



# **Nano-to-Life Expert Survey Results**

# Aharon Hauptman, Yair Sharan

Interdisciplinary Center for Technology Analysis and Forecasting (ICTAF) at Tel-Aviv University

WP5 meeting, Grenoble 1-2.12.2005

# **Objectives of the expert survey**

Validate selected trends emerged from the SoA review

Insight on R&D priorities, taking into account opinions of a large group of specialists.



Identify consensus (or disagreement) on key issues relevant to the long-range development of NBT

Input for Roadmapping - Strategy







# Structure of the expert survey

**20 statements:** anticipated application-oriented developments in NBT

**Expert opinion requested on:** 

- \* Year of realization
- \* Impact on 4 domains
- **\*** Prospects of commercialization in 5 areas
- **\*** What limits the prospects of commercialization
- **\*** Actions needed (to increase likelihood)



# **Selection of topics**

# Based on...

SoA review

Core experts suggestions

# **Compromise:**

Cover entire field – limited numb topics

Desired detail – length, time...



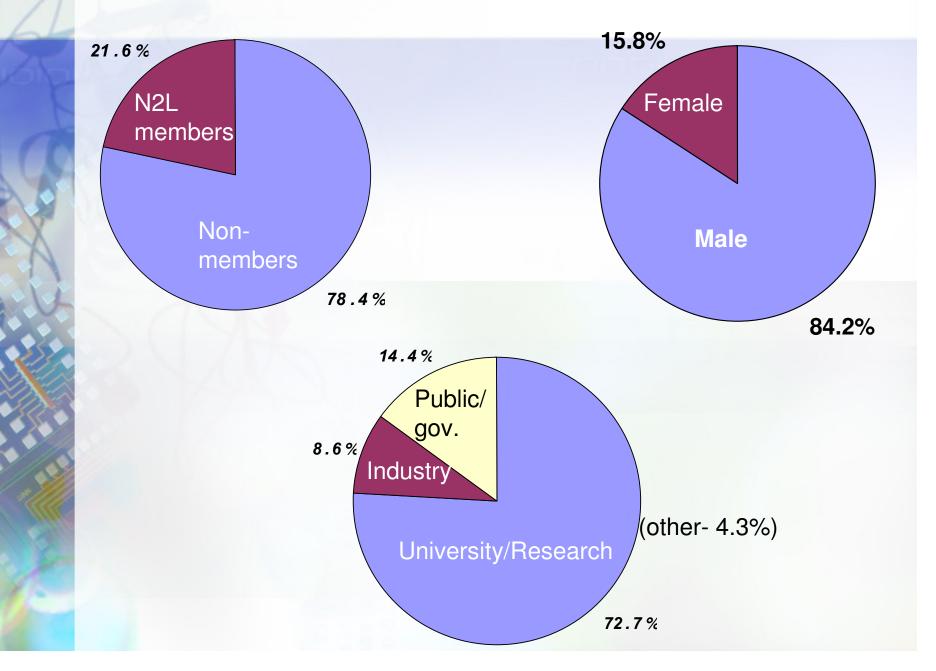
A GOOD COMPROMISE LEAVES EVERYBODY MAD.





# **General data**

First draft of questions – Dec 2004
Pilot – Jan-Feb 2005 Munster comments – March 05
Design & test of the web-based questionnaire – March – Apr 05


Online survey start: 17.4.05 end: July 2005

139 respondents (30 N2L members 109 non-members)

22-79 responses per statement

30 countries

# **Respondents distribution (139)**



#### Time of realisation – all statements High agreement Low agreement M Median 75% quartile 25% quartile 2015 2020 2025 2030 2005 2010 Ν "Never" 1. Cellular cycle 7.6 % 79 A ₩ Thanks to advances in nanobiotechnology, the fundamental processes of 46 6.5% the cellular cycle are mostly understood ₩ 2. In vitro construction of human organs 51 7.8% ۲ ₩ Advancements in nanobiotechnology enable the construction in vitro of 8.0% 25 artificial human organs. ₩ 3. Nanostructured biomaterials •• 10.9% 64 Novel nanostructured biomaterials replace existing materials (e.g. 13% 46 polymers). 4. Targeted drug delivery 73 1.4% ₩ Targeted drug delivery based on nanoparticles becomes a standard tool 2.0% (for therapeutic purposes, performance enhancement etc). 49 **Experts**/ knowledgeable 5. Smart probes used in in-vivo 5.0% 40 ₩ Smart probes (that illuminate when reaching their target) are practically 22 0% used in diagnosis in-vivo. ᠯᡧ 6. Biodetection with smart nano-surfaces 52 0% ••• Smart and adaptable surfaces at the nanoscale are the basic building 38 0% block for Biodetection. 7. Nanotools for manipulation inside cells 39 12.8% ₩ Nanotools (e.g. optical tweezers) are used for manipulation inside cells 19 5.3% while keeping the cells' integrity and activity.

# **Time of realisation – all statements** (cont.)

|                                                                                                                               | 2005 | 2010     | 201 | 5 2020   | 2025 | 2030 | N  | "Never" |
|-------------------------------------------------------------------------------------------------------------------------------|------|----------|-----|----------|------|------|----|---------|
| 8. Nano-agents for analysis inside cells<br>Nanosized imaging agents (e.g. quantum dots) are used for analysis and            | d (  |          |     |          |      |      | 51 | 5.9%    |
| diagnosis inside cells without affecting their normal functionality.                                                          |      |          |     |          |      |      | 30 | 0%      |
| <b>9. Bio energy conversion in micro/nano systems</b><br>Biological energy conversion systems (e.g. biomolecular motors) are  |      | <u>@</u> |     |          |      |      | 33 | 12.1%   |
| practically used in artificial micro and nano systems.                                                                        |      |          |     |          |      |      | 18 | 11.1%   |
| <b>10. Bio-inspired materials</b><br>Advanced bio-engineered materials based on bio-inspiration/ bio-mimi                     | cry  |          | ┝   |          |      |      | 36 | 0%      |
| are widely used.                                                                                                              |      |          | 4   |          |      |      | 20 | 0%      |
| <b>11. Labs on chip</b><br>Labs on chip are widely used for various applications, in different sector                         | ors, |          | ┢   |          |      |      | 46 | 0%      |
| including households.                                                                                                         | -    |          |     |          |      |      | 31 | 0%      |
| <b>12. Protein &amp; DNA chips integrated</b><br>Protein chips are integrated with DNA chips for specific diagnosis           |      |          | ┣   |          |      |      | 31 | 0%      |
| purposes in current hospital practices.                                                                                       |      |          | ┣   | 1        |      |      | 24 | 0%      |
| <b>13. Protein chips for personal use</b><br>Protein chips are widely used by the public for personal use.                    |      |          |     | <b>→</b> |      |      | 31 | 25.8%   |
|                                                                                                                               |      |          |     |          |      |      | 22 | 18.2%   |
| <b>14. Cells on chips replace animal testing</b><br>In vitro tests based on cells on chips replace animal testing for various |      |          |     |          |      |      | 32 | 18.8%   |
| applications (e.g. pharma, cosmetics).                                                                                        |      |          | 4   |          |      |      | 20 | 20%     |

# **Time of realisation – all statements** (cont.)

|                                                                                                                      | 2005 | 2010 | 2015 | 2020     | 2025     | 2030 | Ν  | "Never" |
|----------------------------------------------------------------------------------------------------------------------|------|------|------|----------|----------|------|----|---------|
| <b>15. Biosensors for single molecules</b><br>Biosensors for detection of single molecules based on nano arrays (for |      |      | N    |          |          |      | 42 | 4.8%    |
| example, arrays of nanotubes) are commercially available.                                                            |      |      |      |          |          |      | 31 | 6.5%    |
| <b>16. Self-assembly widely implemented</b><br>Self-assembly is widely implemented as a technique for development o  | f    |      |      |          |          |      | 47 | 4.3%    |
| materials and devices.                                                                                               | •    |      |      |          |          |      | 38 | 0%      |
| 17. Self-repairing in artificial systems                                                                             |      |      |      |          |          |      | 22 | 22.7%   |
| Living self-repairing abilities are implemented in artificial systems.                                               |      |      |      |          |          |      | 10 | 20.0%   |
| <b>18. Nanomachines inside the body</b><br>Nano-machines for theranostics (therapy and diagnosis) are practically    |      |      |      |          | <u>}</u> |      | 35 | 11.4%   |
| used inside the body.                                                                                                |      |      |      | <b>♦</b> |          |      | 19 | 15.8    |
| <b>19. Chips employing biomolecules</b><br>Chips employing biomolecules as active elements are commercially          |      |      | ×    |          |          |      | 39 | 5.1%    |
| manufactured.                                                                                                        |      |      | 8    |          |          |      | 20 | 5.0%    |
| <b>20. Chips made by using DNA / peptides</b><br>Nanoelectronics chips are commercially manufactured by using DNA of | r    | B_ B | 8    |          |          |      | 34 | 5.9%    |
| peptides (as templates or for nanopatterning).                                                                       |      |      | X    |          |          |      | 19 | 0%      |



# **Classification by likely time-frames**

# Short term – before 2010:

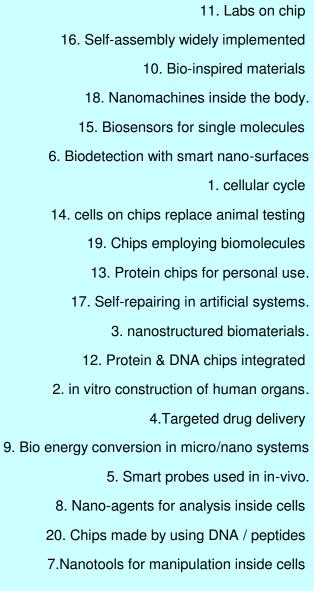
- 6. Biodetection with smart adaptable nanosurfaces
- 8. Nano-agents for analysis inside cells

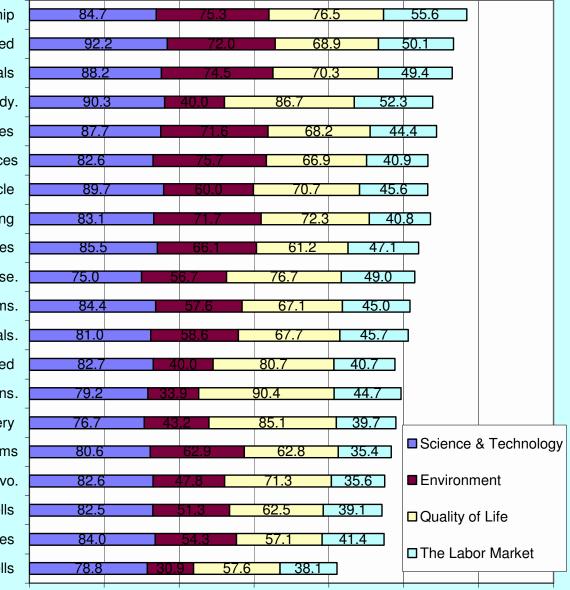
# Medium term -2011- 2015:

- 3. Nanostructured biomaterials.
- 4. Targeted drug delivery.
- 5. Smart probes used in-vivo
- 7. Nanotools for manipulation inside cells
- 10. Bio-inspired materials
- 11. Labs on chip
- 12. Protein chips integrated with DNA chips
- 14. Cells on chips replace animal testing
- 15. Biosensors for single molecules
- 16. Self-assembly.
- 19. Chips employing biomolecules as active elements
- 20. Chips commercially manufactured by using DNA or peptides



# Classification by likely time-frames (cont.)


# Long term -2016- 2020:


- 1. Thanks to NBT, processes of the cellular cycle are mostly understood
- 2. Construction in vitro of artificial human organs.
- 9. Bio energy conversion practically used in micro/nano systems
- 13. Protein chips for personal use
- 17. Living self-repairing implemented in artificial systems

# Very long term - 2021-2025:

18. Theranostic nano-machines used inside the body

# Impact levels on four domains (ranked by overall impact)







# Highest overall impact (71-73%):

11- Labs on chip, 16- Self-assembly, 10- Bio-inspired materials.

# Highest impact on S&T (> 89%):

16- Self-assembly, 18- Nanomachines in the body, 1- Understanding cellular cycle.

**Highest impact on environment (>74%):** 

11- Labs on chip, 10- Bio-inspired materials,6- Biodetection with smart nano-surfaces.

**Highest impact on quality of life (> 80%):** 

2- in vitro construction of human organs, 12-Protein & DNA chips integrated, 18- Nanomachines in the body.

Impact on labor market generally low. Highest (> 50%):

11-Labs on chip, 16- Self-assembly, 18- Nanomachines in the body.

# **Commercialisation prospects in 5 application areas**

11. Labs on chip 6. Biodetection with smart nano-surfaces 15. Biosensors for single molecules 16. Self-assembly widely implemented 13. Protein chips for personal use. 10. Bio-inspired materials 19. Chips employing biomolecules 1. cellular cycle 14. cells on chips replace animal testing 3. nanostructured biomaterials. 12. Protein & DNA chips integrated 18. Nanomachines inside the body. 20. Chips made by using DNA / peptides 5. Smart probes used in in-vivo. 8. Nano-agents for analysis inside cells 9. Bio energy conversion in micro/nano systems 17. Self-repairing in artificial systems. 4. Targeted drug delivery 7.Nanotools for manipulation inside cells 2. in vitro construction of human organs.

| 81.9 |      | 70.   | 2       | 6     | 64.7 |      | 63       | .0     | 5      | 54.3     |       |
|------|------|-------|---------|-------|------|------|----------|--------|--------|----------|-------|
|      |      |       | _       |       |      |      |          |        |        |          | -     |
| 77.0 |      | 67.5  |         | 66    | .0   |      | 55.7     |        | 45.0   |          |       |
| 78.9 |      | 60.8  |         | 64.9  | 9    |      | 59.5     |        | 47.9   |          |       |
|      |      |       |         |       |      |      | _        | 0.4    | _      | _        |       |
| 72.2 |      | 57.4  |         | 63.6  |      | 51.  |          | 64.    | .5     |          |       |
| 79.3 |      | 56.5  |         | 52.2  |      | 51.1 |          | 59.8   |        |          |       |
|      |      | 10.0  |         |       |      |      |          | 0.1.0  |        |          |       |
| 74.3 |      | 49.2  | 50      | 5.8   |      | 54.5 |          | 64.0   |        |          |       |
| 69.5 |      | 57.3  | 5       | 7.8   |      | 53.9 |          | 55.6   |        |          |       |
| 01.0 | i i  |       |         | 0.0   |      | 01.0 |          |        |        |          |       |
| 81.8 |      | 46.5  | 5       | 0.0   |      | 61.8 |          | 44.4   |        |          |       |
| 80.8 |      | 47.8  | Ę       | 58.0  |      | 53.1 |          | 47.0   |        |          |       |
| 70.0 |      | 44.0  | EO      | 0     | - 10 |      | EC       |        |        |          |       |
| 76.2 |      | 44.0  | 53.     | 9     | 46   | .9   | 55       | 9.8    | J      |          |       |
| 85.0 |      | 51.9  |         | 42.3  | 4    | 5.5  | 38.4     | 1      |        |          |       |
| 96.0 | , i  | E 2 0 |         | 33.7  | E    |      | 40       | 7      |        |          |       |
| 86.2 |      | 53.0  | ) 3     | 03./  | 54   | .3   | 42       | . /    |        |          |       |
| 59.2 | 48.  | 2     | 46.3    | 44.   | .4   | 5    | 4.2      |        |        |          |       |
| 89.  | 7    | 48.0  |         | 43.2  | 1 1  | 3.1  | 33.3     | _      |        |          |       |
| 09.  | 1    | 40.0  |         | 43.2  | 4    | 5.1  | <u> </u> |        |        |          |       |
| 81.8 |      | 47.2  | 42      | .3    | 41.7 |      | 31.7     |        |        |          |       |
| 56.9 | 50.0 |       | 50.0    | 39    | 8    | 46.  | Λ        | Med    | licine | and He   | ealth |
| 50.5 | 0.0  |       | 50.0    | 00    | .0   |      |          | Sec    | urity  |          |       |
| 62.5 | 44.  | 1 4   | 11.2 I  | 33.8  |      | 52.9 |          |        | unty   |          |       |
| 89.9 | 9    | 31.9  | 36.9    | 37    | 9    | 37.3 | 2        | □ Envi | ironm  | nent     |       |
|      |      |       | -       |       |      |      |          | - Agri | cultu  | re and f | boo   |
| 71.4 | 36   | 5.8 3 | 4.6     | 37.9  | 26.  | 5    |          | - Ayn  | Guntul |          | 000   |
| 89.4 | 4    | 27.3  | 22.7 26 | 6.8 3 | 1.5  |      |          | Con    | sume   | er Produ | ucts  |
| 0.   |      |       |         |       | 110  |      |          | L      | 1      |          |       |
|      |      |       |         |       |      |      |          |        |        |          |       |

# **Topics with highest prospects of commercialisation:**

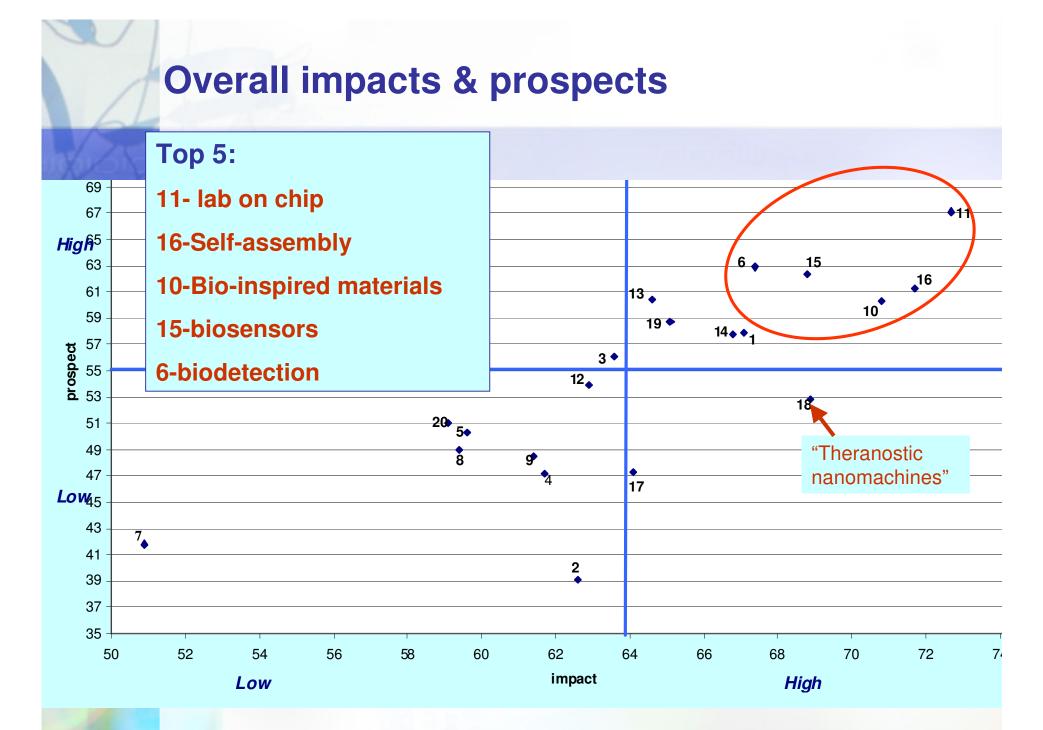
Highest overall prospects (> 62%):

11- lab on chip, 6-biodetection, 15-biosensors

Highest prospects are in **Medicine & Health (> 89%,** 9 topics >80%)

4-Targeted drug delivery, 2- in vitro construction of human organs, 5-Smart probes used in in-vivo

Security & Environment (>60%):


11- lab on chip, 6-biodetection, 15-biosensors.

**Agro-Food** (>60%):

11- lab on chip, 1- Understanding cellular cycle, 15-biosensors

**Consumer products** (>60%):

16-Self-assembly widely implemented, 10-Bio-inspired materials, 13-Protein chips for personal use, 3-Nanostructured biomaterials



# Percentage of "nothing limits" in all areas

## (top 3 highlighted in each area)

| statement                                 | Medicine | Secu | Environ | Agro- | Consumer |
|-------------------------------------------|----------|------|---------|-------|----------|
|                                           | & Health | rity | ment    | food  | Products |
| l. cellular cycle                         | 35.9     | 27.6 | 34.5    | 28.8  | 26.3     |
| 2. in vitro construction of human organs. | 22.0     | 11.1 | 8.6     | 11.8  | 20.0     |
| 3. nanostructured biomaterials.           | 44.2     | 29.2 | 40.4    | 31.8  | 40.4     |
| 4. Targeted drug delivery                 | 42.1     | 18.0 | 16.3    | 23.4  | 24.4     |
| 5. Smart probes used in in-vivo.          | 39.4     | 26.7 | 30.0    | 35.7  | 22.2     |
| 5. Biodetection with smart nano-surfaces  | 51.2     | 57.5 | 57.9    | 51.4  | 42.9     |
| Nanotools for manipulation inside cells   | 29.6     | 20.0 | 16.0    | 12.5  | 9.1      |
| Nano-agents for analysis inside cells     | 40.5     | 29.0 | 34.4    | 26.7  | 25.9     |
| Bio energy conversion in micro/nano       | 21.7     | 14.3 | 22.7    | 22.7  | 23.8     |
| vstems                                    |          |      |         |       |          |
| 0. Bio-inspired materials                 | 20.7     | 29.2 | 44.4    | 25.9  | 37.0     |
| 1. Labs on chip                           | 42.1     | 47.1 | 45.7    | 47.6  | 44.7     |
| 2. Protein & DNA chips integrated         | 45.8     | 40.0 | 35.3    | 42.1  | 35.0     |
| 3. Protein chips for personal use.        | 26.3     | 33.3 | 26.3    | 26.3  | 29.4     |
| 4. cells on chips replace animal testing  | 38.9     | 38.9 | 40.0    | 44.4  | 33.3     |
| 5. Biosensors for single molecules        | 24.1     | 37.0 | 31.0    | 27.6  | 21.4     |
| 6. Self-assembly widely implemented       | 28.6     | 45.7 | 36.1    | 31.4  | 33.3     |
| 7. Self-repairing in artificial systems.  | 21.4     | 38.5 | 28.6    | 35.7  | 21.4     |
| 8. Nanomachines inside the body.          | 28.6     | 15.0 | 5.0     | 10.0  | 10.5     |
| 9. Chips employing biomolecules           | 29.2     | 43.5 | 47.8    | 43.5  | 39.1     |
| 0. Chips made by using DNA / peptides     | 14.3     | 9.5  | 10.0    | 10.0  | 4.6      |

Limits to commercialization - Medicine & Health (%)

(large levels of disagreement highlighted)

| High percent    | tage of "many barriers":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                  |                               |             |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------------------|-------------|
| 17. Self-repair | ing in artificial systems (78.6%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                  |                               |             |
|                 | struction of human organs (75.6%)<br>ic nanomachines inside the body (71.4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nothing<br>limits | Many<br>barriers | Needs<br>already<br>fulfilled | No<br>needs |
|                 | cellular cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.9              | 56.3             | 6.3                           | 1.6         |
|                 | in vitro construction of human organs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.0              | 75.6             | 2.4                           | 0           |
| /XX             | nanostructured biomaterials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.2              | 36.5             | 17.3                          | 1.9         |
| N               | Targeted drug delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.1              | 50.9             | 7.0                           | 0           |
|                 | Smart probes used in in-vivo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.4              | 57.6             | 3.0                           | 0           |
| Teles.          | Biodetection with smart nano-surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.2              | 37.2             | 11.6                          | 0           |
| 2.2.            | Nanotools for manipulation inside cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.6              | 63.0             | 7.4                           | 0           |
|                 | Nano-agents for analysis inside cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.5              | 54.1             | 5.4                           | 0           |
|                 | Bio energy conversion in micro/nano systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.7              | 60.9             | 13.0                          | 4.3         |
|                 | ). Bio-inspired materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.7              | 51.7             | 13.8                          | 13.8        |
|                 | 1. Labs on chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42.1              | 44.7             | 13.2                          | 0           |
|                 | 2. Protein & DNA chips integrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.8              | 45.8             | 8.3                           | 0           |
|                 | 3. Protein chips for personal use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.3              | 52.6             | 15.8                          | 5.3         |
|                 | 4. cells on chips replace animal testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.9              | 44.4             | 11.1                          | 5.6         |
|                 | 5. Biosensors for single molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.1              | 62.1             | 10.3                          | 3.4         |
|                 | 5. Self-assembly widely implemented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.6              | 65.7             | 2.9                           | 2.9         |
|                 | 7. Self-repairing in artificial systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.4              | 78.6             | 0                             | 0           |
|                 | 3. Nanomachines inside the body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.6              | 71.4             | 0                             | 0           |
|                 | Here and the second | 29.2              | 58.3             | 8.3                           | 4.2         |
|                 | ). Chips made by using DNA / peptides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.3              | 42.9             | 33.3                          | 9.5         |

# Actions needed to foster realization

- Most needed: increase in basic/applied research
- Least needed: fiscal/financial measures
- Regulation needed mainly in:Protein&DNA chips (48%), Drug delivery (40%)
- Coping with ethical or public acceptance issues needed especially in (>50%):
- In-vitro construction of organs,
- Theranostic nanomachines inside the body, and
- Living self-repairing abilities in artificial systems.

# **Significant Disagreements**

## Time of realisation:

| No. | Statement                                   | % Before 2015 | % After 2020 |
|-----|---------------------------------------------|---------------|--------------|
| 1   | Understanding cellular cycle                | 43            | 30           |
| 2   | In vitro construction of human organs       | 37            | 31           |
| 9   | Bio-energy conversion in nanosystems        | 36            | 33           |
| 17  | Living self-repairing in artificial systems | 32            | 23           |
| 20  | Electronic chips made by DNA/peptides       | 50            | 35           |

Highest percentage of "never":

13. Protein chips for personal use (25.8%)

17. Living self-repairing implemented in artificial systems (22.7%)

14. Cells on chips replace animal testing (18.8%)

# Significant Disagreements (cont.)

High percentage of "nothing limits" *AND* "many barriers" (same topic), in Medicine & Health:

3. Nanostructured biomaterials (44%, 37%)

4.Targeted drug delivery (42%, 51%)

11. Labs on chip (42%, 45%)

12. Protein & DNA chips integrated (49%, 49%)

14. Cells on chips replace animal testing (39%, 44%)

# **Conclusions** (to be finilised...)

The survey provides a worldwide view on anticipated developments in NBT, their impacts and prospects, emerging from judgments of a large group of NBT experts.

High priority topics (taking into account overall impact & prospects):

- Labs on chip
- Self-assembly
- Materials based on bio-inspiration/bio-mimicry
- Biosensors for single molecules
- Biodetection with smart nano-surfaces

Highest impact of most statements is on S&T.

Low impact on the labor market

# Conclusions (cont.)

Medicine & Health is the area with highest prospects for commercialization: 9 topics scoring more than 80%.

Lower prospects in Security and Environment

In security & environment topics of detection & identification have relatively higher prospects (>60%): lab on chip, biodetection, biosensors

Most statements are likely to be realized in the decade 2010- 2020.

**Biodetection with smart nano-surfaces**, and **Nano-agents for analysis inside cells** are expected in short term (before 2010).

**Theranostic nanomachines - ~2025** 



# Conclusions (cont.)

Most important action to foster realization - **increase in basic/applied research** (with different degrees among the statements).

Fiscal/financial measures - least needed action.

**Regulation** activity is needed (according to >40% of respondents) for **Protein & DNA chips** and **Targeted drug delivery**. For all other statements less than 40% of the respondents recommend regulation activities.

**Solution of ethical problems and public acceptance** issues is needed to enhance the realisation of several statements, especially:

in vitro construction of human organs, theranostic nanomachines and self-repairing in artificial systems.

# WHAT NEXT?



# **Possible next activities:**

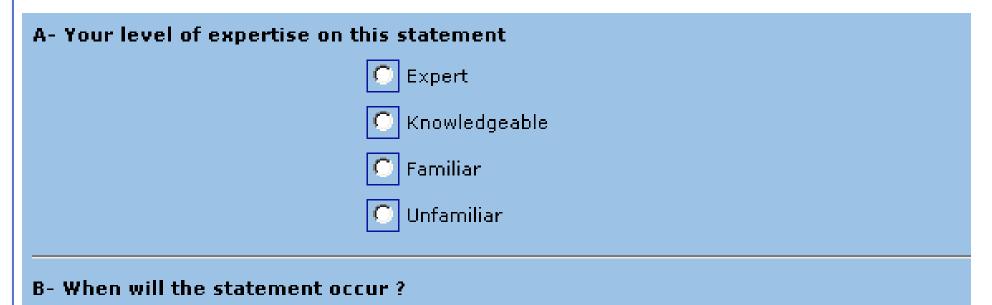
• **Stimulate discussions** among N2L members on the results, to better shape the conclusions and provide inputs to N2L policy and programmes.

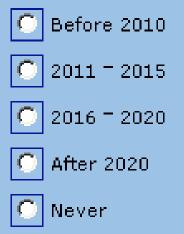
- Brainstormings with relevant specialists Prospective Workshops
- Second round especially on: topics with low consensus missing topics
- Benchmarking of relevant foresight studies worldwide

Key issues for discussions: detail barriers, resolving controversies...

**Examples of topics worth discussion:** 

\* Lab on chip: highest impact & prospects but disagreement on barriers.


**\*** Living self-repairing abilities implemented in artificial systems:


high disagreement on time of realization, high percentage of "never", "many barriers" and "need to solve ethics/public acceptance problems".

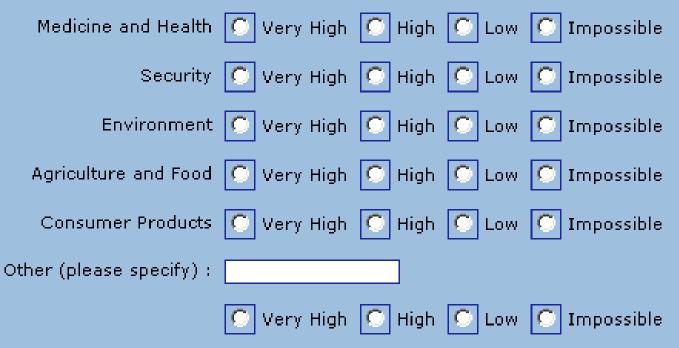
# Extra slides follow

# **Survey structure**

Statement9: Biological energy conversion systems (e.g. biomolecular motors) are practically used in artificial micro and nano systems.








C- What will be the level of impact of this achievement on the following domains: (Please mark the appropriate box for each domain)

| Science and Technology | 🔘 Very high | 🖸 High | C Low | 🔘 Negative |
|------------------------|-------------|--------|-------|------------|
| Environment            | 🔘 Very high | O High | C Low | C Negative |
| Quality of Life        | 🔘 Very high | 🖸 High | C Low | 🔘 Negative |
| The labor market       | 🔘 Very high | O High | CLow  | C Negative |

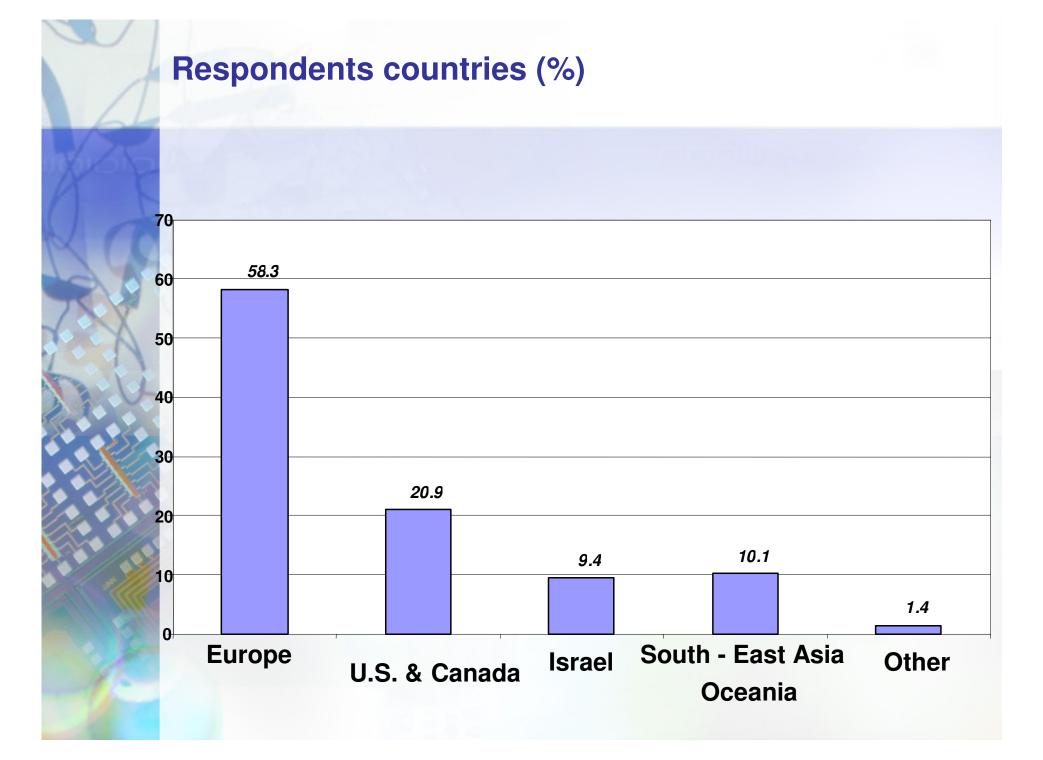
# D- What are the prospects of commercialization of this technology in the following areas:

(Please mark the appropriate box for each domain)



#### E- What limits the prospects of commercialization:

(Please make the appropriate selection for each domain)


| Medicine and Health  | > <b>_</b>                                                      |
|----------------------|-----------------------------------------------------------------|
| Security             | ><br>Many barriers<br>No needs                                  |
| Environment          | Needs Already fulfilled by other technologies<br>Nothing limits |
| Agriculture and Food | > <u>-</u>                                                      |
| Consumer products    | > <u>-</u>                                                      |

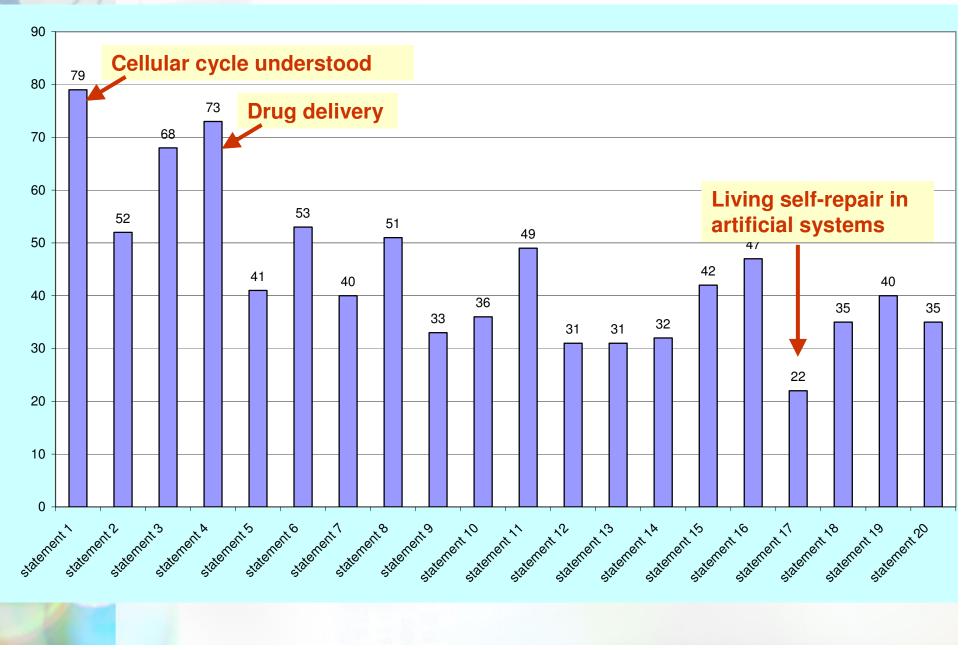
#### F- Actions needed to enhance the likelihood of the statement

(you can tick more than one : hold the ctrl-key while clicking).

Increase in basic research Increase in applied R&D Fiscal and financial measures Regulations (e.g. standards) Solve ethical problems Public acceptance

G- Please submit comments you might have regarding this statement :






COUNTRY

|                | _         | _       |
|----------------|-----------|---------|
|                | Frequency | Percent |
| 1 U.S.A        | 27        | 19.4    |
| 2 Israel       | 13        | 9.4     |
| 3 U.K          | 6         | 4.3     |
| 4 Germany      | 18        | 12.9    |
| 5 France       | 13        | 9.4     |
| 6 Italy        | 6         | 4.3     |
| 7 Austria      | 3         | 2.2     |
| 8 Romania      | 5         | 3.6     |
| 9 Switzerland  | 7         | 5.0     |
| 10 Sweden      | 3         | 2.2     |
| 11 Spain       | 5         | 3.6     |
| 12 Irland      | 3         | 2.2     |
| 13 Greece      | 4         | 2.9     |
| 14 Finland     | 1         | .7      |
| 15 Denmark     | 1         | .7      |
| 16 Norway      | 1         | .7      |
| 17 Netherland  | 2         | 1.4     |
| 18 Lithvania   | 1         | .7      |
| 19 Belgium     | 1         | .7      |
| 20 Bulgaria    | 1         | .7      |
| 21 Canada      | 2         | 1.4     |
| 22 Australia   | 4         | 2.9     |
| 23 New Zealand | 1         | .7      |
| 24 Japan       | 2         | 1.4     |
| 25 China       | 3         | 2.2     |
| 26 Singapure   | 2         | 1.4     |
| 27 India       | 1         | .7      |
| 28 South Korea | 1         | .7      |
| 29 Nigeria     | 1         | .7      |
| 30 Brazil      | 1         | .7      |
| Total          | 139       | 100.0   |
|                | 100       | 100.0   |

| Number of respondents | No. of statements answered |
|-----------------------|----------------------------|
| 35                    | 1                          |
| 47                    | 2-5                        |
| 26                    | 8-10                       |
| 14                    | 11-15                      |
| 17                    | 16-20                      |
| Total= 139            |                            |

# Number of answers per statement

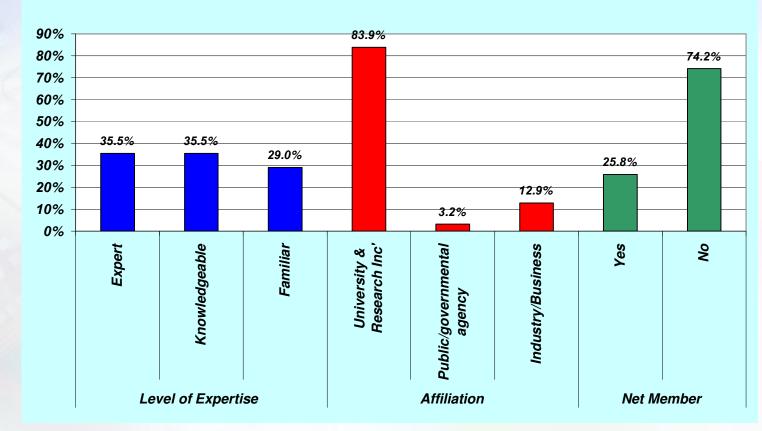


| -     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | F |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| 110   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| 186   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| 1     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| 1     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       | -         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
| /     |           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r      |   |
| V     |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
| 0     |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |   |
| 1     |           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |   |
| 1 mar | ~~        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|       | 1         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9      |   |
| 2     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~      |   |
| 560   | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۰.     |   |
| 20    |           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
| •     | •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14     | ١ |
|       | 1         | $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |   |
|       | $\bullet$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12     |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - TO - |   |
|       | . 🔶       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           | and the second s |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |

| statement | Ν  | Expert     | Knowledgeable | Familiar   |
|-----------|----|------------|---------------|------------|
| 1         | 79 | 12.7% (10) | 45.6% (36)    | 41.8% (33) |
| 2         | 52 | 3.8% (2)   | 46.2% (24)    | 50% (26)   |
| 3         | 68 | 25% (17)   | 47.1% (32)    | 27.9% (19) |
| 4         | 73 | 16.4% (12) | 50.7% (37)    | 32.9% (24) |
| 5         | 41 | 22% (9)    | 31.7% (13)    | 46.3% (19) |
| 6         | 53 | 20.8% (11) | 52.8% (28)    | 26.4% (14) |
| 7         | 40 | 20% (8)    | 30% (12)      | 50% (20)   |
| 8         | 51 | 19.6% (10) | 39.2% (20)    | 41.2% (21) |
| 9         | 33 | 15.2% (5)  | 39.4% (13)    | 45.5% (15) |
| 10        | 36 | 22.2% (8)  | 33.3% (12)    | 44.4% (16) |
| 11        | 49 | 22.4% (18) | 40.8% (20)    | 36.7% (18) |
| 12        | 31 | 35.5% (11) | 45.2% (14)    | 19.4% (6)  |
| 13        | 31 | 35.5% (11) | 35.5% (11)    | 29% (9)    |
| 14        | 32 | 18.8% (6)  | 43.8% (14)    | 37.5% (12) |
| 15        | 42 | 26.2% (11) | 47.6% (20)    | 26.2% (11) |
| 16        | 47 | 36.2% (17) | 44.7% (21)    | 19.1% (9)  |
| 17        | 22 | 18.2% (4)  | 27.3% (6)     | 54.5% (12) |
| 18        | 35 | 25.7% (9)  | 28.6% (10)    | 45.7% (16) |
| 19        | 40 | 22.5% (9)  | 30% (12)      | 47.5% (19) |
| 20        | 35 | 20% (7)    | 34.3% (12)    | 45.7% (16) |

# Limits to commercialization - Environment (%)

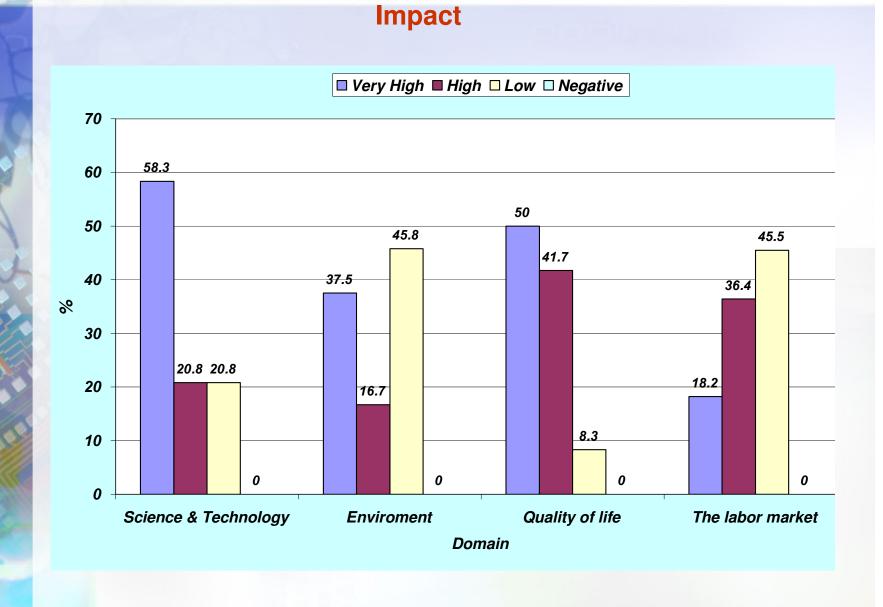
#### (large levels of disagreement highlighted)


| tatement                                       | Nothing<br>limits | Many<br>barriers | Needs<br>already<br>fulfilled | No<br>needs |
|------------------------------------------------|-------------------|------------------|-------------------------------|-------------|
| cellular cycle                                 | 34.5              | 32.8             | 19.0                          | 13.8        |
| in vitro construction of human organs.         | 8.6               | 11.4             | 5.7                           | 74.3        |
| nanostructured biomaterials.                   | 40.4              | 25.5             | 19.1                          | 14.9        |
| Targeted drug delivery                         | 16.3              | 26.5             | 6.1                           | 51.0        |
| Smart probes used in in-vivo.                  | 30.0              | 26.7             | 13.3                          | 30.0        |
| Biodetection with smart nano-surfaces          | 57.9              | 23.7             | 7.9                           | 10.5        |
| Nanotools for manipulation inside cells        | 16.0              | 32.0             | 4.0                           | 48.0        |
| Nano-agents for analysis inside cells          | 34.4              | 21.9             | 9.4                           | 34.4        |
| Bio energy conversion in micro/nano systems    | 22.7              | 45.5             | 18.2                          | 13.6        |
| ). Bio-inspired materials                      | 44.4              | 25.9             | 14.8                          | 14.8        |
| 1. Labs on chip                                | 45.7              | 28.6             | 5.7                           | 20.0        |
| 2. Protein & DNA chips integrated              | 35.3              | 17.6             | 11.8                          | 35.3        |
| 3. Protein chips for personal use.             | 26.3              | 26.3             | 15.8                          | 31.6        |
| 4. cells on chips replace animal testing       | 40.0              | 40.0             | 40.0                          | 20.0        |
| 5. Biosensors for single molecules             | 31.0              | 41.4             | 17.2                          | 10.3        |
| 5. Self-assembly widely implemented            | 36.1              | 47.2             | 8.3                           | 8.3         |
| 7. Self-repairing in artificial systems.       | 28.6              | 42.9             | 14.3                          | 14.3        |
| 3. Nanomachines inside the body.               | 5.0               | 40.0             | 0                             | 55.0        |
| <ul><li>Chips employing biomolecules</li></ul> | 47.8              | 30.4             | 13.0                          | 8.7         |
| ). Chips made by using DNA / peptides          | 10.0              | 30.0             | 40.0                          | 20.0        |

# Actions needed to foster realization

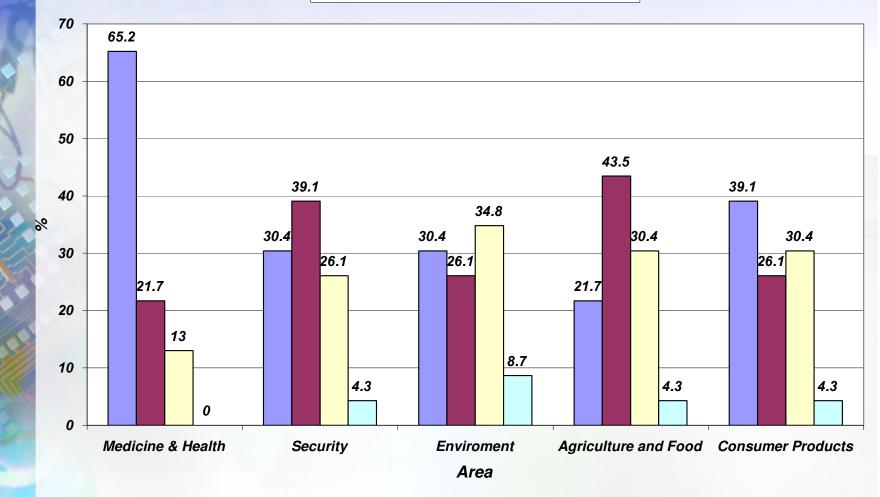
| statement                                     | N  | Increase in<br>basic/applied<br>research | financial<br>measures | Regula<br>tion | Solve ethical<br>problems or<br>public<br>acceptance |
|-----------------------------------------------|----|------------------------------------------|-----------------------|----------------|------------------------------------------------------|
| cellular cycle                                | 78 | 79.5                                     | 17.9                  | 20.5           | 38.5                                                 |
| in vitro construction of human organs.        | 50 | 78.0                                     | 22.0                  | 36.0           | 62.0                                                 |
| nanostructured biomaterials.                  | 65 | 81.5                                     | 26.2                  | 32.3           | 24.6                                                 |
| Targeted drug delivery                        | 73 | 82.2                                     | 24.7                  | 39.7           | 39.7                                                 |
| Smart probes used in in-vivo.                 | 40 | 90.0                                     | 22.5                  | 37.5           | 32.5                                                 |
| Biodetection with smart nano-surfaces         | 53 | 88.7                                     | 15.1                  | 20.8           | 11.3                                                 |
| Nanotools for manipulation inside cells       | 38 | 86.8                                     | 15.8                  | 7.9            | 28.9                                                 |
| Nano-agents for analysis inside cells         | 51 | 84.3                                     | 17.6                  | 19.6           | 37.3                                                 |
| Bio energy conversion in micro/nano<br>/stems | 32 | 84.4                                     | 25.0                  | 15.6           | 28.1                                                 |
| ). Bio-inspired materials                     | 36 | 88.9                                     | 19.4                  | 25.0           | 22.2                                                 |
| I. Labs on chip                               | 49 | 87.8                                     | 24.5                  | 36.7           | 28.6                                                 |
| 2. Protein & DNA chips integrated             | 31 | 80.6                                     | 25.8                  | 48.4           | 35.5                                                 |
| 3. Protein chips for personal use.            | 31 | 64.5                                     | 19.4                  | 22.6           | 32.3                                                 |
| 4. cells on chips replace animal testing      | 32 | 68.8                                     | 18.8                  | 37.5           | 37.5                                                 |
| 5. Biosensors for single molecules            | 42 | 88.1                                     | 28.6                  | 26.2           | 16.7                                                 |
| 5. Self-assembly widely implemented           | 46 | 91.3                                     | 19.6                  | 15.2           | 17.4                                                 |
| 7. Self-repairing in artificial systems.      | 20 | 85.0                                     | 15.0                  | 25.0           | 50.0                                                 |
| 3. Nanomachines inside the body.              | 35 | 85.7                                     | 25.7                  | 22.9           | 57.1                                                 |
| ). Chips employing biomolecules               | 40 | 75.0                                     | 15.0                  | 22.5           | 20.0                                                 |
| ). Chips made by using DNA / peptides         | 35 | 82.9                                     | 25.7                  | 8.6            | 17.1                                                 |


#### **Example of detailed results**

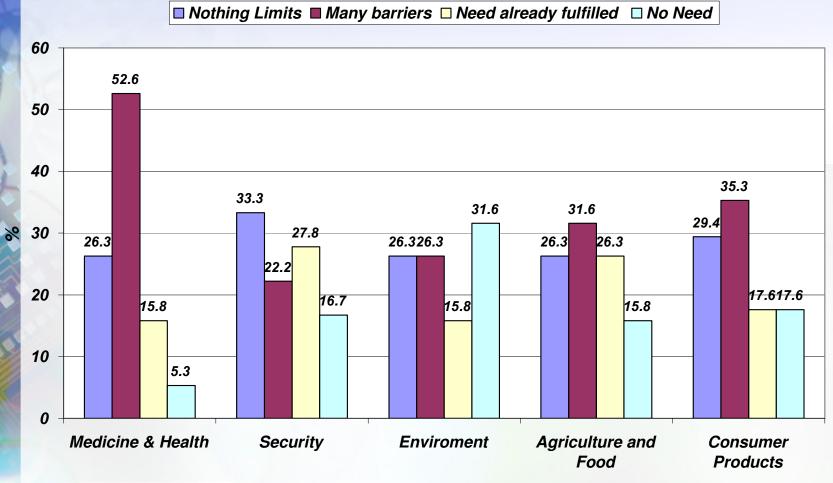

#### 13. Protein chips are widely used for personal use



N=31


#### Year of realisation






#### **Prospects of Commercialisation**

□ Very High ■ High □ Low □ Impossible



#### What limits the prospects of commercialisation?



Area

## **Needed Actions**

|                               | All<br>Respondents<br>N=31 | Experts and<br>Knowledgeable<br>N=22 |  |
|-------------------------------|----------------------------|--------------------------------------|--|
|                               | %                          | %                                    |  |
| Increase in basic research    | 48.4                       | 54.5                                 |  |
| Increase in applied R&D       | 58.1                       | 63.6                                 |  |
| Fiscal and financial measures | 19.4                       | 18.2                                 |  |
| Regulations (e.g standards)   | 22.                        | 27.3                                 |  |
| Solve ethical problems        | 22.6                       | 27.3                                 |  |
| Public acceptance             | 32.6                       | 36.4                                 |  |