
Direct Anonymous Attestation ∗

Ernie Brickell
Intel Corporation

ernie.brickell@intel.com

Jan Camenisch
IBM Research

jca@zurich.ibm.com

Liqun Chen
HP Laboratories

liqun.chen@hp.com

ABSTRACT
This paper describes the direct anonymous attestation
scheme (DAA). This scheme was adopted by the Trusted
Computing Group (TCG) as the method for remote au-
thentication of a hardware module, called Trusted Platform
Module (TPM), while preserving the privacy of the user of
the platform that contains the module. DAA can be seen
as a group signature without the feature that a signature
can be opened, i.e., the anonymity is not revocable. More-
over, DAA allows for pseudonyms, i.e., for each signature a
user (in agreement with the recipient of the signature) can
decide whether or not the signature should be linkable to
another signature. DAA furthermore allows for detection of
“known” keys: if the DAA secret keys are extracted from a
TPM and published, a verifier can detect that a signature
was produced using these secret keys. The scheme is prov-
ably secure in the random oracle model under the strong
RSA and the decisional Diffie-Hellman assumption.

Categories and Subject Descriptors
x.x.x [Data]: Data Encryption—Standards

General Terms
Standardization,Algorithms,Security

Keywords
Privacy, Anonymous Credential Systems, Cryptographic
Protocols, Trusted Computing, Integrity Based Computing.

1. INTRODUCTION
Consider a trusted hardware module, called the trusted

platform module (TPM) in the following, that is integrated
into a platform such as a laptop or a mobile phone. As-
sume that the user of such a platform communicates with a
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verifier who wants to be assured that the user indeed uses
a platform containing such a trusted hardware module, i.e.,
the verifier wants the TPM to authenticate itself. However,
the user wants her privacy protected and therefore requires
that the verifier only learns that she uses a TPM but not
which particular one – otherwise all her transactions would
become linkable to each other. This problem arose in the
context of the Trusted Computing Group (TCG). TCG is
an industry standardization body that aims to develop and
promote an open industry standard for trusted computing
hardware and software building blocks to enable more secure
data storage, online business practices, and online commerce
transactions while protecting privacy and individual rights
(cf. [37]). TCG is the successor organization of the Trusted
Computing Platform Alliance (TCPA).

In principle, the problem just described could be solved
using any standard public key authentication scheme (or
signature scheme): One would generate a secret/public key
pair, and then embed the secret key into each TPM. The
verifier and the TPM would then run the authentication
protocol. Because all TPMs use the same key, they are
indistinguishable. However, this approach would never work
in practice: as soon as one hardware module (TPM) gets
compromised and the secret key extracted and published,
verifiers can no longer distinguish between real TPMs and
fake ones. Therefore, detection of rogue TPMs needs to be
a further requirement.

The solution first developed by TCG uses a trusted third
party, the so-called privacy certification authority (Privacy
CA), and works as follows [35]. Each TPM generates an
RSA key pair called an Endorsement Key (EK). The Pri-
vacy CA is assumed to know the Endorsement Keys of all
(valid) TPMs. Now, when a TPM needs to authenticate it-
self to a verifier, it generates a second RSA key pair called an
Attestation Identity Key (AIK), sends the AIK public key to
the Privacy CA, and authenticates this public key w.r.t. the
EK. The Privacy CA will check whether it finds the EK in
its list and, if so, issues a certificate on the TPM’s AIK. The
TPM can then forward this certificate to the verifier and au-
thenticate itself w.r.t. this AIK. In this solution, there are
two possibilities to detect a rogue TPM: 1) If the EK se-
cret key was extracted from a TPM, distributed, and then
detected and announced as a rogue secret key, the Privacy
CA can compute the corresponding public key and remove
it from its list of valid Endorsement Keys. 2) If the Privacy
CA gets many requests that are authorized using the same
Endorsement Key, it might want to reject these requests.
The exact threshold on requests that are allowed before a
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TPM is tagged rogue depends of course on the actual envi-
ronment and applications, and will in practise probably be
determined by some risk-management policy.

This solutions has the obvious drawback that the Privacy
CA needs to be involved in every transaction and thus highly
available on the one hand but still as secure as an ordinary
certification authority that normally operates off-line on the
other hand. Moreover, if the Privacy CA and the verifier col-
lude, or the Privacy CA’s transaction records are revealed
to the verifier by some other means, the verifier will still be
able to uniquely identify a TPM. Although the latter prob-
lem could be solved by using blind signatures [17] instead
of ordinary signatures in the private CA’s certification, the
first problem, the private CA’s availability, would persist in
such a solution.

In this paper, we describe a better solution that was
adopted by TCG in the new specification of the TPM [36].
It draws on techniques that have been developed for group
signatures [22, 14, 1], identity escrow [29], and credential
systems [18, 7]. In fact, our scheme can be seen as a group
signature scheme without the capability to open signatures
(or anonymity revocation) but with a mechanism to detect
rogue members (TPMs in our case). More precisely, we also
employ a suitable signature scheme to issue certificates on a
membership public key generated by a TPM. Then, to au-
thenticate as a group member, or valid TPM, a TPM proves
that it possesses a certificate on a public key for which it also
knows the secret key. To allow a verifier to detect rogue
TPMs, the TPM is further required to reveal and prove cor-
rect of a value NV = ζf , where f is its secret key and ζ
is a generator of an algebraic group where computing dis-
crete logarithms is infeasible. As in the Privacy-CA solu-
tion, there are two possibilities for the verifier to detect a

rogue TPM: 1) By comparing NV with ζ f̃ for all f̃ ’s that are
known to stem from rogue TPMs. 2) By detecting whether
he has seen the same NV too many times. Of course, the
second method only works if the same ζ is used many times.
However, ζ should not be a fixed system parameter as oth-
erwise the user gains almost no privacy. Instead, ζ should
either be randomly chosen by the TPM each time when it
authenticates itself or every verifier should use a different
ζ and change it with some frequency. Whether a verifier
allows a TPM to choose a random base ζ and, if not, how
often a verifier changes its ζ is again a question of risk man-
agement and policies and is outside the scope of this paper.
However, we assume in the following that in case ζ is not
random, it is derived from the verifier’s name, e.g., using an
appropriate hash function.

Because the TPM is a small chip with limited resources,
a requirement for direct anonymous attestation was that
the operations carried out on the TPM be minimal and,
if possible, be outsourced to (software that is run on)
the TPM’s host. Of course, security must be main-
tained, i.e., a (corrupted) host/software should not be able
to authenticate without interacting with the TPM. How-
ever, privacy/anonymity needs only be guaranteed if the
host/software is not corrupted: as the host controls all
the communication of the TPM to the outside, a cor-
rupted host/software can always break privacy/anonymity
by just adding some identifier to each message sent by the
TPM. In fact, our scheme satisfies an even stronger require-
ment: when the corrupted software is removed, the pri-
vacy/anonymity properties are restored.

As our scheme employs the Camenisch-Lysyanskaya sig-
nature scheme [8, 31] and the respective discrete logarithms
based proofs to prove possession of a certificate, unforgeabil-
ity of certificates holds under the strong RSA assumption
and privacy and anonymity is guaranteed under the deci-
sional Diffie-Hellman assumption. Furthermore, we use the
Fiat-Shamir heuristic to turn proofs into signatures and thus
our security proofs also assume random oracles.

As already mentioned, our setting shares many proper-
ties with the one of group signatures [22, 14, 1], identity
escrow [29], and credential systems [18, 7] and we employ
many techniques [1, 7, 8] used in these schemes. However,
unlike those schemes, the privacy/anonymity properties do
not require that the issuer uses so-called safe primes. We
achieve this by a special sub-protocol when issuing creden-
tials. This rids us of the necessity that the issuer proves that
his RSA modulus is a safe-prime product which makes the
setup of those schemes rather inefficient.

Finally, there have been two other methods [5, 3] pre-
sented to TCG that address the same problem as we do.
The security of Brickell’s direct proof method [5] is based
on the Bounded Decision Diffie-Hellman assumption and a
new assumption called the Interval RSA assumption stat-
ing that given e and n, it is hard to find a pair (x, y) such
that x = ye (mod n)) and x lies in some small specific in-
terval. Besides this non-standard assumption, this direct
proof method is less efficient than ours (it uses cut-and-
choose proofs). The security of the Boneh, Brickell, Chen,
Shacham set signature method [3] is based on the strong
RSA assumption and the Bounded Decision Diffie-Hellman
assumption, and is based on the group signature scheme by
Ateniese et al. [1]. However, neither of these methods [5, 3]
are proven to protect against a corrupted TPM when issu-
ing certificates. This may be acceptable in the case that a
TPM does not leave the control of a secure manufacturing
facility before a certificate is issued. However, to meet a
requirement that certificates may be issued to TPMs after
they have been released to an insecure environment, it is de-
sirable to use a scheme in which the signature scheme used
to issue certificates is proven to be secure against adaptive
chosen message attacks, which is a property we prove for
our scheme.

2. FORMAL SPECIFICATION OF DIRECT
ANONYMOUS ATTESTATION AND SE-
CURITY MODEL

This section provides the formal model of direct anony-
mous attestation (DAA). As in [7], we use an ideal-
system/real-system model to prove security based on secu-
rity models for multi-party computation [15, 16] and reactive
systems [32, 33].

We summarize the ideas underlying these models. In the
real system there are a number of players, who run some
cryptographic protocols with each other, an adversary A,
who controls some of the players, and an environment E
that 1) provides the player Ui with inputs and 2) arbitrarily
interacts with A. The environment provides the inputs to
the honest players and receives their outputs and interacts
arbitrarily with the adversary. The dishonest players are
subsumed into the adversary.

In the ideal system, we have the same players. However,
they do not run any cryptographic protocol but send all



their inputs to and receive all their outputs from an ideal
all-trusted party T . This party computes the output of the
players from their inputs, i.e., applies the functionality that
the cryptographic protocols are supposed to realize.

A cryptographic protocol is said to implement securely a
functionality if for every adversary A and every environment
E there exists a simulator S controlling the same parties in
the ideal system as A does in the real system such that the
environment can not distinguish whether it is run in the real
system and interacts with A or whether it is run in the ideal
system and interacts with the simulator S.

We now specify the functionality of direct anonymous at-
testation. We distinguish the following kinds of players: the
issuer I, a trusted platform module (TPM) Mi with iden-
tity idi, a host Hi that has TPM Mi “built in,” the rogue
detection oracle O announcing which TPMs are rogue, and
verifiers Vj .

In the following specification, a counter value cnt is used
to allow a TPM to generate multiple DAA keys from a single
secret and a basename bsn is used to provide the property of
a possible link, which is controlled by a signer and a verifier,
between multiple DAA signatures signed under the same
DAA key. Borrowing terminology from group signatures,
by “join” we denote the procedure in which a TPM gets
issued an anonymous certificate and there “joins” the group
of certified or attested TPMs. By “DAA-Sign/Verify” we
denote the procedure with which the TPM and its platform
can convince a verifier that the TPM is certified. We use the
word “sign” as the verifier gets as a result of this procedure
a piece of information that he or she can use to convince
another entity that he or she was communicating with a
certified TPM and also because the procedure can indeed
be used to sign messages, in particular, attestation identity
keys (AIK) generated by the very same TPM. Finally, the
“rogue tagging” operation corresponds to the event that one
finds a TPM’s DAA keys, e.g., on the Internet, and wants
to publish those keys as invalid.

The ideal system all-trusted party T supports the follow-
ing operations:

Setup: Each player indicates to T whether or not it is cor-
rupted. Each TPM Mi sends its unique identity idi to
T who forwards it to the respective host Hi.

Join: The hostHi contacts T and requests to become a mem-
ber w.r.t. to a counter value cnt. Thus T sends the cor-
responding TPM Mi the counter value cnt and asks it
whether it wants to become a member w.r.t. counter value
cnt. Then, T asks the issuer I whether the platform with
identity id and counter value cnt can become a member.
If Mi was tagged rogue w.r.t. some counter value, T also
tell I this. If the issuer agrees, T notifies Hi that it has
become a member.

DAA-Sign/Verify: A host Hi wants to sign a message m for
some verifier Vj with respect to some counter value cnt

and some basename bsn ∈ {0, 1}∗ ∪{⊥} (If a signature is
done w.r.t. a basename we have bsn ∈ {0, 1}∗ and if its
done w.r.t. no basename we set bsn = ⊥). So Hi sends
m, bsn and cnt to T . If Hi/Mi are not a member w.r.t.
cnt, then T denies the request. Otherwise, T forwards
m and cnt to the corresponding Mi and asks it whether
it wants to sign. If it does, T tells Hi that Mi agrees
and asks it w.r.t. which basename bsn it wants to sign
(or whether it wants to abort). If Hi does not abort, T

proceeds as follows

• If Mi has been tagged rogue w.r.t. cnt, T lets Vj

know that a rogue TPM has signed m.

• If bsn = ⊥ then T informs Vj that m has been signed
w.r.t. bsn.

• If bsn 6= ⊥ then T checks whether Hi/Mi have al-
ready signed a message w.r.t. bsn and cnt. If this is
the case, T looks up the corresponding pseudonym
P in its database; otherwise T chooses a new ran-
dom pseudonym P ∈R {0, 1}`σ (the quantity `σ is a
security parameter). Finally, T informs Vj that the
platform with pseudonym P has signed m.

Rogue Tagging:O tells T to tag of the platform with identity
id w.r.t. cnt as a rogue. If the TPM with identity id is
not corrupted, T denies the request. Otherwise, T marks
the TPM with identity id as rogue w.r.t. counter value
cnt.

Let us discuss our model. Note that the ideal
system model captures both unforgeability and
anonymity/pseudonymity. More precisely, a signature
can only be produced with the involvement of a TPM that
is a member and is not tagged rogue. Furthermore, signa-
tures involving the same TPM w.r.t. the same basename are
linkable to each other via a pseudonym P , but if they are
done w.r.t. different basenames or no basename then they
cannot be linked. These two properties hold, regardless
of whether or not the corresponding host is corrupted.
Anonymity/pseudonymity is only guaranteed if both the
host and the TPM are honest, as a dishonest party can
always announce its identity and the messages it signed.

The way we have modeled rogue-tagging of a TPM has
no effect on old messages but only causes verifiers to reject
messages signed by a TPM that is tagged rogue. In the
cryptographic protocol, however, an (honest) verifier would
in principle be able to identify the messages a rogue TPM
signed before it gets tagged as rogue. For simplicity, we do
not model this and thus an honest verifier in the real system
will not consider this information.

In the model, we assumed that no two verifiers use the
same basename bsn. If they do, we consider them to be the
same entity. But of course, a verifier can use several different
basenames.

We also assume that TPM has a unique identity id

with respect to which can identify itself. However, the is-
suer can always add new hosts/TPMs to the system and
hence the number of hosts/TPMs is not fixed. As all these
hosts/TPMs have some external identifier, we do not model
such additions but just assume that there is always another
host/TPM if we need one. Also, in real life, the issuer will
decide whether or not a given TPM is allowed to become
a member based upon some policy (e.g., the issuer might
only allow a specific TPM to join w.r.t., e.g., ten different
counter values) and based upon a list of the identities of the
valid TPMs.

In our security proofs we make two assumptions about the
adversary: First, we assume that the rogue-tagging oracle O
is always controlled by the adversary. The rationale behind
this is that the rogue-tagging oracle models the case where
a rogue hardware module from a platform is found, its keys
are extracted and published on a rogue list. Thus the adver-
sary “controls” this oracle as the adversary can decide when



such a rogue platform is found. Note that this assumption
strengthens the model. Second, we will not consider cor-
rupted TPMs embedded into honest hosts. The reason is
that we assume that at some point all platforms, i.e., hosts
and TPM are genuine. Once the platforms get shipped,
they might get compromised. As it is easier to compromise
a platform than the TPM, we assume that whenever a TPM
is corrupted, then so is the platform.

3. PRELIMINARIES

3.1 Notation
Let {0, 1}` denote the set of all binary strings of length `.

We often switch between integers and their representation
as binary strings, e.g., we write {0, 1}` for the set [0, 2` − 1]
of integers. Moreover, we often use ±{0, 1}` to denote the
set [−2` + 1, 2` − 1].

We need some notation to select the high and low order
bits of an integer. Let LSBu(x) := x−2ub x

2u c and CARu(x) :=
b x

2u c. Let (xk . . . x0)b denote the binary representation of

x =
∑k

i=0 2ixi, e.g., (1001)b is the binary representation of
the integer 9. Then LSBu(x) is the integer corresponding to
the u least signification bits of (the binary representation
of) x, e.g., LSB4(57) = LSB4((111001)b) = (1001)b = 9, and
CARu(x) is the integer obtained by taking the binary repre-
sentation of x and right-shifting it by u bits (and cutting of
those bits), e.g., CAR4(57) = CAR4((111001)b) = (11)b = 3.
Also note that x = LSBu(x) + 2uCARu(x).

3.2 Protocols to Prove Knowledge of and Re-
lations among Discrete Logarithms

In our scheme we will use various protocols to prove
knowledge of and relations among discrete logarithms. To
describe these protocols, we use notation introduced by Ca-
menisch and Stadler [14] for various proofs of knowledge of
discrete logarithms and proofs of the validity of statements
about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers
α, β, and γ such that y = gαhβ and ỹ = g̃αh̃γ holds, where
u ≤ α ≤ v,” where y, g, h, ỹ, g̃, and h̃ are elements of some
groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention
is that Greek letters denote the quantities of the knowledge
which is being proved, while all other parameters are known
to the verifier. Using this notation, a proof protocol can
be described by just pointing out its aim while hiding all
details.

In the random oracle model, such protocols can be turned
into signature schemes using the Fiat-Shamir heuristic [25,
34]. We use the notation SPK{(α) : y = gα}(m) to denote
a signature obtained in this way.

3.2.1 Proof of knowledge of the discrete logarithm
modulo a composite.

In this paper we apply such PK ’s and SPK ’s to the group
of quadratic residues modulo a composite n, i.e., G = QRn,
where n is a safe-prime product. This choice for the under-
lying group has some consequences. First, the protocols are
proofs of knowledge under the strong RSA assumption [26].
Second, the largest possible value of the challenge c must be
smaller than the smallest factor of G’s order. Third, sound-
ness needs special attention in the case that the verifier is

not equipped with the factorization of n because then de-
ciding membership in QRn is believed to be hard. Thus the
prover needs to convince the verifier that the elements he
presents are indeed quadratic residues, i.e., that the square
roots of the presented elements exist. This can in principle
be done with a protocol by Fiat and Shamir [25]. However,
often it is sufficient to simply execute PK{(α) : y2 = (g2)α}
or PK{(α) : y = ±gα} instead of PK{(α) : y = gα}. The
quantity α is defined as logg2 y2, which is the same as logg y
in case y is in QRn.

3.2.2 Other proofs in a fixed group.
A proof of knowledge of a representation of an element

y ∈ G with respect to several bases z1, . . . , zv ∈ G [20] is
denoted PK{(α1, . . . , αv) : y = zα1

1 · . . . · zαv
v }. A proof of

equality of discrete logarithms of two group elements y1, y2 ∈
G to the bases g ∈ G and h ∈ G, respectively, [19, 21] is
denoted PK{(α) : y1 = gα ∧ y2 = hα}. Generalizations
to prove equalities among representations of the elements
y1, . . . , yv ∈ G to bases g1, . . . , gv ∈ G are straightforward
[14]. A proof of knowledge of a discrete logarithm of y ∈ G
with respect to g ∈ G such that logg y that lies in the integer
interval [a, b] is denoted by PK{(α) : y = gα ∧ α ∈ [a, b]}.
Under the strong RSA assumption and if it is assured that
the prover is not provided the factorization of the modulus
(i.e., is not provided the order of the group) this proof can
be done efficiently [4] (it compares to about six ordinary
PK{(α) : y = gα}.)

3.2.3 Proofs of knowledge of equality in different
groups.

The previous protocol can also be used to prove that the
discrete logarithms of two group elements y1 ∈ G1, y2 ∈ G1

to the bases g1 ∈ G1 and g2 ∈ G2 in different groups G1

and G2 are equal [6, 12]. Let the order of the groups be q1

and q2, respectively. This proof can be realized only if both
discrete logarithms lie in the interval [0, min{q1, q2}]. The
idea is that the prover commits to the discrete logarithm in
some group, say G = 〈g〉 = 〈h〉 the order of which he does

not know, and then executes PK{(α, β) : y1
G1= gα

1 ∧ y2
G2=

gα
2 ∧ C

G
= gαhβ ∧ α ∈ [0, min{q1, q2}]}, where C is the

commitment. This protocol generalizes to several different
groups, to representations, and to arbitrary modular rela-
tions.

3.3 Cryptographic Assumptions
We prove security under the strong RSA assumption and

the decisional Diffie-Hellman assumption.

Assumption 1 (Strong RSA Assumption). The
strong RSA (SRSA) assumption states that it is computa-
tional infeasible, on input a random RSA modulus n and
a random element u ∈ Z∗n, to compute values e > 1 and v
such that ve ≡ u (mod n).

The tuple (n, u) generated as above is called an instance
of the flexible RSA problem.

Assumption 2 (DDH Assumption). Let Γ be an `Γ-
bit prime and ρ is an `ρ-bit prime such that ρ|Γ − 1. Let
γ ∈ Z∗Γ be an element of order ρ. Then,for sufficiently
large values of `Γ and `ρ, the distribution {(δ, δa, δb, δab)}
is computationally indistinguishable from the distribution



{(δ, δa, δb, δc)}, where δ is a random element from 〈γ〉, and
a, b, and c are random elements from [0, ρ− 1]

3.4 The Camenisch-Lysyanskaya Signature
Scheme

The direct anonymous attestation scheme is based on the
Camenisch-Lysyanskaya (CL) signature scheme [9, 31]. Un-
like most signature schemes, this one is particularly suited
for our purposes as it allows for efficient protocols to prove
knowledge of a signature and to retrieve signatures on secret
messages efficiently using discrete logarithm based proofs of
knowledge [9, 31]. As we will use somewhat different (and
also optimized) protocols for these tasks than those provided
in [9, 31], we recall the signature scheme here and give an
overview of discrete logarithm based proofs of knowledge in
the following subsection.

Key generation. On input 1k, choose a special RSA modulus
n = pq, p = 2p′ + 1, q = 2q′ + 1. Choose, uniformly at
random, R0, . . . , RL−1, S, Z ∈ QRn. Output the public
key (n, R0, . . . , RL−1, S, Z) and the secret key p. Let `n

be the length of n.

Message space. Let `m be a parameter. The message space
is the set {(m0, . . . , mL−1) : mi ∈ ±{0, 1}`m}.

Signing algorithm. On input m0, . . . , mL−1 , choose a ran-
dom prime number e of length `e > `m + 2, and a ran-
dom number v of length `v = `n + `m + `r, where `r is
a security parameter. Compute the value A such that
Z ≡ Rm0

0 . . . R
mL−1
L−1 SvAe (mod n). The signature on the

message (m0, . . . , mL−1) consists of (e, A, v).

Verification algorithm. To verify that the tuple (e, A, v) is a
signature on message (m0, . . . , mL−1), check that Z ≡
AeRm0

0 . . . R
mL−1
L−1 Sv (mod n), and check that 2`e > e >

2`e−1.

Theorem 1 ([9]). The signature scheme is secure
against adaptive chosen message attacks [28] under the
strong RSA assumption.

The original scheme considered messages in the interval
[0, 2`m−1] . Here, however, we allow messages from [−2`m +
1, 2`m − 1]. The only consequence of this is that we need to
require that `e > `m + 2 holds instead of `e > `m + 1.
Also note that the scheme is secure under the strong RSA
assumption in the plain model, i.e., does not assume random
oracles. If one is to use a hash function to hash messages
of arbitrary length to the `m bits, then the security of the
signature scheme further relies on the collision resistance of
the used has function. However, note that collision resistant
hash functions exist under strong RSA assumption.

4. THE DIRECT ANONYMOUS ATTESTA-
TION SCHEME

4.1 High-Level Description
The basic idea underlying the direct anonymous attes-

tation scheme is similar to the one of the Camenisch-
Lysyanskaya anonymous credential system [7, 9, 31] : A
trusted hardware module (TPM) chooses a secret “message”
f , obtains a Camenisch-Lysyanskaya (CL) signature (aka at-
testation) on it from the issuer via a secure two-party proto-
col, and then can convince a verifier that it got attestation

anonymously by a proof of knowledge of an attestation. To
allow the verifier to recognize rogue TPMs, a TPM must also
provide a pseudonym NV and a proof that the pseudonym
is formed correctly, i.e., that it is derived from the TPM’s
secret f contained in the attestation and a base determined
by the verifier. We discuss different ways to handle rogue
TPMs later.

Before providing the actual protocols, we first expand
on the basic idea and explain some implementation details.
First, we split the TPM’s secret f into two `f -bit messages
to be signed and denote the (secret) messages by f0 and f1

(instead of m0 and m1). This split allows for smaller primes
e as their size depends on the size of the messages that get
signed. Now, the two-party protocol to sign secret messages
is as follows (cf. [9]). First, the TPM sends the issuer a com-

mitment to the message-pair (f0, f1), i.e., U := Rf0
0 Rf1

1 Sv′ ,
where v′ is a value chosen randomly by the TPM to “blind”

the fi’s. Also, the TPM computes NI := ζf0+f12
`f

I mod Γ,
where ζI is a quantity derived from the issuer’s name, and
sends U and NI to the issuer. Next, the TPM convinces the
issuer that U and NI are correctly formed (using a proof of
knowledge a representation of U w.r.t. the bases R0, R1, S
and NI w.r.t. ζI) and that the fi’s lie in ±{0, 1}`f +`H+`∅+2,
where `f , `H, and `∅ are security parameters. This interval
is larger than the one from which the fi’s actually stem be-
cause of the proof of knowledge we apply here. If the issuer
accepts the proof, it compares NI with previous such values
obtained from this TPM to decide whether it wants to issue
a certificate to TPM w.r.t. NI or not. (The issuer might
not want to grant too many credentials to the TPM w.r.t.
different NI , but should re-grant a credential to a NI it has
already accepted.) To issue a credential, the issuer chooses a
random `v-bit integer v′′ and a random `e-bit prime e, signs

the hidden messages by computing A :=
(

Z

USv′′
)1/e

mod n,

and sends the TPM (A, e, v′′). The issuer also proves to
the TPM that she computed A correctly. The signature on
(f0, f1) is then (A, e, v := v′ + v′′), where v should be kept
secret by the TPM (for f0 and f1 to remain hidden from the
issuer), while A and e can be public.

A TPM can now prove that it has obtained attestation by
proving that it got a CL-signature on some values f0 and f1.
This can be done by a zero-knowledge proof of knowledge
of values f0, f1, A, e, and v such that AeRf0

0 Rf1
1 Sv ≡ Z

(mod n). Also, the TPM computes NV := ζf0+f12
`f

mod Γ
and proves that the exponent here is related to those in the
attestation, where ζ ∈ 〈γ〉, i.e., the subgroup of Z∗Γ of order
ρ.

As mentioned in the introduction, the base ζ is either cho-
sen randomly by the TPM or is generated from a basename
value bsnV provided by the verifier. The value NV serves
two purposes. The first one is rogue-tagging: If a rogue
TPM is found, the values f0 and f1 are extracted (how to
extract the values f0 and f1 is out of the scope of this pa-
per) and put on a blacklist. The verifier can then check NV

against this blacklist by comparing it with ζ f̂0+f̂12
`f

for all
pairs (f̂0, f̂1) on the black list. Note that i) the black list

can be expected to be short, ii) the exponents f̂0 + f̂12
`f are

small (e.g., 200-bits), and iii) batch-verification techniques
can be applied [2]; so this check can be done efficiently. Also
note that the blacklist need not be certified, e.g., by a cer-
tificate revocation agency: whenever f0, f1, A, e, and v are



discovered, they can be published and everyone can verify
whether (A, e, v) is a valid signature on f0 and f1. The
second purpose of NV is its use as a pseudonym, i.e., if ζ
is not chosen randomly by the TPM but generated from a
basename then, whenever the same basename bsnV is used,
the TPM will provide the same value for NV . This allows
the verifier to link different transactions made by the same
TPM while not identifying it, and to possibly reject a NV if
it appeared too many times. By defining how often a differ-
ent basename is used (e.g., a different one per verifier and
day), one obtains the full spectrum from full identification
via pseudonymity to full anonymity. The way the basename
is chosen,the frequency it is changed, and the threshold on
how many times a particular NV can appear before a veri-
fier should reject it, is a question that depends on particular
scenarios/applications and is outside of the scope of this
document.

We finally note that, whenever possible, multiple proofs
by a party are merged in to a single one. Furthermore,
the Fiat-Shamir heuristic [25] is used to turn a proof into a
“signature of knowledge”.

As mentioned before, some operations of the TPM can
be outsourced to the host in which the TPM is embed-
ded. In particular, operation that are related to hiding the
TPM’s identity but not to the capability of producing a
proof-signature of knowledge of an attestation can be per-
formed on the host. The rationale behind this is that the
host can always reveal a TPM’s identity.

Together with their signature scheme, Camenisch and
Lysyanskaya also provided protocols to obtain a signature on
hidden messages and to prove possession of a certificate [8,
31]. The differences to our join protocol and the sign proce-
dure (which is derived from the protocol to prove possession
of a certificate using the Fiat-Shamir heuristic) is that 1) the
certificate receiver is shared between the TPM and the host
and 2) the protocol to obtain a signature on a hidden mes-
sage is modified such that it is no longer required that the
signer convinces the other parties that the modulus n is the
product of two safe prime. The latter is important in prac-
tice as proving this property would be rather inefficient and
we believe that the way we achieve this is of separate inter-
est, i.e., it can be applied to, e.g., the Ateniese et al. group
signature scheme and the Camenisch-Lysyanskaya creden-
tial system. The former difference stems from the necessity
to outsource as many operations as possible from the TPM
to the host. We provide more details about these differences
after we have described the respective procedures.

4.2 Security Parameters
We employ the security parameters `n, `f , `e, `′e, `v, `∅,

`H, `r, `Γ, and `ρ, where `n (2048) is the size of the RSA
modulus, `f (104) is the size of the fi’s (information encoded
into the certificate), `e (368) is the size of the e’s (exponents,
part of certificate), `′e (120) is the size of the interval that the
e’s are chosen from, `v (2536) is the size of the v’s (random
value, part of certificate), `∅ (80) is the security parameter
controlling the statistical zero-knowledge property, `H (160)
is the output length of the hash function used for the Fiat-
Shamir heuristic, `r (80) is the security parameter needed
for the reduction in the proof of security, `Γ (1632) is the size
of the modulus Γ, and `ρ (208) is the size of the order ρ of the
sub group of Z∗Γ that is used for rogue-tagging (the numbers
in parentheses are our proposal for these parameters). We

require that:
`e > `∅ + `H + max{`f + 4 , `′e + 2} ,

`v > `n + `∅ + `H + max{`f + `r + 3 , `∅ + 2}, and

`ρ = 2`f .
The parameters `Γ and `ρ should chosen such that the

discrete logarithm problem in the subgroup of Z∗Γ of order
ρ with Γ and ρ being primes such that 2`ρ > ρ > 2`ρ−1 and
2`Γ > Γ > 2`Γ−1, has about the same difficulty as factoring
`n-bit RSA moduli (see [30]).

Finally, let H be a collision resistant hash function H :
{0, 1}∗ → {0, 1}`H .

4.3 Setup for the Issuer
This section describes how the issuer chooses its public

key and secret key. The key generation also produces a non-
interactive proof (using the Fiat-Shamir heuristic) that the
keys were chosen correctly. The latter will guarantee the
security requirements of the host (resp., its user), i.e., that
privacy and anonymity of signatures will hold.

1. The issuer chooses a RSA modulus n = pq with p =
2p′ + 1, q = 2q′ + 1 such that p, p′, q, q′ are all primes
and n has `n bits. We refer to [23] for an efficient
algorithm to select such a modulus.

2. Furthermore, it chooses a random generator g′ of QRn

(the group of quadratic residues modulo n).

3. Next, it chooses random integers x0, x1, xz, xs, xh, xg ∈
[1, p′q′] and computes

g := g′
xg mod n, h := g′

xh mod n, S := hxs mod n,

Z := hxz mod n, R0 := Sx0 mod n, R1 := Sx1 mod n.

4. It produces a non-interactive proof proof that R0, R1,
S, Z, g, and h are computed correctly, i.e., that
g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉. We refer
to Appendix A for the details of this proof.

5. It generates a group of prime order: Choose random
primes ρ and Γ such that Γ = rρ + 1 for some r with
ρ - r, 2`Γ−1 < Γ < 2`Γ , and 2`ρ−1 < ρ < 2`ρ . Choose

a random γ′ ∈R Z∗Γ such that γ′
(Γ−1)/ρ 6≡ 1 (mod Γ)

and set γ := γ′
(Γ−1)/ρ

mod Γ.

6. Finally, it publishes the public key (n, g′, g, h, S, Z,
R0, R1, γ, Γ, ρ) and the proof proof and stores p′q′ as
its secret key.

Let HΓ(·) and H(·) be two collision resistant hash func-
tions HΓ(·) : {0, 1}∗ → {0, 1}`Γ+`∅ and H(·) : {0, 1}∗ →
{0, 1}`H .

4.4 Verification of the Issuer’s Public Key
An issuer’s public key can be verified as follows.

1. Verify the proof proof that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and
R0, R1 ∈ 〈S〉 as stated in Appendix A.

2. Check whether Γ and ρ are primes, ρ | (Γ−1), ρ - Γ−1
ρ

,

and γρ ≡ 1 (mod Γ).

3. Check whether all public key parameter have the re-
quired length.



If R0, R1, S, Z, g, and h are not formed correctly, it
could potentially mean that the security properties for the
TPM/host do not hold. However, it is sufficient if the plat-
form/host (i.e., owner of the TPM) verifies the proof that
R0, R1, g, and h are computed correctly once. In principle,
it is just sufficient if one representative of platform users
checks this proof. Also, if γ does not generate a subgroup
of Z∗Γ, the issuer could potentially use this to link different
signatures.

As we shall see, it is not important for the security of
the platform (i.e., the anonymity/pseudonymity properties)
that n is a product of two safe primes.

4.5 Join Protocol
Let PKI := (n, g′, g, h, S, Z, R0, R1, γ, Γ, ρ) be the public

key of the issuer and let PK′
I be a long-term public key

of the issuer used to authenticate PKI for the DAA. Let
ζI ≡ (HΓ(1‖bsnI))

(Γ−1)/ρ mod Γ, where bsnI is the issuers
long-term basename.

We assume that, prior to running the Join protocol, the
TPM and host both verify that PKI is authenticated by
PK′

I .
Let DAAseed be the secret seed used by the TPM in the

computation the f0 and f1. Note that the reason of using
DAAseed instead of generating f0 and f1 from a unique ran-
dom number every time is that it is required to store a single
secret value only inside of the TPM for the DAA scheme.
Furthermore, let cnt be the current value of the counter
keeping track of the number of times that the TPM has run
the Join protocol. However, alternatively, the TPM is al-
lowed to re-run the Join protocol with the same cnt value
many times. In that case both, the number of times that
the TPM has run the Join protocol to re-certify the same
f0 and f1 pair and the number of times that the TPM has
run the Join protocol to get certificates for different f0 and
f1 pairs, could be traced.

We assume that the TPM and the issuer have established
a one-way authentic channel, i.e., the issuer needs to be sure
that it talks to the right TPM. Note that authenticity of the
channel is enough, i.e., we do not require secrecy, in fact we
even assume the host reads all messages and may choose not
to forward some messages sent by the issuer to the TPM. In
fact, it is sufficient that the value U be transmitted authen-
tically from the TPM to the issuer. In setting of TCG, one
can achieve this using the Endorsement Key (EK) pair that
was issued to the TPM (see Appendix B).

We are now ready to describe the Join protocol which is
provided in Figure 1. As a result of the protocol, the TPM
will have obtained secret values f0, f1, and v, the host will
have values A and e, and the issuer will have values NI

such that AeRf0
0 Rf1

1 Sv ≡ Z (mod n) and NI ≡ ζf0+f12
`f

I

(mod Γ) holds (cf. §4.1).
Our protocol differs from the one provided in [9] to sign

a committed message mainly in that our protocol requires
the issuer to prove that A lies in 〈h〉. The host can conclude
that A ∈ 〈h〉 from the proof the issuer provides in Step 6,

the fact that AeUSv′′ ≡ Z (mod n), and the proofs the
issuer provides as part of the setup that S, R0, R1, Z ∈ 〈h〉.
We refer to the security proof of Theorem 2 provided in the
full paper for the details of this. The reason for requiring
A ∈ 〈h〉 is to assure that later, in the signing algorithm, A
can be statistically hidden in 〈h〉. Otherwise, an adversarial

signer could compute A for instance as b
(

Z

USv′′
)1/e

mod n

using some b such that be = 1 and b 6∈ 〈h〉. As a DAA-
signature contains the value T1 = Ahw for a random w (see
DAA-signing protocol), and adversarial signer would be able
to link T1 to A, e.g., by testing T1 ∈ 〈h〉. Prior schemes such
as [1, 7, 9] have prevented this by ensuring that n is a safe-
prime product and then made sure that all elements are cast
into QRn. However, proving that a modulus is a safe-prime
product is rather inefficient [11] and hence the setup of these
schemes is not really practical. We note that the proof in
Step 6 is zero-knowledge only if the issuer has chosen n as
a safe-prime product. This is a property that the issuer is
interested in, and not the TPM, host, or users of a platform.

Because our security proof requires rewinding to extract
f0, f1, and v′ from an adversarial TPM, the join protocol
can only be run sequentially, i.e., not in parallel with many
TPMs. At some loss of efficiency, this drawback could be
overcome for instance by using the verifiable encryption [13]
of these values.

4.6 DAA-Signing Protocol
We now describe how a platform can prove that is got

an anonymous attestation credential and at the same time
authenticate a message. Thus, the platform gets as input a
message m to DAA-sign. We remark that in some cases the
message m will be generated by the TPM and might not
be known to the host. That is, the TPM signs an Attes-
tation Identity Key (AIK), an RSA public key that is has
generated, which the TPM will later use to sign its internal
registers.

Let nv ∈ {0, 1}`H be a nonce and bsnV a basename value
provided by the verifier. Let b be a byte describing the use
of the protocol, i.e., b = 0 means that the message m is
generated by the TPM and b = 1 means that the message
m was input to the TPM.

We are now ready to describe the DAA-Sign pro-
cedure which is a protocol between the TPM and its
host and is provided in Figure 2. As a result of the
protocol, the host will have obtained a signature σ :=
(ζ, (T1, T2), NV , c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser)).
on the message m.

Let us give some intuition about why this signature should
convince a verifier that NV links to secrets that were cer-
tified. The first term in the SPK can be rewritten as
Z ≡ (± T1

hew/e )eRf0
0 Rf1

1 Sv (mod n), if e divides we (see proof

of security). The second two terms show that e indeed di-
vides we, so the rewriting works. Therefore, because the
last terms that show that the fi’s and e satisfy the length
requirements, ( T1

hew/e , e, v) is a valid certificate for f0 and f1.
The remaining term shows that NV is based on the same f0

and f1.
The main difference of this DAA-signing protocol to the

signature generation in prior schemes such as [1, 7, 9]
is that here we have distributed the necessary operation
to two parties, the TPM and the host. Basically, the
TPM only produces the proof-signature SPK{(f0, f1, v) :

(Z/Ae) ≡ Rf0
0 Rf1

1 Sv (mod n) ∧NV ≡ ζf0+f12
`f

(mod Γ)}
(nt‖nv‖b‖m), which the host then extends to the full DAA-
signature (note that (Z/Ae) is known to the host). Note
that the SPK produced by the TPM is not anonymous (even
with a random ζ) as the value (Z/Ae) would fully identify
the TPM. While it is intuitively obvious that the host can-



1. The host computes ζI := (HΓ(1‖bsnI))
(Γ−1)/ρ mod Γ and sends ζI to the TPM.

2. The TPM checks whether ζρ
I ≡ 1 (mod Γ). Let i := b `ρ+`∅

`H
c (i will be 1 for values of the parameters selected in

Section 4.2). The TPM computes

f := H(H(DAAseed‖H(PK′
I))‖cnt‖0)‖ . . . ‖H(H(DAAseed‖H(PK′

I))‖cnt‖i) (mod ρ) ,

f0 := LSB`f (f) , f1 := CAR`f (f) , v′ ∈R {0, 1}`n+`∅ , U := Rf0
0 Rf1

1 Sv′ mod n , NI := ζf0+f12
`f

I mod Γ

and sends U and NI to the host who forwards them to the issuer.

3. The issuer checks for all (f0, f1) on the rogue list whether NI

?

6≡ (ζf0+f12
`f

) (mod Γ). The issuer also checks this for the
NI this platform had used previously. If the issuer finds the platform to be rogue, it aborts the protocol.

4. The TPM proves to the issuer knowledge of f0, f1, and v′: it executes as prover the protocol

SPK{(f0, f1, v
′) : U ≡ ±Rf0

0 Rf1
1 Sv′ (mod n) ∧ NI ≡ ζf0+f12

`f

I (mod Γ) ∧

f0, f1 ∈ {0, 1}`f +`∅+`H+2 ∧ v′ ∈ {0, 1}`n+`∅+`H+2}(nt‖ni)

with the issuer as the verifier. This protocol is implemented as follows, where some non-critical operations are performed
by the host and not be the TPM.

(a) The TPM picks random integers rf0 , rf1 ∈R {0, 1}`f +`∅+`H and rv′ ∈R {0, 1}`n+2`∅+`H , computes

Ũ := R
rf0
0 R

rf1
1 Srv′ mod n and ÑI := ζ

rf0+rf12
`f

I mod Γ, and sends Ũ and ÑI to the host.

(b) The issuer chooses a random string ni ∈ {0, 1}`H and sends ni to the host.

(c) The host computes ch := H(n‖R0‖R1‖S‖U‖NI‖Ũ‖ÑI‖ni) and sends ch to the TPM

(d) The TPM chooses a random nt ∈ {0, 1}`∅ and computes c := H(ch‖nt) ∈ [0, 2`H − 1] .

(e) The TPM computes sf0 := rf0 +c ·f0, sf1 := rf1 +c ·f1, and sv′ := rv′ +c ·v′ and sends the host (c, nt, sf0 , sf1 , sv′).

(f) The host forwards (c, nt, sf0 , sf1 , sv′) to the issuer.

(g) The issuer verifies the proof by computing Û := U−cR
sf0
0 R

sf1
1 Ssv′ mod n and N̂I := N−c

I ζ
sf0+2

`f sf1
I mod Γ and

checking if c
?
= H(H(n‖R0‖R1‖S‖U‖NI‖Û‖N̂I‖ni)‖nt), sf0 , sf1

?
∈ {0, 1}`f +`∅+`H+1, and sv′

?
∈ {0, 1}`n+2`∅+`H+1.

5. The issuer chooses v̂ ∈R {0, 1}`v−1 and a prime e ∈R [2`e−1, 2`e−1 + 2`′e−1] and computes v′′ := v̂ + 2`v−1 and

A :=
( Z

USv′′

)1/e
mod n .

6. To convince the host that A was correctly computed, the issuer as prover runs the protocol

SPK{(d) : A ≡ ±
( Z

USv′′

)d
(mod n)}(nh)

with the host:

(a) The host chooses a random integer nh ∈ {0, 1}`∅ and sends nh to the issuer.

(b) The issuer randomly chooses re ∈R [0, p′q′], computes

Ã :=
( Z

USv′′

)re mod n , c′ := H(n‖Z‖S‖U‖v′′‖A‖Ã‖nh) , and se := re − c′/e mod p′q′ ,

and sends c′, se, and (A, e, v′′) to the host.

(c) The host verifies whether e is a prime and lies in [2`e−1, 2`e−1 + 2`′e−1], computes Â := Ac′
(

Z

USv′′
)se mod n, and

checks whether c′
?
= H(n‖Z‖S‖U‖v′′‖A‖Â‖nh).

7. The host forwards v′′ to the TPM.

8. The TPM receives v′′, sets v := v′′ + v′, and stores (f0, f1, v).

Figure 1: The Join protocol. The inputs to the TPM are (n, R0, R1, S, ρ, Γ), DAAseed, cnt, H(PK′
I), the input to

the host is (n, R0, R1, S, Z, ρ, Γ), and the input to the issuer are (n, R0, R1, S, Z, ρ, Γ), p and q.



The signing algorithm is as follows.

1. (a) Depending on the verifier’s request (i.e., whether bsnV 6= ⊥ or not), the host computes ζ as follows

ζ ∈R 〈γ〉 or ζ := (HΓ(1‖bsnV ))(Γ−1)/ρ mod Γ

and sends ζ to the TPM.

(b) The TPM checks whether ζρ ≡ 1 (mod Γ).

2. (a) The host picks random integers w, r ∈ {0, 1}`n+`∅ and computes T1 := Ahw mod n and T2 := gwhe(g′)r mod n.

(b) The TPM computes NV := ζf0+f12
`f

mod Γ and sends NV to the host.

3. Now, the TPM and host together produce a “signature of knowledge” that T1 and T2 commit to a certificate and NV

was computed using the secret key going with that certificate. That is, they compute the “signature of knowledge”

SPK{(f0, f1, v, e, w, r, ew, ee, er) :

Z ≡ ±T e
1 Rf0

0 Rf1
1 Svh−ew (mod n) ∧ T2 ≡ ±gwheg′

r
(mod n) ∧

1 ≡ ±T−e
2 gewheeg′

er
(mod n) ∧ NV ≡ ζf0+f12

`f
(mod Γ) ∧

f0, f1 ∈ {0, 1}`f +`∅+`H+2 ∧ (e− 2`e) ∈ {0, 1}`′e+`∅+`H+1}(nt‖nv‖b‖m) .

Most of the secrets involved are actually known by the host; in fact only the values involving f0, f1, and v need to be
computed by the TPM, as the reader can see below.

(a) i. The TPM picks random integers rv ∈R {0, 1}`v+`∅+`H and rf0 , rf1 ∈R {0, 1}`f +`∅+`H and computes

T̃1t :=R
rf0
0 R

rf1
1 Srv mod n r̃f :=rf0 + rf12

`f mod ρ ÑV :=ζ r̃f mod Γ .

The TPM sends T̃1t and ÑV to the host.

ii. The host picks random integers

re ∈R {0, 1}`′e+`∅+`H , ree ∈R {0, 1}2`e+`∅+`H+1 ,

rw, rr ∈R {0, 1}`n+2`∅+`H , rew, rer ∈R {0, 1}`e+`n+2`∅+`H+1

and computes

T̃1 := T̃1tT
re
1 h−rew mod n , T̃2 := grwhreg′

rr mod n , T̃ ′
2 := T−re

2 grewhreeg′
rer mod n .

(b) i. Host computes

ch := H((n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ)‖ζ‖(T1‖T2)‖NV ‖(T̃1‖T̃2‖T̃ ′
2)‖ÑV )‖nv) ∈ [0, 2`H − 1] .

and sends ch to the TPM.

ii. The TPM chooses a random nt ∈ {0, 1}`∅ , computes c := H(H(ch‖nt)‖b‖m), and sends c, nt to the host.

(c) i. The TPM computes (over the integers)

sv := rv + c · v , sf0 := rf0 + c · f0 , and sf1 := rf1 + c · f1

and sends (sv, sf0 , sf1) to the host.

ii. The host computes (over the integers)

se := re + c · (e− 2`e−1) , see := ree + c · e2 , sw := rw + c · w ,

sew := rew + c · w · e , sr := rr + c · r , ser := rer + c · e · r .

4. The host outputs the signature σ := (ζ, (T1, T2), NV , c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser)).

Figure 2: The DAA-Signing protocol. The input to the protocol for the TPM is m, (n, R0, R1, S, Γ, ρ), and
(f0, f1, v), and the host’s input to the protocol is m, the certificate (A, e) and (n, g, g′, h, R0, R1, S, Z, γ, Γ, ρ).



not generate such signatures on its own or turn one by a
TPM into one on a different message, we provide a formal
proof of this in Section 5.

4.7 Verification Algorithm
The verification algorithm is provided in Figure 3. The

check NV , ζ
?
∈ 〈γ〉 can be done by raising NV and ζ to the

order of γ (which is ρ) and checking whether the result is
1. In case ζ is random, one can apply so called batch verifi-
cation techniques (cf. [2]) to obtain a considerable speed-up
of the verification step 4. Also note that the involved expo-
nents are relatively small. Finally, if ζ is not random, one

could precompute ζf0+f12
`f

for all (f0, f1) on the rogue list.

4.8 On Rogue Tagging
When a certificate (A, e, v) and values f0 and f1 are found

(e.g., on the Internet or embedded into some software), they
should be distributed to all potential verifiers. These ver-
ifiers can then check whether AeRf0

0 Rf1
1 Sv ≡ Z (mod n)

holds and then put f0 and f1 on their list of rogue keys.
Note that this does not involve a certificate revocation au-
thority.

4.9 Inputs and Outputs of the Parties
To actually meet the specification of DAA we gave in Sec-

tion 2, it remains to define the outputs of the parties in the
real system. The hosts do not output anything. The issuer
outputs the identity of a platform after it has joined; if a
platform that has been tagged rogue tries to join the proto-
cols, it outputs the identity of this platform and the relevant
counter value. Finally, when a verifier sees a valid signature
(this excludes signatures generated by a rogue TPM), it pro-
duces its output as follows: (1) If the signature was produced
by a rogue TPM, it outputs m together with the note that
m was signed by a rogue. (2) If the signature was produced
w.r.t. bsnV = ⊥, it just outputs the message. (3) If the
signature was produced with a ζ derived from a basename
(i.e., w.r.t. bsnV 6= ⊥), it looks in its database whether it
already assigned a pseudonym P to the pair (ζ, NV ); other-
wise it chooses new random pseudonym P ∈R {0, 1}`σ and
assigns it the pair (the quantity `σ is a security parameter).
In either case, it outputs P and m.

4.10 Performance Analysis
Let us consider the amount of computations the individual

parties have to perform in the “join”, “DAA-sign”, and “ver-
ify” procedures. The computations in all these procedure are
dominated by the exponentiations, so it is sufficient to con-
sider only these. Also note that in a good implementation, a
multi-base exponentiation is not much more expensive that
a single-base exponentiation. As this requires more memory
that available on a TPM, a multi-base exponentiation needs
implemented as multiple single-base exponentiation in this
case. We thus count multi-based exponentiation that have
to be performed by the TPM as the multiple single-base ex-
ponentiation and for all other parties as a single single-base
exponentiation.

4.10.1 Setup for the Issuer
To generate a public key, the issuer has to produce an

RSA modulus that is the product of two safe primes. If the
modulus should be about 2048 bits, that means that one
has to try about two times 30 random numbers and check

whether they are safe primes by using for instance trial di-
vision and the variant of the Miller-Rabin test provided by
Cramer and Shoup [23]. The generation of the proof that
the other parameter in the issuer’s key are correct requires
6 times 160 exponentiations modulo a 2048 bit composite,
for security parameter `H of 160. Here one can use Chinese
remaindering to speed up these computations. The verifi-
cation of the proof requires the same number of exponen-
tiations; however, Chinese remaindering is not applicable
here. Note that such the verification needs to be performed
only once and not necessarily by every user of the system
(e.g., only be a user representative). Moreover, if some RSA
modulus was available whose factorization is not known to
the issuer, this proof could be sped up such that only about
12 exponentiations would be required for its generation and
verification. We do not pursue this issue further here.

4.10.2 Join Protocol
Here, the TPM needs to perform 6 exponentiations mod-

ulo n (2048 bits) and 3 exponentiations modulo Γ (1660
bits), the host 1 exponentiation modulo n and 1 exponenti-
ation modulo Γ, and the issuer 3 exponentiations modulo n
(here Chinese remaindering can be used) and 1 exponentia-
tion modulo Γ.

4.10.3 DAA-Sign and Verification
To generate a DAA-signature, the TPM needs to perform

1 exponentiation modulo n (2048 bits) and 3 exponentia-
tions modulo Γ (1660 bits), the host 5 exponentiations mod-
ulo n and 1 exponentiation modulo Γ. If the basename is
known, all exponentiations on the TPM and the host can
be precomputed; otherwise all exponentiations modulo n on
the host and the TPM can be precomputed.

To verify a signature, 3 exponentiations modulo n and
1 exponentiation modulo Γ.

4.10.4 Experimental Results
A prototype of direct anonymous attestation has been

implemented at IBM Research in Zurich in the JAVA pro-
gramming language. That is, all the parties, in particular
also the TPM, were implemented in software. For all group
operations, the standard JAVA BigInteger class was used.
That is, a multi-base exponentiation was implemented as
several exponentiations. All the protocols and algorithms
were implemented as single threaded programs. In partic-
ular, no parallel computations by the parties was realized
(e.g., the join and the sign protocol would allow the host
to perform some computations while waiting for a response
from the TPM or the issuer) and no precomputation was
implemented.

On a IBM Thinkpad T41 with a 1.7 GHz Intel Mobile
Pentium M processor and 1 GByte of RAM, running Linux
and IBM Java Runtime Environment 1.4.2, we have made
the following measurements. The join protocol required
2.4 seconds of running time in total (excluding communi-
cation time), about 25% of the time was used by the TPM,
about 25% was used by the host, and about 50% was used
by the issuer. The sign protocol required 4.4 seconds of run-
ning time in total (excluding communication time), about
8% of the time was used by the TPM, about 47% was used
by the host, and about 45% was used by the verifier.

The verification time of a DAA signature can be signif-
icantly reduced by better exponentiations algorithms that



A signature

σ = (ζ, (T1, T2), NV , c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser))

on a message m w.r.t. the public key (n, g, g′, h, R0, R1, S, Z, γ, Γ, ρ) is as verified as follows.

1. Compute

T̂1 := Z−cT se+c2`e−1

1 R
sf0
0 R

sf1
1 Ssv h−sew mod n , T̂2 := T−c

2 gswhse+c2`e−1
g′

sr mod n ,

T̂ ′
2 := T

−(se+c2`e−1)
2 gsewhseeg′

ser mod n , and N̂V := N−c
V ζsf0+sf12

`f
mod Γ .

2. Verify that

c
?
= H(H(H((n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ)‖ζ‖(T1‖T2)‖NV ‖(T̂1‖T̂2‖T̂ ′

2)‖N̂V ‖nv)‖nt)‖b‖m) ,

NV , ζ
?
∈ 〈γ〉 , sf0 , sf1

?
∈ {0, 1}`f +`∅+`H+1 , and se

?
∈ {0, 1}`′e+`∅+`H+1 .

3. If ζ was derived from a verifier’s basename, check whether ζ
?≡ (HΓ(1‖bsnV ))(Γ−1)/ρ (mod Γ).

4. For all (f0, f1) on the rogue list check whether NV

?

6≡ (ζf0+f12
`f

) (mod Γ).

Figure 3: The verification algorithm

use precomputed base values. Also, as mentioned earlier,
all (expensive) signing operations on the host can be pre-
computed as can some on the TPM.

5. SECURITY PROOFS
The following theorem establishes the security of our

scheme.

Theorem 2. The protocols provided in Section 4 securely
implement a secure direct anonymous attestation system un-
der the decisional Diffie-Hellman assumption in 〈γ〉 and the
strong RSA assumption in the random oracle model.

We refer to full version of this paper for the actual security
proofs and give here only a very high-level overview of the
proof. The proof of Theorem 2 consists of the description
of a simulator and arguments that the environment cannot
distinguish whether it is run in the real system, interacting
with A and the real parties, or in the ideal system, interact-
ing with S and the ideal parties. Recall that the simulator
interacts with T on behalf of the corrupted parties of the
ideal system, and simulates the real-system adversary A to-
wards the environment E .

The simulator, which has black box access to the adver-
sary, basically runs the real system protocol in the same
way as an honest party would, apart from the DAA-signing
protocol, where the simulator is just told by T that some
party signed a message (possible w.r.t. a pseudonym) but
it does not know which party signed. Thus the simulator
just chooses a random NV and then forges a signature by
using the zero-knowledge simulator of the SPK proof and
the power over the random oracle. Also, if the simulator
notes that the adversary signed some message, it chooses
some corrupted host and tells T that this host has signed
on behalf of a party. The simulator will fail in cases where
the adversary manages to forge a signature, to sign on be-
half of a honest TPM/host, or to tag an honest TPM as a
rogue. We show that these cases cannot occur only under
the strong RSA and the discrete logarithm assumption. We
then show that if the simulator does not fail then, under

the decisional Diffie-Hellman assumption, the environment
will not be able to tell whether or not it is run in the real
system interacting with the adversary or the ideal system
interacting with the simulator.

6. CONCLUSION
The protocols we describe could be extended in many

ways. For instance, only minor changes would be necessary
to allow the issuer to use any RSA modulus instead of only
safe-prime products. However, one would need to make a
small order assumption [24]. Another extension would guar-
antee anonymity/pseudonymity to the host (in fact to its
user) even if the TPM deviates from the protocol (cf. [21]).
Finally, as we have already mentioned in Section 4.5, one
could extend the join protocol in such a way that the sys-
tem can also be proved secure if issuer runs the protocol
concurrently with different TPMs.
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APPENDIX

A. GENERATION AND VERIFICATION
OF A PROOF THAT PUBLIC KEY EL-
EMENTS LIE IN THE RIGHT SUB-
GROUPS

This section describes the steps to be performed by the
issuer to prove that it computed R0, R1, S, Z, g, and h
correctly, i.e., that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉.
It also describes the steps for a host to verify the proof and
thus to establish that the privacy and anonymity properties
of the scheme will hold.

Figure 4 presents the algorithm to generate this proof
while Figure 5 presents the algorithm to verify it. The proof
uses binary challenges (the ci’s) and it is easy to see that it
is indeed a zero-knowledge proof that R0 and R1 lie in 〈S〉,
that Z and S lie in 〈h〉, and that g and h lie in 〈g′〉. We note
that if some RSA modulus was available whose factorization
is not known to the issuer, this proof could done using non-
binary challenges which would make it about `H times more
efficient. We do not persue this issue furhter here.

B. AUTHENTICATING A TPM W.R.T. AN
ENDORSEMENT KEY

In the join protocol, the issuer must be sure that the value
U stems from the TPM that owns a given endorsement pub-
lic key EK. In this paper we just assume that the issuer
receives U in an authentic manner, the following protocol
could be used to achieve this.

(a) The issuer chooses a random ne ∈ {0, 1}`∅ and en-
crypts ne under the EK and sends the encryption to
the TPM.

(b) The TPM decrypts this and thereby retrieves some

string ne. Then, the TPM computes aU := H(U‖ne)
and sends aU to the issuer.

(c) The issuer verifies if aU = H(U‖ne) holds.

This protocol should be executed between the steps 2 and 4
of the join protocol. This protocol is in the same spirit as
the protocol to “authenticate” the AIK in the TCG TPM
1.1b specification.

www.trustedcomputinggroup.org
www.trustedcomputinggroup.org
www.trustedcomputinggroup.org


1. The prover chooses random

x̃(g,1), . . . , x̃(g,`H) ∈R[1, p′q′] x̃(h,1), . . . , x̃(h,`H) ∈R[1, p′q′] x̃(s,1), . . . , x̃(s,`H) ∈R[1, p′q′]

x̃(z,1), . . . , x̃(z,`H) ∈R[1, p′q′] x̃(0,1), . . . , x̃(0,`H) ∈R[1, p′q′] x̃(1,1), . . . , x̃(1,`H) ∈R[1, p′q′]

and computes

g̃(g,i) := g′
x̃(g,i) mod n h̃(h,i) := g′

x̃(h,i) mod n S̃(s,i) := hx̃(s,i) mod n

Z̃(z,i) := hx̃(z,i) mod n R̃(0,i) := Sx̃(0,i) mod n R̃(1,i) := Sx̃(1,i) mod n

for i = 1, . . . , `H.

2. The prover computes

c := H(n, g′, g, h, S, Z, R0, R1, g̃(g,1), . . . , g̃(g,`H), h̃(h,1), . . . , h̃(h,`H),

S̃(s,1), . . . , S̃(s,`H), Z̃(z,1), . . . , Z̃(z,`H), R̃(0,1), . . . , R̃(0,`H), R̃(1,1), . . . , R̃(1,`H)) .

3. The prover computes

x̂(g,i) := x̃(g,i) − cixg mod p′q′ x̂(h,i) := x̃(h,i) − cixh mod p′q′ x̂(s,i) := x̃(s,i) − cixs mod p′q′

x̂(z,i) := x̃(z,i) − cixz mod p′q′ x̂(0,i) := x̃(0,i) − cix0 mod p′q′ x̂(1,i) := x̃(1,i) − cix1 mod p′q′

for i = 1, . . . , `H, where ci is the i-th bit of c.

4. The prover publishes

proof := (c, x̂(g,1), . . . , x̂(g,`H), x̂(h,1), . . . , x̂(h,`H),

x̂(s,1), . . . , x̂(s,`H), x̂(z,1), . . . , x̂(z,`H), x̂(0,1), . . . , x̂(0,`H), x̂(1,1), . . . , x̂(1,`H), ) .

as proof that g, h ∈ 〈g′〉, S, Z ∈ 〈h〉, and R0, R1 ∈ 〈S〉.

Figure 4: Generation of the proof that the parameter in the issuer’s public key were correctly generated.

A proof

proof = (c, x̂(g,1), . . . , x̂(g,`H), x̂(h,1), . . . , x̂(h,`H), x̂(s,1), . . . , x̂(s,`H), x̂(z,1), . . . , x̂(z,`H),

x̂(0,1), . . . , x̂(0,`H), x̂(1,1), . . . , x̂(1,`H))

that R0, R1, S, Z, g, and h are correctly formed is verified as follows

1. Compute

ĝ(g,i) := gcig′
x̂(g,i) mod n ĥ(h,i) := hcig′

x̂(h,i) mod n Ŝ(s,i) := Scihx̂(s,i) mod n

Ẑ(z,i) := Zcihx̂(z,i) mod n R̂(0,i) := Rci
0 Sx̂(0,i) mod n R̂(1,i) := Rci

1 Sx̂(1,i) mod n

for i = 1, . . . , `H, where ci is the i-th bit of c.

2. Verify

c
?
= H(n, g′, g, h, S, Z, R0, R1, ĝ(g,1), . . . , ĝ(g,`H), ĥ(h,1), . . . , ĥ(h,`H),

Ŝ(s,1), . . . , Ŝ(s,`H), Ẑ(z,1), . . . , Ẑ(z,`H), R̂(0,1), . . . , R̂(0,`H), R̂(1,1), . . . , R̂(1,`H)) .

Figure 5: Verifying a proof that the parameters in the issuer’s public key were correctly generated.
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