
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

Computer Science
PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

Semiotic Explorations in User
Interface Design

Jennifer Ferreira

Supervisors: James Noble, Robert Biddle

Submitted in partial fulfilment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract

The user interface is a complex but fascinating phenomenon. There are signs to
be discovered with semiotic tools that provide new and different perspectives on
relevant user interface issues such as design, redesign and evaluation. This re-
port focuses on the valuable insights that semiotic analysis can offer researchers
in these fields.

Acknowledgments

My thanks go to

• James Noble and Robert Biddle for being super supervisors

• Tim Wright for helpful comments and advice

• My COMP311 group: Daniela Mogin, Shane Morton and Mariam Yousif for allowing
me to refer to the work we did as part of the course.

• All the willing and eager volunteers who made the heuristic evaluation and the icon
intuitiveness test for this report possible

i

Contents

1 Introduction 1

2 Semiotics 3

2.1 Introduction . 3

2.2 A Definition . 3

2.3 Semiotic Models . 3

2.3.1 The Saussurean Model . 3

2.3.2 The Peircean Model . 4

2.4 Semiosis . 5

2.5 Semiotics and the User Interface . 6

2.6 Summary . 8

3 User Interface Icons 9

3.1 Introduction . 9

3.2 Icon Semiotics . 9

3.3 SunWeb . 10

3.4 Telecommunications . 11

3.5 Icon Intuitiveness Test . 12

3.5.1 Selecting the Icons . 12

3.5.2 Organisation . 13

3.5.3 Pilot Study . 14

3.6 Characteristics of Test Participants . 14

3.7 Results . 18

3.7.1 Icon Success . 18

3.7.2 Iconic versus Symbolic Signs . 19

3.7.3 Icons For Actions . 21

3.8 Important Considerations . 21

3.9 Summary . 24

ii

4 Semiotic Analysis of User Interface Redesign 26

4.1 Introduction . 26

4.2 Cascading Menus . 26

4.2.1 Usability Problems . 27

4.2.2 Semiotic Analysis . 27

4.2.3 Redesign . 28

4.3 Magnifying Glass . 28

4.3.1 Usability Problems . 29

4.3.2 Semiotic Analysis . 29

4.3.3 Redesign . 29

4.4 Microsoft R©Word Text Styles . 29

4.4.1 Semiotic Analysis . 30

4.4.2 Redesign . 30

4.5 Discussion . 30

4.6 Summary . 31

5 Usage-Centered Design 32

5.1 Introduction . 32

5.2 What is Usage-Centered Design? . 32

5.3 Modeling . 33

5.4 Semiotic Discussion . 34

5.5 Running Example . 35

5.6 User Role Model . 35

5.6.1 Structured Role Model and Focal Roles 35

5.6.2 Semiotics of the User Role Model . 39

5.7 Task Model . 40

5.7.1 Semiotics of the Task Model . 42

5.8 Content Model . 42

5.8.1 Semiotics of the Interaction Context . 43

5.9 From Interaction Context to Canonical Abstract Prototype 44

5.9.1 Semiotics of Canonical Abstract Prototypes 45

5.10 Discussion . 45

5.11 Summary . 46

6 Conclusions 50

Appendices 52

iii

A Paper accepted for publishing by the Australian User Interface Conference 2005 52

B Icon Intuitiveness Test 53

C Heuristic Evaluation Documents for the Stereo System in Memphis 54

D Heuristic Evaluation of the Stereo System in Memphis 55

D.1 Introduction . 55

D.2 Stereo System Interface . 58

D.3 Methodology . 58

D.4 Results . 58

D.5 Areas for Improvement . 59

D.6 Conclusion . 60

E Earlier analysis work: Modeling Heuristic Violations Semiotically 61

E.1 Introduction . 61

E.2 Case Studies . 61

E.3 Categories . 61

E.4 Representamen Problems . 62

E.4.1 Too Similar . 62

E.4.2 Obscured Signs . 66

E.4.3 Distracting signs . 67

E.4.4 Signs too close together . 68

E.5 Matching Problems . 69

E.5.1 Interpretant-Object Mismatch . 70

E.5.2 Convention . 71

E.5.3 Lying Signs . 72

E.5.4 Required Semiosis . 73

E.6 Summary . 74

Bibliography 75

iv

List of Figures

2.1 Peircean model: iconic sign . 4

2.2 Peircean model: indexical sign . 5

2.3 Peircean model: symbolic sign . 6

2.4 Barr’s suggested relationships between the parts of the sign 7

3.1 Reading with pictures . 10

3.2 From Piamonte, Ohlsson and Abeysekera [44]: ‘Abstract’ and ‘Concrete sym-
bols’ for the function ‘Retrieve’ . 11

3.3 From Nielsen and Sano[39]: Results of the icon intuitiveness study 11

3.4 Peircean triad of a SunWeb icon . 12

3.5 Iconic and Symbolic icons used in the Icon Intuitiveness Test 13

3.6 Icon intuitiveness test results. * are from Schaffer and Sorflaten[46]. 15

3.7 Icon intuitiveness test results continued. 16

3.8 Icon intuitiveness test results continued. * are from Salasoo[44]. 17

3.9 Higher resolution image of icon 9 . 20

3.10 Guessing results . 22

3.11 Guessing results continued. 23

3.12 Guessing results continued . 24

4.1 SAS Version 8.1 Cascading menus . 27

4.2 SAS Version 8.2 Slider . 28

4.3 SAS Version 8.2 Magnifying Glass Icon . 28

4.4 SAS Version 8.2 Resize Graph Icon . 29

4.5 Microsoft R©Word (2002) text format styles: bold, italic, underline 30

4.6 SunWeb’s Icon Usability Test Results . 31

4.7 Example of IBM’s RealThing . 31

5.1 Schematic Outline of Usage-Centered Design Process [25] 33

5.2 User Role Map (F = Focal Role) . 36

5.3 Structured Role Model for the Order Taker . 37

v

5.4 Structured Role Model for the Pizza Maker . 38

5.5 The Payment use case . 41

5.6 Use case map for the Order Taker . 47

5.7 From [18]: Example of an Interaction Context 48

5.8 From [34]: The colour wheel . 48

5.9 Canonical Abstract Prototype of the Payment Dialogue 48

5.10 From [18]Canonical Abstract Components — Materials 48

5.11 From [18]Canonical Abstract Components — Tools 49

5.12 From [18]Canonical Abstract Components — Active Materials 49

5.13 Concrete implementation of the Payment Dialogue 49

D.1 Screen 1 of the stereo system in Memphis . 56

D.2 Screen 2 of the stereo system in Memphis . 57

E.1 User check-in window . 63

E.2 Two similar representamens . 63

E.3 Representation of Water . 63

E.4 TravelWeather GUI . 64

E.5 UI of the stereo system . 64

E.6 Option to add all songs of the corresponding album 64

E.7 Online catalogue . 65

E.8 Accidental cancellation . 65

E.9 Suggested improvements . 66

E.10 Pie menu with highlighted magenta . 66

E.11 Highlighted magenta . 67

E.12 Debug window covers user check-in window 67

E.13 Window title not visible . 68

E.14 Volume control of the stereo system . 68

E.15 Tablength is inconsistent . 68

E.16 Did It!, Save and Keep are ambiguous . 69

E.17 Pop-up keyboard provided in Labscape . 72

E.18 MS Windows on-screen keyboard . 73

vi

List of Tables

3.1 Pilot study participants . 14

D.1 Results of the heuristic evaluation of the stereo system 59

vii

viii

Chapter 1

Introduction

This project covers a very broad range of topics that challenge user interface designers and
researchers today.

A major challenge is the nature of design. To design is to create, but it is not a rigorous
activity that can be guided by strict rules and conventions. Thus, it is not an easy process,
especially for user interface design. Designing the user interface is a creative activity and
yet user interfaces are required by users for specialised and highly structured tasks. There-
fore, user interface design processes face the task of attempting to impose structure on an
inherently chaotic activity, while still allowing enough opportunity for user interface de-
signers to produce novel but usable solutions. Usage-Centered Design has become a widely
accepted user interface design process and has been successful in a number of projects of
varying sizes. It is an attractive research opportunity to attempt to determine what makes
this process so successful.

An approach that has started making more headway into all facets of computer science is
semiotics — the study of signs. From a semiotic perspective, we can view the user interface
as a collection of signs, each designed to convey an intended message. The user interface
designer can be viewed as an encoder of signs and the user of the interface, as the decoder.
It is clear that both the encoder and the decoder must agree on the system they are using
in which to communicate, or else problems with interpretations of the message are likely to
arise. Semiotics allow us to model user interface elements and study them as signs. Some
kinds of signs are easier to interpret than others. It has been the goal of this research to
try and determine how users interpret signs, why signs used in the user interface can be
problematic and why others are so successful.

This project applied semiotic analysis to various aspects of a user interface and user inter-
face design. We explored different types of signs and how redesigning an interface impacts
on the type of the new sign. During the course of the year, we also conducted an icon in-
tuitiveness study in order to learn how users interpret what they see, and we conducted a
heuristic evaluation. Both these studies provided valuable insights into users and the their
relationships with the computer systems they use.

Road Map

This report begins by giving an overview of the discipline of semiotics in chapter 2. Here we
introduce the appropriate models and justify why applying a Peircean framework of semi-
otics is suitable for investigating user interface design issues. In chapter 3, we introduce two

1

interesting studies about icon interpretations and then report the results of an icon intuitive-
ness test of our own. Chapter 4 investigates the semiotics of user interface redesigns, i.e.,
how the semiotics of a sign changes as the sign is redesigned in the interface. There is no ev-
idence in the literature to suggest that the discussion in chapter 5 has been attempted before.
This chapter explains the Usage-Centered Design process in terms of semiotics. Finally, our
conclusions are presented in chapter 6 and any criticisms that need to be considered, are
presented here also. Appendix A contains the paper that was accepted for publication by
the Australian User Interface Conference 2005. Appendix B contains the documents for the
icon intuitiveness test we carried out. Appendix C contains the documents for the heuristic
evaluation we carried out and appendix D reports the results. Appendix E contains some
earlier work done during the early stages of (mis)understanding semiotics.

2

Chapter 2

Semiotics

2.1 Introduction

This chapter presents a very basic introduction to semiotics. The most important semiotic
concepts that will be referred to throughout the rest of the report are introduced, and we
also include a discussion on how semiotics applies to the user interface.

2.2 A Definition

Semiotics is the doctrine of signs. The sign is the most important building block of semiotic
study and it is defined as anything that stands for something else to some interpreter [42].
Hence, signs can be words, gestures, sounds, pictures, scents etc. Yet, a sign is not a sign
unless it is interpreted as such [33] — a sign must be something that means something to
someone. Semioticians break the sign up into parts and study the way these parts interact
to form meaning.

2.3 Semiotic Models

The ancient Greeks from the 6th century BCE are the earliest recognised group who con-
tributed to the theory of signs [29]. The two major figures in the recent history of semi-
otics, from which the modern European and American traditions are derived, are the Swiss
linguist Ferdinand de Saussure (1857–1913)1 and the American scientist and philosopher
Charles Sanders Peirce (1839–1914).

2.3.1 The Saussurean Model

Ferdinand de Saussure’s dyadic model maintains that a sign is a result of the union of a
signifier — the form which a sign takes — and a signified — the concept it represents. Being
interested in units and rules that combine them into meaningful systems, Saussure was the
first to attempt to describe the structure of language, as opposed to describing its history
or form [29]. His theories continue to be successfully applied today in many fields such as

1In fact, Saussure coined the term semiology to indicate the discipline of the study of signs according to his
approach [48]. Both the terms ‘semiotics’ and ‘semiology’ originate from the Greek word for sign: semeion [49].

3

Figure 2.1: Peircean model: iconic sign

social studies, linguistics and religion. The Saussurean model will not be further discussed
here, since we find the Peircean model (outlined below) to be more appropriate for our
analysis.

2.3.2 The Peircean Model

In contrast to Saussure, Peirce’s model consists of a triadic relationship containing: the rep-
resentamen, the object and the interpretant (see figure 2.1). The representamen stands to some-
body for something in some respect or capacity. It addresses somebody and creates in the
mind of that person an equivalent, or perhaps more developed sign. The object is the actual
thing the sign stands for [42]. The interpretant is therefore the sign created in the mind of
the perceiver or the reaction caused by the object in the perceiver [4].

Peirce classified signs into thousands of categories, but acknowledged that the three most
fundamental sign divisions are the icon, index and symbol. The category a sign belongs to
depends on the relationship between the object and the representamen.

If the representamen resembles, or in some way imitates, the object then the sign can be in-
terpreted as iconic. See figure 2.1: Here the representamen resembles the portrait of Charles
Sanders Peirce and the perceiver of the sign can interpret this as such precisely because the
representamen resembles him enough to be recognisable. According to the triadic model,
this sign is only fully formed when the perceiver (interpreter) interprets the sign as standing
for a portrait of Charles Sanders Peirce.

Indexical signs exist because of a causal relationship between representamen and object. In
this case the sign does not represent its object but the representamen creates a link between
it and the object in the mind of the perceiver. In figure 2.2, the time display on the wrist
watch is an index of the time of day because the perceiver must perform a referential action:
the time displayed on the watch must be understood as referring to the time of day.

If the relationship between the object and the representamen is a purely conventional one
that must be learned by the perceiver, then the sign is symbolic. An example is given in

4

Figure 2.2: Peircean model: indexical sign

figure 2.3. It is by learning to associate this symbol with a place where information can be
obtained, that this specific interpretant is generated in the mind of the perceiver when this
sign is encountered. Learning is necessary because there is nothing in the representamen
that resembles or allows the perceiver to infer the notion of information. We can say that the
relationship between the representamen and the object is arbitrary. At this point it must be
stressed that the three divisions are not mutually exclusive. Most signs contain elements of
iconicity, indexicality and symbolism in varying measures. It is very rare, and some argue
impossible, to find signs in the real world that belong to solely one division. A well known
example of a sign that can belong to all three categories is the photograph. While it is an
icon in that it looks like the objects it represents, it is also an index of light on photographic
emulsion [14], which is a sign of an event that has taken place at some point in time. Lin-
dekens [32] would argue that the photograph is symbolic, as the camera can never make an
exact replica of events, due to technological constraints.

Another instance where signs may belong to more than one category is in the case of in-
dexical signs. An indexical sign may not be able to be interpreted as such unless the iconic
representation of the sign is understood. For example, if the perceiver is unable to identify a
footprint as that of a human being, it would be impossible to go on to infer that the footprint
is an index of human presence. However, it is notable that some relationship between the
object and representamen will tend to dominate in the sign and then it can be said that the
sign is primarily of that relationship which dominates.

2.4 Semiosis

For a sign to exist, it must consist of all three parts (the object, representamen and the inter-
pretant) and the interaction between them is a process Peirce termed semiosis. He described
this process as “an action, an influence, which is, or involves, a cooperation of three sub-
jects, such as a sign, its object and its interpretant, this tri-relative influence not being in any
way resolvable into actions between pairs.” [42] Goguen sees semiosis as the construction
of meaning [28]. Clearly, then semiotics is concerned with ‘how’ signs mean [11], instead of
‘what’ they mean.

5

Figure 2.3: Peircean model: symbolic sign

Peirce did not name the relations between the three parts of the sign, but Barr [8] suggests
a way of relating the object, representamen and interpretant that eases further discussion
throughout this report. He proposes three relationships:

1. The representation relation, that occurs between the object and the representamen;

2. The interpretation relation that occurs between the representamen and the interpretant;
and

3. The matching relation that occurs between the object and the interpretant.

Figure 2.4 taken from Barr’s thesis [8] shows where the suggested relationships may appear
on the Peircean triad.

To conclude this discussion of the theory of semiotics, we mention Eco’s insistence that it is
not enough that the sign simply represents something else. Semiosis must be allowed to be
performed by the perceiver of the sign. Thus, for something to be a sign, it must adhere to
two criteria : substitution and interpretability [26].

For the rest of this study, we use the Peircean model as a basis of the discussion, as several
other authors have identified it as a good model for studying computer based signs and
applied it successfully [35], [40], [8].

2.5 Semiotics and the User Interface

Semiotics is important to the general field of user interface design, since design is concerned
with representation and semiotics provides tools for analysing these representations. The
sign in the user interface is always an intentional sign, i.e., someone has created it in order to
convey some message to the user. As Andersen notes, the designer builds the user interface
so it can be used to tell people something [1]. So, the designer combines various signs to

6

Figure 2.4: Barr’s suggested relationships between the parts of the sign

make up the interface in order to convey its intended meaning to the user. Further, Nadin
[36] maintains that to design means to structure systems of signs in such a way as to make
possible the achievement of human goals, one of which is communication. The communi-
cation referred to here is that between the user and the designer [35].

The user interface can be seen as a complex sign made up of many smaller signs (buttons,
scroll bars, images, etc.) all contributing to the process of communication, with each of the
smaller signs having their own triadic relation. The representamen corresponds to the form
the sign takes in the interface, the object corresponds to the underlying functionality of the
sign and the interpretant corresponds to the sign generated in the mind of the user. This
implies that users are required to guess at the object of the sign when interacting with the
interface.

Due to signs in the interface being intentional signs as defined above, signs can be said to
be successful when the user’s interpretant matches the object of the sign, and unsuccessful
otherwise []. This property allows us to evaluate the user interface, since the ideal interface
would consist only of successful signs.

One potential problem with applying semiotic analysis to computer signs is imagining that
all signs in the user interface are indexical, since all signs found in the interface necessar-
ily have an underlying functionality. (This assumes that the interface is the most economic
collection of signs that allows the user to perform all the tasks required.) Assuming index-
icality is somewhat justified seeing as when the user activates2 a sign in the interface this
almost always results in some action on the part of the system — indicating a causal relation
between the representamen and the object. But this would be ignoring the representation
relationship [35] between these two; more specifically, the visual elements of the representa-
men and how this relates to what functionality it is signifying. An example is the document
icon found in many desktop applications. Figure 2.3 shows the triadic relation between the
representamen, object and interpretant of the document sign. Selecting this sign on the desk-
top results in a new document being created for the user to edit. Clearly there is a cause (the
creation of a new document) and we may assume the sign is indexical, but when the visual
elements of the representamen is considered in relation to its object, we realise that this sign

2Note that the user can activate a sign in various ways: single or double mouse click, keyboard input or any
form of manipulation of what is presented in the user interface.

7

(the image of a paper based document) resembles the system concept of a document. Thus,
it is an iconic sign. Only when this representational aspect is considered can the signs of the
interface be classified as belonging to any of Peirce’s three main divisions and not just as to
the group of indexical signs.

2.6 Summary

This chapter briefly introduced semiotics as the study of signs and the different sign types as
identified by Peirce. We explained that a sign must be both substitutable and interpretable
for it to be called a sign. Finally we showed how user interface components can be seen
as signs and warned of the danger of interpreting all computer based signs as being only
indexical.

.

8

Chapter 3

User Interface Icons

3.1 Introduction

Graphical user interfaces make heavy use of icons to represent functionality required by
users in performing their tasks. Icons are a popular method for visually representing func-
tionality because they provide direct access (as opposed to functionality hidden away in
menus), direct manipulation (one mouse click results in an action) and can save valuable
user interface real estate. Studies have shown that icons are also faster and easier to recog-
nise than text [16]. Good icon design should support the learnability and rememberability
[21] of the user interface but of course, badly designed icons would have the opposite effect.
Unfortunately icon design is not well understood and often usable icons are obtained sim-
ply by trial and error. This chapter presents a semiotic explanation for why some icons are
likely to be better understood by users and others less so.

In Figure 3.1 from Schaffer and Sorflaten [46], it is easy to read the message. It is clear that
all the pictographic images are iconic signs, i.e., they look like the things they are intended
to represent. Yet this ease of interpretation of images does not always extend to computer
icons. Therefore, if icons are to be used successfully in user interfaces they need to be well
designed, but more importantly, thoroughly tested by the users. This chapter introduces an
icon intuitiveness study done by Nielsen and Sano [39] (performed as part of the usability
evaluation of Sun Microsystems’ internal web), a study by Piamonte, Ohlsson and Abeysek-
era [44] of candidate icons for use in telecommunications software and an Icon Intuitiveness
Test carried out by the authors. Our hypothesis was that users will interpret the icons as
iconic signs and Eco [26] states that this is the case unless they already believe that it is
appropriate to make further inferences about the icons. He further explains that “only if I
already know the general rule which makes for ‘if smoke, then fire’ am I able to render the
sensory datum meaningful.”

3.2 Icon Semiotics

Using only icons (pictorial representations of functionality) in any application is discour-
aged but they can be a powerful and efficient way of communicating the underlying func-
tionality to the user, provided they are well designed. Pictures are better in communication
for some problems but worse for others. Thus it is not enough to rely only on pictorial
representations.

9

Figure 3.1: Reading with pictures

The semiosis of using icons can be seen as consisting of three parts: the initial state, the
process and the final state [2]. As illustration, we refer to a particular button found in the
user interface of SAS/GRAPH v8.2 [50]. This button is an icon that the user can select in
order to resize a graph. Supposing some user wishes to enlarge a graph, the initial state of
this interaction consists of the application, e.g. SAS/GRAPH and the opened file in which
the graph the user wishes to resize is located. Once the user has clicked on the resize graph
icon, the final state is observed as an enlarged graph in the file the user was working on
in the SAS/GRAPH application. The user can therefore, interpret the process as “I have
enlarged my graph” although there is essentially a gap between the initial and final states
that the user will never see. This gap is specified in a program and the user is required to
make guesses at what this process does. Hence, the user creates an interpretant based on
clues obtained from sensory input whereas the programmer intends an interpretant with
the icon’s design. If the user guesses correctly, i.e., creates the correct interpretant, then the
final state is the desired final state. However if the user guesses wrongly, because the wrong
interpretant is created in the mind of the user, the final state represents an undesired state.
Andersen et. al. speak of this process as interactional semiosis [2, p 63].

Barr, Biddle and Noble [9], define an icon to be successful if the interpretant of the user
matches the object that the designer had intended with that sign, and as unsuccessful when
the user’s interpretant does not match the designer’s intended object. Hence, if the final
state in Andersen’s interactional semiosis is the desired state, then the sign used to obtain
the final state is successful. Otherwise, if the final state is the undesired state, then the sign
is unsuccessful.

3.3 SunWeb

In an icon intuitiveness study done by Nielsen and Sano [39], which was performed as
part of the usability evaluation of Sun Microsystems’ internal web, it was interesting to
note the way the test users had interpreted the icons. The results can be seen in figure 4.6.
In the study images were presented to users and then they were asked to indicate what
functionality they thought the icons represented. For the most part the users seemed to
respond to the question in a way that made it clear that they were interpreting the sign
iconically. If the intended meaning of the icon is equated with the object of that sign and
the Test User’s Interpretation equated with its interpretant, then Peirce’s triadic model can
be reconstructed for each individual icon. Figure 3.4 is an example. Here the interpretation
relationship between the Interpretant and the Representamen shows that the interpreter (in

10

Figure 3.2: From Piamonte, Ohlsson and Abeysekera [44]: ‘Abstract’ and ‘Concrete symbols’
for the function ‘Retrieve’

Figure 3.3: From Nielsen and Sano[39]: Results of the icon intuitiveness study

this case the Test User) expected the representation relationship between the Object and the
Representamen to be iconic. However, it is not an iconic relationship but a symbolic one
— the image of hardware (monitor, server and compact disc) does not look like a product
catalog. Other icons with a high number of iconic interpretations were the icons representing
the ‘geographic view of the company’, ‘public relations’, ‘specialised tools’ and ‘what’s new’.

3.4 Telecommunications

There has also been another study carried out by Piamonte, Ohlsson and Abeysekera [44].
They tested icons used in telecommunication-communication products that were divided
into three sets of icons: what they call ‘abstract symbols’, ‘concrete symbols’ and ‘proposed
symbols’. The two types of symbols of interest are the ’abstract symbols’, which correspond
to Peirce’s notion of symbolic signs and the ‘concrete symbols’, which correspond to the
Peircean notion of iconic signs. Hence, the ‘abstract symbols’ were designed so that they did
not look like the functionality they represented and the ’concrete symbols’ were designed
so that they represented their underlying functionality. Figure 3.2 shows an example of
the ‘abstract’ and ‘concrete symbols’ for the function ‘Retrieve’. Their study showed that
participants were better at recognising the ‘concrete symbols’ than the ‘symbolic symbols’.

11

Figure 3.4: Peircean triad of a SunWeb icon

3.5 Icon Intuitiveness Test

To determine whether the results from the SunWeb and telecommunications studies would
extend to other computer icons as well, we carried out an Icon Intuitiveness Test using a set
of computer icons from a range of desktop applications as well as icons used in examples
given by other icon researchers. The questionnaire for the Icon Intuitiveness Test can be
found in appendix A of this report. In figures 3.6, 3.7 and 3.8 the column headed ‘Origin’
lists the application or study from which the icons were selected and below is a summary:

• Acrobat Reader 6.0

• Schaffer and Sorflaten [46]

• Microsoft Excel

• KSpread

• Maple 9.5

• Maple Worksheet 9.5

• SAS/GRAPH v8.1 and v8.2

• KView

• Piamonte, Ohlsson and Abeysekera [44].

3.5.1 Selecting the Icons

The icons selected for the study were icons that would not be too familiar to experienced
computer users and they usually represented the less frequent functions in applications.
This was done so that the participants’ answers were not influenced by what they could

12

Figure 3.5: Iconic and Symbolic icons used in the Icon Intuitiveness Test

remember the icon to mean. Also, due to established conventions, many interfaces now
have very similar icons for representing frequent actions such as opening a new document,
saving a file to disk, copying, pasting and cutting. Therefore, these were not selected for the
icon intuitiveness test — the fact that these icons have become conventional already attest
to their success with users.

Further, some icons were selected that looked different but had the same functionality. These
were the icons for expanding the current window to fit to the screen, inserting a graph,
rotating an image clockwise, enlarging a graph, answering a ringing call and a message
notification. These icons were chosen so that one representation was an iconic sign and the
other a symbolic sign. Figure 3.5 shows the icons with the same functionality.

Thus, the icon was selected either because it was not a conventional icon, or it was a func-
tionality that was represented iconically in one application and symbolically in another.

3.5.2 Organisation

In a similar way to the SunWeb study, the Icon Intuitiveness Test presented icons to users
and they were asked to specify what they thought the icons meant. This was a paper based
questionnaire. The icon set was divided into three groups depending on the type of ap-

13

Participant Education Context Provided
female1 Undergraduate yes

male Honours (Bio) yes
female2 Honours (CS) no

Table 3.1: Pilot study participants

plication from which they were obtained. The first group was called the ‘Word processing
and Spreadsheet icons’ and consisted of the icons from Acrobat Reader 6.0, Schaffer and
Sorflaten [46], Microsoft Excel and KSpread. The second group was called ‘Maths/Statistics
software and Graphics icons’ and consisted of the icons from Maple 9.5, Maple Worksheet
9.5, SAS/GRAPH v8.2 and KView. The last group was called ‘Telecommunications software
icons’ and consisted of icons from the telecommunications study [44].

The icons were organised into three tables of two columns each according to the group they
belonged to. One column contained the icons and the other was left blank so the partici-
pant could fill in their interpretations. The icons within the tables had no special ordering
Each table was headed by the context, i.e., the type of application the icons were obtained
from. The contexts corresponded to the three groups mentioned before: ‘Word processing
and Spreadsheet icons’, ‘Maths/Statistics software and Graphics icons’ and ‘Telecommuni-
cations software icons’. The provision of the context has the effect of constraining the appli-
cant’s interpretation of the icon because a program embodies stable properties that constrain
user activities[5].

3.5.3 Pilot Study

The pilot study was performed with three participants — two female and one male. One of
the females and the male participant were both Honours students (Computer Science and
Biology respectively) and the other female a final year undergraduate in a field other than
Computer Science. The details of the participants can be summarised in table 3.1.

Consequently, the pilot study showed that those participants with a strong background in
computing — either as Computer Science students or otherwise — could infer from the
context what the icon meant.

In the case of the male participant, the guesses were almost all correct even though he admit-
ted that he had never encountered some of the icons before. This led to the decision to omit
the context from the questionnaire for Computer Science students who may participate. The
context was retained for the students with no Computer Science background.

As a result, the Icon Intuitiveness Test consisted of two questionnaires in which the context
was either omitted or included, depending on the computing background of the participant.

3.6 Characteristics of Test Participants

There were eight participants, two of which were Computer Science students. The others
could be classified as using the computer for work or for university assignments. They were
all aware that some icons had the same functionality, but were not told which.

14

Figure 3.6: Icon intuitiveness test results. * are from Schaffer and Sorflaten[46].

15

Figure 3.7: Icon intuitiveness test results continued. . .

16

Figure 3.8: Icon intuitiveness test results continued. * are from Salasoo[44].

17

It was not important for the participants to be existing or prospective users of the applica-
tions that the icons were obtained from, since this test was to ascertain how users would
interpret the icons. Hence participants who have not encountered these icons before would
give a better indication of how well understood the icons would be in general.

3.7 Results

From figures 3.6, 3.7 and 3.8 it is obvious that a given picture definitely does not convey
the same thousand words to all viewers! These figures show all the guesses by the partici-
pants. Some participants made more than one guess for an icon and some participants made
identical guesses, which are shown as separate guesses1.

Correct guesses were taken as guesses that were either exactly the functionality represented,
or a close guess that would be unambiguated by the context of the specific application. For
example, the guesses for the ‘Fit window’ icon (icon number 2) in figure 3.6 were taken as
correct if they indicated that something could be expanded to fit the window, and almost
correct if the guess implied some analogy to making something larger, expanding or in-
creasing. Figure 3.10 shows that for icon 2 there were four correct/almost correct guesses.
These would be the guesses ‘expand’, ’resize to full screen’, ‘increase’ and ‘maximise win-
dow’. The same figure shows that icon 5 had three correct/almost correct guesses. These
would correspond to ‘reverse page order’, ‘reverse page order’ and ‘pages in reverse order’.
It is clear that the main concept of applying some functionality to pages in the reverse order
was understood by the participants. An assumption we make is that in the context, i.e., in
the actual application, the same participant would be able to deduce from the information
available that this icon means ‘print pages in reverse order’.

3.7.1 Icon Success

ISO (International Organisation for Standards) 9186 suggests a rate of 66% for icon recogni-
tion rates in order for the icon to be classified as successful. In this study, the recognition rate
can be computed by taking the number of correct/almost correct guesses as a percentage of
the total number of guesses. The values we are working with are rather small, so it is neces-
sary to bear in mind that one guess more or one guess less will have the effect of increasing
or reducing the recognition rate by more than 10%.

According to the benchmark of 66%, the most successful icons (in figures 3.10, 3.11 and 3.12)
were:

• icon 8 recognition rate: 100%

• icon 15 recognition rate: 75%

• icon 16 recognition rate: 100%

• icon 20 recognition rate: 75%

Icon 9 is very close to being successful with 62.5%.

Noticeably, out of this set of four, three are iconic signs (icons 8, 15 and 20) and one is a
symbolic sign (icon 16).

1No guess is taken as a ’don’t know’

18

The least successful icons are those with a recognition rate of zero: icons 3, 4, 6, 11, 14, 19.

The participants had the most difficulty with icon 4. Although there were other icons in the
set that had zero correct/almost correct guesses, this icon had only two guesses (‘retrieve
data with similar features’ and ‘do not split (something)’) that could reasonably be func-
tionality belonging to a word processing or spreadsheet application. The other participants
either could not guess at all or simply ignored the given context and made a guess based
on the appearance of the image — ‘set up camp on either side of the river’ is a particu-
larly iconic interpretation of the icon, since the diagonal line through the image is not even
recognised as a symbolic sign prohibiting something.

Another obviously problematic sign is icon 19. This image of a bottle triggered the idea of
a message in exactly two participants but they disagreed on whether the message could be
sent or composed using this icon. One participant expected the interpretation of this icon
to require a referential action such as was required for the debugging icon (icon 10). Such
icons are sometimes called visual puns and are prone to misunderstanding.

3.7.2 Iconic versus Symbolic Signs

The computer icons that had the same functionality were chosen such that one was an iconic
representation and the other a symbolic representation (see figure 3.5).

Resize to Fit Window

Icons 2 and 11 both represent expanding the window to fit the screen, however, icon 2 is
the iconic representation and icon 11 is the symbolic representation. In this study none of
the participants could guess the symbolic icon 11 correctly, whereas icon 2 performed better
with a recognition rate of 50%.

One reason for this result could be that on many desktops the mouse pointer changes to
look like icon 11 when it is possible to move an object around. Hence explaining the reason
almost all guesses referred to the action of moving an object.

Insert Graph

Icons 8 and 9 both represent the option of inserting a graph or starting a graph wizard to help
create a graph. Icon 8 is the iconic representation and had a significantly better recognition
rate (100%) than icon 9 (62.5%).

In this case icon 8 was taken from a more popular application — Microsoft Excel — than icon
9 from KSpread. Additionally, the size of icon 9 makes it appear incomprehensible but at a
higher resolution as in figure 3.9 it is much clearer what this icon is supposed to represent.
If the icon in this form was used in the icon test it would have been an iconic sign. It was,
however, the lower resolution image that was used since this is closer to the way it appears
in the actual application.

Rotate Image

Icons 13 and 16 both represent the functionality of rotating an image to the right or clock-
wise. In the case of icon 13, only one participant correctly guessed the functionality. All

19

Figure 3.9: Higher resolution image of icon 9

participants understood icon 16’s functionality even though this is the symbolic representa-
tion of the notion of rotating an image.

Icon 13 is more iconic since it shows the before and after state of the object to be rotated, as
well as the direction indicated by the arrow. While participants understood that the arrow
indicated direction, they were confused as to what the arrow was indicating. One interpre-
tation was obviously influenced by the fact that the before state of the object is indicated
in yellow and the after state in grey. Hence, they focused on the fact that the before state
appeared differently to the after state due mainly to its colour, and concluded that the icon
indicates that the object is converted to black and white.

Resize Graph

Icon 14 is a tentative icon that would have been used in SAS/GRAPH v8.1, but Wimmer’s
usability study[50] showed that this image did not represent the graph resizing functionality
the designers had intended. The designers then changed this icon to icon 15 but did not
report whether the users did indeed understand this icon better.

If the results of this icon intuitiveness test under discussion is to be believed, then the results
here do support icon 15 as a better icon for the graph resizing functionality. All participants
guessed that the magnifying glass represented some zoom functionality, but gave no indi-
cation that it could be used to resize an object, i.e., change its actual size. Interpretations
for icon 15 seem to indicate that this better represents the graph resizing functionality, since
many applications (Acrobat and Konqueror, for example) use the magnifying glass as a
zoom tool. This result is an indication of the already accepted convention of the magnifying
glass as a zoom tool by the participants in this study.

Answer Ringing Call

Icons 17 and 18 both represent the functionality of answering a call indicated by ringing.
Icon 18 can be seen as a more iconic sign than icon 17 due to the hand on the phone that is
supposed to look like the action of someone answering a phone. However, the participants
all agreed that icon 18 could represent the functionality of ending a call. One participant
specified that it could mean either answering or ending a call. Although the iconic sign was
not interpreted correctly it is notable that the participants’ guesses were quite similar and
consistent in their interpretation of this icon. For icon 17 the participants were more divided
about whether it represented the tone of the call or making a call. Only two participants
guessed the correct functionality of this icon.

The reason participants guessed icon 17 to be the icon for answering or placing a call and

20

icon 18 to be the icon for ending a call is not very clear. The guesses could be attributed to the
order in which the icons appeared, or due to the three black lines appearing under the phone
in icon 18 that could signal movement of the phone, which the participants interpreted as a
downward movement. Another reason could be that the grip of the fingers of the hand is
rather loose. This may have been interpreted as a ‘letting go’ action rather than a ‘picking
up’ action.

Message

Icons 19 and 20 indicate that there is a message to be read. Icon 19 is the symbolic sign
and also the only icon with unique interpretations supplied by each participant. Again the
iconic representation of the message (icon 20) resulted in fairly consistent interpretations,
i.e., unread/unopened mail message, by most participants.

3.7.3 Icons For Actions

All of the icons except for 12, 19, and 20 all represent actions, i.e., they are all icons for doing
something like inserting, feeding, searching, creating, etc. Icons 12, 19, and 20 represent
system objects on which functions are performed. Icon 12 represents a print preview of a
document for inspecting and perhaps printing, icons 19 and 20 represent a message in the
system that can be read, forwarded, or replied to. However, participants attributed actions
even to these icons, alluding to the notion that in a test situation, participants may naturally
expect the icons they are presented with to be icons for performing actions.

3.8 Important Considerations

There are some issues worth noting about the design of the Icon Intuitiveness Test:

1. It was clear that the participant’s experience with computer applications affected how
many icons were interpreted correctly, as was made evident in the pilot study. Addi-
tionally, participants’ guesses could have been influenced by their knowledge of what
functionalities are available in certain types of computer applications. The Icon In-
tuitiveness Test made no further distinctions between computer users other than the
two groups defined as those with a known strong background in computing and those
without.

2. Cultural aspects were not taken into account in devising the test or interpreting the
results. Icon 5 could be problematic for cultures that read based on a right-left ori-
entation. For Western cultures, that read from left to right, the pages appear in nu-
merical order from left to right and the arrow indicates that the functionality of this
icon (printing in this case) will be applied to the pages in the opposite direction. This
design could be problematic for a person who reads right to left, since the arrow will
be pointing in the logical direction but the page numbers will be in reverse order. The
Icon Intuitiveness Test could not produce results to determine the difference in recog-
nition rates due to the reading directions of different cultures.

3. The icons were presented on paper. Therefore the participants could not compare
them to any other icons in the same application in order to make a guess at their

21

Figure 3.10: Guessing results

22

Figure 3.11: Guessing results continued. . .

23

Figure 3.12: Guessing results continued

functionality. This is not a reflection of reality, where users of an application may
be in a better position to guess the icon correctly because there are others to compare
and contrast it with.

3.9 Summary

Goguen claims that “all else being equal: Icons are better than indices, and indices are better
than symbols” [27], but provides no evidence for this claim. In this chapter we have shown
that several studies do support the notion that icons are better than symbols, however icon
evaluation is a very difficult task. There are many factors and limitations that have to be
taken into account such as the medium in which the icons are presented and tested, and the
background of the participants.

The important observations from this study can be summarised as follows:

1. Some concepts are better explained by symbolic signs, for example, rotation of an
object.

2. The pairs of opposite actions of sending and receiving, increasing and decreasing, an-
swering and hanging up are very difficult to convey.

3. Participants are more likely to attribute an action to an icon than guess that it repre-
sents a system object.

4. When participants can not think of a suitable functionality that fits into the given con-
text, they will base their guess on the visual clues that they can see and so, interpret
the icon based on what they think they see. This was most clearly illustrated by icon
4.

24

5. Iconic signs generally are better recognised than their symbolic counterparts and in
the case where participants interpret the iconic signs incorrectly, they are surprisingly
consistent in their interpretations of the image.

25

Chapter 4

Semiotic Analysis of User Interface
Redesign

The work presented in this chapter was compiled as a paper and has been accepted for
publishing by the Australian User Interface Conference 2005 (see appendix A).

4.1 Introduction

Given that designing the user interface is a semiotic activity, it makes sense to examine
usability problems and subsequent redesigns of the user interface in terms of semiotics.
User interfaces that are good at communicating to the user what it is used for, should need
less redesigning and less resources as a consequence. Redesigning an interface usually takes
place once it has been tested or been exposed to expert evaluation, but once these have been
performed it is only clear that parts of the interface need to improve. There is very little
theory about why the usability problems exist and how to redesign to improve the situation.
Semiotics can help the designer improve their communication power [23]. In this chapter
we show how semiotic analysis can give insights into user interface design issues and why
some designs do a better job of communicating than others. This chapter examines interface
redesigns that we have come across in the literature and they are analysed according to the
Peircean model of the sign. It was striking how few examples of comparative studies of
the interface before and after redesign exists. Hence, the examples discussed below had to
be picked from a very small body of adequate studies. The first two are from a usability
case study of the graphical user interface of the V9 Graphing Tools in SAS/GRAPH R©— a
component of SAS software used for client side data visualisation[50]. The third example
compares the redesigns of Microsoft R©Word user interfaces, available in the vast number of
sources that deal with this popular software.

4.2 Cascading Menus

Figure 4.1 shows the cascading menus that the user needed to navigate through when mak-
ing changes to a graph. In the figure, the user has selected the ‘Decrease’ menu option in
order to decrease the width of the bars of the graph.

26

Figure 4.1: SAS Version 8.1 Cascading menus

4.2.1 Usability Problems

The usability study showed two problems with this menu design. The first was that the
user was required to be quite accurate in the mouse movements. If the mouse pointer was
to venture too far from the region surrounding the menu, the menu would collapse and the
process would have to start all over again. Navigating through five layers of submenus is
also quite cumbersome. The second problem was that the amount by which the bars on the
graph could be increased or decreased could not be specified by the user. Therefore, the
user was required to navigate through five levels of cascading menus repeatedly until the
satisfactory width had been achieved.

Another usability issue with a cascading menu, although not mentioned in Wimmer’s re-
port, is that the menu items are hidden. Only when the mouse pointer moves over the
menu item is the next level displayed and this violates Constantine and Lockwood’s Visi-
bility Principle and Jakob Nielsen’s heuristic of recognition rather than recall. Cooper[22]
discourages the use of menus with several layers especially in the case of items that are
required frequently.

4.2.2 Semiotic Analysis

Applying Peirce’s notion of sign categories to this interface sign, it is clearly both symbolic
and indexical. This sign is strongly symbolic because it is by pure convention among com-
puter users that cascading menus are used to allow access to certain functionality within
an interface. Users learn that there are certain choices offered by the menus and over time
they can memorise how the menu is structured. Novice users may not be able to navigate
directly to the functionality they require (the option to decrease the bar widths in this exam-
ple) because it must be learned. The symbolic sign requires them to experiment and learn
by trial and error how to perform their task using this sign. The cascading menu is indexical
because once the user has cascaded through the menu and selected the decrease option this
causes a decrease in the widths of the bars. This change appears visually to the user, who
may then decide that the width has decreased by an adequate amount, or they may decide
to decrease again or to change back to the size it was before.

27

Figure 4.2: SAS Version 8.2 Slider

Figure 4.3: SAS Version 8.2 Magnifying Glass Icon

4.2.3 Redesign

After the usability study, the cascading menus were replaced by adjusting a slider in the
dialogue box in figure 4.2. This immediately frees the user to determine the width of the
bars in a more hands on fashion — as they adjust the slider, the bars widen or become
narrower. Now the process of changing bar widths involves a strongly indexical sign, in
the from of the slider. The user can perceive the changing bar widths as the position of the
slider changes, so the effects perceived by the user are more immediate and the sign is more
interactive. Additionally, the results of the interaction are visible during the interaction, not
after it as in the cascading menus.

The cascading menu example can be thought of as required semiosis. The user needs to
navigate through 5 menus before getting to the desired functionality. As the first menu
option is selected, the reaction/interpretant is the appearance of the next menu. This menu
becomes the representamen of the next sign and this process repeats itself 5 times until the
decrease option becomes the interpretant of the last sign.

4.3 Magnifying Glass

In figure 4.3, the magnifying glass icon represented the graph resizing functionality, suppos-
edly suggesting that the graph was made smaller by zooming out, and larger by zooming
in[50].

28

Figure 4.4: SAS Version 8.2 Resize Graph Icon

4.3.1 Usability Problems

The usability study showed that users were confused by the zoom metaphor. Many ap-
plications, such as Acrobat Reader and Konqueror use the magnifying glass to represent
functionality that allows a user to zoom in or out of a document, without changing its actual
size. This may be the behaviour the participants in the usability test expected and it clashed
with the behaviour implemented by the designers of SAS/GRAPH R©.

4.3.2 Semiotic Analysis

The user’s interpretant of the magnifying glass icon did not match the object that the de-
signer had intended with this sign. Even though both the designer and the user would
agree that the picture on the button fourth from the left on the ‘Mouse Control’ tool bar is a
magnifying glass, the confusion lies with what functionality the user interprets the magnify-
ing glass to represent. Since many popular applications (Acrobat Reader and Konqueror for
example) make use of the magnifying glass to represent the functionality of zooming in and
out of objects on screen, this may be the functionality the users taking part in the usability
test would have assumed the magnifying glass in the SAS/GRAPH R©interface to have. The
magnifying glass is a symbolic sign in this case because the link between the magnifying
glass and the resizing functionality is made arbitrary by the fact that a magnifying glass can
not change the actual size of an object.

4.3.3 Redesign

The fourth button on the left in figure 4.4 shows the replacement button for the graph re-
sizing functionality. This is a more iconic representation of resizing the graph due to the
resemblance that exists between the image on the button and the resizing functionality it
represents. If the size of a graph can be seen as a quality, this is in accordance with Barr
et. al.’s[9] heuristic that proposes that icons representing qualities should be iconic signs.
This helps to ensure that there is a better chance of the designer and the user agreeing on
what functionality the icon represents. In fact, Peirce makes the following statement about
qualities: “Since a quality is whatever it is positively in itself, a quality can only denote an
object by virtue of some common ingredient or similarity.” [42].

4.4 Microsoft R©Word Text Styles

In Microsoft R©Word Version 3[30] the options for setting the font style in a document were
structured as part of a meny system. There were no usability studies available to explain

29

Figure 4.5: Microsoft R©Word (2002) text format styles: bold, italic, underline

whether users experienced difficulties with this menu system, but since the successive ver-
sions of Microsoft R©Word are easily accessed, either in the literature or on a desktop com-
puter, it is still possible to do an analysis of the redesigns.

4.4.1 Semiotic Analysis

As discussed in section 4.2, text based menu systems are symbolic signs. Not only do users
have to learn to associate the terminology used by the interface designer with certain func-
tionality, they are also required to learn the structure of the menu system.

4.4.2 Redesign

By version 5 the icons in figure 4.5 were available for placing on the toolbar. These are
iconic signs because the button for making text bold, resembles bold text. Similarly the
italicised I and the underlined U resemble the result when applied to selected text in the
document. This is another instance of redesigning a representation of functionality from
being a symbolic sign to becoming a more iconic sign. These format styles can be seen as
qualities of the text in a document and the same discussion as in section 4.3.3 applies here.
The reason for the bold, italic and underline options to be represented on the toolbar may be
many, but obviously the user would benefit by having a shorter route to functionality that is
used frequently. Considering that Microsoft R©Word is used as a word processor, the actions
of bolding, italicising and underlining text are frequent actions.

4.5 Discussion

In the above examples, we discussed the shifts between Peirce’s different sign divisions in
the user interface as it is redesigned. It is interesting to note how the shift tended to be away
from symbolic signs toward indexical signs, in the case of the slider for adjusting the widths
of the bars in SAS/GRAPH R©, and towards iconic signs in the other examples. There is ev-
idence that users tend to interpret computer signs as being iconic, i.e., that they resemble
their underlying functionality. Nielsen and Sano[39] present an “Icon Intuitiveness Test”
where images were presented to users and then asked to indicate what functionality they
thought the icons represented. For the most part the users seemed to respond to the question
in a way that made it clear that they were interpreting the sign iconically (see figure 4.6). If
the intended meaning of the icon is equated with the object of that sign and the Test User’s
Interpretation equated with its interpretant, then Peirce’s triadic model can be reconstructed
for each individual icon. On a larger scale there has been research in the area of making a
whole interface resemble the object in the real world whose functionality it represents. IBM
aims to create interfaces that are more natural and intuitive by designing the interface to
resemble a real world artefact[31]. Their term for these interfaces is RealThings and one

30

Figure 4.6: SunWeb’s Icon Usability Test Results

Figure 4.7: Example of IBM’s RealThing

example from their website is shown in figure 4.7. Whether this iconic representation inher-
ent in RealThings interfaces has the same benefits as iconic signs in the interface will not be
known until results of usability studies are made available.

4.6 Summary

In the words of de Souza [24], “our conclusions at this point is more a matter of speculation
and sense than of thorough testing and analysis”. Based on the idea that the user interface
is a complex sign built up from many smaller signs, we propose that examining interface
redesigns can provide meaningful insights to designers. Semiotic analysis is an effective
tool for analysing the communicability and interpretability of signs in the user interface, so
we applied the Peircean model to some redesigns. This analysis provides a better under-
standing of redesigns and can potentially aid designers in designing better interfaces in the
future. The major insight gained from this study is that the redesign tended to change the
existing sign from a symbolic into an indexical or iconic sign. Research into the intuitiveness
of computer icons tends to support this move and indicates that users tend to interpret the
signs they see as iconic signs.

31

Chapter 5

Usage-Centered Design

5.1 Introduction

The success of Usage-Centered Design (UCD) has been well documented in a number of
software projects [41], [51]. UCD is a design methodology that produces a user interface
that is the result of several derivations of successive models [20]. In UCD the abstract models
describe the processes in the domain [2]. Constantine [20] talks of the advantage of modeling
at the abstract level as providing the user interface designer with more ‘creative leverage’
than a design process that moves to the concrete level very early on. Another important
aspect that sets UCD apart from other interface design methodologies is the focus on usage,
i.e., user tasks. This is, however, not a novel idea and was introduced in 1987 by Bodker
[12]. Yet, in a personal conversation with James Noble in 2004, Constantine admitted that it
is still not well understood why the process is so successful.

The aim of this chapter is to form a tentative response to Constantine’s musing, basing our
argument on the Peircean model of semiotics. We investigate the semiotic processes in-
volved in UCD’s core models and employ the use of a running example as illustration of the
UCD process in practice. All models discussed are taken from the book by Constantine and
Lockwood[21].

5.2 What is Usage-Centered Design?

In a talk given by Constantine, he referred to the UCD process as “successive translations or
derivations” [19] of various models. In an interview with David J. Anderson, he further ex-
plained that through the use of models, we can communicate understanding and skills[6].
The UCD process can then be described as understanding and skills that are successively
translated and derived through the use of models. Biddle, Constantine and Noble pro-
pose models as ideal tools for answering questions like “What capabilities must be present
within the user interface for to solve the users’ problems? How should they be organised
into handy collections? How should the work flow within and between the various parts of
the interface?” [10] Indeed, UCD makes heavy use of modeling in an attempt to integrate
usability into the design of the user interface. Usability, of course being an important char-
acteristic of any interface, and the incorporation of usability into the design can ensure that
resources are not wasted in the process of developing designs that have to be changed at a
later stage. There are five models that form the complete UCD process [21] and these appear
in figure 5.1:

32

Figure 5.1: Schematic Outline of Usage-Centered Design Process [25]

1. Role model — the relationships between users and the system

2. Task model — the structure of tasks that users will need to accomplish

3. Content model — the tool and materials to be supplied by the user interface

4. Operational model — the operational context in which the system is to be deployed
and used

5. Implementation model — the visual design of the user interface and description of its
operation

Since the time of publishing their influential book titled Software for Use [21], Constantine
and Lockwood have added the Canonical Abstract Prototype (CAP) to their UCD process,
because practical experience with the UCD process showed that there existed a substantial
conceptual gap between the core models provided and the realistic implementation of the
interface. With the introduction of the CAP, the transition from the abstract content model
to the concrete prototype is much smoother [20]. Due to its addition, the CAP will also be
discussed along with the role, task and content models.

5.3 Modeling

Modeling is not peculiar to UCD, it is also an Object-Oriented (OO) Design activity. OO-
modeling recognises two domains that require modeling — the application domain and the
solution domain [13]. To Bruegge and Dutoit the application domain represents all aspects
of the user’s problem, whereas Andersen refers to this as the problem domain, defined as
“that part of the real world the system is required to control, administer, regulate, etc.” [4].
These domains are also applicable to user interface design. Andersen and Nowack suggest
4 different domain models and Constantine and Lockwood believe it is outside the scope
of the UCD process [21], and do not discuss it further. We will use Bruegge and Dutoit’s
term and also use their term for the space containing all possible implementations — the

33

solution domain. Domains are an important consideration because, as we have pointed
out in the introduction, Andersen, Hage and Brandt believe that models describe a domain
[2]. In order to apply semiotics sensibly, we need to determine what the model as sign is
representing, i.e., what it is modeling. This helps to pin down the object of the model as
sign.

The user interface designers have their own special roles to play in the modeling process.
There are two roles: the model-constructer and the model-interpreter [4]. These roles do not
necessarily belong to different people, since small projects may have only a single interface
designer and we occasionally refer to these terms when it is necessary to distinguish user
interface designers that interpret the models and those that construct them.

This chapter will investigate the semiotic processes involved in the following core models
of the UCD Process:

• Role model

• Task model

• Content model

The information from these models are the main drivers behind the design decisions regard-
ing the tasks supported by the user interface and its architecture.

Adapting Liu, Liao and Chong’s [15] description of the software engineering process, the
UCD process can be seen as “a series of transformations between requirements and solu-
tions at different levels.” This implies that the solution that models a domain becomes the
requirements of the next solution. We see this occurring in the UCD process where the role
model is a solution that becomes the requirements for the task model, and the task model
then becomes the requirements for content model. The content model becomes the require-
ments for the CAP, and the CAP in turn becomes a model for the real world implementation
of the prototype.

5.4 Semiotic Discussion

Andersen and Nowack explain a triadic concept of models as signs — the model represented
by the special notation that inherently belongs to it, and renders it visually is the representa-
men. This representamen refers to some other tangible thing, which is the concept the model
represents. The interpretant is what can be called a referent system. This referent system is
“the particular way we choose to relate the model to reality.” [4] Hence, each model will
have a different referent system as its interpretant, since each model employed by a process
such as UCD is intended to model a unique aspect of the domain, but UCD designers should
agree on what the referent system of each model is so that effective communication of the
models can take place.

Closely following Andersen and Nowack’s semiotic analysis of the Object-Oriented Anal-
ysis and Design process [4], we realise that the UCD models listed above are signs. These
models can be related to Peirce’s triadic model of the sign, where the actual models that are
constructed during the user interface design process become the representamen that stands
for concepts in the underlying domain, the way the model is interpreted becomes the inter-
pretant, and the object relates to the corresponding real world phenomenon in the domain.

34

5.5 Running Example

Throughout the rest of this chapter, we will refer to an example of the design of a user inter-
face to a computer system for use in a small pizza business. This example was developed
as part of a course in User Interface Design1, teaching the methods of the UCD process. The
models were produced as part of the set tasks that were carried out as group work.

5.6 User Role Model

The first important UCD component is the user role model. This essential model involves
identifying who the most important users of the system are and what tasks they will be
performing with the system. Identification of the user roles and the relationships between
them, guides decisions about what functionality will be implemented in the interface.

5.6.1 Structured Role Model and Focal Roles

Users are the people who would or could use the system. Therefore, they can be sorted into
groups according to their needs, interests, expectations, behaviours and responsibilities and
the different groupings that result are the user roles. In contrast to the UML notion of actor,
which can be a role played by a human or a non-human system, the UCD term role relates
only to the human users with respect to the system.

Focal roles are a collection of user roles selected from all the possible user roles, which are
deemed as the most important. The usage, i.e., tasks, of the focal roles will then drive the rest
of the design process. User interface designers will ensure that the user interface supports
all tasks belonging to the focal roles first before turning their attention to implementing
functionality for the other roles.

The user role map is a graphical representation of the user roles and their relationships.

Structured Role Models order user information, i.e., the needs, interests, expectations, be-
haviours and responsibilities of the users, in a more detailed way in order to capture char-
acteristics of their interaction with the system. Among other information, structured role
models can include descriptions of the patterns of usage of a given role, usability criteria
that are required by a role and the level of domain knowledge (of the application area)
someone in a specific role can be expected to have.

In our example of the pizza business, we based our roles on all the people who could be
involved in the ordering, making and delivering of pizzas. Figure 5.2 shows the user role
map with the roles we identified. These were the customer, the person behind the counter
who takes the orders, the pizza maker, the delivery person who delivers the pizzas, and
the manager of the store. These also correspond to the basic roles of the people who would
use the system. However, this is not the complete picture. A customer is a very broad and
general concept. In this simple example we can differentiate between several different types
of customers: Some customers order their pizza over the phone and some come into the store
to order their pizza; Some customers require their pizzas to be delivered, but others will pick
them up from the store when they are ready. Further, there are customers whose information
is held by the pizza store for reference when their pizzas need to be delivered. Clearly,
one human being can be any of the types of customer we have just named, depending on

1COMP311: User Interface Design, Victoria University of Wellington, New Zealand (2004)

35

Figure 5.2: User Role Map (F = Focal Role)

36

Figure 5.3: Structured Role Model for the Order Taker

37

Figure 5.4: Structured Role Model for the Pizza Maker

38

what their particular preferences happen to be on the day they order their pizzas. It is
necessary to differentiate between the types of customers in this way because the system
under development and the user interface of that system will behave differently for each
of these types. For example, if a customer requires their pizzas to be delivered, then the
system needs to have their information available for the delivery person. This could be
stored in a data base containing customer information. On the other hand, a customer who
will pick their pizzas up from the store, do not need to supply their information to the
system because it will not be required. The user interface should then allow the delivery
customer’s information to be entered into the system, but not insist on the information of
the pick-up customer to be entered.

The next step was to decide what the focal roles of the pizza system was to be. Originally we
identified the customer, the order taker and the pizza maker for our focal roles. This meant
that during the design of the interface, we would implement all the tasks of the customer,
order taker and pizza maker first, before considering implementing tasks for other roles.
Our decision to use the customer, the order taker and the pizza maker for our focal roles
was based on the consideration that these are the most vital people in a pizza business and
that without them, the business could not exist or be recognised as a pizza business. The
business can exist without a delivery person, or without a manager or system administrator
(however chaotic that might be).

Finally, the structured role models were constructed. Since the focus from here on is now
on the focal roles, these will be dealt with first and the structured role models for the other
roles can be returned to once the implementation of the focal roles have been completed.

For constructing the focal roles for the pizza business, it was necessary to consider the pur-
pose, domain knowledge, system knowledge, background, level of proficiency, type of in-
teraction, information flow and usability priorities for each focal role. As it turned out, the
customer, although chosen as a focal role, was never required to directly interact with the
system. The order taker was in effect the ‘interface’ between the customer and the system.
This insight was quickly realised when it became time to model the structured role models.
Since nothing in the structured role model applied to the customer role, we quickly realised
that the customer is not a role that would interact with the system directly. All customer
interaction with the system would be mediated by the order taker role.

5.6.2 Semiotics of the User Role Model

As a whole, the user role model is a complex sign made up of smaller signs: the user roles,
the user role map and the structured role models. The user role model gives an abstract
overview of the users, their characteristics and the relationships among them. Thus, it acts
as a sign that is used to convey information about the users of the system, to the model
interpreters, who will use it to construct the next essential model of the UCD process — the
task model.

In Peircean terms, the representamen of the user role map is the notation used to represent
the user roles and the relationships between them. That role map provides a visual repre-
sentation of this information. The object of the user role map is the actual potential human
users of the system. The interpretant is the agreed understanding between designers of the
UCD process of what the visual elements in the role map represent, i.e., the referent system
for a role map.

The representamen of the structured role model is the table containing the text that describes
the characteristics of that particular role. Thus, there is a likeness between the description

39

of the role and the actual role itself. This would imply that the relationship between the
representamen (the model system) and the object (the user roles of the application domain)
is an iconic relationship and hence, the sign is an iconic sign. The guidelines given by Con-
stantine and Lockwood [21] for constructing the profiles of the structured role model, are in
effect guiding the iconic construction of roles as they exist in the application domain. These
profiles aid the designers in building strong iconic models on which to base the rest of the
user interface design process.

The user role map and the structured user role model both belong to the application domain
of the UCD process, as it models the requirements or characteristics of the users. The role
model is then the solution that becomes the requirements for the task model. This is strictly
considering the role model as a sign belonging to the application domain.

If we allow no distinction between the solution and application domains, then the role
model can be considered to have the interface under development as the object of the sign.
Now the sign can be considered a symbolic sign, since it does not bear any likeness or simi-
larity to its object — the interface under development.

5.7 Task Model

The advice given by Constantine and Lockwood is that the user interface design should
closely fit the task model [21]. Basically, the task model is a representation of both what
and how user tasks are performed. This is done by developing essential use cases2, which are
descriptions of one single interaction between a user and a system. From the user’s point
of view, they relate what steps are required to achieve a goal with the system. They are
called essential use cases, rather than concrete use cases, because they steer clear of making
assumptions about the concrete implementation details of the user interface involved in the
user interaction. We turn to Constantine and Lockwood’s definition of an essential use case:
“An essential use case is a structured narrative, expressed in the language of the application
domain and of users, comprising a simplified, generalized, abstract, technology-free Adin
implementation-independent description of one task or interaction that is complete, mean-
ingful and well-defined from the point of view of users in some role or roles in relation to a
system and that embodies the purpose or intentions underlying the interaction.” [21, p 103]3

They have found that essential use cases allow for the design of more creative solutions in
interfaces, since they do not limit or restrict the designer in any way.

To make explicit the relationships between the essential use cases, the UCD process enlists
the help of a UML (Unified Modeling Language)4 notation — the use case diagram. In UCD
it is called the use case map. The four relationships in the use case map and the use case
diagram are described in very similar ways.

The result of task modeling is a picture of user-computer interactions couched in the context
of user roles and tasks spelled out in design-free interaction narratives, and illustrating the
inter-relationships among all of the individual use cases [45]. This ‘picture’ is then what
designers will use to model a content model of the solution domain.

Returning to the running example, for brevity, we will focus on one user task required to be

2Both the terms ‘use case’ and ‘essential use cases’ are used interchangeably throughout this chapter
3There are several well-known methods for obtaining the use cases, e.g. textual analysis, observations, but

these are not central to the discussion here, so they are omitted.
4A popular method for specifying, visualising and documenting the artifacts of an object-oriented system

under development.

40

supported by the pizza business’s user interface. We can choose any task belonging to the
Order Taker or Pizza Maker, so we arbitrarily pick the Order Taker’s task of handling the
payment of an order. This task corresponds to a task mentioned in the structured role model
in the ‘Purpose’ section of figure 5.3. The PAYMENT use case appears in figure 5.7. This use

Figure 5.5: The Payment use case

case is invoked when the Order Taker confirms the customer’s order (in Enter Order use
case) for a pick-up order type.

The system displays the payment dialogue with payment type options as well as the pay-
ment value (determined automatically in the system by the order value). The Order Taker
selects a payment type and confirms the selection. If the selected payment type is account,
the account is credited; if the payment type is deferred (for Pick-up Customers) the order
is marked as unpaid, and the flow of control is returned to Enter Order use case. In any
successful case the payment is recorded and the receipt is printed.

Canceling a payment can be performed at any point during this use case and the flow of
control will be returned to Enter Order use case.

If the customer is a Delivery Customer, payment type option cannot be eftpos. Payment
types for all other customers are: cash, eftpos, credit card, cheque, account or deferred.

The use case map shows the relation of the PAYMENT use case with respect to the other
possible use cases for the system. It is related to the Enter Order use case, by extending this
use case. This use case can be interacted with directly by the Order Taker and communicates
with the Query Order use case.

41

5.7.1 Semiotics of the Task Model

The essential use case as artifact is the representamen, the user task that is described by
the use case is the object and once again, as with all the models of the UCD process, the
interpretant is the referent system for essential use cases.

Considering the essential use case as an artifact of the task model, the essential use case
is an indexical sign because the use cases contain references to the tasks that users will be
performing with the interface. The essential use case is not iconic because the interactions
are not concrete and do not resemble the actual interactions that will be performed with the
eventual user interface. For example, in the PAYMENT use case in figure 5.7, step 2 on the
User Intention side of the use case, ‘Select Payment Type’, resembles the same action that
will eventually be implemented in the user interface only by reference. Since interpreters of
the use case are not told how the user performs the selection,the interpreters can not generate
an equivalent sign in their mind although they understand that it is an action referring to a
later implementation.

OO-design places the use case firmly in the application domain but there is obviously a
problem here. The essential use case is the link between the application domain and the
solution domain. The User Intention part of the use case belongs to the application domain
but the System Responsibility relates to the system that is to be implemented (which resides
in the solution domain). The language of the essential use case is natural and intended to be
easily understood by the potential users of the system, so that the use cases can be used as a
way for designers to verify with the users that their tasks are represented correctly and that
the system is responding to them in they way they expect. Use cases are also intended for
unambiguous interpretation by the designers who require the use case to create the content
model. This presents a problem: what domain does the use case model? There may be
two answers to this question — either the use case is a model of another domain that may
intersect the application and solution domain, or it is a model of both.

Considering the use case map as an artifact of the user tasks (represented by the use cases)
and the relationships among them, this sign is a combination of indexical signs — the essen-
tial use cases — and symbolic signs — their interrelationships. Therefore the task model as
a whole may be a sign existing somewhere between an indexical and symbolic sign.

5.8 Content Model

The intermediary step between designing the Task Model and a CAP, is the creation of a
content inventory, designed using paper and sticky notes. One content inventory can consist
of many interaction contexts and each interaction context (See figure 5.7 taken from [10])
contains materials and tools. The materials are the stuff the users want to see and manipulate
and are represented by sticky notes in cool colours (blue, green). The tools enable users to
do things with the materials and are represented by sticky notes in hot colours (pink, yellow,
orange).

Roughly, each line in the use case corresponds to one sticky note. The following questions
can help designers decide what materials are required in each interaction context:

1. “What information will the user need to create, examine or change?”

2. “What information will the user need to present or offer to the system?”

42

3. “What information will the user require from the system?”

4. “What views, perspectives or forms of presentation will be of value to users?”

5. “What conditions or events will the user need to convey to the system?”

6. “About what conditions or events will the user need to be informed?”

Whereas the following questions can help designers decide what tools are required in each
interaction context:

1. “How will users need to operate on or change the information of interest on the user
interface?”

2. “What capabilities or facilities will need to be supplied by the user interface for users
to be able to accomplish their tasks?”

Using sticky notes for representing materials and tools, and sheets of paper for the interac-
tion context, the sticky notes act as placeholders for actual user interface components, so
this process helps designers decide how to organise the user interface features. The inter-
action contexts combine tools and materials together into useful collections[10] and asking
the appropriate questions listed above, along with the essential use cases determine what
the content inventory will consist of. Hence, designers select materials and tools so that the
tasks in the essential use cases can be performed. These are then organised in such a way
that each use case can be performed in roughly one interaction context, although it may be
more sensible to allow closely related use cases to be performed in the same interaction con-
text. Closely related use cases can be identified by the use case map, which illustrates the
relationships among the use cases.

In the process of designing the pizza business’s user interface, this artifact was not expected
to remain a permanent model intended to be used for future reference like the previous
models we have discussed. In our group experience, the content inventory served the func-
tion of a prototype of the prototype — or CAP. It allows for the quick and cheap exploration
of possible prototype designs and was discarded when the final prototype design had been
decided on.

5.8.1 Semiotics of the Interaction Context

The interaction context is the first UCD model that can be used to explore the solution do-
main, before the CAP is created. With the interaction context model as the representamen,
the interpretant the referent system for the interaction context and the object a possible real-
isation of a user interface — with widgets and functionality that correspond to the tools and
materials that appear in the context model — this sign is a symbolic sign. The representamen
does not resemble the object in this sign.

Not only can the text on the sticky notes convey messages to the model interpreters, but
also the colours used for tools and materials. The value of having materials and tools each
represented by sticky notes of colours which appear next to each other on the colour wheel
(figure 5.8), creates a sense of unity among the components. Greens and blues appear next
to each other on the colour wheel and are known as analogous colours. These colours have
the effect of creating unity among the components and conveys to the viewer that the sticky
notes of analogous colours belong to the same category of component, i.e., materials. On

43

the other hand, the fact that hot and cold colours appear on the opposite sides of the colour
wheel reinforces the idea that they are two separate categories [34]. Therefore, although the
interaction context as artefact will probably only exist until a satisfactory CAP has been de-
signed, the information that it needs to convey to the designers of the CAP should still be
clearly represented. Making use of analogous colours for materials and tools but comple-
mentary colours to distinguish between the material and tool components, visually aids the
information the interaction context is designed to convey.

The content inventory is obviously not ideal as a technical visual language but its advantage
is that it is easy to change and assemble. There is a sense of temporariness about using paper
models and this is ideal in an environment that requires the exploration of different options
as quickly and cheaply as possible.

5.9 From Interaction Context to Canonical Abstract Prototype

Canonical Abstract Prototypes (CAPs) were developed in order to provide a better transition
for designers who have to move from the abstract design model to the actual interface (See
figure 5.9). As part of the UCD process, they are the “bridge” between the Task Model and
the realisation of the design[20]. Constantine[19] lists the main strength of CAPs as being
able to separate decisions about:

• What information and functions are presented

• How the UI is arranged and organised

• What widgets are used

• Precise appearance and behaviour

The CAP is composed of canonical abstract components. There are three types and these are:
a generic tool glyph and a material glyph. These two can be combined into a third compo-
nent called a active materials. These tools and materials have been designed to cover much
functionality and the freedom with which they can be combined to form new components
makes them a very expressive notation. Constantine, Windl, Noble and Lockwood [18] pro-
vide these canonical abstract components in figures ??, 5.11 and 5.12.

The CAP also has all the other well-known benefits of prototyping as part of the software
design process, namely, the quick and cheap exploration of possible solutions without heavy
resource investments.

The pizza business’s interface required a way of recording payments for orders. The PAY-
MENT use case contains all the requirements that would be needed to design some kind
of interface element that would have the required features. From inspecting the use case it
was clear that a user would need a tool for selecting the type of payment that the customer
presented, an element material to display the amount owed by the customer, an active se-
lectable collection in order to select the customer’s account from a list of customer accounts
kept in a database, a tool to exit (delete/erase tool in figure 5.11 and finally, a select tool that
would confirm any choices made in the payment dialogue. Figure 5.9 is the CAP form of
the Payment Dialogue and figure 5.13.

44

5.9.1 Semiotics of Canonical Abstract Prototypes

The CAP is composed completely of symbolic signs (canonical asbtract components) and
yet, the CAP is closer to iconicity on the icon-index-symbol continuum than any of the other
models discussed above. This is because new information is added to the model — size
and positioning of user interface features. This is achieved by still using symbolic represen-
tations of the features but their size and position are more accurately determined. Precise
details such as colour and borders etc still remain undetermined, and so it is not yet fully
iconic.

Practice has shown that this is usually a one-to-one mapping between the canonical abstract
component and the concrete user interface element, unless some external factor such as
testing shows that additions are required in order to make the interface more usable.Once
the CAP has been designed, a realistic prototype can be developed — which is iconic in the
same way that a thumbnail is an iconic representation of a photograph — and subsequently
the actual user interface.

From a semiotic perspective, it is not important whether we the UCD process as ending with
the realistic prototype, which exactly resembles the user interface to be implemented from
its design, or whether the UCD process concludes once the actual final user interface has
been implemented. This is because both are iconic representations of the final user interface.

5.10 Discussion

It has become clear that the UCD process makes use of models in order to first of all model
the application domain in the form of an iconic sign — the role model. Then the solu-
tion to the application domain, i.e., the role model, is used to construct a new model, the
task model. This task model is an indexical sign of the user tasks that will be supported
in the interface under development. The task model bridges the gap between the applica-
tion domain and the as yet unexplored solution domain. It is not very surprising then that
Constantine and Lockwood call the task model “the very core of the usage-centered design
process.” [21, p 35] From the task model, the abstract content model and the less abstract
CAP are constructed, both of which model the solution domain. The content model is a way
of organising the interaction between the user and the system and by the time the content
model is created, the user tasks have already been elicited and modeled, so that it is just a
matter of ensuring that the required interaction does not make unreasonable demands on
the user. The content model and the canonical abstract prototype allow designers to explore
the solution domain quickly and cheaply. If the derived realistic prototype is a close fit to
the task model, then it is obvious that the realistic prototype should adhere to all the user
requirements elicited during the design of the role model.

Through our semiotic analysis we have observed two different characteristics of the tran-
sitions between the signs in each of the domains during the UCD process. If we take the
movement from icon to index to symbol as a movement from firstness, to secondness, to
thirdness, we can make the following observations: In the solution domain we begin with
establishing a well defined iconic representation of the user roles the interface is required to
support, and observe a movement in the next model toward an indexical representation of
the task model. Movement is continued in the same direction from the indexical task model,
to the symbolic content model. However, the solution domain requires the designer to move
in the opposite direction to the movement between models in the application domain, i.e.,
from symbolic models to more iconic representations of the realistic user interface.

45

Thus, Usage-Centered Design is a process that takes the designer from an iconic representa-
tion of the user roles toward indexical signs of the tasks in the user interface further toward
the symbolic interaction contexts. Then there is a movement back toward the iconic repre-
sentation of the interface in the form of a realistic prototype.

Semiotically, as explained by the studies in chapter 3, people seem to understand iconic signs
better and when they are in doubt they revert to an iconic representation. This would seem
to support the success of the UCD process due to the movement from the well understood
iconic representation of user role models, on which the future models are based. This implies
that a sound basis for future modeling is ensured.

Before concluding it is worth noting that all the models can be seen as indexical signs —
they all refer to the interface that is being developed and thus, their presence conveys to
interpreters of the models that an interface is under development. Yet, as noted before, each
model’s domain has to be taken into account, so that the underlying object of the peircean
triadic relationship can be established.

5.11 Summary

We conclude this chapter with the observation that the success of the UCD process lies with
the iconic first model that gives a well understood basis on which to base further more
refined models.

46

Figure 5.6: Use case map for the Order Taker

47

Figure 5.7: From [18]: Example of an Interaction Context

Figure 5.8: From [34]: The colour wheel

Figure 5.9: Canonical Abstract Prototype of the Payment Dialogue

Figure 5.10: From [18]Canonical Abstract Components — Materials

48

Figure 5.11: From [18]Canonical Abstract Components — Tools

Figure 5.12: From [18]Canonical Abstract Components — Active Materials

Figure 5.13: Concrete implementation of the Payment Dialogue

49

Chapter 6

Conclusions

In the introductory chapter to semiotics and user interface design (chapter 2), we briefly
introduced semiotics as the study of signs and selected Peirce’s model for the rest of the
semiotic analysis that was performed. This decision was based on two criteria: first, Peirce’s
model is a highly structured model that takes into account three parts of the sign; second,
other semioticians have selected it as a good model to use when considering user interface
signs.

In chapter 3 we quote Goguen: “all else being equal: Icons are better than indices, and
indices are better than symbols” [27], but he provides no evidence for this claim. In this
chapter we showed that several studies do support the notion that icons are better than
symbols, however icon evaluation is a very difficult task. We summarise our most important
findings as follows:

1. Some concepts are better explained by symbolic signs, for example, rotation of an
object.

2. The pairs of opposite actions of sending and receiving, increasing and decreasing, an-
swering and hanging up are very difficult to convey.

3. Participants are more likely to attribute an action to an icon than guess that it repre-
sents a system object.

4. When participants can not think of a suitable functionality that fits into the given con-
text, they will base their guess on the visual clues that they can see and so, interpret
the icon based on what they think they see. This was most clearly illustrated by icon
4.

5. Iconic signs generally are better recognised than their symbolic counterparts and in
the case where participants interpret the iconic signs incorrectly, they are surprisingly
consistent in their interpretations of the image.

In the words of de Souza [24], “our conclusions at this point is more a matter of specula-
tion and sense than of thorough testing and analysis”. But the major insight gained from
modeling user interface redesigns semiotically, was that the redesign tended to change the
existing sign from a symbolic into an indexical or iconic sign. Research into the intuitiveness
of computer icons from chapter 3ends to support this move and indicates that users tend to
interpret the signs they see as iconic signs.

50

We concluded chapter 5 with the observation that the success of the Usage-Centered Design
process lies with the iconic first model that gives a well understood basis on which to base
further more refined models. Again, this observation is substantiated by the results from
the studies in 3.

From the project as a whole, it is possible to conclude that if the results from the studies
do support that users generally understand iconic signs more easily, then any user interface
concept, be it a functionality represented in the interface or a model of some domain, is
consequently better understood when modeled as an iconic sign. We can also further use
this information to find explanations for the reasons user interface redesigns happen the way
they do and why some design processes, such as Usage-Centered Design is so successful at
producing usable interfaces. Overall, then the conclusions are valuable for user interface
design.

Although not directly related to the research in the main body of the project report, we
conducted a heuristic evaluation, the results of which would help to improve the usability
of the stereo system in the Memphis computer lab.

Possible Criticisms of the Semiotic Approach

There are two major criticisms that could be levelled at the semiotic approach applied in
computer science:

• Predicting another person’s interpretant based on a given object and representamen is
near impossible. Each individual will make their interpretation based on the context
in which they find themselves at that point in time. Their specific context is based on
their culture, background and education level. This makes any analysis involving the
interpretant merely speculative. While it is true that some interpretants are more likely
to be formed than others given the representamen, this will still only be valid within a
culture, community group or individual [40].

• Semiotic analysis is not a technique that can stand on its own in a technical field such
as computer science. It must always be backed up by empirical evidence, otherwise it
is just a subjective theories.

51

Appendix A

Paper accepted for publishing by the
Australian User Interface Conference
2005

FERREIRA, J., NOBLE, J., and BARR, P. The Semiotics of User Interface Redesign to appear
at the 6th Australasian User Interface Conference (AUIC2005), Newcastle. Conferences in
Research and Practice in Information Technology, Vol. 40. M. Billinghurst and A. Cockburn,
Eds.

This paper is primarily my own work and presents some interim results of the project de-
scribed in this report.

52

Appendix B

Icon Intuitiveness Test

53

Appendix C

Heuristic Evaluation Documents for
the Stereo System in Memphis

54

Appendix D

Heuristic Evaluation of the Stereo
System in Memphis

D.1 Introduction

A heuristic evaluation is an excellent method for finding usability problems in a user in-
terface when the results are required quickly, cheaply and requires no intensive training in
order to be able to conduct one. It is known as a discount engineering method and was first
advocated by Nielsen, to be performed as part of the user interface design process [38].
A heuristic evaluation is usually conducted by selecting usability experts, supplying them
with the heuristics1 the interface to be evaluated should conform to and then allowing them
to inspect the interface and evaluate which heuristics are violated. This process can be very
useful to user interface designers because user interface designers are not always usability
experts and they may not have access to the future users of their system in order to conduct
user testing.

According to studies carried out by Nielsen [38], the ideal number of evaluators for a heuris-
tic evaluation is three to five, which makes it more likely that all the major usability prob-
lems will be identified. This is due to the fact that not all evaluators find the same problems
in a given interface. He further suggests that evaluators do not communicate during the
evaluation, as this also helps evaluators find distinct usability problems. However, after
the evaluation has been carried out, the evaluators can have a debriefing session in which
design advice can be exchanged.

We carried out a heuristic evaluation of the stereo system interface in the Memphis computer
lab. Figure D.1 shows a screenshot of the interface as it appeared at the time of the evalua-
tion. The evaluators were required to evaluate the interface using Nielsen’s well-known ten
usability heuristics and then rate the severity of the problem according to a given severity
scale.

This chapter gives a brief introduction to the stereo system interface, describes the method-
ology used in the heuristic evaluation and then summarises the results. The document dis-
tributed to the evaluators during the evaluation, along with Nielsen’s ten usability heuris-
tics, can be found in appendix B.

1Guidelines

55

Figure D.1: Screen 1 of the stereo system in Memphis

56

Figure D.2: Screen 2 of the stereo system in Memphis

57

D.2 Stereo System Interface

The interface that was evaluated in the heuristic evaluation is the interface for the stereo
system in the Memphis computer lab. This is a web-based interface that allows students
in the lab to play music through the sound system. The interface allows access to albums,
consisting of individual songs, stored in a database. Whole albums or individual songs can
be selected to be added to a playlist which plays the songs and when it reaches the last song
on the list it loops back to the first song and continues in this way.

The interface consists of two screens: screen 1 (see figure D.1) is the screen the user sees
when the url is entered into the browser. Screen 2 (see figure D.2) is the screen displayed
once the user has clicked on the name of an album.

Access to the interface is unrestricted but the sound system is only set up for playing music
in the lab.

D.3 Methodology

The heuristics used in this evaluation were Nielsen’s ten usability heuristics. In light of
Nielsen’s suggested number of evaluators, four evaluators who had never encountered the
stereo system before, took part in the evaluation. The evaluators were asked to list the prob-
lems they found with the interface, i.e., the heuristic violations, and then to rate the severity
of the problems on a severity scale that was supplied. This was paper based. The advan-
tages of supplying a severity scale is so that problems can be prioritised in a convenient
manner and if it is not possible to have a discussion after the evaluation with all evaluators
involved (as was the case in this evaluation) then the severity ratings can be used to identify
the major problems. The heuristic evaluation was also non-task orientated, which means
that evaluators were required to check for heuristic violations on every screen and on every
action. This is only appropriate if the interface is very simple. We felt that the stereo system
interface was simple enough for the evaluators to explore and evaluate all the functionality
within a reasonable time frame2.

Not all the evaluations were performed at the same time but there was an observer present
in all cases. The observer was mainly required to distribute the evaluation documents, help
the evaluators access the interface on the web and ensure that the evaluations were running
smoothly.

We feel confident that the major usability problems were identified during this evaluation
and present the results in the following section.

D.4 Results

Not all the heuristic violations found by each evaluator are listed below, only those vio-
lations with an average severity rating of 7 or above. The average was simply calculated
by taking the mean of the four evaluators’ severity ratings. The problems in the table are
ranked according to severity, starting with the most severe.

2The evaluators were occupied for roughly an hour.

58

Problem
Average
severity

Heuristic
violated

1 No help or documentation 9 H10
2 Accidentally enqueued albums can not be removed — the

songs must be dequeued individually
9 H3, H9

3 The number of songs on the playlist is unknown 9 H1
4 The numbering of songs only apply to the album, not its

position in the playlist
9 H1, H4

5 Selecting shuffle changes the currently playing song shown
in the playlist, but only when ‘>’ is selected, does it play

9 H1, H2,
H4

6 Clicking with the mouse pointer in the white space of the
playlist or highlighting the song crashes the interface

8.5 H9

7 There is a weak connection between the term directory list
and as alist of audio selections and the term directory used
in the real world.

8 H2

8 Functionality of the glyph ‘-’ is unclear 8 H2
9 Volume control does not conform to well-known interface

conventions
8 H4, H2

10 There is no way of enqueing all songs on an album from the
screen showing the individual songs

8 H3

11 As the playlist becomes large it is not clear where in the
playlist the songs are added

7.67 H1, H4

12 No way of recovering from a user interface crash 7.5 H9
13 No instructions exist as to how to proceed or use the inter-

face
7.5 H10

14 Functionality of the glyph ‘∧’ is unclear 7 H2
15 The currently playing song is not visible at all times 7 H1
16 If a song, say on the second album is selected, that songs that

appear before that one on the album move to the end of the
playlist, as though they have recently been played.

7 H7

Table D.1: Results of the heuristic evaluation of the stereo
system

D.5 Areas for Improvement

This heuristic evaluation could have been improved in the following ways:

• Require that evaluators not only specify the heuristics that are violated, but also the
heuristics that the interface conforms to. This would give the user interface designer
an indication of what appeals to the users in the interface, ensuring that subsequent
redesigns of the interface do not destroy or change the appealing features.

• Hold a post-evaluation discussion after the evaluation. While this is only possible
when the evaluators can perform the evaluations simultaneously, such a discussion
may result in valuable suggestions for improvements to the user interface. In this
study, time constraints on the part of the evaluators and the coordinator did not al-
low for the evaluations to be conducted simultaneously. One way of overcoming this

59

problem could have been to ask evaluators to suggest ways in which the usability
problems could be improved upon — seeing as they are considered experts in the
field and should therefore have experience with usable user interface features.

D.6 Conclusion

We are confident the methodology followed in this heuristic evaluation allowed for the iden-
tification of the major user interface problems of the stereo system, however we are aware
of the areas in which the evaluation could be improved. We conclude that it would be
beneficial for the user interface designer and the users of this system to take the results of
this evaluation into account, since improvements based on this evaluation would greatly
enhance the usability of the stereo system.

60

Appendix E

Earlier analysis work: Modeling
Heuristic Violations Semiotically

E.1 Introduction

This was a semiotic application to the problematic signs in th user interface that was done
very early in the year. There is no guarantee that these categories are sound or complete,
however they were based on three case studies. Two were from the literature and the third
was the heuristic evaluation we conducted. The results from the heuristic evaluations, were
isolated as heuristic violations and the signs, i.e., user interface components that were in-
volved in the violations were analysed. These problematic signs that were causing heuristics
to be violated were divided up into categories of signs showing related problems. While this
is an interesting idea, not much was gained from it because the heuristics that were derived
from the analysis were not novel.

This chapter proceeds to introduce the case studies, and then proceeds to group or categorise
signs involved in heuristic violations together.

E.2 Case Studies

There were three case studies involved in this categorisation of sign problems: the stereo
system, the TRAVELweather GUI and Labscape 0.2. These were chosen because they were
all evaluated according to Nielsen’s ten usability heuristics. The stereo system evaluation
was held by the author and the other two were selected because their results were available
and very complete.

E.3 Categories

The advantage of modelling the heuristic violations on semiotics is that we can now ask the
question: ”Why does this interface violate a particular heuristic?” To answer it, we must
isolate the particular signs involved in the violation, and investigate their properties. This is
how the different sign categories further discussed below, were discovered. The two basic
categories of sign problems identified were:

61

1. Representamen Problems

2. Matching Problems

E.4 Representamen Problems

This category of problem is concerned with the properties of the representamen. It can also
be seen as a category of cosmetic problems and can be further subdivided into signs that
are:

1. Too similar

2. Obscured

3. Distracting

4. Too close together

Representamen problems do not impact the perceived meaning of the sign - if the sign is vis-
ible the user will generally interpret the sign correctly. However, the way it is represented
could cause the user to make errors or waste time identifying the sign. Representamen prob-
lems can occur in four ways. The representamens of two different signs may be so similar
that the user under pressure may mistake one interpretant for the other. This causes an error
because the user unintentionally invokes the functionality of the wrong sign. Alternatively,
the representamen can be obscured - the sign does exist but it is not visible to the user. This
can be the result of either the way signs like windows or text boxes are layered, or colour
contrasts that make them difficult to see. Then there may be signs that are well understood
by the user, but are less important than what their appearance make out to be. This subcat-
egory is called distracting signs. They distract attention from more important signs in the
interface. The last subcategory is a problem of the signs being too close together. This can
also cause the user to make errors. Closely situated signs can be mistakenly selected when
the user is working at speed because increased speed sacrifices accuracy.

E.4.1 Too Similar

This category of problems involves signs that look so similar that the user possibly makes
the error of interpreting one for the other.

Examples

• Labscape

Once the user has selected a check box in dialog box in figure E.1, the system automatically
starts to log in the user. There is no chance for the user to confirm the selection or cancel if
the wrong check box has been selected. This sequence of actions by does not help to prevent
the user from making errors. IN fact, the errors can not be easily undone. But why has the
user made the error in the first place? The window allowing users to check in can be seen in
figure E.1. The signs of interest here are seen in figure E.2. In this case, it is obvious that if
User2 was not selected, then there is very little distinguishing the two signs. This will make

62

Figure E.1: User check-in window

Figure E.2: Two similar representamens

it easy for a user to mistake User1’s check box for User2’s. Selecting the wrong check box
begins the log in for the mistaken user right away.

• TRAVELweather GUI

The same problem occurs in the TravelWeather GUI. Here the user’s understanding of the
map in figure E.4 is hampered by the representation of the water features, i.e., the ocean and
lake. The same representamen (see fig E.3) stands for two different objects. Zoom factors
and latitude and longitude specifications can render the map in a way that makes it difficult
to tell what is sea and what is lake. Telling the difference is made even more difficult by there
being no place names to give clues as to what part of North America the map is displaying.

• Stereo System

There is also an example of this in the stereo interface, figure E.5. The [add all] options
appearing next to the album names all have different underlying objects, yet they all look
the same (see figure E.6). A better design may perhaps let the user select the album with
a check box and then have one add all button to add all the songs of the checked albums
to the playlist. Users working at speed may select the wrong [add all] option, and add the

Figure E.3: Representation of Water

63

Figure E.4: TravelWeather GUI

Figure E.5: UI of the stereo system

Figure E.6: Option to add all songs of the corresponding album

64

Figure E.7: Online catalogue

Figure E.8: Accidental cancellation

wrong album to the playlist, not only because the sign is duplicated for every album, but also
because of how closely they are situated to one another - this problem is discussed separately
under the too close category. So far we have looked at single signs that are too similar.
However, this category is not restricted to only single signs. The next example shows that
a combination of signs (or complex sign) that are too similar, can also have the same effect.
As seen in the interface in figure E.7. The problem is that the user may accidentally cancel
an order and there is no way of undoing the last operation. Remembering that the question
is: ”Why is the user able to make the error in the first place?”, when looking at the signs
involved in more detail, it becomes obvious. See figure E.8. Here is a common visual pattern
which may lead to erroroneous selections. At speed the user may mistake the cancel button
for the more button. Motivating the fact that users don’t read what’s on the screen is in an
article I still need to get[43]. Suggestions for improvement would be to substitute the less
and more buttons for a sign which looks different from the cancel button. For example see
figure E.9. The point is that the pattern should be broken, so not all the buttons need to be
replaced.

Proposed Heuristic: Make representamens with different objects look different.

When this is not possible, as in the case with the user check-in box and the [add all] of the
stereo, ask the user for confirmation of the choice or combine the repeating sign into one, or
do both.

In this section, the possible improvements to the signs are improvements that address a
major issue: that of error prevention.

65

Figure E.9: Suggested improvements

Figure E.10: Pie menu with highlighted magenta

E.4.2 Obscured Signs

Evaluators felt theses signs were not clear enough for the user to easily recognise their ex-
istence. With this comes the danger that the user may feel a certain functionality is missing
even though it does exist. Obscured signs are signs that exist in the interface, but for various
reasons, the user can not see them. There may be several reasons why the user can not see a
sign. One reason could be that the colour contrast makes them difficult to see.

Examples

• Labscape

Heuristic evaluators in the Labscape study noted that black text on a magenta background
is difficult to read. Andersen[3] states that in a semiotic approach, each part of the system
is a sign for somebody, so the default is that everything should be visible and interpretable while
invisibility should be explicitly decided. Figure E.10 shows the pie menu used in the application
and figure E.11 shows the problematic sign.

It is also possible that the layering of signs like windows can cause an important sign to
become hidden. In the labscape evaluation, the user check-in window was obscured by
the debug window (See figure E.12). If a sign is not displayed completely, this is also an
example of an obscured sign. The window in figure E.1 was originally not fully expanded
for the whole title to be visible - as in figure E.13.

66

Figure E.11: Highlighted magenta

Figure E.12: Debug window covers user check-in window

• Stereo System

If the designer picks a very unusual representation for some functionality, the user may not
find the sign for the task they have in mind. This was found in the heuristic evaluation of
the stereo system (see figure E.5). Figure E.14 shows the obscure volume control. Several
evaluators thought the volume control was difficult to locate.

Proposed Heuristic: Make representamens visible.

E.4.3 Distracting signs

These signs do not influence the user’s understanding of the other signs in the interface,
but only detract the user’s attention or cause minor unease for various reasons. One reason
may be that these signs are not as important as their visual representation make them out to
be - they might visually dominate the interface for no particular reason. Other distracting
signs may appear as superfluous and unnecessary, or take on an unusual form so that the
user perhaps focuses too much attention on them. Elizabeth Krupinski’s research on gaze
fixations could support this point.

67

Figure E.13: Window title not visible

Figure E.14: Volume control of the stereo system

• TRAVELweather GUI

The TRAVELweather interface in Figure E.4 has a very large title in relation to the whole,
which wastes valuable space that could be used for better representing other signs. The
unexplained dominance of the title makes this a distracting sign. The evaluators also found
that the representation of the number zero, in the date and time textbox is too much of a
computer typeface. While this is not an impediment to the overall interpretation of the date
or time, if the user notices it, it could cause minor unease.

• Stereo System

The scroll bar on the top right hand window of the stereo interface (figure E.5) seems su-
perfluous. The user may waste time by trying to use the scroll bar, only to find out that the
window already displays everything it contains.

Proposed Heuristic: Do not draw unwarranted attention to the representamen and if it is
not required do not create it in the first place.

E.4.4 Signs too close together

This problem is characteristic of how groups of signs have been positioned in the interface.
When signs are positioned too close together, the user may mistakenly select the wrong one.
Use Fitt’s Law as applied to UI design to motivate this point.

Figure E.15: Tablength is inconsistent

68

Figure E.16: Did It!, Save and Keep are ambiguous

Examples

• Stereo System

An example is the [add all] option (see figure E.6) of the stereo system. As mentioned pre-
viously, users working at speed may accidentally select the wrong [add all] option and add
the wrong album to the playlist. Since there is no undo option, this is a dangerous state of
affairs.

• Labscape

There is a danger in Labscape of losing unsaved work due to the proximity of certain but-
tons. Figure E.16 shows one of the dialog windows of Labscape. The Save and Keep buttons
are ambiguous in meaning, making it harder for the user to quickly determine which func-
tionality is actually required. Further, the Save and Keep buttons are right next to each other,
since selecting the Keep button results in the loss of modifications to the data.

Proposed Heuristic: Keep representamens with different objects at a safe distance.

E.5 Matching Problems

This category of problems is concerned with the mismatch between the designer’s intent
with the representamen, and the user’s interpretation of it. This distinguishes the problems
in this category from those of the representamen problems in section E.4. Here the meanings
are actually influenced by the representamen and can be further divided into:

1. Interpretant-Object mismatch

• lying signs

• convention

2. required semiosis

69

E.5.1 Interpretant-Object Mismatch

This is quite a broad category and it includes all problems where there is a mismatch be-
tween the designer’s object and the user’s interpretant. For example, a user may interpret
a sign as representing some functionality, when the designer has in fact attributed a dif-
ferent functionality to the sign. There are two special cases of problems of this type. One
case is when the designer has violated some convention. The user, through convention
will create their interpretant of the sign, but unfortunately it will not match the designer’s
object because the designer has not adhered to the convention. Another case is when the
designer misrepresents some underlying reality. The user may be confused when reality
is misrepresented in the interface. These will be discussed in more detail in sections E.5.2
and E.5.3. However, not all Object-Interpretant problems have conventions or underlying
realities. Some signs are simply ambiguous due to factors such as inconsistent use of termi-
nology or colours by the designer, important information about what the sign represents is
missing, or the user simply does not understand what the sign is supposed to mean.

Examples

• Stereo System

The functionality to add an album to the PlayList is represented by the [add all] link in the
Directory list. This is inconsistent with the functionality to add an individual song to the
PlayList. To add an individual song, the user must select [enqueue]. Although the underly-
ing functionality is the same, i.e., the song or songs are added to the PlayList, the different
terminology makes this less obvious to the user. This is an interpretant-object mismatch,
since the user is left guessing at the correct object of the [add all] and [enqueue] features.

• TRAVELweather GUI

The date and time text box in the TRAVELweather GUI can be edited by the user. But
this is not obvious from merely looking at it. It requires extra information for the user to
know right from the first encounter that the information in the date and time text box can
be edited. This can be done either in the form of a drop down list, which would change the
appearance slightly, or by inviting the user to enter a new date and time with some form of
textual message in or near the text box.

• Labscape

In the Labscape dialog window in figure E.16 the buttons called Keep, Save and Did it! are
ambiguous. They may be very close in meaning, but the designer intended slightly different
actions to be taken when selecting them. According to the report[17],

when Keep is pressed, another dialog can be opened without the current window
automatically closing, but any data that has not been saved is lost. When Save is
pressed, the information in the dialog window is saved to the database and the
window closes. When Did it! is pressed, the step is marked as completed, but
any data that has not been saved is lost.

70

Again, the user is left guessing at the correct objects of the buttons. They could be left
wondering whether the Keep button also saves the changes to the data, or whether the Did
it! button will save the data and then close the window. It is not clear what the designer
intended.

E.5.2 Convention

In this category, signs have a certain convention and users expect them to behave accord-
ingly. However, as seen in the case studies, designers sometimes do not adhere to the exist-
ing conventions.

Examples

• Stereo System

The appearance of the signs used for playing and stopping a song have not been imple-
mented in the conventional manner. The > sign plays a song and [stop] stops the song
playing. There are well-known conventions that every user is aware of for these functions.
Although the [stop] sign does not necessarily confuse the user or cause a misinterpretation
of the underlying functionality, it is better to implement the convention simply because it
exists and because that way the user feels more comfortable with using the system. Perhaps
it is a different story with the > sign. Users may not understand the functionality of the
sign at a first encounter, whereas the conventional sign for the play functionality would be
instantly recognisable.

• TRAVELweather GUI

It is convention to represent mutually exclusive concepts as radio buttons. Check boxes, as
used in the TRAVELweather GUI, suggest that both Celcius and Fahrenheit can be selected
at the same time. However, these check boxes behave the way radio buttons do, i.e., only
one can be selected at a time. This contradicts the conventional behaviour of check boxes
and therefore the designer’s object of this sign is likely to contradict the interpretant of the
user.

• Labscape

In some cases the user’s previous experience has an impact on what can be regarded as con-
vention. The application with which the Labscape users are familiar with is MS Excel. In a
sense, the behaviour in Excel becomes the expected convention of the users of Labscape. The
Labscape system does not notify the user when a duplicate session name has been entered.
Instead, it allows the user to continue working as though it is a new session, thereby con-
fusing data and effectively ruining the experiments. Because opening a session is similar to
opening a file, the user would expect to be notified if there already exists such a session/file
name. This is what would happen in Excel, so this is what the user expects from Labscape.

Proposed Heuristic: Adhere to convention if it exists.

71

Figure E.17: Pop-up keyboard provided in Labscape

E.5.3 Lying Signs

There is sometimes a reality which the sign is a representation of. This reality is usually
known to the user so that the way the designer represents this will determine whether the
user understands the sign or not. For example, the underlying reality of a map is the actual
geography which it is supposed to represent. If the map does not agree with the geography,
the map is then a misrepresentation of the reality and has minimal value to the user. The
same can be said of signs on the computer screen.

Examples

• Stereo System

The display of the time elapsed is not shown in real time. This becomes a lying sign because
it does not accurately represent the underlying reality, i.e., the actual time that has passed.

• TRAVELweather GUI

On the map of the TRAVELweather GUI, Rhode Island is not shown to be an island. It
appears as connected with the mainland and so the map is lying about the fact that it is an
island. In this case, this lying sign makes the map more difficult to read, given that only a
small portion of North America is shown and no place names are provided.

• Labscape

The pop-up keyboard in the Labscape system is laid out alphabetically (See figure E.17).
Users in English speaking countries will most likely use the QWERTY keyboard (See figure
E.18. Therefore it would be a better match for the pop-up keyboard to also follow this lay-
out. Perhaps the alphabetical layout should instead be viewed as a break with convention,
however considering the fact that actual QWERTY keyboards do exist, there is necessarily a
reality on which the sign of the keyboard on the screen could be modeled.

Proposed Heuristic: Adhere to reality if it exists.

72

Figure E.18: MS Windows on-screen keyboard

E.5.4 Required Semiosis

Sometimes the interface requires the user to go through a series of steps in order to access
the information or the functionality required and when there is no support for remembering
what steps have been taken the result is a required semiosis problem. This could happen
when the user is required to select options from a cascading menu, for example. Only once
all the required selections have been made, can the user access the needed information or
functionality. Alternatively, when certain settings are required by the user, and the system
can not store the user’s settings, then the user will be required to repeat the same steps every
time the system is used. This indirectness results in a waste of time and is also taxing on
the user’s memory. See http://developer.kde.org/documentation/design/ui/
simplify.html for a discussion.

Examples

• TRAVELweather GUI

Regular users who check the same area’s weather, could benefit by being provided with the
option of directly accessing that area’s weather information. This will save the user time
because the various selections do not have to be repeated every time the system is used. The
user will then also not have to remember the exact steps involved in attaining the specific
area’s weather information.

• Labscape

Users are forced to make selections from the pie menus in the system. There are no shortcuts
for advanced users, or for actions that need to be performed often. Regular users will soon
find it tedious to use the pie menus when a few keystrokes could speed up their tasks.

Proposed Heuristic: Allow the user the most direct access route to information as possi-
ble.

73

E.6 Summary

The following table summarises the categories discussed above:

RepresentamenProblems MatchingProblems

1. Similarity 1. Interpretant-Object mismatch
2. Obscured signs - lying signs
3. Distracting signs - convention
4. Physical limits - user-Designer mismatch

2. continuous semiosis

74

Bibliography

[1] ANDERSEN, P. Computer Semiotics. Scandinavian Journal of Information systems 4 (1992),
3–30.

[2] ANDERSEN, P., HASLE, P., AND BRANDT, P. Machine Semiosis. de Gruyter, forthcoming,
ch. To Appear in Handbook of Semiotics.

[3] ANDERSEN, P., HOLMQVIST, B., AND JENSEN, J., Eds. The computer as medium. Cam-
bridge University Press, 1993.

[4] ANDERSEN, P., AND NOWACK, P. Tangible Objects: Connecting Informational and
Physical Space. Tech. rep., Department of Computer Science, Aalborg University and
Maersk Institute, University of Southern Denmark, 2003?

[5] ANDERSEN, P. B. Elastic Systems. In Human-Computer Interaction, Interact ’01. IFIP
TC.13 International Conference on Human-Computer Interaction (2001), M. Hirose, Ed.,
Ansterdam. IOS Press, pp. 367–374.

[6] ANDERSON, D. J. In www.uidesign.net/2000/interviews/larry1.html, 2000.

[7] ANDERSON, M., AND MERRELL, F., Eds. On Semiotic Modelling. Mouton de Gruyter,
1991.

[8] BARR, P. User-Interface Metaphors in Theory and Practice. Master’s thesis, Victoria
University of Wellington, 2003.

[9] BARR, P. BIDDLE, R., AND NOBLE, J. Icons R Icons: User interface icons, metaphor
and metonymy. Tech. Rep. CS-TR-02/20, Victoria Unversity of Wellington, September
2002.

[10] BIDDLE, R., CONSTANTINE, L. L., AND NOBLE, J. Usage-Centered Design and Soft-
ware Engineering: Models for Integration. In IFIP Working Group 2.7/13.4, ICSE 2003
Workshop on Bridging the Gap Between Software Engineering and Human-Computer
Interaction. Portland Oregon,. 2003.

[11] BLONSKY, M. Introduction: The Agony of Semiotics. In On Signs, M. Blonsky, Ed.
Baltimore, Maryland. John Hopkins University Press, 1985.

[12] BODKER, S. Through the Interface a Human Activity Approach to User Interface Design.
DAIMI PB-224. PhD thesis, Aarhus Universitet, 1987.

[13] BRUEGGE, B., AND DUTOIT, A. H. Object-Oriented Software Engineering: Conquering
Complex and Changing Systems. New Jersey, Prentice Hall, 2000.

[14] CHANDLER, D. Semiotics: The Basics. Routledge, 2001.

75

[15] CHONG, S., LIAO, S. Y., AND K., L. Semiotics for Information Systems Engineering: re-
use of high-level artefacts. In URL www.scit.wlv.ac.uk/˜in8189/CSNDSP2002/
Papers/A1/A1.1.pdf, 2002.

[16] COLLINS, B. L., AND LERNER, N. D. Assessment of fire safety symbols. Human Factors
24, 1 (1982), 75–84.

[17] CONSOLVO, S., AND TOWLE, J. Heuristic Evaluation of Labscape Version 0.2. Tech.
Rep. IRS-TR-02-014, Intel Research Seattle and University of Washington Informa-
tion School, August 2002. In URL ”www.seattleweb.intel-research.net/
projects/labscape/heuristic_eval.htm%l”. Accessed 28 July 2004.

[18] CONSTANTINE, L., WINDL, H., NOBLE, J., AND LOCKWOOD, L. From Abstraction to
Realization: Abstract Prototypes Based on Canonical Components—REVISED. In URL
http://www.foruse.com/articles/canonical.htm, July 2003.

[19] CONSTANTINE, L. L. Abstract prototyping. In Talk Given on 23 March 2004 at Victoria
University of Wellington.

[20] CONSTANTINE, L. L. Canonical Abstract Prototypes for Abstract Visual and Interac-
tion Design. In Proceedings of DSV -IS’2003- 10th International Workshop on Design, Spec-
ification and Verification of Inter-active Systems, Lecture Notes in Computer Science (2003),
J. Jorge, N. Nunes, and J. e Cunha, Eds., Berlin, Springer-Verlag.

[21] CONSTANTINE, L. L., AND LOCKWOOD, L. A. D. Software for Use: A Practical Guide to
the Models and Methods of Usage-Centred Design. ACM Press, 1999.

[22] COOPER, A. About Face: The Essentials of Interaction Design. John Wiley and Sons, 1995.

[23] DE SOUZA, C., BARBOSA, S., AND PRATES, R. A Semiotic Engineering Approach to
HCI. In Proceedings of CHI’01 extended abstracts on Human factors in computing systems
(Seattle, Washington, 2001), ACM Press, pp. 55–56.

[24] DE SOUZA, C. S. The semiotic engineering of concreteness and abstractness: from user
interface languages to end user programming languages. Tech. Rep. MCC08/96, PUC-
Rio, Rio da Janeiro, 1996.

[25] DROSCHL, G., AND KARNER, H. Usage-Centered Interface Design for Knowledge
Management Software. Journal of Universal Computer Science 8, 6 (June 2002). In URL
http://www.jucs.org/jucs_8_6/usage_centered_interface_design. Ac-
cessed 21 October 2004.

[26] ECO, U. Semiotics and the Philosophy of Language. Southampton, UK. Camelot Press Ltd.,
1984.

[27] GOGUEN, J. On Notation. Prentice-Hall, 1993, ch. TOOLS 10: Technologyof Object-
Oriented Languages and Systems.

[28] GOGUEN, J. Semiotic Morphisms. Written for CSE 271: User Interface Design: So-
cial and Technical Issues. In URL http://www.cs.ucsd.edu/users/goguen/
papers/sm/smm.html, 1996. Revised 2004. Accessed 19 October 2004.

[29] GRODEN, M., AND KREISWIRTH, M., Eds. The John Hopkins Guide to
Literary Theory and Criticism. The John Hopkins University Press, 1997.
In URL http://www.press.jhu.edu/books/hopkins_guide_to_literary_
theory/semioti%cs.html. Accessed 19 October 2004.

76

[30] HOFFMAN, P. Microsoft Word for the Macintosh: Made Easy, Version 3, 2nd ed. Berkeley,
California. Osborne McGraw-Hill, 1987.

[31] IBM Corporation. RealThings design guide. In URL http://www-3.ibm.com/ibm/
easy/eou_ext.nsf/publish/581. Accessed 9 Sep 2004.

[32] LINDEKENS, R. Eléments pour une sémiotique de la photographie. Paris and Bruxelles,
Didier/Aimav, 1971.

[33] MORRIS, C. Foundations of a Theory of Signs. Chicago. University of Chicago Press, 1938.

[34] MORTON, J. L. Colour Matters R©—Design Art. In URL http://www.
colormatters.com/colortheory.html, 1995–2002. Accessed 22 October 2004.

[35] NADIN, M. Interface design: A semiotic paradigm. Semiotica 69 (1988), 269–302.

[36] NADIN, M. Semiotics in the Individual Sciences, vol. 2. Bochum: Brockmeyer, 1990,
ch. Design und Semiotics, pp. 418–436.

[37] NASS, C., AND REEVES, B. The Media Equation: How People Treat Computers, Television,
and New Media Like Real People and Places. Cambridge University Press, 1996.

[38] NIELSEN, J., AND MACK, R. L., Eds. Usability Inspection Methods. New York, John
Wiley and Sons, 1994.

[39] NIELSEN, J., AND SANO, D. SunWeb: User Interface Design for Sun Microsystem’s
Internal Web. In Proc. 2nd World Wide Web Conf. ’94: Mosaic and the Web. Chicago,
IL, pp. 547–557. Also available in URL http://archive.ncsa.uiuc.edu/SDG/
IT94/Proceedings/HCI/nielsen/sunweb.ht%m.

[40] ORLIAGUET, J. M. Prolegomenon to a Semiotic of Digital Media. In URL www.ckk.
chalmers.se/people/jmo/semiotics/semiotic_of_digital_media.pdf,
2002. Accessed 5 Sep 2004.

[41] PATTON, J. Extreme Design: Usage-Centered Design in XP and Agile Development.
In forUSE2002: Proceedings of the First International Conference on Usage-Centered, Task-
Centered, and Performance Centered Design (2002), L. Constantine, Ed., Rowley, MA. Am-
persand Press.

[42] PEIRCE, C. Collected Papers of Charles Sanders Peirce, vol. II of Elements of Logic. Harvard
University Press, 1932.

[43] ROBERTSON, G., MCCRACKEN, D., AND NEWELL, A. The zog approach to man-
machine communication. Int. J. Hum.-Comput. Stud. 51, 2 (1999), 279–306.

[44] SALASOO, A. Towards usable icon sets: A case study from telecommunications engi-
neering. In Proceedings of the Human Fatcors Society 34th Annual Meeting (Santa Monica,
CA, 1990), pp. 203–207.

[45] SCANLON, J., AND PERCIVAL, L. UCD for Different Project Types, Part 1: Overview
of Core Design Activities. In URL http://www-106.ibm.com/developerworks/
usability/library/us-ucd/, March 2002. Accessed 21 October 2004.

[46] SCHAFFER, E., AND SORFLATEN, J. Icons: Much Ado about Something. The X Journal
(January/February 1996). Published by SIGS Publications, Inc.

77

[47] SCOLLON, R., AND WONG SCOLLON, S. Discourses in Place: Language in the Material
World. Routledge, 2003.

[48] TOMASELLI, K. Semiotics, Semiology and Film. Communicare 1, 2 (1981), 42–61.

[49] UNDERWOOD, M. J. Introductory models and basic concepts: semiotics. In
URL http://www.cultsock.ndirect.co.uk/MUHome/cshtml/semiomean/
semio1.html. Accessed 19 October 2004.

[50] WIMMER, F. The New User Interface of V9 Graphing Tools: A Usability Case Study.
http://www2.sas.com/proceedings/sugi26/p177-26.pdf. Accessed 25 Aug
2004.

[51] WINDL, H. Designing a Winner: Creating STEP 7 Lite with Usage-Centered Design.
In forUSE2002: Proceedings of the First International Conference on Usage-Centered, Task-
Centered, and Performance Centered Design (2002), L. Constantine, Ed., Rowley, MA. Am-
persand Press.

78

