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Foreword

Webots is a three-dimensional mobile robot simulator. It was originally developed as a research
tool for investigating various control algorithms in mobile robotics.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics, in C, C++ or Java programming and in VRML97 (Virtual
Reality Modeling Language).

Webots 5 features a new layout of the user interface with many facilities integrated, like a source
code editor.

If you have already worked with Webots 4, your existing world files and programs do not need
to be modified for use with Webots 5.

We hope that you will enjoy working with Webots 5.
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Chapter 1

Installing Webots

1.1 Hardware requirements

Webots is available for Linux i386, Mac OS X and Windows. Other versions of Webots for other
UNIX systems (Solaris, Linux PPC, Irix) may be available upon request.

OpenGL hardware acceleration is supported on Windows, Mac OS X and in some Linux config-
urations. It may also be available on other UNIX systems.

1.2 Installation procedure

To install Webots, you must follow the instructions corresponding to your computer / operating
system listed below:

1.2.1 RedHat Linux i386

Webots will run on RedHat Linux distributions, starting from RedHat 9.0. Webots may run on
other Linux distributions. For example, it can be easily installed on Debian Linux, using the
alien command to translate thpm package into @eb package before installation. If you do
use Red Hat Linux, please refer to your Linux distribution documentation to get the Welvots
package installed.

1. Log on asoot

2. Insert the Webots CD-ROM, mount it (this might be automatic) and install the following
packages

15
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mount /mnt/cdrom

cd /mnt/cdrom/linux

rpm -Uvh lib/mjpegtools-1.6.2-1.i386.rpm

# mijpegtools is useful to create MPEG movies from simulations
rpm -Uvh webots/webots-5.0.10-1.i386.rpm

rom -Uvh webots/webots-kros-1.1.0-1.i386.rpm

# webots-kros is useful only if you want to cross-compile

# controllers for the Khepera robot

You may need to use thenodeps or the--force if rpm fails to install the packages.

1.2.2 Windows XP

1.

o g > w N

In order to be able to compile controllers, you will need to install a C/C++ development envi-
ronment. We recommend to use Dev-C++ which is provided on the Webots CD-ROM (in the
windows/utils
grated development environment (IDE) for C/C++ with syntax highlighting running on Windows.
It includes the MinGW distribution with the GNU GCC compiler and utilities. This software is

Uninstall any previous release of Webots or Webots-kros, if any, fronstie menu,
Control Panel , Add / Remove Programs . or from theStart menu,Cyberbotics , Uninstall
Webots Or Uninstall Webots-kros .

Insert the Webots CD-ROM and open it.

Go to thewindows \webots directory on the CD-ROM.
Double click on thevebots-5.0.10 _setup.exe file.
Follow the installation instructions.

Optionally, double click on theebots-kros-1.1.0 _setup.exe file toinstall the cross-
compiler for the Khepera robots.

directory) as well as from the Bloodshed[feteb site. Dev-C++ is an inte-

distributed under the terms of the GNU public license and hence is free of charge.

You may also choose to use Microsoft Visual C¥+if you own a license of this software.

1.2.3 Mac OS X, version 10.3

1.

2.

Insert the Webots CD-ROM and open it.

Go to themac:webots directory on the CD-ROM.

http://www.bloodshed.net
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3. Double click on thevebots-5.0.10.dmg  file.

4. This will mount on the desktop a volume naméfbots containing thewebots folder.
Move this folder to your applications directory or wherever you would like to install We-
bots.

5. SettheWEBOTSHOMENvironment variable to point to thvéebots directory. This is useful
to be able to compile the robot controllers using the providedtefiles

In order to be able to compile controllers, you will need to install the Apple Mac OS X De-
veloper tools, included in the Mac OS X installation CD-ROMs. File editing and compilation
using Webots Makefiles can be achieved through these Apple tools. You will probably use the
Project Builder application to edit the source codes of the Webots controllers and the Terminal
application for invoking make from the directory in which your controller gets compiled.

If you would like to be able to create MPEG movies from your Webots simulations, you will
have to install the mjpegtools package. This package is located Iimdladib directory of

the CD-ROM. Install it from th@pegtools-1.6.2.tar.gz tar ball. After installation, you
should be able to cathpeg2enc from the command line.

The CodeWarridM™ development environment is not supported for the development of con-
trollers (although it may also work).

1.3 Registration Procedure

1.3.1 Webots license

Starting with Webots 5, a new license system has been introduced to facilitate the use of Webots.

When installing Webots, you will get a license file, calleebots.key , containing your name,
address, serial number and computer ID. This encrypted file will enable you to use Webots ac-
cording to the license you purchased. This file is strictly personal: you are not allowed to provide
copies of it to any third party in any way, including publishing that file on any Internet server
(web, ftp, or any other server). Any copy of your license file is under your responsibility. If a
copy of your license file is used by an unauthorized third party to run Webots, then Cyberbotics
may engage legal procedures against you. Webots licenses are (1) non-transferable and (2) non-
exclusive. This means that (1) you cannot sell or give your Webots license to any third party, and
(2) Cyberbotics and its official Webots resellers may sell or give Webots licenses to third parties.

If you need further information about license issues, please send an e-mail to:
<license@cyberbotics.com >

Please read your license agreement carefully before registering. This license is provided within
the software package. By using the software and documentation, you agree to abide by all the
provisions of this license.
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1.3.2 Registering

After installing Webots, you will need to register your copy of Webots to get a license file called
webots.key allowing you to use all the features of Webots corresponding to the license you
purchased.

Regularwebots.key license files are tied to a specific computer, making it impossible to use
Webots on another computer. However, if for some reason, you would like to move your Webots
license from a computer to another, just send us an e-maila@&nse@cyberbotics.com >

to explain the problem. If you plan to use several Webots licenses over a large number of com-
puters, you should probably ask us to use the floating license server (see below for details).
Otherwise, you can jump to the simple registration subsection.

Floating license server: Iserv

If you purchased a Webots license including a floating license server (either Webots PRO with
floating license or Webots EDU), you will be able to install the floating license server for Webots.
This software, calletserv , allows you to run Webots concurrently on several machines defined

by their IP addresses (or their names). Hence Webots is not tied to a predefined number of
machines but can be run on an unlimited number of computers. However, the license server takes
care that the number of computers running Webots simultaneously doesn’t exceed the maximum
allowed by the license fildserv  should be installed on a server machine, i.e., a computer that

is on when users are supposed to run Webots.

Currently,Iserv  only runs on the Linux and Solaris operating systems. However, it allows We-
bots execution on Linux, Windows and Mac OS X machines. You need to provide Cyberbotics
with the MAC address of theth0 network card of the server machine runnisgrv  so that

a specialwebots.key license file can be created and will be sent to you. To know this MAC
address on a Linux machine, simply issfeenfig eth0 asroot and read theiwaddr pa-
rameter. It looks like00:50:04:1E:0E:38 . Then, you will need to configure the server and
clients to setup the floating license server for your local network.

Iserv is available for Webots PRO and Webots EDU only upon request to your local Webots
reseller.

Please follow the simple registration procedure to provide Cyberbotics with all the information
necessary to create thvebots.key license file forilserv . The computer ID provided should
be the MAC address of your Linux server on whisérv  will be running.

Online form

In order to proceed, launch Webots on the computer on which you would like to install the license
file. Go theRegister menu item of thedelp menu of Webots and follow the instructions. If this
computer is connected to the Internet, everything will run smoothly, fill in the requested form
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and you will shortly receive theebots.key license file via e-mail. Otherwise, you will have
tofill ina fornﬂ on the website of Cyberbotics). You will then receive an e-mail containing the
webots.key file corresponding to your license.

Please take care to properly fill in each required field of this form. S&eal Numbeiis the
serial number of your Webots package which is printed the CD-ROM under the hetngy
was communicated to you by e-mail. T@emputerID is given by Webots in thRegister menu
item of theHelp menu.

After completing this form, click on theubmit button. You will receive shortly thereafter an
e-mail containing your personal license filebots.key  which is needed to install a registered
copy of Webots as described below.

Copying the license file

Once you received it by e-mail, just copy thebots.key license file into theresources
directory of your Webots installation.

Under Linux, copy your personakebots.key file into the/usr/local/webots/resources
directory where Webots was just installed.

Under Mac OS X, copy your personatbots.key file into theWebots:resources  directory
where Webots was just installed.

Under Windows, copy your personaébots.key file into the directory where Webots was just
installed, which is usuallg: \Program Files \Webots \resources

2http://www.cyberbotics.com/registration/webots
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Chapter 2

Getting Started with Webots

To run a simulation in Webots, you need three things:

This chapter gives an overview of the basics of Webots, including the display of the world in the
main window and the structure of thebt file appearing in the scene tree window.

Robot and Supervisor controllers will be explained in detail in chapter 4.

2.1 Introduction to Webots

2.1.1 Whatis Webots ?

Webots is a professional mobile robot simulation software. It contains a rapid prototyping tool
allowing the user to create 3D virtual worlds with physics properties, such as mass repartition,
joints, friction coefficients, etc. The user can add simple inert objects or active objects called
mobile robots. These robots can have different locomotion schemes (wheeled robots, legged
robots or flying robots). Moreover, they be equipped with a number of sensor and actuator
devices, like distance sensors, motor wheels, cameras, servos, touch sensors, grippers, emitters,
receivers, etc. Finally the user can program each robot individually to exhibit a desired behavior.

Webots contains a large number of robot models and controller program examples that help the
users get started.

Webots also contains a number of interfaces to real mobiles robots, so that once your simulated
robot behaves as expected, you can transfer its control program to a real robot like Khepera,
Hemisson, LEGO Mindstorms, Aibo, etc.

2.1.2 What can | do with Webots ?

Webots is well suited for research and education projects related to mobile robotics. Many mobile
robotics projects have been relying on Webots for years in the following areas:

21
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e Mobile robot prototyping (academic research, automotive industry, aeronautics, vaccum
cleaner industry, toy industry, hobbyism, etc.)

e Multi-agent research (swarm intelligence, collaborative mobile robots groups, etc.)

e Adaptive behavior research (Genetic evolution, neural networks, adaptive learning, Al,
etc.).

e Mobile robotics teaching (robotics lectures, C/C++/Java programming lectures, robotics
contest, etc.)

2.1.3 What do | need to use Webots ?

To use Webots, you will need the following hardware:

e Afairly recent PC or Macintosh computer. We recommand at least a Pentium or PowerPC
CPU cadenced at 500Mhz. Webots works fine on desktop as well as laptop computers.

e A 3D capable graphics card, with at least 16MB RAM video memory. We recommand
nVidia graphics card for PC/Linux users. ATI graphics card are also well suited for Mi-
crosoft Windows and Apple Mac OS operating systems.

The following operating system are supported:

e Linux. Although only RedHat Linux is officially supported, Webots is known to run on
most major Linux distribution, including Mandrake, Debian, SUSE, Slackware, etc. We
recommand however to use a fairly recent recent version of Linux. Webots is provided as
anRPMpackage, as well asBEBpackage.

e Windows. Webots runs under Windows 2000, XP and 2003. It doesn’t run on Windows
98, ME or NT4.

e Mac OS X. Version 10.3 of Mac OS X or ealier is highly recommanded, as Webots hasn’t
been tested on older versions of Mac OS X and may not work as expected on such old
versions.

Usually, you will need to be administrator to be able to install Webots. Once installed, Webots
can be used as a regular unpriviliged user.

Although no special knowledge is needed to simply view the demos of robot simulations in
Webots, you will need a minimal amount of scientifical and technical knowledge to be able to
develop your own simulations:
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¢ A basic knowledge of C, C++ or Java programming languages is necessary to program
your own robot controllers efficiently. However, even if you don’t know these languages,
you can still program the Hemisson robot using a simple graphical programming language
called BotStudio.

¢ If you don’t want to use existing robot models provided within Webots and would like
to create your own robot models, or add special objects in the simulated environments,
you will need some very basic knowledge of 3D computer graphics and VRML97 3D
description language. That will allow you to create 3D models in Webots or import them
from a 3D modelling software.

2.1.4 Whatis aworld ?

A world in Webots is a 3D virtual environment in which you can create objects and robots. A
world is saved in thevorlds directory, in awbt file which contains a description for any object:

Its position, orientation, geometry, appearance (like color, brightness), physical properties, type
of object, etc. A world is a hierarchical structure where objects can contain other objects (like
in VRML97). For example a robot can contain two wheels, a distance sensor and a servo which
itself contains a camera, thus making the camera moveable relatively to the robot thanks to the
servo. However, a world file does not contain all the information necessary to run a simulation.
The controller of each robot is specified in the world file by a reference to an executable binary
file, but the world file doesn’t contain this executable binary file.

2.1.5 Whatis a controller ?

A controller is an executable binary file which is used to control a robot described in a world file.
Controllers are stored in subdirectories of the Welootsrollers directory. Controllers may
be native executables filegxe under Windows) or Java binary fileslass ).

2.2 Launching Webots

2.2.1 On Linux

From an X terminal, typevebots to launch the simulator. You should see the world window
appear on the screen (see figurg 2.1).

Webots can also run in batch mode, that is without displaying any window. This is useful to

launch simulations from scripts to perform extensive simulations with differents sets of param-

eters and save results automatically from a supervisor or robot controller process. To launch
Webots in batch mode, simply typebots --batch filename.wbt where filename.wbt is
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the name of the world file you want to use. Webots will then be launched in batch mode: The
speed of execution should correspond to the fast mode.

2.2.2 On Mac OS X

Open the directory in which you uncompressed the Webots package and double-click on the
Webots icon. You should see the world window appear on the screen (seg figure 2.1).

2.2.3 On Windows

From theStart menu, go to th@rogram Files — Cyberbotics menu and click on the/ebots 5.0.10
menu item. You should see the world window appear on the screen (seg figure 2.1).

2.3 Main Window: Menus and buttons

The main window allows you to display your virtual worlds and robots described imtite
file. Four menus and a number of buttons are available.
2.3.1 Frile menu and shortcuts

TheNew menu item opens a new default world representing a chessboard of 10 x 10 plates on a
surface of 1 m x 1 m. The following button can be used as a shortcut:

m:

TheFile menu will also allow you to perform the standard file operatiansn..., Save andSave
As..., respectively, to load, save and save with a new name the current world.

New

The following buttons can be used as shortcuts:

Open...

Save
TheRevert item allows you to reload the most recently saved version of yetr file.
The following button can be used as a shortcut:

0

“* | Revert
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Figure 2.1: Webots main window

The Export VRML 2.0... item allows you to save thevbt file as a.wrl file, conforming to
the VRML97 standard. Such a file can, in turn, be opened with any VRML97 viewer. This is
especially useful for publishing a world created with Webots on the Web.

The Make Animation... item allows you to create a 3D animation as a WVA file. This file format
is useful to playback Webots animations in real 3D, including navigation facilities. The WVA
viewer is called Webview. It is a freely available software downloadable from Cyberbotics’
Webview web si@ It can run as a plugin for Internet Explorer, Netscape or Mozilla, but also as
a stand alone application. Webview works on Windows, Linux and Mac OS X. It is well suited
to demonstrate Webots results, possibly on the Internet World Wide Web.

The Make Movie... item allows you to create a MPEG movie under Linux and Mac OS X or an
AVI movie under Windows. As movies are created on a 25 frame per second basis, you should

Ihttp://www.cyberbotics.com/webview
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adapt thebasicTimeStep  and thedisplayRefresh fields of theworldinfo  node in the

scene tree window to obtain a movie running at real time. Leaving the basic time step to 32
ms and setting the display refresh each 1 basic simulation step should produce movies running
slightly faster than real time. If you need exact real time, set the basic time step to 25 ms (it
might then be optimal to adapt your controllersbot _step functions using a multiple value

of 25, like 50, 75 or 100). It is also possible to make accelerated movies by setting the display
refresh each 2 (or more) basic time step while leaving the basic time step to its original value (32
or 25).

TheScreenshot... item allows you to take a screenshot of the current view in Webots. It opens a
file dialog to save the current view as a PNG image.

2.3.2 Edit menu

The Scene Tree Window menu item opens the window in which you can edit the world and the
robot(s). A shortcut is available by double-clicking on a solid in the world. A solid is a physical
object in the world.

The Import VRML 2.0... menu item inserts VRML97 objects at the end of the scene tree. These
objects come from a VRML97 file you will have to specify. This feature is useful to import
complex shapes that were modeled in a 3D modelling software, then exported to VRML97 (or
VRML 2.0), and then imported into Webots with this menu item. Most 3D modelling soft-
ware, like 3D Studio Max, Maya, AutoCAD, Pro Engineer, AC3D or Art Of Illusion, include
the VRML97 (or VRML 2.0) export feature. Beware, Webots cannot import VRML 1.0 file
format. Once imported, these objects appeatm@asip , Transform or Shape nodes at the bot-

tom of the scene tree. You can then either turn these objects into Webots nodellike
DifferentialWheels , etc.) or cut and paste them into ttigldren  list of existing Webots
nodes.

TheRestore Viewpoint menu item resets the camera position and orientation as it was originally
when the file was open. This feature is handy when you get lost while navigating in the scene
and want to return to the original camera position and orientation.

ThePreferences item pops up a window with the following panels:

e General: TheStartup mode allows you to choose the state of the simulation when We-
bots is launched (stop, run, fast; see sitaulation menu).
e Rendering : This tab controls the 3D rendering in the simulation window.

Checking theDisplay axes check box displays a red, green and blue axes representing
respectively the x, y and z axes of the world coordinate system.

Checking theDisplay sensor rays check box displays the distance sensor rays of the
robot(s) as red lines.

Checking thebisplay lights check box displays the light®¢intLight  in the world
so that they can be moved more accurately).
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e Files and paths : The user directory and the defaultbt world which is open when
launching Webots are defined here. The user directory should contain at leasdsa ,
controllers , physics , andobjects subdirectories where Webots will be looking for
files. A complete user directory can be created easily fronséae user directory menu
item in thewizard menu

2.3.3 simulaton menu and the simulation buttons

In order to run a simulation a number of buttons are available corresponding to menu items found
under theSimulation menu:

|
_—Istop: InterruptRun or Fast modes.

t Step: Execute one basic time step of simulation. The duration of such a step is defined in
thebasicTimeStep field of theWorldinfo node and can be adjusted in the scene tree window
to suit your needs.

ﬂ Run: Execute simulation steps until tisep mode is entered. In run mode, the 3D display
of the scene is refreshed every n basic time step, where n is defineddispleyRefresh
field of theworldinfo  node.

m Fast: Same a®Run, except that no display is performed (Webots PRO only). only.

The Fast mode performs a very fast simulation mode suited for heavy computation (genetic
algorithms, vision, learning, etc.). However, as the world display is disabled durag aimu-
lation, the scene in the world window remains blank untilkhe mode is stopped. This feature

is available only with Webots PRO.

Theworld View / Robot View item allows you to switch between two different points of view:

e World View : This view corresponds to a fixed camera standing in the world.

e Robot View : This view corresponds to a mobile camera following a robot.

The default view is the world view. If you want to switch to tRebot View , first select the robot
you want to follow (click on the pointer button then on the robot), and then chrRase View
in the Simulation menu. To return to thevorld View mode, reselect this item.

A speedometer (see figyre P.2) allows you to observe the speed of the simulation on your com-
puter. Itis displayed in the bottom right hand side of the main window and indicates how fast the

simulation runs compared to real time. In other words, it represents the speed of the virtual time.
If the value of the speedometer is 2, it means that your computer simulation is running twice as
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Figure 2.2: Speedometer

fast as the corresponding real robots would. This information is relevant beimimode and
Fast mode.

To the left of the speedometer, the virtual time is displayed using the following fokmslM:SS:MMM
whereH is the number of hours (may lie on several digitg)yl is the number of minute$S

is the number of seconds amdMM is the number of milliseconds. (see figyre]|2.2). If the
speedometer value is higher than one, the virtual time will be progressing faster than the real
time. This information is relevant both Run mode and-ast mode.

The basic time step for simulation can be set intithsciTimeStep  field of the Worldinfo

node in the scene tree window. It is expressed in virtual time milliseconds. The value of this time
step defines the duration of the time step executed duringttpemode. This step is multipli-
cated by thelisplayRefresh field of the sameavorldinfo  node to define how frequently the
display is refreshed.

In Run mode, with a time step of 64 ms and a fairly simple world displayed with the default
window size, the speedometer will typically indicate approximately 0.5 on a Pentium Il / 266
Mhz without hardware acceleration and 12 on a Pentium Ill / 500 Mhz with an nVidia Geforce
Il MX graphics card.

2.3.4 wizard menu

Thewizard menu is useful to facilitate the creation of a new user directory (fronséhe user
directory menu item) or the creation of a new robot controller (from K& robot controller
menu item).

The Setup user directory menu item will ask you to choose a name for your user directory. A
user directory is a directory that will contain all the files you will create while using Webots,
including world file, controller files, object files, physics shared libraries, etc. Once you chose
a name for this user directory, you will be asked to choose a location on your hard disk where
to store it. Then, Webots will create this directory at the specified location and it will create all
the subdirectories and files needed. Finally, it will set this directory as the current user directory
in the Webots preferences. From there, you will be able to save all your Webots files in the
subdirectories of this user directory (world files, controllers, etc.).

TheNew robot controller menu item allows you to create a new controller program for your robot.
You will be prompted to choose between a C, C++ or a Java controller. Then, Webots will ask
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you the name of your controller and it will create all the necessary files (including a template
source code file) in your user directory.

2.3.5 Help menu

In the Help menu, theabout... item opens thébout...  window, displaying the license infor-
mation.

The Introduction item is a short introduction to Webots (HTML file). You can access the User
Guide and the Reference Manual with theer Guide andReference Manual items (PDF files).
TheWweb site of Cyberbotics  item lets you visit our Web site.

2.3.6 Navigation in the scene

The view of the scene is generated by a virtual camera set in a given position and orientation.
You can change this position and orientation to navigate in the scene using the mouse buttons.
Thex, y, zaxes mentioned below correspond to the coordinate system of the cansdfee axis
corresponding to the direction of the camera.

e Rotate viewpointTo rotate the camera around thandy axis, you have to set the mouse
pointer in the 3D scene, press the left mouse button and drag the mouse:

if you clicked on a solid object, the rotation will be centered around the origin of the local
coordinate system of this object.

if you clicked outside of any solid object, the rotation will be centered around the origin of
the world coordinate system.

e Translate viewpointTo translate the camera in tkeandy directions, you have to set the
mouse pointer in the 3D scene, press the right mouse button and drag the mouse.
e Zoom / Tilt viewpointSet the mouse pointer in the 3D scene, then:

if you press both left and right mouse buttons (or the middle button) and drag the mouse
vertically, the camera will zoom in or out.

if you press both left and right mouse buttons (or the middle button) and drag the mouse
horizontally, the camera will rotate around #axis (tilt movement).

if you use the wheel of the mouse, the camera will zoom in or out.

2.3.7 Moving a solid object

In order to move an object, hold the shift key down while using the mouse.
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e Translation: Pressing the left mouse button while the shift key is pressed allows you to
drag solid objects on the grounxiz(plan).

e Rotation: Pressing the right mouse button while the shift key is pressed rotates solid ob-
jects: A first click is necessary to select a solid object, then a second shift-press-and-drag
rotates the selected object aroundyisxis.

e Lift: Pressing both left and right mouse buttons, the middle mouse button, or rolling the
mouse wheel while the shift key is pressed allows you to lift up or down the selected solid
object.

2.3.8 Selecting a solid object

Simply clicking on a solid object allows you to select this object. Selecting a robot enables the
choice ofRobot View in thesimulaton menu. Double-clicking on a solid object opens the scene
tree window where the world and robots can be edited. The selected solid object appears selected
in the scene tree window as well.

2.4 Scene Tree Window

As seen in the previous section, to access to the Scene Tree Window you can eithescaaose
Tree Window in the Edit menu, or click on the pointer button and double-click on a solid object.

The scene tree contains all information necessary to describe the graphic representation and sim-
ulation of the 3D world. A world in Webots includes one or more robots and their environment.

The scene tree of Webots is structured like a VRML97 file. It is composed of a list of nodes,
each containing fields. Fields can contain values (text string, numerical values) or nodes.

Some nodes in Webots are VRML97 nodes, partially or totally implemented, while others are
specific to Webots. For instance thelid node inherits from th&ransform node of VRML97
and can be selected and moved with the buttons in the World Window.

This section describes the buttons of the Scene Tree Window, the VRML97 nodes, the Webots
specific nodes and how to writewabt file in a text editor.

2.4.1 Buttons of the Scene Tree Window

The scene tree with the list of nodes appears on the left side of the window. Clicking eimthe
front of a node or double-clicking on the node displays the fields inside the node, and similarly
expands the fields. The field values can be defined on the top right side of the window. Five
editing buttons are available on the bottom right side of the window:
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Figure 2.3: Scene Tree Window

S

Cut

Copy

Paste after

These three buttons let you cut, copy and paste nodes and fields. However, you can’t perform
these operations on the first three nodes of the WeeldInfo, Viewpoint andBackground ).

These nodes are mandatory and cannot be duplicated. Similarly, you can’t cQupénesor

node because only one supervisor is allowed. Please note that when you cut or copy a robot node,
like aDifferentialWheels or Supervisor  node, thecontroller field of this node is reset

to "void"

X Delete: This button allows you to delete a node. It appears only if a node is selected. If a
field is selected, theefault Value button appears instead.

+
* | Default Value : You can click on this button to reset a field to its default value(s). A field
with values must be selected in order to perform this button. If a node is selectenkldtee

button replaces it.



32 CHAPTER 2. GETTING STARTED WITH WEBOTS

fg Transform : This button allows you to transform a node into another one.

ﬁ*" Insert after : With this button, you can insert a node after the one currently selected. This
new node contains fields with default values, which you can of course modify to suit your needs.
This button also allows you to add a node tohéidren  field. In all cases, the software only
permits you to insert a coherent node.

ﬁ"' Insert Node : Use this to insert a node into a field whose value is a node. You can insert
only a coherent node.

Export Node : Use this button to export a node into a file. Usually, nodes are saved in your
objects directory. Such saved nodes can then be reused in other worlds.

Import Node : Use this button to import a previously saved node into the scene tree. Usually,
saved nodes are located in the Wehalifects  directory or in your owrpbjects  directory.
The Webotobjects  directory already contains a few nodes that can be easily imported.

2.4.2 VRML97 nodes

A number of VRML97 nodes are partially or completely supported in Webots.

The exact features of VRML97 are the subject of a standard managed by the International Stan-
dards Organization (ISO/IEC 14772-1:1997).

You can find the complete specifications of VRML97 on|the official VRML97 Welﬂsite
The following VRML97 nodes are supported in Webots:

e Appearance

Background
e Box

Color

e Cone

Coordinate

Cylinder

2http://www.web3d.org
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o DirectionalLight
e ElevationGrid

e Fog

e Group

e ImageTexture

¢ IndexedFaceSet
e IndexedLineSet
e Material

e PointLight

e Shape

e Sphere

e Switch

e TextureCoordinate
e TextureTransform
e Transform

e Viewpoint

o WorldInfo

The Webots Reference Manual gives a list of nodes supported in Webots and specify which fields
are actually used. For a comprehensive description of the VRML97 nodes, please refer to the
VRML97 documentation.

2.4.3 Webots specific nodes

In order to implement powerful simulations including mobile robots with different propulsion
schemes (wheeled robots, legged robots or flying robots), a number of nodes specific to Webots
have been added to the VRML97 set of nodes.

VRML97 uses a hierarchical structure for nodes. For exampleTithesform node inherits
from the Group node, such that, like th€roup node, theTransform node has ahildren
field, but it also adds three additional fieldsinslation , rotation  andscale .
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In the same way, Webots introduces new nodes which inherit from the VRMt&&form
node, principally theSolid node. Other Webots nodeBifferentialWheels , Camera,
TouchSensor , etc.) inherit from thisSolid node.

The Reference Manual gives a complete description of all Webots nodes and their respective
fields.

2.4.4 Principle of the collision detection

The collision detection engine is able to detect a collision betweesblidd nodes. It calculates

the intersection between the bounding objects of the solids. A bounding object (described in the
boundingObject  field of theSolid node) is a geometric shape or a group of geometric shapes
which bounds the solid. If theoundingObject  field is NULL, then no collision detection is
performed for thisSolid node. ASolid node may contain othe3olid nodes aghildren

each of them having its own bounding object.

The collision detection is mainly used to detect if a robot (for exampl&erentialWheels
node) collides with an obstacl8¢lid node), or with another robot. Tw&olid nodes can never
inter-penetrate each other; their movement is stopped just before the collision.

Example: A solid with a bounding box different from its list of children.

Let us consider the Khepera robot model. It is not exac8glal node, but the principle for the
boundingObject  is the same. Open thnepera.wbt file and look at théoundingObject

field of the DifferentialWheels node. The bounding object is a cylinder which has been
transformed. See figufe 2.4.

2.4.5 Writing a Webots file in a text editor

It is possible to write a Webots world filewpt ) using a text editor. A world file contains a
header, nodes containing fields and values. Note that only a few VRML97 nodes are imple-
mented, and that there are nodes specific to Webots. Moreover, comments can only be written in
the DEF, and not like in a VRML97 file.

The Webots header is:
#VRML_SIM V4.0 utf8

After this header, you can directly write your nodes. The three nadeklinfo , Viewpoint
andBackground are mandatory.

Note: We recommend that you write your file using the tree editor. However it may be easier to
make some particular modifications using a text editor (like using the search and replace feature
of a text editor).
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Figure 2.4: The bounding box of the Khepera robot
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2.5 Citing Webots

When writing a scientific paper, or describing your project involving Webots on a web site, it is
always appreciated to make a correct reference to Webots, mentionning Cyberbotics’ web site
explicitely and a reference journal paper describing Webots. In order to help you in such a task,
we provide here some citation examples, including BibTex entries that you can freely reuse in
your own documents:

2.5.1 Citing Cyberbotics’ web site

This project usesWebotEL a commercial mobile robot simulation software developed by Cyber-
botics Ltd.

This project uses Webots (http://www.cyberbotics.com), a commercial mobile robot simulation
software developed by Cyberbotics Ltd.

The BibTex reference entry may look odd, as it is very different from a standard paper citation
and we want the specified fields to appear in the normal plain citation mode of LaTeX.

@MISC{Webots,

Shttp://www.cyberbotics.com
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AUTHOR = {Webots},
TITLE = {http://www.cyberbotics.com},

NOTE = {Commercial Mobile Robot Simulation Software},
EDITOR = {Cyberbotics Ltd.},
URL = {http://www.cyberbotics.com}

Once compiled with LaTeX, it should display as follow:
References

[1] Webots. http://www.cyberbotics.com. Commercial Mobile Robot Simulation Software.

2.5.2 Citing a reference journal paper about Webots

A reference paper was published in the International Journal of Advanced Robotics Systems.
Here is the BibTex entry:

@ARTICLE{Webots04,
AUTHOR = {Michel, O.},

TITLE = {Webots: Professional Mobile Robot Simulation},

JOURNAL = {Journal of Advanced Robotics Systems},

YEAR = {2004},

VOLUME = {1},

NUMBER = {1},

PAGES = {39--42},

URL = {http://www.ars-journal.com/ars/SubscriberArea/Volume1/39-42.pdf}



Chapter 3

Tutorial: Modeling and simulating your
robot

The aim of this chapter is to give you several examples of robots, worlds and controllers. The first
world is very simple, nevertheless it introduces the construction of any basic robot, and explains
how to program a controller. The second example shows you how to model and use a camera on
this simple robot. The third example will add physics to the robot and world, so that the robot can
play with a ball. Finally, the last example will show you how to build a virtual Pioné¥r&ot

from ActivMedia Robotics.

3.1 My first world: kiki.wbt

As afirst introduction, we are going to simulate a very simple robot made up of a box, two wheels
and two infra-red sensors (see fig{ire]3.1). The robot is controlled by a program performing
obstacle avoidance inspired from Braitenberg’s algorithm. It evolves in a simple environment
surrounded by a walll.

3.1.1 Setup

Before starting, please check that Webots was installed properly on your computer (refer to the
installation chapter of this manuel). Then, you will have to setup a working directory that will
contain the files your will create in this tutorial. To do so, create a directory caljegebots in

your local directory. Then, create a couple of subdirectories caields andcontrollers

The first one will contain the simlation worlds you will create, while the second one will contain
your programs controlling the simulated robots. If you are ugictg as a compiler, you may

also need to copy thslakefile.include file from the Webotsontrollers directory in

your localcontrollers directory. To start up with this tutorial, simply copy tkiki.wbt

worlds from the Webotsvorlds directory to your localvorlds directory. You will also have

37
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Figure 3.1: Thekiki robot

to copy thekiki subdirectory which contains théki.ong  image. Finally, copy theimple
directory from the Webotsontrollers directory to your locatontrollers directory. Now

you should inform Webots that your working directory is there. To do it, launch Webots and
open thePreferences... from theEdit menu. Select theiles and paths tab and select your local
my.webots directory as theJser directory . You can also set thiekiwbt  world as the default
world. Then quit Webots, so that the preferences are saved. When you will restart it, it will run
the kiki world.

3.1.2 Environment

This very first simulated world is as simple as possible. It includes a floor and a surrounding
wall to avoid that the robot escapes. This wall is modelled usingarusion node. The
coordinates of the wall are shown in figlire|3.2.

First, launch Webots and stop the current running simulation by pressirgydfhéutton. Go

to theFile menu,New item to create a new world. This can also by achieved througivétve
button, or the keyboard shortcut indicated in tiie menu. Then open the scene tree window
from theScene Tree... item in theEdit menu. This can also be achieved by double-clicking in the
3D world. Let us start by changing the lighting of the scene:

1. Select thePointLight ~ node, and click on the + just in front of it. You can now see the
different fields of thePointLight ~ node. Selecambientintensity and enter 0.6 as a
value, then seledhtensity and enter 0.8, then seldotation  and enter 0.5 0.5 0.5
as values. Pregsturn

2. Select thePointLight  node, copy and paste it. Open this nkaintLight  node and
type -0.5 0.5 0.5 in thivcation  field.
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Figure 3.2: Thekiki world

3. Repeat this paste operation twice again with -0.5 0.5 -0.5 irodegion  field of the
third PointLight  node, and 0.5 0.5 -0.5 in tHecation  field of the fourth and last
PointLight  node.

4. The scene is now better lit. Open theferences... from theEdit menu, select thrRender-
ing tab and check theisplay lights option. Click on theok button to leave the preferences
and check that the light sources are now visible in the scene. Try the different mouse
buttons, including the mouse wheel if any, and drag the mouse in the scene to navigate
and observe the location of the light sources. If you need more explanations with the 3D
navigation in the world, go to thigelp menu and select thaow do | navigate in 3D ? item.

Secondly, let us create the wall:

1. Select the lastransform node in the scene tree window (which is the floor) and click on
theinsert after button.

2. Choose &olid node.
3. Open this newly created Solid node from the + sign and type "wall” in its nhame field.

4. Select thechildren  field andinsert after a Shape node.
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. Open thisShape, select itsapperance field and create aAppearance node from the

New node button. Use the same technique to creatdagerial node in thematerial
field of the Appearance node. Select thdiffuseColor field of theMaterial node
and choose a color to define the color of the wall. Let us make it dark green.

. Now create arextrusion  node in thegeometry field of theShape.

. Settheconvex field toFALSE Then, setthe wall corner coordinates in thessSection

field as shown in figure 3.2. You will have to re-enter the first point (0) at the last position
(10) to complete the last face of the extrusion.

. In thespine field, write that the wall ranges between 0 and 0.1 along the Y axis (instead

of the 0 and 1 default values).

. As we want to prevent our robot to pass through the walls like a ghost, we have to define

the boundingObject  field of the wall. Bounding objects cannot use complex geometry
objects. They are limited to box, cylinder and spheres primitives. Hence, we will have
to create four boxes (representing the four walls) to define the bounding object of the
surrouding wall. Select thieoundingObject  field of the wall and create @roup node

that will contain the four walls. In thiSroup, insert aTransform node as &hildren

Create aShape as the uniquehildren  of the Transform . Instead of creating a new
Appearance for this Shape, reuse the firsAppearance you created (for the wall). To

do so, go back to thehildren list of the wall Solid , open theShape, click on the
Appearance node and you will see on the right hand side of the window that you can enter
a DEF name. Write WALLAPPEARANCE as a DEF name and return to 8tepe of

the bounding object. Select isppearance field and create 8lew node for it. However,

in the Create a new node dialog, you will now be able to use the WALAPPEARANCE

you just defined. Select this item and cliok. Now create @ox as ageometry for this
Shape node. Set thaize of theBox to [ 1 0.1 0.01 ], so that it matches the size of a
wall. Set thetranslation field of theTransform node to [ 0 0.05 0.495 ], so that it
matches the position of a wall. Now, close tihiransform , copy and paste it as the second
children  of the list. Set tharanslation field of the new node to [ 0 0.05 -0.495 ],

so that it matches the opposite wall. Repeat this operation with the two remaining walls
and set theirotation  fields to [ 0 1 0 1.57 ] so that they match the orientation of the
corresponding walls. You also have to edit thteanslation field as well, so that they
match the position of the corresponding walls.

10. Close the tree editor, save your file as "tkiki.wbt” and look at the result.

The wall in the tree editor is represented in figurg 3.3, while the same wall in the world editor is
visible in figure 3.4
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@ Transform Solid
=@
@ translation 000
@ rotation 0100
@scale 111
=1 children
=@ Shape
@ appearance Appearance
@ geometry DEF WALL Extrusion
@ bboxCenter0 0 0
@ bboxSize -1 -1 -1
@ name "Wall"
@ model "
@ author "
& constructar ™
@ description ™"
(=} boundingObject Group
=@ children
@ Transform
@ Transform
@ Transform
@ Transform
@ bhoxCenter 00 0
@ bhoxsize -1-1 -1
@ physics NULL
@& joint NULL

DEF |"WaALL

& locked FALSE [l
. -
Figure 3.3: The wall in the tree editor
3.1.3 Robot
This subsection describes how to model kiil@ robot as aDifferentialWheels node con-

taining several children: @ransform node for the body, tw&olid nodes for the wheels, two
DistanceSensor  nodes for the infra-red sensors anfape node with a texture.

The origin and the axis of the coordinate system of the robot and its dimensions are shown in
figure[3.5.
To model the body of the robot:

1. Open the scene tree window.
2. Select the lasolid node.

3. Insert after a DifferentialWheels node, set its name to "kiki".

4. In thechildren  field, first introduce aransform node that will contain a shape with a
box. In the newchildren  field, Insert after a Shape node. Choose a color, as described
previously. In thegeometry field, insert aBox node. Set the size of the box to [0.08 0.08
0.08]. Now set theranslation valuesto [0 0.06 0] in th&ransform node (see figure

8.6)
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b d kiki_camera.wbt - Webots 4:0.14
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Figure 3.4: The wall in the world window
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Figure 3.5: Coordinate system and dimensions okikierobot
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@ Solid
=1 @ DifferentialWheels
@ translation 0.233623 0 -0.253022
@ rotation 0 1 0 95.3095
@ecae 111
=1 children
=@ Transform
@ translation 0 0.06 0
@ rotation 07100
@scale111
=@ children
= @& shape
& appearance Appearance
=@ geometry Box
* 1size 0.05 0.08 0.08
@ bhoxCenter 00 0
@ bboxSize -1 -1 -1
@ bhoxCenter 00 0
@ bhoxSize -1 -1 -1
& name "Kiki"
@ maodel "

L~/ | size

Koo |
Voo

Z 008

Ed

Ed

Ed

[*]

Close

Figure 3.6: Body of théiki robot

: a box
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To model the left wheel of the robot:

1. Select theTransform node corresponding to the body of the robot amrt after a
Solid node in order to model the left wheel. Type "left wheel” in thene field, so that
this Solid node is recognized as the left wheel of the robot and will rotate according to
the motor command.

2. The axis of rotation of the wheel is The wheel will be made of @ylinder rotated
of pi/2 radians around theaxis. To obtain proper movement of the wheel, you must pay
attention not to confuse these two rotations. Consequently, you must Bddsiorm
node to thechildren  of theSolid node.

3. After adding thisTransform node, introduce inside it 8hape with a Cylinder in its
geometry field. Don’t forget to set an appearance as explained previously. The dimen-
sions of the cylinder should be 0.01 for theight and 0.025 for theadius . Set the
rotation to[ 00 1 1.57]. Pay attention to the sign of the rotation; if it is wrong, the
wheel will turn in the wrong direction.

4. IntheSolid node, set the translation to [-0.045 0.025 0] to position the left wheel, and set
the rotation of the wheel around tkexis: [1 0 0 0].

5. Give aDEFname to youfransform : WHEEL; notice that you positioned the wheel in
translation at the level of th&olid node, so that you can reuse WeIEEL Transform
for the right wheel.

6. Close the tree window, look at the world and save it. Use the navigation buttons to change
the point of view.

To model the right wheel of the robot:

1. Select the left wheedolid node andnsert after anotherSolid node. Type "right wheel”
in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0 0 0].

2. Inthechildren , Insert after USE WHEELPresReturn , close the tree window and save
the file. You can examine your robot in the world editor, move it and zoom in on it.

The robot and its two wheels are shown in figure 3.7 and figufe 3.8.

The two infra-red sensors are defined as two cylinders on the front of the robot body. Their
diameter is 0.016 m and their height is 0.004 m. You must position these sensors properly so that
the sensor rays point in the right direction, toward the front of the robot.

1. In thechildren of the DifferentialWheels node,insert after a DistanceSensor
node.

2. Type the name "irQ”. It will be used by the controller program.
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@& Transform [«1] name

=@ Salid
@ translation -0.045 0.025 0
@ rotation 1 0 0-857516
@scale 111

@ children

@ bhoxCenter0 00
@ bhoxsize -1 -1 -1
* Iname "lett wheel”
@ model "
@ author "™
@ constructar ™

@& description "
@ boundingObject NULL
@ physics NULL
@& joint NULL
@ locked FALSE
=@ Solid

@ translation 0.045 0.025 0
@ rotation 1 0 0 -6714 .22
@scalel 11

=1 @ children

@ USE WHEEL

@ bhoxCenter0 00
@ bhoxSize -1 -1 -1
@ name "right wheel"
@ model "

i [+

L

lett wheel

Figure 3.7: Wheels of thkiki robot

. Let’s attach a cylinder shape to this sensor: Indfitlren  list of the DistanceSensor

node,insert after aTransform node. Give @EFname to it: INFRARED, which you will
use for the second IR sensor.

. Inthechildren oftheTransform node,nsertafter aShape node. Define an appearance

andinsert aCylinder inthegeometry field. Type 0.004 for the height and 0.008 for the
radius.

. Set the rotation for th&ransform node to [0 0 1 1.57] to adjust the orientation of the

cylinder.

. In theDistanceSensor  node, set the translation to position the sensor and its ray: [-0.02

0.08 -0.042]. In thesile menu,Preferences , Rendering , check theDisplay sensor rays  box.
In order to have the ray directed toward the front of the robot, you must set the rotation to
[0101.57].

. IntheDistanceSensor  node, you must introduce some values of distance measurements

of the sensors to theokupTable field, according to figurg 3|9. These values are:

lookupTable [ O 1024 0,
0.05 1024 O,
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Figure 3.8: Body and wheels of tleki robot

0.15 0 0]

8. To model the second IR sensor, selectiimanceSensor node andnsert after a new
DistanceSensor  node. Type "irl” as a hame. Set its translation to [0.02 0.08 -0.042]
and its rotation to [0 1 0 1.57]. In thehildren , insert after USE INFRAREDIn the
lookupTable field, type the same values as shown above.

The robot and its two sensors are shown in figure|3.10 and figure 3.11.

Note: A texture can only be mapped on &mlexedFaceSet shape. TheaexCoord and
texCoordindex  entries must be filled. The image used as a texture mustfeaor a.jpg

file, and its size must b@™) * (2") pixels (for example 8x8, 16x16, 32x32, 64x64, 128x128 or
256x256 pixels). Transparent images are not allowed in Webots. Moreover, PNG images should
use either the 24 or 32 bit per pixel mode (lovspp or gray levels are not supported). Beware

of the maximum size of texture images depending on the 3D graphics board you have: some old
3D graphics boards are limited to 256x256 texture images while more powerful ones will accept
2048x2048 texture images.

To paste a texture on the face of the robot:
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Measured
value

1024

0.05 0.15 Distance to
the wall

Figure 3.9: Distance measurements ofkiie sensors.

1. Select the lasbistanceSensor  node andnsert after a Shape node.

2. Create a\ppearance node intheappearance field. Create ammageTexture node in
thetexture field of this node, with the following URL kiki/kiki.png" . This refers
to an image file lying in thevorlds directory.

3. In thegeometry field, create anndexedFaceSet node, with aCoordinate node in
thecoord field. Type the coordinates of the points in fent field:

[ 0.015 0.05 -0.041,
0.015 0.03 -0.041,

-0.015 0.03 -0.041,
-0.015 0.05 -0.041 ]

andinsert after in thecoordindex field the following values: 0, 1, 2, 3, -1. The optional
-1 value is there to mark the end of the face. It is useful when defining several faces for the
samelindexedFaceSet node.

4. In thetexCoord field, create &exureCoordinate  node. In thepoint field, enter the
coordinates of the texture:

L |
orpr©°
PP o®

and in thetexCoordindex field, type 3, 0, 1, 2. This is the standard VRML97 way to
explain how the texture should be mapped to the object.
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5.

a7
[+] geametry

=@ DistanceSensar
@ translation -0.02 008 -0.042
@ rotation 01 0157
@scale 111
=@ children
=1 & DEF INFRARED Transform
@ translation 000
@ rotation 00 1 1.57
@scale 111
=1 children
=@ Shape
@ appearance Appearance
L]
@ bhoxCenter0 00
@ bhoxSize -1 -1 -1 DEF
@ bhoxCenter0 00
@ bhoxsize -1 -1 -1
@ name "ird"
@ model "
@ author "™
@ constructar ™

@& description "

@ boundingObject MULL

@ physics NULL

@& joint NULL

@& locked FALSE

=1 lookupTable

@o01024 0
@ 0051024 0

S

L

Figure 3.10: The DistanceSensor nodes ofkikerobot

The texture values are shown in figiire 3.12.

To finish with theDifferentialWheels node, you must fill in a few more fields:

1.

In thecontroller field, type the name "simple”. It is used to determine which controller
program controls the robot.

. The boundingObject  field can contain aransform node with aBox, as a box as

a bounding object for collision detection is sufficient to bound khe robot. Create a
Transform node in theboundingObject  field, with thetranslation set to [0 0.05
-0.002] and &ox node in itschildren . Set the dimension of thgox to [0.1 0.1 0.084].

. In theaxleLength  field, enter the length of the axle between the two wheels: 0.09 (ac-

cording to figur¢ 3)5).

. In thewheelRadius field, enter the radius of the wheels: 0.025.

. Values for other fields are shown in figdire 3.13 and the finished robot in its world is shown

in figure[3.14.

Thekiki.wbt is included in the Webots distribution, in therlds directory.
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Figure 3.11: Theiki robot and its sensors

3.1.4 A simple controller

This first controller is very simple and thus nansédple . The controller program simply reads
the sensor values and sets the two motors speeds, in such a wkikitagabids the obstacles.

Below is the source code for tlsample.c  controller:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

#define SPEED 100
static DeviceTag ir0,irl;

static void reset(void) {
ir0 = robot_get_device("ir0");
irl = robot_get_device("irl");
/I printf("ir0=%d ir1=%d\n",ir0,irl);
distance_sensor_enable(ir0,64);
distance_sensor_enable(irl,64);
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[ Webots: Scene Tree

.-"-.:

+ Pt %o @ ?

=@ Shape
=@ appearance Appearance
@ material MULL
=1 @ texture ImageTexture
= & utl
a
@ repests TRUE
@ repestT TRUE
@ textureTransform MULL i
=@ geometry IndexedFaceSet
=1 coord Coordinate
=@ point
& 0.015 0.05 -0.041
@ 0.015 0.035 -0.041
@ -0.015 0.035 -0.041
@ -0.015 0.05 -0.041
=@ texCoord TextureCoordinate
=@ point
@00
@10
@11
@01 wl
@ solid TRUE
@ cow TRUE
@ convex TRUE
@ coordindes
@ texCoordindex
@ creasesngle 0
@ bboxCenter 0 0 0
& bboxSize -1 -1 -1
& name "kiki =

Figure 3.12: Defining the texture of tikéki robot

static void run(int ms) {
short left_speed,right_speed;
unsigned short ir0_value,irl_value;

ir0_value = distance_sensor_get_value(ir0);
irl_value = distance_sensor_get_ value(irl);
if (irl_value>200) {

left speed = -20;

right_speed = 20;
} else if (ir0_value>200) {

left speed = 20;
right speed = -20;
} else {

left speed =SPEED,;
right_speed=SPEED;

Kikifkikipng

Close
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RlwebolsiSceneTree

% + Pt %o @ ?
[Eage= ]
=1 Differentialheels

Q@ translation 0.233623 0 -0.253022
& rotation 0 1 0 95.3098
@scale 111
@ children
@ hhoxCenter 000
& bboxSize -1 -1 -1
& name "kik"
& model "
& author ™"
& constructar "

& description "

@ boundingOhject Transfarm
& physics NULL
& joint MULL DEF
& locked FALSE
& controller "simple”
@ synchronization TRUE
& battery
@ cpuConsumption 0
@ motorConsumption 0
& axleLength 0.09
& wheelRadius 0.025
@ maxSpeed 10
@ maxacceleration 10
& speedUnit 0.1
& slipMoise 0.1
& encoderMoise -1
& encoderResolution -1

Figure 3.13: The other fields of the DifferentialWheels node

}

[* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
return 64; /* next call after 64 milliseconds */

int main() {
robot_live(reset);
robot_run(run); /* this function never returns */
return O;

This controller lies in thaimple directory of the Webotsontrollers directory.
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Figure 3.14: Theiki robot in its world

3.2 Adding a camera to thekiki robot

This section can be considered as an exercice to check if you understood the principles for adding
devices to a robot. If you want to skip this section because you feel comfortable with Webots
and you are not interested in cameras, you may jump directly to the next section which addresses
physics and does not require that tile be equipped with a camera.

The camera to be modeled is a color 2D camera, with an image 80 pixels wide and 60 pixels
high, and a field of view of 60 degrees (1.047 radians).

We can model the camera shape as a cylinder, on the top diikheobot at the front. The
dimensions of the cylinder are 0.01 for the radius and 0.03 for the height. Se¢ figyre 3.15.

Try modeling this camera. Théki _camera.wbt file is included in the Webots distribution, in
theworlds directory, in case you need any help.

A controller program for this robot, namedmera is also included in the Webots distribution,

in the controllers directory. This camera program actually do not perform image processing
since it is just a demonstration program, but you could easily extend it to perform actual image
processing. It would be useful then to add extra objects in the world, so that the robot could for
example learn to recognize them and move towards or away from them depending if the object
is categorized as good or bad.
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Figure 3.15: Theiki robot with a camera

3.3 Adding physics to thekiki simulation

3.3.1 Overview

The current model we defined for theéki robot doesn’t include any physics modelling, as we
didn’t specified any mass for example. Instead it is a simple kinematic model which can be
used nonetheless for many mobile robotics simulation experiments where inertia and friction can
be neglected. For example, it is well suited to simulate light desktop robots like Khepera or
Hemisson. Finally, simulations run faster without physics.

However, as soon as things get more complex, you will need to introduce some physics in your
model. For example, if your robot is heavy, you cannot afford to neglect inertia effects on its
trajectory. If you want to add moveable objects, like boxes or a ball, physics simulation turn
out to be necessary. Finally, if you want to model a robot architecture different from the plain
differential wheels model, like a omni-directional robot, a legged robot, a swimming robot or a
flying robot, then you need to setup many physics parameter.

This section introduces a simple physics simulation tokikeworld allowing the robot to play
with a ball. More complex physics simulations can be implemented with Webots, involving
different locomotion schemes based on thastomRobot andServo nodes, allowing to build
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complex wheeled and legged robots. Other possibilities include flying and swimming robots
where hydrodynamics models are needed. These features won't be addressed in this tutorial.
Instead, it is recommanded that you study the existing examples of legged and flying robots
included within the Webots distribution, and refer to the documentation o€tise&dmRobot
andServo nodes. Do not hesitate to contact us if you need some support implementing complex
physics in your simulation.

3.3.2 Preparing the floor for a physics simulation

Select the floor node which should be the fifsinsform node in the scene tree just after
the PointLight  nodes. Turn thatransform into aSolid node using th@ransform button
(representing a lightning).

Now, it is possible to define bBoundingObject  for the floor. Create amdexedFaceSet

node as bounding object. In this node, createoardinate  node for thecoord field. This

node should define the followingoint list: [101][100][000]J[001]. The
coordindex should contain the 0, 1, 2 and 3 values. This defines a square corresponding to
the ElevationGrid of the floor. The bounding object we just defined will prevent the robot
from falling down through the floor as a result of the gravity.

3.3.3 Adding physics to thekiki robot

Thekiki robot already has a bounding object defined. However, since it will be moving, it also
needs physics parameters that will be defined iphisics field as aPhysics node. Create

such a node and set ifiensity to 100. The density is expressed is kilogram per cubic meter.
Leave the mass to -1, as it is ignored when the density is specified. If ever you wanted to use the
mass instead of the density, set the density to -1 and set the mass to a positive value. The mass
is expressed in kilograms. However, for the rest of this tutorial, it is recommanded to follow the
guide and set the density as requested, leaving the mass to -1.

Now the wheels of the robot also need some physics properties to define the friction with the floor.
But first they need a bounding object. Set the defined WHEEL node dstineingObject

for each wheebBolid . Then, add &hysics the first wheel, write WHEELPHYSICS as a

DEF name. Set thdensity to -1, themass to 0.01, thecoulombFriction to 0.9 and the
forceDependantSlip to 0.1. Use this WHEELPHYSICS definition to define the physics of

the second wheel. Finally, addlaint node to thgoint field of each wheel. This means that
each wheel is connected to the robot body through a joint.

We are now done! Save the world mg kiki _physics.wbt , reload it using the revert button

and run the simulation. You will observe that the robot is moving not very steadily (especially
if you look at what the robot's camera sees). That’s physics! Of course you can improve the
stability of the movement by adjusting the bounding object of the robot, the speed of the wheels,
the friction parameters, etc.
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3.3.4 Adding a ball in thekiki world

Now let’s offer a toy to our robot. Instead of creating a ball object from scratch, let’s borrow it
from another world where such an object already exists. Opesotiver.wbt  world. Double-

click on the soccer. This should open the scene tree window and select the BALL solid. Simply
copy it from theCopy button and re-open yowiki _physics.wbt  world. Open the scene tree
window, select the last object of the scene tree and click orrike after . Can you see the
soccer ball ? Readow do | move an object ? from theHelp menu and place the ball in front of

the robot. Save the world and run the simulation. Kikerobot should be able to kick the ball,
making it roll and bounce on the walls.

3.4 Modelling an existing robot: pioneer2.wbt

We are now going to model and simulate a commercial robot from ActivMedia Robotics: Pioneer
2-DX™ as shown on the ActivMedia Web site: http://www.activrobots.com. First, you must
model the robots environment. Then, you can model a Piongkrdbot with 16 sonars and
simulate it with a controller.

Please refer to the@orlds/pioneer2.wbt andcontrollers/pioneer2 files for the world
and controller details.

3.4.1 Environment

The environment consists of:

e a chessboard: dolid node with arElevationGrid node.
o a wall around the chessboargblid node with arExtrusion node.

o a wall inside the world: &olid node with arExtrusion node.

This environment is shown in figufe 3]16.
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Figure 3.16: The walls of the Pioneet2robot world
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3.4.2 Robot with 16 sonars

The robot (aDifferentialWheels node) is made up of six main parts:

|

. the body: arExtrusion  node.

N

. atop plate: arfExtrusion  node.

3. two wheels: twaCylinder  nodes.

SN

. arear wheel: &ylinder node.
5. front an rear sensor supports: t&gtrusion  nodes.

6. sixteen sonars: sixteddistanceSensor nodes.

The Pioneer 2 DX robot is depicted in figure 3.17.

top—plate

Sensors support

Sonar

Figure 3.17: The Pioneer 2 DX robot

Open the tree editor and addiferentialWheels node.Insert in thechildren  field:

1. for the body: aShape node with ageometry Extrusion . See figur¢ 3.18 for the coor-
dinates of thextrusion

2. for the top plate: &hape node with ageometry Extrusion . See figuré 3.19 for the
coordinates of th&xtrusion
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Coordinates of the crossSection field
the extrusion node:

: x=-0.1, z=0.215

: x=0.1, z=0.215

: x=0.135, z=0.185

: x=0.135, z=-0.095

x=0.08, z=-0.11

x=-0.08, z=-0.11

: Xx=—0.135, z=-0.095

: x=—-0.135, z=0.185

0.059 <y <0.234

3 FRONT 6
4 5
Figure 3.18: Body of the Pioneef" robot

3. for the two wheels: tw®olid nodes. Eaclsolid node children contains Bransform

node, which itself contains 8hape node with ageometry Cylinder . EachSolid
node has a name: "left wheel” and "right wheel”. See fidure|3.20 for the wheels dimen-
sions.

4. for the rear wheel: @ransform node containing &hape node with ageometry field
set toCylinder , as shown in figurg 3.21

5. for the sonar supports: twehape nodes with ageometry Extrusion . See figur¢ 3.32
for theExtrusion  coordinates.

6. for the 16 sonars: 1@istanceSensor nodes. EaclbistanceSensor node contains
a Transform node. TheTransform node has &hape node containing @eometry
Cylinder . See figuré 3.23 and the text below for more explanation.

Modeling the sonars:

The principle is the same as for thiki robot. The sonars are cylinders with a radius of 0.0175
and a height of 0.002. There are 16 sonars, 8 on the front of the robot and 8 on the rear of the
robot (see figurg 3.23). The angles between the sonars and the initial positiord&Rh8ONAR
Transform are shown in figurg 3.24. BEF SONAR Transform contains &ylinder node in

a Shape node with a rotation around theaxis. ThiSDEF SONAR Transform must be rotated

and translated to become the sensors FL1, RR4, etc.

Each sonar is modeled aDéstanceSensor  node, in which can be found a rotation around
they axis, a translation, and@SE SONAR Transform, with a name (FL1, RR4, ...) to be used
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Coordinates of the crossSection fiel
of the Extrusion node:
0: x=0 z=-0.174
1:x=-0.056 z=-0.166
2:x=-0.107 z=-0.145
3:x=-0.155 z=-0.112
4:x=-0.190 z=-0.064
5:x=-0.190 z=0.074
6:x=-0.160 z=0.096
7:x=-0.160 z=0.151
8:x=-0.155 2z=0.2

9: x=-0.107 z=0.236
10: x=-0.056 z=0.256
11: x=0 z=0.264
12: x=0.056 z=0.256
13:x=0.107 z=0.236
14: x=0.155 z=0.2

15: x=0.160 z=0.151
16: x=0.160 z=0.096
17:x=0.190 z=0.074
18: x=0.190 z=-0.064
19:x=0.155 z=-0.112
20: x=0.107 z=-0.145
21: x=0.056 z=-0.166

0.234<y<0.24

Figure 3.19: Top plate of the Pioneef2robot

by the controller.

To finish modeling the Pioneer™ robot, you will have to fill in the remaining fields of the
DifferentialWheels node as shown in figufe 3]25.
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Radius of the wheels: 0.0825
Depth of the wheels: 0.037

Figure 3.20: Wheels of the Pione€2robot

| 7 X Radius of the wheel: 0.0325
-7 Width of the wheel: 0.024

REAR
WHEEL

Nz

Figure 3.21: Rear wheel of the PioneélZobot
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REAR SONAR
SUPPORT

FRONT SONAR
SUPPORT

0.184 <y <0.234

TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Coordinates of the crossSection field of
Extrusion node "Rear sonar support":

x=-0.136
x=-0.136
x=-0.101
x=-0.054
x=0
x=0.054
x=0.101
x=0.136
x=0.136

NI RWNEO

z=0.135
z=0.185
z=0.223
z=0.248
z=0.258
z=0.248
z=0.223
z=0.185
z=0.135

Coordinates of the crossSection field of
Extrusion node "Front sonar support:

x=0.136
x=0.136
x=0.101
x=0.054
x=0
x=-0.054
x=-0.101
x=-0.136
x=-0.136

ONTRWONEO

z=-0.046
z=-0.096
z=-0.134
z=-0.159
z=-0.168
z=-0.159
z=-0.134
z=-0.096
z=-0.046

Figure 3.22: Sonar supports of the PioneBf Bbbot

FR4 FRONT SONAR

SUPPORT
FR3

FR1

FL1

RL4

FL4

FL3

RR: Rear Right Sonar
RL: Rear Left Sonar
FR: Front Right Sonar
FL: Front Left Sonar

Figure 3.23: Sonars location on the PioneBf obot
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Figure 3.24: Angles between the Pione&Y 2onar sensors

Sonar name€ translation rotation
FL1 -0.027 0.209 -0.164 0101.745
FL2 -0.077 0.209 -0.147 01 02.094
FL3 -0.1180.209-0.11| 0102.443
FL4 -0.136 0.209-0.071 01 03.14
FR1 0.027 0.209-0.164| 0101.396
FR2 0.077 0.209-0.147| 0101.047
FR3 0.118 0.209-0.116] 01 00.698
FR4 0.136 0.209-0.071| 0100

RL1 -0.027 0.209 0.253| 010-1.745
RL2 -0.077 0.209 0.236| 01 0-2.094
RL3 -0.118 0.209 0.205| 01 0-2.443
RL4 -0.136 0.2090.160; 010-3.14
RR1 0.027 0.2090.253 | 010-1.396
RR2 0.077 0.2090.236 | 010-1.047
RR3 0.118 0.2090.205| 01 0-0.698
RR4 0.136 0.2090.160| 0100

Table 3.1: Translation and rotation of the PioneBf DEF SONAR Transforms
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Solid
= Differe
translation - 0.260225 0 -0.35943
- rotation 01 0 13.8352

Gt children

[ name "pioneerz"

- model "

- author "

|- constructor "Activimedia Robotics”
- description "

G} houndingQhject Transform
l£lrans\allnn 00,12 0.0447

rofation 0100

children

B Cylinder
haottom TRUE
height 0.24
radius 0.219
side TRUE
top TRUE

F physics MULL

I jaint MULL

(- controller "pioneer2"

F synchronization FALSE

I battery

- cpuConsumption 0

 motorConsumption 0

FaxleLength 0.32

rwheelRadius 0.0625

FtargetSpeed 00

Fmaxipeed 1

|- maxacceleration 1

[ slipMoise 0.1

—encoderbloise -1

& Differential Wheels

DEF

P ] - ] %

Figure 3.25: Some fields of the PioneélDifferentialWheels

node
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3.4.3 Controller

The controller of the Pioneer® robot is fairly complex. It implements a Braitenberg controller

to avoid obstacles using its sensors. An activation matrix was determined by trial and error to
compute the motor commands from the sensor measurements. However, since the structure of
the Pioneer 2 is not circular some tricks are used, such as making the robot go backward in
order to rotate safely when avoiding obstacles. The source code of this controller is a good
programming example. The name of this controllegitheer2

3.5 Transfer to your own robot

Mobile robot simulation is relevant because it is possible to transfer the results onto real mobile
robots. Webots was designed with this transfer capability in mind. The simulation is as realistic
as possible and the programming interface can be ported or interfaced to existing real robots. We-
bots already include transfer systems for a number of existing real robots including Kitepera
HemissodM, LEGO Mindstorm$¥, Aibo™, etc. This section explains how to develop your
own transfer system to your very own mobile robot.

Since the simulation is always a more or less accurate approximation of the physics of the real
robot, some tuning is always necessary when developing a transfer mechanism for an existing
real robot. This tuning will affect the simulated model so that it better matches the behavior of
the real robot.

3.5.1 Remote control
Overview

The easiest way to transfer your control program to a real robot is often to develop a remote con-
trol system. In this case, your control program runs on the computer, but instead of sending com-
mands to and reading sensor data from the simulated robot, it sends commands to and read sensor
data from the real robot. Developing such a remote control system can be achieved in a very sim-
ple way by writing your own implementation of the Webots API functions as a small library. For
example, you will probably have to implement ttiéerential _wheels _set speed func-

tion as a function that sends a specific command to the real robot with the wheel speeds as an
argument. This command can be sent to the real robot via the serial port of the PC or whatever
PC robot interface you have. You will probably need to make some unit conversion since your
robot may not use the same speed unit as the one used in Webots. The same applies for reading
sensor values from the real robot.
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Developing a custom library

Once you have created a number of C functions implementing the Webots functions you need to
redirect outputs and inputs to the real robot. You will then be able to reuse your Webots controller
used for the simulation without changing a line of code, and even without recompiling it to an
object file: Instead of linking this object file with the Webdatsntroller ~ dynamic library, you

will link it with your own C functions. For your convenience, you may want to create a static or
dynamic library containing your own robot interface.

Special functions

Therobot _live function can be used to perform some initialization, like setting up the connec-
tion with the real robot.

Therobot _get _device function should return arbitrary integer values specific to each device
of your real robot. These values should be used by device specific functions. For example, the
distance _sensor _get value function is able to recognize the specified device and return the
correct value.

Therobot _run function should call repeatedly the function passed as an argument. The first
call should be performed with 0 as an argument. It should then take care of the return value of the
run function and respect the requested delay before calling again this function. The parameter
passed to the run function should describe the actual delay (see reference description about the
robot _run function for more details about it).

Running your real robot

Once linked with your own library, your controller can be lauched as a stand alone application to
control your real robot. It might be useful to include in your library or in your Webots controller
some graphical representation to display sensor values, motor commands or a stop button. Such
a remote control system can be implemented in C as explained here, however, it can also be
implemented in Java using the same principle by replacingtmroller.jar Webots file

by your own robot specifiController.jar file and using this one to drive the real robot.

3.5.2 Cross-compilation

Overview

Developing a cross-compilation system will allow you to recompile your Webots controller for
the embedded processor of your own real robot. Hence the source code you wrote for the Webots

simulation will be executed on the real robot itself and there is no need to have a permanent PC
connection with the robot as with the remote control system. This is only possible if the processor
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on your robot can be programmed in C, C++ or Java. Itis not possible for a processor that can be
programmed only in assembler or another specific language. Webots includes the source code of
such a cross-compilation system for the Hemisson robot. This sample is locatedHenti@S
directory of thehemisson controller

Developing a custom library

Unlike the remote control system, the cross-compilation system requires that the source code
of your Webots controller be recompiled using the cross-compilation tools specific to your very
own robot. You will also need to rewrite the Webots include files to be specific to your very
own robot. In simple cases, you can simply rewrite the Webots include files you need, as in the
hemisson example. In more complex cases, you will also need to write some C source files
to be used as a replacement of the Wel@stroller  library, but running on the real robot.

You should then recompile your Webots controller with your robot cross-compilation system and
link it with your robot library. The resulting file should be uploaded onto the real robot for local
execution.

Examples

Webots support cross-compilation for the several existing commercial robots. For the HEMisson
robot, this system is as simple a few include files replacing the Webots API include files. For the
KheperaMrobot, a specific C library is used additionally to specific include files. For the LEGO
MindstormsMrobot, a Java library is used and the resulting binary controller is executed on the
real robot using theeJOS Java virtual machine.

3.5.3 Interpreted language

In some cases, it may be better to implement an interpreted language system. This is useful if
your real robot already uses an interpreted language, like Basic or a graph based control lan-
guage. In such a case, the transfer is very easy since you will just transfer the code of your
program that will be interpreted on the real robot. The most difficult part may be to develop a
language interpreter in C or Java to be used by your Webots controller for controlling the simu-
lated robot. Such an interpreted language system was developed for the HéMissmot with

the BotStudio“ system.
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3.6 Adding custom ODE physics

3.6.1 Introduction

This section describes the capability to add custom physics simulation to your Webots simu-
lations. This is especially useful if you want to model complex forces and torques, such as
hydrodynamical forces or a random wind. It is also possible to gather various information (like
the position, orientation, linear or angular velocity, etc. of every solid in the world or the global
parameters of the physical simulation), to decide which force or torque should be applied. This
way, it is possible to apply hydrodynamic forces only when a robot enters a special part of
the world which is supposed to contain water. You may also access internal parameters of the
physics engine for a better tuning of your physics simulation. Moreover, you can also imple-
ment your own collision detection system to better control contact joints and define for example
non-uniform friction parameters on some surfaces.

Adding a custom physics is achieved by creating a custom shared library which is loaded by
Webots at run-time and which contains function calls to the ODE physics library. This system
currently runs on Linux, Windows and Mac OS X operating systems.

3.6.2 Files

TheWorldinfo  node of the simulated world has a field calfjggsics which defines the name

of the shared library to be used for the custom physics simulation in this world. This name has
no extension such aso (under Linux),.DLL (under Windows) ordylib ~ (under Mac OS X),

but refers to a shared library stored in a subdirectory of the Webotphgsics directory (at

the same level as thmntrollers and theworlds directories). For example:

WorldInfo {
physics "sample"

}

refers to thesample.so shared library under Linux, to theample.dlil  shared library under
Windows or to thesample.dylib ~ shared library under Mac OS X. This shared library should
be stored in theample subdirectory of the Webots usgiiysics directory.

Since the shared library for physics is refered to byWuwldinfo node of a world, you can
develop different physics shared libraries for different worlds.

3.6.3 Implementation

Callback functions

Your shared library may contain four functions that will be called directly by Webots during the
simulation of the world. You may implement all of these functions, or only a few of them. If the
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functions are not implemented, they won'’t be called.

e void webots _physics _init(dWorldID,dSpacelD,dJointGroupID); This func-
tion is called upon initialization of the world. It provides your shared library with ODE
variables used by the simulation, such as a pointer to the wavltb{dID ), a pointer
to the geometry spacel$pacelD ) and a pointer to the contact joint group used by the
simulation (dJointGrouplD). All these parameters should be stored in global variables of
your shared library for further use. Moreovoer, this function is a good place to call the
dWebotsGetGeomFromDEF function (see below for details) to get pointers to the objects
on which you want to control the physics. Before this function is called, the current di-
rectory is set to the directory in which your physics shared library lies. This is useful for
reading config files or writing log files in this directory.

e void webots _physics _step();  This function is called before every physics simula-
tion step (call to the ODEWorldStep()  function). It has no parameter. It can be used to
add force and / or torques to solids. It can also be used to test the position and orientation
of solids (and possibly apply different forces according the position and orientation).

e int webots _physics _collide(dGeomID,dGeomID); This function is called when-
ever a collision occurs between two objects. It may be called several times for a single
simulation step with different parameters corresponding to different objects. You should
test whether the two colliding objects passed as arguments correspond to the objects you
want to control. Then, you should create the contact joints, using the @DHde
anddJointCreateContact functions. Finally, you should add this contact joint to the
joint group passed as an argument ofwedots _physics _init  function using the ODE
dJointAttach ~ function. Finally, you should return 1 if the collision has been handled by
your function or 0 if you wish that Webots handle this collision using its default collision
system.

e void webots _physics _cleanup(); This function is the counterpart function of the
webots _physics _init  function. It is called when the world is destroyed and can be
used to perform some cleanup, like releasing resources and so on.

e void webots _physics _draw(); This function is a utility function intended to dis-
play additional 3D objects in the main 3D window. This is useful to display for exam-
ple some forces as lines with arrows or to add some objets in the world. It is called
immediately after the world is displayed. This function should contain OpenGL calls
glEnable ,glDisable ,glColor4f ,glBegin ,glVertex3f ,glEnd ,etc. The OpenGL
state should be restored to the default value at the end of this function to avoid subsequent
rendering problems in Webots.

dWebotsGetGeomFromDEF

As mentioned in the description of thwebots _physics _init  function, a special function
calleddWebotsGetGeomFromDEF allows you to get a pointer (actually an OBEeomID) to a
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Solid node of the world defined by iBEFname. The prototype for this function is:
dGeomID dWebotsGetGeomFromDEF(const char *DEF);

whereDEFis the DEF name of the request8dlid node. From thisiGeomID pointer, ODE
allows you to obtain the correspondidgodyID pointer using the ODEHGeomGetBody func-
tion.

dWebotsSend and dWebotsReceive

It is often useful to communicate some information between your custom physics library and
robot (or supervisor) controllers. This is especially useful if your custom physics library im-
plements some sensors (like accelerometers, force feeback sensors, etc.) and needs to send the
sensor measurement to the robot controller. It is also useful if your custom physics library im-
plements some actuators (like a linear servo or an Akermann drive model) and needs to receive
motor commands from a robot controller.

The physics library API provides thé#WebotsSend function to send messages to robots con-
troller and thedwWebotsReceive function to receive messages from robots controllers. In order

to receive messages from the physics library, a robot has to conRéeedver node set on

an appropriate channel (see reference manual) and veitlhdRate set to -1 (for infinite com-
munication speed). Messages are sent from the physics library digiagotsSend function

and received through the receiver API as if they were sent [Bnatter node with an infinite

range and baud rate. Similarly, in order to send messages to the physics library, a robot has to
contain anEmitter node set orthannel 0 (as the physics library only receive data sent on
this channel). Theange andbaudRate fields of theEmitter node should be set to -1 (to be
considered as infinite). Messages are sent to the physics library using the standard emitter API
functions. They are received by the physics library throughithebotsReceive function.

void dWebotsSend(int channel,void *buffer,int size);
void *dWebotsReceive(int *size);

The dWebotsSend function sendsize bytes of data contained iuffer over the specified
communicatiorchannel .

ThedWebotsReceive function receives any data emitted on channel 0. If no data was emitted,
it returns NULL, otherwise it returns a pointer to a buffer containing the received datiae If

is non-NULL, it is set to the number of bytes of data available in the returned buffer. This buffer
is currently limited to 1024 bytes.

3.6.4 Compiling the shared library

Your shared library can be compiled under Windows and Linux with GNU make and gcc using
the providedMVakefile . You can also use Visual C++ under Windows to compile it. Under
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Windows, the shared library should be dynamically linked to the ODE library. The Webots
lib directory contains the gctifode.a ) and Visual C++dde.lib ) import libraries. Under
Linux, you don’t need to link the shared library with anything.

3.6.5 Example

An example of custom physics shared library is provided withirfi{fwey  _robot.wbt  world

which uses theaample physics shared library. You can read the source code of this library in
thesample subdirectory of the Webotshysics directory. In this example, the custom physics
library is used to add some wind and to define a non-uniform friction between a cube robot and
the floor.



72

CHAPTER 3. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT



Chapter 4

Robot and Supervisor Controllers

4.1 Overview

A robot controller is a program usually written in C, C++ or Java used to control one robot. A
supervisor controller is a program usually written in C or C++ used to control a world and its
robots.

4.2 Setting Up a Development Environment

4.2.1 Under Windows
Using MinGW with Webots built-in source code editor

MinGW is a free development environment based orngtdte open source C and C++ compiler.

It includes themake utility used to compile the Webots controllers from the provitkedkefile

files. MinGW is included in thelevel subdirectory of thavindows directory on the Webots
CD-ROM. You should install it in order to be able to compile Webots controllers from the com-
pile button of the source code editor.

After installing MinGW, please check that the path to the MinGW directory (wheregycc lies)
is included in thePATHenvironment variable of your system. This path is usually something like
C: \mingw\bin .

Also, if thecompile button fails to compile your Webots controller, please check thahrexe
file is reachable from youPATHenvironment variable. If this is the case, remove the path to this
file from your PATHenvironment variable, or rename tlsisexe file to a different name.

73



74 CHAPTER 4. ROBOT AND SUPERVISOR CONTROLLERS

Using MinGW with your own custom environment

MinGW comes optionally with a companion utility called MSYS which is a UNIX-like ternimal
that can be used to invoke the MinGW commands. MinGW should be installed prior to MSYS.
In addition to MinGW and MSY'S, you will probably need a text editor to write your controller
programs. We recommand using SciTe, which is a simple, lightweight source code editor. SciTe
is also provided in theevel subdirectory of thevindows directory on the Webots CD-ROM.
Alternatively to SciTe, you may want to use Dev-C++, which is a Visual C++ like develop-
ment environment relying ogcc . Dev-C++ is also provided in theéevel subdirectory of the
windows directory on the Webots CD-ROM. A sample Dev-C++ project caltledten.dev

is provided in thebraiten  controller directory of Webots.

Using Visual C++

Visual C++ is an integrated development environment for C and C++ provided by Microsoft
Corp. Itincludes a C and C++ compiler and a source code editor. A number of Visual C++
project examples are provided in thentrollers/braiten , controllers/khepera and
controllers/tcpip controller directories. Typically, a new Visual C++ project for Webots
should define a correct include path to the Welnatkide directory and should link the exe-
cutable file with theController.lib file included in the Webothb directory. Take care to
produce an executable file in the specific controller directory and noDiebag or Release
subdirectory as produced by default by Visual C++. For examplektibpera.exe program
should be created in thénepera directory of yourcontrollers directory. Please note that
the resulting executable files cannot be executed from Visual C++ as they should be launched by
Webots and referenced in the world file used by Webots.

Here is the complete procedure to set up a new Webots controller project under Visual C++ 6.0:

1. Create amy.controller directory in your localwebots directory. Launch Visual C++
and go to theile New... menu item.

2. Create a "Win32 Console Application” project (or "Win32 Application” if you don’t need
a console for debugging). Set theject name: to my.controller and set the.ocation:
to your localwebots \controllers \my._controller directory. Choose to create an
empty project.

3. GototheFiles New... menu item to create a neww+ Source File hamedny_controller.c
in your my_controller directory.

4. Go to theBuild Configurations... menu item an@emove theWin32 Debug configuration.
Close theconfigurations  window.

5. Go to theProjects Settings menu item and select the'c++ tab. Select thereproces-
sor category and typ€: \Program Files \Webots \include in the Additional include
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directories entry. Then, go to theink tab, General category and replace theutput
file name: Release/my _controller.exe by my._controller.exe . Then, prepend
Controller.lib in the list of Object/library modules: . Finally, in theinput category,
typeC: \Program Files \Webots \lib as anAdditional library path:

6. Now, type your Webots controller source code intthecontroller.c file (you can take
inspiration from thesimple.c  controller provided in the controllers directory of Webots,
usually located irC: \Program Files \Webots \controllers  \simple .

7. Now build your application from thauild Build my _controllerexe menu item (or F7 key).
It should create any_controller.exe file in your my_controller directory. However,
this binary file cannot be launched individually or from Visual C++. It has to be launched
by a Webots world refering to that file.

Using the Java Development Kit

The Java Development Kit (JDK) is provided for free by Sun Microsystems. A copy of this
development environmentis included in thevel subdirectory of thevindows directory on the
Webots CD-ROM. It will allow you to program your Webots robots using the Java programming
language. The Java Development Kit doesn't include any text editor or integrated development
environment. You may use a simple text editor and invokgetvee  Java compilation command

from a DOS window, or use an integrated development environment like Borland JBuilder or
Sun’s NetBeans. If you installed MinGW, you will be able to invoke tingke from a terminal

which will in turn invoke thgavac command appropriately.

4.2.2 Under Linux

This is the most simple case. Usually, you don't have to do anything since most Linux distribu-
tions come with thgcc C/C++ compiler and thenake utility. If these tools are not installed, you

will have to install them. Please refer to your Linux distribution to install them. Of course, you
will also need a text editor or possibly an integrated development environment. We recommand
usingemacs as a text editor as it is very common under Linux.

If you want to program your robots using the Java language, you will have to install the Java
Development Kit (JDK) from Sun Microsystems. This software is available for free from Sun
Microsystems. It is also included in thievel subdirectory of thdinux directory on the
Webots CD-ROM.

4.2.3 Under Mac OS X

Simply installing the Developer Tools provided with Mac OS X allows you to program your
Webots robots in C, C++ and Java. The Apple Developer Tools for Mac OS X includgdhe
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C and C++ compiler, thenake build command and thiavac Java compiler. You will probably
use the Project Buidler application to write your source code and the Terminal application to run
themake command which will in turn invoke either thgzc orjavac compiler.

4.3 Setting Up a New Controller

In order to develop a new controller, you must first createrarollers directory in your user
directory to contain all your robot and supervisor controller directories. Each robot or supervisor
controller directory contains all the files necessary to develop and run a controller. In order
to tell Webots where your controllers are, you must set up your user directory in the Webots
preferences. Webots will first search focantrollers directory in your user directory, and if

it doesn't find, it will then look in its owrcontrollers directory. Now, in your newly created
controllers directory, you must create a controller subdirectory, let’'s caliniple . Inside
simple , several files must be created:

e a number of C source files, likemple.c  which will contain your code.

e aMakefile which can be copied (or inspired) from the Webaistrollers directories.
Note that Windows users also have several other alternatives to the Makefile: They can use
a Dev-C++ project or a Microsoft Visual C++ project.

You can compile your program by typimgake in the directory of your controller.

As an introduction, it is recommended that you copy simeple controller directory from the
Webotscontrollers to your owncontrollers directory and then try to compile it.

Under Windows, if you usenake and would like that your controller program opens up a DOS
console to displaprintt  messages, add the following line in yavakefile

DOS_CONSOLE=1

4.4 \Webots Execution Scheme

4.4.1 From the controller’s point of view

Each robot controller program is built in the same manner. An initialization with the func-
tionrobot _live is necessary before starting the robot. A callback function is provided to the
robot _live function in order to perform some initialization of your controller program. In this
initialization function, you will be able to identify the devices of the robot (see seftign 4.5) and
to enable them.
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Then, you should use thebot _run to declare yourun that will be called immediatly after

the initialization function and at each control step until the simulator decides to terminate the
simulation. Thisun must return a integer value that determines the duration of one step of the
control loop, that is the number of simulated milliseconds after whichuthefunction will be
called again. Theun function is used to retrieve sensor information, process it, compute motor
commands and send motor commands.

Therobot _step function is now deprecated and should not be used any more in new controller
programs. Instead, new controller programs should rely orotbeé _run function.

4.4.2 From the point of view of Webots
Startup

For each robot, Webots looks in the usentrollers directory for a controller file matching
the name specified as the controller of the robot. If the specified controenpe , Webots
will first try to execute the file calledimple (on Linux or Mac OS X) orsimple.exe  (on
Windows) located in thaimple subdirectory of the usetontrollers directory. If such a
file doesn’t exist, then, it will look for a file callesimple.class in the same subdirectory and
launch it as a Java controller. If doesn’t exist, then it will try to look for a file cadlegble.jar

in the same directory and launch tsimple class from it. If this one doesn'’t exist, then Webots
will fail launching the specified controller and will use theid instead.

In case of a Java controller, all tiee files located in the specified controller directory will be
added to the JavaLASSPATHThe only exception to this rule is that ifiar  file has the same
name as alass file in the same directory, then, thi file will be ignored. This means that
if you have both aimple.jar file and asimple.class file in the same directory, then the
simple.jar file will not be added to th€LASSPATH However, othejar files (if existing)
will be added to the€LASSPATH

Simulation loop

Webots receives controller requests from possibly several robots controllers. Each request is

divided into two parts: an actuator command part which takes place immediately, and a sensor

measuring part which is scheduled to take place after a given number of milliseconds (as defined

by the parameter of the step function). Each request is queued in the scheduler and the simulator
advances the simulation time as soon as it receives new requests.

4.4.3 Synchronous versus Asynchronous controllers

Each robot DifferentialWheels or Supervisor ) may be synchronous or asynchronous.
Webots waits for the requests of synchronous robots before it advances the simulation time; it
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doesn’t wait for asynchronous ones. Hence an asynchronous robot may be late (if the controller
is computationally expensive, or runs on a remote computer with a slow network connection).
In this case, the actuator command occurs later than expected. If the controller is very late, the
sensor measurement may also occur later than expected. However, this delay can be verified by
the robot controller by reading the return value of tbieot _step function (see the Reference
Manual for more details). In this way the controller can adapt its behavior and compensate.

Synchronous controllers are recommended for robust control, while asynchronous controllers
are recommended for running robot competitions where computer resources are limited, or for
networked simulations involving several robots dispatched over a computer network with an
unpredictable delay (like the Internet).

4.5 Reading Sensor Information

To obtain sensor information, the sensor must be:

1. identified this is performed by theobot _get _device function which returns a handler
to the sensor from its name. This needs to be done only once in the reset callback function,
which is provided as an argument to ot _live function. The only exception to this
rule concerns the root device of a robot (DifferentialWheels or CustomRobot node) which
doesn’t need to be identified, because it is the default device (it always exists and there is
only one of such device in each robot).

2. enabled this is performed by the appropriadeable function specific to each sensor (see
distance _sensor _enable for example). It can be done once, before the endless loop,
or several times inside the endless loop if you decide to disable and enable the sensors
from time to time to save computation time.

3. run: this is performed by theobot _step function inside the endless loop.

4. read finally, you can read the sensor value using a sensor specific function call, like
distance _sensor _get value inside the endless loop.

4.6 Controlling Actuators

Actuators are easier to handle than sensors. They don’t need to be enabled. To control an actuator,
it must be:

1. identified this is performed by theobot _get _device function which returns a handler
to the actuator from its name. This needs to be done only once in the reset callback func-
tion, which is provided as an argument to thbot _live function. As with sensors, the
only exception to this rule concerns the root device of a robot.
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2. set this is performed by the appropriatet function specific to each actuator (an example
of such a function iglifferential _wheels _set speed). It is usually called in the
endless loop with different computed values at each step.

3. run: this is done outside th@bot _run function.

4.7 Going further with the Supervisor Controller

The supervisor can be seen as a super robot. Itis able to do everything a robot can do, and more.
This feature is especially useful for sending messages to and receiving messages from robots,
using theReceiver andEmitter nodes. Additionally, it can do many more interesting things.

A supervisor can move or rotate any object in the scene, includingitingoint , change the

color of objects, and switch lights on and off. It can also track the coordinate of any object which
can be very useful for recording the trajectory of a robot. As with any C program, a supervisor
can write this data to a file. Finally, the supervisor can also take a snapshot of the current scene
and save it as ppeg or PNGimage. This can be used to create a "webcam” showing the current
simulation in real-time on the Web!

4.8 Interfacing Webots to third party software

4.8.1 Overview

If you don’t want to develop your robot controllers using C, C++ or Java, itis possible to interface
Webots to almost any third party software, such as MatYahisp™, LabView™, etc. Such

an interface is implemented through a TCP/IP protocole that you can define by yourself. Webots
comes with an example of interfacing a simulated Khepera robot through TCP/IP to any third
party program able to read from and write to a TCP/IP connection. This example world is
calledtcpip.wbt  and lies in theworlds directory of Webots. The simulated Khepera robot is
controlled by thetcpip  controller which lies in theontrollers directory of Webots. This

small C controller comes with full source codetapip.c , so that you can improve it to suit

your needs. A client example is provided as a binary and C source catientic . Such

a client should be used as a model to rewrite a similar client using the programming language
of your third party software. This has already been implemented in Lisp and MatLab by some
Webots customers.

4.8.2 Main advantages

There are several advantages of using such an interface. First, you can have several simulated
robots in the same world using the several instances of thetsaipe controller, each one using
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a different TCP/IP port, thus allowing your third party software to control several robots through
several TCP/IP connections. To allow tlepip process to open a different port depending on
the controlled robot, you should give a differ@atne to each robot and use thebot _get _name

in thetcpip controller to retrieve this name and decide to open a port specific for each robot.

The second advantage is that you can also remote control a real Khepera robot from your third
party software without writting a line of code. Simply switching to the remote control mode in
the Khepera window will redirect the input/output to the real robot through the serial line.

The third advantage is that you can spread your controller programs over a network of computers.
This is especially useful if the controller programs perform computer expensive algorithms such
as genetic algorithms or other learning techniques.

Finally, it should be mentioned that it might be interesting to set the controlled robot in syn-
chronous or asynchronous mode depending if you want the Webots simulator waits for com-
mands from your controllers or not. In synchronous mode (sefythehronization field of

your robots toTRUB, the simulator will wait for commands from your controllers. The con-
troller step defined by theobot _step parameter thecpip controller will be respected. In
asynchronous mode (set thgnchronization field of your robots ta~ALSE), the simulator

will run as fast as possible, without waiting for commands from your controllers. In the latter
case, it might be interesting to check themRealTime field of the Worldinfo  node in the
scene tree window to have a real time simulation in which robots should behave like a real robots
controlled through an asynchronous connection.

4.8.3 Limitations

The main drawback of this method is that if your robot has a camera device, the protocole should
send the images to the controller over TCP/IP, which might be pretty network intensive. Hence

it is recommended to have a high speed network, or use small resolution camera images, or
compress the image data before sending it to the controller. This overhead is negligible if you

use low resolution cameras such as the Khepera K213.

4.8.4 MatLab™ TCP/IP utility

The standard version of MatL&h doesn’t provide a plain TCP/IP interface. However, a free
toolbox called TCP/UDP/IP Toolbox 2.0.5 developed by Mr. Peter Ratgess available. This
toolbox can be found on the Webots CD-ROM (in thhenmon util  directory), as well as on the
MatLab web site. It is known to run on Windows, Linux and other UNIX systems. It can be used
so that your MatLab programs can connect tottpgp  Webots controllers to drive robots.
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4.8.5 MatLab™ C interface

Another option with MatLab" is to use the MatLal C interface to connect a Webots controller

to the MatLaBM engine. Any data can be passed to and from Mat¥amcluding for example

the image from a Webots camera, and Mati®lcommands can be invoked from within the
Webots controller to use that data. The only tricky part is converting the data between native C
and MatLab types - this requires using theArray functions. The MatLaB"'guide]H explains

this in details in the chapter entitled "Calling MATLAB from C and Fortran Programs”.

4.9 Programming Webots controllers with URBI

4.9.1 Introduction to URBI
What is URBI ?

URBI is theUniversal Robotic Body Interfaceéleveloped in the Laboratory of Electronics and
Computer Engineeriﬁpf ENSTA National Institute of Advanced Technolodﬁd&y J.-C. Bail-
lie. You can find more information about URBI on its home ffage

URBI is a simple yet powerful scripted language meant to be used as a conveniant interface to
robots’ bodies. URBI is designed to work over a client/server architecture, the robot being the

server, and the actual controller being the client. However it is possible to make the client run

on-board, or to run URBI scripts directly on the server-side, without a client.

URBI is not designed to write complex or computationnaly expensive controllers, but to pro-
vide especially useful time-oriented control mecanisms, thus allowing the user to focus on the
real added valuef the client-controller, or to write very easily simple perception-action loops
directly in URBI.

URBI for Webots (Linux only)

URBI for Webots is URBI server for Webots, meaning that it is an application, running as a
Webots controller, which acts as a URBI server, whereas the program which actually controls
your simulated robot, is either a URBI script or a URBI client you have designed.

As of Webots 5.0.10, URBI for Webots is only implemented in the Linux version of Webots.
Windows and Mac OS X versions of URBI for Webots are currently under development and will
be integrated in upcoming versions of Webots.

Ihttp://www.mathworks.com/access/helpdesk/help/techdoc/matlab _external/
2http://uei.ensta.frieng/

Shttp://www.ensta.fr

“http://www.urbiforge.com
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In this tutorial we will only focus on the first possibility. Please refer to general URBI documen-
tation to get familiar with the second one. It is strongly advised that you have a look to the URBI
language documentation and tutorial available at URBI homepage.

The basic use of URBI for Webots rely on:

e The URBI for Webots controller is calledRBI_webots and is stored in théb/urbi
subdirectory of Webots. Each Webots controller directory using URBI for Webots has a
script file calling this executable.

e An XML configuration file giving some information specific to your robot, and especially
declaring which devices are available, their names and parameters.

¢ A telnet connection on the port 54000 of the machine running URBI for Webots to send
simple commands manually.

Installation of URBI for Webots (Linux only)

To install URBI for Webots on your Linux machine, you will have to obtain the latest version of
thewebots-urbi-X.Y.Z.tar.bz2 package where XY and Z represent version numbers and
uncompress itin a local directory. This will createlBISTALL text file and avebots directory.

Just copy the contents of theebots directory into yourwebots installation directory which

is usually located irusr/local/ . 'You may also want to copy thaata , controllers and
worlds  subdirectories in your local Webots user directory as well in order to be able to work on
these files.

4.9.2 Running the examples

Simply open theiki _urbi.wbt  model in the Webotsorlds directory, and click on thelay
button. Thekiki robot should zoom across the place, avoiding walls: a small, very simple to
understand and modify, URBI script is actually running!

An other example, more complex but fancy, is provided indib® _ers7 _urbi _dance.wbt

world: this script, written by Diego de Pardo, has won the Sony Daft-Punk dance competition
on a real Aibo robot. Finally, another model is provided indft® _ers7 _urbi.wbt  world to

serve as a basis for your own Aibo simulations.

4.9.3 Kiki and URBI

To learn more about URBI for Webots, let’s have a closer look akikisobot programmed with
an URBI script. First of all copy the following directories from the Webots installation directory
to your Webots user directory:
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e controllers/kiki _urbi
e data/urbi
o worlds/kiki _urbi.wbt

Open your local copy okiki _urbi.wbt and check that it runs properly. Now open a telnet
connection tdocalhost  on port 54000 (the standart URBI port) and type the following:

kiki.stop(); // kiki should stop.
wheelL.val = 300 & wheelR.val = 250; // kiki should move in circle
stop toto; // To disable the watching of the wall

Try it and next time the robot gets close to a wall it will simply bump into it. Now tgfup
wave to stop it) and type the following:

wave: wheellL.val
wave: wheelR.val

150 sin:3000 ampli:50 &
150 sin:3000 ampli:50 phase:180,

4.9.4 Going further

Note: As you will experiment with URBI for Webots, keep in mind that when yop the
Webots simulation, it also suspends the associated controllers, hence it suspends the URBI server,
so that your telnet session will not respond until you ppgsssagain to start the simulation.

To have a closer look at how URBI for Webots works, go to thatrollers/kiki _urbi
directory and open the following files with your favorite text editor:

e kiki _urbi : This is an executable shell script which calls the actual executable with the
appropriate arguments.

e URBLINI : This URBI script is launched at each start-up of the server from this directory.
In this example, it contains aliasallowing you to usevheels to refering to both wheels,

and it also loads theitl.u  demo script which is located in yodata/urbi/kiki user
directory.
You should also look into theata/urbi/kiki directory and open the following files with your

favorite text editor:

e kikixml : This is the XML configuration file used by URBI for Webots: it holds both
some information extracted from the model (i.e., k¢ _urbi.wbt file) and URBI-
specific information such as the URBI names of the Webots devices, or the port number
on which to listen.

e tutl.u : Thisis the main URBI script controlling theki robot.

You can now start to create your own scripts and load them frory®&.INI  file.



84 CHAPTER 4. ROBOT AND SUPERVISOR CONTROLLERS

4.9.5 Making your own URBI for Webots controllers

As soon as you will want to go further, you will have to create your own URBI for Webots based
controllers. Here is how to proceed:

1. Create a new directory in yoapntrollers directory (saytoto ).

2. Copy into youroto directory thekiki _urbi scriptfile and rename ittoto as it should
exactly match the directory name.

3. Edit thetoto script to possibly change the reference to the XML robot definition file and
to the directory references where URBI scripts are searched.

4. Edit your world file and check that the controller of your robot is pointing to ytoter
controller (i.e.,thecontroller field of your robot should be set toto ). Also, the
basicTimeStep  field of the Worldinfo  node should be the same as treguency
attribute of the URBI for Webots XML tag. Finally, theattery XML tag should be
present and theapacity  attribute should reflect the values indicated in the model. More
generaly, for each supported Webots device you want to be accessible from URBI, there
should be a matching XML tag in origevices section, and its attributes should reflect
the same information as in the model.

4.9.6 Customizing and contributing to URBI for Webots
For now, URBI for Webots only supports the following devices:

e Servo : This is a standard, fully supported device.

¢ DifferentialWheels . Stricly speaking this is not a device but for pratical purpose this
is of small importance: it is a robot from Webots point of view anldyper-devicédrom
URBI for Webots point of view. But it creates two URBI devicegheelLandwheelR and
is activated and parametrized in a similar way as a device.

e DistanceSensor : This is also a standard, fully supported device. You must only be
careful regarding the unit policy (the URBI side value is proportionnal to the Webots side-
value, it is up to you to decide which, if any, units you want to use.

e Battery This is not strictly speaking a device either, but it is fully supported: if you
provide aBatterytag and the battery simulation is activated, then the Up&ter()
function will actually return the power level.

It is however easy to add support for other Webots devices or for yoursoftrdevicesi.e.,
software componnents), without having to edit the application code. You can do it by simply
writing your own C++ piece of code and link it to the main part of the application. Please refer
to the technical documentation of URBI for more information about this.
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Fast2D Simulation Mode

5.1 Introduction

In addition to the usual 3D and physics-based simulation modes, Webots offers a 2D simulation
mode called Fast2D. The Fast2D mode enables very fast simulation for worlds that require only
2D computations. Many simulations are carried out on a 2D area using wheeled robots such
as Alice™ or Kheperd"; in such simulations the height and elevation of the objects is often
irrelevant, therefore by using Fast2D, the overhead of 3D computations can be avoided. Typically
Fast2D is designed for situations where the speed of a simulation is more important than its
realism, as, for example, in evolutionary robotics or swarm intelligence.

5.2 Plugin Architecture

5.2.1 Overview

The Webots’ Fast2D mode is built orpaugin architecture. The Fast2D plugin is a dynamically
linked library that provides the functions necessary for the 2D simulation. These functions are
responsible for the simulation of:

¢ Differential wheels robots (kinematics, friction model, collision detection)
e Obstacles (collision detection)

e Distance sensors (distance measurement)

The plugin architecture makes it possible to use different plugins for different worlds (.wbt file)
and it also allows Webots users to design their own custom plugins.

85
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5.2.2 Dynamically Linked Library

The Fast2D plugin is loaded by Webots when the user loads a world (.wbt file) that requires
Fast2D simulation mode. Th#&'orldinfo  node of the world has a field calléast2d which
specifies the name of the dynamically linked library to use as plugin for this world. For example:

WorldInfo {
fast2d "enki"

}

An emptyfast2d field means that no plugin is required and that the simulation must be carried
out in 3D mode. When thiast2d field in not empty, Webots looks for a corresponding plugin
in thefast2d directory located at the same directory level aswléds andcontrollers
directories. More precisely, Webots looks for the plugin at these two locations:

1. $(userdir)/fast2d/$(pluginname)/$(pluginname).$(extension)

2. $(webotsdir)/fast2d/$(pluginname)/$(pluginname).$(extension)

Where $(userdir) represents Webots’ user directory as defined in the Webots preferences, where
$(pluginname) is the plugin name as specified in fi®2d field of the Worldinfo  node,

where $(extension) is an operating system dependant flename extension sac{Liesix) or

dil  (Windows) and where $(webotsdir) is the path specified by the WEBBDME environ-

ment variable. If WEBOTSHOME is undefined then $(webotsdir) is the path from where the
Webots executable was started. If the required plugin is not found, Webots attempts to run the
simulation using the built-in 3D simulator. According to the "enki” example above, and assum-
ing that the user directory $(userdir) defined in the Webots preferentesns/user/webots

and thaWEBOTS$OME=/ust/local/webots , then the Linux version of Webots looks for the
plugin in:

1. /home/user/webots/fast2d/enki/enki.so

2. lusr/local/webots/webots/fast2d/enki/enki.so

Since the plugin name is referred to by terldinfo  node of a world (.wbt file), it is possible
to have a different plugin for each world.

5.2.3 Enki Plugin

The Linux and Windows distributions of Webots come with a preinstalled Fast2D plugin called
the Enki plugin At the time of writing the Enki plugin is not available in the Mac OS X
version of Webots. The Enki plugin is based on the Enki simulator, which is a fast open
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source 2D robot simulator developped at the Laboratory of Intelligent Systems, EPFL in Lau-
sanne (Switzerland) by Stephane Magneaatephane.magnenat@epft:chMarkus Waibel
<markus.waibel@epfl.ch and Antoine Beyelexantoine.beyeler@epfl.ch Please find more
information about Enki at the LIS webdlte

5.3 How to Design a Fast2D Simulation

Webots’ scene tree allows a large choice of 3D objects to be assembled in complex 3D worlds.
Because Fast2D is designed to run simulations exclusively in 2D, the 3D worlds must be simpli-
fied before the Fast2D simulation can handle them properly.

5.3.1 3Dto2D

The most important simplification, is to remove one dimention from the 3D worlds; this is carried
out by Webots automatically. In 3D mode, the xz-plane is traditionally used to represent the
ground, while the positive y-axis represents the up direction. In Fast2D mode Webots projects
the 3D objects onto the xz-plane simply by removing the y-dimension. Therefore, the Fast2D
mode ignores the y-axis of the 3D and carries out simulation in the xz-plane exlusively. But then,
the naming convention is to use the Fast2D y-axis to represent the 3D z-axis. Sge {able 5.1.

3D -> | Fast2D

X -> | X

y -> | none

z > |y

alpha (rotation angle)) -> | -alpha (orientation angle)

Table 5.1: Conversion from 3D to Fast2D coordinate systems.

In short, the 3D y-axis does not matter with Fast2D. The objects’ heights and elevations are
ignored and therefore, the worlds intended for Fast2D simulation must be designed with that in
mind. Furthermore, Fast2D worlds must also be designed such that the y-axes of all its Solid
and DifferentialWheels nodes are aligned with the world’s y-axis. In other wordsttt@n

field of Solid and DifferentialWheels nodes must be:

Solid {
rotation 0 1 0 <alpha>

Wherealpha is the only parameter that you can tune. If a Fast2D world does not fulfil this
requirement, the result of simulation is undefined. Note also that, the Fast2D (orientation) angles
are equals to the negated 3D rotation angle. See[table 5.1.

http://lis.epfl.ch/
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5.3.2 Scene Tree Simplification

In Fast2D mode, Webots takes only the top level objects of the scene tree into account. Each
Solid or DifferentialWheels node defined at the root level, will take part in the Fast2D simulation
but the other Solid or DifferentialWheels nodes will be ignored. Still, it is possible to use a Solid
as a child of another Solid or as a child of a DifferentialWheels but be aware that, in this case,
although the child Solid does appear graphically, it is not taken into account by the simulation.

5.3.3 Bounding Objects

In Fast2D, just as in 3D simulation, only the objects’ bounding objects are used in collision
detection. Although Webots allows a full choice of bounding objects, in Fast2D mode, it is only
possible to use a single Cylinder or a single Box as bounding object. Furthermore, the Fast2D
mode requires that the coordinate systems of an object and of its corresponding bounding object
must be the same. In other words, any Transform of the bounding object, will be ignored in
Fast2D mode.

5.4 Developing Your Own Fast2D Plugin

The Enki based Fast2D plugin that comes with Webots is highly optimized and should be suitable
for most 2D simulations. However in some cases you might want to use your own implemen-
tation of kinematics and collision detection. In such a case you will have to develop your own

Fast2D plugin and this section explains how to proceed.

5.4.1 Header File
The types and interface required to compile your own Fast2D plugin are definedastthieh
header file. This file is located in the Webots installation directory, ininblede/fast2d

subdirectory. It can be included like this:

#include <fast2d/fast2d.h>

Thefast2d.h  file contains C types and function declarations and therefore it can be compiled
with either a C or C++ compiler.

5.4.2 Fast2D Plugin Types

Four basic types are definedfast2d.h  : ObjectRef |, SolidRef , RobotRef andSensorRef .
In order to enforce a minimal amount of type-checking and type-awareness, these basic types are
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declared as non-interchangeable pointer types. They are only dummy types, not designed to
be used as such, but rather to be placeholders for the real data types that the plugin program-
mer is responsible for implementing. So we suggest that you declare your own four data types
as C structs or C++ classes. Then in your implementation of the Fast2D functions you should
cast the addresses of your data instances onto the Fast2D types, as in the example below, where
MyRobotClass andMySensorClass are user-defined types:

RobotRef webots_fast2d create robot() {
return (RobotRef) new MyRobotClass();

}

void webots_fast2d robot_add_sensor(RobotRef robotRef,
SensorRef sensorRef, double x, double y, double angle) {

MyRobotClass *robot = (MyRobotClass*) robotRef;
MySensorClass *sensor = (MySensorClass*) sensorRef;
robot->addSensor(sensor, X, y, angle);

}

In this example, Webots callgebots fast2d _create _robot() when it requires a new robot
object; this function instanciates the object and casts its address into a Fast2D type before re-
turning it. After that, Webots will pass back this pointer as an argument to every subsequent
plugin call that involves the same object. Appart from storing its address and passing it back,
Webots does nothing with the object and then, it is completely safe for you to cast any pointer
type. However, the simplest and most effective way for you to proceed, is to directly cast the
addresses of your data instances, but you are free to do otherwise, provided that you assign a
unique reference to each object.

Now, your data types should contain a certain number of attributes in order for the Fast2D func-
tions to be able to operate on them. The UML diagram proposed in figure 5.1 shows the types
and attributes that make sense according to the Fast2D functionnality. This diagram is an im-
plementation guideline for your own type declarations. We recommended implementing four
data types in order to match exactly the four Fast2D basic types and we also suggest that in the
implementation of these types you use similar attributes as those indicated in the diagram.

e ObjectRef : Reference to a solid or a robot object. ObjectRef is used in the Fast2D API
to indicate that both SolidRef and RobotRef are suitable parameters. ObjectRef can be
considered as a base class for a solid object or a robot because it groups the attributes
common to both objects. These attributes are the object’s position (xpos and ypos) and
orientation (angle), the object’s mass, the object’s bounding radius (for circular objects)
and the object’s bounding rectangle (for rectangular objects). The object’s position and
angle are defined with respect to the world’s coordinate system.

e SolidRef : Reference for a solid object. A SolidRef has the same physical properties as
ObjectRef, but it is used to implement a wall or another obstacle.
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<<>>
ObjectRef

+xpos: double =

+ypos: double =

+ang le: double =

+mass: double =

+boundi ng Radi us: double =

+boundi n[&Rectang'le[ 4]1[ 2]1: double =

<<>>
SensorRef
<<>> <<>>

Soli dRef RobotRe
+dx: double

+rang e: double =

+aperture: double =
€—+numRays: i nt =

+dy: double +rayWei g hts[ 1: double =

+da: double +ypos: double =

+sensors[ ]: Serjtypos: double =

+ang le: double =

Figure 5.1: Fast2D Plugin Entity Relationship

e RobotRef : Reference for a robot object. A RobotRef has the same physical properties as
ObjectRef, but in addition its speed (dx and dy) and angular speed (da) can be controlled.
It is used to implement a differential wheel robot.

e SensorRef : Reference for a distance sensor object. A SensorRef represents a distance
sensor that must be associated with a robot (RobotRef). SensorRef attributes are: the
sensor’s maximal range (range), the sensor’s aperture angle [radian], the number of rays of
the sensor (hnumRays), the weight of the individual rays (rayWeights), the positions (xpos
and ypos) and orientation (angle) of the sensor. The sensor’s position and angle are defined
with respect to the coordinate system of the corresponding robot.

5.4.3 Fast2D Plugin Functions

In order for your plugin to be operational, it has to implemexitshe Fast2D functions. Once the
plugin is loaded Webots checks that every function is present and if a single function is missing,
Webots will attempt to run the simulation using the built-in 3D routines instead of the Fast2D

plugin.

The Fast2D API uses two types of coordinatgebal andlocal. Theglobal coordinate system

is the world’s coordinate system, as described in table 5.1. Positions and anQlgjsaRef

(including RobotRef and SolidRef) are expressed in thgdobal coordinate system. In

the other hand, the position and anglesehsorRef and the coordinates of bounding rectangles

are expressed in thiecal coordinate system of the object they belong to. For example the
position and angle of a sensor is expressed with respect to the local coordinate system of the
robot which holds the sensor. As in 3D, in the Fast2D coordinate systems the zero-angle is
aligned with the x-axis.
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void webots fast2d.init()

The webots _fast2d _init() function initializes the plugin. This function is called before
any other Fast2D function: its purpose is to allocate and initialize the plugin's global data
structures. Note than when tiRevert button is pressed or whenever anything changes in the
scene tree, Webots reinitializes the plugin by calling firghots fast2d _cleanup() and then
webots fast2d _init() . See also figure 5.2.

void webots fast2d cleanup()

Free all the data structures used by the plugin. After a call to this function no further Fast2D
call will be carried out by Webots, with the exceptionvedbots fast2d _init() , because at

this moment the plugin data stuctures are supposed to have been deleted. A subsequent call to
webots fast2d _init()  will indicate that the plugin must be reinitialized because the world

is being redefined. The plugin is responsible for allocating and freeing every Fast2D objects. If
webots _fast2d _cleanup() fails to free all the memory that was allocated by the plugin, this

will result in memory leaks in Webots.

void webots fast2d step(double dt)

Run a simulation step aft seconds. This function is invoked by Webots once for each simula-
tion step (basic simulation step), for example, durtgy or once each time thetep button is
pressed. Thdt parameter corresponds to the world’s basic time step (OMbrédinfo  node)
converted to seconds (i.e., divided by 1000). The responsibility of this function is to compute the
new position and angle (as returned gbots fast2d _object _get _transform() ) of ev-

ery simulated object (ObjectRef) according to your implementation of kinematics and collision
handling. This is usually one of the functions that requires the largest amount of work on your
side.

RobotRef webotsfast2d create robot()

Request the creation of a robot in the plugin. This function must returns a valid robot reference
(RobotRef ) to Webots. The exact properties of the robot will be specified in subsequent Fast2D
calls.

SolidRef webotsfast2d create solid()

Request the creation of a solid object in the plugin. This function must return a valid solid
reference $olidRef ) to Webots. The exact properties of the solid object will be specified in
subsequent Fast2D calls.
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void webots fast2d add_object(ObjectRef object)

Request the insertion of an object (robot or solid) into the 2D world model. This function is called
by Webots after an object’s properties have been set and before executing the first simulation step
(webots _fasted _step() ).

SensorRef webotdast2d create irsensor(double range, double aperture, int numRays, const
double rayWeights][])

Requests the creation of an infra-red sensor. This function must return a valid sensor reference
(SensorRef ) to Webots. Theange parameter indicates the maximal range of the sensor. It

is determined according to theokupTable of the correspondin@istanceSensor  in the
Webots scene tree. Tlaperture parameter corresponds to the value of dperture  field

of the DistanceSensor . ThenumRays parameter indicates the value of th@émberOfRays

field of the DistanceSensor . TherayWeights parameter is an array ofumRays double
numbers that specifies the individual weights that must be associated with each sensor ray. The
sum of the ray weights provided by Webots is always exactly 1.0, and it is always left/right
symmetrical. For more information on the sensor weights, please refer to the description of the
DistanceSensor  node in Webots Reference Manual. In order to be consistent with the Webots
graphical representation, the plugin’s implementation of the sensors requires that:

e All the rays have the same length (the specified sensor range)
e The rays are distributed uniformly (equal angles from each other)

e The angle between the first and the last ray equals exactly to the specified aperture

void webotsfast2d robot_add_sensor(RobotRef robot, SensorRef sensor, double xpos, dou-
ble ypos, double angle)

Add a sensor to a robot. Thebot parameter is a robot reference previously created through
webots _fast2d _create _robot() . Thesensor parameter is a sensor reference previously
created througlwebots fast2d _create _irsensor() . Thexpos, ypos andangle parame-

ters indicate the desired position and orientation of the sensor in the the local coordinate system
of the robot.

double webotsfast2d sensorget activation(SensorRef sensor)

Request to return the current distance measured by a sensoseddwe parameter is a sen-

sor reference that was created throwgdbots fast2d _create _irsensor() . This function

must return the average of the weighted distances measured by the sensor rays. The distances
must be weighted using theyWeights values that were passedwebots fast2d _create _
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irsensor() . Note that this function is reponsible only for calculating theighted average
distancemeasured by the sensor. It is Webots responsability to computintdeactivation
value (the value that will finally be returned to the controller) from to the average distance and
according to th@istanceSensor s lookup table.

void webots fast2d object set bounding_rectangle(ObjectRef object, const double x[4], const
double y[4])

Define an object as rectangular and set the object’s bounding rectanglebjétte parameter

is a solid or robot reference. Theandy arrays specify the coordinates of the four corners of
the bounding rectangle in the object’s coordinate system. The sequence (x[0], y[0]), (x[1], y[1]),
(x[2], y[2]), (x[3], Y[3]) is specified counter-clockwise.

void webots fast2d object set bounding_radius(ObjectRef object, double radius)

Define an object as circular and set the objects’s bounding radiusobléxe parameter is a

solid or robot reference. In the Fast2D plugin, an object can be either rectangular or circular; We-
bots indicates this by calling eitheebots _fast2d _object _set _bounding _rectangle() or
webots _fast2d _object _set _bounding _radius()

void webots fast2d object set mass(ObjectRef object, double mass)

Defines the mass of an object. Thigiect parameter is a solid or robot reference. Thiness
parameter is the object’s required mass. According to your custom implementation the mass
of an object can be involved in the calculation of a robot’s acceleration and ability to push
other objects. The implementation of this function is optional. Note that Webots calls this
function only if the corresponding object hashysics node. In this case theass param-

eter equals thenass field of the Physics node. A negative mass must be considered infi-
nite. If your model does not support the concept of mass, you should implement an empty
webots fast2d _object _set mass() function.

void webots fast2d object_set position(ObjectRef object, double xpos, double ypos)

Request to set the position of an object. Tdhgect parameter is a solid or robot reference.
Thexpos andypos parameters represent the required position specified in the global coordinate
system. This function is called by Webots during the contruction of the world model. Afterwards,
the object positions are only modified by thebots fast2d _step() function. See also figure

5.2.
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void webots fast2d object set angle(ObjectRef object, double angle)

Request to set the angle of an object. Bbgct parameter is a solid or robot reference. The
angle parameters is the requested object’s angle specified in the global coordinate system. This
function is called by Webots during the construction of the world model. Afterwards, the object
angles are only modified by theebots _fast2d _step() function. See also figufe 5.2.

void webots fast2d robot_set speed(RobotRef robot, double dx, double dy)

Request to change the speed of arobot.rbhet parameter is a robot reference. Tdxeanddy
parameters are the two vector components of the robot’s speed in the global coordinate system.
This corresponds to a change of the position of the robot (xpos and ypos) per second. More pre-
cisely: dx = v * sin(alpha) and dy = v * cos(alphawherealphais the robot’s orientation angle

and wherev is the absolute robot’s speed which is calculated according to the wheels radius and
wheels rotation speed. For more information, see the description DiftagentialWheels

node and thelifferential _wheels _set _speed() in Webots Reference Manual.

void webots fast2d robot_set angular_speed(RobotRef object, double da)

Request to change the angular speed of a robotrdbwe parameter is a robot reference. The
da parameter indicates the requested angular speed. A robots angular speed is the speed of its
rotation around its center in radian per second.

void webots fast2d object get transform(ObjectRef object, double *xpos, double *ypos,
double *angle)

Read the current position and angle of an object. difject parameter is a robot or solid ref-
erence. Thepos , ypos andangle parameters are the addresses of double numbers where this
function must write the values. These parameters are specified according to the global coordinate
system.

5.4.4 Fast2D Plugin Execution Scheme

This section describes the sequence used by Webots for calling the plugin functions. Please refer
to the diagram of figurg 5.2.

1. The plugin is loaded. Go to step 2.

2. Thewebots fast2d _init()  function is called. Go to step 3 or 5.
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Figure 5.2: Fast2D Plugin Execution Scheme

3. The world model is created. This is achieved through a sequence of calls to the functions
webots _fast2d _create _*() ,webots _fast2d _set *() andwebots _fast2d _add_*() .
Question marks are used to represent a choice among several functions names. Although
the exact sequence is unspecified, for each object it is guarantied that: the corresponding
webots fast2d _create _*() functionis called first, the correspondingbots fast2d _set
*() functions are called next and that the corresponding welfed2dadd *() function
is called last. Go to step 4 or 5.

4. A simulation step is carried out. This is achieved through an unspecified sequence of
calls towebots _fast2d _step() , webots fast2d _set _speed, webots _fast2d _set _
angular _speed() andwebots fast2d _get _transform() . Go to step 4 or 5.

5. Thewebots fast2d _cleanup() function is called. Go to step 2 or 6.

6. The plugin is unloaded. Go to step 1.
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5.4.5 Fast2D Execution Example

This last section shows an example of a Webots scene tree and the corresponding Fast2D calls
that are carried out in case the world is interpreted using Fast2D. Suspension marks represent
omitted code or parameters. By examining this example carefully, you will notice that, as it was
explained earlier, when transformed from 3D to Fast2D:

e The objects rotation angles are negated
e The objects y-coordinates (height and elevation) are ignored

e The 3D z-axis becomes the Fast2D y-axis

Solid {
translation 0.177532 0.03 0.209856
rotation 0 1 0 0.785398

boundingObject Box {
size 0.2 0.06 0.2
}
}

DifferentialWheels {
translation -0.150197 0 0.01018
rotation 0 1 0 -4.85101
children [

DistanceSensor {
translation -0.0245 0.0145 -0.012
rotation 0 1 0 3.0543

lookupTable [
0 1023 0
0.05 0 0.01
]
aperture 0.5
}
]

boundingObject Transform {
translation 0 0.011 O
children [
Cylinder {
height 0.022
radius 0.0285
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webots_fast2d_init()

webots_fast2d_create_solid()
webots_fast2d_object_set_bounding_polygon(...)
webots_fast2d_object_set_position(..., xp0s=0.177532, yp0s=0.209856)
webots_fast2d_object_set_angle(..., angle=-0.785398)
webots_fast2d_add_object()

webots_fast2d_create_robot()
webots_fast2d_object_set_bounding_radius(..., radius=0.0285)
webots_fast2d_object_set_position(..., Xxpos=-0.150197, ypos=0.01018)
webots_fast2d_object_set_angle(..., angle=4.85101)
webots_fast2d_add_object()

webots_create_irsensor(range=0.05, aperture=0.5, numRays=1, ...)
webots_fast2d_robot_add_sensor(..., xpos=-0.0245, ypos=-0.012, angle=-3.0543)

Finally, note that the largest input value of thistanceSensor s lookup table (0.05), becomes
the sensor’s range in Fast2D.

You will find further information about th@®ifferentialwWheels and DistanceSensor
nodes and controller APl in Webots Reference Manual.
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Chapter 6

Using the Khepera M rohot

The goal of this chapter is to explain how to use Webots with your Khepera robot. Khepera is a
mini mobile robot developed by K-Team SA, Switzerland (www.k-team.com).

Webots can use the serial port of your computer to communicate with the Khepera robot.

6.1 Hardware configuration

1. Configure your Khepera robot in mode 1, for serial communication protocol at 9600 baud
as described in figufe §.1.

2. Plug the serial connection cable between your Khepera robot and the Khepera interface.

3. Plug the Khepera Interface into a serial port of your computer (e(@i@wior COM? at
your convenience).

4. Check the the Khepera robot power switch is OFF and plug the power supply to the Khep-
era Interface.

Note: Linux and Mac OS X users may want to redefine @1 COM2COM3andCOM4ports
by settingf EBOTSOM1IWEBOTSOM2 WEBOTSOM3and/orWEBOTSOM4environment vari-
ables to point to the appropriakiev device files.

On Linux, if these environment variables are not set, Webots will use respedteelityS0
/devi/ttyS1 , /dev/ttyS2 and/dev/ttyS3 ~ for COM1 COM2 CcOMand COM4(note the -1
difference). For example, if your laptop running Linux has no serial port, you may want to
use a USB-RS232 converter, in which case it may be useful to type something:ibet
WEBOTSOM1 /dev/ttyUSBO to allow Webots to communicate with the Khepera through the
USB port.

99
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serial port

Top View
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setto 1l

Figure 6.1: Khepera Il mode selection

On Mac OS X, onlycOM1has a default value which is set'tdev/tty.USB Serial" , corre-
sponding to the default USB to serial converter (like the one installed by the USB232-P9 convert-
ers). Other USB to serial converters may require that you defing/ BBOTSCOMIenvironment
variable to match their specific value. For example, the KeySpan USB to serial converter will
need that you defingf/EBOTSOM1as "/dev/tty.USA28X1213P1.1" . Please consult the
documentation of your USB serial adapter to know the exact file name to be defined.

That's it. Your system is operational: you will now be able to simulate, remote control and
transfer controllers to your Khepera robot.

6.2 Running the simulation

Launch Webots: on Windows, double click on the lady bug icon, on Linux, tygts in a
terminal. Go to theile Open menu item and open the file namigdepera.wbt , which contains

a model of a Khepera robot (see fig[ire| 6.2) associated with a Khepera controller (s€fe figure 6.3).
If the Khepera controller window do not show up, pressstee button in the main window of
Webots.

You can navigate in the scene using the mouse pointer. To rotate the scene, click on the left
button and drag the mouse. To translate the scene, use the right button. To zoom and tilt, use the
middle button. You may also use the mouse wheel to zoom in or out.

Using these controls, try to find a good view of the Khepera robot. You have probably noticed
that clicking on an object in the scene would select it. Select the Khepera robot and choose the
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“ Webots: World Editor
File Edit Simulation Help
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Figure 6.2: Khepera example world

Simulation Robot View menu item. This way, the camera will follow the robot moves. Then,
click on therun button to start up the simulation. You will see the robot moving, while avoiding
obstacles.

To visualize the range of the infra red distance sensors, go Wi¢iReferences... menu item to
pop up the Preferences window. Then, checktibglay sensor rays check box in the&kendering
tab.

In the controller windows, the values of the infra-red distance sensors are displayed in blue,
while the light measurement values are displayed in light green. You can also observe the speed
of each motor, displayed in red and the incremental encoder values displayed in dark green (see

figure[6.3).
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Figure 6.3: Khepera Controls

6.3 Understanding the model

6.3.1 The 3D scene

In order to better understand what is going on with this simulation, let’s take a closer look at the
scene structure. Double click on an object in the scene, or selegtittgzene Tree Window to

open the scene tree window. If you double clicked on an object, you will see that object selected
in the scene tree (see figlire]6.4). Clicking on the little cross icon of an object name in the scene
tree, will expand that object, displaying its properties.

We will not describe in details the Webots scene structure in this chapter. It is build as an
extension of the VRML97 standard. For a more complete description, please refer to the Webots
user guide and reference manuals. However, let’s have a first overview.

You can see that the scene contains several objects, which we call nodes. You can play around
with the nodes, expanding them to look into their fields, and possibly change some values. The
Worldinfo  node contains some text description about the world. Viieéepoint node defines

the camera from which the scene is viewed. Baekground node defines the color of the
background of the scene which is blue in this world. HuéntLight  node defines a light

which is visible from the light sensors of the robot. The light location can be displayed in the
scene by checkingisplay Lights in theRendering tab of the preferences window. The remaining
nodes are physical objects and hau@grname for helping identifying them.

The GROUND Transform is not aSolid which means no collision detection is performed
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Figure 6.4: Scene tree window for the Khepera world

with this node. On the other hand, thiéALLand BOXnodes areSolid nodes. They have a
boundingObject  field used for collision detection.

Finally, theKHEPERA DifferentialWheels node defines the Khepera robot.

6.3.2 The Khepera model

As you can guess, BifferentialWheels node defines any differentially wheeled robot. The
parameters provided here correspond to the size and functionalities of a Khepera robot. For
example, if you expand the children list, you will be able to find some shapes defining the body of
the robot and a number of sensors, including distance and light sensors. Although on the Khepera
robot, the light and distance sensors are the same device, they are divided into two logical devices
in the Webots model. This makes the simulator more modular and generic. Moreover, you will
notice that each device)ifferentialWheels , DistanceSensor , LightSensor , etc.) has

a list of children defining either sub devices or 3D shapes.

Webots recognizes thigifferentialWheels as a Khepera robot becauserisdel field is

set to "Khepera”. Moreover, each sensor is named in a specific way in order to be recognized by
Webots. For example, the distance sensor withrae set to "ds0” corresponds to the first infra-

red distance sensor. The Khepera interface recognized distance sensors named "ds0” to "ds7”,
light sensors named "Is0” to "Is7”, camera sensor named "k213”, and distance sensors named
"fs0” to "fs2” (optional floor color sensors). This allows Webots to display the Khepera window
when you double-click on the Khepera robot in the 3D world or when you choosghthe

Robot Window menu item in thesimulation menu while the corresponding robot is selected.
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The differential wheels model

The differential wheels model of a robot is defined by a number of parameters, including the
axle length, the wheel radius, the maximum speed, maximum acceleration, the speed unit, slip
noise and encoder noise. Values for these parameters are provided in this example to match
approximately a Khepera robot. You may need to refine them if you need a very precise model.
Please refer to the Webots user guide for a complete description of these parameters.

The sensor model

The distance sensors are simulated by computing the collision between a single sensor ray and
objects in the scene. The response of the sensor is computed accordingakuitSable and
modulated by the color of the object (since these sensors are of "infrayped’, red objects are

seen better than green ones). TdwkupTable is actually a table of floating point values which

is extrapolated to compute the response of the sensor. The first value is the distance expressed
in meters (increasing the biggest distance value will make the sensor look further). The second
value is the response read by the controller of the robot and the third value is the percentage of
white noise associated to the distance and response, expressed in the range [0;1]. For a more
complete discussion on the distance sensor model, please refer to the Webots user guide.

Light sensors are pretty similar to distance sensors. They also relylask@pTable for
computing their return value according the measured value.

6.4 Programming the Khepera robot

6.4.1 The controller program

Among the fields of @ifferentialWheels node, you may have noticed tlaentroller

field. This field defines an executable program that will control the robot. By default executable
programs are searched in the Webaistrollers directory, but you can define another lo-
cation in the Preferencesles and paths tab, under theuser path: label. This path define a
directory in webots will look for avorlds and acontrollers directory. Thecontrollers

directory should contain subdirectories named after the names of the controlleihépera

in our case). Thikhepera directory should contain an executable file narkeepera.exe

on Windows orkhepera on Linux. Moreover, along with the executable file, you will also find
sources files and possibly makefiles or project files used to build the executable from the sources.

6.4.2 Looking at the source code

The source code of the example controller is located in the following file under the Webots
directory:
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controllers/khepera/khepera.c

It contains the following code:

#include
#include
#include
#include
#include

<stdio.h>

<device/robot.h>
<device/differential_wheels.h>
<device/distance_sensor.h>
<device/light_sensor.h>

#define FORWARD_SPEED 8
#define TURN_SPEED 5
#define SENSOR_THRESHOLD 40

DeviceTag dsl,ds2,ds3,ds4,Is2,Is3;

void reset(void) {

dsl = robot_get_device("dsl"); /* distance sensors */
ds2 = robot_get device("ds2");
ds3 = robot_get_device("ds3");
ds4 = robot_get device("ds4");
Is2 = robot_get_device("Is2"); /* light sensors */
Is3 = robot_get device("lIs3");
}
int main() {

short left_speed=0,right_speed=0;

unsigned short dsl value,ds2_value,ds3_value,ds4 value,

Is2_value,Is3_value;

int left_encoder,right_encoder;

robot_live(reset);
distance_sensor_enable(ds1,64);
distance_sensor_enable(ds2,64);
distance_sensor_enable(ds3,64);
distance_sensor_enable(ds4,64);
light_sensor_enable(Is2,64);
light_sensor_enable(Is3,64);
differential_wheels_enable_encoders(64);
for(;;) { /* The robot never dies! */

dsl value = distance_sensor_get value(dsl);
ds2_value = distance_sensor_get_value(ds2);
ds3_value = distance_sensor_get value(ds3);
ds4 _value = distance_sensor_get_value(ds4);
Is2_value = light_sensor_get value(ls2);
Is3_value = light_sensor_get_value(Is3);
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if (ds2_value>SENSOR_THRESHOLD &&
ds3 value>SENSOR_THRESHOLD) ({
left_ speed = -TURN_SPEED; /* go backward */
right_speed = -TURN_SPEED;
}
else if (dsl_value<SENSOR_THRESHOLD &&
ds2_value<SENSOR_THRESHOLD &&
ds3_value<SENSOR_THRESHOLD &&
ds4 value<SENSOR_THRESHOLD) {
left speed = FORWARD_SPEED; /* go forward */
right_speed = FORWARD_SPEED;
}
else if (ds3_value>SENSOR_THRESHOLD ||
ds4_value>SENSOR_THRESHOLD) {
left speed =-TURN_SPEED; /* turn left */
right_speed = TURN_SPEED;
}
if (dsl_value>SENSOR_THRESHOLD ||
ds2_value>SENSOR_THRESHOLD) ({
right_speed=-TURN_SPEED; /* turn right */
left_ speed=TURN_SPEED;
}
left_encoder = differential_wheels_get_left_encoder();
right_encoder = differential_wheels_get right_encoder();
if (left_encoder>9000)
differential_wheels_set_encoders(0,right_encoder);
if (right_encoder>1000)
differential_wheels_set_encoders(left_encoder,0);
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
robot_step(64); /* run one step */

}

return O;

}

This program is made up of two functions: a main function, as in any C program and function
namedreset which is a callback function used for getting references to the sensors of the
robot. A number of includes are necessary to use the different devices of the robot, including the
differential wheels basis itself.

The main function starts up by initializing the library by calling tkreepera _live function,
passing as an argument a pointer to éeet function declared earlier. Thigset function

will be called each time it is necessary to read or reread the references to the devices, called
device tags. The device tag names, like "ds1”, "ds2”, etc. refer tadhe fields you can see in

the scene tree window for each device. The reset function will be called the first time from the
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khepera _live function. So, from there, you can assume that the device tag values have been
assigned.

Then, it is necessary to enable the sensor measurements we will need. The second parameter of
the enable functions specifies the interval between updates for the sensor in millisecond. That is,
in this example, all sensor measurements will be performed each 64 ms.

Finally, the main function enters an endless loop in which the sensor values are read, the motor
speeds are computed according to the sensor values and assigned to the motors, and the encoders
are read and sometimes reset (although this make no special sense in this example). Please note
therobot _step function at the end of the loop which takes a number of milliseconds as an
argument. This function tells the simulator to run the simulation for the specified amount of
time. Itis necessary to include this function call, otherwise, the simulation may get frozen.

6.4.3 Compiling the controller

To compile this source code and obtain an executable file, a different procedure is necessary
depending on your development environment. On Linux, simply go to the controller directory
where thekhepera.c  resides, and typmake. On Windows, you may do exactly the same if

you are working with Cygwin. If you use Dev-C++ or Microsoft Visual C++, you will need to
create a project file and compile your program from your Integrated Development Environment.
Template project files for both Dev-C++ and Visual C++ are available ibitdieen  controller
directory.

Once compiled, reload the world in Webots using Heagert button (or relaunch Webots) and
you will see your freshly compiled run in Webots.

6.5 Transferring to the real robot

6.5.1 Remote control

The remote control mode consists in redirecting the inputs and outputs of your controller to a real
Khepera robot using the Khepera serial protocol. Hence your controller is still running on your

computer, but instead of communicating with the simulated model of the robot, it communicates
with the real device via connected to the serial port.

To switch to the remote control mode, your robot needs to be connected to your computer as de-
scribed in sectiop 6] 1. In the robot controller window, selectib® popup menu corresponding

to the serial port to which your robot is connected. Then, just click oritiheation popup menu

in the controller window and selegimote control instead. After a few seconds, you should see
your Khepera moving around, executing the commands sent by your controller. The controller
window now displays the sensor and motor values of the real Khepera.
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You may press the simulatiaiop to stop the real robot. Then will restart it. Thestep button

is helpful to run the real robot step by step. To return to the simulation mode, just use the popup
menu previously used to start the remote control mode. You may remark that it is possible to
change the baud rate for communicating with the robot. The default value is 57600 baud, but
you may choose another value from the popup menu.

Important: If you change the baud rate with the popup menu, don’'t change the mode on the
Khepera robot, since the baud rate is changed by software. The mode on the Khepera robot
should always remain set to 1 (i.e., serial protocol at 9600 bauds).

6.5.2 Cross-compilation and upload

We assume in this subsection, that you have installed/iéhets-kros  package provided with
Webots.

Cross-compiling a controller program creates a executable file for the Khepera micro-controller
from your C source file. In order to produce such an executable, you can usekbeommand

either with theMakefile.kros file (for the Khepera robot) or thakefile.kros2 file (for

the Khepera Il robot). These files are provided within khepera controller directory. From
Linux, just type:

make -f Makefile.kros
for Khepera, or:

make -f Makefile.kros2
for Khepera ll.

From Windows, launch the Webots-kros application and follow the instructions. In both cases
you see the following messages telling you that the compilation is progressing successfully:

Compiling khepera.c into khepera.s
Assembling khepera.s into khepera.o

Linking khepera.o into khepera.s37
khepera.s37 is ready for Khepera (ll) upload

It may be necessary to remove any previkiispera.o  which may conflict with the one gener-
ated by the cross-compiler. In order to do so, you can type:

make -f Makefile.kros clean

Finally, to upload the resultinghepera.s37  executable file onto the Khepera robot, click on
theupload button in the controller window. Please note that you don’t need to change the mode
of the Khepera robot since the upload mode is activated by software from the mode 1. The green
LED of your Khepera should switch on while uploading the program. It lasts for a few seconds
or minutes before completing the upload. Once complete, the robot automatically executes the
new program.
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6.6 Working extension turrets

6.6.1 The K213 linear vision turret

The example worldhepera k213.wbt contains a complete working case for the K213 linear
vision turret. The principles are the same as for the simple Khepera example, except that ad-
ditional functions are used for enabling and reading the pixels from the camera. The function
camera _get _image returns an array of unsigned characters representing the image. The macro
camera _image _get _grey is used to retrieve the value of each pixel. As seen on figuie 6.5, the
camera image is displayed in the controller window as grey levels and as an histogram.

[=I[Bl[]
Khepera K213 stop |
simulation

'Y
-
COMT :|
'Y
-

57600 baud

upload |

status: all right

Figure 6.5: Khepera K213 controls

6.6.2 The Gripper turret

figure[6.6 shows thkhepera _gripper.wbt  example. In this example a model of a Khepera is
equipped with a Gripper device. It can grab red cylinders, carry them away and put them down.
From a modeling point of view, the Gripper turret is made up of two Webots devices:

e A Servo node which represents the servo motor controlling the height of the gripper (ro-
tation).

e A Gripper node which represents the gripping device: the two fingers.
These devices can be configured to match more precisely the real one or to try new designs. For

example, it is possible to configure the maximum speed and acceleration $értie node,
simply by changing the corresponding fields of that node in the scene tree window.
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When clicking on a Khepera robot equipped with a gripper turret. The Khepera window poping
up shows the gripper device (see figurg 6.7). It shows the rotation of the gripper arm, the aperture
of the grips, the presence of an object within the grips and the resistivity of a gripper object. If
you have a real gripper mounted on a Khepera robot, it can be remote controlled by Webots.

6.6.3 Custom turrets and Khepera protocol

Webots offers the capability to communicate with the real Khepera robot from your controller
program by using the standard Khepera communication protocol (see the Khepera manual for de-
tails about this protocol). The principle is simple: the Khepera robot defined kinépera.wbt

file has an emitter and a receiver device. The emitter is named "rs@B2vhile the receiver

is named "rs232n”. You can send messages through the emitter, liken'Band retrive the
answer from the remote controller Khepera through the receiver which should be something like
"b,5.02,5.01", depending on the software version running on your Khepera robot. This will work
only in remote control mode, not in simulation mode or in cross-compilation mode. It is espe-
cially useful if you have a custom extension turret on the top of your Khepera robot (use the "T”
command), if you want to read the A/D inputs of the real robot (use the "I’ command), or if you
want to access any other command available in the Khepera protocol. An example of using this
system is provided within thighepera _serial.c  file which lies in thekhepera directory of

the Webotsontrollers directory.

6.7 Support for other K-Team robots

6.7.1 KoaldM

The Webots distribution contains an example world with a model of a Koala robot. This robot is
much bigger than the Khepera and has 16 infra-red sensors, as seen on figure 6.8. The example
can be found irworlds/koala.wbt

6.7.2 AliceM

An example of Alice robot is also provided. Alice is much smaller than Khepera and has two to
four infra-red sensors. In our example, we have only two infra-red sensors (se¢ figure 6.9). The
example can be found wmorlds/alice.wbt
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Figure 6.8: The Koala robot
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Figure 6.9: The Alice robot



Chapter 7

Using the LEGO Mindstorms™ robots

In this chapter, you will learn how to use Webots with the LE®@Mindstorms™ robots. The
LEGO™MindstormsM is a series of LEG®* products allowing to build robots from LEG®

bricks. A special brick called RCX is used to control the robot. This brick contains a micro-
controller chip, a LCD display, a buzzer, 3 sensor inputs and 3 actuator outputs. Available sensors
include touch sensors, light sensors, rotation sensors, temperature sensors. Actuators include
motors and lights. The basic box, called "Robotics Invention System” includes two motors, two
touch sensors and one light sensor. This chapter will be based on this basic box. However,
Webots is not limited to this basic box and you could easily go beyond this chapter by creating
much more complex virtual robots based on advanced LEGQ@indstorms™ elements.

The first section describes step by step instructions to build up the Rover robot. This robot will
be used thoughout this tutorial.

The second section describes the Webots model corresponding to the Rover robot. It explains
how to program its controller in Java and how to compile it.

Finally, the last section explains how to cross-compile the Java controller you used for simulating
the Rover in Webots. Once cross-compiled, your controller can be uploaded into a real Rover
robot!

7.1 Building up the Rover robot

One of the most interesting model that can be build straight out the "Robotics Invention System”
box is the Rover robot. This robot is described in this section. It has a two differential wheels
drive system, a light sensor looking down to the ground and two touch sensors.

The following tables describe the construction of the Rover robot, first the bumper, then the rear
wheel, the eyes, the body and the antennas.

In the following tables, the numbers in parentheses are the length of the axles.
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Warning : the yellow elastic of the bumper is not represented ; The connectors’ wires are not
represented ; the real antennas are not exactly the same as the ones on the pictures.
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Figure 7.1: The Rover robot
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Step| Pieces Modeling the bumper

ZXO

Step 1 + Step 6

Step 7 + Step 8




7.1. BUILDING UP THE ROVER ROBOT 119

Step| Pieces Modeling the bumper
10
11
2x 9P
" Step 10 + Step 11




120 CHAPTER 7. USING THE LEGO MINDSTORMS™ ROBOTS
Step| Pieces Modeling the rear wheel
1
2
3




7.1. BUILDING UP THE ROVER ROBOT

121

Step

Pieces

Modeling the rear wheel

x JB
1X —
2x'




122 CHAPTER 7. USING THE LEGO MINDSTORMS™ ROBOTS
Step| Pieces Modeling the eyes
2X =
1
2
3




7.1. BUILDING UP THE ROVER ROBOT 123

Step| Pieces Modeling the eyes
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7.2 \Webots model of the Rover robot

Webots already includes a model for the Rover robot you just built. So, you won’t have to
rebuild a virtual copy of this robot. The world file containing this model is naneér.wbt
and depicted in figurje 7.2. This file lies in the Webwetslds directory.

% | Webots: World Editar g@@

File Edit Simulation Help

OCaudas pr»

Figure 7.2: The Rover model in Webots

Before opening this file in Webots, Windows and Linux users should check that have properly
installed java on their computer. Tleva -version command should answer this question.

Once you have launched Webots and openecotrea.wbt ~ world, press the stop button to stop

the simulation and study carefully the scene. Open the scene tree window by double-clicking on
the robot. The scene is very simple. It countains a surrounding wall, a textured ground displaying
a track and a Rover robot. Let's open thiferentialWheels node corresponding to the
Rover robot. Looking at itshildren  list will reveal the robot is equipped with one distance
sensor (looking down) and a couple of touch sensors, i.e., the bumpers. The two wheels are
implemented aSolid nodes with "left wheel” and "right wheel” as names to allow the simulator

to make them rotate when necessary. Finally the controller field obiffesentialWheels

node is set to "Rover”. The fact the name of the controller begin with a capital letter means that
the robot is programmed using the Java langage. If you press the run button, the Rover robot will
start moving on, following the track drawn on the floor, as programmed in its controller.
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Let's have a look at the Java controller for the Rover robot. This controller lies iRdker
subdirectory of the Webotsontrollers directory. It contains a single Java source file named
Rover.java and aMakefile file which are used for the compilation. To compile your con-
troller, just typemake in the Rover directory and it will produce &over.class java binary

file that is used by Webots to control the robot.

Now, have a look at the source code. OpenRloger.java in your favorit text editor and try

to understand what it contains. Useful comments should help you understand some details. If
you are familiar with Java you will very easily understand everything since it is a very simple
example. Basically, it gets references to the distance sensor and the touch sensors, enable these
sensors for measurements each 64 milliseconds and enter an endless loop in which it perform a
simple line following algorithm using only the distance sensor looking down to read the color

of the floor. You may modify this program, recompile it and see how your modified version
performs.

7.3 Transfering to the real Rover robot

7.3.1 1eJOS

Now that you have a simulation model running as you like, it is time to transfer to the real
robot to see if it behaves the same. In order to proceed, you will need to install the leJOS
software. The leJOS software is a replacement firmware for the 'EGIdstormsM RCX

brick. It is a Java Virtual Machine (JVM) that fits into the 32KB memory on the RCX hence
allowing you to program your RCX in Java. The leJOS software is included on the Webots
CD-ROM. Windows users will find a Windows version nameds _win32 _2_1.0.zip inthe

devel subdirectory of thavindows directory. Macintosh and Linux users will find a source
version namedejos _2_1 0.tar.gz inthedevel subdirectory of theommondirectory. The
documentation, including installation instructions, is located inctiremon doc robots rcx
directory. Please take some time to read this documentation to undestand how leJOS works.
leJOS is also available from the leJOS welsite

7.3.2 Installation

Once you installed 1eJOS, as described in the installation instructions, you will have to up-
load the 1eJOS firmware into the RCX brick, replacing the LE®®@perating system. Please
follow the 1eJOS instructions to perform this installation. Note that you can easily revert to
the LEGOMoperating system using the LEGYCD-ROM. Finally, you will have to set the
LEJOS HOMEenvironment variable to point to the location where leJOS was installed. It is also
necessary to add the leJ®®B directory into yourPATHenvironment variable, so that you can
use the 1eJOS tools from the command line.

thttp:/iwww.lejos.org
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7.3.3 Cross-compilation and upload

If everything was installed properly, cross-compilation and upload should be an easy task. Be
sure that your robot is ready to receive a leJOS program. Go ®dbe controller directory and
simply typemake -f Makefile.lejos to launch the cross-compilation and upload processes.
Note that it may be necessary to perforrmake clean just before to remove amjass file

used for simulation. The cross-compilation process uses a diffeleesst file. Upload should
happen just after cross-compilation and you should be able to run your controller on the real
Rover robot.

7.3.4 How does it work ?

The Makefile.kros links your controller with a special Java wrapper class named Controller.
This class lies in the Weboli® directory, in theRCXController.jar archive. Itis a simple
wrapper class between Webots Java APl and l1eJOS API. Thanks to this system, the same Java
source code can be used for both simulated robots and real robots. However, you should read
carefully the limitations of leJOS Java implementation to avoid using Java features or libraries
that are not supported by leJOS.
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Chapter 8

Using the Aibo™ robots

The goal of this chapter is to explain how to use Webots in connection with the Aibo ERS-
series robots. Aibo is a four-legged dog-like robot developped by Sony Corp (www.aibo.com).
While it is primarily intended for use as a toy, its flexibility in design and the ability to program
on-board software using a C++ API (called OPEN-R) makes the Aibo a particularly interesting
object for robotic research as well. In particular, the Robocup Sony Four-Legged Robot League
(www.openr.org/robocup) is very popular among roboticists throughout the world.

The following Aibo models are currently supported in Webots: ERS-210, ERS-7.

8.1 Introduction

We will assume that you already have a basic knowledge of the Webots environment and know
how to perform simple tasks like opening a file and navigating through the world contained
therein (if you do not, please refer to chapter 2). For additional Aibo documentation (in particular,
the OPEN-R SDK guides to which we sometimes make reference in this chapter), please visit
the official OPEN-R website (openr.aibo.com).

The following conventions are usedlVLAN stands for "wireless local area networkControl
Panelis the Aibo ERS-series control applet integrated into WelhRGServer stands for "re-
mote control server”, it is the on-board software running on Aibo to be used in conjunction
with the Control Panel to remotely control your Aiddemory stickis your Aibo Programming
Memory Stick supplied with the robot; finallgrsXXX always refers to your Aibo ERS-XXX
model.

The following relevant resources are located under Webots installation directory:

e controllers/ers*/ : sample controller source directories for the Aibo ERS-series robots

(see also sectign 8.6);
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Figure 8.1: Supported Aibo ERS-7 (left) and ERS-210 (right) robots

e data/mtn/ersXXX/  : MTN motion sequence data files for the Aibo ERS-XXX model
(see also subsectipn 8.5.3);

e transfer/openr/ . transfer-related data (software to copy to the Memory stick, Aibo
definition includes for your controllers, etc.);

e worlds/aibo  _ers*.wbt : world definition files containing at least one Aibo robot (see
also section 8]3);

e objects/aibo  _ers*.wbt : Webots object files containing a single Aibo model, for im-
ports (see also sectipn 8.4).

Note: You should copy the relevant files to the corresponding paths in your user directory for
ease of use. Typically, you will want to copy the Aibo worlds and controller files, as well as the
MTN motion sequence data files.

8.2 Hardware configuration

Your Aibo can be connected to the outside world by means of a wireless 802.11b network con-
nection. We shall first describe the necessary networking setup for both your Aibo and your
PC. We shall then explain how to install our custom on-board Aibo software (caiiSarver )

which is required to make full use of the Aibo Control Panel integrated into Webots. The actual

communications with the robot are carried out via TCP/IP.

8.2.1 Hardware requirements

You will need obviously an Aibo robot. For now, only the ERS-210, ERS7 and ERS7M2 are
supported. If you have an ERS-210 Aibo, you will also need the 802.11b wireless card which
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comes as an option with the robot. It has to be installed in the body of the robot, according to the
provided setup instructions.

8.2.2 Setting up a wireless link with Aibo

The configuration of the Aibo robot to be part of a wireless network is described in detail in the
Aibo User’s Guide (PC Network)There are several ways to do that; we shall explain here how
to setup a peer-to-peer (ad hoc) connection between a PC with WLAN capabilities and the Aibo.
If you are running an infrastructure-based WLAN network (i.e., you connect to an access point
on your network), please refer to the relevant sections of your Aibo documentation. In particular,
section 3.2.2 "How to set up WLANCONF.ixt” of tft@PEN-R SDK Installation Guidean prove
helpful.

Configuring Aibo in ad-hoc mode

Aibo’s network configuration is done by means of a configuration WeANCONF.TX)placed
onto the Memory stick at locatioivS/OPEN-R/SYSTEM/CONF/. To set up the default (ad hoc)
configuration, simply copy th&V/LANDFLT.TXTfile found at same location on your Memory
stick toWLANCONF.TXTYou're done!

Important: Do not edit the WLANDFLT.TXTfile! Always make changes to a copy saved as
WLANCONF.TXTas explained above.

Configuring your PC in ad-hoc mode

To establish a peer-to-peer connection with Aibo, your PC will need to have an 802.11b-compatible
network adapter installed, and you will need to setup your wireless link as follows:

1. Use the configurator supplied with your WLAN (802.11b) adapter to create a new "Ad-
hoc” or "Peer-to-peer” profile, called for example "Aibo”.

2. Edit your new "Aibo” profile settings and set the following parameters:

ESSID = AIBONET (network name)
CHANNEL = 3

WEP = WEP64 (40-bit key encryption)
WEPKEY = AIBO2 (ascii) or 0x414924f32 (hex)
P = 10.0.1.1

MASK = 255.255.255.0

For help on how to set up above parameters, please refer to your operating system and/or wireless
adapter documentation.

Note: If you have changed the default settings for your Aibo network configuration in the
WLANCONF.TXTile on the Memory stick, you must change the above parameters accordingly.
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8.2.3 Mounting the Memory stick

Before setting up the Memory stick for use with Webots, you will need to plug and mount it on
your computer. If you already know how to do this, you may safely skip this subsection.

Using the Memory stick with Windows

Your Memory stick reader comes with a Windows drivers CD which you will need to install in
order to be able to use it with your Windows system. Please refer to the CD installation process
for details. Once you installed the drivers, plug the card reader in and insert the Memory stick,
the system should see and mount it automatically.

Using the Memory stick with Mac OS X

Mac OS X already has all required drivers, so all you need to do is plug the card reader in and
insert the Memory stick, the system should see and mount it automatically.

Using the Memory stick with Linux

The following procedure explains how to mount and use the Memory stick on a Linux-based
system.

1. Plug your Memory stick reader into a USB port on your computer. Most Linux distribu-
tions support hotplug technology for USB devices, however if your computer does not see
the reader, try plugging it in before turning on the power.

2. After you log into a shell, make sure that the USB reader is recognized by the system. You
can do so by typing:

$ cat /proc/bus/usb/devices | grep S:
and you should see something like this:

Product=USB OHCI Root Hub
SerialNumber=ccacb000
Manufacturer=SCM Microsystems Inc.
Product=eUSB MemoryStick Reader
SerialNumber=0000000011CF

3. Create an empty directory to mount your USB reader to gugt/usb
$ mkdir /mnt/usb
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4. Finally, mount the Memory stick (you must have superviser priviledges):

$ mount /dev/sdal /mnt/usb

After mounting the Memory stick to the specified directargr{t/usb ), you can use it just like
any other removable storage device.

Important: When you’ls’ the Memory stick for the first time, you will find a file named
memstick.ind . Do notdelete it, since the Memory stick is to be used for your Aibo robot.

8.2.4 Setting up your Memory stick

In order to benefit from the Webots remote control capabilities with Aibo, we need to set up the
remote controlRCServer ) software running on Aibo. This is done by copying some data onto
Aibo’s Memory stick.

A complete set of files to be copied onto your Memory stick is available in WebBEEN-R
transfer directorylocated in your Webots installation directory as:

transfer/openr/ersXXX/

To setup your Memory stick, follow this simple procedure:

1. Plug and mount your Memory stick on your computer (see subséctiof 8.2.3).
2. Copyall of the content of the transfer directory onto the Memory stick.

3. Unmount the Memory stick and insert it into your Aibo. The appropriate slot is located on
the belly of your robot, right behind the battery. You are ready to go!

Important: Always unmountthe Memory stick before removing it from the reader! Under
Linux, useumount /mtn/usb ; under Mac OS X, drag your USB reader icon to the trash bin;
under recent Windows editions, use the 'Unplug or Eject hardware’ icon located on the taskbar.

When you power up your Aibo, the green power light blinks, then the robot stretches its legs and
gets up: it is now ready to connect and process remote commands.

8.3 Running the simulation

Launch Webots: on Windows, double-click on the ladybug icon, on Linux, wgbets in a ter-
minal. Go to therile/Open menu item and open the figorlds/aibo  _ersXXX.wbt (wherexXX
corresponds to your Aibo ERS-XXX model). That world contains an Aibo robot in a stadium-
like arena.

Note: You can make the Aibo control panel (see secfion 8.5) appear by selecting the robot and
choosingShow robot window in the Simulation menu, or simply by double-clicking the robot (if
the robot window is already open, double-clicking the robot opensdtae tree instead).
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8.3.1 Default Aibo world

The default Aibo world comes with a pre-configured controller, which will make the robot walk
for a few steps. When you start the simulation, you will see the Aibo model walk forward,
and kick the red ball. Of course, you can also edit the world and select another controller
(change thecontroller property of Aibo’s rootCustomRobot node), or get rid of it alto-
gether (simply selectoid as a controller). Available Aibo controllers are located in Webots
controllers/ers*/ directories (see secti¢n 8.6).

+ sl _prs2 10wt - Websats 5.0.0
B Bt Spuston Woard windows  bep
CauvEs brw

Figure 8.2: Default Aibo world (ERS-210)

8.3.2 Other Aibo worlds

There are other worlds available which contain an Aibo robot. We will briefly describe each of
them and explain their uses.

Aibo rough world

This world is located irworlds/aibo  _ersXXX _rough.wbt . It contains a single Aibo robot
placed onto a rough terrain structure. Like in the default world, when you run the simulation the
robot will walk forward for a few steps. You can see how the walk sequence is disturbed by the
ground relief. This world is primarily designed to test walking algorithms on uneven terrains.

Aibo soccer world

This world is located irworlds/aibo  _ersXXX _soccer.wbt . It contains two teams of 3 Aibo
robots, each team bearing its own color. Again, when you run the simulation, all robots will start
walking and stop after a few paces.
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Figure 8.3: Aiborough world (ERS-7)

Note: This particular simulation requires considerable computing power, because all 6 Aibo
robots’ default controllers access their cameras at each cycle.

This world is designed to prepare your robots for the Robocup Sony Four-Legged Roboﬂ_eague
Use it to test your algorithms in simulation before you transfer them to the real robots. This
should spare your robots in case you use particularly stressful mechanisms like the now famous
knee-wallalgorithm.

Note: For this world, robot camera windows are hidden. To display a particular robot’s camera,
find the robot’s head camera node in 8wene Tree and set itslisplay property toTRUE

The head camera node is located in $aene Tree as

ERS210- >NECKTILT- >HEADPAN->HEADROLL->HEADCAM
node for the ERS-210, and as

ERS7->NECKTILT- >HEADPAN->HEADTILT- >HEADCAM
node for the ERS-7 model.

Aibo models world

This world is located irworlds/aibo  _ersXXX _models.wbt world file. It contains available

Aibo model objects for given ERS series, placed onto a simple flat checked ground. Unlike the
other worlds, the robots have no associated controller, so running the simulation will have no
spectacular effect.

These worlds are designed to showcase available model objects, as well as for use with manual
control (using the Control Panel, see secfior] 8.5), e.g., to test new or existing MTN motion
sequences, or establish a remote connection and observe the real robot.

http://www.openr.org/robocup
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« aibo_ers210_soccer.wbt - Webots 5.0.0
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Figure 8.4: Aibosoccer world (ERS-210)
8.4 Understanding the Aibo models

Each of the above worlds contains at least one Aibo robot object, which may be found separately
in Webotsobjects/  subdirectory. In this section, we discuss the two models and explain their
similarities and individual differences.

8.4.1 Reuseable Aibo objects

If you need to build your own custom world and include an Aibo robot, you may simply import
one of the existing Aibo objects, shown in fig{ire|8.5, into $hene Tree .

Available ERS-210 objects are:

e objects/aibo  _ers210.wbt : default (silver) appearance;

e objects/aibo  _ers210 _bronze.wbt : alternative (bronze) appearance.
Available ERS-7 objects are:

e objects/aibo  _ers7.wbt : default (silver) appearance;

e objects/aibo  _ers7 _blue.wbt : alternative (blue) appearance.

Note: Object paths are indicated relative to Webots installation directory. Alternative appearance
is used, e.g., for thsoccer worlds, see sectign §.3.
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Figure 8.5: Aibo ERS-210 (left) and ERS-7 (rightpdels worlds

8.4.2 General model overview

The ERS-210 (figure 8.6) and ERS-7 (figlirg| 8.8) models have a lot in common. On the outside,
both are of course four-legged dog-like robots. From a 3D-modelling point of view, the Aibo
robot is made up of the following parts:

a head attached to a neck, with 3 degrees of freedom;

a static body, to which all other parts are attached;

four legs with 3 degrees of freedom each;

finally, a tail with 2 degrees of freedom.

The legs have two shoulder jointswingandflap movements) and one knee joint. There is a
spherical touch sensor located under each paw to detect ground contact. Both models contain an
accelerometer (which however has no simulated equivalent) and a few other sensors which we
describe further on.

We also provide some model description text files, located in Webwtds directory:

e worlds/aibo  _ersXXX _model.txt : VRML structure with various parameter indications
and primitive names-to-nodes correspondence for the ERS-XXX model;

e worlds/aibo  _ers7ers210 _prm_map.txt : contains mapping of primitives common to
both ERS-series robot models.
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Controllable devices (primitives) naming

As per Sony OPEN-R conventions, Aibo’s controllable devices are cpiledtives Each prim-

itive is identified by a unique string of characters: its primitive name. Primitive names all start
with the"PRM:" prefix. Accordingly, the Webots Aibo models contain nodes which are named
after the corresponding real-life primitives (when an equivalent simulation node is available).

For ease of reading, we shall frequently address primitives by EiBis instead of fully qual-

ified primitive names. PID stands for "primitive ID” and refers to a constant useable for your
programs (see secti¢n 8.6). Consider PIDs as unigurericidentifiers through which is it
possible to obtain the real primitive name for each device. Individual model sections give the
correspondence between PIDs and their associated primitive names.

Common primitives

In this section, we discussharedprimitives, which both supported Aibo models have (more or
less) in common. For primitives specific to each model, please refer to the relevant subsection
below.

Common primitives and their availability are listed in tgblg 8.1. A mapping of common primitive
names may also be foundworlds/aibo  _ers7ers210 _prm_map.txt . Please note that while
corresponding primitives perform similar functions in both models, they still have individual
differences, e.g., hardware angular limits for joints, physical positions, etc.

In addition to the listed primitives, both models have sensors which allow them to measure
distances. The reason why those are not listed above is because the newer ERS-7 model was out-
fitted with 3 invidually accessible distance sensors, while the older ERS-210 had only 1 distance
sensor, or PSD (position sensing device).

As you can see, most of the common devices are implemented in our models. Let us see which
are not, or require special treatment:

e Pressure sensoigocated on the top of the head and top of the body of the robot): in this
particular case, there is no apparent need for these sensors, which are intended to be used
"for fun” to play with the robot, and are therefore useless in simulation;

e Speaker/microphondecause Webots simulation engine does not yet handle sounds, these
cannot have an equivalent simulated device;

e AccelerometerWebots does not yet have a type of node useable to emulate an accelerom-
eter; when a relevant node becomes available, the simulated models may be outfitted with
these too;

e Plungers there is no special node in Webots for modelling plungers, i.e., joints which
only have two positions (on/off); Aibo has two of these devices (one for each ear), which
are listed as "servo (plunger)” in table B.1; these are modelled as regular servos, with
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the following conventionmax = on, min = off (min andmax being the minimum, resp.
maximum, angular joint limit defined for the servo node).

We shall now consider each model separately and provide detailed information regarding model-
specific primitives and their support in Webots.

8.4.3 Aibo ERS-210 model

This model’s default object is locateddbjects/aibo  _ers210.wbt file. Its VRML structure

with various parameter indications and primitive names-to-nodes correspondence can be found
in worlds/aibo  _ers210 _model.txt . ERS-210 model schematics are shown in figuré 8.6;
note that unlike the indicated measurements (provided by Sony), standard Webots units are [m]
for position/distance and [rad] for angles.
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Figure 8.6: ERS-210 model overview (schematics provided by Sony)
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Description ERS-7 PID [1] ERS-210 PID [2] Node type
Neck tilt HEAD_TILT1 HEAD _TILT servo

Head pan HEAD_PAN HEAD_PAN servo

Head tilt HEAD_TILT2 - (seeHead roll) servo

Head roll - (seeHead tilY) HEAD_ROLL servo

Mouth (jaw) HEAD_MOUTH HEAD _MOUTH servo

Left ear HEAD_LEFT_EAR | HEAD_LEFT_EAR servo (plunger
Right ear HEAD_RIGHT_EAR | HEAD _RIGHT_EAR servo (plunger
Chin touch sensor HEAD_CHIN HEAD_CHIN_SWITCH | -

Color camera HEAD_CAMERA HEAD _CAMERA camera
Microphone HEAD_MIC HEAD_MIC -

Speaker SPEAKER HEAD_SPEAKER -

Left front leg, shoulder swing | LFLEG_J1 LFLEGJ1 servo

Left front leg, shoulder flap LFLEG_J2 LFLEG.J2 servo

Left front leg, knee LFLEG.J3 LFLEG.J3 servo

Left front leg, paw sensor LFLEG_PAW LFLEG_PAW touch sensor
Left rear leg, shoulder swing | LRLEG_J1 LRLEG.J1 servo

Left rear leg, shoulder flap LRLEG_J2 LRLEG.J2 servo

Left rear leg, knee LRLEG_J3 LRLEG_J3 servo

Left rear leg, paw sensor LRLEG_PAW LRLEG_PAW touch sensor
Right front leg, shoulder swing RFLEG.J1 RFLEGJ1 servo

Right front leg, shoulder flap | RFLEG.J2 RFLEG.J2 servo

Right front leg, knee RFLEG.J3 RFLEG.J3 servo

Right front leg, paw sensor | RFLEG PAW RFLEG_PAW touch sensor
Right rear leg, shoulder swing RRLEG.J1 RRLEG.J1 servo

Right rear leg, shoulder flap | RRLEG.J2 RRLEG.J2 servo

Right rear leg, knee RRLEG.J3 RRLEG.J3 servo

Right rear leg, paw sensor RRLEG PAW RRLEG.PAW touch sensor
Tail tilt TAIL _TILT TAIL _TILT servo

Tail pan TAIL _PAN TAIL _PAN servo
Accelerometer (front-back) | ACCEL.Y ACCEL.Y -
Accelerometer (right-left) ACCEL_X ACCEL X -
Accelerometer (up-down) ACCEL_Z ACCEL_Z -

Table 8.1: Common available ERS-7/ERS-210 primitives correspondence; PIDs are enumerated
constants useable to access a primitive name from your program, they are located in a header file
undertransfer/opentr/include/ . [1] seeers7.h , [2] seeers210.h
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ERS-210 primitive IDs are defined inansfer/openr/include/ers210.h . Correspon-
dence between common PIDs and their primitive names is listed intable 8.2. Devices specific to
the ERS-210 model and their availability are given in tablé 8.3.

Note: For physical details, feedback devices output range, LED positions, etc. please refer to
OPEN-R SDK online documentati@ifModel Information for ERS-210"

As you can see, most of ERS-210 devices are implemented in Webots. Let us see which of the
ERS-210specificdevices are not:

e Pressure sensordike the common pressure sensors, these are useless in simulation and
therefore not modelled;

e Thermo sensorbecause Webots simulation engine does not handle temperature, there is
no equivalent for a thermo sensor device.

(For an explanation of common unsupported devices, please refer to subgectipn 8.4.2.)

Ear plungers

As mentioned previously, plungers are modelled as regular servos wiogepresents theff
state, andnax represent®n. The ERS-210 has two plungers: the ears. It is of course possible
for a controller to command them to any angle betweé&nandmax, however only the extreme
positions are meaningful as far as the real robot is concerned.

ERS-210 ears rotate around a 45 degree axis looking upward. By default, ears are "pricked”,
i.e., are inon state. Switching theroff makes them look like they lie flat, i.e., giving the dog a
"humble” look.

Distance sensor (PSD)

The distance sensor or PSBosition Sensing Devigés located in the head of the robot, looking
straight ahead, and has a documented range of 90 cm, with a minimum of 10 cm. The response
curve of the model sensor, which has been established from experimental measurements carried
out on the real robot, is shown on figire|8.7. Its lookup table is as follows:

lookupTable [ O 100 O
0.1 100 O
0.3 300 O
0.4 400 0.01
0.5 480 0.01
0.6 560 0.01
0.7 630 0.02

2http://openr.aibo.com
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Figure 8.7: Response curve of the ERS-210 position sensing device
Tail LEDs

Most LED lights of the ERS-210 model are fully functional: face lights and mode indicator light
have proper equivalent devices in simulated model. Tail LEDs, however, are only "virtually”
supported, i.e., the primitive is accessible like any regular LED device but there will\asihle
change to the simulated robot (the internal state of the LED is still set correctly).

8.4.4 Aibo ERS-7 model

This model’s default object is located abjects/aibo  _ers7.wbt file. Its VRML structure

with various parameter indications and primitive names-to-nodes correspondence can be found
in worlds/aibo  _ers7 _model.txt . ERS-7 model schematics are shown in figure 8.8; note
that unlike the indicated measurements (provided by Sony), standard Webots units are [m] for
position/distance and [rad] for angles.

ERS-7 PIDs primitive IDs are defined transfer/openr/include/ers7.h . Correspon-
dence between common PIDs and their primitive names is listed intable 8.4. Devices specific to
the ERS-7 model and their availability are given in table 8.5.
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Figure 8.8: ERS-7 model overview (schematics provided by Sony)

Note: For physical details, feedback devices output range, LED positions, face light colors and
configurations, etc. please refer to OPEN-R SDK online documerﬁ]at’imdel Information
for ERS-7".

As you can see, most of ERS-7 devices are implemented in Webots. Let us see which of the
ERS-7specificdevices are not:

e Pressure sensordike the common pressure sensors, these are useless in simulation and
therefore not modelled.

For an explanation of common unsupported devices, please refer to subgectipn 8.4.2.

Ear plungers

As mentioned previously, plungers are modelled as regular servos wiiwsepresents theff
state, andnax represent®n. The ERS-7 has two plungers: the ears. It is of course possible for

Shttp://openr.aibo.com
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a controller to command them to any angle betweém and max, however only the extreme
positions are meaningful as far as the real robot is concerned.

ERS-7 ears lie "flat” along the sides by default; this is ¢ffestate. Turning theron makes them
swing sideways slightly, as if the robot was "lifting” them a bit.

Important: Because of their size, maintaining the ears indhestate puts considerable strain
on the ear motors; when remotely commanding the real robot, users are therefore cauttoned
to leave the earanfor a long time.

Distance sensors

Aibo ERS-7 model has a distance sensor located in the head of the robot, looking straight ahead,
and another in the chest, looking downward at a 60 degree angle.

The head distance sensor is composed of two separate sensosathadfar distance sensors,

acting (as far as primitive access is concerned) like two separate deviceseditsensor has a
documented range of 50 cm with a minimal sensing range of 5 cm, whilattisensor captures
distances between 20 cm and 1.5 meters. The response curve of the model sensors is shown on
figure[8.9. Their lookup tables are as follows:

"NEAR" "FAR"

lookupTable [ O 50 O lookupTable [ O 200 O
005 50 O 02 200 O
0.275 275 0.1 0.85 850 0.1
0.5 500 O 15 1500 O

] ]

The chest distance sensor is a regular infrared sensor. Its documented range is 90 cm with a
minimal sensing range of 10 cm. The response curve of the chest sensor is shown ¢n figure 8.10.
Its lookup table is as follows:

lookupTable [ O 100 O

0.1 100 O
0.5 500 0.1
09 900 O

LEDs

None of the ERS-7 model LEDs are actually fully functional: they are only "virtually” supported,
i.e., the primitive is accessible like any regular LED device but there will basiblechange to
the simulated robot (the internal state of the LED is still set appropriately).
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Figure 8.9: Response curves of the ERBear (left) andfar (right) head distance sensors

16866 T T T T T T T T T
988
gaea
7ae
68
bee
488
388
288
166 1

B 1 1 1 1 1 1 1 1
a 8.1 8.2 8.3 8.4 a.n a.6 a.7 8.6 8.9 1

Distance [nl

—+— maxinun

—&— Mean

—#— nininun
T

Sinulated Output [nnl

Figure 8.10: Response curve of the ERS-7 chest distance sensor

Face lights have an additional peculiarity: when theyareghey can select either of two faces,

"A” or "B”. All of the face lights select the same face. Face lights form complicated patterns,
which may change for any given face light primitive depending on the selected face. Please refer
to OPEN-R SDK documentatiofiylodel Information for ERS-7"(section A.2) for details.

Note: Some of the LEDs - face and back lights - also havenséensityattribute which has no
equivalent in the simulated LED devices; switching them on therefore always corresponds to
maximal intensity (minimal intensity being zero, i.e., black).

8.5 Using the Aibo control panel

This section describes the use of the Aibo Control Panel applet integrated into Webots. The
Control Panel, shown in figufe 8]11, pops up when you double-click on an Aibo robot in a
Webots world. It is available for the following models:
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e model="Aibo ERS-210" (case-insensitive}riggers the ERS-210 control panel;

e model="Aibo ERS-7" (case-insensitive}riggers the ERS-7 control panel.

The model string is obtained from theodel field of the robot'sCustomRobot root node.
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Figure 8.11: Robot windows for the ERS-210 (left) and ERS-7 (right) Aibo models

The title of the Control Panel window may show the name of the robot (if any is defined in the
robot’snamefield), and always shows the exact Aibo model string. The status bar displays useful
information such as success or failure of requested operations, error reports, etc.

The Control Panel is divided up into three distinct panes:

¢ Remote (network) functions pangrovides network connection and remote management
capabilities for use with a real Aibo robot (running the custe@Server software, see

subsectioh 8.2]4);

e Manual controls and feedback pangrovides direct control over Aibo’s individual actua-
tors (joints, plungers, LEDS), also serves to display feedback data obtained from simulation
or from remote robot, depending on connection state;

e Motion sequence (MTN) playback pameovides management capabilities for the motion
sequence (MTN) files for both the simulated and the real robot.
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Once the simulation is started or a remote connection established, the various controls can be

used to change the state of the simulated or remote robot, e.g., as shown i fighre 8.12 for the
ERS-210 and in figurie 8.13 for the ERS-7 model.
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Figure 8.12: Simulated ERS-210 robot after some Control Panel manipulations
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Description ERS-210 PID Primitive name Node type
Neck tilt HEAD_TILT PRM:/rl/c1-Joint2:j1 servo
Head pan HEAD_PAN PRM:/r1/cl/c2-Joint2:j2 servo
Head roll HEAD_ROLL PRM:/r1/cl/c2/c3-Joint2:j3 servo
Mouth HEAD_MOUTH PRM:/rl/cl/c2/c3/c4-Joint2:j4 | servo
Left ear HEAD_LEFT_EAR PRM:/rl/cl/c2/c3/el-Joint3:j5 | servo (plunger)
Right ear HEAD_RIGHT_EAR PRM:/rl/cl/c2/c3/e2-Joint3:j6 | servo (plunger)
Chin sensor HEAD_CHIN_SWITCH | PRM:/rl/c1/c2/c3/c4/s5-Sensor:s5
Color camera HEAD_CAMERA ...c1/c2/c3/i1l-FbkimageSensor:FIcamera
Microphone HEAD_MIC PRM:/r1/c1/c2/c3/m1-Mic:M1 -

Speaker HEAD_SPEAKER PRM:/rl/cl/c2/c3/s1-Speaker:S] -

Left front leg, swing | LFLEG_J1 PRM:/r2/c1-Joint2:j1 servo

Left front leg, flap LFLEG_J2 PRM:/r2/cl1/c2-Joint2:j2 servo

Left front leg, knee | LFLEG_J3 PRM:/r2/cl1/c2/c3-Joint2:j3 servo

Left front leg, paw LFLEG_PAW PRM:/r2/cl/c2/c3/c4-Sensor:s4 | touch sensor
Leftrear leg, swing | LRLEG.J1 PRM:/r3/c1-Joint2:j1 servo

Left rear leg, flap LRLEG_J2 PRM:/r3/cl/c2-Joint2:j2 servo

Left rear leg, knee LRLEG_J3 PRM:/r3/cl/c2/c3-Joint2:j3 servo

Left rear leg, paw LRLEG_PAW PRM:/r3/cl/c2/c3/c4-Sensor:s4 | touch sensor
Right front leg, swing RFLEG.J1 PRM:/r4/c1-Joint2:j1 servo

Right front leg, flap | RFLEG.J2 PRM:/r4/cl/c2-Joint2:j2 servo

Right front leg, knee | RFLEG.J3 PRM:/r4/cl/c2/c3-Joint2:j3 servo

Right front leg, paw | RFLEG PAW PRM:/r4/c1/c2/c3/c4-Sensor:s4 | touch sensor
Right rear leg, swing| RRLEG.J1 PRM:/r5/c1-Joint2:j1 servo
Rightrear leg, flap | RRLEG.J2 PRM:/r5/c1/c2-Joint2:j2 servo

Right rear leg, knee | RRLEG.J3 PRM:/r5/c1/c2/c3-Joint2:j3 servo

Right rear leg, paw | RRLEG PAW PRM:/r5/cl/c2/c3/c4-Sensor:s4 | touch sensor
Tail tilt TAIL _TILT PRM:/r6/c2-Joint2:j2 servo

Tail pan TAIL _PAN PRM:/r6/c1-Joint2:j1 servo
Acceler. (front-back) | ACCEL.Y PRM:/al-Sensor:al -

Acceler. (right-left) | ACCEL_X PRM:/a2-Sensor:a2 -

Acceler. (up-down) | ACCEL Z PRM:/a3-Sensor:a3 -

Table 8.2: ERS-216ommorprimitives and their fully-qualified names



160 CHAPTER 8. USING THE AIBO™ ROBOTS
Description ERS-210 PID Primitive name Node type
Head pressure (back) | HEAD_SENSORBACK PRM:/rl/cl/c2/c3/f1-Sensor:fl -

Head pressure (front) | HEAD_SENSORFRONT PRM:/rl/cl/c2/c3/f2-Sensor:f2 -
Distance sensor (PSD) HEAD _PSD PRM:/r1/cl/c2/c3/pl-Sensor:pldistance s
Eye light (lower left) HEAD_LEDL1 (red) PRM:/rl/c1/c2/c3/I1-LED2:11 | LED
Eye light (middle left) | HEAD_LED2 (green) PRM:/rl/cl/c2/c3/I2-LED2:12 | LED
Eye light (upper left) | HEAD_LED3 (red) PRM:/rl/c1/c2/c3/I3-LED2:I13 | LED
Eye light (lower right) | HEAD_LEDA4 (red) PRM:/rl/cl/c2/c3/14-LED2:14 | LED
Eye light (middle right)] HEAD_LEDS5 (green) PRM:/r1/cl/c2/c3/I5-LED2:I5 | LED
Eye light (upper right) | HEAD_LED®6 (red) PRM:/rl/cl/c2/c3/I6-LED2:16 | LED
Mode indicator HEAD _MODE_INDICATOR | PRM:/rl/c1/c2/c3/I7-LED2:17 | LED
Thermo sensor TAIL _THERMO PRM:/r6/t1-Sensor:tl -

Back pressure sensor | TAIL_SENSORBACK PRM:/r6/s1-Sensor:sl -

Tail light (blue) TAIL _LED1 (blue) PRM:/r6/11-LED2:11 LED[*]
Tail light (orange) TAIL _LED2 (orange) PRM:/r6/12-LED2:12 LEDI[*]

Table 8.3: ERS-21@pecificprimitives and their fully-qualified names; [*] denotes "virtual”
LEDs, i.e., LEDs which lack a proper graphical representation
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Description ERS-7 PID Primitive name Node type
Neck tilt HEAD_TILT1 PRM:/r1/c1l-Joint2:11 servo
Head pan HEAD_PAN PRM:/r1/cl/c2-Joint2:12 servo
Head tilt HEAD_TILT2 PRM:/r1/c1/c2/c3-Joint2:13 servo
Mouth HEAD_MOUTH PRM:/rl/cl/c2/c3/c4-Joint2:14 | servo
Left ear HEAD_LEFT_EAR | PRM:/rl/cl/c2/c3/e5-Joint3:15 | servo (plunger
Right ear HEAD_RIGHT_EAR | PRM:/rl/cl/c2/c3/e6-Joint3:16 | servo (plunger
Chin sensor HEAD_CHIN PRM:/rl/cl/c2/c3/c4/s5-Sensor:.s5

Color camera

HEAD_CAMERA

...c1/c2/c3/i1l-FbkimageSensor:H

Icamera

Stereo microphones | HEAD_MIC PRM:/r1/c1/c2/c3/m1-Mic:M1 -

Speaker SPEAKER PRM:/s1-Speaker:S1 -

Left front leg, swing | LFLEG_J1 PRM:/r2/c1-Joint2:21 servo

Left front leg, flap LFLEG_J2 PRM:/r2/cl/c2-Joint2:22 servo

Left front leg, knee | LFLEG_J3 PRM:/r2/c1/c2/c3-Joint2:23 servo

Left front leg, paw LFLEG_PAW PRM:/r2/c1/c2/c3/c4-Sensor:24 | touch sensor
Left rear leg, swing | LRLEG_J1 PRM:/r3/c1l-Joint2:31 servo

Left rear leg, flap LRLEG_J2 PRM:/r3/cl/c2-Joint2:32 servo

Left rear leg, knee LRLEG_J3 PRM:/r3/c1/c2/c3-Joint2:33 servo

Left rear leg, paw LRLEG_PAW PRM:/r3/cl/c2/c3/c4-Sensor:34 | touch sensor
Right front leg, swing RFLEG.J1 PRM:/r4/c1-Joint2:41 servo

Right front leg, flap | RFLEG.J2 PRM:/r4/cl/c2-Joint2:42 servo

Right front leg, knee | RFLEG.J3 PRM:/r4/cl/c2/c3-Joint2:43 servo

Right front leg, paw | RFLEG PAW PRM:/r4/c1/c2/c3/c4-Sensor:44 | touch sensor
Right rear leg, swing| RRLEG.J1 PRM:/r5/c1-Joint2:51 servo
Rightrear leg, flap | RRLEG.J2 PRM:/r5/c1/c2-Joint2:52 servo

Right rear leg, knee | RRLEG.J3 PRM:/r5/c1/c2/c3-Joint2:53 servo

Right rear leg, paw | RRLEG PAW PRM:/r5/cl/c2/c3/c4-Sensor:54 | touch sensor
Tail tilt TAIL _TILT PRM:/r6/c1-Joint2:61 servo

Tail pan TAIL _PAN PRM:/r6/c2-Joint2:62 servo
Acceler. (front-back) | ACCEL.Y PRM:/al-Sensor:al -

Acceler. (right-left) | ACCEL_X PRM:/a2-Sensor:a2 -

Acceler. (up-down) | ACCEL Z PRM:/a3-Sensor:a3 -

Table 8.4:

ERS-fommorprimitives and their fully-qualified names
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Description

ERS-7 PID

Primitive name

Node type

Head pressure sensor

HEAD_SENSOR

PRM:/r1/c1/c2/c3/t1-Sensor:tl

Head distance (near)

...CESENSORNEAR [1]

PRM:/rl/cl/c2/c3/pl-Sensor:p

1distance s

Head distance (far)

...CESENSORFAR [1]

PRM:/rl/c1/c2/c3/p2-Sensor:p

2distance s

Chest distance sensor | CHEST.DISTANCE PRM:/pl-Sensor:pl distance s
Head light (color) HEAD _LIGHT _COLOR PRM:/rl/c1/c2/c3/11-LED2:11 | LED[*]
Head light (white) HEAD_LIGHT WHITE PRM:/rl/c1/c2/c3/12-LED2:12 | LEDI[*]
Mode indicator (red) HEAD_MODE_RED PRM:/r1/c1/c2/c3/I3-LED2:13 | LED[*]
Mode indicator (green) | HEAD_MODE_GREEN PRM:/rl/cl/c2/c3/l4-LED2:14 | LEDI[*]
Mode indicator (blue) HEAD_MODE_BLUE PRM:/rl/c1/c2/c3/I5-LED2:I5 | LED[*]
Wireless light HEAD WIRELESS PRM:/rl/c1/c2/c3/I6-LED2:16 | LEDI[*]
Face light 1 HEAD_FACE1 PRM:/rl/cl/c2/c3/la-LED3:la | LED[*]
Face light 2 HEAD _FACE2 PRM:/r1/c1/c2/c3/Ib-LED3:Ib | LEDI[*]
Face light 3 HEAD_FACE3 PRM:/rl/cl/c2/c3/lc-LED3:lc | LED[*]
Face light 4 HEAD_FACE4 PRM:/rl/cl/c2/c3/ld-LED3:Id | LED[*]
Face light 5 HEAD _FACES PRM:/r1/cl/c2/c3/le-LED3:le | LED[*]
Face light 6 HEAD_FACEG6 PRM:/rl/cl/c2/c3/If-LED3:If | LED[*]
Face light 7 HEAD_FACE7 PRM:/rl/c1/c2/c3/lg-LED3:lg | LED[*]
Face light 8 HEAD _FACES8 PRM:/r1/c1/c2/c3/Ih-LED3:Ih | LEDI[*]
Face light 9 HEAD_FACE9 PRM:/r1/c1/c2/c3/li-LED3:li LED[*]
Face light 10 HEAD_FACE10 PRM:/rl/cl1/c2/c3/l|-LED3:l; LED[*]
Face light 11 HEAD_FACE11 PRM:/r1/c1/c2/c3/lk-LED3:lk | LEDI[*]
Face light 12 HEAD_FACE12 PRM:/r1/c1/c2/c3/ll-LED3:II LED[*]
Face light 13 HEAD_FACE13 PRM:/rl/c1/c2/c3/Im-LED3:Im| LED[*]
Face light 14 HEAD _FACE14 PRM:/rl/cl/c2/c3/In-LED3:In | LED[*]
Back pressure (rear) BACK_SENSORREAR PRM:/t2-Sensor:t2 -

Back pressure (middle) | BACK_SENSORMIDDLE | PRM:/t3-Sensor:t3 -

Back pressure (front) BACK_SENSORFRONT | PRM:/t4-Sensor:t4 -

Back light (front/color) | BACK_LIGHT_FC PRM:/lu-LED3:lu LED[*]
Back light (front/white) | BACK_LIGHT_FW PRM:/Iv-LED3:Iv LED[*]
Back light (middle/color) | BACK_LIGHT _MC PRM:/lw-LED3:lw LED[*]
Back light (middle/white)] BACK_LIGHT _MW PRM:/Ix-LED3:Ix LED[*]
Back light (rear/color) BACK _LIGHT_RC PRM:/ly-LED3:ly LED[*]
Back light (rear/white) BACK_LIGHT _RW PRM:/I1z-LED3:Iz LED[*]

Table 8.5: ERS-&pecificprimitives and their fully-qualified names; [1] "...CE” expands to
"HEAD _DISTANCE”; [*] denotes "virtual” LEDs, i.e., LEDs which lack a proper graphical

representation
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Figure 8.13: Simulated ERS-7 robot after some Control Panel manipulations

One important element to understand is $ireulation checkbox. It controls a notion known as
simulation hookwhich is the simulation equivalent to the remotsnectedstate:

e Simulation checked: simulation ieooked in this mode the Control Panel has control over
the simulation; this means, inter alia, that changes to Control Panel active elements (joint
sliders, plungers, LEDSs) are reflected on the simulation;

e Simulation unchecked: simulation isnhookedin this mode there is no link whatsoever
between the simulation and the Control Panel; pure remote control is thus possible.

Important: Unless a remote robot is connected to the Control Panel, simulation is forced to
hooked state. Once a remote connection is established, it is possible to unchsikutit@n
checkbox and use the Control Panel for pure remote control.

The following subsections provide a detailed overview of each pane and the functionalities they
offer.

8.5.1 Remote (network) functions

TheNetwork Connection pane provides connectivity functions. It is identical for both supported
Aibo models. We have already discussed the use of the very first elemesgintiion check-
box. Let’s see what the other controls do:
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e URL field: enter the address of your Aibo here; it can be either its IP address (default
10.0.1.100 s entered for you) or its network name (e.g., if you add an alias for Aibo’s
IP address to younosts system file); click onConnect or pressEnter to initiate the
connection;

e Connect : initiates the connection with the remote robot; during the connection process, the
status bar will report connection progress; once the connection is established, this button
changes t@isconnect , which serves to close the connection.

The following controls are only available when connected:

e Cross: uploads the cross-compiled controller binary to the remote robot (cross-compilation
is explained in subsectign 8.7.1); the controller binary is expected to be locally found as
OPEN-R/MW/OBJS/CONTROLL.BINin the robot’s assigned controller directory, and is up-
loaded through wireless TCP/IP to thS/OPEN-R/MW/OBJS/ location on the Memory
stick on the robot;

e Reboot: reboots the remote robot; connection is dropped as a result, you must reconnect
manually once the robot is back up;

e Shutdown : shuts down the remote robot; connection is dropped as a result.

Note: Connection may be automatically dropped if too many transmission errors occur; in that
case, the status bar will inform of the disconnection and possibly provide an error report (under
Windows, it will also state the last system error message).

Important: If Aibo is physically switched off before disconnecting, the Control Panel may
freeze for a while, causing Webots to become unavailable or not responding. It is therefore
always better to disconnect the robot from the Control Panel before switching it off.

8.5.2 Manual controls and feedback

The Manual Controls pane provides manual control functionality over the simulated or remote
robot, depending on the connection state, and also serves to display sensor feedback data. It is
essentially identical for both supported Aibo models.

Unless otherwise indicated, each element of this section corresponds to a robot primitive. Some
primitives, e.g., pressure sensors, may have several elements associated to them. In this section,
we refer to those primitives by their descriptive names. Please check seciion 8.4 for a list of
primitive names and their corresponding PIDs.

Note: Manual controls are disabled when manual control is not possible, i.e., either during MTN
playback or when the simulation is stopped and no remote connection has been established.
Disabled state is recognizeable from the sliders’ grey appearance.
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Head controls

TheHead Control section contains the following elements ("*” denotedivecontrols):

¢ head top viewbody picture with selected head; serves also to display certain touch sensors
state (see below);

e head joint sliderg: command the 3 head joint primitives (available for both models; some
may have different semantics depending on the model, please refer to slider labels);

e head front view head picture with selected mouth; serves also to display certain touch
sensors state (see below);

e mouth joint slider: commands the mouth joint primitive (available for both models);

e numeric data fields display numeric feedback data obtained from various sensors (see
below);

o face view*: face picture with various active elements: ears, face lights, LEDs (discussed
separately for each supported model).

Availableactivecontrols, marked with "*”, are used to command various parts of the Aibo robot.

If a remote connection has been established, these commands are sent to the remote robot. If the
simulation is hooked, they also get processed by the simulation engine. The remaining passive
elements serve to display robot status. The following graphical displays are common to both
Aibo models:

e Head touch sensor(sjlisplayed on the head top view; when pressure is detected on either
head sensor, part of the selected head turns red;

e Chin touch sensordisplayed on the head front view; when pressure is detected, the se-
lected chin turns red,

e Back touch sensor(s)displayed on the head top view; when pressure is detected, the
corresponding part on the back of the robot turns red.

Some numeric data displays are also common to both models:

Acc.Flb [m/s2]: front-back acceleration (front positive);

Acc.R/l [m/s2]: right-left acceleration (right positive);

Acc.U/d [m/s2]: up-down acceleration (up positive);

Battery [C]: battery temperature, measured in degrees Celsius;

Power [%]: remaining battery power, measured in percent of total battery capacity.

Additional model-specific head controls are discussed in the following subsections.
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Head controls: ERS-210 specifics

The ERS-210 face view (see figuire §.14) contains the following active controls:

e 6 face lights these are represented by the 6 rectangles located along the edges of the face;
they are white when lights are off, and turn to appropriate color when they are on;

e mode indicator represented by the one remaining rectangle located in the middle of the
face; it is also white when the mode indicator is off, and turns green when it is on;

e ears: ear plungers are controlled by two active ear-shaped elements; ears are pricked when
the ear elements are active (grey), and flat when they are inactive (white).

| bt o0 AccFik - mmifs?
l\_.,_é -47 -3 Acch: - mfse I.i’ m
e -300 Acc U - mfs? 0
1
Distance: 0.90 m Batteny: -'C Front - M ‘H.- |
Therrna: = G Fower: - % Back: - M

Figure 8.14: ERS-210 face and data view (lights and ears switched on)
Additionally, the ERS-210 model has the following proper numeric data displays:

e Distance [m]: head distance sensor (PSD);
e Thermo [C]: temperature sensor;
e Front [N]: head pressure sensor (front);

e Back [N]: head pressure sensor (back);

Head controls: ERS-7 specifics

The ERS-7 face view (see figyre 8.15) contains the following active controls:

e 14 face lightsthese are represented by the 14 circles filling up the face region, which are
an abstraction of the 14 primitives making up the face lights, numbered 1 to 14 from left to
right and from top to bottom; they are black when off, and turn white when switched on,
regardless of LED specs;

e head light: represented by the 2 shapes forming a semi-circle in the top-center of the face,
which are an abstraction for the white (leftmost) and color (rightmost) LEDs making up
the head light; they both appear grey when off, and turn white and orange respectively
when switched on;
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e mode indicator: represented by the 3 pairs of mirrored shapes forming up two semi-
circles located by each ear, which are an abstraction for the green (topmost), red (middle)
and blue (downmost) LEDs making up the mode indicator; they appear grey when off, and
turn appropriate color when switched on;

¢ wireless light: represented by the small rectangle located at the very top of the face; it is
white when off, and turns green when on;

e ears: ear plungers are controlled by two active ear-shaped elements; ears are raised when
the ear elements are active (grey), and flat when they are inactive (white).

Note: Head and face lights and LEDs have no hooks on the simulated robot model. What appears
to be face lights or other LEDs on the model are simple static graphics. This may be corrected
when the ERS-7 model is updated in a future release.

it T -3.00 Acc.Fh: - mfs2
||l -RE 1-3 Acc. B - ms2
g -300 Acc Ufd: - mn/fs?
MNear: 060 m Head: - M Frant: - I
Far: 150 m Battery: - C Middle: -
Chest 0.32 m Power: - % Rear: -

e Et =1

Figure 8.15: ERS-7 face and data view (some lights and ears switched on)

Additionally, the ERS-7 model has the following proper numeric data displays:

e Near [m]: head distance sensor (near);

e Far [m]: head distance sensor (far);

e Chest [m]: chest distance sensor;

e Head [N]: head pressure sensor;

e Front [N]: back pressure sensor (front);

e Middle [N]: back pressure sensor (middle);

e Rear [N]: back pressure sensor (rear);
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Legs controls

The Legs Control section is identical for both supported models. It contains 4 rows of joint
controls, one row for each leg (front legs on top, hind legs on bottom). Each row is made up of
the following elements:

e arobot view. top robot view where selected paw indicates leg position; that paw also turns
red when the corresponding paw touch sensor is triggered;

e 3joint sliders: these correspond to the 3 controllable leg joints for selected leg, i.e., swing
(J1), flap (J2) and knee (J3).

Tail controls

TheTail Control section is identical for both supported models. It contains 2 joint sliders control-
ling the pan and tilt of the robot’s tail.

The ERS-7 model also has back lights control, described below.

Back lights control (ERS-7 only)

The ERS-7 model has an additional control element, shown in 8.16: a view of the back of
the robot, located to the right of titeil Control , containing 6 active elements placed in a cluster

in the center. These active elements, arranged in a row from left to right, represent 6 LEDs which
are an abstraction for the 3 ERS-7 back lights:

o front light : the first pair of elements represent the 2 LEDs making up the front back light;
they appear black when turned off, and change to white (leftmost) or blue (rightmost) when
switched on;

e middle light: the next pair of elements represent the 2 LEDs making up the middle back
light; they appear black when turned off, and change to white (leftmost) or yellow (right-
most) when switched on;

e rear light : the last pair of elements represent the 2 LEDs making up the rear back light;
they appear black when turned off, and change to white (leftmost) or red (rightmost) when
switched on.

Joint parameters controls

This section, labellethaximum for... , is identical for both supported models. It contains a set of
2 sliders:
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Figure 8.16: ERS-7 back lights control ("'white’ middle LED is off)

e Velocity [deg/s]: controls the global maximum setting for joint velocity;

e Acceleration [deg/€] : controls the global maximum setting for joint acceleration.

Note: Changing the value of either slider affects all joints. Individual joint limits are however
still enforced; each joint's commanded parameter (velocity or acceleration) will be set as close
to the requested value as individual limits permit.

8.5.3 Motion sequence (MTN) playback

TheMTN Controls pane provides motion sequen®¢TN) files management and playback func-
tions. Itis identical for both supported Aibo models. MTN is Sony’s format for frame-by-frame
motion sequence playback. MTN files are binary files expected to .hawe extension and be
stored in 8.3 filename format. For further information regarding the MTN format, please refer to
the official Aibo SDE websif®

Let's see what the available MTN controls do:

File field : displays the selected MTN file name (the combo box contains a list of previ-
ously selected file names); to select a new file, click on thjebutton located next to the
combobox;

Fix . attempts tdix the selected MTN file (see notes below); the resulting file replaces the
original, which is first renamed for backup;

Play : starts the selected MTN file playback; if a remote robot is connected, then a com-
mand is sent to start remote MTN playback (the selected MTN file must be on the robot’s
Memory stick), otherwise MTN is played in simulation; if playback is successfully started,
the button changes &iop, which aborts the playback;

@-> button : updates the number of times to repeat current MTN motion sequence play-
back to the desired value (only available during playback);

4http://openr.aibo.com
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e @-> field : enter the number of times to repeat current MTN motion sequence here (any
number between 0 and 65535 can be used); pressirgy has the effect of thed->
button during playback and that of they button otherwise (in that case, minimum value
is 1);

e Log checkbox : enables or disables the logging of MTN playback; log file is written to We-
botsuUser directory , in append mode; it is a binary file which starts with tiBO _2.0"
string, followed by logged MTN data for each keyframe, as follows:

(a) simulation feedback datanumbern of following values (1byte ) + mtn joint values
(mshort s) + paw touch sensor valuesgdort s);

(b) keyframe data keyframe index (Ishort ) + keyframe mtn joint valuesnf short s)
from the MTN file being played;

(c) remote feedback datanumbern of following values (1byte ) + mtn joint values ifn
short s) + paw touch sensor valuesqdort S)

(short integers are in little-endian encoding; data lengti15 for ERS-210 om=20 for
ERS-7; for feedback data, number of valuesay be 0 if no data is available, otherwise
n=nt4).

The remaining MTN file management controls are only available when connected (and not during
MTN playback):

e Upload : uploads the selected MTN file to the remote robot; the file is uploaded to the
IMS/OPEN-R/MW/DATA/P/ directory on the robot’s Memory stick; if a file with that name
already exists, it is overwritten without prompting;

e Delete : deletes the remote file with selected filename fromiM&OPEN-R/MW/DATA/P/
directory on robot’'s Memory stick; local selected file is not affected.

During MTN playback,Manual Controls are disabled, and the status bar indicates the motion
sequence progress, i.e., the current keyframe index followed by the total number of frames, and
optionally the number of repeat loops yet to play. Example (also shown in figure 8.17):

Simulated MTN running frame 57/72 (2x more)...

In the above example, the status bar tells us that the MTN playback is being simulated, that we
have reached keyframe 57 of a total of 72, and that the whole sequence will be replayed 2 more
times.

Here’s another example:

Remote MTN running frame 1433/1872...
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Figure 8.17: Status bar shows progress info during MTN playback

In that example, the MTN motion sequence is being played on the remote robot, who has reached
keyframe 1433 of a total of 1872, and there are no scheduled replays.

Note: You can modify the number of scheduled replays at any time during playback by entering
the desired number in th@-> field and clicking on the@-> or simply pressindgenter . Enter0
to clear scheduled replays. (This wilbt stop the playback. Use tiseop button to that effect.)

MTN support limitations and the fix feature

There are some limitations to the MTN motion sequences supported by our software, which are
mostly due to the remotRCServer software MTN support limitations. The MTHRx feature

can be used to adapt foreign MTN motion sequences to our software requirements. It will, inter
alia:

amend the design label to the correct one for current model;

re-order primitive data in keyframes to match hard-coded MTN primitives list;

fill data for missing MTN primitives with default values and discard data for primitives
which do not appear in the hard-coded MTN primitives list;

expand the interpolation between keyframes using linear interpolation algorithm so that
there are no keyframes with a positive interpolation factor.

The MTN fix feature may also be used to help convert MTN files written for one model to another
model. In order to do that, follow these few simple steps:

1. Edit acopyof the original MTN file.

2. Change old model primitive names, which appear in plain text in the binary MTN file, to
their new model counterparts. You needn’t worry about primitives which have no corre-
spondance in the new model: data for unknown primitives will simply be discarded.

3. Finally, open the resulting MTN file in theew model'Control Panel anédix it.
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(You may refer tovorlds/aibo  _ers7ers210 _prm_map.txt for reference to primitive names
correspondance between ERS-7 and ERS-210 models.)

Important: If you need tosuppresscharacters from a primitive name, you need only set the
byte following the shortened primitive name@o. If you need tcadd characters, however, you

must also amend the name’s length (stored on the preceding byte) as well as the total size of
the primitive names data section (stored in little-endian encoding on 4 bytes at the beginning of
the section; there are 2 additional bytes between the section length and the first primitive name
length, which you must not touch).

8.6 Programming your Aibo

8.6.1 Getting started

We assume here that you are already familiar with basic Webots controller programming tech-
niques. If you are not, you are encouraged to go through the tutorial in chapter 3. For documen-
tation pertaining to the controller API function calls, please refer tdRbkerence Manual

To write a simple Aibo program, put it in a subdirectory named after your controller in your
controllers/ user directory, then use the followingpkefile  to compile it:

# for Windows, uncomment following line if you need the
# DOS console to appear, e.g., for console output
#DOS_CONSOLE=1

include ../Makefile.include

This works if your controller source has the same name as the subdirectory it is in. (The lan-
guage is selected automatically from the source extenswrfor C, .cpp/.cc  for C++.) If

your controller uses several source files, you must change abakefile accordingly (see
Makefile.include for available options).

Aibo programming basics

Aibo’s devices are identified by the corresponding primitive names. As an example, we provide a
listing of a simple controllergrsX _camera , which enables the camera and refreshes its display
every 64 milliseconds. This controller, actually valid for both supported models, is contained in
controllers/ersX _camera/ersX _camera.c :

#include <device/robot.h>
#include <device/camera.h>
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[* this very simple controller enables the camera and refreshes
* its display every 64 milliseconds; it is equally useable for
* Aibo ERS-210 and ERS-7 robots, since the camera primitive name
* is identical for both models */

#define SIMULATION_STEP 64
static DeviceTag camera;

static void init(void) {
camera = robot_get_device("PRM:/r1/c1/c2/c3/i1-FbkimageSensor:F1");
camera_enable(camera,SIMULATION_STEP);
/* note: considerably slows down simulation */

}

static int run(int ms) {
(void)camera_get_image(camera); /* refresh camera image */
return SIMULATION_STEP;

}

int main(void) {
robot_live(init);
robot_run(run); /* note: never returns */
return O;

}

Using PID constants to access devices

To avoid retyping primitive names, we provide two include files which define PID constants
and primitive name tables for each model (see se¢tign 8.4). These files are located in Webots
transfer/openr/aibo/ directory. Copy theers210.h or ers7.h file from that directory

to your controllers/ user subdirectory and use the following include includes in your con-
troller’s source:

#include "../ers210.h"
for the ERS-210, or
#include "../ers7.h"

for the ERS-7 model. You will thus be able to use PID constants to address the desired primitives,
whose names are stored for both models in the following array:

static const char* const PRIMITIVE_LOCATOR]]; // prm names, indexed by PID
static const int NUM_PRIMITIVES; I/l size of above array
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Aibo’s devices can now be easily referenced using their PID constants. The simple controller
whose source is given in previous section now becomes:

#include <device/robot.h>
#include <device/camera.h>
#include "../ers7.h"
I* model-specific additional include: this controller is now specific
* to the ERS-7 model (include "../ers210.h" for ERS-210 model) */

#define SIMULATION_STEP 64
static DeviceTag camera;

#define PRM(pid) PRIMITIVE_LOCATOR[pid]
/* macro for ease of referencing device names */

static void reset(void) {
camera = robot_get device(PRM(CAMERA));
camera_enable(camera,SIMULATION_STEP);

}

/* the rest of the code does not change */

static int run(int ms) {
(void)camera_get_image(camera); /* refresh camera image */
return SIMULATION_STEP;

}

int main() {
robot_live(init);
robot_run(run); /* note: never returns */
return O;

}

Note: The above code is now specific to the ERS-7 model, because of the model-specific include,
which may seem a drawback. For more complicated controllers, however, primitive names for
required devices may not be the same for the two models anyway (such as leg joints, for instance),
but because PID constant naming is quite consistent, it is much easier, using this system, to adapt
the controller from one model to another - just use appropriate model-specific include - whereas
otherwise you would need to check and adapt every primitive name used in your source code.

In the following samples, we will use explicit primitive naming for ease of reading. However,
they can easily be adapted to the use of PID constants as described above.
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8.6.2 Default controllers

The default controllers are known as210 for ERS-210 model andrs7 for ERS-7 model.

They are essentially identical, except of course for the primitive names and number of distance
sensors which were adapted for each model as approopriate. Here is the listerg2fidr
controller source, contained @ontrollers/ers210/ers210.c :

#include <stdio.h>

#include <string.h>

#include <device/robot.h>

#include <device/servo.h>

#include <device/camera.h>
#include <device/distance_sensor.h>
#include <device/touch_sensor.h>
#include <device/mtn.h>

#define SIMULATION_STEP 64

#define MTN_PATH "../../data/mtn/ers210/"
#define MTN_FILE "WWFWD.MTN"
#define MTN_REPLAY 3

static int demo;
/* true => do nothing, false => play mtn; demo mode is
* triggered by robot's name: "demo" */

static MTN *mtn;

static DeviceTag camera,
distance_sensor,
touch_sensor_fore_|,
touch_sensor_fore r,
touch_sensor_hind_|,
touch_sensor_hind_r;

static void init(void) {

camera=robot_get_device("PRM:/rl/c1l/c2/c3/il-FbkimageSensor:F1");

distance_sensor=robot_get_device("PRM:/r1/cl/c2/c3/pl-Sensor.pl");

touch_sensor_fore_I=robot_get_device("PRM:/r2/c1/c2/c3/c4-Sensor:s4");

touch_sensor_hind_I|=robot_get_device("PRM:/r3/cl/c2/c3/c4-Sensor.s4");

touch_sensor_fore_r=robot_get device("PRM:/r4/cl/c2/c3/c4-Sensor:s4");

touch_sensor_hind_r=robot_get_device("PRM:/r5/c1/c2/c3/c4-Sensor:s4");

/* demo mode? */

demo = (strcmp(robot_get name(),"demo™)==0) ? 1 : O;

if( 'demo ) {

/* enable camera and sensors */
camera_enable(camera,SIMULATION_STEP);
distance_sensor_enable(distance_sensor,SIMULATION_STEP);
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touch_sensor_enable(touch_sensor_fore_|,SIMULATION_STEP);
touch_sensor_enable(touch_sensor_hind_|,SIMULATION_STEP);
touch_sensor_enable(touch_sensor_fore_r,SIMULATION_STEP);
touch_sensor_enable(touch_sensor_hind_r,SIMULATION_STEP);
/* read MTN motion sequence */

if( !(mtn = mtn_new(MTN_PATH MTN_FILE)) )

printf"MTN Error: %s\n",mtn_get_error());
}
}

static void die(void) {
if( mtn ) mtn_delete(mtn);

}

static int run(int ms) {
static int loop=-1,
if( 'demo ) {
(void)camera_get_image(camera); /* refresh camera */
if( mtn_is_over(mtn) && (++loop<MTN_REPLAY) )
mtn_play(mtn); /* play mtn until enough loops */

}
return SIMULATION_STEP;

}

int main() {
robot_live(init);
robot_die(die);
robot_run(run);
return O;

In the above example, inspired by source code written by Lukas Hohhit)e  function first

retrieves camera and sensors device tags. We then delacmode if the robot':iame="demo"

(in this mode, the controller actually does nothing, so as not to interfere with the Control Panel).
Finally, unless demo mode is selected, we enable camera and sensors and read the appropriate
MTN file from disk.

In therun() function, which gets called regularly by the simulation engine, unless we are run-
ning indemomode we refresh the camera display and start, or re-start, MTN playback until we
reach the number of loops specified by tWENREPLAYconstant.

Note: Sensor readings are not used in this example; sensor-related code is included solely as an
example of manipulations required in order to enable their use.
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8.6.3 Sample controller: MTN Playlist

A bit more complicated sample controller, knowneas7 mtn for ERS-7 ancers210 _mtn for
ERS-210 model, allows you to play custom MTN playlists without recompiling each time you
want the robot to execute a different motion sequence. It will read an MTN playlist definition
file (see relevant subsection below) and playback the MTN files from the playlist, one after the
other.

Source code

Let's take a look at this controller’'s source code (same controller is also available for the ERS-210
model), contained irontrollers/ers7 _mtn/ers7 _mtn.cc :

#include <stdio.h>

#include <string.h>

#include <device/robot.h>
#include <device/camera.h>
#include <device/touch_sensor.h>
#include "mtnplaylist.hh"

O~NO O, WN P

#define SIMULATION_STEP 64
9  #define MTN_PLAYLIST "playlist.txt"

11 static MTNPlayback *playlist;

12 static DeviceTag camera;

13 static DeviceTag touch_sensor[4];

14 enum { // touch sensor indices

15 TSFL, /I front left

16 TSHL, // hind left

17 TSFR, /I front right

18 TSHR, // hind right

19 NUM_TS}; // number of touch sensors

22 static void init(void) {

23 camera = robot_get_device("PRM:/rl/c1/c2/c3/i1-FbkimageSensor.:F1");
24 touch_sensor[TSFL]=robot_get device("PRM:/r2/cl/c2/c3/c4-Sensor:24");
25 touch_sensor[TSHL]=robot_get_device("PRM:/r3/c1/c2/c3/c4-Sensor:34");
26 touch_sensor[TSFR]=robot_get device("PRM:/r4/c1l/c2/c3/c4-Sensor.44");
27 touch_sensor[TSHR]=robot_get_device("PRM:/r5/cl/c2/c3/c4-Sensor:54");
28 /* enable sensors */

29 camera_enable(camera,SIMULATION_STEP);

30 for(int i=0; IKNUM_TS; i++)

31 touch_sensor_enable(touch_sensor[i], SIMULATION_STEP);
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32 /* read playlist */

33 playlist = mtn_playlist new(MTN_PLAYLIST,stdout); // log to stdout
34 }

35

36 static void die(void) {

37 mtn_playlist_delete(playlist);

38 1}

39

40 static void print_touch_sensors_if changed() {

41 static unsigned short stored_sensor_value[4];

42 static bool first_time = true;

43 /* read sensors values and detect change */

44 bool changed = false;

45 for(int i=0; IKNUM_TS; i++) {

46 unsigned short v = touch_sensor_get value(touch_sensorli]);
47 changed |= (stored_sensor_value[i]'=v);

48 stored_sensor_value[i] = v;

49 }

50 [* print sensor values if change detected */

51 if( changed || first_time ) {

52 printf("Touch: ");

53 printf(*fore:[%u-%u] ",sensor_value[TSFL],sensor_value[TSFRY]);
54 printf("hind:[%u-%u] ",sensor_value[TSHL],sensor_value[TSHRY]);
55 printf(*\n");

56 }

57 first_time = false;

58 1}

59

60 static int run(int ms) {

61 (void)camera_get_image(camera); // refresh cam image

62 print_touch_sensors_if changed();

63 if( mtn_playlist ) // playback mtn list

64 mtn_playback(mtn_playlist);

65 return SIMULATION_STEP;

66 }

67

68 int main() {
69 robot_live(init);
70 robot_die(die);

71 robot_run(run);
72 return O;
73 }

There is not much difference between this controller and its simpler sibling described in subsec-
tion[8.6.2, so we shall skip the basics. The only thing of notice is the creatior\fldRlayback
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structure, defined imtnplaylist.hh , declared at line 11 and created at line 33 with a call to
mtn _playlist ~ _new() function.

To make this controller a bit more interesting, thent _touch _sensors _if _changed()

function, which gets called at every simulation cycle fromrihg) function at line 62, will pro-

duce a printout of paw touch sensors’ state, but only if at least one value has changed (otherwise,
the console would be flooded with largely repeating data).

Notice also the use of an array in conjunction with an enumerated sequence (lines 13-19) to store
paw touch sensor device tags. The array makes it easier to enumerate all sensors when required
(e.g., lines 30-31), and thehnum constants allow to easily identify each individual sensor (e.g.,
lines 53-54).

Note: Includedmtnplaylist.hh file is located in the same directory as the controller’s source.
It contains declarations and function definitions for MTN playlist support. It is model- and robot-
independent, and can be re-used as is.

Playlist file format

Here is a sample playlist definition file for the ERS-7 model, storeglanlist.txt in the
controller’s directory:

MTN Playlist Sample

H H H

@../../data/mtn/ers7/
# '@’ lead-in, possibly followed by filename prefix (e.g., root path)

2 # number of entries

# entries one per line, as: [filename] [loop] #rest ignored
WWFWD.MTN 5

#WSSDK.MTN 1 # commented out

WWBWD.MTN 3

# after declared number of entries are read,
# everything else is ignored

The format is quite simple: The first uncommented non-empty line must contai@thiead-in
character, possibly followed by a prefix string (no end-of-line comments allowed here) which
will be prepended to each of the filename entries that follow; this prefix can be, e.g., the root
path for your MTN files. Then, the number of MTN file entries must be specified. Finally, said
number of entries must follow, each entry on a separate line (commented-out lines are ignored),
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made up of an MTN file name (to which the above prefix is automatically prepended) and the
number of times that file is to be played (end-of-line comments are allowed).

The above sample playlist will use MTN files from default MTN storage directory, and make the
robot first walk forward 5 timesWWFWD.M)Nhen backward 3 times\WBWD.MJN

Note: A playlist is only loosely model-dependent: assuming that valid MTNs with the same
names exist for the other model, the only thing to change in order to use this playlist with the
other model's MTN playlist controller is the root path line.

Building the controller

To build this controller, the following/akefile is used:

SOURCE_INCLUDES = mtnplaylist.hh
DOS CONSOLE=1
include ../Makefile.include

TheSOURCHNCLUDESvariable is used to declare source code include dependencidsQ@@DNSOLE=1
makes a console appear under Windows to display controller’'s standard output.

8.6.4 Sample controller: Mimic

This controller, calleédrs7 _mimic for the ERS-7 an@rs210 _mimic for the ERS-210 model,
was invented by Lukas Hohl. Here is the listing for the ERS-210 version source, contained in
controllers/ers210 _mimic/ers210 _mimic.c

#include <device/robot.h>
#include <device/servo.h>

/* this controller is quite entertaining: releasing the servos on one
* of the robot's legs so that it hangs loose, it makes the remaining
* legs 'mimic’ that one as it gets rotated or bent by hand (idea
* courtesy of Lukas Hohl) */

#define SIMULATION_STEP 16
#define NUM_JOINTS_PER_LEG 3
enum { /* leg indices enumeration */
LFLEG, /* left fore leg */
LHLEG, /* left hind leg */
RFLEG, /* right fore leg */
RHLEG, /* right hind leg */
NUM_LEGS};
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#define MASTER_LEG RFLEG /* master leg */
static DeviceTag leg_servos|[NUM_LEGS][NUM_JOINTS_PER_LEG];

static void init(void) {
int j;
leg_servos[LFLEG][O]=robot_get_device("PRM:/r2/c1-Joint2:j1");
leg_servos[LFLEG][1]=robot_get_device("PRM:/r2/c1/c2-Joint2:j2");
leg_servos[LFLEG][2]=robot_get_device("PRM:/r2/c1/c2/c3-Joint2:j3");
leg_servos[LHLEG][O]=robot_get device("PRM:/r3/c1-Joint2:j1");
leg_servos[LHLEG][1]=robot_get_device("PRM:/r3/cl/c2-Joint2:j2");
leg_servos[LHLEG][2]=robot_get device("PRM:/r3/c1l/c2/c3-Joint2:j3");
leg_servos[RFLEG][0]=robot_get_device("PRM:/r4/c1-Joint2:j1");
leg_servos[RFLEG][1]=robot_get device("PRM:/r4/cl/c2-Joint2:j2");
leg_servos[RFLEG][2]=robot_get_device("PRM:/r4/c1/c2/c3-Joint2:j3");
leg_servos[RHLEG][0]=robot_get_device("PRM:/r5/c1-Joint2:j1");
leg_servos[RHLEG][1]=robot_get device("PRM:/r5/c1/c2-Joint2:j2");
leg_servos[RHLEG][2]=robot_get_device("PRM:/r5/c1/c2/c3-Joint2:j3");
[* release master leg servos, enable position reading */
for(j=0; j<NUM_JOINTS_PER_LEG; j++) {

servo_motor_off(leg_servos[MASTER_LEG][]]);
servo_enable_position(leg_servos[MASTER_LEG][j],SIMULATION_STEP);

}

}

static int run(int ms) {
int i,j; float master;
for(j=0; j<NUM_JOINTS_PER_LEG; j++) {
/* master position */
master = servo_get position(leg_servos[MASTER_LEG][j]);
for(i=0; i<NUM_LEGS; i++) if (I=MASTER_LEG)
servo_set_position(leg_servos]i][j],master);
[* set remaining legs to master */
}
return SIMULATION_STEP;
}

int main(void) {
robot_live(init);
robot_run(run);
return O;

}

In theinit)  function, we begin by obtaining relevant device tags, then release all joint servos
on the master leg, defined by tMASTERLEG constant (in this case, it is the robotight fore
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leg), and enable their position reading. Thae() function then simply reads the master position
from the master leg servos for each joint and commands the other legs to reach that position.
(Notice how we loop on albintsfirst, so as to minimize master servo position readings.)

Note: As you can see, this code is extremely simple yet the effects are quite impressive! You can
actually use it in simulation as well as on the real robot: open the Control Panel and try playing
with the right fore leg sliders (first row in theegs Control section)... Have fun!

8.7 Transfer to real robot

In this section, we adress the question of how to use your controller written using the Webots
controller API with your real, live Aibo robot. There are typically two ways to do that:

e cross-compilatioomode, wherein the controller code is cross-compiled to produce a binary
executable which then runs on the live robot directly;

e remote-contromode, wherein the controller runs as part of Webots simulation engine but
commands are forwarded to and feedback obtained from the live robot by means of a
remote (wireless) connection, effectively emulating direct remote execution.

For now, only the cross-compilation method is supported. Future developments may address this
issue and extend Aibo support to enable the use of other transfer modes.

8.7.1 Cross-compilation

Software for the Aibo robot is written using Sony’s proprietary object-oriented API called OPEN-
R. What we have is some source code for a controller written in C or C++ using Webots controller
API. The basic idea of cross-compilation is this: an OPEN-R wrapper object running on Aibo
basically translates all Webots robot controller API calls into OPEN-R meaningful instructions
for the live robot. Because OPEN-R programs are written in C++, it is actually rather straight-
forward to combine the Webots controller program with the OPEN-R wrapper object to obtain a
binary code executable on the live robot. Schematics of this procedure are shown ifi figure 8.18.

Important: The actual cross-compiler is Sony’s OPEN-R cross-compiler included in the OPEN-
R SDK available for download from the official OPEN-R weldSit order to take advantage of
controller cross-compilation in Webots, the OPEN-R SDK must therefore be installed first.

Shttp://openr.aibo.com
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Figure 8.18: Aibo cross-compilation scheme

Cross-compiling your controller

For the sake of simplicity, we will describe the cross-compilation procedure on the default
ers210 controller for the Aibo ERS-210 which comes with Webots (see subséction 8.6.2). It is
quite straight-forward to adapt the procedure described here to any other Aibo controller.

The default Aibo ERS-210 controller is located in Webaistrollers/ers210/ directory.
The controller code is contained in the fds210.c . There are two makefiles:

o Makefile is for the compilation of the controller for simulated execution;

o Makefile.openr creates a binary object executable on Aibo.

The source code files to be compiled by both makefiles are listedkefile.sources
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For cross-compilation, theansfer/openr/ directory contains intermediate cross-compiled
files of theController =~ OPEN-R object. Th&lakefile.openr makefile compiles all source
code files specified iNakefile.sources (.c ,.cc or.cpp ) using Sony’s cross-compiler and
links them with the already existing files. If there is not yet a directory calle&N-R/ in the
controller directory, a defaudPEN-R/ directory is copied frontransfer/openr/ . Calling

$ make -f Makefile.openr clean

will again remove theOPEN-R/ directory. The controller binary flEONTROLL.BIN resulting
from the controller cross-compilation is then placed into@R&EN-R/MW/OBJS/ subdirectory in
the controllers/ers210/ controller directory. The binary files of the other remote software
objects are also located in that target subdirectory. (Initially, GO&TROLL.BIN binary code
already in place corresponds toaid controller.) Four MTN motion sequence files are already
present irDPEN-R/MW/DATA/P/ and thus do not need to be uploaded separately.

Important: The files inOPEN-R/ directory must not be modified, renamed, moved or deleted.
This OPEN-R/ directory may be directly copied to the Memory stick in order to install the com-
plete remote software together with the cross-compiled controller. If you have already set up the
remote software, as explained in secfior] 8.2 (subselction 8.2.4 in particular), you need only copy
the OPEN-R/MW/OBJS/CONTROLL.BINcontroller binary file (to the corresponding location on

the Memory stick), or use theross feature of the Control Panel (see subsedtion 8.5.1).

Using external data files in cross-compiled controllers

When cross-compiling a controller which reads or writes to external data files, such as MTN
motion sequence definition files, itis a good idea to reference them by filename only (no absolute
or relative paths), e.g.:

MTN* mtn = mtn_new("WWFWD.MTN");
instead of the usual:
MTN* mtn = mtn_new("../../data/mtn/ers210/WWFWD.MTN");

(Otherwise, Aibo will not be able to find the file.) To run such controller in simulation, e.g.,
a controller which uses MTN playback, you must have the external files in the same directory
as your controller; you can either make a local copy of the file(s), or (if you're running Linux)
simply create soft links. To run the controller on the real robot, you must of course also copy the
required data files to the Memory stick.

Important: Remember: All Aibo data files are locatedMS/OPEN-R/MW/DATA/P/ directory

on the Memory stick. This is where you need to copy any MTN file your controller uses if you
want to do it by hand; using the MTNpload functionality of the Control Panel uploads the file
automatically to the correct location.
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ALife Contest

A programming contest based on Webots was organized on the Internet. The web site of the
contesﬁ may provide more up to date information about it than this manual. ALife stands for
"Artificial Life”.

9.1 Previous Editions

This was actually the third edition of the ALife contest. Two editions were organized in 1999
and 2000. Each competition gathered about 10 teams worldwide made up of one to three indi-
viduals. The winners were respectively Keith Wiley from the University of New Mexico, USA
and Richard Szabo from Budapest University, Hungary.

9.2 Rules

9.2.1 Subject

Two robots are roaming a maze-like environment (see figufe 9.1), looking for energy. Energy is
provided by chargers (see figlire|9.2). However, chargers are scattered all around the environment
and it is not so easy for the robots to find them. Moreover, once used by a robot, a charger will
be unavailable for a while (see figyre]9.3). Hence, the robot will have to go away and look for
another charger. A robot will die if it fails finding an available charger before it runs out of
energy. Then, the remaining robot will be declared the winner of the match.

The world configuration is choosen randomly for each match. A number of world configu-
rations is provided within the Webots package, They are naafifsdwbt |, alifel.wbt
alife2.wbt , etc. Please note that the initial position and orientation of the robots may also be
choosen randomly.

thttp://www.cyberbotics.com/contest/
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Figure 9.1: The world used in the contest

9.2.2 Robot Capabilities

All robots have the same capabilities. They are based on a model of Khepera robot equipped
with a K6300 color matrix vision turret. Hence each robot has a differential wheels basis with
incremental encoders, eight infra-red sensors for light and distance measurement, and a color
matrix camera plugged on the top of the robot, looking in front. The resolution of this camera was
scaled down to 80x60 pixels with a color depth of 32 bits. As you may have already understood,
analyzing the camera image is a crucial issue in developing an efficient robot controller and you
probably need to perform vision based navigation, using landmarks and mapping.

> »

Figure 9.2: A charger full of energy
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Figure 9.3: An empty charger

9.2.3 Programming Language

For the contest, the robots can be programmed in Java only. This ensures that the binaries carry
no viruses or cheating systems. Hence, the executables.diles ( files) can be easily shared
among competitors without disclosing source code. Beware, that very good Java decompilers
exists and that it may be possible for a cheating competitors to restore your code from your
.class . He will just miss your comments... You may protect your Java code from such piracy
by obfuscating it using a Java code obfuscator. This will make the code resulting from Java
decompilation very difficult to understand, and practically unusable. Free even open source Java
source code obfuscators may be found on the Internet.

They is no limit on the computation time a robot can use. However, since the simulator runs ap-
proximately in real time without any synchronization with the robots, robots performing exten-
sive computations may miss some sensor information or react too late in some critical situations.

9.2.4 Scoring Rule

Once submitted on the web site, your robot will be appended at the bottom of the hall of fame.
Then, it will engage matches each rounda tbbots are presents in the hall of famel matches

will be played each round. The first match will confront the last robot (bottom rank in the hall of
fame) to the last but one robot (rank #n-1). If the last robot wins, the two robots will swap their
positions in the hall of fame, making the last robot win one position and the last but one robot fall
down to the bottom position. Otherwise, nothing is changed. Then, the new last but one robot
(which may have just changed) will play against the last but two robot. If the last but one robot
robot wins, they will swap their positions, otherwise nothing occurs. And so on until we reach
the top of the hall of fame. This way a robot can theoretically climp up from the bottom to the
top position within a single round. However, a robot can loose only one rank per round. This is
to encourage new competitors to submit their robots and have a chance to climb up the hall of
fame rapidly. A round will be played every day during the contest.
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It is always possible to introduce a new version of an existing robot controller, by simply upload-
ing the versions of theclass  files, erasing any previous ones. When a new version of a robot
controller is introduced in the contest, its position in the hall of fame remains unchanged. The
next matches are run using the new version.

9.2.5 Participation

The contest is open to any people from any country. Competitors may choose run for themself or
to represent their university or company. However, although competitors can update their robot
controller by submitting new versions, only a single robot controller per competitor is allowed.
If someone submits several robot controllers with different names into the contest, this person
and the corresponding robot controllers will be banned out the contest.

9.2.6 Schedule

The contest started on July 1st 2002. From this date, competitors could download all the contest
material and develop their robot controller. Matches between resulting controllers are held con-
tinuously from the middle of the summer until the end of the competition, on May 1st 2003. Itis
possible to enter the contest at any time before May 1st, 2003.

9.2.7 Prize

The winner of the contest will be the robot ranked at first position on May 1st, 2003. The authors
of this robot will receive a Khepera Il robot and a Webots PRO package (see[figure 9.4).
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Figure 9.4: First prize: a Khepera Il robot and a Webots PRO package.
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9.3 Web Site

The web site of the cont@llows you to view matches running in real time, to view the results,
especially the hall of fame that contains the ranking of the best robots with their score. It is
also possible to visit the home page of each robot engaged in the contest, including a small
description of the robot’s algorithm, the flag of the robot and possibly the e-mail of the author.
You can even download the Java binary controlidags files) of the some robots. This can be
useful to understand why a robot performs so well and to confront on your computer your own
robot against a possibly better one.

9.4 How to Enter the Contest

If you are willing to challenge the other competitors of the contest, here is the detailed procedure
on how to enter the ALife contest. You will need either a Windows or a Linux machine to
program your robot controller.

9.4.1 Obtaining the software

All the software for running the contest may be obtained free of charge.

e The Webots software to be used for the contest is available from the Webots dawnload
pag{§|. This is an evaluation version of Webots which contains all the necessary material
to develop a robot controller for the contest, except the Java environment. Follow the
instructions on the Webots download page to install the Webots package.

e The Java 2 Standard Edition (J2SE) Software Development Kit (SDK) may be downloaded
from Sun web sitéfor free. Please use the version 1.4 of the SDK. Follow the instructions
from Sun to install the SDK.

9.4.2 Running the software

Launch Webots and open the world nanadéfé.wbt . Click on therun to start the simulation.

You will see two robots moving around in the world. Each robot is controlled by a Java program
named respectivelyLife0 andALifel located in the Webotsontrollers directory. You

may enter their directory and have a look a the source code of the programs.

2http://www.cyberbotics.com/contest/
Shttp://www.cyberbotics.com/products/webots/download.html
“http://java.sun.com/j2se/1.4/download.html
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9.4.3 Creating your own robot controller

The simplest way to create your own robot controller is to start from the exisiiifg0 or
ALifel controllers.

Installation

It is safer and cleaner to install a local copy of the material you will need to modify while
developing your intelligent controller. Here is how to proceed:

1. Create a working directory which you will store all your developments. Let’s call this
directorymy alife . It may be in your Linux home directory or in your Windowsy
Documents directory or somewhere else.

2. Enter this directory and create two subdirectories caltedrollers andworlds .

3. Copy the filealife.wbt ~ from the Webotsvorlds directory to your owrworlds you just
created. Copy also the tladife  directory and all its contents from the Webaetsrlds
directory to your owrworlds directory. You may replace the imagasfe0.png  and
Alifel.png  in thealife directory by your own custom images. These images are ac-
tually texture flags associated to the robots. Their size must be 64x64 pixels with 24 or
32 bits depth. They should not represent a green rectangle, possibly faking the face of a
charger and hence confusing the opponent. If a flag appears to be a charger fake, it will be
removed.

4. Copy the wholeALife0 directory from the Webotsontrollers directory to your own
controllers directory you just created. Repeat this with thiefel directory. This
way you could modify the example controllers without loosing the original files.

5. In order to indicate Webots where the files are, launch Webots, go teighmenu and
select thePreferences... menu item to open the Preferences window. Selectrtlee
and paths tab. Setalife.wbt as the Default world and indicate the absolute path to
your my alife  directory, which may béhome/myname/my _alife  on Linux orC: \My
Documents \my_alife  on Windows.

From there, you can modify the source code of the controllers in gmntrollers directory,
recompile them and test them with Webots.

Modifying and Compiling your controller

If you know a little bit of Java, it won'’t be difficult to understand the source code oAtlife0
andALifel controllers, which are stored respectively in figfe0.java  andALifel.java
You may use any standard Java objects provided with the Java SDK. The documentation for
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the Controller class is actually the same as for the C programming interface, since all the
methods of th&€ontroller  class are similar to the C functions of the Controller API described
in the Webots Reference Manual, except for one functiagt _live which is useless in Java.
Before modifying a controller, it is recommended to try to compile the copy of the original
controllers.

To compile theALife0 controller, just go to thaLife0 directory and type the following on the
command line:

javac -classpath "C: \Program Files \Webots\lib \Controller.jar;." ALife0.java

on Windows.

javac -classpath "/usr/local/webots/lib/Controller.jar:." ALife0.java on
Linux.

If everything goes well, it should produce a nauife0.class file that will be used by Webots
next time you launch it (or reload tredife.wbt ~ world).

Now, you can start developing! Edit theife0.java , add lines of code, methods, objects.
You may also create other files for other objects that will be used by the ALife0 class. Test your
controller in Webots to see if it performs well and improve it as long as you think it is necessary.

9.4.4 Submitting your controller to the ALife contest

Once you think you have a good, working controller for your robot, you can submit it to the on-
line contest. In order to proceed, you will have to find a name for your robot. Let's say "MyBot”
(but please, choose another name). Copy yaife0.java  to afile namediyBot.java . Edit

this new file and replace the line:

public abstract class ALife0 extends Controller {

by:

public abstract class MyBot extends Controller {

Save the modified file and compile it using a similar command line as seen previously. You

should get aMyBot.class file that you could not test, but that will behave the same way as
ALifeO.class

Register to the contest from the main contest web figgeviding "MyBot” as the name of the
robot. Then, upload all the necessary files in your MyBot directory. This includes the following:

e MyBot.class file and possibly some othetlass files corresponding to other java ob-
jects you created (it is useless to uploadAhée0.class file)

Shttp.//www.cyberbotics.com/contest
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e A text file nameddescription.txt of about 10 lines that may include some HTML
tags, like hyperlinks.

e A PNG image nameélag.png that will be used as a texture to decorate your robot, so
that you can recognize it from the webcam. This image should be a 64x64 pixels with a
bit depth of 24 or 32. It should not represent a green rectangle, trying to fake the face of a
charger, otherwise it will be cancelled.

That’s it. Once this material uploaded, your robot will automatically enter the competition with
an initial score of 10. A contest supervisor program will use you controller to run matches and
update your score and position in the hall of fame. You can check regularly the contest web site
to see how your robot performs.

9.4.5 Analysing the performance and improving your competing controller
Match movies

During each round, a number of match movies are generated and storeckisuttee  directory

of the contest home page. These files can be played back with Webots. Just download them and
save them in thalife _playback directory which lies in the Webotontrollers directory.
Rename the file tanatch.dat  (overwriting the existingnatch.dat file) and open the world
namedalife _playback.wbt  with Webots. You should then see the match playback running.

To know who was the winner in aat file, just look at the two bottom lines of the file. If the

last line ends with 0, then the first robot wins (i.e., its name is displayed on the first line of the
file). Otherwise the second robot wins.

Debug and error log

In order to debug your program, or at least to understand what went wrong or right during a
round match, you can save data into a log file. This will help you developing your controller,
especially on Windows where the DOS console closes immediately after a controller crashes and
doesn't let you read the printed messages in this console. Moreover, it may also be useful to
do it during the contest matches running on the match server to understand exactly how your
controller behaved during a contest match. Your log file can be retrieved from the match server
after the round completed as a zipped file.

To proceed, you first need to create such a log file and then log useful information using the
printin  statement:

import java.io.*;

PrintStream log;
FileOutputStream file;
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try {
file = new FileOutputStream("log.txt");
log = new PrintStream(file);

} catch (Exception e) { }
log.printin("My estimated coords: ("+x+","+y+") my state="+state);
log.printin("My energy level: "+energy);

log.close();
file.close();

During each round, for each competitor using this log file facility, a log file cadgdip is

stored in the controller directory of tlempetitors  directory of the contest home page. This

file is the compressed version of ydag.txt  file. It contains all the debug messages produced

by your controller along the different matches of the last round. Please note that this log file will
be visible by all the other competitors, so be cautious and don’t reveal your secret algorithms.
Also useful, in theresults  directory, a file callecerrors.zip contains the error log of the

last round, which may be useful to detect if your controller crashed, producing a java exception.
Note that these files are erased at the beginning of each new round and replaced by new ones
corresponding to the new round.

Robot memory

It may be useful for your robot to store some data corresponding to knowledge aquired across
the different matches. Such data should be saved regularly during a normal run or, if you prefer,
just when the controller energy reaches a small value (like below 3), that is the match is about
to complete. The data can be in turn re-read by the controller when it starts up a new match, to
refresh its memory. Here is how to implement it:

import java.io.*;

/I to create/write into the file
Random r = new Random();
try {
DataOutputStream s;
s=new DataOutputStream(new FileOutputStream("memory.dat"));
s.writelnt(100); // save 100 int
for (int i=0; i<100;i++) s.writelnt(r.nextint(100));
/I you should rather save some useful info
/I here instead of random garbage!
} catch (Exception e) {
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e.printStackTrace(System.out);

}

/l to read from that file

try {
DatalnputStream s =

new DatalnputStream(new FilelnputStream("memory.dat"));
int t = s.readint(); // read the size of the data
intf] a = new int[t];
for(int i=0; i<t; i++) a[i] = s.readint(); // read back my garbage
for (int i=0; i<t; i++) System.out.print(a[i]+"\t" );
} catch (Exception e) {
e.printStackTrace(System.out);

}

Thememory.dat file of each competitor is also made available for download to all competitors
on the contest web site. This file is stored at the same place &sythip  file, that is, within
the controller directory of theompetitors  directory on the contest web site.

9.5 Developers’ Tips and Tricks

This section contains some hints to develop efficiently an intelligent robot controller.

9.5.1 Practical issues

The ALife0 example program display a Java image for showing the viewpoint of the camera,
after some image processing. This is pretty computer expensive and you may speed up the
simulation by disabling this display, which should be used only for debug. By the way, during
contest matches, the Java security manager is set so that your Java controller cannot open a
window or display anything.

9.5.2 Java Security Manager

To avoid cheating or viruses, a Java security manager is used for contest matches ran by the auto-
matic contest supervisor. This security manager will prevent your Java controller from opening
any file for writing or reading and doing any networking stuff.
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9.5.3 Levels of Intelligence

It is possible to distinguish a number of level in the complexity of the control algorithms. These
level can be ranked as follow:

1. The robot is able to move and avoid obstacles. However, it does not use the camera in-
formation at all and will find chargers only by chance. This correspond t@\Llfe0
controller.

2. In addition to level 1, the robot is able to recognize if a full charger is in front of it, even far
away. In this case, it will be able to adjust its movement to reach the charger if not obstacles
are on the way. Otherwise, the robot will look into another direction for chargers.

3. In addition to level 2, the robot is able to move around obstacles preventing a movement
toward a full charger.

4. In addition to level 3, the robot is able to perform an almost complete exploration of the
world, reaching places difficult to reach for simpler robots (you will rapidly notice that
some places are more difficult to reach than others, the problem is that these places may
contain chargers...).

5. In addition to level 4, the robot is able to build a map of its environment (mapping), so that
once a charger is found, it is placed on the map, thus facilitating the procedure for finding
it back. After completing the map, the robot can efficiently navigate between chargers
without loosing time to search for them.

6. In addition to level 5, the robot tries to chase its opponent, blocking it, preventing it to
reach chargers or emptying chargers just before it arrives.

During the previous editions of the contest, the best competitors reached level 4 (and even one
reached level 5 after the contest ended). We believe that reaching level 5 or 6 may lead to
significant performance improvements and probably to the first place of the hall of fame...



Chapter 10

Robot Soccer Lab

Robotics soccer has become an increasingly attractive research application for mobile robotics.
Many contests are organized world wide, among them the most famous are probably the FIRA
contest and the RoboCup contest. This chapter will get you started with a robot soccer application
in Webots.

10.1 Setup

Webots contains a setup for robotics soccer as depicted in figure 10.1 . This setup is freely
inspired from the official FIRA Small League MiroSot Games Rules. It can be modified to suit
your needs.

04:.05 0

Figure 10.1: A soccer simulation in Webots: soccer.wbt
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Each team is composed of three robots. Each robot has a controller program which is aware of
the the position and orientation of every robot in the soccer field. Each robot can drive its motors
wheels to move in the soccer field. A supervisor process is responsible for counting the time.
By default, a match lasts for 10 simulated minutes which may correspond to 1 minute if your
computer is powerful and if you run the match without the real time option checked in. The
supervisor process also counts the goals and reset the ball and the robots to their initial positions
after a goal has been scored.

10.2 Rules

The rules are very simple: you have to drive your robots so that you score a maximum of goal
within the 10 minutes of the match. There are no fouls, no penalty kick or free kick.

There is no obligation to have a goal keeper, you may decide to have three players all over the
field, or to have one, two or even three goal keepers!

You cannot modify robots, i.e., change their shape, add sensors, etc.

10.3 Programming

In order to program your robot, a single controller program is used for each tearsoddae _blue
controller program is used for the blue team while soecer _yellow controller program is

used for the yellow team. Each of these controller programs will be run as three concurrent
processes. In each instance of these programs, a test is done to determine the number of the
robot which can be 1, 2 or 3, according to the name of the DifferentialWheels node. One
can also test the team color the same way. The provided examples shows how to distinguish
the goal keeper (number 3) from the other players (numbers 1 and 2). Hence, it is possible
to have a generisoccer.c  source code and to compile it to eithesaccer _blue.exe or

asoccer _yellow.exe executable file. Please note that on Linux and Mac OS X, dke
extension is not used.

In order to get starting programming a robot soccer team, you should have a look in details to
thesoccer _blue.c orsoccer _yellow.c source codes. These examples shows how to obtain
the x, y and orientation for each robot from the supervisor, as well as the coordinates of the ball.
They contain useful macros for that. Moreover, they show how to program each independant
robot according to its number. Finally, they show how to make a fairly intelligent goal keeper
that will get placed according to the ball position. The behavior of players 1 and 2 is random in
this example and it is up to you to make them more intelligent!
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10.4 Extensions

This very simple robotics soccer system can be configured or extended according to your needs.

10.4.1 Modifiying the soccer field

It is possible to redesign the soccer field as you need. You can enlarge it, resize the goals, change
the ground texture, etc. Moreover, you can change the ball properties, like its mass, its bounce
parameter, etc. All these changes are possible from the scene tree window. For resizing the field,
you will have to edit the coordinates of the components of the field. It will also be necessary to
update the respective bounding objects accordingly.

For example, if you want to change the bounce parameter of the ball to make it bounce less, just
double click on the ball, open the ball node in the scene tree window, open the physics node of
the ball node and set the bounce parameter to 0.2 instead of 0.7. This will make the ball.

10.4.2 Modifying the robots

Similarly, it is possible to modify the robots. You can change the number of robot per team,
add new sensors to the robots, like distance sensors or cameras, remove the receiver sensor if
you want to prevent the robots to be aware of global coordinates provided by the supervisor. All
these operation can be performed through the scene tree window, using copy and paste functions
and editing the robots properties. This way, it is possible to turn the soccer robots into fully
autonomous robots relying only on local information and not on global coordinates provided by
the supervisor.

10.4.3 Modifying the match supervisor

If you would like to modify the rules, you will probably have to modify the match supervi-

sor. This is a small C supervisor controller program caflecter _supervisor  lying in the
controllers directory. The match supervisor has only three functions: (1) it measures the time
decreasing from 10 minutes to zero, (2) it count the goals, update the score and reset the robots
and the ball after a goal and (3) it provides each robot with global coordinates and orientation for
each robot and global coordinates for the ball. You may change any of these features, and add
additional features, like fouls when a robot hits another robot.

For example, let's assume you want that the robots should not touch each other, otherwise a
penalty kick is called. Your supervisor program should compute the distance between each
robots of different teams. If this distance drops below the size of a robot, you call the penalty.
Do to so, just set the ball and robots positions so that the robot which benefit of the penalty kick
is ready to kick.

This way, it is possible to add many new rules, like prevent the goal keeper to leave its goal, etc.
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