
Tweaking Unix 107

#38 Ensuring Maximally Compressed Files

As highlighted in Script #37, most Unix implementations include more than one
compression method, but the onus is on the user to figure out which does the
best job of compressing a given file. What typically happens is that users learn
how to work with just one compression program without ever knowing that they
could attain better results with a different one. Making this more confusing is
that some files compress better with one algorithm and some with another, and
there’s no way to know without experimentation.

The logical solution is to have a script that compresses files using each of the
tools and then selects the smallest resultant file as the best. That’s exactly what
bestcompress does. By the way, this is one of my favorite scripts in the book.

The Code

#!/bin/sh

bestcompress - Given a file, tries compressing it with all the available

compression tools and keeps the compressed file that's smallest, reporting

the result to the user. If '-a' isn't specified, bestcompress skips

compressed files in the input stream.

Z="compress" gz="gzip" bz="bzip2"

Zout="/tmp/bestcompress.$$.Z"

gzout="/tmp/bestcompress.$$.gz"

bzout="/tmp/bestcompress.$$.bz"

skipcompressed=1

if ["$1" = "-a"] ; then

 skipcompressed=0 ; shift

fi

if [$# -eq 0]; then

 echo "Usage: $0 [-a] file or files to optimally compress" >&2; exit 1

fi

trap "/bin/rm -f $Zout $gzout $bzout" EXIT

for name

do

 if [! -f "$name"] ; then

 echo "$0: file $name not found. Skipped." >&2

 continue

 fi

 if ["$(echo $name | egrep '(\.Z$|\.gz$|\.bz2$)')" != ""] ; then

 if [$skipcompressed -eq 1] ; then

 echo "Skipped file ${name}: it's already compressed."

 continue

 else

 echo "Warning: Trying to double-compress $name"

 fi

 fi

 $Z < "$name" > $Zout &

 $gz < "$name" > $gzout &

 $bz < "$name" > $bzout &

 wait # run compressions in parallel for speed. Wait until all are done

 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

 case "$smallest" in

 1) echo "No space savings by compressing $name. Left as is."

 ;;

 2) echo Best compression is with compress. File renamed ${name}.Z

 mv $Zout "${name}.Z" ; rm -f "$name"

 ;;

 3) echo Best compression is with gzip. File renamed ${name}.gz

 mv $gzout "${name}.gz" ; rm -f "$name"

 ;;

 4) echo Best compression is with bzip2. File renamed ${name}.bz2

 mv $bzout "${name}.bz2" ; rm -f "$name"

 esac

done

exit 0

Tweaking Unix 109

How It Works

The most interesting line in this script is

 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

This line has ls output the size of each file (the original and the three
compressed files, in a known order), chops out just the file sizes with awk, sorts
these numerically, and ends up with the line number of the smallest resultant
file. If the compressed versions are all bigger than the original file, the result is 1,
and an appropriate message is output. Otherwise, smallest will indicate which of
compress, gzip, or bzip2 did the best job. Then it’s just a matter of moving the
appropriate file into the current directory and removing the original file.

Another technique in this script is worth pointing out:

$Z < "$name" > $Zout &

$gz < "$name" > $gzout &

$bz < "$name" > $bzout &

wait

The three compression calls are done in parallel by using the trailing & to drop
each of them into its own subshell, followed by the call to wait, which stops the
script until all the calls are completed. On a uniprocessor, this might not offer
much performance benefit, but with multiple processors, it should spread the
task out and complete quite a bit faster.

Running the Script

This script should be invoked with a list of filenames to compress. If some of
them are already compressed and you desire to compress them further, use the
-a flag; otherwise they’ll be skipped.

The Results

The best way to demonstrate this script is with a file that needs to be compressed:

$ ls -l alice.txt

-rw-r--r-- 1 taylor staff 154872 Dec 4 2002 alice.txt

The script hides the process of compressing the file with each of the three
compression tools and instead simply displays the results:

$ bestcompress alice.txt

Best compression is with compress. File renamed alice.txt.Z

You can see that the file is now quite a bit shorter:

$ ls -l alice.txt.Z

-rw-r--r-- 1 taylor wheel 66287 Jul 7 17:31 alice.txt.Z

