
Unleashing enterprise models
with Borland® Delphi™ 8 Architect
for the Microsoft® .NET Framework

An in-depth look at the features of

Borland® Enterprise Core Objects (ECO™)

using a real-life sample application

A Borland White Paper

By Christophe Floury,

Chief Architect, Neosight Technologies Limited

July 2004

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Contents

Introduction .. 4

What are Borland® Enterprise Core Objects (ECO™)? 5

UML® runtime .. 5
Microsoft® .NET Framework metadata vs. UML metadata.. 5
ECO objects extend .NET objects... 6
ECO objects need .NET objects.. 6
The ECO namespaces ... 7

The Borland.Eco.ObjectRepresentation ... 8
The Borland.Eco.UmlRt namespace... 8
The Borland.Eco.Services namespace .. 10

From ECO Space to .NET... 10
From ECO types to .NET types .. 11
The role of ECO tagged values ... 11

Modeling our sample application: Introduction to Consultancy

Manager 1.0 .. 12

Core classes... 13
Contact management... 14
Product and services.. 15

Using the DefaultStringRepresentation ECO tagged value .. 17
Controlling aspects of the database schema.. 18

Project management.. 19
Requirements.. 19
Model overview.. 20
Using derived attributes with inheritance structures... 20
Derived attributes and recursive OCL .. 21
Considerations regarding the performance of OCL.. 22
Further performance considerations regarding late fetching... 22
Converting OCL into SQL ... 23

System parameters .. 23
Implementing a singleton for SystemParameters.. 24
Implementing CurrentUser() .. 25

 2

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Building the ECO space.. 27
The database is in the same directory ... 28

Implementing update of audit attributes.. 28

User-interface basics: binding objects instead of data 29

Logical three-tier... 29
Initializing the ECO Space.. 30
Binding a grid ... 31
Binding combo boxes to objects ... 33

A simple example... 33
An advanced example... 34

Using ECOWinforms and the AutoContainer... 35
Using the ubiquity of databinding in .NET ... 36

Building an optimized search .. 37

Improving the search screen.. 38

Saving data and multi -user considerations .. 40

Schemes for updating the database ... 40

Other ECO services .. 41
The Object Factory Service .. 41
The OCL Type Services ... 41
The State Service.. 41
The Undo Service... 41
The Version Service ... 41

Conclusion .. 42

 3

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Introduction

With its Model Driven Architecture® (MDA®) initiative, the Object Management Group™

(OMG™) has recognized that in order for its Unified Modeling Language® (UML®) to succeed

in further automating the software industry, it had to take a more active role in the

development process.

To significantly reduce development time, the use of UML had to extend beyond mere

sketching of ideas, reverse-engineering through code visualization, and one-way generation of

code. It had to effectively separate the intentions of the system (business rules) from the

underlying implementation technology and, above all, drive the maintenance process.

Borland® Delphi™ 8 for the Microsoft .NET Framework, Architect Edition, brings this vision

to market with one of the tightest integrations of a GUI builder, a modeling tool, and a UML

execution runtime platform for the Microsoft® .NET Framework. Borland succeeds in

providing higher productivity through an approach that combines a two-way UML/Delphi

language synchronization engine, which generates the minimum code necessary to unleash

strongly typed OO programming.

By making such lightweight code generation target prepackaged framework services, Delphi

8 Architect augments the feature set of traditional .NET code and helps avoid the cumbersome

traditional roundtrips and their copious amounts of code to manage. These prebuilt services,

named Borland® Enterprise Core Objects (ECO™) ensure industrial strength handling of

associations, derived attributes, persistence, subscription, region-based optimistic locking,

object versioning, OCL-based constraint checking and query capabilities, and much more.

This white paper investigates the power of ECO through the development of a medium-sized

system (30 classes) to manage time and billing for consulting organizations: “Consultancy

Manager 1.0.” For maximum benefit, download the source code and study it in conjunction

with this paper.

 4

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

What are Borland® Enterprise Core Objects
(ECO™)?

Enterprise Core Objects is a set of software components designed to use UML during the

initial design, execution, and design evolution (refactoring and extension) phases. The largest

ECO components act as a runtime framework for executing a UML model. Design-time ECO

components include, for example, the Borland® Together® UML/Delphi language

synchronizer (code generator), which handles components to visually connect ECO objects to

UI elements and model validation.

UML® runtime

UML model execution keeps the model in efficient data structures1 and uses its rich

information to drive horizontal services such as instantiating UML classes, mapping objects to

database structures, synchronizing both ends of an association, enforcing semantically rich

constraints thanks to OCL, and forcing objects states to follow designed transitions in state

machines.

Microsoft® .NET Framework metadata vs. UML metadata

Since the advent of the Java™ and .NET platforms, the use of metadata and reflection has

gained much use and popularity. The .NET runtime is a fine example of an execution

environment where metadata survives the compilation stage and takes a central, more

dynamic role during execution.

1A UML model is a collection of interrelated modeling elements such as classes, associations, attributes, states, and

transitions, and is not merely a collection of diagrams. Diagrams are visual representations of carefully selected

portions of the model to convey a particular understanding of one aspect of the system. Indeed, not all modeled

information is represented in diagrams. And while many diagrams are needed to visualize a system, it is incorrect to

assume that several models are necessary in order to specify a system.

 5

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

However, .NET metadata lacks the richness of the UML semantic. In fact, in many ways it

can be considered a fairly rich subset. It has been a noticeable trend in new languages to

progressively adopt many of the features introduced by declarative modeling languages such

as the UML. For example, we can find namespaces, properties, tagged values (code attributes

in CLR) that have long been part of the UML. The point is to increase the level of abstraction

by reusing neat packages of horizontal features (appropriate for many domain applications)

and thus increase productivity.

ECO objects extend .NET objects

.NET objects are not UML objects; the .NET common language runtime (CLR) is not as rich

as that of UML models. For example, in UML, you simply flag a class as persistent and

expect that to be the end of the work you have to do. ECO objects are a particular

implementation of UML objects. As such, they provide the extra services beyond those of

.NET objects.

The ECO runtime is a system that takes as a parameter a complete UML model and creates an

instance of it called an ECO Space, in very much the same way that .NET uses metadata to

create a process where objects will be created and reside. You can then ask ECO to create

instances of UML Classes and Associations and (also unlike a standard .NET process); you

can directly link the ECO Space to a file or a database so that ECO objects are persistent.

ECO objects need .NET objects

Before the advent of Action Semantics (now part of the UML 2.0 specification), UML did not

provide full execution support. Algorithms and method body definition are left to other

languages to define. ECO objects rely on intermediate language (IL) code for their method

implementations. ECO locates the implementation for its object methods by letting the

developer specify and link traditional .NET classes with UML classes. The Delphi 8 Architect

two-way UML/Delphi code synchronization feature automatically does all of this for you.

This solution is shown in Figure 1 below which illustrates how it is possible to navigate both

 6

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

ways between the .NET Objects and the ECO objects that are surfaced by the powerful

Borland.Eco.ObjectRepresentation interfaces.

Figure 1: The main ECO namespaces

The ECO namespaces

The Borland.Eco namespace is divided into six main namespaces:

1. UmlRt gives you access to the UML model at runtime

2. ObjectRepresention gives you access to ECO objects and values instantiated

from the UML model

3. Subscription allows you to be notified when an ECO object or value has changed

 7

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

4. Persistence provides automatic saving of ECO objects to files and databases

5. Handles provide components available at design-time to reach into the

ObjectRepresentation namespace and bind ECO objects to user interface components

6. Services expose functionality of the ECO engine such as OCL evaluation,

versioning, and undo/redo

The Borland.Eco.ObjectRepresentation

The ECO namespace Borland.Eco.ObjectRepresentation shows that ECO objects

consist of several elements (IElement). It allows you to interact with any elements through a

dedicated interface.

These interfaces enable you to navigate the internal structures of an ECO object and to modify

values such as clearing a “multilink” as Person.addresses.Clear, or adding ECO objects

to the association with a simple: Person1.addresses.Add(Address1);

Because ECO objects are made up of discrete elements, these elements can have powerful

built-in behavior. For example, if Address1 has an Owner property representing the other

end of the Addresses association, Address1.Owner is automatically set when the address

is added to the address collection of the owner.

Notable in ECO elements is the built-in support for immutability (or invariant calculated

values) and properties representing collections of elements such as what you find when

navigating a UML link such as Organization.employees : PersonCollection.

The Borland.Eco.UmlRt namespace

The Borland.Eco.UmlRt namespace shows that UML model information is available at

runtime and can be navigated to from any ECO Object (or part thereof). Notably, we can find

out whether a UML class or UML structural feature (such as attributes in UML 1.4) is flagged

as persistent. Figure 2 is an extract of the UML metamodel (the model that describes the data

structures to store a UML model and, as such, defines the OMG standard). Note by comparing

 8

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

the UML 1.4 and the ECO.UmlRt interfaces that ECO contains a speed-optimized (Rt stands

for runtime) subset of the UML metamodel.

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Attribute

Method
body : ProcedureExpression

Operation
concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

n1 n

+specification

1

ElementOwnership
visibility : Visibil ityKind
isSpecification : Boolean

StructuralFeature BehavioralFeature
isQuery : Boolean

Parameter
defaultValue : Expression
kind : ParameterDirectionKind

0..1

n

0..1

+parametern

{ordered}

Namespace Constraint
body : BooleanExpression

ModelElement
name : String

0..1

n

0..1

+ownedElements

n

n

1..n

+constraintsn

+constrainedElement

1..n {ordered}

Feature
ownerScope : ScopeKind
visibility : Visibil ityKind

Classifier
n

0..1

n{ordered}

+owner

0..1

Figure 2: The Foundation/Core/“Backbone” diagram of the UML 1.4 metamodel

The top of Figure 1 illustrates one role of Delphi 8 code generation: generated code can be

considered .NET “wrappers” around ECO objects. By calling the AsIObject method on any of

the instances of your .NET generated classes at runtime, you gain access to the richer world of

ECO objects through the IObject interface pointing to the underlying “implementation”

objects.2

2ECO is itself built using .NET technologies. This means that the implementation objects underlying your .NET
objects are .NET objects. For example, you could navigate to an IProperty for the “surname” attribute by calling:

Var p: IProperty;

…

p := MyDotNetPersonObject.AsIObject.properties[‘surname’];

You could then investigate where this property is defined in the UML model by following:

 9

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

The UML model is completely stored as .NET metadata via standard Delphi language

constructs augmented with code attributes. At initialization, ECO uses reflection to convert

this metadata into the Eco.UmlRt structures. This solution has two major consequences. The

first is that the model is never out of sync with the code, refactoring at the model level

(through the modeling surface), refactors the code. The second consequence is that because

the design-time ECO components make use of the ECO.UmlRt structures to perform various

tasks such as validating the model (including all the OCL expressions) and generating

schema, the code must be compiled beforehand for the metadata to be available.

The Borland.Eco.Services namespace

Now let’s talk about the last part of Figure 1: Borland.Eco.Services. Those of you

familiar with Bold (the predecessor of ECO) might notice that the IElement interfaces in

Eco.ObjectRepresentation are unaware of their underlying functionality, such as the

ability to evaluate OCL expressions. In Bold, such services were available through

inheritance. All your objects inherited from TBoldObject, which itself inherited from

TBoldElement and therefore had a very large API. Access to such services is now done by

requesting an Interface to a specialized subset of functionality. These services are known as

ECOServices.

From ECO Space to .NET

You can navigate back to the .NET world by navigating the AsObject property of any

IElement. This includes IPrimitive.AsObject, which takes a boxed .NET object version of the

primitive value and makes it available in the ECO world (known as ECO Space). Why would

you want to have ECO versions of .NET primitive types? The answer is incredible: all ECO

elements are subscribable.

p.StructuralFeature.

 1 0

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

From ECO types to .NET types

Another interesting route you can take is from the ECO types (UmlRt) to the .NET types. If

you are navigating through the UML model and want to instantiate a particular type, access

the ObjectType property and invoke the constructor. This, in effect, creates an underlying

ECO object where the ObjectType is a generated class (wrapper for ECO Object), complete

with a constructor that takes care of the details.

The role of ECO tagged values

Some of you familiar with the UML specification might wonder how EcoServices can be

configured. For example, because we now have an IPersistenceService, surely ECO will give

us the ability to fine-tune the SQL schema for storing objects. But UML, although richer than

any other language, wants to remain technology agnostic? If this were true, it would not make

sense for the UML standard to include an attribute on ModelElements for Table names and

Column names. The solution is to keep your UML model clean of such platform-specific

elements and use UML profiles (collection of tagged values) to annotate any model element

with further information about how to execute the platform-independent model (PIM) onto a

particular platform, thus how to transform it into a platform-specific model (PSM).

There again, note that Borland.Eco.UmlRt is an optimized UML structure. Accessing the

generic tagged values associated with model elements repeatedly at runtime could be costly.

So, although UmlRt.IModelElement has a TaggedValues property that tries to map as

closely as possible to the UML standard, the standard UML metaclasses are augmented with

ECO versions in which tagged values are fully blown attributes. An example is the

IEcoClass.Versioned attribute.

 1 1

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Modeling our sample application:
Introduction to Consultancy Manager 1.0

Now that you have read about basic theories and concepts introduced by the ECO platform,

the rest of this white paper focuses on useful techniques through a practical example

application named Consultancy Manager.

Consultancy Manager is designed to help any organization that provides products and

services, especially consulting services. The basic features are that of contact and address

management, time recording and billing, and basic statistical reporting for management.

Figure 3 shows a package interdependency diagram of the classes.

Accounting
+ Account
+ Posting

Parties
+ Organisation

+ Party
+ Person

Project Costing
+ ActivityCategory

+ ActivityLog
+ Project

Product & Services
Catalog

+ ActivityHourlyRate
+ CatalogItem

+ Product

Invoicing
+ Invoice

+ InvoiceLine
+ RechargeableExpense

BusinessSystemCore
+ CoreClass

Contact Information
+ Address

+ Area
+ City

+ ContactInfo
+ Country
+ District

+ InternetAddress
+ Location

+ PhoneNumber
+ Region

Chargeable
+ ChargeableItem

Audit
(from BusinessSystemCore)

+ AuditLog
+ Login

Figure 3: Consultancy Manager, a high-level map

The steps involved in building the application:

1. Use the Borland® Together® modeling surface to visually model classes and set up

UML and ECO properties on modeling elements

2. Implement method implementations in Delphi

3. Build an ECO Space to host classes and set up the persistence mechanism

 1 2

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

4. Build a user interface

Figure 4 is a screen shot of the finished Consultancy Manager application.

Figure 4: Consultancy Manager’s projects page

Core classes

Every corporate software development team can benefit from building a reusable core set of

classes to be used in all applications. As more horizontal features are required from

applications to conform to corporate development guidelines, developers can retrofit these

reusable classes easily. For example, it is not uncommon to want to log every change made in

a system. If circumstances are not so stringent, being able to link the last version of an object

to a user can prove useful to colleagues.

 1 3

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Figure 5 shows that all classes inherit from an ultimate ancestor class that we have named

CoreClass.3 Every object in our system is time stamped at its creation, and subsequent

modifications are associated with a Login object representing one user of the system.

Figure 5: The classes diagram introducing horizontal features of Audit

Contact management

Nearly every business system needs contact management capabilities. Figures 6 and 7 show

that Party is the abstract ancestor of Organization and Person. They have in common

their ability to be associated with various ContactInfo objects.

3 Please note that the use of word Core here makes no reference to Core in Borland® Enterprise Core Objects (ECO).

 1 4

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Figure 6: Contact management diagrams with parties, addresses, and phone numbers

Figure 7: The contact management page shows instances of UML classes

Product and services

This subset of functionality allows us to capture the consulting organization’s product and

services catalog. Figure 8 shows two products and one hourly rate for consultancy. Note that

the audit functionality is available by inheriting from the CoreClass described earlier.

 1 5

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Figure 8: The product catalog showing the core audit functionality

The Product and Services Catalog diagram (Figure 9) introduces intermediate ancestors for

Product and ActivityHourlyRate. ChargeableItem introduces the derived cost

attribute to its descendent classes. Both Product and ActivityHourlyRate have their

DefaultStringRepresentation ECO Tagged Value set. Figure 9 shows some aspects of

parameterizing the ECO database schema generation capabilities.

Figure 9: Providing an OCL-based string representation and changing TableMapping

 1 6

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Using the DefaultStringRepresentation ECO tagged value
In .NET, all objects can provide a string to display an object’s value.4 This is achieved by the

presence of the System.Object.ToString() virtual method that you can override in your

classes. ECO—or, more precisely, Bold for Delphi—had this ability long before with its

StringRepresentation. In fact, Bold can have several StringRepresentations, with one being

called Default. In ECO, you could add the ToString method to your model to provide the code

to calculate it.

With ECO, OCL can do this automatically for you. Provide a valid OCL expression into the

DefaultStringRepresentation ECO tagged value in your model (Figure 8). The two major

advantages of using OCL are that your calculations (or each intermediate step of your

calculation) are subscribed, so if one element changes, you will be notified. The second

advantage is that you need not check for null references each time you follow a node, as you

do in code. For example, the City.ToString would have to be written:

function City.ToString: string;
begin
 Result := name;
 if Assigned(country) then
 Result := Result + ‘ (’ + country.name + ‘)’;
end;

Whereas, in the following. OCL is safe : name + ‘ (‘ + country.name + ‘)’

For those unfamiliar with the power of OCL, note that constructs such as the following are

possible:

Country.StringRepresentation

name + if country->notEmpty then ‘ (‘ + country.name + ‘)’ else ‘’

endif

4 This is not to be confused with .NET serialization, despite the fact that the ToString()often is used for

serialization of individual objects’ members.

 1 7

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Controlling aspects of the database schema
Figure 10 shows that we can not only choose the table and column names in which our data is

stored, but also we can specify how we want inheritance to be represented in relational

databases. The default scheme of ECO (“Own”) is to create a new table for each Class

containing columns for the attributes it introduces. An Object’s members will therefore be

split across several tables. Each object in ECO has an ID, which is used as primary key for

each table. ECO performs a join on these primary keys to bring all the columns (attributes)

together into one view.

You can change this behavior by changing the TableMapping Tagged value (Figure 10).

The “Parent” option instructs ECO to store the class attributes in the table used by the parent

class. This means that ActivityHourlyRate does not have its own table, as shown in the

schema extract on the right.

The “Children” option could have been used for our audit attributes on CoreClass. A

creator, modifier, created, and lastmodified column would be present in all

our tables!

Figure 10: Customizing the ECO scheme to represent inheritance within relational databases

 1 8

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Project management

Requirements
In the Project Management module, we want to create hierarchies of projects and sub-

projects, and we want to record the time that a certain activity took as well as the human

resources that were involved. Finally, we want to categorize activities. Some activities will be

assigned the “Development” category; others will be pure “Communication.” The ability to

organize categories into hierarchies allows us to group activities at an arbitrary level of

precision. For example, we can further divide development into programming and testing.

The ultimate use for this module, apart from feeding information into the not-yet-

implemented invoicing module, is management reporting. We want to sum up all activities,

times, and costs by projects and subprojects as well as by categories (Figure 11).

Figure 11: The project management page of Consultancy Manager 1.0

 1 9

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Model overview
Figure 12 shows the Project Management module functionality where the hierarchical

structures are modeled with self-referencing associations and the calculations are modeled

exclusively with OCL expressions at the attribute and class level.

Figure 12: Exclusive use of OCL derivation to perform complex calculations

Using derived attributes with inheritance structures
When introducing a derived attribute to a class, you can provide its implementation with a

Delphi code property getter or with an OCL expression in the attribute’s DerivationOCL

tagged value (Figure 13). Redefinitions in subclasses are done with the

DerivationExpressions tagged value (Figure 12).

 2 0

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Figure 13: Providing a derivation expression for an attribute in OCL (constant 0)

Derived attributes and recursive OCL
Using OCL evaluation in a recursive manner is very powerful. For example, you can show the

hierarchical nature of Project in their String representation by providing the following OCL

expression, which gives us project names like “Consultancy Manager / Application / User

Interface.”

Project.DefaultStringRepresentation

if self.parent->isEmpty then name else self.parent.AsString + ' / ' + name

endif

Similarly, using the following two simple OCL expressions, you can specify the nature of the

calculated attributes for totals and let the power of ECO do the rest, including loading the

appropriate objects from the database. We now leave the field of computation for the field of

mathematical specification, where OCL has its origins as a formal language.

Project.totalCost.DerivationOCL

self.activities.cost->sum + self.subProjects.totalCost->sum

ActivityLog.DerivationExpressions

cost=(self.activityCategory.activityHourlyRate.unitPrice / 60) * self.minutes

* self.resources->size

 2 1

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Considerations regarding the performance of OCL
Of course, all of this power requires care and attention. The ability to merely specify what we

want, without saying when things are calculated and in what order, saves time for the

developer who knows he will get results; however, it might not always result in an efficient

solution.

As the number of ActivityLog records grows in our system, you might not want to show

the ManHours and Cost columns for Project and Category in the main screen. In order to

calculate these values, we must load all ActivityLog records in memory. This is because

OCL evaluation happens in memory. We could provide a button on our user interface to show

these columns only when we are prepared to wait, as we would do when a complex report is

being prepared. Only when we look at ECO elements do they shape themselves up.

Further performance considerations regarding late fetching
So we must load data in memory in order to calculate new information about it. This is

nothing new; we are used to doing so—manually. To minimize memory consumption, ECO is

heavily geared toward late fetching of objects. It fetches objects only when it needs them.

This happens when you programmatically navigate a link with Delphi code like

Person.addresses[0] or display data using the ECO handles (more on this later).5 This

also happens during the time ECO performs an OCL evaluation if an object is not in memory.

The order in which things happen does matter sometimes, when performance must be taken

into account. In such a case, ECO might fetch one object at a time, issuing an SQL command

for each row instead of retrieving what it needs with a single call.

The solution is not necessarily to avoid OCL, but instead to ensure that objects have been

loaded before the evaluation kicks in. ECO provides several methods in its API to help you

achieve this. For example:

5 ECO handles use OCL evaluation.

 2 2

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

ObjectRepresentation.IElementCollection.EnsureRange(fromIndex: Int32;

toIndex: Int32)

loads several elements in a collection in one Database call. Similarly,

IObjectList.EnsureRelatedObjects(memberName: string)

 helps you efficiently pre-fetch a list of objects at the other end of an association.

Converting OCL into SQL

One use of OCL is definitely not recommended: Using the allInstances operation to

search for particular objects, as in:

ActivityLog.allInstances->select(title=’Made a very slow application’)

This effectively loads every instance of ActivityLog in memory to retain the matching ones

in the collection. However, because of a technology dubbed OCL2SQL, ECO can translate

this OCL expression, and quite a few others like it,6 into an efficient SQL statement to

retrieve only the matching objects.

System parameters

Figure 14: The SystemParameters singleton

6A limitation of OCL2SQL is the requirement that you mention only persistent elements.

 2 3

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

A recurring pattern in all applications is necessary to provide a central location to store

system-wide values or parameters. Figure 14 shows the System Parameters diagram in which

we have defined a class stereotyped as “singleton.” Stereotypes in ECO are not used for

execution. The SystemParameter class stores only as an application parameter, the

Organization that owns the software. This is used to differentiate the internal staff (which

can be used as resources for ActivityLog) from pure contacts.

Implementing a singleton for SystemParameters
The Singleton pattern can be implemented in several ways. We implement it with an

Instance class function to illustrate how to use two important ECO services: the

TypeSystemService and the ExtentService.

class function SystemParameters.Instance(serviceProvider:

Borland.Eco.ObjectRepresentation.IEcoServiceProvider): SystemParameters;

var

 TypeSystemService: ITypeSystemService;

 ecoTypeSystem: IEcoTypeSystem;

 c: IClass;

 ex:IExtentService;

begin

 TypeSystemService:=

ITypeSystemService(serviceProvider.GetEcoService(typeof(ITypeSystemService)));

 ecoTypeSystem := TypeSystemService.GetTypeSystem();

 c := IClass(ecoTypeSystem.GetClassifierByType(typeof(SystemParameters)));

 ex := IExtentService(serviceProvider.GetEcoService(typeof(IExtentService)));

 if ex.AllInstances(c).Count = 0 then

 Result := SystemParameters.Create(serviceProvider)

 else

 Result := SystemParameters((ex.AllInstances(c)[0].AsObject));

end;

 2 4

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Implementing CurrentUser()
The system parameter singleton pattern also can be used to implement your own services that

operate on the ECO Space of the singleton object. For example, we have implemented a

CurrentUser function to search for a Login object, of which the username attribute

matches the name of the currently logged-in user. As such, we provide a kind of “integrated

security mode,” where we assume that the user interacting with the software locks his

workstation when away from his desk. Logging in to the network is deemed sufficient for our

audit purposes. We will show when to call this method later, when we populate the created

and modifier links of our CoreClass.

The following implementation for CurrentUser illustrates the use of the ECO OclService.

We enter the ECO world through this.AsIObject. We get hold of the OCL Service by

calling its ServiceProvider.GetEcoService(typeof(IOcl Service)). We finally

search for a Login object with the OCL

Login.allInstances->select(username = [Environment.UserName]) For

performance considerations, we assume that the number of Login objects will remain almost

static and low. If the currently logged-in user is using the application for the first time, we

automatically create a Login object for him:

function SystemParameters.currentUser(): Login;

var

 oclExpression: String;

 oclService: IOclService;

 currentLogin: IElement;

 newLogin: Login;

begin

 oclExpression := 'Login.allInstances->select(username=''' +

 Environment.UserName + ''')->first';

 oclService :=

IOclService(Self.AsIObject.ServiceProvider.GetEcoService(typeof(IOclService)))

;

 currentLogin := oclService.EvaluateAndSubscribe(Self.AsIObject,

oclExpression,nil,nil);

 2 5

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

 if not Assigned(currentLogin) then

 begin

 newLogin := Login.Create(Self.AsIObject.ServiceProvider);

 newLogin.userName := Environment.UserName;

 Result := newLogin;

 end

 else

 Result := Login(currentLogin.AsObject);

end;

 2 6

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Building the ECO space

At design time, an ECO Space represents a particular combination of model elements. You

use an ECO Space to bring together several packages. At runtime, an ECO Space is a cache of

ECO objects. The Delphi 8 wizards automatically create a descendent for your application

(Figure 15). The ECO Space can be persisted.

Figure 15: Delphi 8 wizards generate a descendant of ECO Space for your application

Figure 16: Setting the persistenceMapper using the ECO Space designer

 2 7

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

The database is in the same directory
constructor TConsultancyManagerDelphi8EcoSpace.Create;

var

 dbPath: string;

begin

 inherited Create;

 InitializeComponent;

 dbPath := Environment.CurrentDirectory;

 self.BdpConnection1.ConnectionString :=

'assembly=Borland.Data.Interbase,Version=1.5.1.0,Culture=neutral;vendorclient=

gds32.dll;database=' + dbPath +

'\DATABASE.GDB;provider=Interbase;username=sysdba;password=masterkey';

end;

Implementing update of audit attributes

The generated ECO Space is a good placeholder for writing our code that will update audit

attributes in a central place. In the UpdateDatabase() method, we use the ECO DirtyList

Service. This service keeps an up-to-date list of objects that have been modified (or never

were saved to the database) since the last update.

 2 8

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

procedure TConsultancyManagerDelphi8EcoSpace.UpdateDatabase;

var

 dirtyObjects: IObjectList;

 myobject: CoreClass;

 i: integer;

begin

 if Assigned(PersistenceService) and Assigned(DirtyListService) then

 begin

 dirtyObjects := DirtyListService.AllDirtyObjects;

 for i := 0 to dirtyObjects.Count - 1 do

 try

 myObject := CoreClass(dirtyObjects[i].AsObject);

 myObject.lastModified := DateTime.Now;

 myObject.modifier := SystemParameters.Instance(Self).currentUser;

 except

 //

 end;

PersistenceService.UpdateDatabaseWithList(DirtyListService.AllDirtyObjects);

 end;

end;

User-interface basics: binding objects
instead of data

In this section, we look at building a professional looking WinForm UI for our Consultancy

Manager ECO back-end.

Logical three-tier

The greatest strength of ECO is the separation of the three tiers of an application in decoupled

layers with clear interfaces. Figure 17 shows that your model and its objects are hosted within

a middle tier called the ECO Space. Without any knowledge of the underlying Persistence

tier, the objects in your ECO Space can be persisted either in files or in relational databases.

ECO provides a set of visual components called “handles” to connect the ECO world to the

 2 9

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

.NET databinding world. Handles typically point to IElements in your ECO Space which

can be a single or collection of objects, as well as calculated values. Handles have columns,

the values of which are calculated with OCL expressions within the context of the IElement.

Handles can be chained so that the value (element) of a “roothandle” can provide context for

other handles.

Figure 17: The three-tier architecture of ECO

Initializing the ECO Space

ECO wizards generate code for the main form of your application. This code provides an

ECO Space singleton as a property of your form and links the ECO Space to a rootHandle

component as an entry point for chaining further handles. Note that this happens because

chained OCL execution eventually must link to the context of an ECO Space.

The ECO Space constructor that is also code generated by the ECO wizards initialize the ECO

Space by possibly linking it to a persistenceMapper component. The main form constructor

then sets the ECO Space active property to true.

 3 0

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

function TMainForm.get_EcoSpace: TConsultancyManagerDelphi8EcoSpace;

begin

 if not Assigned(fEcoSpace) then

 begin

 fEcoSpace := TConsultancyManagerDelphi8EcoSpace.Create;

 rhRoot.EcoSpace := fEcoSpace;

 end;

 result := fEcoSpace;

end;

constructor TMainForm.Create;

begin

 inherited Create;

 // Required for Windows Form Designer support

 //

 InitializeComponent;

 EcoSpace.Active := True;

end;

Binding a grid

Binding a grid to data is a simple three-step process (Figure 18).

1. Link a rootHandle to the ECO Space

2. Use an rexpression handle rooted to the rootHandle, and set its OCL expression

3. Set the DataSource property of your grid to the ExpressionHandle

 3 1

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Figure 18: Binding a WinForm grid

Note: You do not need to specify a Columns collection for your handle. By default, if the

IElement the handle points to is a collection of IObjects, a MappingName is defined for

each member of the Object (Figure 19). Defining new columns for the handle allows you to

specify new OCL expressions evaluated in the context of each row.

Figure 19: The default MappingNames are shown in the grid column editor

 3 2

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Binding combo boxes to objects

A simple example
Databinding with ECO behaves the same way as with database datasources. Combo-boxes are

designed to display “friendly” versions of foreign key values in lookup tables. You would

traditionally provide to the combo box the ValueMember, which would be an integer

representing the foreign key column and the DisplayMember to display the name of the item

chosen in the list.

With ECO, we do not have a foreign key/primary key setup. Instead, objects are linked to one

another. To set the link between the objects on selection of an item, we must add a column to

the citiesHandle named “self” and an “updateable foreign key” (Figure 20).

Figure 20: A simple combo box databinding example

 3 3

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

An advanced example
We might want to unlink a previously selected item using the combo box (Figure 21):

Figure 21: A combo box allowing us to unlink an object with the “None” option

The solution (Figure 22) uses the power of OCL to create a list of strings representing the list

of projects to which the “None” string has been pre-appended. The event handler uses a

second “normal” ProjectsHandle to locate the appropriate object to link. Use the

IObjectContainer.Clear() method when the “None” value is selected.

Figure 22: An advanced combo box databinding example

 3 4

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Using ECOWinforms and the AutoContainer

ECO wizards automatically generate an “ECOWinform” for your project. An ECOWinform is

a WinForm with a constructor that accepts an ECO Space as a parameter. This way, the

handles on the form can be connected to the ECO Space. In fact, the ECOWinform has a

default rootHandle.

Figure 23: An ECOWinform and the AutoContainer

Figure 23 shows what happens when the code below is exercised. For Address objects, we

create an instance AddressForm, the constructor of which has been enhanced to accept a

PostalAddress as well as an ECO Space. For all other subclasses of ContactInfo, instead of

designing a custom form, we have decided to showcase the ECO AutoContainer. The

AutoContainer Service dynamically creates WinForms from the UML model.

 3 5

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

procedure TUserControl.ShowContactInfo(c: ContactInfo);
var
 af: TAddressForm;
 autocontainer : IAutoContainer;
begin
 if c is PostalAddress then
 begin
 af := TAddressForm.create(c as PostalAddress,EcoSpace);
 af.showDialog;
 end
 else
 begin
 autoContainer :=
AutoContainerService.Instance.CreateContainer(EcoSpace,c.AsIObject);
 Form(autoContainer).ShowDialog;
 end;
end;

Using the ubiquity of databinding in .NET

The last example (Figure 24) illustrates how .NET databinding can be used for driving most

properties, including the title of forms. In this example, we show how to make the form title

Activity include the title attribute of the object it displays.

Figure 24: Using advanced .NET bindings to calculate the title of a WinForm

 3 6

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Building an optimized search

We mentioned that ECO can evaluate OCL expressions within the Persistence System

(database) by converting OCL to an SQL expression using the technology known as

OCL2SQL. In Figure 25, we show how to use the special oclPSHandle, which behaves

similarly, except that its Execute()method must be used to trigger the “evaluation.” Another

notable difference is that the result is not subscribed.

Figure 25: Using the oclPSHandle to transform OCL into SQL for fast searches

The code for the event handler above builds the OCL expression from the criteria the user

typed and calls Execute(). Note that the sqlLikeCaseInsenstive OCL operation is not related

to our executing SQL; it is an OCL operation introduced by Borland to the OCL specification

for practical reasons. Indeed, it also can be used within the ECO space.

 3 7

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Improving the search screen

The main problem with our current search implementation is that it will find only objects that

are in the database. Any new ActivityLog object that has yet to be persisted will not be

listed in our grid. This gives us the opportunity to investigate the ECO DirtyListService,

which maintains a list of objects that are different from what is in the database. This list

includes new objects not yet persisted.

The code below starts exactly like our previous version by Executing the oclPSHandle. It then

gets hold of the IDirtyListService.AllDirtyObjects() list. To show how to retrieve

the result of OCL execution returning primitive types, we programmatically navigate through

the list of objects and perform the “title.sqlLikeCaseInsensitive()” test in their

individual contexts. We add matching objects to the oclPSHandle.Element (which is a list):

procedure TUserControl.ExecuteButton_Click(sender: System.Object; e:

System.EventArgs);

var

 searchOclExpression: String;

 DirtyListService: IDirtyListService;

 AllDirtyObjects, list: IObjectList;

 oclService: IOclService;

 i: integer;

 dirtyObject: IObject;

 Result: IElement;

begin

 ActivitiesGrid.DataSource := nil;

 3 8

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

 searchOclExpression := 'title.sqlLikeCaseInsensitive(''%' +

CriteriaTextBox.Text + '%'')';

 ActivitySearchPSHandle.Expression := 'ActivityLog.allInstances->select(' +

searchOclExpression + ')';

 ActivitySearchPSHandle.Execute;

 //Let's also add objects not yet in the database (i.e Dirty objects)

 DirtyListService :=

IDirtyListService(EcoSpace.GetEcoService(typeof(IDirtyListService)));

 if DirtyListService.HasDirtyObjects then

 begin

 AllDirtyObjects := DirtyListService.AllDirtyObjects;

 oclService := IOclService(EcoSpace.GetEcoService(typeof(IOclService)));

 list := IObjectList(ActivitySearchPSHandle.Element);

 for i:=0 to AllDirtyObjects.Count -1 do

 begin

 dirtyObject := AllDirtyObjects[i];

 if (dirtyObject.AsObject is ActivityLog) then

 begin

 Result :=

oclService.EvaluateAndSubscribe(dirtyObject,searchOclExpression,nil,nil);

 if boolean(Result.AsObject) then

 list.Add(dirtyObject);

 3 9

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

 end;

 end;

 end;

 ActivitiesGrid.DataSource := ActivitySearchPSHandle;

end;

Saving data and multi-user considerations

ECO development is similar to cached dataset regarding synchronizing the object cache with

the database. When you call EcoSpace.UpdateDatabase(), ECO can perform a check to see

whether the values in the database have changed since it read them, to ensure that other

people’s changes are not overridden. This feature, called optimistic locking, can be set to on

or off.

Schemes for updating the database

Once you have committed your changes, you have several choices, depending on the kind of

application you build. You can clear all the objects in your cache by setting the Active

property of the ECO Space to false and true again and continue using the portion of the

database loaded in memory without needing to reread (unload) objects if you know that a user

will affect only his area of the system.

Otherwise, you can devise a mechanism that determines, on a regular basis, which objects

have changed in the database (or on user pressing F5) and unload them. If ECO needs them

for calculations, don’t worry; it quickly reloads the new version!

 4 0

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Other ECO services

In our sample application, we have used many ECO services. We evaluated OCL expressions

with the OCL service, found the number of instances of a particular class for our

implementation of the singleton pattern using the Extent Service, used the Type Service, used

the DirtyList Service to locate new objects in memory that matched a certain criteria, and

used the Persistence Service to save our changes to a database backend.

Although we have explored several features, we haven’t used all of them yet—ECO is truly

feature rich. Let’s see what we have missed:

The Object Factory Service
Create objects through the UML type system rather than by using the constructors on the

generated code.

The OCL Type Services
Similar to the OCL Service, this interface service returns the type of the expression to

“expect” instead of calculating the result.

The State Service
DirtyList Service helped us find the list of dirty objects. The State Service determines which

individual properties have changed.

The Undo Service
This comprehensive service allows you to implement undo and redo functionality.

The Version Service
Objects that are versioned can have one or more historical versions that are read-only and one

current version that is live and can be updated.

 4 1

Unleashing enterprise models with Borland® Delphi™ 8 Architect for the

Microsoft® .NET Framework

Conclusion

Our first look at the new Enterprise Core Objects technology from Borland— now shipping

with Borland Delphi 8 for the Microsoft .NET Framework, Architect Edition—included the

theory behind the Model-driven architecture (MDA) and how UML can drive the

development cycle. We explained the respective roles of the Together modeling technology

and UML runtime ECO technology. We modeled a real-life application and followed it

through to deployment, while considering audit requirements, performance, reusability, and

usability with a rich WinForm User Interface.

We have seen how transparently ECO objects augment the capabilities of the standard .NET

objects while looking like .NET objects and unleashing many .NET features, such as

databindings. We have seen the power of expression of OCL compared with OQL and SQL.

Overall, we have seen the incredible productivity enhancements that can be achieved with not

a single line of SQL crafted to implement complex database systems. Borland Enterprise Core

Objects (ECO) truly increases the level of abstraction and gives us the opportunity to deliver

powerful systems without leaving the world of objects while interchangeably targeting any of

today’s RDMS.

Made in Borland ® Copyright © 2004 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. Java and all
Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Microsoft,
Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and
other countries. All other marks are the property of their respective owners. Corporate Headquarters: 100 Enterprise Way, Scotts
Valley, CA 95066-3249 • 831-431-1000 • www.borland.com • Offices in: Australia, Brazil, Canada, China, Czech Republic,
Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, Mexico, the Netherlands, New Zealand,
Russia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, and the United States. • 22241

 4 2

