Unleashing enterprise models
with Borland® Delphi” 8 Architect
for the Microsoft® .NET Framework

An in-depth look at the features of
Borland® Enterprise Core Objects (ECO™)

using a real-life sample application

A Borland White Paper

By Christophe Floury,
Chief Architect, Neosight Technologies Limited

July 2004

Borland’

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Contents

L 0 8 o X o U o e) P 4

What are Borland® Enterprise Core Objects (ECO™)?................ 5
UML® FUNLIME ..ottt 5
Microsoft® .NET Framework metadata vs. UML metadata..............co.coevvvveeverenesesrsiennen. 5
ECO objects extend .NET ODJECES........coiiiiriiiiirieisines e e 6
ECO objects Need .NET ODJECES......cviiiiiiiieirieeree s 6
THE ECO NAMESPACESveuveveverietesteeete sttt sttt sttt sttt et abe st ebe b saebeabe e ebeabeneebeabeneerens

The Borland.Eco.ObjectRepresentation
The Borland.Eco.UmIRt namespace

The Borland.ECO.SerVICeS NAMESPACEccueiveieieetietesteeee ettt ste et sbesee et e e neereseeseeanan
From ECO SPACE 10 .[NETicicieciecieciee et e st ste et snaesreenneas 10
From ECO types t0 .NET TYPES ...oviiriiiiieiiece e 11
The role 0f ECO tagged VAIUESooveiiirieiiie e 11

Modeling our sample application: Introduction to Consultancy

ManagEer L. 0 ..t e e e 12
(000 (o] TSRS 13
CONACT MANAGEIMENT. ...t itie ittt e et e st e e e sbe e et e e e nbeeebe e e nbaeenee s 14
PrOGUCE QN0 SEIVICES. .. viviiiieeieieieiesteste st e e e e ste e estesteaneesee e e tesaesrestesnenreeneeneeneens 15

Using the DefaultStringRepresentation ECO tagged Valueccooiivieieieeneieneneee e 17
Controlling aspects of the datahase SCheMa..........ccccviiiiiiiiccc s 18

Project management
Requirements
MOTET OVEIVIBW.......ciiiiiiiiiicicet ettt
Using derived attributes with inheritanCe StrUCIUIES..........covooiririiiriieer e 20
Derived attributes and recursive OCL
Considerations regarding the performance 0f OCL.........cccooiiiiiiiinceee e 22
Further performance considerations regarding late fetching...........ccocooeiiiiiniiiini 22
Converting OCL N0 SQLvviuiiiieieiee ettt st st se e seesestenteseen 23

SYSTEM PATAIMETEIS ...ttt bbbt sr e sr et b e nrenes
Implementing a singleton for SystemParameters
IMPIEMENtING CUMTENTUSEI() «.vvvieieiteiteieieieie ettt sttt sttt ne et sbe st e s

Borland® 2

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

BUIlAING the ECO SPACEeveitiiiieiiiieieti ettt sttt n b eans 27
The database is in the SAME AIFECIONYcviiiiiieeee e 28
Implementing update of audit AttrIBULES..........cccviieicie e 28
User-interface basics: binding objects instead of data........... 29
LOGICAI TNIEE-TIEI ... ettt bbbt ne 29
INItialiZiNg the ECO SPACE......ciieiieiiie ittt st bbb e e 30
BINAING @ GFI ..ottt bbb ee 31
Binding combo DOXeS t0 ODJECEScveviiiiiciiice s 33

F N [T o] Y L] o] SRS 33

AN AAVANCEA BXAMPIE......ocviiiiiici ettt b et st e st se et reebentestesbenan 34
Using ECOWinforms and the AUOCONTAINETcccuiiriiieie e 35
Using the ubiquity of databinding in .INET ...t 36
Building an optimized search 37
IMProving the SEArCH SCIEEN........ciiiiii e 38
Saving data and multi-user considerationsol 40
Schemes for updating the databaseccccvevrieiicreic s 40
Other ECO SEIVICE S ittt e e e e et 41
The ODJECE FACIOIY SEIVICE ...ccuiiiiieieiieise ettt ettt ettt sb et st neeteebeneen 41

THE OCL TYPE SEIVICES ...vvveiviitiriesietteieste sttt be st st e e st s teabe s be b e b eseeseebe st e st et e s eseesesbesbeneen 41

THE STALE SEIVICE... vttt bbbttt b bbbttt b e e s 41

THE UNAO SEIVICE ...ttt ettt bbb ettt b bbbt b e eb bbb nas 41

THE VEISION SEIVICE ...ttt b e bbbttt b ettt be et b nan 41
CONCIUSI O N et e e e e e e e 42

Borland® 3

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Introduction

With its Model Driven Architecture® (MDA®) initiative, the Object Management Group™
(OMG™) has recognized that in order for its Unified Modeling Language® (UML®) to succeed
in further automating the software industry, it had to take a more active role in the

development process.

To significantly reduce development time, the use of UML had to extend beyond mere
sketching of ideas, reverse-engineering through code visualization, and one-way generation of
code. It had to effectively separate the intentions of the system (business rules) from the

underlying implementation technology and, above all, drive the maintenance process.

Borland® Delphi™ 8 for the Microsoft .NET Framework, Architect Edition, brings this vision
to market with one of the tightest integrations of a GUI builder, a modeling tool, and a UML
execution runtime platform for the Microsoft® .NET Framework. Borland succeeds in
providing higher productivity through an approach that combines a two-way UML/Delphi
language synchronization engine, which generates the minimum code necessary to unleash

strongly typed OO programming.

By making such lightweight code generation target prepackaged framework services, Delphi
8 Architect augments the feature set of traditional .NET code and helps avoid the cumbersome
traditional roundtrips and their copious amounts of code to manage. These prebuilt services,
named Borland® Enterprise Core Objects (ECO™) ensure industrial strength handling of
associations, derived attributes, persistence, subscription, region-based optimistic locking,

object versioning, OCL-based constraint checking and query capabilities, and much more.

This white paper investigates the power of ECO through the development of a medium-sized
system (30 classes) to manage time and billing for consulting organizations: “Consultancy
Manager 1.0.” For maximum benefit, download the source code and study it in conjunction

with this paper.

Borland® s

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

What are Borland® Enterprise Core Objects
(ECO™)?

Enterprise Core Objects is a set of software components designed to use UML during the
initial design, execution, and design evolution (refactoring and extension) phases. The largest
ECO components act as a runtime framework for executing a UML model. Design-time ECO
components include, for example, the Borland® Together® UML/Delphi language
synchronizer (code generator), which handles components to visually connect ECO objects to

Ul elements and model validation.

UML® runtime

UML model execution keeps the model in efficient data structures® and uses its rich
information to drive horizontal services such as instantiating UML classes, mapping objects to
database structures, synchronizing both ends of an association, enforcing semantically rich
constraints thanks to OCL, and forcing objects states to follow designed transitions in state

machines.

Microsoft® .NET Framework metadata vs. UML metadata

Since the advent of the Java" and .NET platforms, the use of metadata and reflection has
gained much use and popularity. The .NET runtime is a fine example of an execution
environment where metadata survives the compilation stage and takes a central, more

dynamic role during execution.

LA UML model is a collection of interrelated modeling elements such as classes, associations, attributes, states, and
transitions, and is not merely a collection of diagrams. Diagrams are visual representations of carefully selected
portions of the model to convey a particular understanding of one aspect of the system. Indeed, not all modeled
information is represented in diagrams. And while many diagrams are needed to visualize a system, it is incorrect to

assume that several models are necessary in order to specify a system.

Borland® :

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

However, .NET metadata lacks the richness of the UML semantic. In fact, in many ways it
can be considered a fairly rich subset. It has been a noticeable trend in new languages to
progressively adopt many of the features introduced by declarative modeling languages such
as the UML. For example, we can find namespaces, properties, tagged values (code attributes
in CLR) that have long been part of the UML. The point is to increase the level of abstraction
by reusing neat packages of horizontal features (appropriate for many domain applications)

and thus increase productivity.

ECO objects extend .NET objects

.NET objects are not UML objects; the .NET common language runtime (CLR) is not as rich
as that of UML models. For example, in UML, you simply flag a class as persistent and
expect that to be the end of the work you have to do. ECO objects are a particular
implementation of UML objects. As such, they provide the extra services beyond those of
.NET objects.

The ECO runtime is a system that takes as a parameter a complete UML model and creates an
instance of it called an ECO Space, in very much the same way that .NET uses metadata to
create a process where objects will be created and reside. You can then ask ECO to create
instances of UML Classes and Associations and (also unlike a standard .NET process); you

can directly link the ECO Space to a file or a database so that ECO objects are persistent.

ECO objects need .NET objects

Before the advent of Action Semantics (now part of the UML 2.0 specification), UML did not
provide full execution support. Algorithms and method body definition are left to other
languages to define. ECO objects rely on intermediate language (IL) code for their method
implementations. ECO locates the implementation for its object methods by letting the
developer specify and link traditional .NET classes with UML classes. The Delphi 8 Architect
two-way UML/Delphi code synchronization feature automatically does all of this for you.

This solution is shown in Figure 1 below which illustrates how it is possible to navigate both

Borland® :

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

ways between the .NET Objects and the ECO objects that are surfaced by the powerful

Borland.Eco.ObjectRepresentation interfaces.

= bFrpeny - Soalas
= Mitstle | Bocluan

[peiw cetiaion
|Onjactiine Prmiea

_E

I |+ CeEmSevimeimrinType Treel Cujem

|DirtyListService
|ExtentService
|ObjactFactarySarvice
0ciTypeService
|PersistenceService
IStataSarvica
[TypeSystemService
IUndoService
rlablaFactoryService
VersionService

Figure 1: The main ECO namespaces

The ECO namespaces

The Borland.Eco namespace is divided into six main namespaces:
1. UmIRt gives you access to the UML model at runtime

2. ObjectRepresention gives you access to ECO objects and values instantiated
from the UML model

3. Subscription allows you to be notified when an ECO object or value has changed

Borland® 7

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

4. Persistence provides automatic saving of ECO objects to files and databases

5. Handles provide components available at design-time to reach into the

ObjectRepresentation namespace and bind ECO objects to user interface components

6. Services expose functionality of the ECO engine such as OCL evaluation,

versioning, and undo/redo

The Borland.Eco.ObjectRepresentation
The ECO namespace Borland.Eco.ObjectRepresentation shows that ECO objects
consist of several elements (IE1ement). It allows you to interact with any elements through a

dedicated interface.

These interfaces enable you to navigate the internal structures of an ECO object and to modify
values such as clearing a “multilink” as Person.addresses.Clear, or adding ECO objects

to the association with a simple: Personl.addresses.Add(Addressl);

Because ECO objects are made up of discrete elements, these elements can have powerful
built-in behavior. For example, if Address1 has an Owner property representing the other
end of the Addresses association, Address1.0wner is automatically set when the address

is added to the address collection of the owner.

Notable in ECO elements is the built-in support for immutability (or invariant calculated
values) and properties representing collections of elements such as what you find when

navigating a UML link such as Organization.employees : PersonCollection.

The Borland.Eco.UmIRt namespace

The Borland.Eco.UmIRt namespace shows that UML model information is available at
runtime and can be navigated to from any ECO Object (or part thereof). Notably, we can find
out whether a UML class or UML structural feature (such as attributes in UML 1.4) is flagged
as persistent. Figure 2 is an extract of the UML metamodel (the model that describes the data

structures to store a UML model and, as such, defines the OMG standard). Note by comparing

Borland® ’

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

the UML 1.4 and the ECO.UmIRt interfaces that ECO contains a speed-optimized (Rt stands

for runtime) subset of the UML metamodel.

1t

n ‘name : String ‘ +constrair
1.n {ordered}
ElementOwnership
visibility : VisibilityKind
isSpecification : Boolean ‘ ‘ o | +consraints
%“ Ger i ement Parameter Constraint
01 L | [isRoot:Boolean defaultValue : Expresson body : BooleanExpression
. fELer s Ceslleam kind : ParameterDirectionKind
isAbstract : Boolean
n | +parameter
ouner <] ordored)
Feature 0.1 =
ownerScope : ScopeKind
visibility : VisibilityKind nfordered} _
5 0.1
BehavioralFeature -
] [i=uery: Boolean_|
[
Attribute Operation
concurrency : CallConcurrencyKind 1 n Method
isRoot Boolean +specificati body : Proced)
isLeaf : Boolean
isAbstract : Boolean
specification : String

Figure 2: The Foundation/Core/*“Backbone” diagram of the UML 1.4 metamodel

The top of Figure 1 illustrates one role of Delphi 8 code generation: generated code can be
considered .NET “wrappers” around ECO objects. By calling the AslObject method on any of
the instances of your .NET generated classes at runtime, you gain access to the richer world of
ECO objects through the 10bject interface pointing to the underlying “implementation”

objects.?

2ECO is itself built using .NET technologies. This means that the implementation objects underlying your .NET
objects are .NET objects. For example, you could navigate to an IProperty for the “surname” attribute by calling:

Var p: IProperty;
p = MyDotNetPersonObject.AslObject.properties[“surname’];

You could then investigate where this property is defined in the UML model by following:

Borland® 9

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

The UML model is completely stored as .NET metadata via standard Delphi language
constructs augmented with code attributes. At initialization, ECO uses reflection to convert
this metadata into the Eco .UmIRt structures. This solution has two major consequences. The
first is that the model is never out of sync with the code, refactoring at the model level
(through the modeling surface), refactors the code. The second consequence is that because
the design-time ECO components make use of the ECO.UmIRt structures to perform various
tasks such as validating the model (including all the OCL expressions) and generating

schema, the code must be compiled beforehand for the metadata to be available.

The Borland.Eco.Services namespace

Now let’s talk about the last part of Figure 1: Borland.Eco.Services. Those of you
familiar with Bold (the predecessor of ECO) might notice that the 1EIement interfaces in
Eco.ObjectRepresentation are unaware of their underlying functionality, such as the
ability to evaluate OCL expressions. In Bold, such services were available through
inheritance. All your objects inherited from TBoldObject, which itself inherited from
TBoldElement and therefore had a very large API. Access to such services is now done by
requesting an Interface to a specialized subset of functionality. These services are known as
ECOServices.

From ECO Space to .NET

You can navigate back to the .NET world by navigating the AsObject property of any
IElement. This includes IPrimitive.AsObject, which takes a boxed .NET object version of the
primitive value and makes it available in the ECO world (known as ECO Space). Why would
you want to have ECO versions of .NET primitive types? The answer is incredible: all ECO

elements are subscribable.

p-StructuralFeature.

®
Borland 0

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

From ECO types to .NET types

Another interesting route you can take is from the ECO types (UmIRt) to the .NET types. If
you are navigating through the UML model and want to instantiate a particular type, access
the ObjectType property and invoke the constructor. This, in effect, creates an underlying

ECO object where the ObjectType is a generated class (wrapper for ECO Object), complete

with a constructor that takes care of the details.

The role of ECO tagged values

Some of you familiar with the UML specification might wonder how EcoServices can be
configured. For example, because we now have an IPersistenceService, surely ECO will give
us the ability to fine-tune the SQL schema for storing objects. But UML, although richer than
any other language, wants to remain technology agnostic? If this were true, it would not make
sense for the UML standard to include an attribute on ModelElements for Table names and
Column names. The solution is to keep your UML model clean of such platform-specific
elements and use UML profiles (collection of tagged values) to annotate any model element
with further information about how to execute the platform-independent model (PIM) onto a

particular platform, thus how to transform it into a platform-specific model (PSM).

There again, note that Borland . Eco . UmIRt is an optimized UML structure. Accessing the
generic tagged values associated with model elements repeatedly at runtime could be costly.
So, although UmIRt. IModelElement has a TaggedValues property that tries to map as
closely as possible to the UML standard, the standard UML metaclasses are augmented with
ECO versions in which tagged values are fully blown attributes. An example is the

IEcoClass.Versioned attribute.

®
Borland "

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Modeling our sample application:
Introduction to Consultancy Manager 1.0

Now that you have read about basic theories and concepts introduced by the ECO platform,
the rest of this white paper focuses on useful techniques through a practical example

application named Consultancy Manager.

Consultancy Manager is designed to help any organization that provides products and
services, especially consulting services. The basic features are that of contact and address
management, time recording and billing, and basic statistical reporting for management.

Figure 3 shows a package interdependency diagram of the classes.

BusinessSystemCore
+ CoreClass
Audit < Chargeable
(from BusinessSystemCore) + Chargeableltem
+ AuditLog
+Login f N
I S~

Contact Information % \ \ \A
+ Address @

+ Area -
+City / Parties Project Costing Produg ‘i‘ lSEWICES
+ Contactinfo 2 + Organisation + ActivityCategory| atalog
+ Country +Party < + ActivityLog + ActivityHourlyRate
+ District + Person + Project + Catalogltem
+ InternetAddress S + Product
+ Location / /
+ PhoneNumber *‘
+ Region

Invoicing
_ — — + Invoice

+ InwiceLine
+ RechargeableExpense

Accounting
+ Account
+ Posting

Figure 3: Consultancy Manager, a high-level map
The steps involved in building the application:

1. Use the Borland® Together® modeling surface to visually model classes and set up
UML and ECO properties on modeling elements

2. Implement method implementations in Delphi

3. Build an ECO Space to host classes and set up the persistence mechanism

Borland®

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

4. Build a user interface

Figure 4 is a screen shot of the finished Consultancy Manager application.

EConsultancv Manager 1.0 -0 5[
File Help
Q}Dpeﬂ QSave
Contact Name | Catalog Price| Man Hours | Cost -]
Management
Communication Consultancy (0.5 50
nsultancy Manager) Programming Consultancy (7 700
= | ltancy Manager) / Appl 0 0
N Consultancy
Development Consultancy (37 3700
Product Catalog Review Consultancy (13.33333333 1333.333333 =
New Edit Delete
£
=
Projects
Length(min) | Project | Category |Man Hours | Cost
X 120 \whitepaper (Consultancy Manager P
\ .
= S| Manager Develops
Invoicing
Accourting e = Sen
Ready 4

Figure 4: Consultancy Manager’s projects page

Core classes

Every corporate software development team can benefit from building a reusable core set of
classes to be used in all applications. As more horizontal features are required from
applications to conform to corporate development guidelines, developers can retrofit these
reusable classes easily. For example, it is not uncommon to want to log every change made in
a system. If circumstances are not so stringent, being able to link the last version of an object
to a user can prove useful to colleagues.

®
Borland "

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Figure 5 shows that all classes inherit from an ultimate ancestor class that we have named

CoreClass.? Every object in our system is time stamped at its creation, and subsequent

modifications are associated with a Login object representing one user of the system.

[x] ConsultancyManagerEcoSpace | x| Core Classes [diagram]

: AuditLog i

SIIIIIIIIII Tt |'|:'gs B +changed: DateTime [- - -
............. e o 0.~ :
............. R R L) =
S oiii1i::0.2 logsFortagin
o e IDga e Db AE T e e R e e R e e e s e e PR e
5 CoreClass SHE SH SR S e
B +created: DateTime ownedObjects - TEin Lol s e | Bianeaite
z +lastModified: DateTime J0.% - - - - - - - -- T St
= M R e
......... Sl g A | i
......... = chemigr Sttt
T Login
-------------- madifier |B +userName: System.String f1 - -
AT e Login

Figure 5: The classes diagram introducing horizontal features of Audit

Contact management

Nearly every business system needs contact management capabilities. Figures 6 and 7 show
that Party is the abstract ancestor of Organization and Person. They have in common

their ability to be associated with various ContactlInfo objects.

3 Please note that the use of word Core here makes no reference to Core in Borland® Enterprise Core Objects (ECO).

Borland®

14

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

PostalAddress.
B +lines: System.String

InternetAddress | -
- - [B +url: System String | -

Organisation employer - - employees 3 +firstN - Svetem S
|2 neme: Svstem Sving [B1- BB T L e Svetom Suing. | B ey

.

Heossghit Technologres Limied Phre Muber +34 (0) 1481 243 144
Borland ke Sdress PO Box 478, . GY1 6BE.

[Ereson <]k

Fiest Name [Cristonhe

LestName [Fowy

Figure 7: The contact management page shows instances of UML classes

Product and services

This subset of functionality allows us to capture the consulting organization’s product and
services catalog. Figure 8 shows two products and one hourly rate for consultancy. Note that

the audit functionality is available by inheriting from the CoreClass described earlier.

®
Borland "

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

EConsultancv Manager 1.0 -|EI|5|
File Help

:U Open g Save

82

Contact
Manzgement

Product Catalog |

| Unit Frice | Last Medified | Modified By
Cé#Builder Architect 1.0 25009720031 cmf

Consultancy 25/09/2003 1 cmf
BoldExpress Studio 2.0 250920031 cmf

Product Catalog e Delete

Ready 4

Figure 8: The product catalog showing the core audit functionality

The Product and Services Catalog diagram (Figure 9) introduces intermediate ancestors for
Product and ActivityHourlyRate. Chargeableltem introduces the derived cost
attribute to its descendent classes. Both Product and ActivityHour lyRate have their
DefaultStringRepresentation ECO Tagged Value set. Figure 9 shows some aspects of

parameterizing the ECO database schema generation capabilities.

B\ General - |+ + unitPrice.asString + '/h)’
|abstract False E
| nlias
ConstraintsCollel (Collection |~ -
|File 2
|Name ActivityHo |
[Namespace -
|Sealed False
|Sterectype
B Tagged Values 52
BlEco |Bnrland.5t e
DefaultStringR name +°(|- - e ———— —

[properties] |[chargeablettem ActivityHourlyRete.
& Design B /+cost Double |- | DefaultStingRepresentation = name
7.

Catalogitem
- |B +name: System String
- |__*unitPrice: Double £

DerivationExpH (Collection |-
F ollection |~ -
GenerateDefal True
OptimisticLocki Default
3| TableMapping |Parent ¥/
TableMame [0
_|Versioned
ipursiskem:u

- [ActivityHouryRate

Figure 9: Providing an OCL-based string representation and changing TableMapping

®
Borland "

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Using the DefaultStringRepresentation ECO tagged value

In .NET, all objects can provide a string to display an object’s value.* This is achieved by the
presence of the System.Object.ToString() virtual method that you can override in your
classes. ECO—or, more precisely, Bold for Delphi—had this ability long before with its
StringRepresentation. In fact, Bold can have several StringRepresentations, with one being
called Default. In ECO, you could add the ToString method to your model to provide the code

to calculate it.

With ECO, OCL can do this automatically for you. Provide a valid OCL expression into the
DefaultStringRepresentation ECO tagged value in your model (Figure 8). The two major
advantages of using OCL are that your calculations (or each intermediate step of your
calculation) are subscribed, so if one element changes, you will be notified. The second
advantage is that you need not check for null references each time you follow a node, as you
do in code. For example, the City.ToString would have to be written:
function City.ToString: string;
begin

Result := name;

it Assigned(country) then

Result := Result + “ (C + country.name + “)7;
end;

Whereas, in the following. OCL is safe : name + < (“ + country.name + <)~

For those unfamiliar with the power of OCL, note that constructs such as the following are

possible:

Country.StringRepresentation

name + if country->notEmpty then
endif

(© + country.name + “)” else

4 This is not to be confused with .NET serialization, despite the fact that the ToString()often is used for

serialization of individual objects” members.

®
Borland 17

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Controlling aspects of the database schema

Figure 10 shows that we can not only choose the table and column names in which our data is
stored, but also we can specify how we want inheritance to be represented in relational
databases. The default scheme of ECO (“Own”) is to create a new table for each Class
containing columns for the attributes it introduces. An Object’s members will therefore be
split across several tables. Each object in ECO has an ID, which is used as primary key for
each table. ECO performs a join on these primary keys to bring all the columns (attributes)

together into one view.

You can change this behavior by changing the TableMapping Tagged value (Figure 10).
The “Parent” option instructs ECO to store the class attributes in the table used by the parent
class. This means that ActivityHour lyRate does not have its own table, as shown in the

schema extract on the right.

The “Children” option could have been used for our audit attributes on CoreClass. A

creator, modifier, created, and lastmodified column would be present in all

our tables!

Object Inspector [%] ConsultancyManagerEcoSpace | 1] Product Services Catalog [liagram]]_
[Properties| Chargeableltem| - ActivityHourlyRate
@ Design B f+cost Double | - | DefaultStingRepresentation = name
El General . | +'{" + unitPrice.asSting + '/h)'
| Abstract |False Ir) >

Alias
ConstraintsColles (Collection |~ =~ = = =~ = = = -

e 3 D e e P S H ECOMODELROOT
Name |ActivityHo |- Z Z "1ttt S R S e et lBOLDJD
Namespace JEE e Catalogltem sl |_|soLp_TrrE
|Sealed |False SRR - - | @ +name: Systerm String
Sterectype | i +unitPrice: Double : : CHARGEABLEITEM
Bl|Tagged Yalues R e R R [g[s0i01D
Blleco [Borland.st 225 522 S8R0 S S S lBOLD-ﬁrPE
{DefaustingRnsnue - *(R, R AR =

|DerivationExpr (Collection

iFormerNamesG(Eolleclian A e

|GenerateDefal True caeaeals bt

|OptimisticLockiDefault |-~~~ | _Produdt | - - - | ActivityHoudyRatef - - - - - -
¥ | TableMapping |Parent ~ .

|TableMame [Own

|versioned [Mekak e |l e

persistence Children S e

CATALOGITEM

Figure 10: Customizing the ECO scheme to represent inheritance within relational databases

®
Borland "

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Project management

Requirements

In the Project Management module, we want to create hierarchies of projects and sub-
projects, and we want to record the time that a certain activity took as well as the human
resources that were involved. Finally, we want to categorize activities. Some activities will be
assigned the “Development” category; others will be pure “Communication.” The ability to
organize categories into hierarchies allows us to group activities at an arbitrary level of

precision. For example, we can further divide development into programming and testing.

The ultimate use for this module, apart from feeding information into the not-yet-
implemented invoicing module, is management reporting. We want to sum up all activities,

times, and costs by projects and subprojects as well as by categories (Figure 11).

78 Consultancy Manager 1.0 _1ol x|
Fle tHelp
i Open [Save
Contact Name | Catalog Price | Man Hours
Management ;
ess 2.0 Communication Consultancy (0.5 50
itepaper (Consultancy Manager) Programming Consultancy (7 700
— ! \whitepaper (Consuliancy Manager) / Applicatio 37
¥ Research Consultancy [5 500
Development Consuliancy (37 3700
Product Catalog Review Consultancy (1333333333 1323333233
New Edit Delete
£
6]
Projects
| Length{min) | Froject |Category | Man Hours | Cost
mentation of Save to DB 2! 120 ‘Whitepaper (Consultancy Manager nel 2 200
L usiness Rules implementation paper (C
S \g | |Searched how to implement Combo-boxes 25/08/2003 300 \hitepaper (Consultancy Manager Development 5
Invoicing
Q‘JJ
Accourting = = T
Ready 4

Figure 11: The project management page of Consultancy Manager 1.0

®
Borland "

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Model overview
Figure 12 shows the Project Management module functionality where the hierarchical
structures are modeled with self-referencing associations and the calculations are modeled

exclusively with OCL expressions at the attribute and class level.

ey — [%] ConsultancyManagerEcoSpace | [%] Product Services Catalog [diagram] | [%] ProjectCosting [diagram]
' s Person B Cheraccbionni i
_Properties manHaours = minutes /60 * resources->size - - | @ +firstName: System String |- - [SR

+lasiName: System.String | - 8 /reost Double |- - - -

totalCost = activities cost->sum +

False subProjects totalCost->sum i I o m

|ConstraintsColel (Collection || 10t8IManHours = activities.manHaurs->sum + - - - - - 1."resources - - - -
ko subProjects totaltanHours->sum -

e | “AT2

Activitylo: |
;péréﬁtmshﬁl?réjéds' 3 : :
e | 1N Project e el e =
B/ Tagged Values |- |B +name: string P e Activitylog = Catalogltem
BlEco Borland.st |- - - | {*totalManHours: Double | project - achivilies | @ stitle: System String | - - [E) +name: Systern.String -

" |DefaultstringR, |25 % [{+totalCost Double (1 Assodifio|l +stariDate: DateTime | © | +unitPrice: Double Sy
3 |DerivationExpdlection) =] |~ |© F oo s st sminutes: Integer o

F (Collection |- ~=UEL cecseeece. .| femanHours: Double

GenersteDefal True’ e LAl

Wl"fﬁg‘w‘ [0= A e

TableMapping /Own s By activities [0.* - -

TableName,/ [<Mame> |* ~ - ActivityCategory ame = l e e R e

|versioned” False ' - - |E +name: System.String o ph e e “-"“-..___ LSl
persistepte persistent | otalManHours:Dowble R e e s . —

|+ - |__i+totalCost: Double activityCateqories -~ - - activityHourlyRate

yd |- 0. - - Al - - -1
% s et
NameBodyDefinition Collection Editor

Members: cost Properties:

[cost ll B Mizc

Body [self. activityCategory._activityHourlyR ate_unitPrice / 60] * self. minutes * self.resources-» size
il Narne cost

Figure 12: Exclusive use of OCL derivation to perform complex calculations

Using derived attributes with inheritance structures

When introducing a derived attribute to a class, you can provide its implementation with a
Delphi code property getter or with an OCL expression in the attribute’s DerivationOCL
tagged value (Figure 13). Redefinitions in subclasses are done with the

DerivationExpressions tagged value (Figure 12).

®
Borland 2

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Object Inspector

| [%] Product Services Catalog [diagram] [

e - | Chargeableltem| - .
- | o [EEEEEEEY | - | ActivityHourlyRate.
Alizs - | DefaultStringRepresentation = name
derfved True : +' (' + unitPrice.asString + '/h)’
El|Eco Borland.Studio.” | ~
AllowMULL False
Columnhame <Name= | - Catalogltem | - - - - -~ - --- -
DefaultDBValue | L f s s s - - - “etring b LLliiiiiild
DelayedFetch | Fals: B 1 +name: String S
» |Derivationoc. [(0 E +unitPrice: Double |0 -0 o 00000

Figure 13: Providing a derivation expression for an attribute in OCL (constant 0)

Derived attributes and recursive OCL

Using OCL evaluation in a recursive manner is very powerful. For example, you can show the
hierarchical nature of Project in their String representation by providing the following OCL
expression, which gives us project names like “Consultancy Manager / Application / User
Interface.”

Project.Defaul tStringRepresentation

if self._parent->isEmpty then name else self.parent.AsString + * / * + name
endif

Similarly, using the following two simple OCL expressions, you can specify the nature of the
calculated attributes for totals and let the power of ECO do the rest, including loading the
appropriate objects from the database. We now leave the field of computation for the field of

mathematical specification, where OCL has its origins as a formal language.

Project.totalCost.DerivationOCL

self._activities.cost->sum + self.subProjects.totalCost->sum

ActivitylLog.DerivationExpressions

cost=(self.activityCategory.activityHourlyRate.unitPrice /7 60) * self.minutes
* self.resources->size

®
Borland »

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Considerations regarding the performance of OCL

Of course, all of this power requires care and attention. The ability to merely specify what we
want, without saying when things are calculated and in what order, saves time for the
developer who knows he will get results; however, it might not always result in an efficient

solution.

As the number of ActivityLog records grows in our system, you might not want to show
the ManHours and Cost columns for Project and Category in the main screen. In order to
calculate these values, we must load all ActivityLog records in memory. This is because
OCL evaluation happens in memory. We could provide a button on our user interface to show
these columns only when we are prepared to wait, as we would do when a complex report is

being prepared. Only when we look at ECO elements do they shape themselves up.

Further performance considerations regarding late fetching

So we must load data in memory in order to calculate new information about it. This is
nothing new; we are used to doing so—manually. To minimize memory consumption, ECO is
heavily geared toward late fetching of objects. It fetches objects only when it needs them.
This happens when you programmatically navigate a link with Delphi code like
Person.addresses[0] or display data using the ECO handles (more on this later).” This
also happens during the time ECO performs an OCL evaluation if an object is not in memory.
The order in which things happen does matter sometimes, when performance must be taken
into account. In such a case, ECO might fetch one object at a time, issuing an SQL command

for each row instead of retrieving what it needs with a single call.

The solution is not necessarily to avoid OCL, but instead to ensure that objects have been
loaded before the evaluation kicks in. ECO provides several methods in its API to help you

achieve this. For example:

® ECO handles use OCL evaluation.

®
Borland 22

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

ObjectRepresentation. IElementCollection.EnsureRange(fromlndex: Int32;
tolndex: Int32)

loads several elements in a collection in one Database call. Similarly,
I0bjectList_EnsureRelatedObjects(memberName: string)

helps you efficiently pre-fetch a list of objects at the other end of an association.

Converting OCL into SQL
One use of OCL is definitely not recommended: Using the al I Instances operation to

search for particular objects, as in:

ActivityLog.alllnstances->select(title="Made a very slow application”)

This effectively loads every instance of ActivityLog in memory to retain the matching ones
in the collection. However, because of a technology dubbed OCL2SQL, ECO can translate
this OCL expression, and quite a few others like it,® into an efficient SQL statement to

retrieve only the matching objects.

System parameters

[%] ConsultancyManagerEcoSpace | [x| System Parameters [cﬁagram]]

SystemParameters EfEEtE R s i S S R e e e —
: S i i Organisation
k- systemParameters - © © | systemOwner. |5 «name: Systerm.String
- |8 +currentlser():.CoreClassesUnit Login B o e poarr o]
+instance().CoreClassesUnit SysternParameters | . . - . -
7 e e = : e I

Figure 14: The SystemParameters singleton

®A limitation of OCL2SQL is the requirement that you mention only persistent elements.

®
Borland 23

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

A recurring pattern in all applications is necessary to provide a central location to store
system-wide values or parameters. Figure 14 shows the System Parameters diagram in which
we have defined a class stereotyped as “singleton.” Stereotypes in ECO are not used for
execution. The SystemParameter class stores only as an application parameter, the
Organization that owns the software. This is used to differentiate the internal staff (which

can be used as resources for ActivityLog) from pure contacts.

Implementing a singleton for SystemParameters
The Singleton pattern can be implemented in several ways. We implement it with an
Instance class function to illustrate how to use two important ECO services: the

TypeSystemService and the ExtentService.

class function SystemParameters.Instance(serviceProvider:
Borland.Eco.ObjectRepresentation. lEcoServiceProvider): SystemParameters;
var

TypeSystemService: ITypeSystemService;

ecoTypeSystem: IEcoTypeSystem;

c: IClass;

ex: IExtentService;
begin

TypeSystemService:=
ITypeSystemService(serviceProvider._GetEcoService(typeof(1TypeSystemService)));

ecoTypeSystem := TypeSystemService.GetTypeSystem();
c := IClass(ecoTypeSystem.GetClassifierByType(typeof(SystemParameters)));
ex := lExtentService(serviceProvider._GetEcoService(typeof(lExtentService)));

if ex.Alllnstances(c).Count = 0 then
Result := SystemParameters.Create(serviceProvider)
else
Result := SystemParameters((ex.Alllnstances(c)[0]-AsObject));
end;

®
Borland 24

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Implementing CurrentUser()

The system parameter singleton pattern also can be used to implement your own services that
operate on the ECO Space of the singleton object. For example, we have implemented a
CurrentUser function to search for a Login object, of which the username attribute
matches the name of the currently logged-in user. As such, we provide a kind of “integrated
security mode,” where we assume that the user interacting with the software locks his
workstation when away from his desk. Logging in to the network is deemed sufficient for our
audit purposes. We will show when to call this method later, when we populate the created

and modifier links of our CoreClass.

The following implementation for CurrentUser illustrates the use of the ECO OclService.
We enter the ECO world through this.Asl0Object. We get hold of the OCL Service by
calling its ServiceProvider.GetEcoService(typeof(10cl Service)). We finally
search for a Login object with the OCL

Login.alllnstances->select(username = [Environment.UserName]) For
performance considerations, we assume that the number of Login objects will remain almost
static and low. If the currently logged-in user is using the application for the first time, we

automatically create a Login object for him:

function SystemParameters.currentUser(): Login;
var

oclExpression: String;

oclService: I0clService;

currentLogin: IElement;

newLogin: Login;

begin
oclExpression := "Login.alllnstances->select(username=""" +
Environment._UserName + """)->First";
oclService :=

10clService(Self_AslObject.ServiceProvider.GetEcoService(typeof(l10clService)))

currentLogin := oclService.EvaluateAndSubscribe(Self._AslObject,

oclExpression,nil,nil);

®
Borland 25

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

if not Assigned(currentLogin) then

begin
newLogin := Login.Create(Self.AslObject.ServiceProvider);
newLogin.userName := Environment.UserName;
Result := newLogin;

end

else

Result := Login(currentLogin.AsObject);

end;

Borland®

26

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Building the ECO space

At design time, an ECO Space represents a particular combination of model elements. You
use an ECO Space to bring together several packages. At runtime, an ECO Space is a cache of
ECO objects. The Delphi 8 wizards automatically create a descendent for your application
(Figure 15). The ECO Space can be persisted.

Component
{from Componentiiodsl)

ECOSpace

(from Handles)
C + Active : Boolean

IEcoSevice
Provider + GetEcoSenice(seniceType - Class) : Object
+ SubscribeToActive(subscriber : Class)

4

DefaultECOSpace PersistenceMapper
{from Handles) {from
+ OptimisticLocking : Boolean 0.*
+ UpdateWholeObjects : Boolean
<=readOnly==+ Persistent : Boolean

CustomEcoSpace
[VariableFactoryService - IVariableFactorySenvice
ObjectFactoryService : 10bjectFactoryService

OclSenvice . [0clService
ITypeSystemService - ITypeSystemSenice
UndoSenvice | IUndoService
DirtyListService : IDifyListSemice
PersistenceService : IPersistenceSenice

UpdateDatabase()

Figure 15: Delphi 8 wizards generate a descendant of ECO Space for your application

Object Inspector

J 1x] Cnmjtartﬁﬂana;arEmSpace]
E SH | rmowl 2 |

|TconsuuancyManagerDelphisE:nSpi ﬂ

m‘— Hodhae ® | - &7 &

O Configurations ' &

[(DynamicProperties) |

Design B’/— BdpConnectionl % PersistenceMapperB dpl

El ECO | Persistence
OptimisticLocking | False
[PersistericeMapper__nceMapperBdj
UpdatewhaleChjeq(none)
PersistenceMapperBdpl

1

EersistenceMapper

emponent managing ECO Space's

persistence. | 58 i)

11 cbject selected (P@om|[72 |met [" Desion (33]

Figure 16: Setting the persistenceMapper using the ECO Space designer

®
Borland .

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

The database is in the same directory
constructor TConsultancyManagerDelphi8EcoSpace.Create;
var
dbPath: string;
begin
inherited Create;
InitializeComponent;
dbPath := Environment.CurrentDirectory;
self.BdpConnectionl.ConnectionString :=
"assembly=Borland.Data. Interbase,Version=1.5.1.0,Culture=neutral ;vendorclient=
gds32.dl1;database=" + dbPath +
“"\DATABASE .GDB;provider=Interbase;username=sysdba;password=masterkey"” ;

end;

Implementing update of audit attributes

The generated ECO Space is a good placeholder for writing our code that will update audit
attributes in a central place. In the UpdateDatabase () method, we use the ECO DirtyL.ist
Service. This service keeps an up-to-date list of objects that have been modified (or never

were saved to the database) since the last update.

®
Borland 28

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

procedure TConsultancyManagerDelphi8EcoSpace.UpdateDatabase;
var
dirtyObjects: I0ObjectList;
myobject: CoreClass;
i: integer;
begin
if Assigned(PersistenceService) and Assigned(DirtyListService) then
begin
dirtyObjects := DirtyListService.AllDirtyObjects;
for i = 0 to dirtyObjects.Count - 1 do
try
myObject := CoreClass(dirtyObjects[i]-AsObject);
myObject. lastModified := DateTime.Now;
myObject.modifier := SystemParameters.Instance(Self).currentUser;
except
//
end;

PersistenceService.UpdateDatabaseWithList(DirtyListService.AllDirtyObjects);
end;
end;

User-interface basics: binding objects
iInstead of data

In this section, we look at building a professional looking WinForm Ul for our Consultancy
Manager ECO back-end.

Logical three-tier

The greatest strength of ECO is the separation of the three tiers of an application in decoupled
layers with clear interfaces. Figure 17 shows that your model and its objects are hosted within
a middle tier called the ECO Space. Without any knowledge of the underlying Persistence
tier, the objects in your ECO Space can be persisted either in files or in relational databases.

ECO provides a set of visual components called “handles” to connect the ECO world to the

®
Borland 2

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

.NET databinding world. Handles typically point to 1Elements in your ECO Space which
can be a single or collection of objects, as well as calculated values. Handles have columns,
the values of which are calculated with OCL expressions within the context of the 1EIement.
Handles can be chained so that the value (element) of a “roothandle” can provide context for

other handles.

Column
+name : String
+Expression : String

+Columns 0=

|
O +Element ElementHandlg | +DataSource _DalaGrld
“mmc\.E\ement) 0.1 |) o {from Forms)
IListSource
| {from Componenthlodel)
= |
v |
Per DefaultEcoSpace I
 ———
o ECO Handles Nt databinding
ExpressionHandle
+ Expression : String
Persistence tier Middle tier Presentation tier

Figure 17: The three-tier architecture of ECO

Initializing the ECO Space

ECO wizards generate code for the main form of your application. This code provides an
ECO Space singleton as a property of your form and links the ECO Space to a rootHandle
component as an entry point for chaining further handles. Note that this happens because

chained OCL execution eventually must link to the context of an ECO Space.

The ECO Space constructor that is also code generated by the ECO wizards initialize the ECO
Space by possibly linking it to a persistenceMapper component. The main form constructor

then sets the ECO Space active property to true.

®
Borland %

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

function TMainForm.get_EcoSpace: TConsultancyManagerDelphi8EcoSpace;

begin
if not Assigned(fEcoSpace) then
begin
TEcoSpace := TConsultancyManagerDelphi8EcoSpace.Create;

rhRoot.EcoSpace := fEcoSpace;
end;
result := fEcoSpace;

end;

constructor TMainForm.Create;
begin
inherited Create;
// Required for Windows Form Designer support
//
InitializeComponent;
EcoSpace.Active := True;

end;

Binding a grid
Binding a grid to data is a simple three-step process (Figure 18).
1. Link arootHandle to the ECO Space

2. Use an rexpression handle rooted to the rootHandle, and set its OCL expression

3. Set the DataSource property of your grid to the ExpressionHandle

Borland®

31

Unleashing enterprise models with Borland® Delphi” 8 Architect for the
Microsoft® .NET Framework

Object Inspector

Object Inspector
‘ECmtzcmanagemenyse&dﬁol.cs o)

OrganisationsHandle Bnr\and‘Ecn.HandIEs.ExpressmlLI F a ‘Hl | Tl i ‘ H - 'v,__"'. #| IOnganisatiunGrid System. Windows.Forms LI
= = - Pt-l-—l ¥ oemd =
Properties |E.,emgl Properties IE\,emsl
L A 1]
»[addRootvarzbldFaise v s ‘ l Accessi |
Columns (Collection) — AccessibleRole |Default
| {CynamicProper! — . AllowDrop False
Enabled True | Organisabores i AllowNavigation [True
Expression Organisation.allinstances i -_ i AllowSorting True
Modifiers Public CaptionText |Organisations
(Name) OrganisationsHandle CaptionVisible |True
RootHandle rhRoot Causesvalidatior| True
Varizbles (none) ColumnHeadersY{ True
ContextMenu |{none)
(DataBindings)
DataMember
|DataSource
=
ruto Format
mns rce
olumns surfaced by this handle dicates the source of data for the DataGrid

Figure 18: Binding a WinForm grid

Note: You do not need to specify a Columns collection for your handle. By default, if the
1E1ement the handle points to is a collection of 10bjects, a MappingName is defined for
each member of the Object (Figure 19). Defining new columns for the handle allows you to

specify new OCL expressions evaluated in the context of each row.

Members: OrganisationBoxColumnl Properties:
OrganisationBoxColumni B Configurations
(DyynamicPropert
Bl Design
(Mame) OrganisationBoxColy
Medifiers Private
Bl Display
Alignment Left
HeaderText
MullText {nuall)
B Layout
\width 300
Bl Misc
Format
Mappingh
ReadOn

Add - Remaove

emParameters
al

1e)

0K

Figure 19: The default MappingNames are shown in the grid column editor

®
Borland »

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Binding combo boxes to objects

A simple example

Databinding with ECO behaves the same way as with database datasources. Combo-boxes are
designed to display “friendly” versions of foreign key values in lookup tables. You would
traditionally provide to the combo box the ValueMember, which would be an integer
representing the foreign key column and the DisplayMember to display the name of the item

chosen in the list.

With ECO, we do not have a foreign key/primary key setup. Instead, objects are linked to one

another. To set the link between the objects on selection of an item, we must add a column to

the citiesHandle named “self” and an “updateable foreign key” (Figure 20).

| [Bhect Inspector S50 [welcome Page | (] ConsultancyManagerEcospace || %] AddressForm | _
|cityComboBon 5 =:- ~| | [= [citiesHandle &/ =]
Properties | Events T 5 T Properties | Events
= Accessibility T H (5] Coﬁﬁgurétions
AccessibleDescription (DynamicProperties)
AccessibleMame B|Design
AccessibleRole Default (Mame) citiesHandle
0| Appearance i Modifiers Private
BackColor [windaw o Bl|[ECO| Connections
Cursor Default Sl RootHandle rhRoot
DropDownstyle DropDownList E|Eco|oce
Font Microsoft Sans Serif, &.2 AddRootyariables False
Blpata “Zin D] s o EXD'ES'D" ?.W-E!)'I!‘?F@F.‘E‘?S_
indi . P Varigbles none
2 mf;;s::::;;) ity 'El_ .) __'JE El|[ECO | Presentation o o
selectedltem thne) Courty | : > |Colurns [(collection) =
Selactedialue rhRtoot - Updateabletity : : Enatled e [T ‘
Tag j(None) * Region] - |
Text |rhRact - Cityhame R o |
DataSource citiesHandle e e e ‘
DisplayMemnber name 3 aK § s . |
Items {Collection) e L i e |
g R T |
ValueMerber Self o |
I Column Collection Editor Column Collection Editor

embers: UpdateableCity Properties: Iembers: Self Properties:
0] CountryMarne + E Miz ﬂ =]
1] RegionMame EventDerivedvall False EventDerivedval. False
: ﬂ Expression self_city ﬂ Expression self
3] CityName Name UpdateableCity Name Self
Add Remove Add Remove
ok Cancel ‘ Help ‘ oK Cancel Help
— /4 / -
= o
Configurations See—— P - :
E—— b thRoot -~ % ciiesHande
e et anm 11 [Insert |, Code | Design.
Figure 20: A simple combo box databinding example
®
onan 33

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

An advanced example

We might want to unlink a previously selected item using the combo box (Figure 21):

Parent Project [E

Whitepaper (Consultancy Manager) / Application
Whitepaper (Consultancy Manager)

Whitepaper (Consultancy Manager) / Whitepaper
| s 2.0

Figure 21: A combo box allowing us to unlink an object with the “None’” option

The solution (Figure 22) uses the power of OCL to create a list of strings representing the list
of projects to which the “None” string has been pre-appended. The event handler uses a
second “normal” ProjectsHandle to locate the appropriate object to link. Use the

10bjectContainer.Clear() method when the “None” value is selected.

Object Inspector 7 x| [Erorerom |

IPmiEcWalluesﬂaniﬂe Borland. Eco.Hand][] E S| mut|® o=l #|
properties | Events
wmme (fp e[S EE|

Bl Configurations
i =I0l
(Name) ProjectValuesHandle H aa aa aa aa aa oo aa aa aa [t

Madifiers Private I
ECO | Connections

RootHandle |ehRoot
ECO|OCL i
AddRootvarizbldFalse " Man Hod
Expressian ‘None'->AsSet->union(Project.allInstdnces.A
Variables R S proecs

74

EJ|ECO| Presentation - 8

Value Properties
B Misc
EventDerivedVa False
Expression selff
Hame Value

StaticContext

OB m

kel
le

Columns (Collection)
Enabled True

[Object Inspector o x|

[ParentProjectComboBox System. ind: x|

Add Bemove

Properties | Events |

{DataBindings) i :
DataSource | ProjectValuesHandle s ength(min) | ManHours | C:
DisplayMember |Value
Items (Collection)
Tag
ValueMember | Value =

q} ehRoot ProjectsHandle q} ActivitiesHandle

461 | procedure TProjectForm.ParentProjectComboBox_SelectedIndexChanged (sender: System.Object: e: System.Eventirgs);
462 | var

463 ThisFroject, selectedParentProject: Project;

464 selected: IElsment:

465 | hegin

468 ThisProject := Project (rhRoot.Element.lischject):

467 if ParentProjectConboBox.SelectedIndex = 0 then begin //None is selected

468 {{{rhRoot.Element as IOhject].Properties['parent']) as IChjectContainer).Clear;

463 end

470 else hegin

471 selected := (ProjectsHandle.Element as IChjectlList) [ParentProjectComboBox.SelectedIndex-1];
472 selectedParentProject := Project {selected.AsOhject);

rojectValuesHandle

473 ThisProject.parent := selectedParentProject;
474 end;
475 | end:

Figure 22: An advanced combo box databinding example

®
Borland 34

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Using ECOWinforms and the AutoContainer

ECO wizards automatically generate an “ECOWinform” for your project. An ECOWinform is

a WinForm with a constructor that accepts an ECO Space as a parameter. This way, the

handles on the form can be connected to the ECO Space. In fact, the ECOWinform has a

default rootHandle.

=0l x|

Lines PO Box 478

Zip jGY1 6BE

ciy |

Country I

Region I

0K |

4

= CoreClassesUnit.PhoneNumber =l

Properties |Icn;|s I postinganrRefI

created |30/03/2004 10:12:15
lastModified [otjotjnoat 00:00:00
modifier I

creator I

party IBorIand

nunnber

Figure 23: An ECOWinform and the AutoContainer

Figure 23 shows what happens when the code below is exercised. For Address objects, we

create an instance AddressForm, the constructor of which has been enhanced to accept a

PostalAddress as well as an ECO Space. For all other subclasses of Contactinfo, instead of

designing a custom form, we have decided to showcase the ECO AutoContainer. The

AutoContainer Service dynamically creates WinForms from the UML model.

Borland®

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

procedure TUserControl.ShowContactInfo(c: ContactiInfo);

var
af: TAddressForm;
autocontainer : lAutoContainer;
begin
if c is PostalAddress then
begin
af = TAddressForm.create(c as PostalAddress,EcoSpace);

af.showDialog;
end
else
begin
autoContainer :=

AutoContainerService. Instance.CreateContainer(EcoSpace,c.AslObject);
Form(autoContainer) .ShowDialog;

end;
end;

Using the ubiquity of databinding in .NET

The last example (Figure 24) illustrates how .NET databinding can be used for driving most

properties, including the title of forms. In this example, we show how to make the form title

Activity include the title attribute of the object it displays.

Object Inspector 7 x [Actvitriogrom | [ObjectInspector 1 x]
IrllRoot Borland.Eco.Handles. ReferenceHandle ;I E 3 | il | ‘it ﬁtl = ﬁ ‘ IActivitVLogForm System.Windows.Farms.Form ;I
Properties Properties
Pt Jevs] LRI LT AL) |t S
2 [Coumns (Collection) "] Accessblelizme El
(DynamicProperties AccessibleRole Default
EcoSpaceType [« Manager.Consu 8 Activity | AllowDrop False
- B e o e
Modifiers Private oo AutoScroll False
(Mame) rhRoot T_‘ﬁe_ L I = AutoScrolMargin - |0, 0
StaticValueTypeNan| ActivitylLog S B I AutoScrolMingize |0, 0
Variables (none) > BackColor [contrel
D N Bockoroundinege [(vone)
1 [canceution | ane)
Members: FormTitle Properties: Length |CausesValidation \True
g o [o e
1| CategoryName EventDerivedValue False o
2] Aoty - otte L [o o
MName FormTitle - (DataBindings)
StaticContext - (Aduanced)
Tag (None)
. [e
J DocH [=] thRoct -
- Draw| : E] ProjectName
ﬂ (Dy [E] CategoryName
o e
Fonl E] created
Foref | - [Z] lastModffied LI
Add Remove FormBorderStyle |Sizable
GridSize 88
HelpButton False
0K | Cancel Help | Teon B (tcor)
4 - ImeMode NoControl

Figure 24: Using advanced .NET bindings to calculate the title of a WinForm

Borland®

36

Unleashing enterprise models with Borland® Delphi” 8 Architect for the
Microsoft® .NET Framework

Building an optimized search

We mentioned that ECO can evaluate OCL expressions within the Persistence System
(database) by converting OCL to an SQL expression using the technology known as
OCL2SQL. In Figure 25, we show how to use the special oclPSHandle, which behaves
similarly, except that its Execute () method must be used to trigger the “evaluation.” Another
notable difference is that the result is not subscribed.

S5 %] welcome Page |) ProjectsUserControl | (%] Contact Information [diagram] |
.tz [T M | P p
Al an|mus|s g e B

|ActivitySearchPSHandle &0 o

Properties | Events |

HeoHe M o® | R LT R e
E|Configurations itk 1 e L m|
| (DynamicPropert Sosssn s oo
El|Design
(hsme) |ActivitySearchPSHandle | | IR Activity Categodes
Madifiers |Private : | Name | Man Hows | Cost | Catalog Price | Man Hours
El|ECo| Connections
RootHandle |rhRoot
BlecojocL
AddRaotvariable False
Erpression | Activitylog.allinstance:
warisbles |(none)
El|ECO|Presentation
i e (Collection) : TR | e
Enabled | True Hew | it | Delete | New | Edt | Dete |

E _S_earc}_’v ;_A_cl\wlu_as_ whe_re_ T\tle_ll!xg 4 ibe I i A S

B, tRo0H 'nE ActivityCategorissH andle “E‘Acl|v|lyl3alagnnesEunencyHar\dle
g, ProfectsHandie Plo|ectsEurlencyHand\e By ActivitiesReferenceHandie
(Configurations
|1 object selected (b @ m | o4 1 [sert [Mocified | Code Design |

procedure TUsercControl.ExecuteButton Clickisender: System.Chject; e: Iystem. Eventlrgs):
var
searchOolExpression: String;
bhegin
searchOclExpression = 'title.sgllikeCaseInsensitive(''s' + CriteriaTextBox.Text + '&'')';

AotivitydearchPSHandle . Expression = 'Activitylog.alllnstances-rselect(' + searchOclExpression + ')':
AotivitcylearchPSHandle .Execute;
end;

Figure 25: Using the oclPSHandle to transform OCL into SQL for fast searches

The code for the event handler above builds the OCL expression from the criteria the user
typed and calls Execute(). Note that the sqlLikeCaselnsenstive OCL operation is not related
to our executing SQL; it is an OCL operation introduced by Borland to the OCL specification
for practical reasons. Indeed, it also can be used within the ECO space.

®
Borland .

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Improving the search screen

The main problem with our current search implementation is that it will find only objects that
are in the database. Any new ActivitylLog object that has yet to be persisted will not be
listed in our grid. This gives us the opportunity to investigate the ECO DirtyListService,
which maintains a list of objects that are different from what is in the database. This list

includes new objects not yet persisted.

The code below starts exactly like our previous version by Executing the oclPSHandle. It then
gets hold of the IDirtyListService.AllIDirtyObjects() list. To show how to retrieve
the result of OCL execution returning primitive types, we programmatically navigate through
the list of objects and perform the “title.sqlLikeCaselnsensitive()” test in their

individual contexts. We add matching objects to the oclPSHandle.Element (which is a list):

procedure TUserControl .ExecuteButton_Click(sender: System.Object; e:

System.EventArgs);

var
searchOclExpression: String;
DirtyListService: IDirtyListService;
AlIDirtyObjects, list: IObjectList;
oclService: I0clService;
i: integer;
dirtyObject: I0bject;
Result: IElement;

begin

ActivitiesGrid.DataSource := nil;

®
Borland i

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

searchOclExpression := "title.sqlLikeCaselnsensitive(""%" +

CriteriaTextBox.Text + "%"")";

ActivitySearchPSHandle_Expression := "ActivityLog.alllnstances->select(® +

searchOclExpression + ")";

ActivitySearchPSHandle._Execute;

//Let"s also add objects not yet in the database (i.e Dirty objects)

DirtyListService :=
IDirtyListService(EcoSpace.GetEcoService(typeof(IDirtyListService)));

if DirtyListService._HasDirtyObjects then
begin
AlIDirtyObjects := DirtyListService. AllDirtyObjects;
oclService := l10clService(EcoSpace.GetEcoService(typeof(10clService)));
list := I0bjectList(ActivitySearchPSHandle.Element);
for 1:=0 to AlIDirtyObjects.Count -1 do
begin
dirtyObject := AlIDirtyObjects[i];
if (dirtyObject.AsObject is ActivityLog) then
begin

Result :=
oclService.EvaluateAndSubscribe(dirtyObject,searchOclExpression,nil,nil);

it boolean(Result.AsObject) then

list.Add(dirtyObject);

®
Borland »

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

end;
end;
end;
ActivitiesGrid.DataSource := ActivitySearchPSHandle;

end;

Saving data and multi-user considerations

ECO development is similar to cached dataset regarding synchronizing the object cache with
the database. When you call EcoSpace.UpdateDatabase(), ECO can perform a check to see
whether the values in the database have changed since it read them, to ensure that other
people’s changes are not overridden. This feature, called optimistic locking, can be set to on

or off.

Schemes for updating the database

Once you have committed your changes, you have several choices, depending on the kind of
application you build. You can clear all the objects in your cache by setting the Active
property of the ECO Space to false and true again and continue using the portion of the
database loaded in memory without needing to reread (unload) objects if you know that a user

will affect only his area of the system.

Otherwise, you can devise a mechanism that determines, on a regular basis, which objects
have changed in the database (or on user pressing F5) and unload them. If ECO needs them

for calculations, don’t worry; it quickly reloads the new version!

®
Borland 40

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Other ECO services

In our sample application, we have used many ECO services. We evaluated OCL expressions
with the OCL service, found the number of instances of a particular class for our
implementation of the singleton pattern using the Extent Service, used the Type Service, used
the DirtyList Service to locate new objects in memory that matched a certain criteria, and

used the Persistence Service to save our changes to a database backend.

Although we have explored several features, we haven’t used all of them yet—ECO is truly

feature rich. Let’s see what we have missed:

The Object Factory Service
Create objects through the UML type system rather than by using the constructors on the

generated code.

The OCL Type Services
Similar to the OCL Service, this interface service returns the type of the expression to

“expect” instead of calculating the result.

The State Service
DirtyList Service helped us find the list of dirty objects. The State Service determines which

individual properties have changed.

The Undo Service
This comprehensive service allows you to implement undo and redo functionality.

The Version Service
Obijects that are versioned can have one or more historical versions that are read-only and one

current version that is live and can be updated.

®
Borland a1

Unleashing enterprise models with Borland® Delphi” 8 Architect for the

Microsoft® .NET Framework

Conclusion

Our first look at the new Enterprise Core Objects technology from Borland— now shipping
with Borland Delphi 8 for the Microsoft .NET Framework, Architect Edition—included the
theory behind the Model-driven architecture (MDA) and how UML can drive the
development cycle. We explained the respective roles of the Together modeling technology
and UML runtime ECO technology. We modeled a real-life application and followed it
through to deployment, while considering audit requirements, performance, reusability, and

usability with a rich WinForm User Interface.

We have seen how transparently ECO objects augment the capabilities of the standard .NET
objects while looking like .NET objects and unleashing many .NET features, such as

databindings. We have seen the power of expression of OCL compared with OQL and SQL.

Overall, we have seen the incredible productivity enhancements that can be achieved with not
a single line of SQL crafted to implement complex database systems. Borland Enterprise Core
Objects (ECO) truly increases the level of abstraction and gives us the opportunity to deliver
powerful systems without leaving the world of objects while interchangeably targeting any of
today’s RDMS.

Made in Borland ® Copyright © 2004 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. Java and all
Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Microsoft,
Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and
other countries. All other marks are the property of their respective owners. Corporate Headquarters: 100 Enterprise Way, Scotts
Valley, CA 95066-3249 « 831-431-1000 « www.borland.com « Offices in: Australia, Brazil, Canada, China, Czech Republic,
Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, Mexico, the Netherlands, New Zealand,
Russia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, and the United States. » 22241

®
Borland 42

