
Webots Reference Manual
release 5.0.10

copyright c© 2005 Cyberbotics Ltd. All rights reserved.
www.cyberbotics.com

November 16, 2005

2

copyright c© 2005 Cyberbotics Ltd. All rights reserved.
All rights reserved

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on anas-isbasis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

This software was initially developed at the Laboratoire de Micro-Informatique (LAMI) of the
Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no war-
ranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

AiboTM is a registered trademark of SONY Corp.

GeForceTM is a registered trademark of nVidia, Corp.

JavaTM is a registered trademark of Sun MicroSystems, Inc.

KheperaTM and KoalaTM are registered trademarks of K-Team S.A.

LinuxTM is a registered trademark of Linus Torwalds.

Mac OS XTM is a registered trademark of Apple Inc.

MindstormsTM and LEGOTM are registered trademarks of the LEGO group.

PentiumTM is a registered trademark of Intel Corp.

Red HatTM is a registered trademark of Red Hat Software, Inc.

Visual C++TM, WindowsTM, Windows 95TM, Windows 98TM, Windows METM, Windows NTTM,
Windows 2000TM and Windows XPTMare registered trademarks of Microsoft Corp.

UNIXTM is a registered trademark licensed exclusively by X/Open Company, Ltd.

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots web
site, including Yvan Bourquin, Jordi Porta, Emanuele Ornella, Yuri Lopez de Meneses, Sébastien
Hugues, Auke-Jan Ijspeert, Jonas Buchli, Alessandro Crespi, Ludovic Righetti, Julien Gagnet,
Lukas Hohl, Pascal Cominoli, Stéphane Mojon, J́erôme Braure, Sergei Poskriakov, Anthony
Truchet, Alcherio Martinoli, Chris Cianci, Nikolaus Correll, Jim Pugh, Yizhen Zhang, Anne-
Elisabeth Tran Qui, Lucien Epinet, Jean-Christophe Zufferey, Aude Billiard, Ricardo Tellez,
Gerald Foliot, Allen Johnson, Michael Kertesz, Simon Garnier and many others.

Moreover, many thanks are due to Prof. J.-D. Nicoud (LAMI-EPFL) and Dr. F. Mondada for
their valuable support.

Finally, thanks to Skye Legon, who proof-read this manual.

3

4

Contents

1 Introduction 9

2 Webots Nodes 11

2.1 Animation .11

2.2 Appearance .11

2.3 Background .12

2.4 Box .12

2.5 Camera .13

2.6 Charger .15

2.7 Color .15

2.8 Cone .16

2.9 Coordinate .17

2.10 Cylinder .17

2.11 CustomRobot .18

2.12 DifferentialWheels .19

2.13 DirectionalLight .21

2.14 DistanceSensor .21

2.15 ElevationGrid .25

2.16 Emitter .26

2.17 Extrusion .27

2.18 Fog .28

2.19 GPS .28

2.20 Gripper .29

5

6 CONTENTS

2.21 Group .30

2.22 ImageTexture .30

2.23 IndexedFaceSet .31

2.24 IndexedLineSet .32

2.25 Joint .32

2.26 HyperGate .33

2.27 LED .34

2.28 LightSensor .35

2.29 Material .36

2.30 Pen .37

2.31 Physics .38

2.32 PointLight .40

2.33 Receiver .40

2.34 Servo .41

2.35 Solid .43

2.36 Shape .44

2.37 Sphere .45

2.38 Supervisor .46

2.39 TextureCoordinate .47

2.40 TextureTransform .47

2.41 TouchSensor .48

2.42 Transform .49

2.43 Viewpoint .50

2.44 WorldInfo .50

3 Controller API 53

3.1 Introduction .53

3.1.1 The C/C++ API .53

3.1.2 The Java API .53

3.1.3 Remote control .54

3.1.4 Cross-compilation .54

CONTENTS 7

3.2 Robot .54

3.3 CustomRobot .64

3.4 DifferentialWheels .65

3.5 DistanceSensor .67

3.6 Camera .68

3.7 Emitter .74

3.8 LED .75

3.9 LightSensor .76

3.10 Pen .77

3.11 GPS .78

3.12 Gripper .79

3.13 MTN .81

3.14 Receiver .83

3.15 Servo .84

3.16 Supervisor .90

3.17 TouchSensor .97

4 Webots File Format 99

4.1 File Structure .99

4.1.1 Example .99

8 CONTENTS

Chapter 1

Introduction

This reference manual contains all the information needed to program robot controllers in We-
bots. Moreover, it contains reference information on the world description language used in
Webots, which is an extension of a subset of the VRML97 3D specification language.

The programming of graphical user interfaces (GUI) is not covered in this manual since Webots
4 can use any GUI library for creating user interfaces for controllers (including GTK+, wxWin-
dows, MFC, etc.). An example of using wxWindows as a GUI for a Webots controller is provided
in thewxgui controller sample included within the Webots distribution.

9

10 CHAPTER 1. INTRODUCTION

Chapter 2

Webots Nodes

The nodes listed here are described using the standard VRML description syntax. This informa-
tion can be also found for each node in the Webotsresources/nodes directory. A few VRML
nodes have been extended to include more fields, like theWorldInfo and theSphere node.
They are described here as well.

2.1 Animation

Animation {
MFFloat [] key
MFVec3f [] translation
MFRotation [] rotation

}

The Animation node should be used only inside theanimation field of the Servo node.
SeveralAnimation nodes can be inserted in the theanimation field of aServo node. Each
Animation node defines an animation for a servo. Please note that such animations do not
take into account physics and are mainly intended to perform simple animations rather than
physical motions. Thekey field defines a number of time stamps expressed in second at which
a specifictranslation and rotation is reached by the servo. This is why the sizes of the
translation and rotation arrays should match exactly the size of thekey array. Please
refer to the controller API where the servo functions related to animations are described.

2.2 Appearance

Appearance {
SFNode NULL material

11

12 CHAPTER 2. WEBOTS NODES

SFNode NULL texture
SFNode NULL textureTransform

}

The Appearance node specifies the visual properties of geometry. The value for each of the
fields in this node may be NULL. However, if the field is non-NULL, it shall contain one node
of the appropriate type.

The material field, if specified, shall contain aMaterial node. If thematerial field is
NULL or unspecified, lighting is off (all lights are ignored during rendering of the object that
references thisAppearance) and the unlit object color is (1,1,1).

The texture field, if specified, shall contain an ImageTexture node. If thetexture node is
NULL or the texture field is unspecified, the object that references thisAppearance is not
textured.

The textureTransform field, if specified, shall contain aTextureTransform node. If the
textureTransform is NULL or unspecified, thetextureTransform field has no effect.

2.3 Background

Background {
MFColor [0 0 0] skyColor

}

TheBackground node defines the background used for rendering the 3D world. TheskyColor

field defines the red green blue components of this color.

2.4 Box

Box {
SFVec3f 2 2 2 size

}

TheBox node specifies a rectangular parallelepiped box centred at (0,0,0) in the local coordinate
system and aligned with the local coordinate axes. By default, the box measures 2 meters in
each dimension, from -1 to +1. Thesize field specifies the extents of the box along the X-, Y-,
and Z-axes respectively and each component value shall be greater than zero. See illustration on
figure 2.1.

Textures are applied individually to each face of the box. On the front (+Z), back (-Z), right (+X),
and left (-X) faces of the box, when viewed from the outside with the +Y-axis up, the texture is

2.5. CAMERA 13

Figure 2.1: The Box node

mapped onto each face with the same orientation as if the image were displayed normally in 2D.
On the top face of the box (+Y), when viewed from above and looking down the Y-axis toward
the origin with the -Z-axis as the view up direction, the texture is mapped onto the face with the
same orientation as if the image were displayed normally in 2D. On the bottom face of the box
(-Y), when viewed from below looking up the Y-axis toward the origin with the +Z-axis as the
view up direction, the texture is mapped onto the face with the same orientation as if the image
were displayed normally in 2D.TextureTransform affects the texture coordinates of the Box.

TheBox node’s geometry requires outside faces only. When viewed from the inside the results
are undefined.

2.5 Camera

Camera {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString

14 CHAPTER 2. WEBOTS NODES

description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
fieldOfView 0.7854 SFFloat
width 64 SFInt32
height 64 SFInt32
type "color" SFString
display TRUE SFBool
near 0.01 SFFloat
far 50 SFFloat

}

TheCamera node is used to model a robot’s on-board camera or range finder. The camera can
be either a color camera, a black and white camera, or a range finder device, as defined in the
type field of the node. It can model a linear camera or range finder (if theheight field is set
to 1). The range finder device rely of the OpenGL depth buffer information. TheCamera node
inherits from theSolid node. The fields specific to theCamera node are:

• fieldOfView : horizontal field of view angle of the camera. The value ranges from0 to pi
radians. Since camera pixels are squares, the vertical field of view can be computed from
thewidth , height and horizontalfieldOfView :

vertical FOV = fieldOfView * height / width

• width : width of the image in pixels.

• height : height of the image in pixels.

• type : type of the camera: ”color”, ”black and white” or ”range-finder”.

• display : specify if a camera window should pop up, displaying the image taken by the
camera. If such a camera window is used, it should not be iconified or covered by any
other window, otherwise the image data might be corrupted. It might be useful to let this
field to TRUE for debugging a controller program. However, it is safer to set it to FALSE
for extensive experiments.

• Thenear andfar field define the distance from the camera to the near and far OpenGL
clipping planes. These planes are parallel to the camera retina (i.e., projection plane).
Along with thefieldOfView field, they define the viewing frustum of the camera. Any
3D shape outside this frustum won’t be rendered. Hence, shapes too far away (below the
far plane) won’t appear in the camera view. Similarly, shapes too close (standing before
the near plane) won’t appear either.

2.6. CHARGER 15

2.6 Charger

Charger {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
battery [] MFFloat
radius 0.4 SFFloat

}

The Charger node is used to model a special kind of battery charger for the robots. A robot
has to get close to a charger in order to recharge itself. A charger is not like a standard battery
charger you plug to the power supply. Instead, it is a battery itself: it accumulates energy with
time. It could be compared to a solar power plan loading a battery. When the robot comes to get
energy, it can’t get more than the charger has currently accumulated.

TheCharger node inherits from theSolid node. The fields specific to theCharger node are:

• battery : this field should contain three values: the current energy of the charger (J), its
maximum energy (J) and its charging speed (W=J/s).

• radius : radius of the charging area in meters. The charging area is a disk centered on the
origin of the charger coordinate system. The robot can recharge itself if its origin is in the
charging area. See figure 2.2.

2.7 Color

Color {
color [] MFColor

}

This node defines a set of RGB colors to be used in the fields of another node.

16 CHAPTER 2. WEBOTS NODES

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

First case: the origin of the charger
coordinate system is at the center
of the charger.

Robot

Charger

origin of the charger coordinate system is
not at the center of the charger.

RobotCharger

Charging area

Charging area

Second case: Using a "Transform", the

Figure 2.2: The sensitive area of a charger

Color nodes are only used to specify multiple colors for a single geometric shape, such as colors
for the faces or vertices of anElevationGrid . A Material node is used to specify the overall
material parameters of lit geometry. If both aMaterial node and aColor node are specified
for a geometric shape, the colors shall replace the diffuse component of the material.

RGB or RGBA textures take precedence over colors; specifying both an RGB or RGBA texture
and a Color node for geometric shape will result in the Color node being ignored.

2.8 Cone

Cone {
bottomRadius 1 SFFloat
height 2 SFFloat
side TRUE SFBool
bottom TRUE SFBool

}

2.9. COORDINATE 17

TheCone node specifies a cone which is centred in the local coordinate system and whose central
axis is aligned with the local Y-axis. ThebottomRadius field specifies the radius of the cone’s
base, and theheight field specifies the height of the cone from the centre of the base to the
apex. By default, the cone has a radius of 1 meter at the bottom and a height of 2 meters, with its
apex at y = height/2 and its bottom at y = -height/2. BothbottomRadius andheight shall be
greater than zero.

The side field specifies whether sides of the cone are created and the bottom field specifies
whether the bottom cap of the cone is created. A value ofTRUEspecifies that this part of the
cone exists, while a value ofFALSEspecifies that this part does not exist.

The Cone geometry requires outside faces only. When viewed from the inside the results are
undefined.

Textures cannot be applied to theCone geometry.

Cone geometries cannot be used as primitives for collision detection as bounding objects.

2.9 Coordinate

Coordinate {
point [] MFVec3f

}

This node defines a set of 3D coordinates to be used in thecoord field of vertex-based geometry
nodes includingIndexedFaceSet andIndexedLineSet .

2.10 Cylinder

Cylinder {
bottom TRUE SFBool
height 2 SFFloat
radius 1 SFFloat
side TRUE SFBool
top TRUE SFBool

}

The Cylinder node specifies a cylinder centred at (0,0,0) in the local coordinate system and
with a central axis oriented along the local Y-axis. By default, the cylinder is sized at -1 to +1 in
all three dimensions. Theradius field specifies the radius of the cylinder and theheight field
specifies the height of the cylinder along the central axis. Both radius and height shall be greater
than zero. See illustration on figure 2.3.

18 CHAPTER 2. WEBOTS NODES

Figure 2.3: The Cylinder node

The cylinder has three parts: the side, the top (Y = +height/2) and the bottom (Y = -height/2).
Each part has an associatedSFBool field that indicates whether the part exists (TRUE) or does
not exist (FALSE). Parts which do not exist are not rendered. However, all parts are used for
collision detection, regardless of their associatedSFBool field.

Cylinders cannot be textured.

2.11 CustomRobot

CustomRobot {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool

2.12. DIFFERENTIALWHEELS 19

controller "void" SFString
synchronisation TRUE SFBool
battery [] MFFloat
cpuConsumption 0 SFFloat

}

2.12 DifferentialWheels

DifferentialWheels {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
controller "void" SFString
synchronisation TRUE SFBool
battery [] MFFloat
cpuConsumption 0 SFFloat
motorConsumption 0 SFFloat
axleLength 0.1 SFFloat
wheelRadius 0.01 SFFloat
maxSpeed 10 SFFloat
maxAcceleration 10 SFFloat
speedUnit 0.1 SFFloat
slipNoise 0.1 SFFloat
encoderNoise -1 SFFloat

}

The DifferentialWheels node inherits from theSolid node. It is used to represent any
robot with two-wheel differential steering. The two specific fields which are essential for the
simulation areaxleLength andwheelRadius . The value ofaxleLength is the distance (in
meters) between the two wheels of the robot, and the value ofwheelRadius is the radius (in
meters) of the wheels.

Moreover, the origin of the robot coordinate system is the projection on the ground plane of the
center of the axle of the wheels.x is the axis of the wheel axle,y is the vertical axis andz is the

20 CHAPTER 2. WEBOTS NODES

axis pointing toward the rear of the robot (the front of the robot has negativez coordinates).

TheDifferentialWheels node inherits from theSolid node. The additional fields are:

• controller : name of the program controlling the robot. This program lies in the direc-
tory with the same name in the controllers directory; for example, thevoid (or void.exe)
controller is found in thewebots/controllers/void/ directory . The simulator will
use this program to control the robot.

• synchronization : if the value isTRUE(default value), the simulator is synchronized
with the controller; if the value isFALSE, the simulator runs as fast as possible, without
synchronization.

• battery : this field should contain three values: the first one corresponds to the current
energy of the robot in Joule(J), the second one is the maximum energy the robot can hold in
Joule, the third one is the speed of energy recharge in Watts ([W]=[J]/[s]). The simulator
updates the first value, while the two others remain constant.

• cpuConsumption : consumption of the CPU (central processing unit) of the robot in
Watts.

• motorConsumption : consumption of the the motor in Watts.

• axleLength : distance between the two wheels in meters.

• wheelRadius : radius of the wheels in meters. Both wheels must have the same radius.

• maxSpeed: maximum speed of the wheels, expressed inrad/s.

• maxAcceleration : maximum acceleration of the wheels, expressed inrad/s2.

• speedUnit : defines the unit used in thedifferential wheels set speed function,
expressed inrad/s.

• slipNoise : slip noise added to each move expressed in percent. If the value is 0.1, a
noise of +/- 10 percent is added to the command for each simulation step. The noise is of
course different for each wheel.

• encoderNoise : noise added to the incremental encoders. If the value is -1, the encoders
are not simulated. If the value is 0, encoders are simulated without noise. Otherwise a
cumulative noise is added to encoder values. At every simulation step, an increase value is
computed for each encoder. Then, a random noise is applied to this increase value before
it is added to the encoder value. This random noise is computed the same way as with the
slip noise (see above). When the robot faces an obstacle, and if no physics simulation is
used, the robot wheels do not slip, hence the encoder values are not incremented. This is
very useful to detect that a robot has hit an obstacle. For each wheel, the angular velocity
is affected by theslipNoise field. The angular speed is used to compute the amount of

2.13. DIRECTIONALLIGHT 21

rotation of the wheel for a basic time step (by default 32 ms). The wheel is actually rotated
by this amount. This amount is then affected by the encoderNoise (if any). This means
that a noise is added to the amount of rotation in a similar way as with theslipNoise .
Finally, this amount is multiplicated by theencoderResolution (see below) and used
to increment the encoder value which can be read by the controller program.

• encoderResolution : defines the number of encoder incrementations per radian of the
wheel. AnencoderResolution of 100will make the encoders increment their value of
about628each times the wheel makes a complete revolution.

2.13 DirectionalLight

DirectionalLight {
ambientIntensity 0 SFFloat # [0,1]
color 1 1 1 SFColor # [0,1]
direction 0 0 -1 SFVec3f # (-,)
intensity 1 SFFloat # [0,1]
on TRUE SFBool
castShadows TRUE SFBool

}

The DirectionalLight node defines a directional light source that illuminates along rays
parallel to a given 3-dimensional vector. A description of the lighting fields is provided in the
VRML97 description of the lighting model.

Thedirection field specifies the direction vector of the illumination emanating from the light
source in the local coordinate system. Light is emitted along parallel rays from an infinite dis-
tance away. A directional light source illuminates only the objects in its enclosing parent group.
The light may illuminate everything within this coordinate system, including all children and
descendants of its parent group. The accumulated transformations of the parent nodes affect the
light.

DirectionalLight nodes do not attenuate with distance.

Theon boolean value allows you to turn on (TRUE)or off (FALSE) the light.

ThecastShadows boolean value allows you to turn on (TRUE) or off (FALSE) the casting of
grey shadows. Such shadows will appear on the Y=0 plane for every object in the world.

2.14 DistanceSensor

DistanceSensor {
scale 1 1 1 SFVec3f

22 CHAPTER 2. WEBOTS NODES

translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
lookupTable 0 0 0,0.1 1000 0 MFVec3f
type "infra-red" SFString
numberOfRays 1 SFInt32
aperture 0 SFFloat
gaussianWidth 1 SFFloat

}

The DistanceSensor node is used to model sonar sensors, infra-red sensors and laser range
finders. It uses a ray casting algorithm to detect collision between the sensor ray and the bounding
objects ofSolid nodes in the world. TheDistanceSensor node inherits from theSolid node.
It includes five additional specific fields:

• type : type of sensor: currently only the ”infra-red” type behaves differently from other
types (”sonar” or ”laser” types). Infra-red sensors have a special property: they are sensi-
tive to the objects’ color and see better light or red obstacles than dark or black ones.

• lookupTable : This field is best explained through an example: Let us consider an infra-
red sensor. The noise on the return value is computed according to a uniform random
numbers distribution which range is calculated in percent of the response value. For an
obstacle made of a given material and color and for a given ambient light, the response of
the sensor is as shown in figure 2.4

The values of thelookupTable will be:

lookupTable [0 1000 0,
0.1 1000 0.1,
0.2 400 0.1,
0.3 50 0.1,
0.37 30 0]

This means that for a distance of 0 meter, the sensor will return a value of 1000 without
noise (0), for a distance of 0.1 meter, the sensor will return 1000 with a noise of 10 percent,

2.14. DISTANCESENSOR 23

Given material and color
Given ambient light

���
���
���
���

Measured
Value

Distance to
the wall (m)

0.370.30.20.10

400

1000

50

noise

Figure 2.4: Measurements of the light reflected by an obstacle

for a distance value of 0.2 meters, the sensor will return 400 plus or minus 10 percent of
noise, etc. For distance values not specified in the lookup table, the simulator will perform
a linear interpolation to compute the value returned by the sensor and its associated noise.
The first distance value of a lookup table must always be 0.

• numberOfRays : number of rays cast by the sensor. If this number is larger than 1, several
rays are cast and the sensor measurement value is computed from the weighted average of
the individual rays activation. By using multiple rays, a more accurate model of a physical
sensor is obtained. The sensor rays are distributed inside 3d-cones which opening angle
can be tuned through theaperture parameter. Predefined ray configurations are used
from 1 through 10 rays: see figure 2.5. These configurations are defined such as to obtain
uniform distances between the rays and to preserve the sensor’s left/right symmetry. The
number of rays of a sensor must be at least one. There is no upper limit on the number of
rays, however, Webots performance drops as the number of rays increases. From 11 rays
the configurations are automatically arranged in several embedded cones with increasing
diameters. The rays capacity of each cone is defined asC(i)=3*i+1 , where i is the
cone number starting with 0. Each time a cone’s maximal capacity is reached a new cone
is added containing a single ray and the other cone are resized such as to fit within the
defined aperture angle.

• aperture : sensor aperture angle. This parameter controls the opening angle (in radians)
of the cone of rays cast by the sensor.

24 CHAPTER 2. WEBOTS NODES

1 2 3 4 5

6 7 8 9 10

Figure 2.5: Predefined configurations for 1 through 10 sensor rays

Figure 2.6: Weight distribution formula

• gaussianWidth : width of the Gaussian distribution of sensor rays weights. When aver-
aging the sensor’s response, the particular weight of each sensor ray is computed according
to a Gaussian distribution as described by the formula in figure 2.6 wherewi is the weight
of theith ray,ti is the angle between theith rays and the sensor axis,a is the aperture angle
of the sensor,g is the gaussian width, andn is the number of rays. As depicted in figure
2.7, rays in the center of the sensor cone weight more than the rays in the periphery. A
wider or narrower distribution can be obtained by tuning thegaussianWidth parame-
ter. An approximation of a flat distribution is obtained ifgaussianWidth is chosen large
enough.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

i

w
i

Figure 2.7: Example distribution for 10 rays using a Gaussian width of 1.0 (default)

Note: Note that infast2dmode the sensor rays are arranged in2d-fansinstead of3d-cones
and theaperture parameter controls the opening angle of the fan. Infast2dmode, gaussian
averaging is also applied, and theti parameter of the formula (figure 2.6) corresponds to the
2d-anglebetween theith rays and the sensor axis.

2.15. ELEVATIONGRID 25

Note: the ray of a sensor can be displayed in the world view by selectingDisplay sensor rays in
theFile/Preferences menu under theRendering panel.

In the case of an ”infra-red” sensor, the value returned by the lookup table is modified by a
reflection factor depending on the color properties of the object hit by the sensor ray. This
reflection factor is computed as follows:f = 0.2 + 0.8 * red level wherered level is the level
of red color (diffuseColor) of the object hit by the sensor ray. The distance value computed
by the simulator is divided by this factor before using the lookup table for computing the output
value. This reflection factor is not taken into consideration infast2dmode and therefore, in this
case, an infra-red sensor behaves like the other types of sensors.

Please note that a primitive support forDistanceSensor nodes used for reading the red color
level of a textured ground was implemented. This is useful to simulate line following behaviors.
This feature is demonstrated in therover.wbt example. In short, the ground texture should lie
in a rectangularIndexedFaceSet node centered at (0,0,0).

2.15 ElevationGrid

ElevationGrid {
color NULL SFNode
height [] MFFloat
colorPerVertex TRUE SFBool
xDimension 0 SFInt32
xSpacing 0.0 SFFloat
zDimension 0 SFInt32
zSpacing 0.0 SFFloat

}

The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0
plane of the local coordinate system. The geometry is described by a scalar array of height
values that specify the height of a surface above each point of the grid.

ThexDimension andzDimension fields indicate the number of elements of the grid height ar-
ray in the X and Z directions. BothxDimension andzDimension shall be greater than or equal
to zero. If either thexDimension or thezDimension is less than two, theElevationGrid

contains no quadrilaterals. The vertex locations for the rectangles are defined by theheight

field and thexSpacing andzSpacing fields:

• Theheight field is anxDimension by zDimension array of scalar values representing
the height above the grid for each vertex.

• ThexSpacing andzSpacing fields indicate the distance between vertices in the X and
Z directions respectively, and shall be greater than zero.

26 CHAPTER 2. WEBOTS NODES

Thus, the vertex corresponding to the point P[i,j] on the grid is placed at:

P[i,j].x = xSpacing x i
P[i,j].y = height[i + j x xDimension]
P[i,j].z = zSpacing x j

where 0 <= i < xDimension and 0 <= j < zDimension,
and P[0,0] is height[0] units above/below the origin of the local
coordinate system

Thecolor field specifies per-vertex or per-quadrilateral colours for theElevationGrid node
depending on the value ofcolorPerVertex . If thecolor field is NULL, theElevationGrid

node is rendered with the overall attributes of theShape node enclosing theElevationGrid

node

ThecolorPerVertex field determines whether colors specified in the color field are applied to
each vertex or each quadrilateral of theElevationGrid node. IfcolorPerVertex is FALSE

and thecolor field is not NULL, thecolor field shall specify aColor node containing at least
(xDimension -1) x (zDimension -1) colors.

If colorPerVertex is TRUEand thecolor field is not NULL, thecolor field shall specify a
Color node containing at leastxDimension x zDimension colors, one for each vertex.

2.16 Emitter

Emitter {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "infra-red" SFString
range 0.5 SFFloat
channel 0 SFInt32
baudRate 9600 SFInt32
byteSize 8 SFInt32

2.17. EXTRUSION 27

bufferSize 1024 SFInt32
}

The Emitter node is used to model an infra-red or radio emitter on-board a robot. You must
insert theEmitter node into the list of children of the robot. Please note that an emitter can only
emit data but it cannot receive any information. In order to enable a bi-directional communication
system, a robot needs both anEmitter and aReceiver node.

TheEmitter node inherits from theSolid node. The fields specific to theEmitter node are:

• type : type of the emitted signals: ”infra-red” or ”radio”.

• range : radius of the emission area in meters. The origin of the coordinate system of a
receiver must be in this area to allow this receiver to pick up the signal. A value of -1 for
range is considered to be an infinite range.

• channel : channel of emission. The value is an identification number for an infra-red
emitter or a frequency for a radio emitter. The receiver must use the same channel to
receive the emitted signals. It can be any positive integer value.

• baudRate : the baud rate is the communication speed expressed in number of bits per
second. IfbaudRate is set to -1, then it is considered as infinite and any data sent is
immediately received by receivers.

• byteSize : the byte size is the number of bits used to represent one byte (usually 8, but
may be more depending on whether control bits are used).

• bufferSize : the buffer is a memory area, its size is specified in bytes. The size of the
data to be emitted cannot exceed the buffer size, otherwise data is lost. When the emitter
emits the data, it flushes the buffer.

2.17 Extrusion

Extrusion {
beginCap TRUE SFBool
convex TRUE SFBool
crossSection [1 1,1 -1,-1 -1,-1 1,1 1] MFVec2f
endCap TRUE SFBool
spine [0 0 0,0 1 0] MFVec3f # may change 1 only
creaseAngle 0 SFFloat

}

TheExtrusion node specifies geometric shapes based on a two dimensional cross-section ex-
truded along a three dimensional spine in the local coordinate system.

An Extrusion node is defined by:

28 CHAPTER 2. WEBOTS NODES

• a 2DcrossSection piecewise linear curve (described as a series of connected vertices)

• a 3D spine (also described as a series of two connected vertices). Note that the spine is
limited to a vector along the Y-axis.

Extrusion has three parts: the sides, thebeginCap (the surface at the initial end of the spine)
and theendCap (the surface at the final end of the spine). The caps have an associatedSFBool

field that indicates whether each exists (TRUE) or doesn’t exist (FALSE).

When thebeginCap or endCap fields are specified asTRUE, planar cap surfaces will be gen-
erated regardless of whether thecrossSection is a closed curve. IfcrossSection is not a
closed curve, the caps are generated by adding a final point tocrossSection that is equal to
the initial point. If a field value isFALSE, the corresponding cap is not generated.

2.18 Fog

Fog {
color 1 1 1 SFColor
fogType "LINEAR" SFString
visibilityRange 0 SFFloat

}

TheFog node provides a way to simulate atmospheric effects by blending objects with the color
specified by thecolor field based on the distances of the various objects from the camera. The
distances are calculated in the coordinate space of theFog node. ThevisibilityRange spec-
ifies the distance in meters (in the local coordinate system) at which objects are totally obscured
by the fog. Objects located outside thevisibilityRange from the camera are drawn with a
constant color ofcolor . Objects very close to the viewer are blended very little with the fog
color . A visibilityRange of 0.0 disables theFog node.

ThefogType field controls how much of the fog color is blended with the object as a function of
distance. IffogType is "LINEAR" , the amount of blending is a linear function of the distance,
resulting in a depth cueing effect. IffogType is "EXPONENTIAL", an exponential increase in
blending is used, resulting in a more natural fog appearance. IffogType is ”EXPONENTIAL2,”
an square exponential increase in blending is used, resulting in an even more natural fog appear-
ance (see OpenGL documentation for more details about fog rendering).

2.19 GPS

GPS {
scale 1 1 1 SFVec3f

2.20. GRIPPER 29

translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "satellite" SFString
resolution 0.001 SFFloat

}

TheGPSnode is used to model a Global Positioning Sensor (GPS) which can obtain information
about its absolute position and orientation from the controller program. TheGPSnode inherits
from theSolid node. It includes two additional specific fields:

• type : This field defines the type of GPS technology used like ”satellite” or ”laser”, cur-
rently ignored.

• resolution : This field defines the precision of the GPS, that is the maximal error (ex-
pressed in meter) on the absolute position.

2.20 Gripper

Gripper {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
position 0 SFFloat

}

30 CHAPTER 2. WEBOTS NODES

TheGripper node models a simple gripper system with two fingers capable of grasping small
objects. An example of a robot using such a gripper system is provided in thekhepera gripper.wbt

example world.

To be operational, aGripper node has to contain twoSolid aschildren . TheseSolid nodes
should be named ”left grip” and ”right grip” (name field). They correspond to the fingers of the
gripper. Each of theseSolid nodes should have aboundingObject field defined properly. As
shown in thekhepera gripper.wbt example, theGripper node can be mounted on the top
of a Servo node acting like an arm. Moreover, sensors like distance sensors or others can be
mounted on the fingers of the gripper.

The position field correspond to the aperture of the gripper. It is expressed in meters. By
default, this value is 0 (gripper is closed).

TheGripper node correspond to a very simple model of a gripper system. It can grasp simple
objects, move them around and release them. However, it might turn out to be inefficient for
more complex tasks. In such cases, the gripper device should be built from a couple ofServo

nodes acting as two fingers instead of using aGripper node.

2.21 Group

Group {
children [] SFNode

}

A Group node contains children nodes without introducing a new transformation. It is equivalent
to aTransform node containing an identity transform.

A Group node may not contain subsequentSolid , device or robot nodes.

2.22 ImageTexture

ImageTexture {
url [] MFString
repeatS TRUE SFBool
repeatT TRUE SFBool

}

The ImageTexture node defines a texture map by specifying an image file and general param-
eters for mapping to geometry. Texture maps are defined in a 2D coordinate system (s,t) that
ranges from [0.0, 1.0] in both directions. The bottom edge of the image corresponds to the S-
axis of the texture map, and left edge of the image corresponds to the T-axis of the texture map.

2.23. INDEXEDFACESET 31

Figure 2.8: Texture map coordinate system

The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel of the image
corresponds to s=1, t=1. These relationships are depicted in figure 2.8.

The texture is read from the file specified by theurl field. The file can be specified with an
absolute or relative path. Supported image formats include JPEG and PNG. The image use must
be square. Moreover the image size must be 2n * 2n pixels (for example 8x8, 16x16, 32x32,
64x64, 128x128 pixels).

The repeatS and repeatT fields specify how the texture wraps in the S and T directions.
If repeatS is TRUE(the default), the texture map is repeated outside the [0.0,1.0] texture co-
ordinate range in the S direction so that it fills the shape. IfrepeatS is FALSE, the texture
coordinates are clamped in the S direction to lie within the [0.0,1.0] range. TherepeatT field
is analogous to therepeatS field.

2.23 IndexedFaceSet

IndexedFaceSet {
coord NULL SFNode
texCoord NULL SFNode
ccw TRUE SFBool
convex TRUE SFBool
coordIndex [] MFInt32 # [-1,)
texCoordIndex [] MFInt32 # [-1,)
creaseAngle 0 SFFloat

}

The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons)
from vertices listed in thecoord field. Thecoord field contains aCoordinate node that de-
fines the 3D vertices referenced by thecoordIndex field. IndexedFaceSet uses the indices

32 CHAPTER 2. WEBOTS NODES

in its coordIndex field to specify the polygonal faces by indexing into the coordinates in the
Coordinate node. An index of ”-1” indicates that the current face has ended and the next one
begins. The last face may be (but does not have to be) followed by a ”-1” index. If the great-
est index in thecoordIndex field is N, theCoordinate node shall contain N+1 coordinates
(indexed as 0 to N). Each face of theIndexedFaceSet shall have:

• at least three non-coincident vertices;

• vertices that define a planar polygon;

• vertices that define a non-self-intersecting polygon.

Otherwise, The results are undefined.

The IndexedFaceSet node is specified in the local coordinate system and is affected by the
transformations of its ancestors.

Descriptions of thecoord , normal , and texCoord fields are provided in theCoordinate ,
Normal , andTextureCoordinate nodes, respectively.

2.24 IndexedLineSet

IndexedLineSet {
coord NULL SFNode
coordIndex [] MFInt32 # [-1,)

}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines from
3D vertices specified in thecoord field. IndexedLineSet uses the indices in itscoordIndex

field to specify the polylines by connecting vertices from thecoord field. An index of ”-1”
indicates that the current polyline has ended and the next one begins. The last polyline may
be (but does not have to be) followed by a ”-1”.IndexedLineSet is specified in the local
coordinate system and is affected by the transformations of its ancestors.

Thecoord field specifies the 3D vertices of the line set and contains aCoordinate node.

Lines are not lit, are not texture-mapped, and do not participate in collision detection.

2.25 Joint

Joint {
translation 0 0 0 SFVec3f

}

2.26. HYPERGATE 33

TheJoint node is used to defined an articulation between twoSolid nodes. Currently,Joint

nodes are mostly limited to define an offset value for the location of a joint in aServo node.
However, aJoint node has to be created for anyServo in physics based simulation. It is
also mandatory to define aJoint node for eachSolid node representing a wheel in a physics
simulation of aDifferentialWheels robot.

The translation field defines an offset for moving the location of the joint relatively to the
origin of its parent node. The parent node should be a solid node, that is a node inheriting from
theSolid node likeServo or Solid itself). This is especially useful withServo nodes when
you want that a servo rotates around a different point than its local coordinate system.

2.26 HyperGate

HyperGate {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
url "" SFString
radius 0.1 SFFloat
height 0.1 SFFloat
maxFileSize 65536 SFInt32

}

A hypergate is defined as a cylindrical area in the world. When a robot (more precisely the
origin of the robot coordinate system) enters it, it disappears and gets transferred to another
world specified in theHyperGate node.

TheHyperGate node inherits from theSolid node. The fields specific to theHyperGate node
are:

• url : destination URL of the form"wtp://host.domain.com/file#name" .

• radius : radius of the transfer cylinder.

34 CHAPTER 2. WEBOTS NODES

• height : height of the transfer cylinder.

• maxFileSize : maximum file size for theRobot node accepted by the hypergate.

For example, an hypergate can look like an arch with the transfer cylinder lying inside the
arch. See figure 2.9.

Arch

Transfer cylinder

Figure 2.9: An example of an Hypergate

2.27 LED

LED {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
color [1 0 0] MFColor # available colors for the LED

}

2.28. LIGHTSENSOR 35

TheLED node is used to model a light emitting diode (LED). The light produced by a LED can
be used for debugging or information purposes. The shape of the light emitting part of the LED
device is defined as aSolid node in thechildren list of the LED node. ThisSolid node
should have aname field set to ”lamp” to be recognized as the light emitting part of the LED
device. Upon activation, theemissiveColor field of the firstMaterial node in thisSolid

node will be changed to the color specified by thecolor field of theLEDnode.

If such a ”lamp” Solid node doesn’t exist, the color change applies to the firstShape node in the
children list which has aMaterial node defined.

TheLEDnode inherits from theSolid node. It includes an additional specific field:

• color : This defines the colors of the LED device. When off, a led is always black. How-
ever, when on it can have deferent colors as specified by the LED programming interface.
By default, thecolor defines only one color,which is red, but you can change this and
even add extra colors that could be selected from the LED programming interface.

2.28 LightSensor

LightSensor {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
lookupTable 0 0 0,0.1 1000 0 MFVec3f

}

TheLightSensor node is used to model a phototransistor-like sensor which measure the level
of ambient light in a given direction. The light level measured by theLightSensor node is
computed from eachPointLight node in the scene, taking into account the distance between
the sensor and the light, the orientation of the sensor relatively to the light, the intensity of the
light (computed from its ambient intensity, intensity and color). TheLightSensor node inherits
from theSolid node. It includes an additional specific field:

36 CHAPTER 2. WEBOTS NODES

• lookupTable : similar to the one of theDistanceSensor node except that the distance
values (first column) are replaced by intensity values. This intensity value results from the
sum of intensity values computed for eachPointLight as follow:

distanceis the distance between theLightSensor and thePointLight .

dot is the dot product between the normalized sensor direction and the normalized vector
defined by theLightSensor location and thePointLight location.

att = attenuation.x + attenuation.y * distance + attenuation.z * distance * distance

cf = color.red * color.green * color.blue

intensityvalue = (ambientIntensity + intensity) * cf * dot / att

2.29 Material

Material {
ambientIntensity 0.2 SFFloat # [0,1]
diffuseColor 0.8 0.8 0.8 SFColor
emissiveColor 0 0 0 SFColor
shininess 0.2 SFFloat # [0,1]
specularColor 0 0 0 SFColor
transparency 0 SFFloat # [0,1]

}

TheMaterial node specifies surface material properties for associated geometry nodes and is
used by the VRML97 lighting equations during rendering.

All of the fields in the Material node range from 0.0 to 1.0.

The fields in theMaterial node determine how light reflects off an object to create color:

• TheambientIntensity field specifies how much ambient light from light sources this
surface shall reflect. Ambient light is omnidirectional and depends only on the number of
light sources, not their positions with respect to the surface. Ambient colour is calculated
asambientIntensity x diffuseColor .

• ThediffuseColor field reflects all VRML97 light sources depending on the angle of the
surface with respect to the light source. The more directly the surface faces the light, the
more diffuse light reflects.

• The emissiveColor field models ”glowing” objects. This can be useful for displaying
pre-lit models (where the light energy of the room is computed explicitly), or for displaying
scientific data.

2.30. PEN 37

• ThespecularColor andshininess fields determine the specular highlights (e.g., the
shiny spots on an apple). When the angle from the light to the surface is close to the angle
from the surface to the camera, thespecularColor is added to the diffuse and ambient
color calculations. Lower shininess values produce soft glows, while higher values result
in sharper, smaller highlights.

• The transparency field specifies how ”clear” an object is, with 1.0 being completely
transparent, and 0.0 completely opaque. If you set the transparency to a positive value,
please note that no dynamic alpha sorting is performed in Webots, so that you need to
place transparent or semi-transparent objects at the bottom of the scene tree, so that they
are rendered at the end and do not interfer with other objects.

2.30 Pen

Pen {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
inkColor 0 0 0 SFColor
inkDensity 0.5 SFFloat
leadSize 0.002 SFFloat
write TRUE SFBool

}

The Pen node is used to model a pen attached to a mobile robot, typically to write down the
trajectory of the robot. In order to work, a pen needs to lie over a textured ground. Such a textured
ground should be made up of aSolid node containing aShape with a texturedMaterial in
its Appearance . Moreover, its geometry should be a rectangleIndexedFaceSet lying at y=0.
An example of appropriate textured ground used with a robot equipped with a pen is given in the
botstudio pen.wbt example world.

Note: The drawings performed by a pen can be seen by infra-red distance sensors looking down
to the ground. Hence, it is possible to implement a robotics experiment where a robot draws a

38 CHAPTER 2. WEBOTS NODES

line on the floor witha pen and a second robot performs a line following behavior with the line
just drawn by the first robot. Please note that such drawings cannot be seen by a camera device
as the ground textures are not updated on the controller side.

ThePen node inherits from theSolid node. It includes four additional specific fields:

• inkColor : define the color of the ink of the pen. This field can be changed from the pen
API, using thepen set ink color function.

• inkDensity : define the density of the color of the ink. This field can also be changed
from the pen API, using thepen set ink color function.

• leadSize : define the size of the lead of the pen. This allows the robot to write a track
with a more or less thick width.

• write : this boolean field allows the robot to enable of disable writing for the pen. It is
also switchable from the pen API, using thepen write function.

2.31 Physics

Physics {
density 1000 SFFloat # (kg/mˆ3) if -1 use mass
mass -1 SFFloat # (kg) ignored if density!=-1
bounce 0.5 SFFloat # range between 0 and 1
bounceVelocity 0.01 SFFloat # (m/s)
coulombFriction 1 SFFloat # ODE Coulomb friction coefficient
forceDependentSlip 0 SFFloat # ODE force dependent slip
inertiaMatrix [] MFFloat # 9 float values: inertia matrix
centerOfMass 0 0 0 SFVec3f # position of the center of mass
orientation 0 1 0 0 SFRotation # orientation of the inertia matrix

}

ThePhysics allows you to define a number of physics parameters to be used by the physics sim-
ulation engine. It is useful for example in robot soccer systems, where a robot, or several robots
can push a ball which rolls and bounces against the walls. An example of using thePhysics

node is provided in thesoccer.wbt world. ThePhysics node is also useful when simulat-
ing legged robots to define mass repartition and friction parameters, thus allowing the physics
engine to simulate a legged robot accurately, making it fall down when necessary. Reading the
ODE (Open Dynamics Engine) documentation will help you better understand the parameters of
thePhysics node and their results on the physics simulation.

Either themass or density field can be used to define the total mass of the solid. If thedensity

field is set different from -1, then it is used regardless of themass field to compute the mass of
the solid object, Otherwise, themass field, which should be set to a positive value, is used. You

2.31. PHYSICS 39

should never set both themass and thedensity to -1, otherwise the results will be undefined.
Rather it is highly recommended to set either themass or density to -1 and the other field
should be set to a positive value. If thedensity field is a positive value and themass field is
set to -1, the actual mass of theSolid node will be computed based on the specified density and
the volume defined in theboundingObject of theSolid node. However, this computed mass
will not be displayed in themass field which will remain -1.

The bounce field defines the bouncyness of a solid. This restitution parameter is a floating
point value ranging from 0 to 1. 0 means that the surfaces are not bouncy at all, 1 is maximum
bouncyness. When two solids hit each other, the resulting bouncyness is the average of the
bounce parameter of each solid. If a solid has noPhysics node, and hence nobounce field
defined, thebounce field of the other solid is used. The same principle also applies for to
bounceVelocity , staticFriction andkineticFriction fields.

ThebounceVelocity field defines the minimum incoming velocity necessary for bounce. In-
coming velocities below this will effectively have a bounce parameter of 0.

ThecoulombFriction field defines the friction parameter which applies to the solid regardless
of its velocity. Friction approximation in ODE relies on the Coulomb friction model and is docu-
mented in the ODE documentation. It ranges from 0 to infinity. Setting thecoulombFriction

to -1 means infinity.

The forceDependentSlip field defines the force-dependent-slip (FDS) for friction, as ex-
plained in the ODE documentation. FDS is an effect that causes the contacting surfaces to side
past each other with a velocity that is proportional to the force that is being applied tangentially to
that surface. It is especially useful to combine FDS with an infinite coulomb friction parameter.

The inertiaMatrix field defines the inertia matrix as specified by ODE. If this parameter is
empty or contains less or more than 9 floating point values, it is ignored. Moreover, if themass
field is -1, theinertiaMatrix field is ignored. If it contains exactly 9 floating point values,
and if themass field is different from -1, then it is used as follow: the 9 parameters are the
same as the ones used by thedMassSetParameters ODE function. The parameters given in
the inertiaMatrix are: cgx, cgy, cgz, I11, I22, I33, I12, I13, I23, where (cgx,cgy,cgz) is the
center of gravity position in the body frame. The Ixx values are the elements of the inertia matrix,
expressed in kg.m2:

[I11 I12 I13]
[I12 I22 I23]
[I13 I23 I33]

ThecenterOfMass field defines the position of the center of mass of the solid. It is expressed in
meters in the relative coordinate system of theSolid node. It is affected by theorientation

field as well.

Theorientation field defines the orientation of the local coordinate system in which the po-
sition of the center of mass (centerOfMass) and the inertia matrix (intertiaMatrix) are
defined.

40 CHAPTER 2. WEBOTS NODES

2.32 PointLight

PointLight {
ambientIntensity 0 SFFloat # [0,1]
attenuation 1 0 0 SFVec3f # [0,)
color 1 1 1 SFColor # [0,1]
intensity 1 SFFloat # [0,1]
location 0 0 0 SFVec3f # (-,)
on TRUE SFBool
castShadows TRUE SFBool

}

The PointLight node specifies a point light source at a 3D location in the local coordinate
system. A point light source emits light equally in all directions; that is, it is omnidirectional.
PointLight nodes are specified in the local coordinate system and are affected by ancestor
transformations. Hence it is possible to embed aPointLight onboard a mobile robot to create
lights moving with the robot.

A PointLight node illuminates geometry from itslocation . The location is affected by
ancestors’ transformations.

PointLight node’s illumination falls off with distance as specified by threeattenuation

coefficients. The attenuation factor is 1/max(attenuation[0] + attenuation[1] x r + attenuation[2]
x r2, 1), where r is the distance from the light to the surface being illuminated. The default is no
attenuation. Anattenuation value of (0,0,0) is identical to (1,0,0). Attenuation values shall
be greater than or equal to zero.

Theon boolean value allows you to turn on (TRUE)or off (FALSE) the light.

ThecastShadows boolean value allows you to turn on (TRUE) or off (FALSE) the casting of
grey shadows. Such shadows will appear on the Y=0 plane for every object in the world.

2.33 Receiver

Receiver {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString

2.34. SERVO 41

boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "infra-red" SFString
channel 0 SFInt32
baudRate 9600 SFInt32
byteSize 8 SFInt32
bufferSize 1024 SFInt32

}

The Receiver node is used to model an infra-red or radio receiver. A receiver, just like an
emitter, is usually on-board a robot. Please note that a receiver can only receive data but it
cannot emit any information. In order to enable a bi-directional communication system, a robot
needs both anEmitter and aReceiver node.

The fields and values of theReceiver node are nearly the same as those of theEmitter node.
As theEmitter node, theReceiver node inherits from theSolid node. The fields specific to
theReceiver node are:

• type : type of the received signals: ”infra-red” or ”radio”.

• channel : channel of reception. The value is an identification number for an infra-red
receiver or a frequency for a radio receiver. The emitter must use the same channel to
detect the emitted signals.

• baudRate : the baud rate is the communication speed expressed in bits per second. It
should be the same as the speed of the emitter. Currently, this value is ignored.

• byteSize : the byte size is the number of bits used to represent one byte (usually 8, but
may be more if control bits are used). It should be the same size as the emitter byte size. It
is currently ignored.

• bufferSize : the buffer is a memory area, its size is specified in bytes. The size of the
received data can’t exceed the buffer size, otherwise data is lost. When the receiver reads
the data, it flushes the buffer. If the old data has not been read when the new data is
received, the former is lost.

2.34 Servo

Servo {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation

42 CHAPTER 2. WEBOTS NODES

children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
maxVelocity 10 SFFloat # rad/s
maxForce 10 SFFloat
controlP 10 SFFloat
acceleration -1 SFFloat # rad/sˆ2
maxPosition 0 SFFloat # should be positive or 0
minPosition 0 SFFloat # should be negative or 0
animation [] MFNode

}

TheServo node models a servo motor. It inherits from theSolid node.

A servo can be controlled in position only through the servo API, using theservo set position

function.

However, it is possible to control it in torque and in velocity. To control a servo in torque, set
maxForce to the desired target torque withservo set force , set a big enough target position
with servo set position and a big enoughmaxVelocity with servo set velocity .

Similarly, to control a servo in velocity, set the maximum torque, set the desired velocity as
maxVelocity expressed in rad/s, and a big enough target position.

Please note that themaxForce andmaxVelocity fields should always be positive.

ThecontrolP field controls the proportional PID parameter used to compute the target speed
from the requested position. A too small value yields to a long time needed to reach the target
position while a too big value yields to unstabilities reaching the target position.

Theacceleration field defines the acceleration used by the position controller. This accelera-
tion should be expressed in rad/s2 and should be set to a value smaller thanmaxForce to achieve
smooth and slow movements. Please note that this parameter doesn’t specify the actual force of
the servo, but rather the acceleration used by the position controller. Hence, to achieve a slow
and smooth movement, it is better to set a small value to theacceleration field rather than to
themaxForce field. A smallmaxForce field may indeed result in a servo unable to move or to
maintain a desired position because of the weight it has to support. If theacceleration field
is set to -1 (default value), then it is ignored and the maximum force is used to achieve the target
position.

TheminPosition andmaxPosition fields define the limits of theServo position expressed
in radians. The initial position of the servo should always be 0 and this position should lie

2.35. SOLID 43

betweenminPosition andmaxPosition . HenceminPosition should be negative or 0 and
maxPosition should be positive or 0. If you don’t want to set limits for aServo node, set
minPosition andmaxPosition both to the same value, 0 for example. This is the default
value.

The animation field refers to anAnimation node used for animating the servo in a non-
realistic simulation.

2.35 Solid

Solid {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool

}

A solid is a group of shapes that you can drag and drop in the world, using the mouse. Moreover,
the sensors of the robots and the collision detector of the simulator are able to detect solids. The
Solid node represents this group of shapes in the scene tree.

A description of the fields of theSolid node is given below.

The Solid node inherits from the VRMLTransform node. However, thescale field of a
Solid node should always be set to1 1 1 to avoid problems with the bounding objects that
ignore thescale field. The additional fields are:

• name: individual name of the solid (e.g.: ”my blue chair”).

• model : generic name of the solid (e.g.: ”chair”).

• author : name of the author of the simulation model of the solid.

• constructor : name of the company or individual who made the real solid.

• description : short description (1 line) of the solid.

44 CHAPTER 2. WEBOTS NODES

• boundingObject : the boundingObject of a Solid should contain either: (1) aBox

node, (2) aCylinder node (a flat end cylinder, not a capped cylinder), (3) aSphere node,
(4) an IndexedFaceSet node, (5) aShape node containing one of the above nodes as
a geometry , (6) aTransform node with a singlechildren node being one of above
nodes and thescale field set to 1 1 1, or (7) aGroup node with severalchildren , each
being one of the above mentioned nodes.

In case thephysics field is notNULL, and theboundingObject is aTransform node,
thisTransform defines the position of the center of mass of theSolid node. Moreovoer,
if the Physics node defines aninertiaMatrix , then the orientation of this inertia ma-
trix is also affected by theorientation field of theTransform node.

In the case of anIndexedFaceSet , two different options are possible: The first option
is an indexed face set with a single quadrilateral face which defines a plane. This plane
is considered as infinite by the collision detection engine. This option should be used to
model a flat floor as inboebot.wbt . The second option is an indexed face set of trian-
gles defining a triangle mesh (or trimesh). Such indexed face sets can be easily exported
from most 3D modelling software after performing a conversion to a triangle mesh. This
option should be used to model rough terrain as inaibo ers210 rough.wbt or to model
complex 3D objects.

The bounding object defines the shape used for collision detection and to automatically
compute the inertia matrix of aSolid from its physics field. Please note however that
the center of mass of theSolid node always remains the same as the origin of the node
(defined by thetranslation androtation fields) regardless of what is defined in the
bounding object. If this field is left to NULL, no collision detection and no physics com-
putation is performed.

• physics : this field is used when it is necessary to model a minimum of physics for a
Solid object. In this case, it contains aPhysics object which defines a number of phys-
ical properties for the solid. This is especially useful when implementing a robot pushing
an object like a ball. In this case, both the robot and the ball should have aPhysics node
in their physics field.

• joint : if set to aJoint node, implement a rotational joint for aServo node.

• locked : if TRUE, the solid object cannot be moved using the mouse. This is useful to
prevent moving an object by error.

2.36 Shape

Shape {
appearance NULL SFNode
geometry NULL SFNode

}

2.37. SPHERE 45

TheShape node has two fields,appearance andgeometry , which are used to create rendered
objects in the world. Theappearance field contains anAppearance node that specifies the
visual attributes (e.g., material and texture) to be applied to the geometry. The geometry field
contains a geometry node. The specified geometry node is rendered with the specified appearance
nodes applied.

2.37 Sphere

Sphere {
radius 1 SFFloat
subdivision 1 SFInt32

}

The Sphere node specifies a sphere centred at (0,0,0) in the local coordinate system. The
radius field specifies the radius of the sphere and shall be greater than zero. See illustration on
figure 2.10.

Figure 2.10: The Sphere node

46 CHAPTER 2. WEBOTS NODES

The Sphere node’s geometry requires outside faces only. When viewed from the inside the
results are undefined.

TheSphere node cannot be textured.

The VRML97Sphere node was extended to include asubdivision field which controls the
shape of the rendered sphere. Spheres are rendered as icosaedrons with 20 faces when the sub-
division field is set to 0. If the subdivision field is 1 (default value), then each face is subdivided
into 4 faces, which makes 80 faces. With a subdivision field set to 2, 320 faces will be rendered,
making the sphere very smooth. A maximum value of 5 (corresponding to 20480 faces) is al-
lowed for this subdivision field to avoid entering in a very long rendering process. A value of 10
will turn the sphere appearance into a black and white soccer ball.

2.38 Supervisor

Supervisor {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
controller "void" SFString
synchronisation TRUE SFBool
battery [] MFFloat
cpuConsumption 0 SFFloat

}

A supervisor is a program which controls a world and its robots. For convenience it is represented
as a robot without any wheels, driven by a controller with extended capabilities which supervises
the whole world. A world cannot have more than one supervisor.

The Supervisor node inherits from theSolid node. Its other fields include some of the
DifferentialWheels node fields:

• controller

• synchronization

2.39. TEXTURECOORDINATE 47

• battery : usually meaningless for aSupervisor node.

• cpuConsumption : usually meaningless for aSupervisor node.

2.39 TextureCoordinate

TextureCoordinate {
point [] MFVec2f

}

TheTextureCoordinate node specifies a set of 2D texture coordinates used by vertex-based
geometry nodes (e.g.,IndexedFaceSet and ElevationGrid) to map textures to vertices.
Textures are two dimensional color functions that, given an (s,t) coordinate, return a color value
colour(s,t). Texture map values (ImageTexture) range from [0.0,1.0] along the S-axis and T-
axis. Texture coordinates identify a location (and thus a color value) in the texture map. The
horizontal coordinate s is specified first, followed by the vertical coordinate t.

2.40 TextureTransform

TextureTransform {
center 0 0 SFVec2f
rotation 0 SFFloat
scale 1 1 SFVec2f
translation 0 0 SFVec2f

}

The TextureTransform node defines a 2D transformation that is applied to texture coordi-
nates. This node affects the way textures coordinates are applied to the geometric surface. The
transformation consists of (in order):

• a translation;

• a rotation about the centre point;

• a non-uniform scale about the centre point.

These parameters support changes to the size, orientation, and position of textures on shapes.
Note that these operations appear reversed when viewed on the surface of geometry. For example,
a scale value of (2 2) will scale the texture coordinates and have the net effect of shrinking the
texture size by a factor of 2 (texture coordinates are twice as large and thus cause the texture
to repeat). Atranslation of (0.5 0.0) translates the texture coordinates +.5 units along the

48 CHAPTER 2. WEBOTS NODES

S-axis and has the net effect of translating the texture -0.5 along the S-axis on the geometry’s
surface. Arotation of pi/2 of the texture coordinates results in a -pi/2 rotation of the texture
on the geometry.

The center field specifies a translation offset in texture coordinate space about which the
rotation andscale fields are applied. Thescale field specifies a scaling factor in S and
T of the texture coordinates about the center point. Therotation field specifies a rotation
in radians of the texture coordinates about the center point after the scale has been applied. A
positive rotation value makes the texture coordinates rotate counterclockwise about the centre,
thereby rotating the appearance of the texture itself clockwise. Thetranslation field specifies
a translation of the texture coordinates.

2.41 TouchSensor

TouchSensor {
scale 1 1 1 SFVec3f
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
children [] MFNode
name "" SFString
model "" SFString
author "" SFString
constructor "" SFString
description "" SFString
boundingObject NULL SFNode
physics NULL SFNode
joint NULL SFNode
locked FALSE SFBool
type "bumper" SFString
lookupTable 0 0 0,0.1 1 0 MFVec3f

}

TheTouchSensor node is used to model bumper sensors and force sensors. A bumper sensor
will detect the collision with anySolid object in the world, including otherDifferentialWheels

nodes. Collision detection is based upon theboundingObject field of theTouchSensor node
and theboundingObject field of otherSolid nodes. A force sensor will also detect such a
collision, but it will also provide additional information on the intensity of force applied during
the collision. TheTouchSensor node inherits from theSolid node. It includes two additional
specific fields:

• lookupTable : similar to the one of theDistanceSensor node.

• type : type of sensor: ”bumper” or ”force”.

2.42. TRANSFORM 49

A bumper sensor will use thelookupTable the following way: if no collision is detected, it will
return the first return value of thelookupTable , which is 0 with the defaultlookupTable .
If a collision is detected, it will return the last return value of thelookupTable , which is 1
with the defaultlookupTable . The real measurement and noise component specified in the
lookupTable are ignored for bumpers. An example on using a bumber sensor is provided in
thebumper.wbt sample world.

A force sensor uses thelookupTable to return an integer value corresponding of a force ex-
pressed in Newton. Each entry of thelookupTable specifies three components: (1) a force
measurement expressed in Newton, (2) an integer return value and (3) a white noise level ex-
pressed between 0 and 1, as with theDistanceSensor . The integer value returned by the force
sensor is computed by measuring the actual force and interpolating over thelookupTable to
compute an integer return value, which takes into account the noise and the non-linearity speci-
fied in thelookupTable . A simple linear and non noisylookupTable for a force sensor could
be:

lookupTable 0 0 0, 100.0 1000 0

In order to be effective, force sensors currently need to have aJoint node defined in theirjoint

field and aPhysics node defined in theirphysics field in addition to a bounding object as in
the bumper sensors. An example on using a force sensor is provided in thehoap2 sumo.wbt

andhoap2 walk.wbt sample worlds.

Note: only the ”bumper” and ”force” types are currently supported, but other types, including
”button” or ”whisker” are likely to be implemented in a forthcoming version of Webots.

2.42 Transform

Transform {
translation 0 0 0 SFVec3f
rotation 0 1 0 0 SFRotation
scale 1 1 1 SFVec3f
children [] MFNode

}

TheTransform node is a grouping node that defines a coordinate system for its children that is
relative to the coordinate systems of its ancestors.

The translation , rotation , scale , define a geometric 3D transformation consisting of (in
order):

• a (possibly) non-uniform scale;

• a rotation;

• a translation.

50 CHAPTER 2. WEBOTS NODES

2.43 Viewpoint

Viewpoint {
fieldOfView 0.785398 SFFloat
orientation 0 0 1 0 SFRotation
position 0 0 10 SFVec3f
near 0.05 SFFloat
far 50 SFFloat

}

TheViewpoint node defines a specific location in the local coordinate system from which the
user may view the scene.

Theposition andorientation fields of theViewpoint node specify absolute locations in
the coordinate system. In the default position and orientation, the viewer is on the Z-axis looking
down the -Z-axis toward the origin with +X to the right and +Y straight up.

Navigating in the 3D view by dragging the mouse pointer changes dynamically theposition

and theorientation fields of theViewpoint node.

The fieldOfView field specifies the viewing angle in radians. A small field of view roughly
corresponds to a telephoto lens; a large field of view roughly corresponds to a wide-angle lens.

Thenear andfar fields define the distance from the camera to the near and far clipping planes.
These planes are parallel to the projection plane for the 3D display in the main window. Along
with the fieldOfView field, they define the viewing frustum. Any 3D shape outside this frus-
tum won’t be rendered. Hence, shapes too far away (below the far plane) won’t appear. Similarly,
shapes too close (standing before the near plane) won’t appear either.

2.44 WorldInfo

WorldInfo {
title "" SFString
info [] MFString
gravity 0 -9.81 0 SFVec3f
CFM 0.00001 SFFloat
ERP 0.2 SFFloat
physics "" SFString
fast2d "" SFString
basicTimeStep 32 SFFloat # expressed in ms
displayRefresh 2 SFInt # to be multiplicated by basicTimeStep
runRealTime FALSE SFBool # run as fast as possible
inkEvaporation 0 SFFloat # make ground textures evaporate

}

2.44. WORLDINFO 51

TheWorldInfo node provides general information on the simulated world:

• The title field should describe shortly the purpose of the world.

• The info field should give additional information, like the author who created the world,
the date of creation and a description of the purpose of the world. Several character strings
can be used.

• The gravity field defines the gravity to be used in physics simulation. The gravity is
set by default to the gravity found on earth. You should change it if you want to simulate
rovers robots on Mars.

• The CFMandERPfields correspond to the physics simulation world parameters used by
ODE. See ODE documentation for more details about these parameters.

• The physics field refers to a shared library allowing the user to define custom physics
properties using the ODE library. See Webots user guide for a description on how to set up
custom physics properties. This is especially useful for modelling hydrodynamic forces,
wind, non-uniform friction, etc.

• The fast2d field allows the user to switch tofast2dmode. If thefast2d field is not
empty, Webots tries to load a fast2d plugin with the given name. Subsequent kinematic,
collision detection, and sensor measurements are computed using the plugin. The objective
is to carry out these calculations using a simple 2d world model, that computes faster than
the 3d equivalent. The Webots distribution comes with a pre-programmed plugin called
”enki”, in addition a Webots user can implement its own plugin. However the fast2d mode
is limited to simple world model containing only cylindrical and rectangular shapes. The
Webots distribution constains an example of world using fast2d:khepera fast2d.wbt

For more information on the fast2d plugin, please refer to the Webots User Guide.

• ThebasicTimeStep field defines the duration of the simulation step executed by Webots.
It is expressed in milliseconds. Setting this value to a high value will accelerate the simu-
lation, but will decrease the accuracy of the simulation, especially for physics simulation
and collision detection. This value is also used when theStep button is pressed. It is a
floating point value.

• ThedisplayRefresh field is multiplicated to thebasicTimeStep value to define how
frequently the 3D display of the main window is refreshed in normalRun mode.

• If the runRealTime field is set to TRUE, this will slow down the simulation if necessary,
so that it runs approximately real time. Webots will then sleep for a number of milliseconds
at each time step, waiting for real time synchronization. In case the simulation cannot run
faster than real time, this field will have no effect on the simulation speed. Setting the
runRealTime field to FALSE will make Webots run as fast as possible both inRun and
Fast simulation modes.

52 CHAPTER 2. WEBOTS NODES

• If the inkEvaporation field is set to a non null value, the colors of the ground textures
will slowly turn to white. This is useful to use on a white textured ground in conjonction
with a Pen device to have the track drawn by thePen device disappear progressively. The
inkEvaporation field should be a positive floating point value defining the speed of
evaporation. This evaporation process is a computer expensive task, hence the ground tex-
tures are updated only everyWorldInfo.basicTimeStep * WorldInfo.displayRefresh

millisecond (even in fast mode). Also, it is recommended to use ground textures with low
resolution to speed up this process. Like with the pen device, the modified ground textures
can be seen only through infra-red distance sensors and not through cameras (as the ground
textures are not updated on the controller side).

Chapter 3

Controller API

3.1 Introduction

3.1.1 The C/C++ API

This chapter covers all the functions of the Controller API which allows you to program robots
both in simulation and in real (through Webots remote control or cross-compilation). The chapter
describes the C prototypes of these functions which can be used from a C or a C++ controller
program.

3.1.2 The Java API

It is also possible to program the simulated and real robots in Java. The Java API is not docu-
mented explicitely, however, it was developed as a plain copy of the C/C++ API. Hence all the
Java method names and parameters are the same as the ones of the C functions described in this
chapter with a couple of exceptions:

• Thechar * type in C is replaced by theString class in Java.

• TheDevigeTag andNodeRef types in C are replaced by theint type in Java.

• Pointers to array of data in C are replaced by array of data in Java. For example, the
camera get image Java method is defined as returning an array ofint rather than a
pointer to a memory chunk. Each value of this array represents the color of a pixel.

A reference file for the Java API calledController.java is provided in thedoc directory of
the Webots distribution.

53

54 CHAPTER 3. CONTROLLER API

3.1.3 Remote control

The C, C++ or Java API can be used for programming a remote controlled Khepera or Aibo
robot. This can be achieved through the robot window in the Webots graphical user interface.

3.1.4 Cross-compilation

A number of limits are inherent to the cross-compilation of controllers using the Webots API.
These limits are often consequences of the limits of the real robots. For example the Khepera
robot can be programmed in C only and not in C++. Please read the robot specific chapters in
the Webots User Guide for a description of the limitations and programming languages available
for each robotic platform.

3.2 Robot

robot battery sensor enable

robot battery sensor disable

robot battery sensor get value

NAME

robot battery sensor enable ,
robot battery sensor disable ,
robot battery sensor get value – battery sensor function

SYNOPSIS

#include <device/robot.h >

void robot battery sensor enable(unsigned short ms);

void robot battery sensor disable();

float robot battery sensor get value();

DESCRIPTION

3.2. ROBOT 55

These functions allow you to measure the current level of the robot battery. First, it is necessary to
enable the battery sensor measurement by calling therobot battery sensor enable func-
tion. Thems parameter is expressed in milliseconds and defines how frequently measurements
are performed. After being enabled a value can be read from the battery sensor by calling the
robot battery sensor get value function. The returned value corresponds to the current
level of the battery of the robot expressed in Joule (J). Therobot battery sensor disable

function should be used to stop the battery sensor measurements.

robot console printf

NAME

robot console printf – format and print text in the Webots console

SYNOPSIS

#include <device/robot.h >

void robot console printf(const char *format,...);

DESCRIPTION

This function allows you to print formated text in the Webots console. The format is the same
as the standard Cprintf function, i.e., theformat string may contain % characters defining
conversion specifiers and optional extra arguments should match these conversion specifiers. The
maximum formated string should not exceed 1024 characters, including the trailing 0 or it will
be truncated.

EXAMPLE

robot_console_printf("my distance sensor measured %d\n",ds_value);

The following statement will display the specified text, replacing the conversion specifier by an
integer value corresponding to theds value variable.

robot die

NAME

56 CHAPTER 3. CONTROLLER API

robot die – declare an exit function

SYNOPSIS

#include <device/robot.h >

void robot die(void (*exit function)(void));

DESCRIPTION

This function declares an exit function to be used whenever a controller quits. A controller can
quit for the following reasons: the simulator quits, or the robot quits the simulator by entering
an HyperGate to be transfered to another simulation server. In the latter case, it might be useful
for the robot to save important data (like an acquired behavior) before it quits, so that this data
can be transfered to the target simulator corresponding to the HyperGate. Hence, when the robot
restarts on the other side of the HyperGate, it can retrieve its data in its reset function before it
starts running again.

The amount of time allocated to the die function is however limited to one second. After one
second, if the controller has not quitted (i.e., returned from the die function), the controller will
be forced to quit, even if the die method has not completed. This prevents the simulator to hang
in case a controller never terminates or crashes.

SEE ALSO

robot live

robot get device

NAME

robot get device – get a unique indentifier to a device

SYNOPSIS

#include <device/robot.h >

DeviceTag robot get device(const char *name);

DESCRIPTION

This function returns a unique identifier to a device corresponding to a specifiedname. For ex-
ample, if a robot contains aDistanceSensor node whichname field is ”ds1”, the function will

3.2. ROBOT 57

return the unique indentifier of that device. ThisDeviceTag identifier will be used subsequently
for enabling, sending command to, or reading data from this device. If the specified device is not
found, the function returns 0.

SEE ALSO

robot live

robot get mode

NAME

robot get mode – get operation mode, simulation or real robot

SYNOPSIS

#include <device/robot.h >

int robot get mode();

DESCRIPTION

This function returns an integer value determining the current operation mode for the controller:

• 0: simulation in Webots.

• 1: cross-compiled version running natively on real robot.

• 2: remote controlled robot from Webots.

robot get name

NAME

robot get name – return the name defined in the robot node

SYNOPSIS

#include <device/robot.h >

char *robot get name();

58 CHAPTER 3. CONTROLLER API

DESCRIPTION

This function returns the name as it is defined in the name field of the robot node (Differential-
Wheels, CustomRobot, Supervisor, etc.) in the current world file. The string returned should not
be deallocated as it was allocated by thelibController shared library and will be deallocated
when the controller terminates. This function is very useful to pass some arbitrary parameter
from a world file to a controller program. For example, you can have the same controller code
behaving differently depending on the name of the robot. This is illustrated in thesoccer.wbt

sample where the goal keeper robot runs the same code as the other soccer players, but its be-
havior is different because its name was tested to determine its behavior (in this sample world,
names are ”b3” for the blue goal keeper and ”y3” for the yellow goal keeper, whereas the other
players are named ”b1”, ”b2”, ”y1” and ”y2”).

This function can be called either from thereset or therun function.

robot keyboard enable

robot keyboard disable

robot keyboard get key

NAME

robot keyboard enable ,
robot keyboard disable ,
robot keyboard get key – keyboard reading function

SYNOPSIS

#include <device/robot.h >

void robot keyboard enable(unsigned short ms);

void robot keyboard disable();

int robot keyboard get key();

DESCRIPTION

These functions allow you to read the key pressed on the computer keyboard from a controller
program while the 3D simulation window of Webots is selected and the simulation is running.

3.2. ROBOT 59

First, it is necessary to enable the keyboard readings by calling therobot keyboard enable

function. Thems parameter is expressed in milliseconds and defines how frequently readings
are updated. After being enabled values can be read by calling therobot keyboard get key

function repeatly until this function returns 0. The returned value, if non null, is a key code
corresponding to a key currently pressed. If no key is currently pressed, the function will return
0. Calling therobot keyboard get key function a second time will return either 0 or the key
code of another key which is currently simultaneously pressed. The function can be called up to
7 times to detect up to 7 simultaneous key pressed. Therobot keyboard disable function
should be used to stop the keyboard readings.

robot live

NAME

robot live – initialize a robot controller

SYNOPSIS

#include <device/robot.h >

void robot live(void (*reset function)(void));

DESCRIPTION

This function must be called before any other controller API function. It is necessary to initialize
the robot controller and optionally to provide a reset function to the controller. This reset function
is useful to perform some initializations, so that the controller knows which sensors and actuators
are available. The reset function should be a void function without any argument. It is called
once at the beginning of the simulation and may be called again if the simulator needs to reset
the robot. However, this rarely happens in practice.

EXAMPLE

#include <device/robot.h>

static DeviceTag my_sensor, my_actuator;

void my_reset_function() { /* called at init. */
robot_console_printf("hello!\n");
my_sensor = robot_get_device("my_sensor");
my_actuator = robot_get_device("my_actuator");

}

60 CHAPTER 3. CONTROLLER API

void my_exit_function() { /* called before quitting */
robot_console_printf("bye bye!\n");

}

int my_run_function(int ms) {
/* read the sensors and write to the actuators */
...

return 64;
}

int main() {
robot_live(my_reset_function); /* called when robot starts */
robot_die(my_exit_function); /* called when robot quits */
robot_run(my_run_function); /* called repeatly */
return 0; /* this statement will never be reached */

}

SEE ALSO

robot get device

robot die

robot run

robot run

NAME

robot run – start the control loop

SYNOPSIS

#include <device/robot.h >

void robot run(int (*run)(int));

DESCRIPTION

Therobot run function starts the control loop for a robot. It declares arun function to be called
repeatedly to control the robot . Thisrobot run never return. Hence, subsequent statements
are never reached.

3.2. ROBOT 61

The run function receive an integer (dt) as an argument. Thedt argument is equal to 0 the
first time the function is called and it takes a possibly different value on subsequent calls. In
synchronous simulation mode, this value is always 0. In asynchronous mode (and with some
real robots), this value may be different from 0. The synchronization mode can be defined for
each robot by setting thesynchronization field of the robot node (see the documentation of
theCustomRobot or DifferentialWheels nodes for details). Thems integer value returned
by therun function is the requested time step for the next step expressed in milliseconds. This
time step define the duration of an iteration of the control loop. It starts at the beginning of a
control loop iteration (call to therun function) and ends at the beginning of the next iteration.
If the simulator (or real robot) can respect this requested time step, thedt parameter passed to
run function is 0. Otherwise, this parameter has a non zero value. Letcontroller date be
the current time of the controller, thedt parameter be interpreted as follow:

• if dt = 0, then, the behavior is equivalent to the one of synchronous mode (request re-
spected, no delay).

• if 0 <= dt < ms, then the actuator values were set atcontroller date + dt and the
sensor values where measured atcontroller date + ms, as requested. It means that
the step actually lasted the requested number of milliseconds, but the actuators command
could not be executed on time.

• if dt > ms, then the actuators values were set atcontroller date + dt and the sensors
values where measured also atcontroller date + dt . It means that the requested step
duration could not be respected.

SEE ALSO

robot live

robot step

NAME

robot step – execute a simulation step

SYNOPSIS

#include <device/robot.h >

unsigned int robot step(unsigned int ms);

62 CHAPTER 3. CONTROLLER API

DESCRIPTION

This function is now obsolete. You should use therobot run function instead. Therobot step

function requests the simulator to perform a simulation step ofms milliseconds, that is to ad-
vance in the simulated time of this amount of time. In synchronous simulation mode, the request
is always fulfilled and the function always return 0. In asynchronous mode, the request may
not be fulfilled. In this case, the return valuedt , representing the delay, may not be 0. Let
controller date be the current time of the controller, the return value be interpreted as fol-
low:

• if dt = 0, then, the behavior is equivalent to the one of synchronous mode.

• if 0 <= dt > ms, then the actuator values were set atcontroller date + dt and the
sensor values where measured atcontroller date + ms, as requested. It means that
the step actually lasted the requested number of milliseconds, but the actuators command
could not be executed on time.

• if dt > ms, then the actuators values were set atcontroller date + dt and the sensors
values where measured also atcontroller date + dt . It means that the requested step
duration could not be respected.

SEE ALSO

robot live

robot task new

NAME

robot task new – start a new thread of execution

SYNOPSIS

#include <device/robot.h >

void robot task new(void (*task)(void *),void *param);

DESCRIPTION

This function creates and starts a new thread of execution for the robot controller. Thetask

function is immediately called using theparam parameter. It will end only when thetask func-
tion returns. The Webots controller API is thread safe, however, some API functions use or return

3.2. ROBOT 63

pointers to data structures which are not protected outside the function against asynchronous ac-
cess from a different thread. Hence you should use mutexes (see below) to ensure that such data
is not accessed by a different thread.

SEE ALSO

robot mutex new

robot mutex new

NAME

robot mutex new,
robot mutex delete ,
robot mutex lock ,
robot mutex unlock – mutex functions

SYNOPSIS

#include <device/robot.h >

MutexRef robot mutex new();

void robot mutex delete(MutexRef mutex);

void robot mutex lock(MutexRef mutex);

void robot mutex unlock(MutexRef mutex);

DESCRIPTION

Therobot mutex new function creates a new mutex and returns a reference to that mutex to be
used with other mutex functions. A newly created mutex is always initially unlocked. Mutexes
(mutual excluders) are useful with multi-threaded controllers to protect some resources (typically
variables or memory chunks) from being used simultaneously by different threads.

The robot mutex delete function deletes the specifiedmutex . This function should be used
when a mutex is no longer in use.

The robot mutex lock function attempts to lock the specifiedmutex . If the mutex is already
locked by another thread, this function waits until the other thread unlocks the mutex, and then
it locks it. This functions returns only after it locked the specifiedmutex .

Therobot mutex unlock function unlocks the specifiedmutex , allowing other threads to lock
it.

64 CHAPTER 3. CONTROLLER API

SEE ALSO

robot task new

You should read some documentation on multi-thread programming techniques using mutexes if
you are not familiar with this technology.

3.3 CustomRobot

custom robot move

NAME

custom robot move – control the position of the robot

SYNOPSIS

#include <device/custom robot.h >

void custom robot move(float tx,float ty,float tz,float rx,float ry,float

rz,float alpha);

DESCRIPTION

This function allows the user to modify the position and orientation of a custom robot. The move
will be performed at the beginning of the next simulation step. If the collision detection system
detects a collision between theCustomRobot node and any anotherSolid object, the move
will not be performed and the custom robot position and orientation will remain unchanged. The
tx , ty andtz values represent the requested translation relative to the current translation value
of the robot. Therx , ry , rz andalpha values represent the offsets to be added to the current
rotation vector and angle of the robot.

custom robot set rel force and torque

NAME

custom robot set abs force and torque ,
custom robot set rel force and torque – apply a force and a torque to the robot
body in absolute world coordinates or relative robot coordinates

3.4. DIFFERENTIALWHEELS 65

SYNOPSIS

#include <device/custom robot.h >

void custom robot set abs force and torque(float fx,float fy,float fz,float

tx,float ty,float tz);

void custom robot set rel force and torque(float fx,float fy,float fz,float

tx,float ty,float tz);

DESCRIPTION

These functions apply only to aCustomRobot node which include aPhysics node in its
physics field. They allow the user to set a arbitrary force and a torque to the body of the cus-
tom robot. Typically, these force and torque result of the action of one or several actuators on the
robot, like a propeller in a plane or a boat. Absolute force and torque would rather result from an
external action, like wind or fluid friction. The force and torques are applied to the center of mass
of the body of the robot (origin of the robot). Withcustom robot set abs force and torque ,
both the force and torque are specified in the world global coordinate system (absolute coor-
dinates). Withcustom robot set rel force and torque , both the force and torque are
specified in the robot local coordinate system (relative coordinates). The force components are
specified by thefx , fy andfz parameters, expressed in Newton (N). The torque components are
specified by thetx , ty andtz parameters, expressed in Newton meter (Nm).

Is is possible to use at the same time and on the same robot bothcustom robot set abs force

and torque andcustom robot set rel force and torque functions. The resulting forces
and torques will be added.

The force and torque defined by a call to eithercustom robot set abs force and torque

or custom robot set rel force and torque are applied continuously to the custom robot
until a different force and torque are specified with the same function. To reset it to no force and
no torque, you should use:custom robot set abs force and torque(0,0,0,0,0,0) or
custom robot set rel force and torque(0,0,0,0,0,0) .

3.4 DifferentialWheels

differential wheels set speed

NAME

differential wheels set speed – control the speed of the robot

66 CHAPTER 3. CONTROLLER API

SYNOPSIS

#include <device/differential wheels.h >

void differential wheels set speed(short left,short right);

DESCRIPTION

This function allows the user to specify a speed for the differentially wheeled robot. This speed
will be send to the motors of the robot at the beginning of the next simulation step. The speed
unit is defined by thespeedUnit field of theDifferentialWheels node. The default value
is 0.1 radian per seconds. Hence a speed value of 20 will make the wheel rotate at a speed of 2
radian per seconds. The linear speed of the robot can then be computed from the angular speed
of each wheel, the wheel radius and the noise on the command. Both the wheel radius and the
noise on the command are documented in theDifferentialWheels node.

differential wheels enable encoders

NAME

differential wheels enable encoders ,
differential wheels disable encoders – enable or disable the incremental en-
coders of the robot wheels

SYNOPSIS

#include <device/differential wheels.h >

void differential wheels enable encoders(unsigned short ms);

void differential wheels disable encoders (void);

DESCRIPTION

These functions allow the user to enable or disable the incremental wheel encoders for both
wheels of theDifferentialWheels robot. Incremental encoder are counters that incremented
each time a wheel turns. The amount added to incremental encoder is computed from the angle
the wheel rotated and from theencoderResolution paramter of theDifferentialWheels

node. Hence, if theencoderResolution is 100 and the wheel made a whole revolution, the
corresponding encoder will have its value incremented by about 628. Please note that when the
DifferentialWheels robot faces an obstacle while trying to move forward, the wheels of the
robot do not slip, hence the encoder values are not increased. This is very useful to detect that
the robot has hit an obstacle.

3.5. DISTANCESENSOR 67

differential wheels get left encoder

NAME

differential wheels get left encoder ,
differential wheels get right encoder ,
differential wheels set encoders – read or set the encoders of the robot wheels

SYNOPSIS

#include <device/differential wheels.h >

int differential wheels get left encoder (void);

int differential wheels get right encoder (void);

void differential wheels set encoders (int left,int right);

DESCRIPTION

These functions are used to read or set the values of the left and right encoders. The encoders have
to be enabled withdifferential wheels enable encoders , so that the functions can read
correct values. Moreover, theencoderNoise of the correspondingDifferentialWheels

node should be positive. Setting encoders value will not make the wheels rotate to reach the
specified value, instead, it will simply reset the encoders with the specified value.

3.5 DistanceSensor

distance sensor enable

NAME

distance sensor enable ,
distance sensor disable – enable and disable the distance sensor measurements

SYNOPSIS

#include <device/distance sensor.h >

void distance sensor enable (DeviceTag sensor,unsigned short ms);

68 CHAPTER 3. CONTROLLER API

void distance sensor disable (DeviceTag sensor);

DESCRIPTION

distance sensor enable allows the user to enable a distance sensor measurement eachms

milliseconds.

distance sensor disable turns the distance sensor off, saving computation time.

distance sensor get value

NAME

distance sensor get value – get the distance sensor measure

SYNOPSIS

#include <device/distance sensor.h >

unsigned short distance sensor get value (DeviceTag sensor);

DESCRIPTION

distance sensor get value returns the last value measured by the specified distance sensor.
This value is computed by the simulator according to the lookup table of theDistanceSensor

node. Hence, the value range for the return value is defined by this lookup table.

3.6 Camera

camera enable

NAME

camera enable ,
camera disable – enable and disable the camera measurements

SYNOPSIS

#include <device/camera.h >

3.6. CAMERA 69

void camera enable (DeviceTag camera,unsigned short ms);

void camera disable (DeviceTag camera);

DESCRIPTION

camera enable allows the user to enable a camera measurement eachmsmilliseconds.

camera disable turns the camera off, saving computation time.

camera get fov

NAME

camera get fov ,
camera set fov – get and set field of view for a camera

SYNOPSIS

#include <device/camera.h >

float camera get fov (DeviceTag camera);

void camera set fov (DeviceTag camera,float fov);

DESCRIPTION

These functions allow the controller to get and set the value for the field of view (fov) of a camera.
The original value for this field of view is defined in theCamera node, asfieldOfView . Note
however, that changing the field of view usingcamera set fov will not change the value of
thefieldOfView field on the simulator side. It will only affect the controller side, making new
rendered images use the specified field of view for the specified camera.

camera get width

NAME

camera get width ,
camera get height – get the size of the camera image

SYNOPSIS

#include <device/camera.h >

70 CHAPTER 3. CONTROLLER API

unsigned short camera get width (DeviceTag camera);

unsigned short camera get height (DeviceTag camera);

DESCRIPTION

These functions return the width and height of a camera image as defined in the corresponding
Camera node.

camera get near

NAME

camera get near ,
camera get far – get the near and far parameters of the camera device

SYNOPSIS

#include <device/camera.h >

float camera get near (DeviceTag camera);

float camera get far (DeviceTag camera);

DESCRIPTION

These functions return the near and far parameters of a camera device as defined in the corre-
spondingCamera node.

camera get type

NAME

camera get type – get the type of the camera

SYNOPSIS

#include <device/camera.h >

char camera get type (DeviceTag camera);

DESCRIPTION

3.6. CAMERA 71

This function returns the type of a camera as defined in the correspondingCamera node. If the
type is ”black and white” or ”grey”, then the return value is ’g’, if the type is ”color”, the return
value is ’c’. Finally, if the type is ”range-finder”, the return value is ’r’.

camera get image

NAME

camera get image ,
camera image get red ,
camera image get green ,
camera image get blue ,
camera image get grey – get the image data from a camera

SYNOPSIS

#include <device/camera.h >

unsigned char *camera get image (DeviceTag camera);

unsigned char camera image get red (image,width,x,y);

unsigned char camera image get green (image,width,x,y);

unsigned char camera image get blue (image,width,x,y);

unsigned char camera image get grey (image,width,x,y);

DESCRIPTION

Thecamera get image function allows you to read the contents of the last image grabbed by
the camera. The image is coded as a series of three bytes coding for the red, green and blue levels
of a pixel. Pixels are stored in lines ranging from the top left hand side of the image down to
bottom right hand side. The memory chunk returned by this function doesn’t need to be released,
as it is handled by the camera itself. The size in bytes of this memory chunk can be computed as
follow:

size = camera width * camera height * 3

Attempting to read outside the bounds of this chunk will cause an error.

The camera image get C macros are useful helpers for accessing directly the pixel colors
from the pixel coordinates. They are not available in the Java programming interface (see below
for details). Thecamera image get grey macros is useful only for black and white cameras.
These macros are defined as follow:

72 CHAPTER 3. CONTROLLER API

#define camera_image_get_red(image,width,x,y) \
(image[3*((y)*(width)+(x))])

#define camera_image_get_green(image,width,x,y) \
(image[3*((y)*(width)+(x))+1])

#define camera_image_get_blue(image,width,x,y) \
(image[3*((y)*(width)+(x))+2])

#define camera_image_get_grey(image,width,x,y) \
(image[3*((y)*(width)+(x))])

The Java version of this function returns an array ofint . The size of this array is the number of
pixels in the image, that is the width of the image multiplicated by the height of the image. Each
int value represents one pixel coded using the RGB color model with 8 bits of red, green and
blue data. For example red is0xff0000 , yellow is 0xffff00 , etc. A black and white camera
would return identical values for the red, blue and green components, like0x4d4d4d , hence the
grey level in the 0-255 range can be retrived from a bitwise and with 0xff:

int [] image;
int [] grey_level = new int[64]; // K213 example 64x1 pixel B&W camera
...
image = camera_get_image(camera);
for(int i=0;i<64;i++) int grey_level[i] = image[i] & 0xff;

camera get range image

NAME

camera get range image ,
camera range image get value – get the range image and range data from a range-
finder camera

SYNOPSIS

#include <device/camera.h >

float *camera get range image (DeviceTag camera);

float camera range image get value (range image,camera near,camera far,width,x,y);

3.6. CAMERA 73

DESCRIPTION

Thecamera get range image macro allows you to read the contents of the last range image
grabbed by a range-finder camera. The range image corresponds to the depth buffer produced
by the OpenGL rendering. For each pixel, it provides the distance from the object to the camera.
However, it is necessary to use thecamera range image get value macro to obtain a linear
distance information expressed in meters. Otherwise, the raw value in the buffer is non-linear,
corresponding to the raw OpenGL depth buffer. The range image is coded as an array floating
point value corresponding to the range value of each pixel of the image. Pixels are stored in
lines ranging from the bottom left hand side of the image up to top right hand side. The memory
chunk returned by this function doesn’t need to be released, as it is handled by the camera itself.
The size in bytes of this memory chunk can be computed as follow:

size = camera width * camera height * sizeof(float)

Attempting to read outside the bounds of this chunk will cause an error.

Thecamera range image get value macro is a useful helper for accessing directly the pixel
range value from the pixel coordinates. This macro transforms the distance value, so that
it is linear and expressed in meters. Thecamera near , camera far and camera width

parameters can be obtained respectively from thecamera get near , camera get far and
camera get width functions. Thex andy are the coordinates of the pixel in the image.

camera save image

NAME

camera save image – save a camera image in either PNG or JPEG format

SYNOPSIS

#include <device/camera.h >

int camera save image (DeviceTag camera,const char *file,int q);

DESCRIPTION

The camera save image function allows you to save acamera image which was previouly
obtained with thecamera get image function. The image is saved in a file in either PNG or
JPEG format. The image format is specified by thefile parameter. Iffile is terminated by
.png , the image format is PNG. If thefile is terminated by.jpg or .jpeg , the image format
is JPEG. Other image formats are not supported. Theq parameter is useful only for JPEG image.
It defines the JPEG quality of the saved image. Theq should be in the range 1 (worst quality)
- 100 (best quality). Low quality JPEG files will use little disk space. For PNG images, theq

parameter is ignored.

74 CHAPTER 3. CONTROLLER API

3.7 Emitter

emitter get buffer

NAME

emitter get buffer ,
emitter get buffer size – get information on the emitter buffer

SYNOPSIS

#include <device/emitter.h >

void *emitter get buffer (DeviceTag emitter);

int emitter get buffer size (DeviceTag emitter);

DESCRIPTION

Theemitter get buffer function returns a pointer to the buffer used by the emitter to send
data. Theemitter get buffer size function returns the size of this buffer, expressed in
bytes.

emitter send

NAME

emitter send – send a message through the emitter

SYNOPSIS

#include <device/emitter.h >

void emitter send (DeviceTag emitter,unsigned int size);

DESCRIPTION

Theemitter send function sendssize bytes of data contained in the beginning of the emitter
buffer.

3.8. LED 75

emitter get channel

NAME

emitter get channel ,
emitter set channel – get or set channel information for an emitter.

SYNOPSIS

#include <device/emitter.h >

int emitter get channel (DeviceTag emitter);

void emitter set channel (DeviceTag emitter,int channel);

DESCRIPTION

The emitter get channel function returns the channel value of theEmitter node. Only
receivers set to the same channel of the emitter can receive message from this emitter.

Theemitter set channel function allows the controller to change the emission channel, so
that different receivers may receive the messages of the emitter. Calling this function will change
the channel field of theEmitter node.

3.8 LED

led set

NAME

led set – turn on or off a LED

SYNOPSIS

#include <device/led.h >

void led set (DeviceTag device,unsigned char value);

DESCRIPTION

led set switches on or off a LED. If thevalue parameter is 0, the LED is turned off. If the
value parameter is 1, the LED is turned on using the first color specified in thecolor field of

76 CHAPTER 3. CONTROLLER API

the correspondingLED node. If thevalue parameter is 2 the LED is turned on using the using
the second color specified in thecolor field of theLEDnode. And so on. Thevalue parameter
should not be bigger than the size of thecolor field of the correspondingLEDnode.

3.9 LightSensor

light sensor enable

NAME

light sensor enable ,
light sensor disable – enable and disable the light sensor measurements

SYNOPSIS

#include <device/light sensor.h >

void light sensor enable (DeviceTag sensor,unsigned short ms);

void light sensor disable (DeviceTag sensor);

DESCRIPTION

light sensor enable allows the user to enable a light sensor measurement eachmsmillisec-
onds.

light sensor disable turns the light sensor off, saving computation time.

light sensor get value

NAME

light sensor get value – get the light sensor measure

SYNOPSIS

#include <device/light sensor.h >

unsigned short light sensor get value (DeviceTag sensor);

3.10. PEN 77

DESCRIPTION

light sensor get value returns the last value measured by the specified light sensor. This
value is computed by the simulator according to the lookup table of theLightSensor node.
Hence, the value range for the return value is defined by this lookup table.

3.10 Pen

pen write

NAME

pen write – enable or disable pen writing

SYNOPSIS

#include <device/pen.h >

void pen write (DeviceTag pen,gboolean write);

DESCRIPTION

pen write allows to switch up or down a pen device to disable or enable writing. If thewrite

parameter is TRUE, the specifiedpen device will write, whereas ifwrite is FALSE, it won’t
write.

pen set ink color

NAME

pen set ink color – change the color of the ink of a pen

SYNOPSIS

#include <device/pen.h >

void pen set ink color (DeviceTag pen,float r,float g,float b,float d);

DESCRIPTION

78 CHAPTER 3. CONTROLLER API

pen set ink color changes the current ink color of the specifiedpen device. Ther , g, b and
d parameters are floating point values ranging between 0 and 1 and defining the new color of the
ink. Thed parameter defines the ink density, 0 meaning transparent ink and 1 meaning opaque
ink.

EXAMPLE

pen_set_ink_color(pen,0.9,0.2,0.2.0.9);

The above statement will change the ink color of the pen to become red.

3.11 GPS

gps enable

NAME

gps enable ,
gps disable – enable and disable the GPS measurements

SYNOPSIS

#include <device/gps.h >

void gps enable (DeviceTag sensor,unsigned short ms);

void gps disable (DeviceTag sensor);

DESCRIPTION

gps enable allows the user to enable a GPS measurement eachmsmilliseconds.

gps disable turns the GPS off, saving computation time.

gps get matrix

NAME

3.12. GRIPPER 79

gps get matrix ,
gps position x ,
gps position y ,
gps position z ,
gps euler – get the GPS measurement represented as a 4x4 matrix

SYNOPSIS

#include <device/gps.h >

const float *gps get matrix (DeviceTag sensor);

float gps position x (float *matrix);

float gps position y (float *matrix);

float gps position z (float *matrix);

void gps euler (const float *matrix,float *euler);

DESCRIPTION

gps get matrix returns the last value measured by the specified GPS sensor. The value re-
turned is an array of 16 floating point numbers representing the standard OpenGL 4x4 matrix
corresponding to the absolute position, orientation and scale of theGPSnode.

gps position x , gps position y andgps position z are helper macros used to retrive
the x, y and z coordinate of the GPS sensor from the matrix data. They are defined as follow:

#define gps_position_x(matrix) ((matrix)[12]/(matrix)[15])
#define gps_position_y(matrix) ((matrix)[13]/(matrix)[15])
#define gps_position_z(matrix) ((matrix)[14]/(matrix)[15])

The gps euler is also a helper function that returns the three local Euler angles from the
GPS matrix. Thematrix parameter is a pointer to the OpenGL 4x4 matrix returned by the
gps get matrix function. Theeuler parameter should point to an array of three floating
point numbers that will receive the Euler angles. The first and last Euler angles can be inter-
preted as inclinometer angle values along the local X and Z axis. The second Euler angle can be
interpreted as a compass angle value. These angle values are expressed in radians.

3.12 Gripper

gripper set position

80 CHAPTER 3. CONTROLLER API

NAME

gripper set position – open or close the gripper

SYNOPSIS

#include <device/gripper.h >

void gripper set position (DeviceTag gripper,float position);

DESCRIPTION

The gripper set position function allows the user to close or open the gripper depending
on the specifiedposition value which represents the aperture of the gripper device, expressed
in meters. Hence a value of 0 will close the gripper and a value of 0.04 will open the gripper 4
cm wide.

gripper enable position

NAME

gripper enable position ,
gripper enable resistivity ,
gripper disable position ,
gripper disable resistivity – enable or disable the position and resistivity sensors
on a gripper

SYNOPSIS

#include <device/gripper.h >

void gripper enable position (DeviceTag gripper,unsigned short ms);

void gripper enable resistivity (DeviceTag gripper,unsigned short ms);

void gripper disable position (DeviceTag gripper);

void gripper disable resistivity (DeviceTag gripper);

DESCRIPTION

These functions enable eachms milliseconds or disable the gripper position and resistivity mea-
surement.

3.13. MTN 81

gripper get position

NAME

gripper get position ,
gripper get resistivity – return the position and resistivity values measured on the
gripper

SYNOPSIS

#include <device/gripper.h >

float gripper get position (DeviceTag gripper);

float gripper get resistivity (DeviceTag gripper);

DESCRIPTION

Thegripper get position function returns the position measurement performed on the spec-
ified gripper device. The position is expressed in meters and corresponds to the aperture of the
gripper as with thegripper set position function. However, it returns the current position
of the gripper and not the target position specified withgripper set position (which may
be the same value when the target position is reached). This function may be useful to measure
the size of a gripped object.

The gripper get resistivity function returns the resistivity measurement performed on
the specified gripper device. This value is expressed in ohm. In this first version, we assume that
any object has a resistivity of one ohm. It will returnInf when no object is gripped and 1.0 when
an object is gripped.

3.13 MTN

mtn new

NAME

mtn new,
mtn get error ,
mtn fprint ,
mtn delete – handle a MTN motion file

82 CHAPTER 3. CONTROLLER API

SYNOPSIS

#include <device/mtn.h > #include <stdio.h >

MTN *mtn new (const char *filename);

const char *mtn get error ();

void mtn fprint (FILE *fd,MTN *mtn);

void mtn delete (MTN *mtn);

DESCRIPTION

The MTN functions are a facility for reading and playing back motions running simultaneously
on several servo devices. The file format used for these motions is compatible with the Sony
MTN file format used with the Sony Aibo robots. A motion file may contain all the information
necessary for a walking gait.

mtn new allows the user to open a MTN motion file specified by thefilename parameter.

If an error occurs, themtn get error will return a text description of the last error, otherwise
it returns null.

mtn fprint prints out themtn structure passed as an argument into the specifiedfd file de-
scriptor. Thefd parameter may be a file opened withfopen with write access, or a standard C
output, likestdout .

mtn delete deletes themtn structure passed as an argument. Thismtn parameter should not be
used any more after callingmtn delete .

SEE ALSO

mtn play

mtn play

NAME

mtn play ,
mtn is over ,
mtn get length ,
mtn get time – control the execution of a MTN motion file

SYNOPSIS

3.14. RECEIVER 83

#include <device/mtn.h >

void mtn play (MTN *mtn);

int mtn get length (MTN *mtn);

int mtn get time (MTN *mtn);

int mtn is over (MTN *mtn);

DESCRIPTION

mtn play starts the execution of amtn motion passed as an argument for controlling several
servo simultaneously. The control will start at the next iteration step (each time therun function
returns) by issuing automatically a number ofservo set position function calls correspond-
ing to the execution of the specified motion.

mtn get length returns the length expressed in milliseconds of the specifiedmtn motion.

mtn get time returns the current time of execution of the specifiedmtn motion. This time
value is expressed in millisecond. The minimum value is 0 (beginning of the motion) and the
maximum value is the value returned by themtn get length function (end of the motion).

mtn is over returns 1 if the specifiedmtn motion has completed and 0 otherwise. It is useful
to test when a motion is finished.

SEE ALSO

mtn new servo set position

3.14 Receiver

receiver enable

NAME

receiver enable ,
receiver disable – enable and disable the receiver measurements

SYNOPSIS

#include <device/receiver.h >

void receiver enable (DeviceTag receiver,unsigned short ms);

84 CHAPTER 3. CONTROLLER API

void receiver disable (DeviceTag receiver);

DESCRIPTION

receiver enable allows the user to enable a receiver measurement eachmsmilliseconds.

receiver disable turns the receiver off, saving computation time.

receiver get buffer

NAME

receiver get buffer ,
receiver get buffer size – get information on the receiver buffer

SYNOPSIS

#include <device/receiver.h >

void *receiver get buffer (DeviceTag receiver);

int receiver get buffer size (DeviceTag receiver);

DESCRIPTION

Thereceiver get buffer function returns a pointer to the buffer used by the receiver to store
received data. This function needs to be called each time new data arrives in the receiver be-
cause the address of the buffer changes when new data arrives. The returned memory chunk
doesn’t need to be released. Memory management is done by the receiver. Moreover call-
ing receiver get buffer will cause the data to be flushed out of the receiver, hence calling
receiver get buffer size immediately after will return 0;

The receiver get buffer size function returns the size of this buffer, expressed in bytes,
that is the number of bytes received and stored in the buffer. It has to be called before the
receiver get buffer function, otherwise, it returns always 0.

3.15 Servo

servo enable position

3.15. SERVO 85

NAME

servo enable position ,
servo disable position ,
servo get position – get the actual position of a servo

SYNOPSIS

#include <device/servo.h >

void servo enable position (DeviceTag servo,unsigned short ms);

void servo disable position (DeviceTag servo);

float servo get position (DeviceTag servo);

DESCRIPTION

The servo enable position function activates the position measurement for the specified
servo . A new position measurement will be performed eachmsmillisecond and can be obtained
from theservo get position function. The returned value is the last measurement of the
servo position. If the servo is a rotation servo, the unit of the returned value is radian, otherwise,
it is meter. Theservo get position returned value is valid only if the corresponding servo
was previously enabled.

The servo disable position function desactivates the position measurement for the spec-
ified servo . The servo get position should not be used any more after a servo position
measurement was disabled, as it will return outdated or erroneous values.

servo get feedback

NAME

servo get feedback – get feedback on the absolute position, orientation, linear velocity
and angular velocity of a servo

SYNOPSIS

#include <device/servo.h >

float *servo get feedback (DeviceTag servo,unsigned short ms);

DESCRIPTION

86 CHAPTER 3. CONTROLLER API

Theservo get feedback function activates the servo feedback measurement for the specified
servo . A new feedback measurement will be performed eachms millisecond and stored in the
float array returned by the function. This array contains a number of floating point values which
should be accessed using the following macros:

Theservo feedback position macro returns the absolute position of the servo, as a pointer
to three floating point values (see thedBodyGetPosition function in the ODE documentation
for more details).

Theservo feedback quaternion macro returns the orientation quaternion of the servo, as a
pointer to four floating point values, respecting ODE convention (see thedBodyGetQuaternion

function in the ODE documentation for more details).

Theservo feedback linear vel macro returns the linear velocity of the servo, as a pointer
to three floating point values (see thedBodyGetLinearVel function in the ODE documentation
for more details).

The servo feedback angular vel macro returns the angular velocity of the servo, as a
pointer to three floating point values (see thedBodyGetAngularVel function in the ODE doc-
umentation for more details).

All these four macros take the return value of theservo get feedback function as a unique
argument.

To desactivate the feedback measurement for a servo, callservo get feedback with a ms

parameter set to 0.

servo set position

NAME

servo set position ,
servo set velocity ,
servo set acceleration ,
servo set force ,
servo set control p – set servo parameters

SYNOPSIS

#include <device/servo.h >

void servo set position (DeviceTag servo,float position);

void servo set velocity (DeviceTag servo,float vel);

void servo set acceleration (DeviceTag servo,float acc);

void servo set force (DeviceTag servo,float force);

3.15. SERVO 87

void servo set control p (DeviceTag servo,float p);

DESCRIPTION

The servo set position function gives a new target position the servo will try to reach.
If the servo is a rotation servo, the unit of theposition parameter is radian, otherwise, it
is meter. If the servo has no maximum and minimum position and if the value passed as
position is SERVOINFINITY , the servo will turn endlessly in the positive direction. Setting
it to -SERVOINFINITY will make the servo turn endlessly in the negative direction.

Theservo set velocity function gives the target speed the servo will try to reach in order to
achieve the given position. If the servo is a rotation servo, the unit of thevel parameter is rad/s,
otherwise, it is m/s.

The servo set acceleration function changes the acceleration value used by the position
controller. If the servo is a rotation servo, the unit of theacc parameter is rad/s2, otherwise, it is
m/s2.

Theservo set force function gives the maximum torque or force the servo will have. If the
servo is a rotation servo, the unit of theforce parameter is Newton meter (Nm) as it is a torque,
otherwise, it is Newton (N) as it is a force.

The servo set control p function allows the controller to change dynamically the value of
thecontrolP field of theServo node used for the position control.

SEE ALSO

mtn new mtn play

servo motor off

NAME

servo motor off – turn off the servo motor

SYNOPSIS

#include <device/servo.h >

void servo motor off (DeviceTag servo);

DESCRIPTION

Theservo motor off function turns the motor of the specifiedservo off. This means that no
control is performed any more on the servo motor. Moreover, the servo will become soft and will

88 CHAPTER 3. CONTROLLER API

probably move to a new position due to the action of external forces and torques on it. To turn
a servo motor on after it was turned off, simply use theservo set position function with
the desired new position. Note that when a servo motor is off, its position sensor may still be
enabled, hence theservo get position function still returns the actual position of the servo.

servo set rel force and torque

NAME

servo set abs force and torque ,
servo set rel force and torque – apply a force and a torque to a servo in absolute
world coordinates or relative robot coordinates

SYNOPSIS

#include <device/servo.h >

void servo set abs force and torque(DeviceTag servo,float fx,float fy,float

fz,float tx,float ty,float tz);

void servo set rel force and torque(DeviceTag servo,float fx,float fy,float

fz,float tx,float ty,float tz);

DESCRIPTION

These functions apply only to aServo node which include aPhysics node in itsphysics field.
Moreover, thisServo node should have itsforceAndTorque field set toTRUE. Otherwise, the
functions will simply be ignored.

These functions allows the user to set a arbitrary force and a torque to servo. Typically, relative
force and torque result of the action of one or several actuators on the robot, like a propeller
in a plane or a boat. Absolute force and torque would rather result from an external action,
like wind or fluid friction. The force and torque are applied to the local origin the servo. With
servo set abs force and torque , both the force and torque are specified in the world global
coordinate system (absolute coordinates). Withservo set rel force and torque , both the
force and torque are specified in the robot local coordinate system (relative coordinates). The
force components are specified by thefx , fy andfz parameters, expressed in Newton (N). The
torque components are specified by thetx , ty and tz parameters, expressed in Newton meter
(Nm).

Is is possible to use at the same time on the same servo bothservo set abs force and torque

andservo set rel force and torque functions. These forces and torques will be added.

3.15. SERVO 89

The force and the torque defined by a call to eitherservo set abs force and torque or
servo set rel force and torque are applied continuously to the custom robot until a dif-
ferent force and torque are specified with the same function. To reset it to no force and no torque,
you should use:

servo set abs force and torque(0,0,0,0,0,0) or

servo set rel force and torque(0,0,0,0,0,0) .

servo run animation

NAME

servo run animation ,
servo get animation number ,
servo get animation range – servo animation functions

SYNOPSIS

#include <device/servo.h >

void servo run animation (DeviceTag servo,int anim);

int servo get animation number (DeviceTag servo);

float servo get animation range (DeviceTag servo,int anim);

DESCRIPTION

These functions are useful to perform non-robot-realistic animations. They do not refer to a real
servo device, and permit to change dynamically the translation and rotation field of the Servo
node. This results in more life-like animations, but should not be used in realistic simulations of
real servo devices.

Theservo run animation function starts the animation specified byanim which corresponds
to the index of theAnimation node in theServo animation field. 0 is the firstAnimation

node of theMFNode list. The animation is also started recursively in all the childrenServo of
theServo specified by theservo parameter. Passing-1 asanim will stop the animation in the
specifiedservo and recursively in its subsequentServo children.

Theservo get animation number function returns the number ofAnimation nodes present
in theanimation field of the specifiedservo .

Theservo get animation range function returns the range of the animation, that is the last
value of thekey field of theAnimation node. TheAnimation node is specified by itsanim

index like with theservo run animation . The range value corresponds to the length of the
animation cycle expressed in seconds.

90 CHAPTER 3. CONTROLLER API

3.16 Supervisor

The supervisor controller is a particular case of a robot controller, hence therobot live ,
robot run , robot get device , etc. functions also apply to supervisor controllers. Moreover,
as long as the supervisor contains sensors and actuators in its list of children, the corresponding
sensor and actuator functions can be used (except for thedifferential wheels * functions
that are specific to differential wheels robots).

This section covers the supervisor specific functions, allowing the supervisor controller to track
the position and orientation ofSolid nodes in the scene, to move them, to take a snapshot of the
scene, etc.

supervisor export image

NAME

supervisor export image – save the current 3D image of the simulator into a JPEG file,
suitable for building a webcam system

SYNOPSIS

#include <device/supervisor.h >

void supervisor export image (char *filename,unsigned char quality);

DESCRIPTION

Thesupervisor export image function saves the current 3D image of the simulator window
into a jpeg file as specified in thefilename parameter. Thequality parameter defines the
jpeg quality (in the range 0 - 100). Thefilename parameter should specify ajpeg file (as an
absolute or relative path), i.e.,"my image.jpeg" or "/var/www/html/images/shot.jpg" .
Indeed, a temporary file is first saved, and then renamed to the requestedfilename . This avoids
having a temporary unfinished (and hence corrupted) file for webcam applications.

EXAMPLE

A simple example of using thesupervisor export image is provided in thephotographer

directory of thecontrollers directory.

An example of a webcam system usingsupervisor export image is provided in thewebcam

directory of thecontrollers directory.

3.16. SUPERVISOR 91

supervisor import node

NAME

supervisor import node – import a node into the scene

SYNOPSIS

#include <device/supervisor.h >

void supervisor import node (char *filename,int position);

DESCRIPTION

The supervisor import node function imports a Webots node into the scene. This node
should be defined in a Webots file referenced to by thefilename parameter. Such a file can be
produced easily from Webots by selecting a node in the scene tree window and using theExport
Object button.

Theposition parameter defines the position in the scene tree where the new node is going to
be inserted. It can be positive or negative. Here are a few examples for theposition parameter:

• 0: insert at the beginning of the scene tree.

• 1: insert at the second position.

• 2: insert at the third position.

• etc.

• -1: insert at the last position.

• -2: insert at the second position from the end of the scene tree.

• -3: insert at the third position from the end.

• etc.

As in supervisor export image , thefilename parameter can be specified with an absolute
or a relative path.

supervisor node get from def

NAME

92 CHAPTER 3. CONTROLLER API

supervisor node get from def ,
supervisor node was found – get a pointer to a node of the scene from its DEF name
and check if that node exists.

SYNOPSIS

#include <device/supervisor.h >

NodeRef supervisor node get from def (char *defname);

gboolean supervisor node was found (NodeRef node);

DESCRIPTION

Thesupervisor node get from def function retrieves a pointer to a node of the scene from
its DEF name. The return value can be used for subsequent calls to functions referring to
a node of the scene. Note that this function always return a non NULL value, even if the
node does not exist in the scene. It is necessary to call therobot step function between the
supervisor node get from def calls and their correspondingsupervisor node was found

calls. The argument to therobot step may be 0 if an immediate search is needed.

Thesupervisor node was found checks whether the node referred to bynode really exists
in the scene. It returnsTRUEif the node exists andFALSEotherwise.

supervisor set label

NAME

supervisor set label – display a text label over the 3D scene

SYNOPSIS

#include <device/supervisor.h >

NodeRef supervisor set label (unsigned short id,char *text,float x,float

y,float size,unsigned int color);

DESCRIPTION

Thesupervisor set label function displays a text label over the 3D scene in Webots’ main
window. Theid parameter is a an identifier for the label, you can choose any value in the range
0 - 65536. It will be used later on when you want to change that label, like updating the text. The
text parameter is a text string which should contain only displayable characters in the range

3.16. SUPERVISOR 93

32-127. Thex andy parameters are the coordinates of the upper left corner of the text, relative
to the upper left corner of the 3D window. These floating point values are expressed in percent
of the 3D window width and height, hence, they should lie in the range 0-1. Thesize parameter
defines the size of the font to be used. It is expressed with the same unit as they parameter.
Finally, thecolor parameter defines the color for the label. It is expressed as 32 bits RGB
integer value, where the first byte defines the transparency level, the second byte represents the
red component, the third byte represents the green component and the last byte represents the
blue component. A transparency level of 0 means no transparency while a transparency level of
0xFF means total transparency. Intermediate values correspond to semi-transparency levels.

EXAMPLE

• supervisor_set_label(0,"hello world",0,0,0.1,0x00ff0000);

will display the label ”hello world” in red at the upper left corner of the 3D window.

• supervisor_set_label(1,"hello dad",0,0.1,0.1,0x8000ff00);

will display the label ”hello dad” in semi-transparent green, just below.

• supervisor_set_label(0,"hello universe",0,0,0.1,0xffff00);

will change the label ”hello world” defined earlier into ”hello universe”, setting a yellow
color to the new text.

supervisor simulation quit

NAME

supervisor simulation quit – terminate the simulator and controller processes

SYNOPSIS

#include <device/supervisor.h >

void supervisor simulation quit ();

DESCRIPTION

Thesupervisor simulator quit function sends a request to the simulator process, asking to
terminate and quit immediately. As a result of terminating the simulator process, all the controller
processes, including the calling supervisor controller process will terminate.

94 CHAPTER 3. CONTROLLER API

supervisor simulation revert

NAME

supervisor simulation revert – reload the current scene

SYNOPSIS

#include <device/supervisor.h >

void supervisor simulation revert ();

DESCRIPTION

Thesupervisor simulator revert function sends a request to the simulator process, asking
to reload the current world immediately. As a result of reloading the current world, the supervisor
process and all the robot processes are terminated and restarted. You might want to save some
data in a file from you supervisor program to be able to reload it when the supervisor controller
restarts.

supervisor simulation physics reset

NAME

supervisor simulation physics reset – stop the inertia of all solids in the world

SYNOPSIS

#include <device/supervisor.h >

void supervisor simulation physics reset ();

DESCRIPTION

Thesupervisor simulator physics reset function sends a request to the simulator pro-
cess, asking to stop the movement of all physics enabled solids in the world. It means that for any
Solid node containing aPhysics node, the linear and angular velocities of the corresponding
body is reset to 0, hence the inertia is stopped. This is actually implemented by calling the ODE
dBodySetLinearVel anddBodySetAngularVel functions for all bodies with a nul velocity
parameter. This function is especially useful when resetting a robot at an initial position from
which no initial inertia is required.

3.16. SUPERVISOR 95

supervisor robot set controller

NAME

supervisor robot set controller – change the controller of a specified robot

SYNOPSIS

#include <device/supervisor.h >

void supervisor robot set controller (NodeRef robot,const char * ctr);

DESCRIPTION

Thesupervisor robot set controller function sends a request to the simulator, asking to
change the controller of the specifiedrobot to the one defined by thectr parameter. The current
robot controller process is then immediately terminated and the requested controller process is
launched instead to control the robot. This function can be used for both robot and supervisor
controllers.

supervisor start animation

NAME

supervisor start animation ,
supervisor stop animation – save the current simulation into a Webview animation
file

SYNOPSIS

#include <device/supervisor.h >

void supervisor start animation (char *filename);

void supervisor start animation ();

DESCRIPTION

The supervisor start animation function starts saving the current simulation in a Web-
view animation file. Saving the animation will complete after thesupervisor stop animation

function is called. Thefilename parameter should refer to a file with aWVAextension.

96 CHAPTER 3. CONTROLLER API

Webview is the Webots animation viewer. It is freely available as a stand alone application or a
plugin for Mozilla, Netscape and Internet Explorer. It allows you to demonstrate your simulations
as 3D animations in which the users can navigate to observe the behavior of the robots. Webview
is available free of charge from Cyberbotics web site.

supervisor field get, supervisor field set

NAME

supervisor field get ,
supervisor field set – get and set the contents of the field of a node in the scene

SYNOPSIS

#include <device/supervisor.h >

void supervisor field get (NodeRef node,field type type,void *data,unsigned

short ms);

void supervisor field set (NodeRef node,field type type,void *data);

DESCRIPTION

Thesupervisor field get function allows the supervisor controller to track the evolution of
some fields of a node. Currently only a few fields are trackable, as described in the following list
of field types. Eachms milliseconds, the new value of the field (if any) is stored atdata with a
specific data type (usually an array offloat). The type parameter should be a combination of
the following primitive constants, as defined in thesupervisor.h header file:

For any solid node (incl. Solid, DifferentialWheels and CustomRobot):
SUPERVISOR_FIELD_TRANSLATION_X
SUPERVISOR_FIELD_TRANSLATION_Y
SUPERVISOR_FIELD_TRANSLATION_Z
SUPERVISOR_FIELD_ROTATION_X
SUPERVISOR_FIELD_ROTATION_Y
SUPERVISOR_FIELD_ROTATION_Z
SUPERVISOR_FIELD_ROTATION_ANGLE

For any robot node (incl. DifferentialWheels and CustomRobot):
SUPERVISOR_FIELD_BATTERY_CURRENT

For any light node (incl. PointLight and DirectionalLight):
SUPERVISOR_FIELD_LIGHT_INTENSITY

3.17. TOUCHSENSOR 97

Some predefined combinations include:

SUPERVISOR_FIELD_TRANSLATION = SUPERVISOR_FIELD_TRANSLATION_X+
SUPERVISOR_FIELD_TRANSLATION_Y+SUPERVISOR_FIELD_TRANSLATION_Z

SUPERVISOR_FIELD_ROTATION = SUPERVISOR_FIELD_ROTATION_X+
SUPERVISOR_FIELD_ROTATION_Y+SUPERVISOR_FIELD_ROTATION_Z+
SUPERVISOR_FIELD_ROTATION_ANGLE

SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION =
SUPERVISOR_FIELD_TRANSLATION+SUPERVISOR_FIELD_ROTATION

The rotation angle requested by SUPERVISORFIELD ROTATION ANGLE is expressed in
radian. Its minimum value is 0. Its maximum value is 2 PI.

It is necessary that thedata parameter be a pointer towards a large enough array offloat , able
to contain all the requested values. Onefloat is necessary for each primitive value. Please
note that thisdata pointer should point to a valid memory chunk at the time of therun control
function. Hence, it should not be stored on the heap of a local function. Instead, it has to be
dynamically allocated, or declared as a local or global static variable.

The values pointed by thedata parameter are updated by the simulator everyms simulated
millisecond. This update is performed if necessary before calling therun control function.

In order to disable the tracking of a field, call thesupervisor field get function with ams

parameter set to 0.

There should be only one call tosupervisor field get for a node. Requested values are
updated at regular time steps. A common error is to callsupervisor field get to retrive
the translation field of a node and then to call againsupervisor field get to retrieve the
orientation field of the same node. The result is that the translation will never be retrieved. Instead
you should call oncesupervisor field get and ask for both the translation and rotation
information (using the predefined combinations described earlier or using the + or OR operators).

The supervisor field set function works the same way assupervisor field get , ex-
cept that it changes the value of the requestedfield instead of reading it.

EXAMPLE

An simple example of using field tracking is given in thesupervisor controller.

3.17 TouchSensor

98 CHAPTER 3. CONTROLLER API

touch sensor enable

NAME

touch sensor enable ,
touch sensor disable – enable and disable the touch sensor measurements

SYNOPSIS

#include <device/touch sensor.h >

void touch sensor enable (DeviceTag sensor,unsigned short ms);

void touch sensor disable (DeviceTag sensor);

DESCRIPTION

touch sensor enable allows the user to enable a touch sensor measurement eachmsmillisec-
onds.

touch sensor disable turns the touch sensor off, saving computation time.

touch sensor get value

NAME

touch sensor get value – get the touch sensor measure

SYNOPSIS

#include <device/touch sensor.h >

unsigned short touch sensor get value (DeviceTag sensor);

DESCRIPTION

touch sensor get value returns the last value measured by the specified touch sensor. This
value is computed by the simulator according to the lookup table of theTouchSensor node.
Hence, the value range for the return value is defined by this lookup table.

Chapter 4

Webots File Format

4.1 File Structure

Webots files must begin with the characters:

#VRML_SIM V4.0 utf8

and the following nodes have to appear:

WorldInfo
Viewpoint
Background

4.1.1 Example

#VRML_SIM V4.0 utf8
WorldInfo {

info [
"Description"
"Author: first name last name <e-mail>"
"Date: DD MMM YYYY"

]
}
Viewpoint {

orientation 1 0 0 -0.8
position 0.25 0.708035 0.894691

}
Background {

skyColor [

99

100 CHAPTER 4. WEBOTS FILE FORMAT

0.4 0.7 1
]

}
PointLight {

ambientIntensity 0.54
intensity 0.5
location 0 1 0

}

The file extension is.wbt (standing for WeBoTs).

	Introduction
	Webots Nodes
	Animation
	Appearance
	Background
	Box
	Camera
	Charger
	Color
	Cone
	Coordinate
	Cylinder
	CustomRobot
	DifferentialWheels
	DirectionalLight
	DistanceSensor
	ElevationGrid
	Emitter
	Extrusion
	Fog
	GPS
	Gripper
	Group
	ImageTexture
	IndexedFaceSet
	IndexedLineSet
	Joint
	HyperGate
	LED
	LightSensor
	Material
	Pen
	Physics
	PointLight
	Receiver
	Servo
	Solid
	Shape
	Sphere
	Supervisor
	TextureCoordinate
	TextureTransform
	TouchSensor
	Transform
	Viewpoint
	WorldInfo

	Controller API
	Introduction
	The C/C++ API
	The Java API
	Remote control
	Cross-compilation

	Robot
	CustomRobot
	DifferentialWheels
	DistanceSensor
	Camera
	Emitter
	LED
	LightSensor
	Pen
	GPS
	Gripper
	MTN
	Receiver
	Servo
	Supervisor
	TouchSensor

	Webots File Format
	File Structure
	Example

