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1. Introduction

Techniques usually consider non-interactive a few years ago are now possible 
in real-time using the flexibility and speed of new programmable graphics hardware. 
An example of  that  is  the  deferred  shading technique,  which is  an  approach that 
postpones shading calculations for a fragment1 until the visibility of that fragment is 
completely  determined.  In  other  words,  it  implies  that  only fragments  that  really 
contribute to the resultant image are shaded.

Although deferred shading has become practical for real-time applications in 
recent years, this technique was firstly published in 1988 by Michael Deering  et al. 
[Deering88]. In that work, the authors proposed a VLSI system where a pipeline of 
triangle processors rasterizes the geometry, and then a pipeline of shading processors 
applies Phong shading [Phong75] with multiple light sources to such geometry.

After the initial research performed by Deering et al., the next relevant work 
involving deferred shading was developed by Saito and Takahashi [Saito90] in 1990. 
The authors of this article proposed a rendering technique that produces 3D images 
that  favor  the  recognition  of  shapes  and  patterns,  since  shapes  can  be  readily 
understood  if  certain  geometric  properties  are  enhanced.  In  order  to  optimize  the 
enhancement  process,  geometric  properties  of  the  surfaces  are  preserved  as 
Geometric-Buffers  (G-buffers).  So,  by  using  G-buffers  as  intermediate  results, 
artificial enhancement processes are separated from geometric processes (projection 
and hidden surface removal) and physical processes (shading and texture mapping), 
and performed as a post-processing pass.

Another research related with deferred shading was developed by Ellsworth 
[Ellsworth91] in 1991, who investigated parallel architectures and algorithms for real-
time synthesis of high-quality images using deferred shading. A little later, in 1992, 
the UNC computer graphics research group proposed the PixelFlow architecture for 
high-speed image generation, that overcomes transformation and frame buffer access 
bottlenecks of conventional hardware rendering architectures. In that article, Molnar 
et al. [Molnar92] used deferred shading in order to reduce the calculations required 
for complex shading models by factorizing them out of the rasterization step in their 
image-composition architecture.

1 A fragment is a candidate to become a pixel on the screen. A fragment is promoted to a pixel if 
and only if it passes all frame buffer tests (e.g. scissors test, alpha test, depth test and others).



After  these  articles,  several  other  research  and  development  attempts  have 
been  made  using  deferred  shading  techniques  [Rhoades92]  [Lastra95]  [Eyles97] 
[Olano97]  [Olano98]  [Zwicker01]  [Dachsbacher05]  [Kontkanen05].  Recently,  Oles 
Shishkovtsov produced a chapter in the “GPU Gems 2” book [Pharr05] dealing with 
deferred shading; more precisely, chapter 9  describes the deferred shading renderer 
used in the soon-to-be-released computer game S.T.A.L.K.E.R.

In the following sections, the motivations that lead to the use of the deferred 
shading technique, as well as how this technique may be implemented using the C++ 
programming  language  [Stroustrup97],  the  OpenGL API [Shreiner03]  and  the  Cg 
NVidia shading language [Fernando03] will be presented with greater detail. Section 
2 presents an overview about lighting models, where features and limitations related 
to lighting on the fixed function and programmable pipelines are explained. Section 3 
describes  the  deferred  shading  technique  itself  where,  firstly,  a  summarized 
architecture is explained followed by the presentation of a more detailed architecture 
with implementation tips and tricks. Finally, Section 4 provides some conclusions and 
discusses the final considerations.

2. Lighting and Shading Overview

According to Akenine-Möller & Haines [Möller02], humans can see an object 
because photons bounce off (or are emitted from) the surface of the object and reach 
the eyes of the viewer. In order to describe the way light interacts with a surface, a 
great amount of research has already been performed. Among these studies, the one 
that  best  approximates  the  physical  world  light  interactions  is  the  Bidirectional 
Surface  Scattering  Reflectance  Distribution  Function  (BSSRDF)  [Nicodemus77]. 
However, because of the inherent complexity in this function, it cannot be computed 
in real time. In order to simulate the way light interacts with a surface in real time, 
concepts  of  physics  and  measurement  must  be  usually ignored,  leading  to  a  very 
simplified lighting model.

In order to define a lighting model, it is necessary to consider three aspects: 
light sources, materials and the way in which light sources interact with material as 
well  as  their  interaction  with  the  geometry  of  the  object  to  be  rendered.  In  the 
following sections,  the  lighting  model  used  in  this  tutorial,  that  is  a  summarized 
version of the most used lighting model in graphics accelerators and APIs (such as 
OpenGL [Shreiner03] and DirectX [DirectX05]), will be presented in a progressive 
way, i.e.; firstly, the types of light sources will be described; next, the most common 
types of materials will be considered and, finally, a lighting equation that determines 
how light sources interact with material parameters of an object will be explained.

2.1. Light Sources and Materials

There are three different types of light sources: directional lights, point lights 
and spotlights. A directional light is considered to be positioned infinitely far away 
from the objects that are being lit and the most common example of such a light is the 
sun. Conversely, point lights and spotlights each have a location in space. A point 
light can be thought of as a single point that emits photons in all directions while a 
spotlight is a single point that emits photons in a particular direction.



All three light source types have an intensity parameter that can be subdivided 
into  three  components:  ambient,  diffuse  and  specular.  Furthermore,  each  of  these 
components is represented as the amount of red, green and blue light they emit. That 
kind of division is not physically accurate, but it gives the user of a real-time graphics 
application more control over scene appearance.

The ambient component is the light that has been scattered so much by the 
environment that it seems to come from all directions. Its purpose is to attempt to 
simulate indirect light in a simple way, without considering the complexities involved 
in calculating lights that bounce off an object and then reach another one. The diffuse 
component is the light that comes from one direction and once it hits a surface, it is 
scattered equally in all directions, so it appears equally bright, no matter where the 
viewer is located. Finally, the specular light comes from a particular direction and it 
tends  to  bounce  off  the  surface  in  a  preferred  direction.  Generally,  the  specular 
component may be thought as shininess.

Besides  those  components,  in  particular,  a  spotlight  has  a  few  more 
parameters, for instance; it has a direction vector, it has a cut-off angle, and others. In 
this tutorial, the light source considered on the implementation examples is the point 
light one, so, if the reader is interested in obtaining more information on spotlight, one 
may consult [Möller02].

In a virtual scene represented in a computer, light sources interact with objects 
through  their  materials.  Like  light  sources,  a  material  is  represented  as  a  set  of 
components,  namely ambient,  diffuse,  specular  and shininess.  However,  while  the 
light  source  components  represent  the  amount  of  emitted  light,  the  material 
components determine the amount of reflected light. The most common light source 
and material properties are summarized in Table 1.

Notation Description
Samb Ambient intensity color of the light source
Sdiff Diffuse intensity color of the light source
Sspec Specular intensity color of the light source
Spos Light source position

Mamb Ambient material color
Mdiff Diffuse material color
Mspec Specular material color
Mshi Shininess parameter

Table 1: Table of common light parameters for light sources and material constants.

2.2. Lighting Equation

In  this  section,  the  total  lighting  equation  used  in  this  tutorial  will  be 
described.  This  equation  determines  how  light  sources  interact  with  material 
parameters of an object, and thus, it also determines the colors of the pixels that a 
particular object occupies on the screen, as shown in Equation 1.

Itot = Iamb + att(Idiff + Ispec) (1)

In the real world, light intensity is inversely proportional to the square of the 
distance from the light source and this kind of attenuation is taken into account by the 



variable  att in Equation 1. That attenuation holds only for light sources that have a 
location in space, and only the diffuse and specular components are affected by it. 
There are several ways of calculating the attenuation of a light source, in this tutorial 
it will be performed through the following equation:

att=MAX 0 ,1−
∥S pos− p∥

S radius
 , (2)

where ∥S pos− p∥ is the distance from the light source position  Spos to the point  p 
that is to be shaded, Sradius is the radius of the light source's influence region and the 
function MAX(a,b) returns the maximum value between a and b.

The  diffuse  term  Idiff ,  that  considers  both  the  diffuse  component  of  light 
sources and materials, may be computed as follows:

I diff=MAX 0,l⋅n M diff⊗S diff , (3)

where the operator ⊗ performs component wise multiplication, l is the unit vector 
from  Spos to  p and n is  the  surface  normal  on  p.  The  Equation  3 is  based  on 
Lambert's Law, which states that for surfaces that are ideally diffuse, the reflected 
light is determined by the cosine between the surface normal n and the light vector
l . Typically, the diffuse material Mdiff of an object is represented as a texture map 

and the diffuse and specular components of a light source are represented as a unique 
color, the light color, what implies that  Sdiff = Sspec. These considerations are used in 
this tutorial.

The specular term  Ispec,  that considers both the specular component of light 
sources and materials, may be computed as follows:

I spec=MAX 0,h⋅nM shi M spec⊗S spec , (4)

where, h is the unit half vector between l and v :

h=
lv
∥lv∥

, (5)

where v is the view vector from the point p to the viewer.

Finally, the ambient  term  Iamb is  the most  simple and, in this  tutorial,  it  is 
represented as the following equation:

I amb=M diff⊗Factor amb , (6)

where Factoramb has the purpose of modulating the value of Mdiff so that all objects in 
the scene reflect a small part of their diffuse contribution. For instance, if the scene 
has  an  ambient  factor  equals  to Factoramb=0.2,0 .2,0 .2 and  if  an  object  has  a 
diffuse material  equals  to  M diff=0,0,1 ,  so its  ambient term will  be equals  to 

I amb=0,0,0.2 , i.e., a blue color darker than its diffuse material.



2.3. Shading

Shading is the process of performing lighting computations and determining 
pixels' colors from them. There are three main types of shading: flat, Gouraud, and 
Phong. These correspond to computing the light per polygon, per vertex and per pixel.

In flat shading, a color is computed for a triangle and the triangle is filled with 
that color. In Gouraud shading [Gouraud71], the lighting at each vertex of a triangle is 
determined and these computed colors are interpolated over the surface of the triangle. 
In Phong shading [Phong75], the surface normals stored at the vertices are used to 
interpolate the surface normal at each pixel in the triangle. That normal is then used to 
compute the lighting's effect on that pixel.

The most common shading technique is the Gouraud one that is implemented 
in almost all graphics cards. However, the last generation of graphics cards are now 
programmable  and  support  vertex  shading,  the  ability  of  incorporating  per-vertex 
calculations, and pixel shading, the ability to incorporate per-pixel calculations. That 
programmability make Phong shading technique feasible to be used during lighting 
computations.  In  this  tutorial,  Phong  shading  is  the  technique  used  to  determine 
pixels' color.

2.4. Implementation of the Lighting Equation

In this section, the implementation of the lighting equation used in this tutorial 
(see Equation 1) will be presented. In order to implement that equation, the OpenGL 
API and the Cg NVidia shading language will be used.

The implementation of Equation 1 is divided into two parts. In the first part, 
the  ambient  term  is  computed  through the  fixed  function  pipeline  functionality 
available on OpenGL API. The remaining terms; i.e., diffuse and specular ones, are 
calculated  through the  programmable  pipeline  functionality  available  on  current 
graphics cards so that a per-pixel shading can be performed. The OpenGL code in 
order to calculate the ambient term is as follows:

00 // set ambient color to be modulated with diffuse material
01 glColor3f(amb_factor.x,amb_factor.y,amb_factor.z);
02
03 // draw scene geometry with diffuse material
04 drawSceneGeometryWithDiffuseMaterial();
05
06 // set additive blend mode
07 glBlendFunc(GL_ONE,GL_ONE);
08 glEnable(GL_BLEND);

Listing 1: OpenGL code for the ambient term calculation.

In line 1, Factoramb from Equation 6 (represented in the code as the variable 
amb_factor) is defined as the current color in the OpenGL render state. By default, 
that current color is modulated by the current texture map, which is configured as the 
diffuse material of the current object to be rendered when the function at line 4 is 
called. In lines 7 and 8, the additive blend mode is activated in order to possibility the 



addition of the ambient term to the diffuse and specular ones (whose implementation 
is shown below).

The attenuation as well as the diffuse and specular terms are computed by a 
pixel  shader,  thus,  the  Cg  shading  language  is  used  in  order  to  implement  the 
lighting function as follows:

00 float3 lighting(float3 Scolor,float3 Spos,float Sradius,
01                 float3 p,float3 n,float3 Mdiff,float3 Mspec,
02                 float Mshi)
03 {
04    float3 l = Spos – p; // light vector
05    float3 v = normalize(p); // view vector
06    float3 h = normalize(v + l); // half vector
07    
08    // attenuation (equation 2)
09    float att = saturate(1.0 – length(l)/Sradius);
10    l = normalize(l);
11
12    // diffuse and specular terms (equations 3 and 4)
13    float Idiff = saturate(dot(l,n))*Mdiff*Scolor;
14    float Ispec = pow(saturate(dot(h,n)),Mshi)*Mspec*Scolor;
15
16    // final color (part of equation 1)
17    return att*(Idiff + Ispec);
18 }

Listing 2: Cg code for diffuse and specular terms considering attenuation. All calculations are 
performed in view space.

The  lighting function is a translation of  Equation 1 into the Cg shading 
language. That function receives as input  all  parameters necessary to calculate the 
lighting equation explained in Section 2.2. The three first parameters are, respectively, 
the light color Sdiff = Sspec, the light position Spos, and the light radius Sradius. Next, the 
point to be shaded  p and the surface normal n on this  point are passed.  Finally, 
material properties of the object to be rendered; such as diffuse (Mdiff), specular (Mspec) 
and shininess (Mshi), are passed.

In order to compute the lighting equation, some vectors need to be calculated, 
thus, at lines 4 as far as 6 the light vector l , the view vector v and the half vector
h are  calculated,  respectively.  At  line  9  the  attenuation  factor  is  computed 

according to  Equation 2. In the lines 13 and 14 the diffuse and specular terms are 
calculated according to equations 3 and 4, respectively. Finally, at line 17 part of the 
resultant color is calculated and returned. An important observation at this point is 
that  in  order  to  ensure  that  the  lighting  calculation  yields  a  correct  result,  it  is 
necessary that all vectors belong to the same geometric space. The lighting may be 
performed in more than one geometric space, in this tutorial all lighting calculations 
occur in view space.

2.4.1. Lighting Passes

Until  the  moment,  all  considerations  about  lighting  implementation  were 
related with calculating the lighting equation for one pixel. In this section, the use of 
the lighting model in a higher level context, such as the way lighting algorithms are 
organized in order to illuminate a virtual scene, will be considered.



The best example of applications that require lighting algorithms are computer 
games. Modern games have been using many lights on many objects in order to obtain 
more realistic  and sophisticated views. Moreover,  in applications  like games,  it  is 
necessary that these lighting effects are performed in real time. Typically, two major 
options for real time lighting are used: a single pass with multiple lights and multiple 
passes with multiple lights.

In the first option, a single render pass per object is used in order to calculate 
the contributions of all lights that affect this object. A pseudo code that illustrates this 
approach is presented as follows:

00 for each object do
01    for each light do
02       framebuffer = light_model(object,light);

Listing 3: Pseudo code to illustrate a single pass with multiple lights lighting approach.

Although it is a simple approach it has some problems and limitations. Since 
lighting is performed per object it  is possible that a previous rendered and shaded 
object  is  substituted  by a  more  recently processed  object,  in  other  words,  hidden 
surfaces may cause wasted shading. Another problem is to manage multiple lights 
situations  in  one single  shader  when programmable pipeline functionality is  used. 
Moreover, that approach is very hard to integrate with shadow algorithms.

The second option, multiple passes with multiple lights, is characterized by 
performing all  lighting in  a  per-light  base.  So,  for  each  light,  all  objects  that  are 
influenced by this light are shaded. A pseudo code that illustrates this approach is 
presented as follows:

00 for each light do
01    for each object affected by light do
02       framebuffer += light_model(object,light);     

Listing 4: Pseudo code to illustrate multiple passes with multiple lights lighting approach.

Like  in  the  first  approach,  hidden  surfaces  may  cause  wasted  shading. 
Moreover,  since  lighting  is  performed  firstly  per  light  and  then  per  object,  it  is 
possible  that  some calculations  (for  example,  vertex  transform and  setup  triangle 
[Möller02]) are repeated because a same object may be processed again for another 
light that affects it. Finally, since sorting by light and by object is mutually exclusive it 
is hard to take advantage of batching.

In the next sections, the deferred shading technique will be presented as well 
as all its advantages in relation to these two previous techniques will be described and 
explained with greater details.

3. Deferred Shading

The  two  most  common  approaches  to  light  a  virtual  scene  in  real  time, 
described in Section 2.4.1, present a serious problem: their worst case computational 
complexity is on the order of the number of objects times the number of lights, in 
other words, it is O(number_of_objects x number_of_lights). Hence, these approaches 
present  some  limitations,  mainly  in  virtue  of  calculations  that  must  be  repeated. 



Moreover, complex shading effects with the use of these techniques require multiple 
render passes to produce the final pixel color, with the geometry submitted every pass.

Unlike traditional rendering algorithms that submit geometry and immediately 
apply  shading  effects  to  the  rasterized  primitives,  the  deferred  shading  technique 
submits  the scene geometry only once, storing per-pixel  attributes into local video 
memory (called G-buffer) to be used in the subsequent render passes. So, in these later 
passes,  screen-aligned  quadrilaterals  are  rendered  and  the  per-pixel  attributes 
contained in the G-buffer are retrieved at a 1:1 mapping ratio so that each pixel is 
shaded individually. Thus, the great advantage of deferred shading in comparison with 
traditional rendering algorithms is that it has a worst case computational complexity 
O(number_of_objects  +  number_of_lights).  A  pseudo  code  that  illustrates  this 
approach is presented in Listing 5.

00 for each object do
01    G-buffer = lighting properties of object;
02 for each light do
03    framebuffer += light_model(G-buffer,light);     

Listing 5: Pseudo code to illustrate the deferred shading technique.

Deferred  shading  possesses  other  advantages.  For  example,  once  that  the 
geometry processing is decoupled from the lighting processing, it is natural to take 
advantage  of  batching.  Moreover,  once  that  deferred  shading  postpones  shading 
calculations  for  a  fragment  until  the  visibility  of  that  fragment  is  completely 
determined, it thus presents a perfect O(1) depth complexity for lighting.

3.1. General Architecture

Clearly,  there  are  four  distinct  stages  in  deferred  shading:  geometry stage, 
lighting stage, post-processing stage and final stage. Thus, the architecture adopted in 
this  tutorial  in  order  to  implement  the  deferred  shading  technique  reflects  the 
existence of these stages. Figure 1 illustrates that architecture.
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Figure 1: General architecture of deferred shading technique. Reference the Appendix A for all the 
steps from the complete deferred shading pipeline.

Each stage uses  programmable pipeline  functionality through vertex  and/or 
fragment shader. Furthermore, each stage communicates with the other ones through a 
shared memory area (represented in  Figure 1 by the entity Resources) in the video 
memory of the graphics card. In order to facilitate the usage and management of that 
shared memory, it is organized like buffers that may be used as either render targets 



(when a stage writes information into the video memory) or textures (when a stage 
reads information from the video memory).

The  geometry stage  implements  a  perspective  projection  camera,  in  three-
dimensional space, and it is responsible for feeding the G-buffer with information to 
be used in the next stages. All subsequent stages operate in image-space and work 
with  an  orthographic  projection  camera  using  screen  resolution  dimensions.  The 
lighting stage receives as input the contents of the G-buffer as well as light sources 
information  and it  accumulates  lighting into  a  full  resolution  P-buffer  (defined in 
Section 3.2). In the next stage, some post-processing passes are performed in order to 
enhance the image generated in the previous stage. Finally, the enhanced image is 
transferred to the main frame buffer in order to be displayed on the screen.

In the following sections, each of these stages as well as all resources required 
to accomplish the deferred shading technique will be presented in more detail.

3.2. Resources

As described in Section 3.1, the exchange of information among the deferred 
shading stages involves the ability to render information into the graphics card's video 
memory and later to use it as a texture. Moreover, that kind of task must be executed 
as efficiently as possible  in order to  maintain all  processing real  time.  Thus,  it  is 
extremely important to render to the graphics card's video memory directly and use the 
resulting image as a texture without requiring a buffer to texture copy. It may be done 
through the use of a special off-screen buffer, also called pixel buffer (P-buffer for 
short),  available  in  OpenGL  through  the  extensions  WGL_ARB_render_texture 
[Poddar01] and WGL_ARB_pbuffer [Kirkland02].

All  P-buffers  referenced  in  this  tutorial  can  be  used  as  render  targets  or 
textures, but they cannot be used as both types at the same time (i.e., cannot be read 
from and write to at the same time). The G-buffer is a special P-buffer containing not 
only color,  but  depth  and two extra  auxiliary buffers.  In order  to  write  to  all  its 
buffers,  it  would  require  rendering  one  pass  per  buffer.  However,  if  the  current 
graphics card supports Multiple Render Targets (MRT) capability, it  is possible to 
write to all buffers in a single pass. In OpenGL, it may be performed through the 
extension GL_ATI_draw_buffers [Mace02], that supports writing to up to four render 
targets simultaneously.

In order to exemplify the implementation of the deferred shading technique, 
the  general  architecture  illustrated  in  Figure  1 will  be  represented  by  the  class 
pDeferredShader. The first attributes of that class are the G-buffer and the four P-
buffers, each represented by the class  pPBuffer available through the middle-ware 
P3D [Policarpo05]; and the first methods of that class allow the management of these 
buffers as render targets or textures as shown at Listing 6.

00 class pDeferredShader
01 {
02    pPBuffer *m_mrt; // G-buffer
03    unsigned int m_mrttex[4]; // G-buffer texture ids
04 
05    pPBuffer *m_fb[4]; // P-buffers
06    unsigned int m_fbtex[4]; // P-buffers texture ids



07 
08    // G-buffer management
09    void mrt_bind_render();
10    void mrt_unbind_render();
11    void mrt_bind_texture(int target);
12    void mrt_unbind_texture(int target);
13 
14    // P-buffer management
15    void fb_bind_render(int buffer);
16    void fb_unbind_render(int buffer);
17    void fb_bind_texture(int buffer,int texunit);
18    void fb_unbind_texture(int buffer,int texunit);
19    ...
20 };

Listing 6: Attributes and methods used to manage the G-buffer and the four P-buffers.

In order to use a P-buffer as an off-screen render target, one of the available 
“bind_render” methods must be called. Once that the P-buffer was filled in with some 
information it may be released through one of the available “unbind_render” methods.
Similarly, to use a P-buffer as a texture, one of the available “bind_texture” methods 
must be called and after its usage one of the available “unbind_texture” methods must 
be called. It is important to remember that it is not allowed to bind a buffer as texture 
if it is already bound as a render target and vice-versa.

3.3. Geometry Stage

The geometry stage  is the only stage that actually uses 3D geometric data. 
Thus, the input of that stage is the mesh of the scene to be rendered and the output is 
the G-buffer filled in with information required to shade all pixels that contribute to 
the final image. Figure 2 illustrates the process and necessary resources to perform it.
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Figure 2: Geometry stage of deferred shading general architecture.

In order to fill the G-buffer with the required information, it is necessary to set 
the G-buffer as the current render target. It may be performed through the method 
mrt_bind_render(), available in the class pDeferredShader (see Listing 6). Once 
that the G-buffer is ready to receive data, the scene may be rendered. Firstly, raw 
geometry  information  (only  vertices  without  normals,  texture  coordinates  and 
materials) is sent to the graphics card using the fixed function pipeline which only 
updates the G-buffer's depth buffer. Next, material and geometric information of the 
scene are sent to the graphics card and a fragment shader is responsible for filling the 



rest of the G-buffer's data. Finally, the G-buffer can be unbound calling the method 
mrt_unbind_render(). The method that implements the geometry stage in shown at 
Listing 7.

00 void pDeferredShader::geometry_stage(pMesh *scene)
01 {
02    // bind G-buffer for rendering
03    mrt_bind_render();
04 // perspective camera model
05    set_perspective_camera();
06    // OpenGL render states configuration
07    glCullFace(GL_BACK);
08    glEnable(GL_CULL_FACE);
09    glDisable(GL_BLEND);
10    glDepthFunc(GL_LEQUAL);
11    glEnable(GL_DEPTH_TEST);
12    glDisable(GL_TEXTURE_2D);
13    glColor4f(1.0f,1.0f,1.0f,1.0f);
14    glClearColor(bgcolor.x,bgcolor.y,bgcolor.z,1.0);
15    glClearDepth(1.0);
16    glColorMask(true,true,true,true);
17    glDepthMask(true);
18    glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);
19    // send raw scene geometry that updates the depth buffer
20    draw_depth(scene);
21    // fill the G-buffer with lighting attributes and materials 
22    draw_material(scene);
23    // unbind the G-buffer
24    mrt_unbind_render();
25 }

Listing 7: Code to implement the geometry stage of the deferred shading technique.

At  line  3  the  G-buffer  is  set  as  the  current  render  target.  So,  at  line  5  a 
perspective camera model is defined according to the current viewer. From line 7 to 
18 some render states are defined and the color and depth buffers are cleared. Next, at 
line  20  the  raw scene  geometry updates  the  depth  buffer  and  at  line  22  material 
information about the scene is sent to the G-buffer. Finally, at line 24, the main frame 
buffer becomes the current render target again.

3.3.1. Depth Pass

The approach of using a depth only phase first in order to optimize the next 
phases  was  used  in  Doom3  [Carmack].  The  idea  is  to  use  the  depth  buffer  to 
determine the closest  surface at  each pixel  and then only executes  more complex 
processing from the material shader for pixels passing the depth test. That approach is 
called early Z culling and all pixels failing the depth test will be discarded before their 
material shader is executed. The depth only pass is shown at Listing 8.  

00 void pDeferredShader::draw_depth(pMesh *scene)
01 {
02    glColorMask(false,false,false,false);
03    glDepthMask(true);
04
05    // draw raw scene geometry
06    scene->array_lock(VERTICES);
07    scene->array_draw();
08    scene->array_unlock();
09 
10    glColorMask(true,true,true,true);



11    glDepthMask(false);
12 }

Listing 8: Code to implement a depth only phase during the execution of the deferred shading 
technique.

3.3.2. Material Pass

The objective of the material pass is to fill the G-buffer with all necessary per-
pixel lighting terms in order to evaluate the  Equation 1.  Thus,  the G-buffer must 
contain information like position, surface normal, diffuse color, specular color and 
shininess. However, once that the G-buffer is represented as a P-buffer with multiple 
render  targets  capability,  it  is  necessary  to  specify  a  way  to  organize  all  these 
information together.

The MRT facilities are as follows: it supports up to 4 active render targets, all 
render targets must have the same number of bits and it is possible to mix render 
targets  with different  number  of  channels.  Accordingly the G-buffer  configuration 
illustrated at Figure 3 was adopted in this tutorial.
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Figure 3: G-buffer configuration adopted in the implementation of the deferred shading technique 
presented in this tutorial.

The G-buffer's color buffer is used to store the surface normal information. In 
the same way, the auxiliary buffers 0 and 1 are used to store diffuse and specular 
information. The next information to be stored is the surface position. However, store 
three floating point values in a 32 bits space could cause precision errors. So, instead 
of storing position information as three floating point values, the depth value of the 
pixel is used. During the lighting stage it is possible to recover the complete position 
information using the depth value and view direction.

The code shown at Listing 9 is the CPU code necessary to fill the G-buffer. It 
is responsible for activating the vertex and fragment shaders that actually fill the G-
buffer and for sending the scene geometry and lighting information to the graphics 
card.

00 void pDeferredShader::draw_material(pMesh *scene)
01 {
02    pMaterial *mat;
03    int i, j = scene->nfacemat, k = 0;
04    scene->array_lock(VERTICES|NORMALS|TEXTURE|TANGENT); 
05    // bind Cg code from listings 10, 11, 12 and 13
06    bind_material_shader();
07    // send raw scene geometry to the graphics card



08    for( i=0;i<j;i++ )
09    {
10       mat = &scene->mat[scene->face[k].material];
11       if (mat->bump == 0 || mat->texnormalid == -1)
12       {
13          set_material_shader_params(mat->diffuse,mat->specular,1,
14                                     mat->texid,mat->texnormalid);
15          glDrawElements(GL_TRIANGLES,3*m->facemat[i],
16             GL_UNSIGNED_INT,(void *)(k*3*sizeof(unsigned int)));
17       }
18       k += m->facemat[i];
19    }
20    // unbind Cg code from listings 10, 11, 12 and 13
21    unbind_material_shader();
22    scene->array_unlock();
23 }

Listing 9: Code to implement the material pass of the geometry stage.

The  vertex  shader  of  the  material  pass  is  used  to  transform all  geometric 
information to view space and to output it to the fragment shader as shown at Listing 
10.

00 // application to vertex shader
01 struct a2v 
02 {
03    float4 pos : POSITION; // position (object space)
04    float3 normal : NORMAL; // normal (object space)
05    float2 texcoord : TEXCOORD0; // texture coordinates
06    float3 tangent : TEXCOORD1; // tangent vector
07    float3 binormal : TEXCOORD2; // binormal vector
08 };
09
10 // vertex shader to fragment shader
11 struct v2f
12 {
13    float4 hpos : POSITION; // position (clip space)
14    float2 texcoord : TEXCOORD0; // texture coordinate
15    float3 vpos : TEXCOORD1; // position (view space)
16    float3 normal : TEXCOORD2; // surface normal (view space)
17    float3 tangent : TEXCOORD3; // tangent vector (view space)
18    float3 binormal : TEXCOORD4; // binormal vector (view space)
19 };
20
21 // vertex shader
22 v2f view_space(a2v IN)
23 {
24    v2f OUT;
25    // vertex position in object space
26    float4 pos = float4(IN.pos.x,IN.pos.y,IN.pos.z,1.0);
27    // vertex position in clip space
28    OUT.hpos = mul(glstate.matrix.mvp,pos);
29    // copy texture coordinates
30    OUT.texcoord = IN.texcoord.xy;
31    // compute modelview rotation only part
32    float3x3 modelviewrot = float3x3(glstate.matrix.modelview[0]);
33    // vertex position in view space (with model transformations)
34    OUT.vpos = mul(glstate.matrix.modelview[0],pos).xyz;
35    // tangent space vectors in view space (with model 
36    // transformations)
37    OUT.normal = mul(modelviewrot,IN.normal);
38    OUT.tangent = mul(modelviewrot,IN.tangent);
39    OUT.binormal = mul(modelviewrot,IN.binormal);
40    return OUT;



41 }
Listing 10: Vertex shader of the material pass in order to transform all geometric information to view 

space and to output it to the fragment shader.

As  described  previously,  instead  of  storing  position  information  as  three 
floating point values, the normalized depth value of the pixel in the range [0,1] is 
stored. So, it is necessary to bind the depth buffer as a texture. Graphics cards that 
support the OpenGL extension WGL_NV_render_depth_texture [Brown03] may use 
this capability allowing the depth buffer to be used for both rendering and texturing. 
On graphics cards that do not support that extension, it is necessary to calculate the 
depth value in the fragment shader and to convert it to a color (3 times 8 bits integer). 
It may be done with the following helper function as shown in Listing 11.

00 float3 float_to_color(in float f)
01 {
02    float3 color;
03    f *= 256;
04    color.x = floor(f);
05    f = (f-color.x)*256;
06    color.y = floor(f);
07    color.z = f-color.y;
08    color.xy *= 0.00390625; // *= 1.0/256
09    return color;
10 }

Listing 11: Helper function that converts depth information to a color (3x8 bits integer).

The fragment shader of the material pass is the function that really stores all 
lighting  information  into  the  G-buffer.  It  is  performed  through  the  filling  of  the 
structure f2s_mrt that represents a cell in the G-buffer as shown at Listing 12.

00 struct f2s_mrt
01 {
02    float3 color0 : COLOR0; // normal (color buffer)
03    float3 color1 : COLOR1; // diffuse (auxiliary buffer 0)
04    float4 color2 : COLOR2; // specular (auxiliary buffer 1)
05 #ifndef NV_RENDER_DEPTH_TEXTURE
06    float3 color3 : COLOR3; // depth (auxiliary buffer 2)
07 #endif
08 };

Listing 12: Output structure from fragment shader of the material pass to the G-buffer.

Finally, in  Listing 13, the fragment shader that fills the structure f2s_mrt is 
presented.

00 f2s_mrt mrt_normal(
01    v2f IN, // input from the vertex shader
02    uniform sampler2D normaltex : TEXUNIT0, // normal texture map 
03    uniform sampler2D colortex : TEXUNIT1, // color texture map 
04    uniform float4 diffuse, // diffuse color
05    uniform float4 specular, // specular color
06    uniform float2 planes, // near and far plane information
07    uniform float tile) // tile factor
08 {
09    f2s_mrt OUT;
10
11    float2 txcoord = IN.texcoord*tile;
12    // normal map
13    float3 normal = f3tex2D(normaltex,txcoord);



14    // color map
15    float3 color = f3tex2D(colortex,txcoord);
16    // transform normal to view space
17    normal -= 0.5;
18    normal = normalize(normal.x*IN.tangent + normal.y*IN.binormal 
19                       + normal.z*IN.normal);
20    // convert normal back to [0,1] color space
21    normal = normal*0.5+0.5;
22    // fill G-buffer
23    OUT.color0 = normal;
24    OUT.color1 = color*diffuse.xyz;
25    OUT.color2 = specular;
26 #ifndef NV_RENDER_DEPTH_TEXTURE
27    float d=((planes.x*IN.vpos.z+planes.y)/-IN.vpos.z); // detph
28    OUT.color3 = float_to_color(d);
29 #endif
30    return OUT;
31 }

Listing 13: Fragment shader of the material pass in order to fill the G-buffer.

An example of the G-buffer content after the execution of the material pass 
may be seen at Figure 4.

  

                                 (a)                                                                 (b)

  

                                 (c)                                                                 (d)
Figure 4: The four textures generated by the material pass: (a) normal, (b) diffuse, (c) specular and (d) 

encoded depth as color.

3.4. Lighting Stage

After we finish the material pass from previous section we end up with four 
texture maps (G-buffer contents) as shown in Figure 4. They are the normal, diffuse, 



specular and depth maps and will be the input for our lighting pass shader together 
with per light related information like position, color and radius.

Figure  5 shows the detailed steps  from the lighting stage.  This  stage will 
render all its passes into the P-buffer 0 and so start by binding it for rendering. We 
start with the ambient pass and for that we just need to draw the diffuse texture (G-
buffer's auxiliary buffer 0) modulated by the ambient light contribution using the fixed 
function pipeline (no shaders needed). Then, for each light, we compute screen space 
bounding scissors rectangle (a bounding rectangle in screen space for the light sphere 
of influence, see Section 3.4.2) and additively render the light contribution. 
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Figure 5: Lighting stage of deferred shading general architecture.

Moreover, it is important to remember that it is an image-space stage and as 
such,  it  works with an 2D orthographic projection camera using screen resolution 
dimensions. The  code  that  implements  the  architecture  illustrated  at  Figure  5 is 
shown as follows.

00 void pDeferredShader::draw_lights(pMesh *scene,bool scissors)
01 {
02    // bind P-buffer 0 for rendering
03    fb_bind_render(0);
04    // set 2D orthographic projection camera
05    glMatrixMode(GL_PROJECTION);
06    glLoadIdentity();
07    glOrtho(0,m_sizex,0,m_sizey,-1,1);
08    glMatrixMode(GL_MODELVIEW);
09    glLoadIdentity();
10    // disable depth test and activate additive blend mode
11    glDepthFunc(GL_LEQUAL);
12    glDisable(GL_DEPTH_TEST);
13    glDepthMask(false);
14    glBlendFunc(GL_ONE,GL_ONE);
15    glDisable(GL_BLEND);
16    // draw ambient pass (see listing 15)
17    draw_ambient(scene);
18    // bind the G-buffer as texture



19    mrt_bind_texture(ALL);
20    // draw lighting pass (see listing 17)
21    draw_lighting(scene,scissors);
22    // unbind the G-buffer
23    mrt_unbind_texture(ALL);
24    // unbind the P-buffer 0
25    fb_unbind_render(0);
26 }

Listing 14: Code to implement the lighting stage of the deferred shading technique.

In this way, we achieve the main advantage of the deferred shading technique - 
we  totally  separate  lighting  from geometry.  A complicated  feature  of  most  direct 
rendering engines is how to compute the geometry sets associated to each light. For 
dynamic lights and dynamic geometry this computation can be complex and require 
testing all geometry for containment by the light volumes (sphere, bounding box or 
frustum containment tests). This requires more elaborate geometry organization like 
hierarchical representations or tree structures in order to make such dynamic sets real-
time. 

When  using  deferred  shading  we  do  not  need  to  know  what  geometry is 
illuminated  by what  light  and  could  just  process  all  lights  we find  visible  to  the 
viewer. While we traverse the scene for visible geometry we simply store the lights 
we  find  on  the  way (so  lights  do  NOT need to  know which  geometry they will 
influence). We can also use view culling applied to the light volumes and some type 
of occlusion culling to try to reduce the number of lights we need to render.

As with direct rendering, we can add together the contribution for each light 
executing one pass per light source or have a more complex shader handling multiple 
lights at once. Using one pass per light allow us to do shadows (based on stencil or 
shadow map) but will be less efficient than processing multiple lights in a single pass. 
Another thing we must consider is the scissors optimization possible with the one pass 
per light approach (explained in  Section 3.4.2). For example in a scene with many 
small lights, each taking a small area of the screen pixels, scissors optimization would 
work optimally and would be as efficient as processing all lights in a single pass.

We will show how to process one single light per pass but the same idea can 
be used to create more complex shaders which could process multiple lights per pass. 
Our lighting pass loops through the list of visible lights and render one screen aligned 
quadrilateral  per  light  source.  We  bind  the  diffuse,  specular,  normal  and  depth 
textures  generated  in  Section 3.3.2 and  then  set  the  current  light  parameters  like 
position, color and radius to the fragment shader before we render each light. Figure 6 
shows the result of applying the ambient and three lighting passes.



Figure 6: Final image generated from textures in Figure 4 after the lighting and post-processing 
passes.

3.4.1. Ambient Pass

The ambient pass initializes all the pixels in the buffer we are going to use to 
accumulate  lighting  (P-buffer  0  from  Figure  5).  This  way,  pixels  without  any 
illumination will have only the ambient contribution. For that, all we need to do is to 
render the diffuse texture (from  Figure 4b) modulated by the current ambient light 
factor. The code for the ambient pass is shown at Listing 15.

00 void pDeferredShader::draw_ambient(pMesh *scene)
01 {
02    // set ambient color to be modulated with diffuse material
03    glColor4fv(&scene->ambient.x);
04    // bind diffuse G-buffer's auxiliary 0
05    mrt_bind_texture(AUX0);
06    // draw screen-aligned quadrilateral
07    draw_rect(0,0,m_sizex,m_sizey);
08    // unbind diffuse G-buffer's auxiliary 0
09    mrt_unbind_texture(AUX0);
10 }

Listing 15: Code to implement the ambient pass.

3.4.2. Light Scissors Optimization

When rendering the lighting pass for a single light, a good optimization to use 
is  the scissors  rectangle.  Rendering a full  screen quadrilateral  polygon to  perform 
lighting will execute the lighting shader for all pixels in the buffer, but depending on 
the light illumination radius, some pixels might be outside of light sphere of influence 
thus receiving no light contribution. We can save a lot of computation by calculating 
the bounding rectangle in screen space for the light sphere of influence and enabling 
the scissors test. When enabled, all fragments outside the scissors rectangle will be 
discarded before the fragment shader is executed saving a lot of processing. 

In our test  scene we have three light sources but  depending on the viewer 
position some of them can project to a small area in screen. For example, using a 
512x512 buffer (256M pixels) we would need to execute the fragment shader 768M 
times  to  process  three  lights  without  scissors  optimization.  But  using  scissors 
optimization we reduce the number of pixels processed per light and on average save 



50% of the fragments. Of course this will depend on the light positions and radius and 
in some cases we might have all lights taking all screen space. 

The scissors rectangle computation is done on the CPU before we render each 
light source. One possible simple solution to compute the scissors rectangle would be 
to project each of the eight light bounding box vertices into screen space and finding 
the enclosing 2D rectangle for those points. But this will generate a larger rectangle 
than needed and might fail in cases where some of the vertices are behind the viewer. 

A better solution is to find the planes parallel to the view frustum which are 
tangent to the light's sphere of influence.  Listing 16 shows the full source code for 
calculating the scissors rectangle for a given light with position and radius (stored in 
light position W component). More details about how this is achived can be found on 
[Lengyel03] or at http://www.gamasutra.com/features/20021011/lengyel_06.htm.

000 int pDeferredShader::set_light_scissor(const pVector& lightpos, 
000                                        int sx,int sy)
001 {
002    int rect[4]={ 0,0,sx,sy };
003    float d;
004
005    float r=lightpos.w;
006    float r2=r*r;
007
008    pVector l=lightpos;
009    pVector l2=lightpos*lightpos;
010
011    float e1=1.2f;
012    float e2=1.2f*g_render->aspect;
013
014    d=r2*l2.x - (l2.x+l2.z)*(r2-l2.z);
015    if (d>=0)
016    {
017       d=sqrtf(d);
018
019       float nx1=(r*l.x + d)/(l2.x+l2.z);
020       float nx2=(r*l.x - d)/(l2.x+l2.z);
021
022       float nz1=(r-nx1*l.x)/l.z;
023       float nz2=(r-nx2*l.x)/l.z;
024
025       float e=1.25f;
026       float a=g_render->aspect;
027
028       float pz1=(l2.x+l2.z-r2)/(l.z-(nz1/nx1)*l.x);
029       float pz2=(l2.x+l2.z-r2)/(l.z-(nz2/nx2)*l.x);
030
031       if (pz1<0)
032       {
033          float fx=nz1*e1/nx1;
034          int ix=(int)((fx+1.0f)*sx*0.5f);
035
036          float px=-pz1*nz1/nx1;
037          if (px<l.x)
038             rect[0]=max(rect[0],ix);
039          else
040             rect[2]=min(rect[2],ix);
041       }
042
043       if (pz2<0)
044       {



045          float fx=nz2*e1/nx2;
046          int ix=(int)((fx+1.0f)*sx*0.5f);
047
048          float px=-pz2*nz2/nx2;
049          if (px<l.x)
050             rect[0]=max(rect[0],ix);
051          else
052             rect[2]=min(rect[2],ix);
053       }
054    }
055
056    d=r2*l2.y - (l2.y+l2.z)*(r2-l2.z);
057    if (d>=0)
058    {
059       d=sqrtf(d);
060
061       float ny1=(r*l.y + d)/(l2.y+l2.z);
062       float ny2=(r*l.y - d)/(l2.y+l2.z);
063
064       float nz1=(r-ny1*l.y)/l.z;
065       float nz2=(r-ny2*l.y)/l.z;
066
067       float pz1=(l2.y+l2.z-r2)/(l.z-(nz1/ny1)*l.y);
068       float pz2=(l2.y+l2.z-r2)/(l.z-(nz2/ny2)*l.y);
069
070       if (pz1<0)
071       {
072          float fy=nz1*e2/ny1;
073          int iy=(int)((fy+1.0f)*sy*0.5f);
074
075          float py=-pz1*nz1/ny1;
076          if (py<l.y)
077             rect[1]=max(rect[1],iy);
078          else
079             rect[3]=min(rect[3],iy);
080       }
081
082       if (pz2<0)
083       {
084          float fy=nz2*e2/ny2;
085          int iy=(int)((fy+1.0f)*sy*0.5f);
086
087          float py=-pz2*nz2/ny2;
088          if (py<l.y)
089             rect[1]=max(rect[1],iy);
090          else
091             rect[3]=min(rect[3],iy);
092       }
093    }
094
095    int n=(rect[2]-rect[0])*(rect[3]-rect[1]);
096    if (n<=0)
097       return 0;
098    if (n==sx*sy)
099    {
100       glDisable(GL_SCISSOR_TEST);
101       return sx*sy;
102    }
103
104    glScissor(rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]);
105    glEnable(GL_SCISSOR_TEST);
106
107    return n;
108 }
Listing 16: Scissor rectangle computation for a given omni light source with finite illumination radius.



3.4.3. Illumination Pass

The illumination pass is responsible for accumulating all light's contributions. 
In order to perform that, a screen-aligned quadrilateral that matches with the current 
render  target  resolutions  is  rendered  for  each  light.  So,  during  the  rendering,  the 
current quadrilateral is shaded using the information stored in the G-buffer. The CPU 
code for the illumination pass is shown at Listing 17.

00 void pDeferredShader::draw_lighting(pMesh *scene,bool scissors)
01 {
02    pVector lightpos;
03    int i, j = scene->nlight, n, p;
04    // bind Cg code from listings 18 and 20
05    bind_light();
06    // enable additive blend mode
07    glEnable(GL_BLEND);
08    // calculate the contribution for each light
09    for (i = 0; i < j; i++)
10    {
11       for (p = 0; p < 5; p++)
12       {
13          float d = VECDOT(scene->light[i].pos,
14                           g_render->view.planes[p]) -
15                           g_render->view.planes[p].w;
16          if (d < -scene->light[i].pos.w)
17             break;
18       }
19       if (p < 5)
20          continue;
21       // transform light position from global to view space
22       lightpos = scene->light[i].pos*g_render->view_matrix;
23       lightpos.w = scene->light[i].pos.w; // store light's radius
24       // light scissors pass (listing 16)
25       n = set_light_scissor(lightpos,m_sizex,m_sizey);
26       if (n > 0 && scissors == false)
27       {
28          n = m_sizex*m_sizey;
29          glDisable(GL_SCISSOR_TEST);
30       }
31       if (n)
32       {
33          // set light parameters to Cg code (listings 18 and 20)
34          set_light_params(lightpos,m->light[i].color);
35          // draw screen-aligned quadrilateral
36          draw_rect(0,0,m_sizex,m_sizey);
37       }
38    }
39    glDisable(GL_SCISSOR_TEST);
40 // unbind Cg code from listings 18 and 20
41    unbind_light();
42 }

Listing 17: Code to implement the illumination pass.

The lighting pass shader starts by finding the current fragment position in eye 
space. For that it accesses the depth texture for the depth value stored in normalized 
depth buffer space and then uses the near and far plane distances together with the 
view vector direction to compute the actual fragment position in eye space. 



Notice  that  on  cards  not  supporting  the  OpenGL  extension 
WGL_NV_render_depth_texture [Brown03] we cannot bind the depth buffer directly 
as texture, so we need to convert depth from a color representation stored in a separate 
buffer (3 times 8 bits integer) to a float value (0.0 to 1.0 range). This can be done with 
the following helper function:

00 float color_to_float(float3 color)
01 {
02    const float3 byte_to_float=float3(1.0,1.0/256,1.0/(256*256));
03    return dot(color,byte_to_float);
04 }

Listing 18: Helper function that decodes depth information stored in a color.

To have the view vector for each fragment available in the shader we must 
pass it as a texture coordinate at each of the four vertices in the quadrilateral polygon. 
It will then be interpolated through all the quadrilateral fragments and all we need to 
do in the shader is normalize it to compensate for the linear interpolation losses from 
rasterization. The view vector can be calculated for each of the four vertices of the 
screen-aligned quadrilateral using the code from Listing 19.

00 int pixels[4][2]={ { 0,0 },{0,sy},{sx,sy},{sx,0} };
01 int viewport[4]={ 0,0,sx,sy };
02
03 pMatrix view_rotation = view_matrix;
04 view_rotation.set_translate(0);
05
06 pVector v[4];
07 double d[3];
08 for( int i=0;i<4;i++ )
09 {
10    gluUnProject(
11       pixels[i][0],pixels[i][1],10,
12       model_matrix, proj_matrix, viewport,
13       &d[0],&d[1],&d[2]);
14    v[i].vec((float)d[0],(float)d[1],(float)d[2]);
15    v[i] -= camera.pos;
16    v[i].normalize();
17    v[i] = v[i]*view_rotation;
18 }
Listing 19: Code for calculating view vector at each of the four screen-aligned quadrilateral vertices.

To transform the depth stored normalized by the current near and far plane 
distances we need two extra parameters passed to the shader. The depth values stored 
in the depth buffer are not linearly spaced from near to far so we need some math to 
transform it to a linear distance from the eye position The two uniform parameters we 
will need in shader in order to simplify our calculations are based on the near plane 
and far plane distances.

planes.x = - far_plane / (far_plane – near_plane);
planes.y = - far_plane * near_plane / (far_plane – near_plane);

Then inside the shader we use the following code to convert from the depth 
value stored in depth buffer space to the eye space distance (actually the Z coordinate 
of fragment in eye space):

pos.z = - planes.y / (planes.x + depth);



After having the current fragment Z coordinate in eye space we can now fill in 
the X and Y components of the position using the view vector directions and the 
known Z coordinate.

pos.xy = view.xy / view.z*pos.z;
 

Having the fragment position in eye space we now access the diffuse, specular 
and  normal  texture  maps  and  apply  Phong  lighting  (Equation  1)  to  output  the 
fragment color. This color is then accumulated with the contributions from the other 
lights  in  the  scene  using  additive  blending.  The  full  shader  for  the  lighting  pass 
supporting a single light source can be found at Listing 20.

00 f2s mrt_light(
01    v2f IN,
02    uniform sampler2D normal_map : TEXUNIT0, // normal map 
03    uniform sampler2D diffuse_map : TEXUNIT1, // diffuse map 
04    uniform sampler2D specular_map : TEXUNIT2, // specular map 
05    uniform sampler2D depth_map : TEXUNIT3, // zbuffer depth map
06    uniform float4 lightpos, // light position
07    uniform float3 lightcolor, // light color
08    uniform float2 planes // near and far plane information
09    ) : COLOR
10 {
11    // depth
12 #ifdef NV_RENDER_DEPTH_TEXTURE
13    float depth = f1tex2D(depth_map,IN.texcoord);
14 #else
15    float depth = color_to_float(f3tex2D(depth_map,IN.texcoord));
16 #endif
17    // view dir
18    float3 view = normalize(IN.vpos);
19    // position
20    float3 pos;
21    pos.z = -planes.y/(planes.x+depth);
22    pos.xy = view.xy/view.z*pos.z;
23    // normal
24    float3 normal = f3tex2D(normal_map,IN.texcoord)-0.5;
25    float len = length(normal);
26    if (len>0.1)
27       normal /= len;
28    else
29       normal = 0;
30    // material information
31    float3 diffuse = f3tex2D(diffuse_map,IN.texcoord);
32    float4 specular = f4tex2D(specular_map,IN.texcoord);
33    // lighting equation (see listing 2)
34    float3 final_color = lighting(lightcolor,lightpos.xyz,
35       lightpos.w,pos,normal,diffuse,specular.xyz,specular.w);
36    // return the final color
37    return float4(final_color,1.0);
38 }
Listing 20: Full lighting pass shader for illumination from a single light source with position, color and 

attenuation radius.

3.5. Post-Processing Stage

After we have the final solution from our deferred shading render we could 
simply display it  to  the  end user  by rendering a  texture  mapped 2D quadrilateral 



polygon taking all the available user screen (Section 3.6). But as we already have the 
final solution stored in a texture map we could do some post-processing effects to 
enhance it before display. One of the disadvantages of deferred shading is that it does 
not support automatic hardware anti-aliasing available when rendering directly to the 
main frame buffer. In Section 3.5.1 we show a work around this issue using an edge 
detection shader and texture filtering to try to minimize the aliasing. Then we show 
another  good  post-processing  effect  in  Section  3.5.2 called  bloom.  It  works  by 
generating a lower resolution version of the final image which is selectively blurred at 
regions  with  intense  colors.  This  blurred  contrast  stretched  version  is  then  added 
together with the final image before display. Figure 7 shows the architecture used in 
the post-processing stage where the P-buffers are used for both input and output.
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P-buffers

10 2 3
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Post-Processing Stage
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Bloom       
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1100 22 33
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Figure 7: Post-processing stage of deferred shading general architecture.

3.5.1. Anti-alias Pass

To implement the anti-aliasing filter we use a shader to blur the final image 
only at the pixels with large discontinuities in normal and/or depth. For that we use a 
edge detection filter applied to the normal and/or depth  map from Figure 4. The edge 
detection filter will  add together the squared distances from the target pixel  to its 
neighbor pixels generating a blur factor for it. We add together the differences from 
all  8  neighbor  pixels  around  the  target  pixel  for  detecting  discontinuities  in  all 
possible directions.

The kernel formula for calculating the blur factor is as follows:

Factorblur u ,v=∑
i=1

8

t uoffset [i] . xvoffset [i] . y−tuv 
2 , (7)

where,  tuv is the (u,v) target pixel and offset[] is a lookup table of offsets in order to 
displace pixel positions around the neighbors of tuv.

After  we  define  the  blur  factor  (using  the  normal  and/or  depth  maps)  we 
sample the final color deferred shading image with offsets weighted by the blur factor. 
So, on regions where no edges are detected we will  have null  offsets resulting no 
blurring at all.  Figure 8 shows the resulting blur factors for the edge detection filter 



applied to the normal map image (black pixels will have no blur and white pixels a 
large blur).

   

Figure 8: Edge detection filter for anti-aliasing blur factor on full scene view (left image) and close-up 
detail (right image).

Listing  21 shows  the  shader  used  for  the  anti-alias  pass  and  Figure  9 shows  a 
comparison of a close up view with and without the anti-aliasing filtering pass.

00 f2s anti_alias(
01    v2f IN, // vertex to fragment attributes
02    uniform sampler2D normal_map : TEXUNIT0, // normal map
03    uniform sampler2D color_map : TEXUNIT1,  // final color map
04    uniform float2 pixel_size,
05    uniform float weight)
06 {
07    f2s OUT;
08
09    const float2 delta[8] =
10    { 
11       float2(-1,1),float2(1,-1),float2(-1,1),float2(1,1), 
12       float2(-1,0),float2(1,0),float2(0,-1),float2(0,1)
13    };
14
15    float4 tex = f4tex2D(normal_map,IN.texcoord);
16    float factor = 0.0f;
17
18    for( int i=0;i<4;i++ )
19    {
20       float4 t = f4tex2D(normal_map,IN.texcoord+
21                                     delta[i*pixel_size);
22       t -= tex;
23       factor += dot(t,t);
24    }
25    factor = min(1.0,factor)*weight;
26
27    float4 color = float4(0.0,0.0,0.0,0.0);
28
29    for( int i=0;i<8;i++ )
30       color += f4tex2D(color_map,IN.texcoord +
31                                  delta[i]*pixel_size*factor);
32
33    color += 2.0*f4tex2D(color_map,IN.texcoord);
34
35    OUT.color = color*(1.0/10.0);
36    return OUT;
37 }

Listing 21: Anti-aliasing filtering shader.



   

Figure 9: Close up view comparison (left) without anti-alias filtering, (right) with anti-alias filtering.

3.5.2. Bloom Pass

Bloom is caused by scattering in the lens and other parts of the eye, creating a 
glow around bright regions and dimming contrast elsewhere in the scene. The bloom 
effect requires two passes but because it uses a lower resolution version of the final 
image (usually ½ or ¼ of the original image size) it is still an efficient technique. In 
order to implement a localized blur effect with a large kernel we separate the process 
into an horizontal and a vertical pass. For example, we can implement a 7x7 blur filter 
(would require 49 samples if implemented in single pass) using a 7 samples horizontal 
pass  followed  by  a  7  samples  vertical  pass  (only  14  samples  at  total  and  the 
complexity scales linearly with kernel size).

The same shader is used for the horizontal and vertical passes as it receives the 
offsets as a shader parameter (for horizontal pass the offsets Y component is set to 
zero where for the vertical pass the offsets X component is set to zero). For the first 
pass we draw a 2D quadrilateral polygon into a lower resolution buffer (P-buffer 2 
from Figure 7) using the final deferred shading image as texture (P-buffer 0) and the 
horizontal blur shader. Then we use this horizontally blurred lower resolution image 
we just  created (P-buffer 2)  as texture for the second pass  using the vertical  blur 
shader and writing to P-buffer 3. The blurred result (with the horizontal and vertical 
blur) is then blended additively to the final image (P-buffer 0) before it is displayed to 
the user  and this  will  make bright  areas of  the original  image glow and bleed to 
neighbor pixels.

The  Figure 11 shows a  comparison for  the same image with  and without 
bloom. Notice how the bright areas (specially specular highlights) glow and affect the 
color of neighbor pixels (even for neighbor pixels at different depth levels). Figure 10 
shows the blur steps (horizontal, vertical and composed) and  Listing 22 shows the 
blur shader used to generate the horizontal and vertical blurred images.

  
Figure 10: Bloom intermediate images: (a) horizontal blur, (b) vertical blur, (c) composed final blurred 

image to be added to final scene for bloom effect.



   

Figure 11: Bloom effect comparison: (left) without bloom, (right) with bloom.

00 #define NUMPOINTS 7
01
02 float4 blur(float4 hpos : POSITION;
03             float4 texcoord : TEXCOORD0;
04             uniform sampler2D texture : TEXUNIT0,
05             uniform float2 offset[NUMPOINTS]) : COLOR
06 {
07    f2s OUT;
08
09    float4 tex = float4(0,0,0,1);
10    for( int i=0;i<NUMPOINTS;i++ )
11    {
12       float3 t = f3tex2D(texture,IN.texcoord + offset[i]);
13       tex.xyz += dot(t,t);
14    }
15
16    tex.xyz *= 1.0/NUMPOINTS;
17    return tex;
18 }

Listing 22: Bloom blur shader (can blur horizontally or vertically depending on offset parameter).

3.6 Final Stage

The final stage is where we shown the final image to the end user. For that we 
render into the main frame buffer using our final solution texture map (P-buffer 0 
from Figure 12). This might scale the resulting image to fit the target view window 
dimensions as the buffers used for deferred shading can have a different resolution 
than the final screen resolution (for example we could use a 512x512 render buffer 
and then scale it up with filtering to display on a 640x480 screen). It is important to 
mention that no shader is needed at this stage and the fixed function pipeline is used 
for that.
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Figure 12: Final stage of deferred shading general architecture.



4. Conclusions

As described in this tutorial, deferred shading means rendering the parameters 
required by a shader, such as position, surface normal, texture coordinates, material 
coefficients  etc.,  to  buffers  and  calculating  lighting  as  a  two-dimensional  post-
processing using the information stored in these buffers. That approach allows  the 
scene geometry to be submitted to the graphics card only once what implies that only 
fragments that really contribute to the resultant image are shaded.

Many advantages may be obtained by adopting that technique:

• computational complexity lesser than traditional rendering techniques;
• allows the application to take advantage of batching;
• presents a perfect O(1) depth complexity for lighting;
• allows a post-processing stage in order to enhance the final result.

Furthermore, using the Z early culling approach described in Section 3.3.1 and 
the light scissors method presented in  Section 3.4.2,  it  is possible to optimize the 
required processing of deferred shading technique.

However,  this  technique  presents  a  major  limitation:  transparency.  It  is  a 
limitation  because  it  is  not  possible  to  determine  completely  the  visibility  of  a 
fragment using a single buffer layer to store position information like the G-buffer. 
One solution would be to fall-back to a non deferred shading approach for transparent 
surfaces and blend them in a post-processing pass.

The full source code of the deferred shading demo explained in this tutorial 
may be obtained at http://fabio.policarpo.nom.br/deferred-shading.
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6. Appendix A

Below, all steps from the complete deferred shading pipeline are shown.

1. Geometry stage (3D)
   - render depth pass to G-buffer depth buffer (no shader needed)
   - render geometry with materials to G-buffer color, aux0 and aux1
     buffers (normal, diffuse and specular)
2. Ligthing stage (2D)
   - render ambient pass into P-buffer 0 using diffuse G-buffer
     texture modulated by ambient color (no shader needed)
   - render lighting passes with additive blending into P-buffer 0
3. Post-processing stage (2D)
   - if bloom enabled

http://www.fabio.policarpo.nom.br/p3d/index.htm
http://oss.sgi.com/projects/ogl-sample/registry/ARB


     - render bloom horizontal blur into P-buffer 2 using P-buffer
       0 as texture
     - render bloom vertical blur into P-buffer 3 using P-buffer 2
       as texture
     - add final bloom texture to P-buffer 0 using P-buffer 3 as
       texture (no shader needed)
   - if anti-aliasing enabled
     - render anti-aliasing into P-buffer 1 using P-buffer 0 as
       texture
     - swap P-buffer 0 and 1 so that P-buffer 0 holds final image
4. Final stage (2D)
   - render final image into main frame buffer using P-buffer 0 as
     texture (no shader needed)


