on Computer Arithmetic, pages 119–
126, 1991.

Judy Hu Algorithms that perform rational operations on finite
continued fractions; see also Vuillemin (1990).
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[10] F-S. Lai and C-F.E. Wu. A hybrid number system processor with geomet-
ric and complex number capabilities. IEEE Transactions on Computers,
40(8):952–962, 1991. Available online via IEEE.

(W. Kahan) “... Pipelined VLSI implementation with fast lg x
and 2x conversion, said to be faster for FFTs and curvelinear
graphics because it converts to logs before multiplication, divi-
sion, sqrt, or exponentiation, and then converts back to con-
ventional floating-point. Its arithmetic is not really logarithmic
because its user puts conventional floating point numbers in and
gets them out.

[11] Shouichi Matsui and Masao Iri. An overflow/underflow-free floating-point
representation of numbers. J. Information Processing, 4(3):123–133, 1981.

Judy Hu See Demmel’s critique.

[12] David W. Matula and Peter Kornerup. Finite precision rational arithmetic:
Slash number systems. IEEE Transactions on Computing, C-34(1):3–18,
1985.

Judy Hu Specifies the fixed-slash and floating-slash number sys-
tems and the exact rational and approximate real arithmetic they
support.

[13] L. B. Rall. Differentiation in pascal-sc: Type gradient. ACM Transactions
on Mathematical Software, 10:161–184, 1984.

Judy Hu Shows how automatic differentiation can be carried out
in a modern computer language which permits user-defined op-
erators and data type.

[14] P. R. Turner. Implementation and analysis of extended SLI operations. In
Proc 10th IEEE Symp Computer Arithmetic, pages 118–126, 1991.

(W. Kahan) ... Misplaced ingenuity

[15] Jean Vuillemin. Exact real computer arithmetic with continued fractions.
IEEE Transactions on Computers, 39(8):1087–1105, 1990.

Judy Hu Vuillemin, Jean. ”Exact Real Computer Arithmetic
with Continued Fractions.” in Proceedings of the 1988 ACM Con-
ference on LISP and Functional Programming, 14-27. New York:
ACM Press, 1988. Introduces a representation of the computable
real numbers by continued fractions and the general algorithms
for performing arithmetic operations on them. (W Kahan) ...
Algorithms that perform transcendental as well as rational oper-
ations upon non-terminating continued fractions.
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