
International Technical Support Organization

TeamConnection and WorkFrame Integration
Survival Guide

July 1996

SG24-4610-00

International Technical Support Organization

TeamConnection and WorkFrame Integration
Survival Guide

July 1996

SG24-4610-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xi.

First Edition (July 1996)

This edition applies to Version 1.0 of TeamConnection, Product Number 31H3744 and
Version 3.0 of IBM VisualAge for C++ for OS/2, Program Number 5875-XXX for use
with the OS/2 Warp Operating System.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471 Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

An integrated part of IBM VisualAge for C++ for OS/2 and IBM VisualAge for COBOL for
OS/2, the WorkFrame environment has become the environment of choice for developing
applications with these and other 3GL languages. Together with TeamConnection, IBM ′s
state-of-the-art library and repository, the WorkFrame environment forms a very strong
base for the development of 3GL applications. This redbook shows how to integrate
TeamConnection with the WorkFrame environment without losing the benefits of
WorkFrame′s tightly integrated and project-oriented compile, test, and debug. The book
also shows how to take advantage of the integrated build facility of TeamConnection and
set up a new project by using the REXX programs described in the book.

This redbook is written for system administrators, project leaders, developers, and anyone
else who has an interest in learning how to integrate IBM VisualAge for C++ or IBM
VisualAge for COBOL WorkFrame with TeamConnection. The book includes examples of
how to set up a new or an existing project by using WorkFrame and TeamConnection
together. The examples and time limited versions of TeamConnection and VisualAge for
C++ are also included on a complementary CD-ROM.

(210 pages)

 Copyright IBM Corp. 1996 iii

iv TeamConnection and WorkFrame Integration

Contents

Abstract . iii

Figures . ix

Special Notices . xi

Preface . xiii
How This Redbook Is Organized . xiv
Related Publications . xv
International Technical Support Organization Publications xvi
ITSO Redbooks on the World Wide Web (WWW) . xvii

Acknowledgments . xix

Chapter 1. Introduction . 1

Chapter 2. Our Project Development Environment 3
The Project . 3
Development Environment Wish List . 5

What We Expect from TeamConnection . 5
What We Expect of the Integration . 6

Chapter 3. Setting Up TeamConnection . 7
Basic Concepts and Restrictions . 7

GUI Capabilities . 8
Naming Conventions . 8

Family Administration Issues . 10
Name Spaces . 10
User Groups . 12

Grouping the Parts and Controlling Access . 16
Structural Considerations . 18

Project or Product Structure . 18
Problem Tracking . 20

 Copyright IBM Corp. 1996 v

Common Functions . 23
Naming the Parts . 25
Build Considerations . 27

Keeping Versions of Parsers and Builders . 29
Using NULL Builders . 32

Chapter 4. Using TeamConnection and WorkFrame 35
WorkFrame As a TeamConnection Front End . 35

Advantages . 36
Disadvantages . 36

TeamConnection As a Stand-Alone Library Management Tool 37
Advantages . 37
Disadvantages . 37

Our Approach . 38

Chapter 5. Setting Up WorkFrame . 39
Creating WorkFrame Project from TeamConnection Work Area 40

TWI_PRJ Installation Script . 41
Adding Our Project Install Script to Project Smarts 43
Creating WorkFrame Project Using Project Smarts 45

Setting the Basic TeamConnection Variables 47
Setting the Work Area Specific Variables . 48
Automatic Extraction of the Build Tree . 49

Customizing the Settings of the TWI_PRJ Project . 50
 Setting the Project Location . 50
Changing the Default Editor from LPEX to EPM . 52

Setting the TWI_EDITOR variable . 52
Changing the TC Edit Action Options for EPM 54

Changing the Applicable Actions on Files . 57
Changing the Default Actions . 62
Adding a New Environment Variable . 65
Adding a New Type . 66

General Customization of WorkFrame Projects . 67
Changing the Project Settings . 67
Adding an Action . 70

Actions Defined in the TWI_PRJ Project . 75
TC Edit . 75
TC CheckIn . 76
TC CheckIn Forced . 76
TC CheckOut . 77
TC Lock . 77
TC UnLock . 77
TC Extract . 77
TC Touch . 78
TC Build Part . 78

vi TeamConnection and WorkFrame Integration

TC Build Part Forced . 79
TC Build Target . 79
TC Build Target Forced . 80
Show WorkArea . 80
Freeze WorkArea . 80
TC Task List . 80
TC View Build Messages . 81

Chapter 6. Using WorkFrame Projects . 83
Importing Existing WorkFrame Projects . 83

Creating a TeamConnection Family . 84
Creating a Component Structure . 84
Creating a Release and a Work Area . 85
Creating Parsers and Builders . 85
Determining the Import Rules . 86
Convert a Make File into a Command File . 91
Verifying the Results . 96

Appendix A. Sample REXX Programs . 97
Notes on Project Smarts . 98

Documentation . 98
SysCreateObject(IWFProject,...) . 99
IwfCreateProjectFromProject . 100
IwfQueryVariables . 100
IwfSaveVariables and IwfRestoreVariables . 100
IwfAddVariable . 100
File and Project Action Options of IWFOPT.DLL 101

Defining Our Own Set of WorkFrame Actions . 102
TWI_DO: TeamConnection Actions for WorkFrame 102

Generating a Project from a TeamConnection Work Area 128
TWI_PRJ: Creating the WorkFrame Project . 128
TWI_XBT: Extracting a Whole Build Tree . 151

Creating a Project Template . 166
TWI_GPT: Generate Project Template . 166

Other Useful REXX Programs . 184
A REXX Message Box for non-Presentation Manager Environments 184
LXSYNC: A Synchronous Way of Invoking LPEX 190

Glossary . 197

Index . 207

Contents vii

viii TeamConnection and WorkFrame Integration

Figures

 1. Functional Structure of FirstShot . 4
 2. The TeamConnection Component Structure (Iteration 1) 11
 3. The TeamConnection Component Structure (Iteration 2) 14
 4. The TeamConnection Component Structure (Iteration 3) 17
 5. The TeamConnection Component Structure (Iteration 4) 19
 6. The TeamConnection Component Structure (Iteration 5) 22
 7. The TeamConnection Component Structure (Iteration 6) 24
 8. Primary Build Script . 29
 9. Secondary Build Script . 30
10. Adding the Project Installation Script . 44
11. Creating a TWI_PRJ Project from Project Smarts (1) 46
12. Creating a TWI_PRJ Project from Project Smarts (2) 47
13. Creating a TWI_PRJ Project from Project Smarts (3) 48
14. Creating a TWI_PRJ Project from Project Smarts (4) 49
15. Changing the Settings of TWI_PRJ . 51
16. Changing the Default Editor . 53
17. Changing the TC Edit Action Options . 55
18. Applicable Actions on Files . 57
19. Types of Files Set in the Action Definition (1) . 58
20. Types of Files Set in the Action Definition (2) . 60
21. Changing the Priority of an Action (1) . 63
22. Changing the Priority of an Action (2) . 64
23. Adding a New Environment Variable . 65
24. Adding a New Type . 66
25. Changing the Project Settings . 68
26. Adding an Action . 71
27. Changing an Option of an Action . 73
28. Sample WorkFrame Projects . 87
29. Example of a Rules File: Components . 87
30. Example of a Rules File: File Types and Connections 89
31. Example of a Rules File 3 . 90
32. Sample Make File for Project1 . 91
33. Sample Output from nmake . 92
34. Sample Command File for project1 . 93

 Copyright IBM Corp. 1996 ix

35. TWI_DO.CMD . 103
36. TWI_PRJ.CMD . 129
37. TWI_XBT.CMD . 152
38. TWI_GPT.CMD . 167
39. MSGBOX.CMD . 185
40. MSGBOX1.CMD . 188
41. LXSYNC.CMD . 190
42. LXSYNC.LX . 193

x TeamConnection and WorkFrame Integration

Special Notices

This publication is intended to help system administrators, project leaders, developers, and
others who want to integrate IBM VisualAge for C++ or IBM VisualAge for COBOL
WorkFrame with TeamConnection. The information in this publication is not intended as
the specification of any programming interfaces that are provided by TeamConnection or
the WorkFrame products. See the PUBLICATIONS section of the IBM Programming
Announcement for TeamConnection, IBM VisualAge C++ for OS/2, and IBM VisualAge for
COBOL for OS/2 for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to
an IBM product, program, or service is not intended to state or imply that only IBM′s
product, program, or service may be used. Any functionally equivalent program that does
not infringe any of IBM′s intellectual property rights may be used instead of the IBM
product, program or service.

Information in this book was developed in conjunction with use of the equipment specified,
and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The information about non-IBM (VENDOR) products in this manual
has been supplied by the vendor and IBM assumes no responsibility for its accuracy or
completeness. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer ′s ability to evaluate
and integrate them into the customer′s operational environment. While each item may
have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

 Copyright IBM Corp. 1996 xi

You can reproduce a page in this document as a transparency, if that page has the
copyright notice on it. The copyright notice must appear on each page being reproduced.

The following terms are trademarks of the International Business Machines Corporation in
the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

C S e t + + CMVC
COBOL/2 Common User Access
CUA IBM
OS/2 Presentation Manager
PS/2 REXX
TeamConnection VisualAge
VisualAge C + + VisualAge for COBOL
WorkFrame Workplace Shell

OSF/Motif Open Software Foundation
Oracle Oracle Corporation

xii TeamConnection and WorkFrame Integration

Preface

This redbook is intended for system administrators, project leaders, developers, and
anyone else who has an interest in learning how to integrate IBM VisualAge for C++ or
IBM VisualAge for COBOL WorkFrame with TeamConnection. The book shows the user
how to integrate TeamConnection with the WorkFrame environment without losing the
benefits of WorkFrame′s tightly integrated and project-oriented compile, test, and debug.
The book also shows how to take advantage of the integrated build facility of
TeamConnection and set up a project by using the REXX programs described in the book.

This redbook and the accompanying REXX examples were written during a residency at the
ITSO San Jose Center (Almaden Research Center, San Jose, California) during February
and March 1996. The goal of the residency was to look at and, if possible, improve the
current integration between TeamConnection and WorkFrame. Thus the book takes you
through the phases of setting up TeamConnection and WorkFrame and discusses such
topics as naming standards, project structure, problem tracking, and build considerations.

The book comes with “ready-to-run” examples that you can modify to fit your own needs.
The examples and time limited versions of TeamConnection and VisualAge for C++ are
also included on a complementary CD-ROM. We hope that you find this redbook valuable
in your effort to integrate TeamConnection and WorkFrame.

Enjoy reading.

Leif Trulsson
ITSO - San Jose, California
July 1996

 Copyright IBM Corp. 1996 xiii

How This Redbook Is Organized

The redbook is organized as follows:

• Chapter 1, “Introduction”

This chapter gives a short introduction to the book.

• Chapter 2, “Our Project Development Environment”

This chapter describes our project and what we expect from TeamConnection and its
integration with WorkFrame.

• Chapter 3, “Setting Up TeamConnection”

This chapter provides information on how to set up TeamConnection and discusses the
various issues to consider.

• Chapter 4, “Using TeamConnection and WorkFrame”

This chapter describes the use of TeamConnection and WorkFrame together.

• Chapter 5, “Setting Up WorkFrame”

This chapter describes how to set up WorkFrame with the supplied project template. It
also describes how to customize the project and the defined project actions.

• Chapter 6, “Using WorkFrame Projects”

This chapter describes how to migrate existing WorkFrame projects to
TeamConnection.

• Appendix A, “Sample REXX Programs”

This chapter describes all of the REXX programs we used in our integration effort.

xiv TeamConnection and WorkFrame Integration

Related Publications

The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this redbook.

TeamConnection

• IBM TeamConnection for OS/2 Getting Started, SC34-4498

• IBM TeamConnection for OS/2 User′s Guide, SC34-4499

• IBM TeamConnection for OS/2 Commands Reference, SC34-4501

• IBM TeamConnection for OS/2 Messages, SC34-4502

VisualAge for C++

• Welcome to VisualAge for C++, S25H-6957

• VisualAge for C++ User ′s Guide, S25H-6961

VisualAge for COBOL

• IBM VisualAge for COBOL for OS/2 WorkFrame User′s Guide, SG24-4604

IBM OS/2 Publications

• REXX User′s Guide, S10G-6269

• REXX Reference, S10G-6268

Preface xv

International Technical Support Organization
Publications
• Introduction to the IBM Application Development Team Suite, SG24-4648

• Did You Say CMVC?, GG24-4178

• Family Planning and Application Development - TeamConnection Unleashed, SG26-2008

A complete list of International Technical Support Organization publications, known as
redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks, GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS as ITSOCAT
TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing 1-800-445-9269.
Most major credit cards are accepted. Outside the USA, customers should contact their
local IBM office. For guidance on ordering, send a note to BOOKSHOP at DKIBMVM1
or E-mail to bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized sets, called
BOFs, which relate to specific functions of interest. IBM employees and customers may
also order ITSO books in online format on CD-ROM collections, which contain redbooks
on a variety of products.

xvi TeamConnection and WorkFrame Integration

ITSO Redbooks on the World Wide Web (WWW)

Internet users may find information about redbooks on the ITSO World Wide Web home
page. To access the ITSO Web pages, point your Web browser to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal Redbooks home
page may be found at the following URL:

http://w3.itso.ibm.com/redbooks/redbooks.html

Subscribing to Internet Listserver

IBM redbook titles/abstracts are now available through Internet E-mail via the IBM
Announcement Listserver. With an Internet E-mail address, anyone can subscribe to an
IBM Announcement Listserver. All it takes is a few minutes to set up a profile, and you
can get news (in ASCII format) from selected categories.

To initiate the service, send an E-mail note to:

announce@webster.ibmlink.ibm.com

with the keyword subscribe in the body of the note (leave the subject line blank). A
category form and detailed instructions will be sent to you.

To obtain more details about this service, employees may type the following:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

Note: INEWS users can select RelInfo from the action bar to execute this command
automatically.

Preface xvii

xviii TeamConnection and WorkFrame Integration

Acknowledgments

This project was designed and managed by:

Leif Trulsson
International Technical Support Organization, San Jose Center

The authors of this redbook are:

Lutz Sparmann
IBM Germany

Yuhsuke Watanabe
IBM Japan

Leif Trulsson
International Technical Support Organization, San Jose Center

This publication is the result of a residency conducted at the International Technical
Support Organization, San Jose Center.

Thanks to the following people for the invaluable advice and guidance provided in the
production of this redbook:

Maggie Cutler, Editor
International Technical Support Organization, San Jose Center

Stephanie Manning
International Technical Support Organization, San Jose Center

 Copyright IBM Corp. 1996 xix

The project leader also would like to thank the following people for their invaluable
assistance in making it all happen:

Elsa Barron
International Technical Support Organization, San Jose Center

Mary Comianos
International Technical Support Organization, San Jose Center

Alan Tippett
International Technical Support Organization, San Jose Center

xx TeamConnection and WorkFrame Integration

Chapter 1. Introduction

Combining TeamConnection and WorkFrame will give you a well-controlled, user-friendly,
and flexible environment for your application development.

WorkFrame′s flexibility and its ability to integrate nearly any kind of tool (such as
compilers, editors, browsers, and debuggers) into a versatile development environment
and TeamConnection′s integrated build, packaging, and strength in software configuration
management and version control make it worth your while trying to integrate them in a way
that enables you to take full advantage of both products.

In this book we show you one way of integrating TeamConnection and WorkFrame. You
can use it as is or modify it to suit your own needs and what works best for your
environment.

The book is based on TeamConnection Version 1.0 fix level 2 and VisualAge for C++
Version 3.0, WorkFrame fix level CTW302.

 Copyright IBM Corp. 1996 1

2 TeamConnection and WorkFrame Integration

Chapter 2. Our Project Development Environment

In this chapter we talk about our fictive project and the development environment. We
assume that the reader is familiar with the basic concepts of TeamConnection and
WorkFrame.

The Project

We, ABC Corporation , have decided to use an OS/2-based development environment
consisting of TeamConnection and WorkFrame to develop a new client/server project or
product called FirstShot .

FirstShot will consist of a:

• Server building block that can work with DB/2 and Oracle database systems

• Client building block providing a command line interface as well as a graphical user
interface (GUI)

• GUI building block

Each of these building blocks will finally be available for several target platforms: OS/2,
AIX , and SUN.

Figure 1 shows the functional structure of FirstShot .

 Copyright IBM Corp. 1996 3

┌---Common Code
┌--Database Interface--┼---DB/2 Specifics

 │ └---Oracle Specifics
 │

┌--Server--┼--All other server functions
│ Building │
│ Block │ ┌---Common code
│ └--Communications Interface-┼---NetBIOS
│ (to clients) └---TCP/IP
│
│ ┌---Common Code
│ ┌--Communications Interface-┼---NetBIOS
│ │ (to server) └---TCP/IP
│ │

FirstShot--┼--Client--┼--All the other client functions
│ Building │
│ Block └--GUI Support Interface
│
│ ┌-----GUI-Client Interface
│ │
└--GUI-----┼-----All other GUI functions
Building │
Block │ ┌---Common Code

└-----Presentation Interface-┼---OS/2 PM
└---OSF/Motif

Figure 1. Functional Structure of FirstShot

Our library and build processes have to be able to control several “flavors” of the same
executable at the same time, because we plan to keep one version of an executable for:

• Integration testing
• Source level debug

Because ABC Corporation does not have any experience with OSF/Motif and Oracle, we
will use the service of two external subcontractors, EasySoft and QuickSoft, to get the
coding done.

4 TeamConnection and WorkFrame Integration

Development Environment Wish List

To end up with a family setup that best fits our needs, it is a good idea to first formulate
our expectations and requirements. For example, think about the things you would like to
query the library system about in the future! Knowing such queries will help you come up
with a naming convention that might simplify (and speed up) database queries.

What We Expect from TeamConnection

We expect to be able to:

• Maintain more than one product in one library

• Allow controlled sharing of code among different products

• Have easy-to-find common functions

• Enable the same user groups to access different projects or products in the family

• Show the functional structure of the product

• List all parts belonging to a functional unit

• Keep design specification and product documentation with the product structure

• Assign defects and features to functional units

• Have common and platform-specific source files that have the same name

• Build code for different target environments, using the same file names

• Build different “flavors” of the same executable for the same target platform:

− Code for function test and integration (built using standard compiler options)
− Source level debug version of code (built using debug-specific compiler options

that can generate additional output files)

• Identify or list all subcontractors

• Restrict access of subcontractors

• List all user IDs of a specific subcontractor

• Identify or list all components a single user or group of users can access

• Find out who has access to which components

Chapter 2. Our Project Development Environment 5

What We Expect of the Integration

We expect the following of the integration:

• One user can work on multiple work areas or different projects or products at the
same time on the same PC.

• Library functions can be executed on WorkFrame parts and projects.

• A tight edit-compile-debug loop will be supported; that is,

− Compiler error messages are displayed and selectable in a scrollable window.
− Double-clicking on a compiler error message jumps to line in the editor.
− Switching to code generation for source level debug will be easy.

• The latest code version is always in the library.

• A build should always be done with the library build setup.

• WorkFrame projects can automatically be generated based on a TeamConnection work
area. (The WorkFrame project has to include the WorkFrame tools setup.)

• A WorkFrame project can be automatically imported to a TeamConnection work area.

6 TeamConnection and WorkFrame Integration

Chapter 3. Setting Up TeamConnection

In this chapter, we show you how to set up TeamConnection. We also take a look at the
following issues:

• Basic concepts and restrictions
• Family administration issues such as:

− Name spaces
− User groups

• Grouping the parts and controlling access
• Structural considerations such as:

− Project or product structure
− Problem tracking
− Common functions

• Naming the parts
• Build considerations such as:

− Keeping versions of parsers and builders
− Using NULL builders

Basic Concepts and Restrictions

Before we start defining our TeamConnection setup, it is a good idea to review some basic
concepts and restrictions of TeamConnection:

• TeamConnection names
− Are all case sensitive!

• Components
− Access and notification (inheritance) are controlled through components.
− Defects and features are controlled by components.
− Parts are grouped by components.
− Component names must be unique per family.
− Component names must not be longer than 31 characters.
− Components can have one or more parent components.

 Copyright IBM Corp. 1996 7

• Releases
− A release collects all parts making up a version of a product.
− Release names must be unique per family.
− Release names (currently) cannot be changed.
− The length of a release name is limited to 15 characters.
− Part names have to be unique per release.

• Parts
− A part can be attached to only one component.
− A part name consists of a base name and a path name.
− A part name must be unique per component.
− A part name must be unique per release.
− You can define up to 20 configurable fields for parts.

• Users
− The maximum length of the user name field is 31 characters.
− The maximum length of the user area field is 15 characters.
− You can define up to 20 configurable fields for users.

• Defects and Features
− The maximum length of a defect or feature name is 15 characters.
− You can define up to 20 configurable fields for defects and features.

GUI Capabilities

The GUI of TeamConnection with its tree view of the component structure is very useful for
providing structural information about a project or product or navigating through the family.

Keep in mind, however, that the GUI is relatively slow and sometimes not well suited for
the tasks a developer or an administrator has to perform during their daily work. So, when
making a decision about how to organize a TeamConnection family, always consider the
implications of the decision from both a command line and GUI point of view.

Naming Conventions

Because a component name has to be unique within one family, and to simplify the
retrieval of information from the TeamConnection database, you first have to think about
naming schemes.

The family administrator has to establish naming conventions that will be observed
familywide. It will also be useful for the project or product owners to think about a project
or productwide naming convention for both component and part names.

8 TeamConnection and WorkFrame Integration

We discuss and introduce a naming convention in a step-by-step manner when discussing
the different aspects of the TeamConnection setup for the project (see “Name Spaces” on
page 10, “User Groups” on page 12, and “Naming the Parts” on page 25).

Chapter 3. Setting Up TeamConnection 9

Family Administration Issues

In the sections that follow, we look at two family administration issues:

• Name spaces
• User groups

Name Spaces

Consider the following wish list item:

We expect to be able to:

• Maintain more than one product in one library

Because the component names have to be unique in the family, we have to define a
familywide naming convention to generate separate component name spaces for the
different projects.

In our family, a name space is defined by using a three-character prefix in every
component name.

If the same person has to work with different projects at the same time (think about
administration and problem reporting), it makes sense to introduce some additional
familywide conventions:

• The root component of a project is always named prd.root , where prd is the prefix
defining the project name space.

• All other components of the project are children of this project root.

We define the name space for FirstShot to be fst , and, because you always will need a
place where you can attach and organize information related to family administration, we
define the name space adm for this purpose (see Figure 2 on page 11).

Additional familywide conventions for component names will be introduced later when
discussing the different aspects of the TeamConnection setup (see “User Groups” on
page 12, “Grouping the Parts and Controlling Access” on page 16, “Project or Product
Structure” on page 18, and “Naming the Parts” on page 25).

10 TeamConnection and WorkFrame Integration

┌-adm.root
│

root --┤
│
└-fst.root

Figure 2. The TeamConnection Component Structure (Iteration 1)

Chapter 3. Setting Up TeamConnection 11

User Groups

Consider the following wish list items:

We expect to be able to:

• Enable the same user groups to access different projects or products in the family
• Identify or list all subcontractors
• List all user IDs of a specific subcontractor
• Find out who has access to which components
• Identify or list all components a single user or group of users can access

Within TeamConnection you can gain access to a component (and the parts belonging to it)
by:

• Owning the component
• Adding a user to the access list of the component

or
• Inheriting the access from parent components

TeamConnection enables you to group users by:

• Defining a component and adding the users to the access list
• Implementing a naming convention for the user area

or
• Creating a configurable field for the user objects and using it for this purpose.

In an environment where the same groups of users have the same type of authority on files
and components in different projects or products, it might soon become a significant effort
to maintain separate access lists for all the projects or products and keep them
synchronized.

For our family we decide to introduce an administrative component, adm.user-groups (see
Figure 3 on page 14), that will be the parent of all the components used to group users
and their authorities. The names of the user groups will be prefixed by adm.ug followed by
the name of this user group. A user group name consists of an authority specification
followed by the group identifier. We will use the following authority specifications:

dev developers
bld builders
tld team leaders

To simplify the search for specific user groups such as subcontractors or temporary
employees, we will start the group identifiers for these user group names with:

s- for subcontractors

12 TeamConnection and WorkFrame Integration

t- for temporary employees

Chapter 3. Setting Up TeamConnection 13

Examples:
adm.ug.dev.s-easysoft, adm.ug.dev.s-quicksoft, adm.ug.dev.all, adm.ug.bld.all,
adm.ug.dev.t-students

We further decide to:

• Use the user area field to indicate the department to which the user belongs
• Prefix the user IDs of specific user groups to simplify the task of granting access to

them:
s- for subcontractor user IDs
t- for user IDs of temporary employees

Examples:
s-miller, t-frank., turner, angela

┌--adm.root
│ │
│ └---adm.user-groups
│ │
│ ├---adm.ug.dev.all
│ │ ┌-------┐
│ │ │mike │
│ │ │george │
│ │ │ ... │
│ │ └-------┘
│ ├---adm.ug.dev.t-temporary
│ │ ┌---------┐
│ │ │t-rmiller│
│ │ │ ... │
│ │ └---------┘
│ ├---adm.ug.dev.s-quicksoft
│ │ ┌---------┐
│ │ │s-miller │
│ │ │ ... │

root--┤ │ └---------┘
│ ├---adm.ug.dev.s-easysoft
│ │ ┌---------┐
│ │ │s-frank │
│ │ └---------┘
│ │
│ ├---adm.ug.bld.all
│ │ ┌---------┐
│ │ │peter │
│ │ │mike │
│ │ │george │
│ │ │ ... │
│ │ └---------┘
│ │
│ └---adm.ug.tld.all
│ ┌-------┐
│ │mike │
│ │elsa │
│ │ ... │
│ └-------┘
└--fst.root ...

Figure 3. The TeamConnect ion Component St ruc ture (I te ra t i on 2)

Note: TeamConnection delivers some sample REXX scripts, which can be used to display
information about access rights and access inheritance:

14 TeamConnection and WorkFrame Integration

• ACCCOMP componentname
shows information about access rights

• ACCINHER componentname userlogin
shows information about access inheritance

Chapter 3. Setting Up TeamConnection 15

Grouping the Parts and Controlling Access

Consider the following wish list item:

We expect to be able to:

• Restrict access of subcontractors

TeamConnection components are designed to control access to parts. Because a part can
be associated with only one component, we should group our parts so that access and
notification management can be easily handled.

The only reasons not to attach all parts of a project or product to one single component
are:

• To restrict the access to specific parts
• To establish a notification service for part changes
• To distinguish specific part categories

Because the problem of organizing the parts will be the same for all the projects or
products in our family, we decide, for ease of use, to add a new item to the familywide
naming convention for projects or products:

• Each project or product will have a component named prd.source-parts that will be the
base for all components holding source code.

• Each source code component will start with the prefix prd.src. followed by the name of
the source code group.

Examples:
fst.src.anything-else, fst.src.quicksoft, fst.src.easysoft

To be able to selectively handle object parts (that is, everything generated by a builder), we
also decide that:

• Each project or product will have a component named prd.object-parts that will be the
base for all components holding object parts.

• Each component holding object parts will start with the prefix prd.obj. followed by the
name of the object parts group.

Examples:
fst.obj.anything-else, fst.obj.subcontractors

The components holding the parts are connected not only to the prd.source-parts or
prd.object-parts trees but also to the adm.user-groups tree that defines the access rights of
the different user groups to the parts (see Figure 4 on page 17).

16 TeamConnection and WorkFrame Integration

Note: We do not try to group the source parts according to the functional structure of the
project or product. The need to provide additional components for access restriction
and notification purposes would tend to make such a structure confusing and
unmanageable.

┌---adm.ug.dev.s-quicksoft -----------┐
├---adm.ug.dev.s-easysoft --------┐ │
│ │ │
├---adm.ug.dev.all ----┐ │ │

┌-┤ │ │ │
 │ ├---adm.ug.bld.all --┐ │ │ │
 │ │ │ │ │ │
 │ └---adm.ug.tld.all │ │ │ │
 │ │ │ │ │
 │ │ │ │ │
root -┐ │ │ │ │

│ │ │ │ │
 ├---fst.root │ │ │ │
 │ │ v │ │ │
 │ ├---fst.object-parts │ │
 │ │ │ │ v
 │ │ │ ┌---fst.src.quicksoft
 │ │ v │ │
 │ └---fst.source-parts-┤ v
 │ └---fst.src.easysoft
 │
 │
 └---com.root ...

Figure 4. The TeamConnection Component Structure (Iteration 3)

Chapter 3. Setting Up TeamConnection 17

Structural Considerations

In this section we talk about how to organize our component structure according to:

• Project or product structure

• Problem tracking considerations

• Common functions

Project or Product Structure

Consider the following wish list items:

We expect to be able to:

• Show the functional structure of the product
• Keep design specification and product documentation with the product structure
• List all parts belonging to a functional unit

The wish to document the functional structure of the project or product in TeamConnection
as well as the desire to organize the design specification, the project documentation, and
the parts by function imply that we will have to create a functional component tree for our
project.

Since this idea also is very likely to be used by other projects, we decide to introduce a
new familywide convention:

• If a project will contain a component tree that is a functional description of the system,
the root of this tree will be named prd.functional-view .

• Each component in this tree will start with the prefix prd.fnc. followed by the name of
the component.

Examples:
fst.fnc.server, fst.fnc.client, fst.fnc.gui

Our decision to have a functional organization (see Figure 5 on page 19) makes the
TeamConnection component structure very much resemble the structure of Firstshot (see
Figure 1 on page 4).

18 TeamConnection and WorkFrame Integration

root
│

┌-----------------------------┴------------------------------┐
│ │

fst.root adm.root
│ │
├---fst.source-parts <------------- adm.ug.dev.all --┬--...--┘

 │ │
└---fst.functional-view <---------- adm.ug.tld.all --┘

│
├---fst.fnc.server
│ │
│ ├---fst.fnc.database-iface
│ │ ├---fst.fnc.db-common-functions
│ │ ├---fst.fnc.db2-specifics
│ │ └---fst.fnc.oracle-specifics
│ │ ...
│ └---fst.fnc.srv-xfer-iface
│ ├---fst.fnc.srv-xfr-common
│ ├---fst.fnc.netbios (!)
│ └---fst.fnc.tcpip (!)
│
├---fst.fnc.client
│ │
│ ├---fst.fnc.client-xfer-iface
│ │ ├---fst.fnc.client-xfer-common
│ │ ├---fst.fnc.netbios (!)
│ │ └---fst.fnc.tcpip (!)
│ │ ...
│ └---fst.fnc.gui-support
│
└---fst.fnc.gui

│
├---fst.fnc.gui-client-iface
│ ...
└---fst.fnc.presentation-iface

├---fst.fnc.gui-pres-common
├---fst.fnc.os2pm-functions
│ └--- ...
└---fst.fnc.osf-motif-functions

└--- ...

Figure 5. The TeamConnection Component Structure (Iteration 4)

Note: For FirstShot , we will maintain only one functional structure. Be aware, however,
that it might be necessary (for access control reasons) to maintain more than one
such functional structure, which may show the product structure in more or less
detail depending on the purpose for which they are used (for example, design
documentation, problem tracking).

Chapter 3. Setting Up TeamConnection 19

Problem Tracking

Consider the following wish list item:

We expect to be able to:

• Assign defects and features to functional units

In TeamConnection every defect or feature is attached to a component. The feature
originator is the user who opens a feature. The feature owner is, by default, the owner of
the component to which the feature is assigned. Any user within the family can open a
feature against any component in the hierarchy.

If you plan to use the TeamConnection problem tracking process, the way in which you
handle the problem assignment might have an impact on your component structure.
Basically you can handle problem assignment in two ways:

• Use a central component (for example, the project or product root) to which to attach
all the defects.

• Assign a defect directly to the “right” person (component).

You can of course combine the methods.

Using one central component to which to attach defects might be a good solution if your
product is in maintenance mode. The owner of the component is responsible for assigning
the defect to the person in charge of handling it.

Assigning a defect directly to the right person (component) assumes that:

• You have a functional component structure.
• The person who describes a problem has a good knowledge about which function is

affected by the problem and who may be in charge of solving it.

This approach is usually a good solution if a project or product is in the test or integration
phase, where a large number of problems will be found and the people who find the
problems are familiar with the product and its structure.

Using a functional structure to attach features or defects to is usually also better when you
are using complex development processes that involve approval, sizing, and notification.

20 TeamConnection and WorkFrame Integration

Function Tree versus Configurable Field

An alternative approach to describing the problem area by attaching a defect to a
functional component is the use of a configurable field for the defect objects that
could be called Area_Code. This field will have a set of predefined values that can
be used to identify the function (and person) to which a problem belongs.

Together with a central component for defect assignment, this approach might
offer a faster method of creating a defect—rather than having to navigate through
the functional component tree for every new defect.

Another advantage of this approach is that your problem area codes need not
match the functional structure.

A slight disadvantage of this approach is that a defect always will have to be
reassigned before the person responsible for handling it can start working on the
defect. As this is probably the most common way of dealing with the assignments
of defects and features, we consider this a very minor disadvantage.

Note: For FirstShot , we will maintain only one functional structure. Be aware, however,
that it might be necessary (for access control reasons) to maintain a separate functional
structure for defect and feature handling.

Because the function tree approach is very likely to be used by other projects or products,
we decide to introduce a new familywide convention:

• If a project or product will contain a separate functional component tree for defect and
feature management, the root of this tree will be named prd.defects-and-features .

• Each component of this tree will start with the prefix prd.d&f. , followed by the name of
the component. If there are multiple functional trees, it is a good idea to use the same
names in the different trees (see Figure 6 on page 22).

Examples:
fst.d&f.server, fst.d&f.client, fst.d&f.gui

Chapter 3. Setting Up TeamConnection 21

┌---adm.root
│
│ ┌---fst.defects-and-features
│ │ │
│ │ ├---fst.d&f.server ...
│ │ ├---fst.d&f.client ...
│ │ └---fst.d&f.gui ...
│ │
│ ├---fst.source-parts

root --┤---fst.root -┤
│ ├---fst.object-parts
│ │
│ └---fst.functional-view
│ │
│ ├---fst.fnc.server ...
│ ├---fst.fnc.client ...
│ └---fst.fnc.gui ...
│
└---...

Figure 6. The TeamConnection Component Structure (Iteration 5)

22 TeamConnection and WorkFrame Integration

Common Functions

Consider the following wish list items:

We expect to be able to:

• Allow controlled sharing of code among different products
• Have easy-to-find common functions

If you are thinking about larger families with multiple projects or products sharing code,
you might have to reconsider the placement of parts that are used by more than one
project or product. The basic reasons for this are:

• Changes to a common function involve many different developers as compared to
when a function is used in one project or product only. Having a separate component
structure, using a more complex release process, and having specific notification lists
will turn out to be useful in controlling common functions.

• Having one central place to look would significantly simplify the search for an existing
common function.

• A component structure that groups common functions in any suitable way in
TeamConnection would offer a list of the existing common functions that is always
up-to-date.

A collection of common functions is nothing other than another project or product, so we
create a new name space (com) for this purpose.

The root component for the common functions will be com.root . The categorization and
grouping of the common functions will be done in the component tree, starting at
com.functional-view . This functional component tree would also be the right place to attach
notification lists, defect reports, and requests for new features. The leaves of this
component tree will identify the different common functions available (see Figure 7 on
page 24).

Note: For the common functions it might be appropriate to attach the sources as well as
the access and notification lists directly to the functional component tree.

Chapter 3. Setting Up TeamConnection 23

┌--fst.root
│ │
│ ├---fst.source-parts
│ │ ...
│ └---fst.functional-view
│ │
│ ├---fst.fnc.server
│ │ │
│ │ ├---fst.fnc.database-iface

 │ │ │ ├---fst.fnc.db-common-functions
 │ │ │ ├---fst.fnc.db2-specifics
 │ │ │ └---fst.fnc.oracle-specifics
 │ │ │ ...
 │ │ └---fst.fnc.srv-xfer-iface
 │ │ └---fst.fnc.srv-xfr-common
 │ │
 │ ├---fst.fnc.client
 │ │ │
 │ │ ├---fst.fnc.client-xfer-iface
 │ │ │ └---fst.fnc.client-xfer-common
 │ │ │ ...
 │ │ └---fst.fnc.gui-support
 │ │
 │ └---fst.fnc.gui
 │ │
 │ ├---fst.fnc.gui-client-iface
 │ │ ...
 │ └---fst.fnc.presentation-iface
 ├--com.root
 │ │
 │ └---com.functional-view
 │ │
 │ ├---com.fnc.xfer-functions ┌-----┐
 │ │ │ │jean │
 │ │ │ │mike │
 │ │ │ └-----┘
 │ │ │
 │ │ ├---com.fnc.netbios
 │ │ └---com.fnc.tcpip
 │ │
 │ └---com.fnc.gui-functions ┌--------┐

│ │ │steve │
│ │ │michael │
│ │ │bob │
│ │ └--------┘
│ │
│ ├---fst.fnc.gui-pres-common
│ ├---fxt.fnc.os2pm-functions
│ │ └--- ...
│ └---fxt.fnc.osf-motif-functions
│ └--- ...
└--adm.root ...

Figure 7. The TeamConnection Component Structure (Iterat ion 6)

24 TeamConnection and WorkFrame Integration

Naming the Parts

Consider the following wish list items:

We expect to be able to:

• Have common and platform-specific source files that have the same name
• Allow controlled sharing of code among different products
• Build code for different target environments, using the same file names
• One user can work on multiple work areas or different projects or products at the

same time on the same PC.
• WorkFrame projects can automatically be generated based on a TeamConnection

work area.
• Build different “flavors” of the same executable for the same target platform:

All of the items listed above have one thing in common: the need to distinguish different
files with the same name.

There is another important aspect of organizing parts when you think about using a
common function or making an existing function a common function: The naming
convention for path names and file names should be standardized for all projects or
products sharing code!

A TeamConnection part name consists of the base name and the path name. We will
introduce a familywide naming convention that enables us to distinguish:

• Common and platform-specific sources
• Platform-specific objects
• Different “flavors” of the same object code (for example, production code and code

compiled for source level debug).

According to this naming convention, the first section of a part name specifies the platform:

com for platform-independent code
os2 for OS/2-specific code
aix for AIX-specific code
sun for SUN-specific code

The platform section of the directory specification can then be followed by the “flavor.” In
our case, the following code “flavors” will be supported:

src all the source code
obj the production version of the object code
dbg the same objects but compiled for source level debug.

Examples:

Chapter 3. Setting Up TeamConnection 25

There is a common C-source fstprog.c, referencing the fstiface.h interface file as:
#include fstiface.h;.
Because this interface file is common for OS/2 and AIX but has been modified for
SUN, it exists as:

comsrcfstiface.h and sunsrcfstiface.h

The resulting AIX production version of the object will then have the name
aixobjfstprog.obj, the corresponding version compiled for source level debug
aixdbgfstprog.obj.

Note: It is recommended that you also use a naming convention for the parts identifying
the project or product. This simplifies code sharing among different projects or
products (remember the part names must be unique within a release) and simplifies
the selection of parts belonging to a specific project or product or functional area.

In our case, we will use our project prefix, fst , for this purpose.

Examples:
aixdbgfstprog.obj, comsrcfstiface.h, sunsrcfstiface.h

26 TeamConnection and WorkFrame Integration

Build Considerations

The TeamConnection build concept is based on three items:

• Build tree
• Builders
• Parsers

A TeamConnection build tree describes the dependencies of the parts. A build tree is
constructed through the different connections (input, output, dependent) defined
between parts.

A TeamConnection Builder is an object that can transform one set of TeamConnection
parts into another by invoking tools such as compilers and linkers. A builder points to
a build script that performs the steps in the build process. Use builders to define the
specific tools that are needed for your development environment. Typically, your build
administrator creates build scripts and builders, but anyone with the proper authority
can do so.

For example, you are planning to build an executable program file from a set of C files.
Your build process uses a particular compiler and linker. Therefore, you would create
a builder that specifies that compiler and linker. Additionally, if you wanted to use a
particular parser for your builds, you would create a parser object.

A superuser can check in files that are builder output. Once the builder output is
checked in, it cannot be checked out. However, a superuser can replace the old builder
output by checking in the new output.

A TeamConnection Parser is a tool that can read a source file and report back a list of
dependencies of that source file. It frees a developer from having to know the
dependencies one part has on other parts to ensure that a complete build is
performed. For example, a C parser can read a C source code file and report back a
list of the files included by the source file or by the included files.

You use the parse function to extract dependency information from build objects. The
build tool uses this information to validate, maintain, and update interdependencies
among build objects. When TeamConnection determines that a build object is
out-of-date, the build tool invokes the parser you have defined for the object. The
parser then does the following:

• Determines the dependencies that exist in the object being parsed
• Writes dependency information to a specified output file. An output file can only

be an output for a single buildEvent.
• Opens and closes all input and output parts that might be associated with the

parse operation

Chapter 3. Setting Up TeamConnection 27

For example, suppose you have a C source part called MYFILE.C that contains the
following statements:

 #include <stdio.h>
 #include <stdlib.h>
 #include <mystuff.h>

The build invokes your parser (PARSER.EXE) on MYFILE.C and writes the output to a file
called OUTPUT.TXT. OUTPUT.TXT would contain the following:

stdio.h
stdlib.h
mystuff.h

The build function would then do the following:

1. Read the output file
2. Compare the current set of dependencies with those returned by the parser
3. Add, delete, or update the dependencies for the object.

Note: The build function does not delete any dependencies that you add in the
command line or GUI when you use the create or connect actions.

Note: Because the build script is copied to the build processor whenever necessary, keep
this file small. Never specify the compiler (for example, ICC.EXE) as the build script,
even if it is possible to do so.

• A compiler executable is usually a very large file, and the time needed to send
it to the build processor will be an unnecessary overhead.

• If the compiler, for performance reasons, stays in memory even after the build
is finished, a subsequent attempt of the build processor to copy the compiler
again may fail, because the existing file is still “in use” by the system and
therefore cannot be replaced.

28 TeamConnection and WorkFrame Integration

Keeping Versions of Parsers and Builders

Even though TeamConnection itself does not provide special support to maintain versions
of build scripts and parsers, it might be a good idea to keep versions of these programs
with the project. Keeping versions will enable you to easily go back when there are
problems and identify the changes that were made to these programs over time.

Because build scripts and parsers are really control elements and not the typical source or
parts of your project, they should be kept separate from the other parts. Therefore the
names of these build scripts and parsers should only contain the platform specification and
no flavor specification.

Examples:
comfst_cparser.cmd, os2fst_cbuilder.cmd, aixfst_cbuilder.cmd

Because the builder is an implied dependency for any parts that use it, changing the build
script always causes a rebuild of those parts. Unfortunately this will not be indicated in the
build tree and will immediately affect all work areas of the release. There are two reasons
why rebuild might not be what you want:

• You might want to run a test of the new builder first. Thus before you activate the new
builder version, you want to see whether the builder works on all of the parts and the
code compiled with the new builder runs as expected.

• Some changes to a build environment, such as moving the same version of a compiler
to a different drive, should not trigger a rebuild, especially if you are dealing with large
families.

Using nested build scripts with a primary command file being the TeamConnection build
script (for example, :cbuilder.cmd; see Figure 8) and one or more secondary build scripts
(for example, :os2\cbuilder.cmd; see Figure 9 on page 30) will do the job. If a change in a
secondary build script triggers a rebuild, you have to check in the secondary build part to
TeamConnection and connect it as an input to the parts using the builder. This setup will
enable you to modify your build environment and test it in a work area before making it
available to everyone.

cbuilder.cmd

/** Simple Build script for C on OS/2 **/
 Parse Source myenv mycall mypname .
 Parse Value FileSpec(″NAME″ , mypname) With myname ″ . ″ .
 Parse Arg allargs
″CALL os2\″myname allargs
 Exit Rc

Figure 8. Primary Build Script

Chapter 3. Setting Up TeamConnection 29

os2\cbuilder.cmd

/** Simple Build script for C on OS/2 **/

 Rc = 99 /* Be a pessimist ! */

 my_options = ″ / c /DTRACE /DDEBUG /DFDEBUG″ ,
″ / Fa+ /Fm- /Si+ /Sp1 /Ss /Su2 /Gd+ /Gm+ /J+ /Q+ /Ti+ /Ge+″

/*$--------------------------------------*\
Get the call environment

---------------------------------------/
 Parse Upper Source myenv mycall mypname .
 Parse Value FileSpec(″NAME″ , mypname) With myname .

/*---------------------------------------*\
Get arguments and environment info

---------------------------------------/
 Parse Arg addargs

 tc_input = Value(″TC_INPUT″ , , ″ OS2ENVIRONMENT″)
 tc_output = Value(″TC_OUTPUT″ , , ″ OS2ENVIRONMENT″)

/*---------------------------------------*\
Remove own name from input list !

---------------------------------------/
 inputs = tc_input
 tc_input = ″″
 Do i=1 to Words(inputs)

If (Pos(Word(translate(inputs),i),mypname) = 0)
Then tc_input = tc_input Word(input,i)

End i

Figure 9 (Part 1 of 2). Secondary Build Script

30 TeamConnection and WorkFrame Integration

/*---------------------------------------*\
Setup process environment

---------------------------------------/
″SET INCLUDE=tst\com;tst\os2;%include%″

/*---------------------------------------*\
It′ s always good to show the arguments

---------------------------------------/
Say myname″ : ″
 Say ″ Inputs...:″ tc_input
 Say ″ Outputs..:″ tc_output
 Say ″ Arguments:″ add_args

/*---------------------------------------*\
Now run the process...

---------------------------------------/
″ICC.exe /Fo″tc_output my_options add_args tc_input

 Exit Rc

Figure 9 (Part 2 of 2). Secondary Build Script

Chapter 3. Setting Up TeamConnection 31

Using NULL Builders

Consider the following wish list item:

We expect to be able to:

• List all parts belonging to a functional unit

If all of the parts belonging to a functional component of your project are connected to a
NULL builder, the NULL builder can then be used to selectively trigger the build of the
specific functional component.

If you organize the build and packaging of your project using NULL builders that are
attached to the functional component tree, you can easily find out which parts are
contributing to a specific functional component. Simply run a report on the Build Part View
(bPartView), using the name of the NULL builder in the -where ″nuPathName=′ . . . ′ ″ option:

TEAMC Report -raw -view bPartView
-where ″nuPathName=′ nullbuilderpart′ ″

Note: The same part may occur more than once in this report, because it can be a
member of several subtrees of the build tree. You can easily sort out the duplicates,
however, by using the build tree extraction tool, TWI_XBT.CMD (see “TWI_XBT:
Extracting a Whole Build Tree” on page 151).

32 TeamConnection and WorkFrame Integration

A NULL builder is commonly used as a collector object, what we would call a pseudo
target in the old MAKE terminology. The benefit of using a NULL builder is that the
input will not be transferred to the build processor during a build event. It will just be
marked as successfully built by the build agent when it is encountered.

To use a NULL builder, you first have to create one. The key to creating one is in the
-none and -script parameters. Make sure that you specify a type of -none and NULL for
the -script parameter.

Here is an example:

teamc builder -create MyNullBuilder
-release prd.R001.00
-script NULL
-environment OS2
-value 0
-condition EQ
-none

The -value and -condition parameters do not have any effect on NULL builders. Once
you have a NULL builder, you can use it for any collector objects you create.

Chapter 3. Setting Up TeamConnection 33

34 TeamConnection and WorkFrame Integration

Chapter 4. Using TeamConnection and
WorkFrame

There are two ways of using TeamConnection and WorkFrame together: You can use
WorkFrame as a front-end tool to TeamConnection, integrating TeamConnection and
WorkFrame actions, or you can use TeamConnection as a stand-alone library management
tool, with no direct integration between TeamConnection and WorkFrame. In this chapter
we describe both ways of using TeamConnection and WorkFrame together and explain the
advantages and disadvantages of each.

The basic difference between the two methods is the build and how builds are done:

• When you use WorkFrame as a TeamConnection front end, the builds take place in
TeamConnection using TeamConnection′s integrated build facility.

• When you use TeamConnection as a stand-alone library management tool, the builds
are separated from each other. For the WorkFrame user, it will be business as usual,
where edit, compile, and test are done using a “traditional” WorkFrame setup and only
the “final” application build will be done using the TeamConnection build function.

WorkFrame As a TeamConnection Front End

When WorkFrame is used as a front-end tool to TeamConnection, all files are located in the
TeamConnection database, and all builds are done using the TeamConnection build
function. The basic characteristics of this method are:

• All data in the WorkFrame project is managed by TeamConnection.

• Builds are done remotely on the build servers.

• The functions invoked from WorkFrame are the functions provided by the
TeamConnection command line interface or GUI.

 Copyright IBM Corp. 1996 35

Advantages

The advantages of using WorkFrame as a TeamConnection front end are:

Everything created in WorkFrame is visible to TeamConnection
TeamConnection can manage the versions of files and control file access.

Standardized build process
All compile and link options are controlled in one place by the TeamConnection
build function.

Decrease in client processor use
Because compile and link are done on a remote build server, client processor use
decreases. A fast build processor increases build performance.

Parallel build
You can build two or more parts simultaneously without using the resources on
your own machine.

Independence from individual WorkFrame environments
You can work on different workstations with different WorkFrame setups or even at
different locations, because the data and build settings are stored in the
TeamConnection server.

Build independence of the target platform
By using the TeamConnection build function, you can build an application for OS/2,
AIX, and MVS without leaving the WorkFrame environment.

Easy to find related parts for a change
A change to a common resource changes the status of related output parts.
Therefore, by viewing the build tree, you can easily spot which parts have to be
rebuilt.

Disadvantages

The disadvantages of using WorkFrame as a TeamConnection front end are:

Minimizes the flexibility of WorkFrame
You have to create different build trees depending on the compile options. For
example, if for one build you need an option that creates a map file, you need a
different build tree (even though this disadvantage can be limited by the use of
environment variables and setting the variables at build time by using the
-parameters attribute).
You have to change the build tree if the dependencies change. For example, if you
decide to split one source into two different sources, you have to update the build
tree manually. In a stand-alone WorkFrame environment, the makemake utility
makes these changes automatically. But if you only add a new include statement
in the source, the parser will find the dependency and automatically update the
build tree. The included part has to be created in TeamConnection.

36 TeamConnection and WorkFrame Integration

Degrades performance
A single compile might be slower because of the communication overhead
between TeamConnection and the build processor. Editor load time might be
slower if a part has to be checked out first.

TeamConnection As a Stand-Alone Library
Management Tool

When you use TeamConnection as a stand-alone library management tool, editing,
compiling, and testing are done locally in the WorkFrame environment:

• The basic settings do not change from the VisualAge C++ project. Action, variable,
and type settings are inherited from the VisualAge C++ project.

• You can check in the files to TeamConnection whenever you need to.
• Production build takes place in a TeamConnection environment.

Advantages

The advantages of using TeamConnection as a stand-alone library management tool are:

• Retain the flexibility of WorkFrame

You can change compile and link options easily and add or delete files without having
to think about the build structure.

• Same user interface for existing WorkFrame users

For existing WorkFrame users, use of the product does not change.

Disadvantages

The disadvantages of using TeamConnection as a stand-alone library management tool
are:

• You are responsible for synchronizing parts

You have to check in all WorkFrame files to TeamConnection when you have
completed your work.

• You are responsible for synchronizing build environment

You have to set up the same build environment in TeamConnection as in the local
WorkFrame project. That is, compile and link options must be changed to the local
WorkFrame settings before the production build can be executed.

• You have to work on the same workstation

Chapter 4. Using TeamConnection and WorkFrame 37

You cannot change between different workstations, because the WorkFrame
environment may differ between the various machines.

Our Approach

As a starting point, we decided to use WorkFrame as a TeamConnection front-end tool and
then implement VisualAge for C++ functions into WorkFrame to create a realistic and
workable application development environment.

38 TeamConnection and WorkFrame Integration

Chapter 5. Setting Up WorkFrame

TeamConnection provides a customized WorkFrame project for integration with WorkFrame
that enables you to use WorkFrame as a front-end tool. However, this project does not
provide the integrated environment we expect primarily because it starts up the
TeamConnection GUI client for every TeamConnection action that is called from within the
WorkFrame project. For some actions, this is redundant from a user interface point of view.
In addition you have to change the TeamConnection GUI client settings each time you work
on a different project or product. So we decided to create our own project setting, called
TWI_PRJ, to better integrate TeamConnection and WorkFrame. In this TWI_PRJ project, we
defined actions that invoke a REXX program, using the TeamConnection command interface
to reduce the redundancy. We also created an installation script for Project Smarts to set
up the TWI_PRJ project automatically from the TeamConnection work area.

In this chapter, we describe how to create a WorkFrame project from the TeamConnection
work area in general and set up and customize the TWI_PRJ project.

See VisualAge C++ for OS/2 User ′s Guide Version 3.0, S25H-6961, for more details
regarding the WorkFrame project setup.

 Copyright IBM Corp. 1996 39

Creating WorkFrame Project from TeamConnection
Work Area

Consider the following wish list item:

We expect that:

• One user can work on multiple work areas or different projects or products at the
same time on the same PC.

Before creating a WorkFrame project, you must create a work area in TeamConnection.
Then you can create a WorkFrame project that represents the TeamConnection work area.

After you have created the work area, you have to check out the parts that have to be
included in the WorkFrame project and updated in your work area. If you are using a
TeamConnection client, it does not matter which directory TeamConnection uses as long as
it is a working directory. If you are using WorkFrame, however, you must know to which
directory the parts were checked out; otherwise, you will not be able to see the parts that
you want to work on from within the WorkFrame project.

TeamConnection checks out the parts to the directory you specified in the relative name
field if you used the command line interface or in the destination directory field if you used
the TeamConnection GUI. If you work with more than one work area, you must specify a
different directory because you might have the same part name in different work areas.
Therefore your main focus should be to distinguish parts with the same name from each
other. To make a part unique within your workstation, you have to embed the family name,
release name, and work area name in the part name because the parts are unique within a
work area, the work area is unique within a release, and the release is unique within a
family.

We decided to make a directory and check out the required parts to this directory:

base-directoryfamily-nameworkarea-namerelease-name

where:

base-directory Can be any directory path in accordance with your own preference.

We realized that we had to check out not only the parts that we were editing but also the
parts that we were building because, to start a TeamConnection build process, we had to
specify the name of the target part that had to be built. In addition, to get the target part
name into WorkFrame, the part had to exist on the same workstation as the workstation on
which we were working.

40 TeamConnection and WorkFrame Integration

Note: If you use the VisualAge C++ build function in WorkFrame, which is mainly the
local build function, you also have to check out all dependent parts. You do not
have to check out dependent parts if you use our TWI_PRJ installation script, which
extracts all parts required to build a target part.

TWI_PRJ Installation Script

The TWI_PRJ installation script, TWI_PRJ.CMD, automatically creates a TWI_PRJ. See
“TWI_PRJ: Creating the WorkFrame Project” on page 128 for the REXX source.

TWI_PRJ.CMD sets up the project as follows.

1. Creates a project icon

The script creates a TWI_PRJ project icon called release-name workarea-name in the
folder you specify. You can change the name of the folder.

2. Creates the working directory for the project

The script creates a working directory, family-nameworkarea-namerelease-name, under
the directory that you specify. Periods (.) and back slashes () used in the name are
converted to hyphens (-).

3. Sets up the project environment variables in the project ′s tools setup

TC_FAMILY
Specifies the family name to be used in the project. This is mandatory.

TC_RELEASE
Specifies the release name to be used in the project. This is mandatory.

TC_WORKAREA
Specifies the work area name to be used in the project. This is mandatory.

TC_USER
Specifies the user ID to be used in the project. This is mandatory.

TC_BECOME
The user ID used to access objects in TeamConnection. It may differ from
TC_USER. This environment variable is optional.

TC_CASESENSE
Specifies whether the case of the arguments in commands are changed to the
upper case or lower case or not changed. You specify UPPER, LOWER, or
IGNORE.

TC_BUILDPOOL
Specifies the build pool name to be used in the project. This is mandatory.

TWI_RELATIVE
Used as relative option name for each TeamConnection command in our REXX
program. The value is the same as the working directory. The default value is
drive:family-nameworkarea-namerelease-name
 .

Chapter 5. Setting Up WorkFrame 41

TWI_TARGET_PART
Specifies the target part name used as the target file name in the project
settings. You provide the name. This parameter is used on the TC Build
Target and TC Build Target Forced actions.

TWI_TRACE
If the value is ON, the trace is turned on for each action.

4. Sets up the actions in the project ′s tools setup

• TC Edit
• TC CheckIn Forced
• TC CheckIn
• TC CheckOut
• TC Lock
• TC UnLock
• TC Extract
• TC Touch Parts
• TC Build Part
• TC Build Part Forced
• TC Build Target
• TC Build Target Forced
• TC Show WorkArea
• TC Freeze WorkArea
• TC Task List

See “Actions Defined in the TWI_PRJ Project” on page 75 for details of the actions.

5. Checks out the parts and extracts other required parts

The parts that you select are checked out to the working directory. All other parts that
belong to the build tree of the target part are extracted. Extracted source parts are
changed to read-only files.

42 TeamConnection and WorkFrame Integration

Adding Our Project Install Script to Project Smarts

Consider the following wish list item:

We expect that:

• WorkFrame projects can automatically be generated based on a TeamConnection
work area.

To create a TWI_PRJ project using Project Smarts, you must first add the project
installation script, TWI_PRJ.CMD, to the Project Smarts catalog (see Figure 10 on page 44).

• Open the Project Smarts − Settings window.
• Select Add .
• On the Project Smarts − Add Entry window enter TeamConnection Work Area for the

project name.
• You can enter any text in the Location field because it will not be used.
• Enter TWI_PRJ.CMD for the script name.
• Enter %project% %catalog% for the parameters.

You can also add the trace option as a parameter to enable the generation of
additional output for debug purposes.

• Select Add .

 .*

Chapter 5. Setting Up WorkFrame 43

Figure 10. Adding the Project Installation Script

44 TeamConnection and WorkFrame Integration

Creating WorkFrame Project Using Project Smarts

Once you have added the script to your Project Smarts catalog, you can create a
WorkFrame project from Project Smarts (see Figure 11 on page 46):

• Double-click on the Project Smarts icon to start Project Smarts.
• Select TeamConnection Work Area from the available projects.
• Select Create .
• On the Project Smarts − Target Information window change the target information

fields according to the message log on the Project Smarts − Console window.

Project Fill in the project name. The default is workarea(release)
Directory Type the base working path name. You must specify at least the drive.

The working directory is basefamilyworkarearelease
Folder Select the folder that will contain the created project icon.

Chapter 5. Setting Up WorkFrame 45

Figure 11. Creating a TWI_PRJ Project from Project Sm arts (1)

46 TeamConnection and WorkFrame Integration

Setting the Basic TeamConnection Variables

In the Project Smarts - Variable Settings window, change the basic TeamConnection
variables to the values you want (see Figure 12).

Note: See “TWI_PRJ Installation Script” on page 41 or the Variable description field for
the value of the variables. Variables with (R) are mandatory; variables with (O) are
optional.

Figure 12. Creating a TWI_PRJ Project from Project Sm arts (2)

Chapter 5. Setting Up WorkFrame 47

Setting the Work Area Specific Variables

You can change the work area specific variables to the values you want in the Project
Smarts - Variable Settings window (Figure 13).

Select OK when the message box appears.

Figure 13. Creating a TWI_PRJ Project from Project Sm arts (3)

48 TeamConnection and WorkFrame Integration

Automatic Extraction of the Build Tree

If there is no file or subdirectory in the base\family\workarea\release working directory,
TWI_PRJ.CMD will call the automatic extraction program, TWI_XBT.CMD, to extract parts
that you need in the project. The extraction is asynchronous, so even though the project
has been created, the extraction may still be in progress. TWI_XBT.CMD extracts the parts
in the following manner (see “TWI_XBT: Extracting a Whole Build Tree” on page 151 for the
source code):

1. If the %TWI_WORK_PARTS% is specified, TWI_XBT.CMD uses this as a parts list.

2. If the %TWI_WORK_PARTS% is not specified, TWI_XBT.CMD invokes the
TeamConnection client and lets you extract the parts you need to the working
directory. Then TWI_XBT.CMD uses the files in the working directory as the parts list.

3. For each part in the parts list, TWI_XBT.CMD looks for the closest parent part with an
associated builder.

4. For each parent part that it finds, TWI_XBT.CMD extracts all of the parts in its build
tree.

If you want to use automatic build tree extraction:

Select Yes when the Do you want me to Extract the build tree(s) message appears (see
Figure 14).
Select OK when the message box appears.

Figure 14. Creating a TWI_PRJ Project from Project Sm arts (4)

Chapter 5. Setting Up WorkFrame 49

Customizing the Settings of the TWI_PRJ Project

In this section we show you step by step how to customize the settings in the TWI_PRJ
project.

Setting the Project Location

By now you will be able to see the project icon on your desktop or in whichever folder you
specified. Open the project view and check whether all parts are visible from the
WorkFrame. If you do not have any paths in your part name, you will see the parts. If you
have paths, as our project or product has, you will not see any parts in your project. To
see the parts, you must change the location settings of your project to make files visible
from the project. On the TWI_PRJ - Icon view window:

• Open the project settings by selecting View → Settings → Location .
• Select Find .
• Select the desired directory and select Add .
• Add all directories and select OK .
• Close the Settings window.

Now you should see all of the parts that have been extracted.

50 TeamConnection and WorkFrame Integration

Figure 15. Changing the Settings of TWI_PRJ

Chapter 5. Setting Up WorkFrame 51

Changing the Default Editor from LPEX to EPM

In this section we show you how to change the default editor settings from LPEX to, for
example, EPM. We also show you how to change the action options.

Setting the TWI_EDITOR variable

You may want to change the default editor of the TC Edit action from, for example, LPEX
(which we call using the command file, LXSYNC; see “LXSYNC: A Synchronous Way of
Invoking LPEX” on page 190) to another editor such as EPM:

• From the TWI_PRJ - Icon view window (Figure 16 on page 53) select the Tools setup
icon or select Tools setup from the View pull-down menu.

• On the TWI_PRJ - Tools setup window select the Variables view icon.
• Click with mouse button 2 on the TWI_EDITOR variable to display the pop-up menu.
• Select Change .
• In the Change Environment Variable window change the String field to the name of the

command file or program you use to invoke your editor; for example, epm.exe .
• Select the Change push button.

Note: LXSYNC.CMD is the command file that will invoke LPEX synchronously (see
“LXSYNC: A Synchronous Way of Invoking LPEX” on page 190).

52 TeamConnection and WorkFrame Integration

Figure 16. Changing the Default Editor

Chapter 5. Setting Up WorkFrame 53

Changing the TC Edit Action Options for EPM

As you have changed the editor to be invoked, you must also change the options of the
action (see Figure 17 on page 55):

• On the TWI_PRJ - Tools setup window, select the Actions view icon.
• Expand the Edit class.
• Click with mouse button 2 on TC Edit action to display the pop-up menu.
• Select File Options → Change
• Change the options of the action:

EDIT %a %z (/W ?FILES?

54 TeamConnection and WorkFrame Integration

Figure 17. Changing the TC Edit Action Options

Chapter 5. Setting Up WorkFrame 55

The Options of TC Edit Action for EPM and LXSYNC

The options of TC Edit action are separated by a left parenthesis ((). Options
before the parenthesis describe the action and the options used for the checkin
and checkout functions. Options after the parenthesis are used for the editor.

• For EPM.EXE, the option for the editor itself is /W %a %z. Checkin and checkout
require the file names to be passed and the options will be %a %z. So the
option for the TC Edit action will be : EDIT %a %z (/W %a %z.

If we specify this in the Parameters field on the TC Edit: File Scope − Edit
Options page, the system hangs. So to avoid this, we use a variable, ?FILES?,
which is translated to %a %z when the editor is called.

• For LXSYNC.CMD, the option for the editor itself is %f /CM WF INIT %d %f %p.
Because the editor is invoked for one file at a time, the option for checkin and
checkout is %f. So the Edit Options parameters for TC Edit will be EDIT %f (%f
/CM WF INIT %d %f %z.

56 TeamConnection and WorkFrame Integration

Changing the Applicable Actions on Files

 As you can see in Figure 18, the applicable actions differ according to the type of file
selected because the actions have different applicable types in the action settings. For
example, if you see the types menu in the action definition of TC Edit, the source types are
set to Editable . For the TC Build Part action the source types are set to NotTCSaved .

Figure 18. Applicable Actions on Files

Chapter 5. Setting Up WorkFrame 57

To change the applicable actions for various file types do the following:

• Open the TWI_PRJ - Tools setup window (Figure 19).
• Select the Actions view icon.
• Click with mouse button 2 on TC Edit Part action.
• Select Change .

Figure 19. Types of Files Set in the Action Definition (1)

58 TeamConnection and WorkFrame Integration

• On the Change Action window, select the Types menu (see Figure 20 on page 60).
• Select the Types for the TC Build part action as well.

Chapter 5. Setting Up WorkFrame 59

...

...

Figure 20. Types of Files Set in the Action Definition (2)

60 TeamConnection and WorkFrame Integration

If you want to make an action applicable to another type of file, change the source type by
adding or overwriting it. Or add a new type in the Types view and add it to the action
settings (see “Adding Our Project Install Script to Project Smarts” on page 43).

Chapter 5. Setting Up WorkFrame 61

Changing the Default Actions

The order of the actions in the menu represents the priority of the actions. The top action
will be the default action when you double-click on a file. In Figure 18 on page 57, the
default action for the C++ source fi le is TC Edit and for the object file it is TC Build Part .
So when you double click on a C++ source file, the editor comes up containing the file.

Say you want to change the default action of the source file from TC Edit to TC CheckOut.
To do so, make the priority of TC CheckOut action higher than TC Edit:

• Open the TWI_PRJ - Tools setup window (Figure 21 on page 63)
• Select the Actions view icon.
• Click with mouse button 2 on the TC CheckOut action.
• Select Change .
• Select the Support menu (Figure 22).
• Change the Priority to a number higher than the TC Edit Part action.

62 TeamConnection and WorkFrame Integration

Figure 21. Changing the Priority of an Action (1)

Chapter 5. Setting Up WorkFrame 63

Figure 22. Changing the Priority of an Action (2)

64 TeamConnection and WorkFrame Integration

Adding a New Environment Variable

You may find that you need other environment variables that have not been previously
defined. For example, you may want to set d:\common\inc as an include directory.

To add a new environment variable:

• Switch to the Variables view and click on the Add icon (Figure 23).
• In the Add Environment Variable window type include in the Name field.
• Type d:commoninc for the string.
• Select Add .

Figure 23. Adding a New Environment Variable

Chapter 5. Setting Up WorkFrame 65

Adding a New Type

Types are used to distinguish a group of files from other files and to apply actions to
specific files. For example, you might create a file type called COBOL Source to apply a
COBOL compiler action to files that have a .cbl extension.

To add a new type:

• Switch to the Types view and click on the Add icon (Figure 24).
• In the Add Type window, select FileMask (from the Class field′s selections) for the

Class field.
• Add a new Type COBOLSource in the Name field.
• Type *.cbl in the Filter field.
• Select Add .

Figure 24. Adding a New Type

66 TeamConnection and WorkFrame Integration

General Customization of WorkFrame Projects

In this section we take a closer look at the general customization of a project in
WorkFrame. We show you how to change the project settings and add an action.

Changing the Project Settings

In the project settings, you would mainly change the target, location, monitor, and
inheritance.

When using TWI_PRJ do not change the working directory in the location menu. If you
change it, some of the actions will not be available.

Inheritance is important because the actions, variables, and types also change. If there is
a setting in your project that has the same name as the project from which you are
inheriting, the setting will not be inherited. For example, if you already have a TC_FAMILY
variable defined, you cannot inherit another TC_FAMILY variable. Also, if you have an
action called Edit, you cannot inherit another action called Edit even if it has different
settings. If you want to change the settings that you inherited, you must change the
settings in the original project.

Figure 25 on page 68 shows an example of customizing project settings. For each Settings
page, we explain the various fields on the page:

Settings − Target page

• Specify the target file name in the Name field on the Target page.
• Specify the run option in the Run options field on the Target page.
• Specify the make file name (not needed for our project) in the Makefile field

on the Target page.

Settings − Location page

• Specify the directories to be used for the project in the Source directories
for projects files list field on the Location page.

• Specify one of the source directories from the list field as the Working
directory on the Location page.

Settings − Monitor page

• Set the appropriate monitor settings on the Monitor page.

Settings − Inheritance page

• Add projects from which your project can inherit on the Inheritance page.

Chapter 5. Setting Up WorkFrame 67

Figure 25 (Part 1 of 2). Changing the Project Settings

68 TeamConnection and WorkFrame Integration

Figure 25 (Part 2 of 2). Changing the Project Settings

Chapter 5. Setting Up WorkFrame 69

Adding an Action

In this section we show you the steps to add a new action. You begin by selecting the
Actions view from the TWI_PRJ - tools setup window.

For each Settings page, we explain the various fields on the page (see Figure 26 on
page 71):

Settings − Target page

• Specify the target file name in the Name field.
• Specify the run option for the target file in the Run options field.
• Specify the make file name in the Makefile field.

Add Action − Types page

• In the Source types field, specify the types of files that can be applied to the
action.

• In the Available types field, you have a list of types defined in the Types
view of the tools setup.

• In the Target types field, specify the types of output files required for the
various actions.

Add Action − Support page

• Specify the name of the action support DLL in the Action Support DLL −
Name field. The action support DLL:
− Sets the default option
− Displays the interface for options input
− Generates the command line to invoke the action command
− Processes the target and dependencies list
− Parses selected error messages from the monitor
− Enables the DDE communication

• Select the priority of the action from the Priority selection scroll list.
Actions with higher priority will be displayed at higher positions in the
selection scroll list. The default action will be the action with the highest
priority.

Add Action − Menus page

• Select Add to menus, to display the action in the selected pull-down menu.
• Select Add to project Options menu to display the action in the options

pull-down menu.
• Select Add to project toolbar to display the action in the toolbar.
• Specify in the C t r l + S h i f t + field a character to be used as an accelerator

key.

70 TeamConnection and WorkFrame Integration

Figure 26 (Part 1 of 2). Adding an Action

Chapter 5. Setting Up WorkFrame 71

Figure 26 (Part 2 of 2). Adding an Action

72 TeamConnection and WorkFrame Integration

After you have added an action, you can also specify options for the command file invoked
from the action. Figure 27 on page 73 shows the options windows you will see if you used
IWFOPT as the support DLL:

• Specify the parameters for the action (when applied to files) in the Parameters field.
Use substitution variables to refer to variable items such as file names.

%a %z − specifies all selected files, separated by a space
%f − specifies the fully qualified name of the first selected file

• Select Send Errors to editor to enable DDE communication with the editor.
• Specify the parameters for the action (when applied to a project) in the Parameters

field.
Substitution variables are different from file options.

%p − specifies the fully qualified name of the project target

Figure 27 (Part 1 of 2). Changing an Option of an Action

Chapter 5. Setting Up WorkFrame 73

Figure 27 (Part 2 of 2). Changing an Option of an Action

74 TeamConnection and WorkFrame Integration

Actions Defined in the TWI_PRJ Project

Consider the following wish list items:

We expect that:

• Library functions can be executed on WorkFrame parts and projects.
• A tight edit-compile-debug loop will be supported
• The latest code version is always in the library.
• A build should always be done with the library build setup.

In this section we describe the actions that are set in the TWI_PRJ project. For each action
we briefly describe its function and provide the following information:

Advantages Explains why we added the function. All of our actions were created to
reduce user involvement as much as possible.

Input Shows the input needed for the action other than the environment
variables. You will see the input defined in the options of the actions.

Scope Actions are defined as file-scoped, project-scoped, or both.

File-scoped actions are actions that apply to specific files in WorkFrame,
and one or more files must be selected to invoke the action. File-scoped
actions will show up in the Selected pull-down menu and file pop-up menu.

Project-scoped actions are invoked only on a project, regardless of
whether or not a file is selected. Project-scoped actions will show up in
the Project pull-down menu and project pop-up menu.

File types Shows the types of files to which the action is applied. For example, the
TC Edit action will only be applied to editable files. Types are defined only
for file-scoped actions. You will see the types defined in the Types menu
of the Tools setup window.

Implementation Shows how we implemented the action.

TC Edit

This action checks out a part, starts an editor, and checks in the selected part. It uses the
editor defined in the TC_EDITOR variable.

Advantage Releases users from checking out and checking in a part each time they
try to edit it.

Chapter 5. Setting Up WorkFrame 75

Input Single file name (if using LXSYNC.CMD)
List of file names (if using EPM.EXE)

Scope File-scoped
File type Editable files

Implementation

• Check out the part selected.
• Start an editor (defined in TC_EDITOR) with the selected part name.
• When the edit session is closed, you are asked whether the part should be

checked in or not.
• When checkin is selected, invoke the TC CheckIn Forced action.
• If error occurs, abend the action and check the pop-up message.

Use synchronous editor

Although the LPEX editor comes with WorkFrame, you must customize it for TC
Edit because it is not a synchronous editor. It stays in memory even when the edit
session is closed. We created a command file called LXSYNC.CMD to invoke
LPEX synchronously.

TC CheckIn

This action checks in one or more parts that you select.

Input List of file names
Scope File-scoped
File type Editable
Implementation

Check in the selected parts, using the TeamConnection command line interface.

TC CheckIn Forced

This action checks in one or more parts that you select. If a part was not checked out
previously, it locks the part and checks it in again.

Advantage You do not have to check out a part.
Input List of file names
Scope File-scoped
File type Editable
Implementation

76 TeamConnection and WorkFrame Integration

• Check in the selected parts into TeamConnection.
• If the checkin fails, check the error code.
• If the error code indicates that the part was not checked out, lock the part and try

to check it in again.

TC CheckOut

This action checks out one or more parts that you select.

Input List of file names
Scope File-scoped
File Type Editable
Implementation

Check out the selected parts, using the TeamConnection command line interface.

TC Lock

This action locks one or more parts that you select.

Input List of file names
Scope File-scoped
File type Editable
Implementation

Lock the selected parts, using the TeamConnection command line interface.

TC UnLock

This action unlocks one or more parts that you select.

Input List of file names
Scope File-scoped
File type Editable
Implementation

Unlock the selected parts, using the TeamConnection command line interface.

TC Extract

This action extracts one or more parts that you select.

Chapter 5. Setting Up WorkFrame 77

Input List of file names
Scope File-scoped
File type Any
Implementation

Extract the selected parts, using the TeamConnection command line interface.

TC Touch

This action invokes the Touch part command for one or more parts.

Advantages Lets you rebuild the target without changing the parts because the build
process treats touched parts as being changed.

Input List of file names
Scope File-scoped
File type Any
Implementation

Invoke the Touch part command for the selected parts, using the TeamConnection
command line interface.

TC Build Part

This action invokes TeamConnection build from WorkFrame. The build process runs for
one selected file.

Advantages Because the action is run on a monitor session, you can see the build
messages in the WorkFrame monitor. WorkFrame handles the DDE
communication to let you jump from the error message in the monitor to
the line of a source code where the error occurred. Also, you can start the
build process not only from parts with a builder associated with it but also
from parts without a builder; that is, you can start the build from a source
file or an include file.

Input List of file names
Scope File-scoped
File type Any
Implementation

• In the WorkFrame tools setup, select Monitor as the session for the action.
• Check whether the selected part has a builder associated with it or not.
• If the part does not have a builder, search for its parent part in the build tree.
• Check whether the parent part has a builder associated with it or not. If it does

not, search for the next parent until a part with a builder associated with it is
found.

78 TeamConnection and WorkFrame Integration

• Execute TeamConnection build with the selected part or the parent parts, using the
TeamConnection command line interface.

• Issue the viewmsg command to show the result of the build.

Note: If you double-click on the error message in the monitor, the TC Edit Part action will
be invoked, and the part will be checked out automatically.

Why do we have to search for the parent part?

If a part does not exist as a file, you will not be able to start the build process for
it. For example, assume that you want to compile source code for the first time.
To start a build process you must specify the name of the part that is going to be
built. In TeamConnection you trigger the build event for the target part of the build,
not for the source part, as you would normally do for a WorkFrame compile.
Since this is the first time you are compiling the code, WorkFrame does not show
any file that has the name of the object code. And, you cannot extract the object
part from TeamConnection to show it in WorkFrame because the part does not
contain anything. Therefore you will not be able to specify the file name to be
built in a WorkFrame environment unless you type in the name of the object part.

We implemented a function that searches for the target part, a part that has a
builder associated with it, from the source part that was selected using the build
tree. You can select a source code or an include file and start the build process of
the object part. There may be two or more object parts, but we build only the first
object part that is found.

TC Build Part Forced

This action invokes the TeamConnection build process with force option.

Advantage You can rebuild everything regardless of the state of the last build.
Scope File-scoped
File type Any

TC Build Target

This action invokes a TeamConnection build for the target file specified in the
TC_TARGET_PART environment variable.

Advantage You can build the whole build tree for the build target. This enables you to
build the whole application or project.

Scope Project-scoped

Chapter 5. Setting Up WorkFrame 79

TC Build Target Forced

This action invokes the TC Target Build action with the force option.

Scope Project-scoped

Show WorkArea

This action invokes a TeamConnection GUI session that shows the Partfull view of the work
area.

Scope Project-scoped
Implementation

Invoke the Partfull view, using the TEAMCGUI command.

Note: Our intention was to show the part view of the TeamConnection client. However,
TeamConnection does not provide an official interface for the TEAMCGUI command,
so we could only invoke the Partfull view. We found the TEAMCGUI options by using
the integrated interface that TeamConnection provides.

Freeze WorkArea

This action freezes the work area to make a backup of a whole project so that you can
return to the same stage of development.

Scope Project-scoped
Implementation

Invoke the freeze workarea command, using the TeamConnection command line
interface.

TC Task List

This action invokes the Task List window of the TeamConnection GUI. You can switch to the
TeamConnection GUI whenever you have to.

Scope Project-scoped
Implementation

Invoke the Task List window of the TeamConnection client, using the TEAMCGUI
command.

80 TeamConnection and WorkFrame Integration

TC View Build Messages

This action shows the latest build message, sent to the WorkFrame monitor, of the selected
part.

Scope File-scoped
Implementation

Invoke the Touch part command for the selected part(s), using the TeamConnection
command line interface.

Chapter 5. Setting Up WorkFrame 81

82 TeamConnection and WorkFrame Integration

Chapter 6. Using WorkFrame Projects

In this chapter we describe a way of importing an existing WorkFrame project into a
TeamConnection project. We believe that this will give directions of how to migrate your
existing WorkFrame projects to a TeamConnection environment.

Importing Existing WorkFrame Projects

Consider the following wish list item:

We expect that:

• A WorkFrame project can be automatically imported to a TeamConnection work
area.

Basically WorkFrame files (that is, source code, object code, and executable code) are
implemented as TeamConnection parts. And WorkFrame build descriptions in a make file
are converted to a TeamConnection build tree. To create a new part in a TeamConnection
environment, you have to create other TeamConnection objects in advance.

The fundamental steps for migration are:

1. Create a TeamConnection family

2. Create a component structure

3. Create a release and a work area

4. Create parsers and builders

5. Determine the import rules

6. Convert a make file into a command file

 Copyright IBM Corp. 1996 83

TeamConnection provides a utility called FHOMIGMK that will convert an NMAKE make
file into a TeamConnection command file. But we will describe this step in general to
help you import from other make files also.

7. Run the command file

8. Verify the results

TeamConnection Is Case Sensitive!

When importing WorkFrame projects to TeamConnection, remember that
TeamConnection is case sensitive. You cannot use a different case for the same
object. For example, if an include file named pgm01.c is referred to as pgm01.C in
a source file, you must either rename the include file name or modify the source
code.

Also be careful of the file system you are using. If you are using a file allocation
table (FAT) file system, all file names are in upper case. If you refer to those files
in a make file in lower case, TeamConnection will not be able to find the file
during import. To avoid this, set TC_CASESENSE=LOWER or change the
TeamConnection settings to lower case.

Note: TC_CASESENSE is valid only for TeamConnection commands. It is not valid
for build actions or reports.

Creating a TeamConnection Family

We recommend that you use a new family to import WorkFrame projects. If you are using
an existing family, do not forget to take a backup before migration because it may be
extremely difficult to roll back an import.

Creating a Component Structure

When you import a WorkFrame project into the TeamConnection environment, you must
create a component structure or at least one component to attach the WorkFrame files.
You must consider access control, problem tracking, and organizational structure to have
the most suitable component structure. Keep the component structure as simple as
possible so that the parts can be imported automatically. Refer to “Grouping the Parts and
Controlling Access” on page 16 for more information about assigning parts to components.

84 TeamConnection and WorkFrame Integration

Assigning a Part to a Component

In “Grouping the Parts and Controlling Access” on page 16 we discussed one way
of assigning parts to components. The following are some other ways of assigning
a part to a component:

• Attach all parts from WorkFrame projects to one component and then
distribute to final components later on.

You will be able to check whether all parts have been assigned to the correct
component. If they have not, you will see that in the first component. The
disadvantage of this approach is that the distribution of the parts will be
lengthy.

Of course you do not have to distribute the parts if you have decided to use
only one component in your component structure. But you will not be able to
control access to the parts between the projects.

• Attach parts from one project to different components.

This approach will be sufficient if you want to control access to some files
within a project. For example, you can attach common parts to a different
component to give read-only access to developers. When you are taking this
approach you must know exactly which parts are attached to each component.
You need a strict naming convention to distinguish common parts from local
parts.

Creating a Release and a Work Area

In this step you create a release and a work area, using your naming convention. This step
is a prerequisite for creating parsers and builders.

Creating Parsers and Builders

You do not have to create a parser or a builder until you run a build process in
TeamConnection. If you are considering creating a build tree from a make file, however,
you should create parsers and builders at this point. It is your responsibility to create
parsers and builders from a make file definition or other definitions.

Parser
The function of a parser is to analyze source files and parse all dependent files.

Chapter 6. Using WorkFrame Projects 85

Builder
For each compiler and each linker you should create a builder. Do not use the
compiler itself as a build script because the build script is copied to the cache
directory for performance. Also, the compiler will stay in memory, so you may get
unexpected results on the next build.

Sample parsers are available for C (fhbopars.cmd), COBOL (fhbcbprs.cmd), and PL/I
(fhbplprs.cmd).

TeamConnection also provides sample build scripts for the VisualAge C++ compiler
(fhbocomp.cmd); VisualAge C++ l ink (fhbolin2.cmd); VisualAge C++ i l ink (fhbolink.cmd);
VisualAge COBOL compiler (fhbcob2.cmd); VisualAge COBOL link (fhbcob2l.cmd); Resource
Compiler (fhborc.cmd); OS/2 PL/I compiler (fhbplbld.cmd); and OS/2 PL/I link (fhbpllnk.cmd).
We recommend that you create different builders when using the same compiler with
different compiler options. For example, you should create a builder for production and a
builder for debugging.

For more information about parsers and builders, see the IBM TeamConnection for OS/2
User′s Guide, SC34-4499.

Note: The FHOMIGMK import utility uses default TeamConnection parser names and
TeamConnection builder names. The default parser for C or C++ source code is
called c, and for resource files it is called rc . The default builder for the C and
C++ comp i le r i s icc , and for the C and C++ linker it is linker . Other default
builders are ipfc for the help file compiler and res for the resource compiler. Create
these parsers and builders for the release before you run this utility.

Determining the Import Rules

When you are importing make files with the FHOMIGMK utility, you have to prepare a file
that contains all rules for importing the make files. This rules file is also useful for
checking whether you have defined all information required to import a WorkFrame project,
even if you are not using the FHOMIGMK utility. If you create a rules file, it will be easier
to import a project that does not use make files. It may be easier to modify a default rules
file that TeamConnection provides than to create a new one. The default rules file is
TEAMC\BIN\FHOMIGMK.RUL

In this section we create a new rules file to import the sample WorkFrame projects shown
in Figure 28 on page 87. Each sample project has a root directory and some
subdirectories containing different types of files.

86 TeamConnection and WorkFrame Integration

 project1 D:\proj1\bin - contains target files (*.exe, *.obj, *.res)
D:\proj1\src - contains source files (*.c)

contains resource files (*.rc)
contains make files (*.mak)
contains map files (*.map)
contains icon files (*.ico)

D:\proj1\inc - contains include files (*.h)

 project2 D:\proj2\bin - contains target files (*.exe, *.obj, *.res)
contains map files (*.map)

D:\proj2\src - contains source files (*.c)
contains resource files (*.rc)
contains make files (*.mak)
contains ipf files (*.ipf)

D:\proj2\hlp - contains icon files (*.ico)
contains help files (*.hlp)

D:\proj2\inc - contains include files (*.h)

Figure 28. Sample WorkFrame Projects

1. Determine the component

First of all you must determine the components to which parts are being attached. For
each part, define a component. To make life easier, use wild cards (* and ?) in part
names.

Generally WorkFrame projects have a directory structure for project management. If
so, you can use this directory structure as a file mask.

For example, let us assume that project1 in Figure 28 will be attached to a component,
server, and project2, to a component, client. Your rules file will contain file masks and
components as in Figure 29.

file masks components

D:\proj1* server
D:\proj2* client

Figure 29. Example of a Rules File: Components

2. Define the file types and the connections

You must decide on the file type of each part. Parts can be either binary, text, or none,
depending on the data they contain:

binary
Indicates that the part being created is a binary file

Chapter 6. Using WorkFrame Projects 87

text
Indicates that the part being created is a text file (the default)

none
Indicates that the part being created will never contain data. This type will not
be used if you are importing an existing WorkFrame project.

You also must decide on the connection between a part and its parent:

input
Specifies that the part is an input to the build of its parent. A source file is an
example.

output
Specifies that the part is built at the same time its parent is built. A map file is
an example.

dependent
Specifies that the part is needed to build its parent, but it is not an input to the
build. In C, #include file is an example.

none
Specifies that the part will not be connected to another part even though a
dependency was found in the make file.

Note: In the sample rules file, it is stated that you can use an option called
associate. Do not use that option because TeamConnection does not
accept it.

To define both file type and connection, change or add new file masks in the rules file;
that is, create a file mask to distinguish a binary file from a text file and create another
mask to distinguish a connection from being either input, output, or dependent. Your
rules file would then look like that in Figure 30 on page 89.

88 TeamConnection and WorkFrame Integration

file masks type connect components

D:\proj1\bin*.exe binary input server
D:\proj1\bin*.obj binary input server
D:\proj1\bin*.res binary input server
D:\proj1\src*.map text output server
D:\proj1\src*.c text input server
D:\proj1\src*.ico binary input server
D:\proj1\src*.rc text input server
D:\proj1\inc*.h text dependent server

D:\proj2\bin*.exe binary input client
D:\proj1\bin*.obj binary input server
D:\proj1\bin*.res binary input server
D:\proj2\bin*.map text output client
D:\proj2\src*.c text input client
D:\proj2\src*.rc text input client
D:\proj2\src*.ipf text input client
D:\proj2\hlp*.ico binary input client
D:\proj2\hlp*.hlp binary input client
D:\proj2\inc*.h text dependent client

Figure 30. Example of a Rules File: File Types and Connections

3. Define the initial contents and associate the builders and the parsers

Define the path and the file name from which a part acquires its contents. The initial
content will then be imported into a TeamConnection database.

The parameters for initial contents are:

* Contents are expected to be in the directory specified in a make file.

none
Specifies that this part does not have contents. Examples would be target files
and output files.

directory name
Contents are expected to be found under the directory with the name specified
in a make file. For example, if a file name, src\xxx.c, is found in a make file,
and the contents are d:\ppp, TeamConnection looks for d:\ppp\src\xxx.c.

As stated before, you should define parsers and builders before this step. Associate
the parsers and builders with their respective parts.

Also define parameters for the builders if there is any. Parameters should be enclosed
by double quotations if there are spaces in them.

By including these information, your rules file would be as in Figure 31 on page 90.

Chapter 6. Using WorkFrame Projects 89

 file masks type builder parser connect content parameter component

D:\proj1\bin*.exe binary linker none input none none server
D:\proj1\bin*.obj binary icc none input none none server
D:\proj1\bin*.res binary res none input none none server
D:\proj1\src*.map text none none output none none server
D:\proj1\src*.c text none c input * none server
D:\proj1\src*.ico binary none none input * none server
D:\proj1\src*.rc text none rc input * none server
D:\proj1\inc*.h text none c dependent * none server

D:\proj2\bin*.exe binary linker none input none none client
D:\proj2\bin*.obj binary icc none input none none client
D:\proj2\bin*.map text none none output none none client
D:\proj2\bin*.res binary res none input none none server
D:\proj2\src*.c text none c input * none client
D:\proj2\src*.rc text none rc input * none client
D:\proj2\src*.ipf text none ipf input * none client
D:\proj2\hlp*.ico binary none none input * none client
D:\proj2\hlp*.hlp binary ipfc c input none none client
D:\proj2\inc*.h text none c dependent * none client

Figure 31. Example of a Rules File 3

90 TeamConnection and WorkFrame Integration

Convert a Make File into a Command File

The TeamConnection FHOMIGMK import utility translates WorkFrame make files into
TeamConnection command files, using the rules file.

Here is the basic action of FHOMIGMK:

1. FHOMIGMK runs the nmake command with the /p option.

The /p option writes out all macro definitions and target definitions from the make file.
Figure 32 shows a sample make file.

.SUFFIXES: .cpp .obj .rc .res

.rc.res:
@echo ″ Compile::Resource Compiler ″
rc.exe -r %s d:\proj1\bin\%|fF.RES

.cpp.obj:
@echo ″ Compile::C++ Compiler ″
icc.exe /Id:\proj1\inc; /Fo″D:\proj1\bin\%|fF.obj″ /C %s

\proj1\bin\proj1.exe: \
\proj1\bin\proj1.obj \
\proj1\bin\proj1.res
@echo ″ Link::Linker ″
@echo ″ Bind::Resource Bind ″
icc.exe @<<
/Fed:\proj1\bin\proj1.exe

<<
rc.exe \proj1\bin\proj1.res \proj1\bin\proj1.exe

\proj1\bin\proj1.res: \
\proj1\src\proj1.rc \
\proj1\inc\proj1.ico \
\proj1\inc\proj1.hpp

\proj1\bin\proj1.obj: \
\proj1\src\proj1.cpp \
\proj1\inc\proj1.hpp \

Figure 32. Sample Make File for Project1

2. FHOMIGMK extracts file names and dependencies

Running nmake with the /p option creates output in the format shown in Figure 33 on
page 92.

Chapter 6. Using WorkFrame Projects 91

MACROS:

INCLUDE = D:\IBMCPP\INCLUDE;D:\IBMCPP\INCLUDE\OS2;D:\IBMCPP\INC;D:\IBMCPP\INCLUDE\SOM
WORKPLACE__PROCESS = NO

VBPATH = .;D:\IBMCPP\DDE4VB
BC = bc
CC = icc

•
 INFERENCE RULE:

 .rc.res:

commands: @echo ″ Compile::Resource Compiler ″
rc.exe -r %s d:\proj1\bin\%|fF.RES

 .cpp.obj:

commands: @echo ″ Compile::C++ Compiler ″
icc.exe /Id:\proj1\inc; /Fo″D:\proj1\bin\%|fF.obj″ /C %s

 TARGETS:

 \proj1\bin\proj1.obj:

flags:
dependents: \proj1\src\proj1.cpp

\proj1\inc\proj1.hpp
commands:

 \proj1\bin\proj1.exe:
flags:
dependents: proj1.obj proj1.res
commands: icc.exe @<<
/Fed:\proj1\bin\proj1.exe
\proj1\bin\proj1.obj

 <<
rc.exe d:\proj1\bin\proj1.res d:\proj1\bin\proj1.exe

 \proj1\bin\proj1.res:

flags:
dependents: d:\proj1\src\proj1.rc

d:\proj1\inc\proj1.ico
d:\proj1\inc\proj1.hpp

commands:

Figure 33. Sample Output from nmake

FHOMIGMK creates parts from the TARGETS: field and the dependents: field. For each
target, a create part statement is generated, and for each dependent, a create part
statement and a connect part statement are generated.

92 TeamConnection and WorkFrame Integration

The Name of a Part

Set a path name in the TC_MAKEIMPORTTOP variable to strip off the leading part
of the path name from the part name.

For example, assume you have TC_MAKEIMPORTTOP set to the path D:\proj1. If
your make file references file proj1.obj in directory d:\proj1\bin, FHOMIGMK will
use bin\proj1.obj as a part name.

3. FHOMIGMK checks the rules file and sets options for each statement created in step 2.

It is advisable to run FHOMIGMK with the /k option. This option creates a command file
without executing it. This enables you to check the command file before creating anything
in TeamConnection.

Figure 34 shows a sample command file created by FHOMIGMK.

Note: In this example, the family, release, and work area options are stripped off for ease
of understanding. You can set these options in two ways: (1) Set them as
FHOMIGMK utility options, or (2) set the TC_FAMILY, TC_RELEASE, and
TC_WORKAREA environment variables for each option.

teamc part -create proj1\bin\proj1.exe -binary -builder linker -empty -component server
teamc part -create proj1\bin\proj1.obj -binary -builder icc -empty -component server
teamc part -create proj1\bin\proj1.res -binary -builder res -empty -component server
teamc part -create proj1\src\proj1.cpp -text -parser c -from d:\proj1\src\proj1.cpp -component se
teamc part -create proj1\src\proj1.rc -text -parser rc -from d:\proj1\src\proj1.rc -component se
teamc part -create proj1\src\proj1.ico -binary -from d:\proj1\inc\proj1.ico -component se
teamc part -create proj1\inc\proj1.hpp -text -parser c -from d:\proj1\inc\proj1.hpp -component se
teamc part -connect proj1\src\proj1.ico -parent proj1\bin\proj1.res -input
teamc part -connect proj1\src\proj1.rc -parent proj1\bin\proj1.res -input
teamc part -connect proj1\inc\proj1.hpp -parent proj1\bin\proj1.res -dependent
teamc part -connect proj1\src\proj1.cpp -parent proj1\bin\proj1.obj -input
teamc part -connect proj1\inc\proj1.hpp -parent proj1\bin\proj1.obj -dependent
teamc part -connect proj1\bin\proj1.obj -parent proj1\bin\proj1.exe -input
teamc part -connect proj1\bin\proj1.res -parent proj1\bin\proj1.exe -input

Figure 34. Sample Command Fi le fo r pro jec t1

Chapter 6. Using WorkFrame Projects 93

Unsupported Syntax

FHOMIGMK does not support the full syntax in a make file dependency list:

• Paths enclosed by {}

With nmake you can use {} to search for dependent files; for example:

 targets : {directory1,directory2...}dependents

But FHOMIGMK will try to create a part named
{directory1,directory2...}dependents. To prevent this, change {} to the actual
path name instead.

• Same target in several description blocks

With nmake you can use a file in more than one description block; for
example:

target :: dependent1
command1

target :: dependent2
command2

FHOMIGMK will try to create two parts, target and target :. To prevent this,
split the make file in two and create a different build tree for each make file.

94 TeamConnection and WorkFrame Integration

If You Do Not Have a Make File...

If you do not have a make file that represents your WorkFrame project, you can
use the WorkFrame makemake utility to create one, or you can try the approach
presented here. We assume that you have taken all of the fundamental steps for
migration described in this chapter, up to creating a rules file (that is, steps 1
through 4).

1. Create a make file with a basic dependency list.

A basic dependency list is a dependency list without the include files. The
dependencies of the source code must be defined in your make file. So your
make file has all information except the include file dependencies.

2. Import the make file, using the FHOMIGMK utility.

In this step you create a basic build tree in TeamConnection. Before running
the utility, check that all parsers are correctly defined in the rules file. Your
build tree will have the following structure:

─ EXE
│
├─ OBJ ── SOURCE
│
├─ OBJ ── SOURCE
│
└─ OBJ ── SOURCE

3. Create parts for all include files.

Use the TeamConnection command line interface for this step rather than
using a WorkFrame action provided by TeamConnection. You will need one
TeamConnection command statement for each include file, as in this example:

 teamc -part create part name -from include file name
-component server -parser c

4. Run build in TeamConnection

When you run the build function, the parsers get all of the dependencies of the
source parts and create a build tree with all the dependency parts in it.

You now have a complete build tree with all dependencies connected to the parent
parts.

Chapter 6. Using WorkFrame Projects 95

Verifying the Results

Always verify the results of running the FHOMIGMK utility because they may not be what
you expected. If the results are not what you expected, check each migration step to solve
the problem. The build tree can always be corrected by using the part -connect and part
-disconnect commands.

For verification, build the target file, using the TeamConnection build function and compare
it with the target file created in WorkFrame.

96 TeamConnection and WorkFrame Integration

Appendix A. Sample REXX Programs

We do not know whether there ever will be a general and automated approach to
integrating WorkFrame and TeamConnection that will enable you to maintain the full
flexibility of both products. But with the current versions, you have to devise your own
integration approach, if you want to use the two products together in a workable way. This
implies that you will have to spend some time defining the way your developers should
work with the tools and provide a set of WorkFrame actions, variables, and types that best
meets your needs.

The REXX programs included in this appendix provide an example of integrating the two
products. Unfortunately, the TeamConnection integration approach implemented by
TWI_DO as well as the automatic generation of a new project (TWI_PRJ,
TWI_XBT,TWI_GPT) using the Project Smarts interface of WorkFrame suffer from some
restrictions in the current levels of WorkFrame and TeamConnection.

 Disclaimer.

Do not expect a complete solution from the REXX programs included in this appendix.
The programs were written in only a few weeks to evaluate the feasibility of a
customized WorkFrame/TeamConnection integration setup. They are only meant to
serve as an example or a base from which you can begin to develop your own setup!

For the purpose of readability, we group the code in a logical way. Therefore some pages
have more white space than others.

 Copyright IBM Corp. 1996 97

Notes on Project Smarts

In this section we present some notes and remarks from our findings in trying to integrate
the TeamConnection and WorkFrame products.

Documentation

The Project Smarts section of the VisualAge for C++ User ′s Guide and Reference contains
the following discrepancies:

The NewLine character in a REXX string is not ′ \n ′. You can specify a NewLine in a REXX
string in several ways. The following is one way of achieving readability:

...
″PAMLOCATION:IWFBPAM=″path1 || NewLine(),

|| path2 || NewLine(),
...

where NewLine is defined as:

...
NewLine:
 Return ′ 0a′ x
...

The backslash (\) is handled as a control character by some of the Project Smarts functions,
such as:

• IwfQueryVariables
• IwfSaveVariables

If, for example, you provide the c:\prj\build default path before calling
IwfQueryVariables(), the path will show up as something like c:\prj�uild, because the C
program recognizes the \b as a backspace control character.

The meaning of return codes like 25xxx can sometimes be determined by subtracting 25000
from the return code and issuing HELP xxx on the OS/2 command line. This of course
only works if the WorkFrame code uses the “standard” OS/2 error numbering scheme.

Return code 25002 seems to mean project file not found. If, for example, you want to use
the IwfAddVariable() function to add some variables to a project with a name containing
NewLine characters, you will get this error if you use the project′s name as the file
name portion in the stem.pszProject parameter (path of project file).

In this case, use the value returned in the stem.pszTargetFile variable by the
IwfCreateProjectFrom...() functions!

98 TeamConnection and WorkFrame Integration

Return Code 25013 seems to mean variable or action already defined.

SysCreateObject(IWFProject,...)

When spanning the call to SysCreateObject over several lines, remember that the different
parameters for this function have to be separated by commas, and that the line
continuation character of REXX is a comma too. So a call to SysCreateObject() has to
look like the following:

Call SysCreateObject(″IWFProject″ ,,
my_title ,,
... ,,
setup_string ,,
options);

or:

Call SysCreateObject(″IWFProject″ ,
,my_title ,
,... ,
,setup_string ,
,options);

Therefore:

• Do not use spaces between SysCreateObject() and the ″(″.
• Use two subsequent commas (,) if you want to split a line with a new parameter.

TRUE or FALSE does not work as values for the MON... controls in the Object Setup string.
Unfortunately, the values accepted for the

• MONAUTOSCROLL
• MONAUTOERASE
• MONDISPLAYONSTART
• MONHIDEONCOMPLETION

controls are not TRUE and FALSE as stated in the VisualAge for C++ User ′s Guide and
Reference, but YES and NO as shown in this example:

setup_string = ″RUNPROMPT=FALSE;″ ,
|| ″RUNMONITORED=FALSE;″ ,

...
|| ″MONAUTOSCROLL=YES;″ ,
|| ″MONAUTOERASE=NO;″

Appendix A. Sample REXX Programs 99

IwfCreateProjectFromProject

Undocumented return parameter stem.pszTargetFile
Contrary to the documentation, all of the IwfCreateProjectFrom...() functions, seem to
return a file name of the project file that is different from the title specified in
stem.pszTargetProject, if for example, NewLine characters are used in the title.

IwfQueryVariables

Carriage Return - Line Feed (CrLf) sequences may be returned in the stem.pszVariableValue.i
strings if you press Enter in the Variable Setting field of the dialog window. A simple
way to get rid of these CrLf sequences is to Translate them to blanks, using the following
code sequence:

stem.pszVariableValue.i = Translate(stem.pszVariableValue.i,″ ″ , CrLf())

where CrLf is defined as:

CrLf:
 Return ′ 0d0a′ x

IwfSaveVariables and IwfRestoreVariables

If the value of a variable has been set to the null string in the IwfQueryVariables dialog
window and you are using the IwfSaveVariables() and IwfRestoreVariables() functions to
save and restore the values for the next invocation, be aware that, after running
IwfRestoreVariables(), the value of a stem.pszVariableValue.i variable will no longer be
the null string, but the contents of stem.pszVariableName.i (the name of the variable
surrounded by % characters).

IwfAddVariable

If stem.pszValue is the null string when IwfAddVariable is invoked, the value of the variable
in the project will actually be set to the value of stem.pszName surrounded by %
characters.

This might not have the effect you intended. So take appropriate action and set the
variable to a single-space character or something appropriate before calling
IwfAddVariable().

100 TeamConnection and WorkFrame Integration

File and Project Action Options of IWFOPT.DLL

Never specify %a %z twice in the same option string in WorkFrame fix levels below
CTW303. There currently exists a problem in WorkFrame that will hang your system
when the %a %z (all selected files) substitution string is used more than once in the
same option string. The problem will be fixed in a later update of WorkFrame.

There is no way to set action options from a REXX program
Unfortunately, the default action support DLL (IWFOPT.DLL) does not provide an
interface to set the option strings for file and project actions from a REXX command file.
The only way to set or modify the settings is through the GUI.

Appendix A. Sample REXX Programs 101

Defining Our Own Set of WorkFrame Actions

TWI_DO: TeamConnection Actions for WorkFrame

This REXX program implements the TeamConnection actions for WorkFrame. TWI_DO.CMD
(see Figure 35 on page 103) basically uses the TeamConnection command line interface as
well as the REXX queue (RxQueue) interface to accomplish this task.

The program basically:

• Checks that all required environment information is available

and
• Combines one or more logical steps into one WorkFrame action (for example,

CheckOut, Edit, and CheckIn).

For a list of the available functions please see “Actions Defined in the TWI_PRJ Project” on
page 75.

Note: This program provides a set of useful actions to perform TeamConnection functions
from the WorkFrame environment. Nevertheless, this is only one possible approach.
If your requirements or wishes are different, you should be able to easily enhance or
modify this program to fit your needs.

102 TeamConnection and WorkFrame Integration

/* **
TeamConnection / WorkFrame integration support macro

File ..: TWI_DO.CMD
 Project: A TeamConnection/WorkFrame integration approach ...

Author : L. Sparmann (SPARMANN @ BOEVM2)
Owner .: L. Sparmann (SPARMANN @ BOEVM2)

Description :

This program is implementing a set of TC functions as WF actions...

Version and Change History:
--------------------------*/
version = ″1.00 dated: 4.Apr.96 by: L. Sparmann″

 reason = ″Initial version ...″
/*
***/
 Address CMD
″@ECHO OFF″

/* ----------------------------*\
Setup for error trapping

-----------------------------/

 Signal on NOVALUE ; Signal on SYNTAX ; /* SIGNAL only ! */
Call on FAILURE ; Call on ERROR ; /* SIGNAL & CALL */
 Call on NOTREADY ; Signal on HALT ; /* SIGNAL & CALL */

 /* --*\
Set up the global variables...

 ---/
 XRc = 0

 /* --*\
Basic setup ...

 ---/
 g. = ″?″ /* All my global variables ... */
 g.exitcmds = ″″ /* Cmds to be executed on Exit */

Figure 35 (Part 1 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 103

/* --------------------------------------*\
Get the call environment

---------------------------------------/
 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .
 g.mypath = FileSpec(″PATH″ ,g.mypname)
 g.mydrive = FileSpec(″DRIVE″ , g.mypname)

/* --------------------------------------*\
Load OS/2 built-In Utilities

---------------------------------------/
 If (RxFuncQuery(″SysLoadFuncs″)) Then Do

Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs
End

/* --------------------------------------*\
It′ s good practice to clean up the
REXX Queue in the beginnig

---------------------------------------/
 Do Queued(); Pull .; End

/* --------------------------------------*\
Get a system unique name
(using the REXX Queue for this)

---------------------------------------/
 g.myqid = RxQueue(″CREATE″ ,)
 dyRc = RxQueue(″DELETE″ , g.myqid) /* we do not need the Queue ! */

/* --------------------------------------*\
Create a unique temporary filename

---------------------------------------/
 tmp = Value(″TMP″ , , ″ OS2ENVIRONMENT″)
 If (tmp = ″″) Then Do

tmp = Value(″TEMP″ , , ″ OS2ENVIRONMENT″)
If (tmp = ″″) Then Do
Call Abort(200,

″There is no TMP or TEMP environment variable specified!″)
End

End

 g.tmpfile = SysTempFileName(Strip(tmp,″T″ , ″\″)″\″Left(g.myqid,8)″ .???″)
 g.exitcmds = g.exitcmds ″ERASE″ g.tmpfile ″2>NUL ″

Figure 35 (Part 2 of 25). TWI_DO.CMD

104 TeamConnection and WorkFrame Integration

 /* --*\
Look for debug or trace setings

 ---/
 If (Value(″TWI_TRACE″ , , ″ OS2ENVIRONMENT″) = ″ON″) Then g.trace? = 1

Else g.trace? = 0

 /* --*\
Set up local stuff

 ---/
/* --------------------------------------*\

TC Error Message Codes
---------------------------------------/

 tc_err_PartDoesNotExist = ″0010-052″
 tc_err_PartNotCheckedOut = ″0010-264″

 /* --*\
Get Arguments (as typed = mixed case) and provide help if desired

 ---/
 Parse Arg allargs

 If (allargs = ″″) ,
| (allargs = ″?″) Then Do
Say g.myname″ : ″
Say
Say ″ Syntax:″ g.myname ″ function funcparms″
Say
Say ″Additional output for problem determination will be produced,″
Say ″if the TWI_TRACE environment variable is set to ON.″
Say
Exit 100
End

 /* --*\
Ensure, that the TC environment is defined completely, so that
we can do our job without asking stupid questions ...

 ---/
/* --------------------------------------*\

Required information ...
... from the TC standard environment

---------------------------------------/
 XRc = XRc + Get_and_Check_TC_Variable(″TC_USER″)
 XRc = XRc + Get_and_Check_TC_Variable(″TC_FAMILY″)
 XRc = XRc + Get_and_Check_TC_Variable(″TC_RELEASE″)
 XRc = XRc + Get_and_Check_TC_Variable(″TC_WORKAREA″)
 XRc = XRc + Get_and_Check_TC_Variable(″TC_CASESENSE″)
 XRc = XRc + Get_and_Check_TC_Variable(″TC_BUILDPOOL″)

Figure 35 (Part 3 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 105

/* --------------------------------------*\
... that is WF integration specific

---------------------------------------/
 XRc = XRc + Get_and_Check_TC_Variable(″TWI_RELATIVE″)
 XRc = XRc + Get_and_Check_TC_Variable(″TWI_EDITOR″)

″SET TC_TOP=″ /* If TC_TOP is set we got problems when locking parts */
/* --------------------------------------*\

For problem determination only ...
---------------------------------------/

 If (g.trace?) Then Do
Call InfMsg(″¬ Required Environment variables:″ ,

″¬3 TC_USER:″ g.TC_USER ,
″¬3 TC_FAMILY:″ g.TC_FAMILY ,
″¬3 TC_RELEASE:″ g.TC_RELEASE ,
″¬3 TC_WORKAREA:″ g.TC_WORKAREA ,
″¬3 TC_CASESENSE:″ g.TC_CASESENSE ,
″¬3 TC_BUILDPOOL:″ g.TC_BUILDPOOL ,
″¬3 TWI_RELATIVE:″ g.TWI_RELATIVE ,
″¬3 TWI_EDITOR:″ g.TWI_EDITOR ,
″¬3 TC_TOP: --(cleared)--″ ,
″¬ ″)

End
/* --------------------------------------*\

Optional information ...
from the TC standard environment

---------------------------------------/
 g.TC_BECOME = Value(″TC_BECOME″ ,,″OS2ENVIRONMENT″)

 If (g.TC_BECOME <> ″″) Then g.becomeuser = ″-become″ g.TC_BECOME
Else g.becomeuser = ″″

/* --------------------------------------*\
... that is WF integration specific

---------------------------------------/
 g.TWI_TARGET_PART = Value(″TWI_TARGET_PART″ , , ″OS2ENVIRONMENT″)
 g.TWI_RELEASE_PART = Value(″TWI_RELEASE_PART″ , , ″ OS2ENVIRONMENT″)

Figure 35 (Part 4 of 25). TWI_DO.CMD

106 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
For problem determination only ...

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ Optional Environment variables:″ ,
″¬3 TC_BECOME:″ g.TC_BECOME ,
″¬3 TWI_TARGET_PART:″ g.TWI_TARGET_PART ,
″¬3 TWI_RELEASE_PART:″ g.TWI_RELEASE_PART,
″¬ ″)

End
/* --------------------------------------*\

Prepare the -relative parameter
---------------------------------------/

 u_tc_relative = Translate(g.twi_relative)
 tc_rel_length = Length(g.twi_relative)
 tc_rel_parm = ″-relative″ g.twi_relative

/* ---*\
Start processing now...

--/
 Parse Var allargs function filelist ″(″ funcparms
 g.U_function = Translate(function)

/* --------------------------------------*\
If any of the REQUIRED environment

variables are not set: Stop !
---------------------------------------/

 If (XRc <> 0) Then Do
Call Abort(300+XRc ,

″Some required environment variables are not set, cannot continue!″)
End

Figure 35 (Part 5 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 107

/* --------------------------------------*\
Strip off the projects base path from
the filespecs to get the PARTLIST.
(Names folded to UPPERCASE for compare)

---------------------------------------/
 filelist1 = filelist /* save contents of filelist */
 partlist = ″″
 Do While (filelist1 <> ″″)

Parse Var filelist1 file filelist1
If (Left(Translate(file),tc_rel_length) = u_tc_relative)
Then part = Substr(file,tc_rel_length+1)
Else part = file

part = Strip(part,″Leading″ , ″\″) /* Note TeamConnection does */
part = Strip(part,″Leading″ , ″ / ″) /* understand / as well as \ */
partlist = partlist part
End

 /* --*\
Now handle the function requests ...

 ---/
 Select
/* ---*\

Edit a set of parts
--/
When (g.U_function = ″EDIT″) Then Do
XRc = DoIt(″MSG″ , 0 ,

,′ START ″ ′ g.myname″:″ g.twi_editor filelist′ ″ ′ ,
″ / F /C /MIN″ g.mypname ″$EDIT″ filelist ″(″ funcparms)

End /* When */

Figure 35 (Part 6 of 25). TWI_DO.CMD

108 TeamConnection and WorkFrame Integration

/* ---*\
Edit a single part:

- Check out the part
- Call the editor (it must be a synchronous call!)
- Check in the part

Note: If the $EDIT function is called with a list of files, it will
invoke the EDIT function using a recursive call !

--/
When (g.U_function = ″$EDIT″) Then Do
part = partlist
file = filelist

XRc = DoIt(″MSG″ , 0 , ″TEAMC part -checkout″ part tc_rel_parm)
/*---------------------------------------*\

Insert (list of) file(s) into editor
invocation string replacing ?FILES?

---------------------------------------/
ctl_pos = POS(″?FILES?″ , Translate(funcparms))
If (ctl_pos > 0) Then Do
funcparms = DelStr(funcparms,ctl_pos,7)
funcparms = Insert(filelist,funcparms,ctl_pos-1)
End

″CALL″ g.twi_editor funcparms
/* --------------------------------------*\

Ask for check in
---------------------------------------/

button = MsgBox(″Do you want to check in″ part,
,g.myname″:″ g.U_function,
,″YesNo″ , ″Query″)

If (Button = ″YES″) Then Do
XRc = DoIt(″MSG″ , 1 , ″TEAMC part -checkin″ part tc_rel_parm)
If (XRc <> 0) Then Do
Call Abort(″Could not check in″ part ″ (″file″) | ″ ,

″Please make sure, that the problem will be solved,″ ,
″and the part is then checked in as soon as possible!″)

End /* If (XRc... */
End /* If (MBXrc... */

End /* When */

Figure 35 (Part 7 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 109

/* ---*\
Define a part
- We do it unattended if a default component was specified
- We use the TEAMC GUI call if no default component is given

--/
/***
 ** We do not recommend using this interface, since one copy of **
 ** the TEAMCGUI program will be loaded for each invocation **
 ** and will stay in memory even if the TEAMCGUI function **
 ** has successfully ended! **
 **/
When (g.U_function = ″DEFINE″) Then Do
XRc = DoIt(″MSG″ , 0 , ″START TEAMCGUI -filesfull″ ,

″-relative″ g.twi_relative,
″-create″ ,
g.tc_release,
g.tc_workarea,

″-nologo″)
End /* When */

/**/

/* ---*\
CheckOut a part

--/
When (g.U_function = ″CHECKOUT″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -checkout″ partlist tc_rel_parm)
End /* When */

/* ---*\
CheckIn a part

--/
When (g.U_function = ″CHECKIN″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -checkin″ partlist tc_rel_parm)
End /* When */

Figure 35 (Part 8 of 25). TWI_DO.CMD

110 TeamConnection and WorkFrame Integration

/* ---*\
CheckIn a part (with Create and Lock support)

- try to check in the part
If the part does not yet exist

- ask if we should create it
--/
When (g.U_function = ″CHECKIN+″) Then Do

Do partloop=1 While (partlist <> ″″)
Parse Var partlist part partlist

msg = ″NOMSG″ /* first time, NO messages */
Do retryloop=1 To 2 Until (XRc = 0)

XRc = DoIt(msg,1,″TEAMC part -checkin″ part tc_rel_parm)

msg = ″MSG″
/* --------------------------------------*\

In case of error we get the TC Message
code from the first line of the error
messages in the TMPFILE

---------------------------------------/
If (XRc <> 0) Then Do
Parse Value Linein(g.tmpfile,1,1) With tc_error tc_errtext
Call Lineout g.tmpfile /* Close temporary file */

Select
/* ---*\

If Part was not checked out, unlock Part and try again !
--/
When (tc_error = tc_err_PartNotCheckedOut) Then Do
Call InfMsg(″Part″ part ″was not checked out,″ ,

″trying to lock it first...″)
SRc = DoIt(″MSG″ , 1 , ″TEAMC part -lock″ part)
End /* when */

Figure 35 (Part 9 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 111

/* ---*\
For any other type of error retrying makes no sense ..

--/
Otherwise
Leave retryloop
End /* Select */

End /* If (XRc <> 0) */
End retryloop

End partloop
End /* When */
/* ---*\

Show TC Tasklist
--/
When (g.U_function = ″TCTASK″) Then Do

XRc = DoIt(″MSG″ , 0 , ″START TEAMCGUI -family″ g.tc_family,
″-release″ g.tc_release,
″-workarea″ g.tc_workarea,
″-user″ g.tc_user,
g.becomeuser,
″-relative″ g.twi_relative,
″-nologo″)

End /* When */

/* ---*\
Show the parts in the Workarea

--/
When (g.U_function = ″WASHOW″) Then Do
XRc = DoIt(″MSG″ , 0 , ″START TEAMCGUI -filesfull″ ,

″-family″ g.tc_family,
″-user″ g.tc_user,
g.becomeuser,
″-relative″ g.twi_relative,
″-where ″″releaseName in (′ ″ g.tc_release″ ′) ″ ,
″and workareaName in (′ ″ g.tc_workarea″ ′) ″ ,
″order by pathName″ ″ ″ ,
″-nologo″)

End /* When */

Figure 35 (Part 10 of 25). TWI_DO.CMD

112 TeamConnection and WorkFrame Integration

/* ---*\
Analyze Impact of part change

(for one part only)
--/
When (g.U_function = ″IMPACT″) Then Do
Parse Var partlist part .
If (part = ″″) Then Do
Select
When (g.TWI_RELEASE_PART <> ″″) Then part = g.TWI_RELEASE_PART
When (g.TWI_TARGET_PART <> ″″) Then part = g.TWI_TARGET_PART
Otherwise
CALL Abort(2 ″There was no part specified with the function! ¬″,

″Please either select a part, or define a Project″ ,
″or Release Target.″)

End /* Select */
End /* If (part = ″″) */

XRc = DoIt(″MSG″ , 1 , ″TEAMC part -build″ part ″-report″)
End /* When */

/* ---*\
TC Build (one part only !)

All BUILD function specifiers look like this: BLDxyyyy...
where x is the build type P=part, T=project target, R=release
and yyyy may either be FORCed or NORMal

--/
When (Left(g.U_function,3) = ″BLD″) Then Do

/* --------------------------------------*\
Is it a normal or forced build ...

---------------------------------------/
Select
When (Substr(g.U_function,5,4) = ″FORC″) Then Do
force = ″-force″
End

When (Substr(g.U_function,5,4) = ″NORM″) Then Do
force = ″″
End

Otherwise
Call Abort(401 ″Unsupported Build function (option):″ g.U_function)
End /* Select */

Figure 35 (Part 11 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 113

/* --------------------------------------*\
Find the right part to be built if
the user invoked the PART build...

---------------------------------------/
Select
When (Substr(g.U_function,4,1) = ″P″) Then Do
Parse Var partlist part . /* we can do it for one part */
part = FindBuildPart(part)
End /* when */

When (Substr(g.U_function,4,1) = ″T″) Then Do
part = g.TWI_TARGET_PART
End /* when */

When (Substr(g.U_function,4,1) = ″R″) Then Do
part = g.TWI_RELEASE_PART
If (part = ″″) Then part = g.TWI_TARGET_PART
End /* when */

Otherwise
Call Abort(402 ″Unsupported Build function (target):″ g.U_function)

End /* Select */

If (part = ″″) Then Do
Call Abort(23 ″Could not determine a part for build function:″ ,

g.U_function″ . The action is terminated!″)
End

/* --------------------------------------*\
Invoke TC build for the selected target

---------------------------------------/
XRc = DoIt(″MSG″ , 1 , ″TEAMC part -build″ part , force)

/* --------------------------------------*\
Display the build messages

---------------------------------------/
Call InfMsg(″¬ Builder messages:″ ,

″¬ ----------------- ¬ ″)
SRc = DoIt(″MSG″ , 0 , ″TEAMC part -viewmsg″ part)

/* --------------------------------------*\
If build went OK extract objects...

---------------------------------------/
If (XRc = 0) Then Do
Call InfMsg(″ Extracting part″ part ″now ...″)
SRc = DoIt(″MSG″ , 0 , ″TEAMC part -extract″ part tc_rel_parm)
End

End /* When */

Figure 35 (Part 12 of 25). TWI_DO.CMD

114 TeamConnection and WorkFrame Integration

/* ---*\
Touch a part

--/
When (g.U_function = ″TOUCH″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -touch″ partlist)
End /* When */

/* ---*\
View Build Messages

--/
When (g.U_function = ″VIEWBLDMSG″) Then Do
Parse Var partlist part . /* we can do it for one part */
part = FindBuildPart(part)
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -viewmsg″ part)
End /* When */

/* ---*\
Extract part(s)

--/
When (g.U_function = ″EXTRACT″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -extract″ partlist tc_rel_parm)
End /* When */

/* ---*\
Freeze Workarea

--/
When (g.U_function = ″WAFREEZE″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC workarea -freeze″ g.tc_workarea)
End /* When */

/* ---*\
Lock a (list of) part(s)

--/
When (g.U_function = ″LOCK″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -lock″ partlist)
End /* When */

/* ---*\
UnLock a (list of) part(s)

--/
When (g.U_function = ″UNLOCK″) Then Do
XRc = DoIt(″MSG″ , 0 , ″TEAMC part -unlock″ partlist)
End /* When */

Figure 35 (Part 13 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 115

/* ---*\
Unsupported function

--/
Otherwise
Say g.myname″ : Unsupported function″ function
XRc = 99
End /* Select */

 Call Done(XRc)

/* ---*\
Jump to this point to exit the program

--/
Done:

 Arg XRc
/* --------------------------------------*\

If something went on within the EDIT
- keep the session open until user
has seen the error messages.

- If user did nothing for a certain
amount of time show a Pop UP !

---------------------------------------/
 If (((g.U_function = ″$EDIT″) ,

|(g.U_function = ″EDIT″)) ,
& (XRc <> 0)) Then Do
Call InfMsg(″ ¬ . . .press any key to end session ...″)
Do loop=1
If (lines() > 0) Then Leave loop
Call SysSleep 2
If (loop = 10)
Then dy = MsgBox(″Something went wrong in the EDIT function,″ ,

″please look up the corresponding CMD window″ ,
″for more information!″ ,
,g.myname″:″ g.U_function,
,″ENTER″ , ″Exclamation″)

End
End

Figure 35 (Part 14 of 25). TWI_DO.CMD

116 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
This should better be reset in case
the program was interrupted by CTL-C

---------------------------------------/
HALT:
 Signal off Error
 Do While (g.exitcmds <> ″″)

Parse Var g.exitcmds exitcmd ″″ g.exitcmds
Strip(exitcmd)
End

 Exit XRc

/* ===*\
 * Start of local subroutines ...
==/

/* ---*\
This routine is going up the build trees in order to find the first

build part relative to the part specified as a starting point.

We use the REXX stem PARTLIST to walk up the build LEVELs for a
maximum of 9.

If we did not find a build part, a ″?″ is returned instead of a part
name !

--/
FindBuildPart: Procedure Expose XRc g.

/* --------------------------------------*\
Get name of start part and convert the
′ \′ characters to ′ / ′ for TC Queries!

---------------------------------------/
 Parse Arg startpart .
 startpart = Translate(startpart,″ / ″ , ″\″)

/* --------------------------------------*\
We better clean up the REXX Queue first

---------------------------------------/
 Do Queued(); Pull . ; End;

Figure 35 (Part 15 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 117

/* --------------------------------------*\
Initialize level and partlist

---------------------------------------/
 buildpart = ″″

 level = 0
 partlist. = ″0″
 partlist.level.0 = ″1″
 partlist.level.1 = startpart

 /* --*\
Now start stepping up the build tree level by level...

 ---/
 Do level = 0 to 9

partindex = 0
nextlevel = level+1
Do i = 1 to (partlist.level.0)
mypart = partlist.level.i
If (g.trace?) Then Do
Say ″Looking at part″ mypart ″now ...″
End

/* --------------------------------------*\
Check if Part is build part ...

---------------------------------------/
″TEAMC Report -raw -view PartView″ ,

″-where ″″nuPathName = ′ ″ mypart″ ′ ″ ″ ″ ,
″-release″ g.TC_RELEASE,
″-workarea″ g.TC_WORKAREA ″ | RXQueue″

builder1 = ″″
If (Queued())
Then Parse Pull . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ builder1 ″ | ″ .

Do Queued() /* We only expect one line on the queue, */
Pull . ; End /* ... but just be sure ! */

Figure 35 (Part 16 of 25). TWI_DO.CMD

118 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
If its a build part, we are done !

---------------------------------------/
If (builder1 <> ″″) Then do
buildpart = mypart
Leave level /* loop */
End

/* --*\
It′ s no build part, so look for any parent parts now..

---/
Else Do
If (g.trace?) Then Do
Say ″ ... was not a builder part !″
End

″TEAMC Part -view″ mypart ,
″-long -release″ g.TC_RELEASE,
″-workarea″ g.TC_WORKAREA ″ | RXQueue″

/* --------------------------------------*\
Save everything in a stem, we need the
REXX Queue within the loop again!

---------------------------------------/
QSaved.=″″
QSize = Queued()
Do QLine = 1 to QSize
Parse Pull Qsaved.QLine
End QLine

InBuildRelationshipSection = 0

Do QLine = 1 to Qsize

If (QSaved.QLine = ″build relationships:″) Then Do
InBuildRelationshipSection = 1
Iterate QLine /* loop */
End

If (\InBuildRelationshipSection)
Then Iterate Qline /* loop */

If (QSaved.QLine = ″versions:″)
Then Leave QLine /* loop */

Figure 35 (Part 17 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 119

/* --*\
So let′ s scan the build relationship lines for build parts

---/
Parse Var QSaved.QLine partname parttype relation .

/*---------------------------------------*\
Put potential candidates into partlist
for inspection in the next level

---------------------------------------/
If (relation = ″OutputOf″) ,
| (relation = ″DependsOn″) Then Do
partindex = partindex + 1
partname = Strip(partname)
partlist.nextlevel.partindex = partname
If (g.trace?) Then Do
Say ″ ... saving for next iteration:″ partname
End

End
/* --------------------------------------*\

Have closer look to these immediately !
(just for response time reasons)

---------------------------------------/
builder2 = ″″
If (relation = ″OutputOf″) Then Do
″teamc Report -raw -view PartView″ ,

″-where ″″nuPathName = ′ ″ partname″ ′ ″ ″ ″ ,
″-release″ g.TC_RELEASE,
″-workarea″ g.TC_WORKAREA ″ | RXQueue″

If (Queued())
Then Parse Pull . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ builder2 ″ | ″ .

Do Queued() /* We only expect one line on the queue, */
Pull . ; End /* ... but just be sure ! */

Figure 35 (Part 18 of 25). TWI_DO.CMD

120 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
If its a build part, we are done !

---------------------------------------/
If (builder2 <>″″) Then Do
buildpart = partname
Leave level /* loop */
End

End /* If (relation... */
End qline /* loop */

End /* If (builder2 = ″″) Else */
End i
partlist.nextlevel.0 = partindex

End level /* loop */

 If (buildpart = ″″)
Then Say ″>>> Could no find a build part for:″ startpart
Else Say ″>>> Using build part:″ buildpart

 Return buildpart

/* ---*\
Read in TC Environment variable and check if it is set ...

--/
Get_and_Check_TC_Variable:
 Arg tc_variable .
 g.tc_variable = Value(tc_variable,,″OS2ENVIRONMENT″)
 XRc = (g.tc_variable = ″″)
 If (XRc <> 0) Then Do

Call ErrMsg(tc_variable ″not set!″)
End

 Return XRc

Figure 35 (Part 19 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 121

/* ---*\
Execute an OS/2 Program:

- Saves Error messages in the TMPFILE
- Checks Rc
- Display error messages if desired

Note: We do not pipe the messages to the RXQUEUE service, because
RXQUEUE would change the return code to 0 !!!

--/
DoIt: Procedure Expose g.

 Parse Arg msg , MaxRc , TC_cmd

 If (g.trace?) Then Say TC_Cmd

 Signal off Error
″ERASE″ g.tmpfile ″2>NUL″ /* Just be sure, erase the file first! */
 TC_cmd ″2>″ g.tmpfile /* Save Error messages into TMPFILE */
 XRc = Rc
 Signal on Error

Figure 35 (Part 20 of 25). TWI_DO.CMD

122 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
In case of error, write out the error
messages generated by the command

---------------------------------------/
 If (XRc <> 0) Then Do

If (msg = ″MSG″) Then Do
Call ErrMsg(″Error (″XRc″) executing: ¬ ¬″ TC_cmd)
Say

″TYPE″ g.tmpfile /* ??? We might check the existence first ! */
Say
End

Else Do
If (g.trace?) Then Do
Call InfMsg(″Error (″XRc″) executing: ¬ ¬″ TC_cmd)
Say

″TYPE″ g.tmpfile /* ??? We might check the existence first ! */
Say
End

End /* Else Do */
End /* If (XRc <> 0) Then */

 If (XRc > MaxRc) Then Call Done(XRc)

 Return XRc

/* ---*\
Stop processing issuing an error message and giving back an Rc

--/
Abort: Procedure Expose XRc g.
 Parse Arg retcode message
 Call ErrMsg(message)
 Call Done(retcode)
 Return

Figure 35 (Part 21 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 123

/* ---*\
ErrMsg/InfMsg:

Issue an Error or Informational message
- Messages are preceeded by the program name
- Messages are formatted to fit into a 80 Column line
- Special formatting characters supported: ¬ = Line Break

 = Required Blank
- ERROR Messages go to SDTERR

--/
ErrMsg: Procedure Expose XRc g.
 MsgTarget = ″STDERR:″
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

InfMsg: Procedure Expose XRc g.
 MsgTarget = ″STDOUT:″
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

WrtMsg: Procedure Expose MsgTarget XRc g.
 Parse Arg msgstring

 nam = g.myname″: ″
 nams = Copies(″ ″ ,Length(nam))
 max = 80-(Length(nam))

/* --------------------------------------*\
Format the text lines

---------------------------------------/
 n = 1;
 c = 0;
 msgl. = ″ ″ ;
 indent = 0;
 msgl.in.1 = indent;

 Do i = 1 While (msgstring <> ″″)
Parse VAR msgstring w msgstring
c = c + Length(w) +1
Select

Figure 35 (Part 22 of 25). TWI_DO.CMD

124 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Handle Line break and indention

---------------------------------------/
When (Left(w,1) = ″¬″ /* Indention */) Then Do
indent = Substr(w,2)
If (\DataType(indent,″W″)) Then indent = 0
c = 0
n = n + 1
msgl.in.n = indent
End

/* --------------------------------------*\
Compose the lines..

---------------------------------------/
Otherwise Do
If (c <= max) Then Do
msgl.n = msgl.n w
End

Else Do
n = n + 1
c = Length(w) +1
msgl.n = w
msgl.in.n = indent
End

End /* Otherwise */
End /* Select */

End i
/* --------------------------------------*\

Write the lines ...
and handle the required blanks

---------------------------------------/
 Call LineOut msgtarget, nam || Copies(″ ″ ,msgl.in.1) || Translate(Strip(msgl.1),″ ″ ,″″)
 Do i = 2 to n

Call LineOut msgtarget, nams || Copies(″ ″ ,msgl.in.i) || Translate(Strip(msgl.i),″ ″ ,″″)
End i

 Return

Figure 35 (Part 23 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 125

/* ===*\
 * Here we catch all the errors ...
==/
ERROR:
FAILURE:
NOTREADY: Procedure Expose sigl Rc XRc g.
NOVALUE:
SYNTAX:

 Parse Upper Source myenv mycall mypname .
 Parse Value FileSpec(″NAME″ , mypname) With myname ″ . ″ .

 traptype = Condition(″C″)
 calltype = Condition(″I″)

 Say ″REXX trap″ calltype ″on″ traptype ″in″ mypname ″ : ″

 Say ″--->″ sigl″:″ Strip(SourceLine(sigl))

Figure 35 (Part 24 of 25). TWI_DO.CMD

126 TeamConnection and WorkFrame Integration

/* ----------------------------*\
Trap specific processing

-----------------------------/
 Select
When (traptype = ″FAILURE″) | (traptype = ″ERROR″) then do
Say ″Command :″ Condition(″D″)
Say ″Rc was :″ Rc
end

When traptype = ″HALT″ then do
Say ″Program has been interrupted by an external event!″
end

When traptype = ″NOVALUE″ then do
Say ″Variable :″ Condition(″D″)
end

When traptype = ″SYNTAX″ then do
Say ″Errortype :″ ErrorText(Rc)
end

When traptype = ″NOTREADY″ then do
Say ″Stream :″ Condition(″D″)
end

Otherwise do
Say ″Unknown REXX trap condition >″traptype″<″
Say ″Trap Description :″ Condition(″D″)
end

end /* Select */

 Call BEEP 1000,100

/***
 Say
 Say ″ Hit any key to continue ...″
 Pull dy
 ***/

 If (calltype = ″SIGNAL″) Then Exit 998
Else Return 999

Figure 35 (Part 25 of 25). TWI_DO.CMD

Appendix A. Sample REXX Programs 127

Generating a Project from a TeamConnection Work
Area

TWI_PRJ: Creating the WorkFrame Project

The TWI_PRJ REXX program (see Figure 36 on page 129) controls the generation of a
WorkFrame project from a TeamConnection work area, using the Project Smarts interface
of WorkFrame.

The program basically copies the project template, TWI_PRJ, and adds the values for the
variables that describe your TeamConnection work environment.

The installation and user interface of this program are described in “TWI_PRJ Installation
Script” on page 41. If you are specifically interested in:

Adding the TeamConnection integration to your Project Smarts catalog
see “Adding Our Project Install Script to Project Smarts” on page 43.

The user interface of the project generation,
see “Creating WorkFrame Project Using Project Smarts” on page 45.

128 TeamConnection and WorkFrame Integration

/* **
TeamConnection / WorkFrame Integration

File ..: TWI_Prj.cmd
 Project: Generate WF Project from a TeamConnection Work Area

Author : L. Sparmann (SPARMANN @ BOEVM2)
Owner .: L. Sparmann (SPARMANN @ BOEVM2)

Description :

(For further information, please see help!)

Version and Change History:
--------------------------*/
version = ″1.00 dated: 02.Apr.96 by: L. Sparmann″

 reason = ″Initial version ...″
/*
***/
 Address CMD
″@ECHO OFF″

/* ----------------------------*\
Setup for error trapping

-----------------------------/
 Signal on NOVALUE ; Signal on SYNTAX ; /* SIGNAL only ! */
Call on FAILURE ; Call on ERROR ; /* SIGNAL & CALL */
 Call on NOTREADY ; Signal on HALT ; /* SIGNAL & CALL */

 /* --*\
Set up the global variables...

 ---/
 XRc = 0

 /* --*\
Basic setup ...

 ---/
 g. = ″?″ /* All my global variables ... */

/*-----------------------------*/
 g.step = 1 /* STEP and LASTSTEP are used */
 g.laststep = 7 /* to indicate the progress. */

/*-----------------------------*/
 g.exitcmds = ″″ /* Cmds to be executed on Exit */
 g.RC_CANCEL = 95
 g.TWI_EDITOR = ″LXSYNC.CMD″

Figure 36 (Part 1 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 129

/* --------------------------------------*\
Setup WF specific Variables & Constants

---------------------------------------/
 stem. = ″?″
 stem.undefined = stem.undefined

/* --------------------------------------*\
Get the call environment

---------------------------------------/
 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .
 g.mypath = FileSpec(″PATH″ ,g.mypname)
 g.mydrive = FileSpec(″DRIVE″ , g.mypname)

 /* --*\
We switch on monitoring as early as possible for debug reasons !

 ---/
 XRc = IwfOpenConsole(″STEM″) ;
 If (XRc <> 0) Then Do

Call RxMessageBox ″IwfOpenConsole failed, Rc was:″ XRC,
,g.myname″ : ″ ,
,″ENTER″ ,
,″EXCLAMATION″

Call Done(XRc)
End

/* --------------------------------------*\
Load OS/2 built-In Utilities

---------------------------------------/
 If (RxFuncQuery(″SysLoadFuncs″)) Then Do

Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs
End

/* --------------------------------------*\
Load support for Project tools setup

---------------------------------------/
 If (RxFuncQuery(″IwfEnvPrfLoadFuncs″)) Then Do

Call RxFuncAdd ″IwfEnvPrfLoadFuncs″ , ′ IWFPAPI′ , ″ IwfRxEnvPrfLoadFuncs″
Call IwfEnvPrfLoadFuncs
Call IwfInitEnvPrfAPIs
End

/* --------------------------------------*\
It′ s good practice to clean up the
REXX Queue in the beginnig

---------------------------------------/
 Do Queued(); Pull .; End

Figure 36 (Part 2 of 22). TWI_PRJ.CMD

130 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Get a system unique name
(using the REXX Queue for this)

---------------------------------------/
 g.myqid = RxQueue(″CREATE″ ,)
 dyRc = RxQueue(″DELETE″ , g.myqid) /* we do not need the Queue ! */

 /* --*\
Get Arguments (as typed = mixed case) and provide help if desired

 ---/
 Parse Arg g.ProjectName, stem.pszCatalog, allopts

 If (g.projectname = ″?″) ,
| (stem.pszCatalog = ″″) Then Do
Call InfMsg(″¬ Syntax:″ g.myname ″project ,catalog <,TRACE>″ ,

″¬″,
″¬ Additional output for problem determination will be″ ,

″produced, if the TRACE option is specified with this″ ,
″command.″)

Call Done(100)
End

 /* --*\
Look for debug or trace setings

 ---/
 If (POS(″TRACE″ , Translate(allopts)) = 0)

Then g.trace? = 0
Else Do

g.trace? = 1
Call Value ″TWI_TRACE″ , ″ON″ , ″OS2ENVIRONMENT″
End

/* --------------------------------------*\
For problem determination only ...

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ The following parameters were specified″ ,
″¬3 Project name:″ g.ProjectName ,
″¬3 Catalog dir.:″ stem.pszCatalog ,
″¬3 TWI Trace is:″ g.trace? ,
″″)

End

Figure 36 (Part 3 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 131

/* ---*\
Start processing now...

--/
 /* --*\

Get Environment information (to preset variables)
 ---/
 Call UpdateStatus(″Querying environment information ...″)

 g.TC_USER = Value(″TC_USER″ ,,″OS2ENVIRONMENT″)
 g.TC_BECOME = Value(″TC_BECOME″ ,,″OS2ENVIRONMENT″)
 g.TC_FAMILY = Value(″TC_FAMILY″ ,,″OS2ENVIRONMENT″)
 g.TC_RELEASE = Value(″TC_RELEASE″ ,,″OS2ENVIRONMENT″)
 g.TC_WORKAREA = Value(″TC_WORKAREA″ ,,″OS2ENVIRONMENT″)
 g.TC_CASESENSE = Value(″TC_CASESENSE″ ,,″OS2ENVIRONMENT″)
 g.TC_BUILDPOOL = Value(″TC_BUILDPOOL″ ,,″OS2ENVIRONMENT″)
 g.TWI_TARGET_PART = Value(″TWI_TARGET_PART″ , , ″OS2ENVIRONMENT″)
 g.TWI_TRACE = Value(″TWI_TRACE″ ,,″OS2ENVIRONMENT″)

/* --------------------------------------*\
For problem determination only ...

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ Current Environment variable setting:″ ,
″¬3 TC_USER:″ g.TC_USER ,
″¬3 TC_BECOME:″ g.TC_BECOME ,
″¬3 TC_FAMILY:″ g.TC_FAMILY ,
″¬3 TC_RELEASE:″ g.TC_RELEASE ,
″¬3 TC_WORKAREA:″ g.TC_WORKAREA ,
″¬3 TC_CASESENSE:″ g.TC_CASESENSE ,
″¬3 TC_BUILDPOOL:″ g.TC_BUILDPOOL ,
″¬3 TWI_TARGET_PART:″ g.TWI_TARGET_PART ,
″″)

End

Figure 36 (Part 4 of 22). TWI_PRJ.CMD

132 TeamConnection and WorkFrame Integration

 /* --*\
Query location of base directory for the project

 ---/
 Call UpdateStatus(″Querying Project information...″)

 stem.pszTargetProject = stem.undefined
 stem.pszTargetDirectory = ″>>> See Message Log for Info...″

 Call InfMsg(″¬3 Project (optional):″ ,
″¬6 You may specify the name of your project here. If″ ,
″ you leave the field as it is (″stem.pszTargetProject″) , ″ ,
″ the release and work″ ,
″ area name will be used. (You will be asked for it.)″ ,
″¬3 Directory (required):″ ,
″¬6 Please specify the drive, that should be used to keep″ ,
″ the files of your WorkFrame projects.″ ,
″¬6 A subdirectory structure distinguishing the TC family,″ ,
″ the workarea and the release will then automatically″ ,
″ be created.″ ,
″¬3 Folder (required):″ ,
″¬6 You may select a folder where your project Icon will″ ,
″ be placed. (The OS/2 DESKTOP is the default).″ ,
″″)

 Do Until (Rc = 0)
Rc = IwfQueryLocation(″STEM″) ;
If (Rc = g.RC_CANCEL)
Then Call Cancel
Else If (Rc <> 0)

Then Call Abort(Rc ″¬ Error querying Target information.″ ,
″¬ IwfQueryLocation Rc was:″ Rc);

End

 stem.pszTargetDirectory = Strip(stem.pszTargetDirectory,″TRAILING″ , ″\″)
/* --------------------------------------*\

For problem determination only ...
---------------------------------------/

 If (g.trace?) Then Do
Call InfMsg(″¬ Target Information:″ ,

″¬3 TargetFolder:″ stem.pszTargetFolder,
″¬3 TargetProject:″ stem.pszTargetProject,
″¬3 TargetDirectory:″ stem.pszTargetDirectory,
″″)

End

Figure 36 (Part 5 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 133

 /* --*\
Ask for basic TC environment definition...

 ---/
 Call UpdateStatus(″Querying basic TC information...″)

 Call InfMsg(″¬ Please specify/modify your basic Teamconnection environment″ ,
″ by defining values for the environment variables in the list...″ ,
″¬ The (R) on the left hand side of the variable description″ ,
″ indicates that a value is required, an (O) indicates″ ,
″ optional variables.″ ,
″″)

/* --------------------------------------*\
Preset Variables

---------------------------------------/
 If (g.TC_CASESENSE = ″″) Then g.TC_CASESENSE = ″LOWER″

 stem.usVariableCount = 0
 stem.pszApplication = g.myname″1″

 Call DefVar ″TC_FAMILY ″ , ,
″ (R) The Name of the TeamConnection Family.″ ,,
g.TC_FAMILY

 Call DefVar ″TC_USER ″ , ,
″ (R) Your TeamConnection UserId.″ ,,
g.TC_USER

 Call DefVar ″TC_BECOME ″ , ,
″ (O) The BECOME UserId (if necessary).″ ,,
g.TC_BECOME

 Call DefVar ″TC_CASESENSE ″ , ,
″ (R) How should TC handle Uppercase names ?″ ,,
g.TC_CASESENSE

 Call DefVar ″TWI_TRACE ″ , ,
″ (O) Trace switch for TWI_... programs (ON/OFF).″ ,,
g.TWI_TRACE

/*---------------------------------------*\
Get Environment information from user

---------------------------------------/
 Call GetEnvironmentInfo

Figure 36 (Part 6 of 22). TWI_PRJ.CMD

134 TeamConnection and WorkFrame Integration

 /* --*\
Ask for project specific information...

 ---/
 Call UpdateStatus(″Querying project specific information...″)

 Call InfMsg(″¬ Please define the project specific information by setting″ ,
″ values for the environment variables in the list...″ ,
″¬ The (R) on the left hand side of the variable description″ ,
″ indicates that a value is required, an (O) indicates″ ,
″ optional variables.″ ,
″″)

/* --------------------------------------*\
Preset Variables

---------------------------------------/
 stem.usVariableCount = 0
 stem.pszApplication = g.myname″2″

 Call DefVar ″TWI_WORK_PARTS ″ , ,
″ (O) A list of parts you plan to work on.″ ,,
g.TWI_WORK_PARTS

 Call DefVar ″TWI_TARGET_PART ″ , ,
″ (O) The Build Target for this Work Area″ ,,
g.TWI_TARGET_PART

 Call DefVar ″TC_WORKAREA ″ , ,
″ (R) The Name of the Work Area you plan to work on.″ , ,
g.TC_WORKAREA

 Call DefVar ″TC_RELEASE ″ , ,
″ (R) The Name of the Release you are working with.″ , ,
g.TC_RELEASE

 Call DefVar ″TC_BUILDPOOL ″ , ,
″ (R) The Name of the TC Build Pool you want to use.″ , ,
g.TC_BUILDPOOL

/*---------------------------------------*\
Get Environment information from user

---------------------------------------/
 Call GetEnvironmentInfo

Figure 36 (Part 7 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 135

 /* --*\
Set TWI_RELATIVE according to our naming convention
(family-workarea-release) and take care of ′ . ′ and ′ \′ in names

 ---/
 g.TWI_RELATIVE = stem.pszTargetDirectory″\″ ,

|| Translate(g.TC_FAMILY ,″--″ , ″ . \″)″\″ ,
|| Translate(g.TC_WORKAREA ,″--″ , ″ . \″)″\″ ,
|| Translate(g.TC_RELEASE ,″--″ , ″ . \″)

 Call Value ″TWI_RELATIVE″ , g.TWI_RELATIVE,″OS2ENVIRONMENT″
/* --------------------------------------*\

For problem determination only ...
---------------------------------------/

 If (g.trace?) Then Do
Call InfMsg(″¬ TWI_RELATIVE has been set to: ¬3 ″ g.TWI_RELATIVE)
End

 /* --*\
Check if the project target directory is still empty

 ---/
 Call SysFileTree g.twi_relative″*″ , ″filelist″ , ″FSO″

 If (filelist.0 <> 0) Then Do
Call InfMsg(″¬ >>>″,

″¬ There are already files existing in the″ ,
″ directory tree below the Project Base Directory″ ,
″ (″g.twi_relative″) . ″ ,
″¬ In this case, an automatic extraction of files from″ ,
″ the TeamConnection database might/%var be dangerous″ ,
″ and is therefore not supported!″ ,
″¬ <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<″)

End
 Else Do

Figure 36 (Part 8 of 22). TWI_PRJ.CMD

136 TeamConnection and WorkFrame Integration

/* --*\
If there are no files yet, we offer a build tree extraction

---/
If (g.TWI_WORK_PARTS = ″″) ,
| (g.TWI_WORK_PARTS = g.undefined) Then Do

/*---------------------------------------*\
If no work parts specified, start GUI

---------------------------------------/
Call InfMsg(″Asking user to extract his Build Target(s)...″)

Call InfMsg(″¬ The TeamConnection GUI is started now, to allow you to″ ,
″ extract the files you plan to work on, from the TC″ ,
″¬ Work Area. If you are done with this, please close the″ ,
″ TC GUI, so that the WF Project generation can continue.″ ,
″¬ We will later offer you an automatic extract of all the″ ,
″ files belongnig to the build trees that is defined by″ ,
″ the files you initially extracted.″ ,
″″)

If (g.TC_BECOME <> ″″) Then becomeuser = ″-become″ g.TC_BECOME
Else becomeuser = ″″

″TEAMCGUI -family″ g.tc_family,
″-release″ g.tc_release,
″-workarea″ g.tc_workarea,
″-user″ g.tc_user,
becomeuser,

″-relative″ g.twi_relative,
″-nologo″

End /* If (g.TWI_WORK_PARTS ... */

Figure 36 (Part 9 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 137

/* --*\
Call build tree extraction service (TW_XBT)

The environment is already prepared:
- TC_... variables are set
- TWI_RELATIVE is set to project base directory
- TWI_WORK_PARTS might be set by the user

---/
″@ECHO ON″
Say

′ START ″Extract parts for Work Area:′ g.TC_WORKAREA′ ″ ′ ,
′ / C /MIN TWI_XBT.CMD′

Say
″@ECHO OFF″
End /* If (filelist.0 <> 0) Else */

 /* --*\
If the user did not define a project title, we now set the
title to: WorkAreaName (ReleaseName)

 ---/
 If (stem.pszTargetProject = stem.undefined)

Then stem.pszTargetProject = g.TC_WORKAREA||Newline()||″ (″g.TC_RELEASE″)″

 /* --*\
Now create new WF project by copying the template
(we assume we hooked in to the VACPP projects ...)

 ---/
 Call UpdateStatus(″The project will be created in Folder:″ ,

stem.pszTargetFolder)
/* --------------------------------------*\

Find location of template project
---------------------------------------/

 TemplatePath = g.mydrive||Strip(g.mypath,″Trailing″ , ″\″)
 If (TemplatePath = ″″)

Then Call Abort(99 ″Error obtaining Project Smarts template path.″) ;

Figure 36 (Part 10 of 22). TWI_PRJ.CMD

138 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Copy the template project now

---------------------------------------/
 stem.pszSourceProject = TemplatePath″\″g.myname
 /* pszTargetProject = has been defined earlier in this program */
/* pszTargetDirectory = has been defined earlier in this program */
 /* pszTargetFolder = has been defined earlier in this program */
 stem.pszTargetProjectSetup= ″TARGETNAME=″ ,

|| Translate(g.TWI_TARGET_PART,″\″ , ″ / ″) ″ ; ″ ,
|| ″PAMLOCATION:IWFBPAM=″g.TWI_RELATIVE″ ; ″ ,
|| ″PAMDEFAULT:IWFBPAM=″g.TWI_RELATIVE″ ; ″ ,
|| ″INHERITLIST=<CPPDFTPRJ>;″ ,
|| ″TITLE=″stem.pszTargetProject″ ; ″ ,
|| ″″

 If (g.trace?) Then Do
Call InfMsg(″¬ Object Setupstring:″ ,

″¬3″ stem.pszTargetProjectSetup)
End

 XRc = IwfCreateProjectFromProject(″STEM″)
 If (XRc <> 0)

Then Call Abort(XRc ″IwfCreateProjectFromProject failed with Rc=″ XRc);

 /* --*\
Create Variables ...

 ---/
 stem.pszProject = stem.pszTargetFile /* Undocumented return value of*/

/* IwfCreateProjectFromProject*/

 Call AddVar ″TC_USER ″ , g.TC_USER
 Call AddVar ″TC_BECOME ″ , g.TC_BECOME
 Call AddVar ″TC_FAMILY ″ , g.TC_FAMILY
 Call AddVar ″TC_RELEASE ″ , g.TC_RELEASE
 Call AddVar ″TC_WORKAREA ″ , g.TC_WORKAREA
 Call AddVar ″TC_CASESENSE ″ , g.TC_CASESENSE
 Call AddVar ″TC_BUILDPOOL ″ , g.TC_BUILDPOOL
 Call AddVar ″TWI_EDITOR ″ , g.TWI_EDITOR
 Call AddVar ″TWI_RELATIVE ″ , g.TWI_RELATIVE
 Call AddVar ″TWI_TARGET_PART ″ , g.TWI_TARGET_PART
 Call AddVar ″TWI_TRACE ″ , g.TWI_TRACE

 Call Done(0)

Figure 36 (Part 11 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 139

/* ---*\
Jump to this point to exit the program

--/
Done:
 Call UpdateStatus(″The project template generation has completed″)

 Arg XRc
 Call RxMessageBox ″The Workframe project installation has finished.″ ,

″Return Code was″ XRc ″ ! ″ ,
,g.myname″ : ″ ,
,″OK″ ,
,″INFORMATION″

/* --------------------------------------*\
This should better be reset in case
the program was interrupted by CTL-C

---------------------------------------/
HALT:

/* --------------------------------------*\
Close Installation Console ...

---------------------------------------/
 dyRc = IwfTermEnvPrfAPIs()
 dyRc = IwfEnvPrfDropFuncs()
 dyRc = IwfCloseConsole(″STEM″) ;

 Exit XRc

/* ===*\
 * Start of local subroutines ...
==/

Figure 36 (Part 12 of 22). TWI_PRJ.CMD

140 TeamConnection and WorkFrame Integration

/* ---*\
Define Workframe Variable

--/
DefVar: Procedure Expose XRc g. stem.

 Parse Arg VarName , VarDescr , VarValue

 i = stem.usVariableCount + 1

 stem.pszVariableName.i = ″%″Strip(VarName)″%″
 stem.pszVariableDescription.i = Strip(VarDescr)
 stem.pszVariableValue.i = Strip(VarValue)

 stem.usVariableCount = i

 Return

/* ---*\
This one just generated a NewLine charater used in the setup strings

--/
NewLine:
 Return ′ 0a′ x

CRLF:
 Return ′ 0d0a′ x

Figure 36 (Part 13 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 141

/* ---*\
Update the status line and write a log entry indicating the current
step of the project setup...

--/
UpdateStatus: Procedure Expose XRc g. stem.

 Parse Arg text

 g.step = g.step + 1
 If (g.step > g.laststep) Then Do

Call ErrMsg(″too many steps, please update G.LASTSTEP to:″ g.step ″ ! ″)
stem.usPercent = g.laststep
End

 Else stem.usPercent = (100 / g.laststep * g.step) % 1

 rc = IwfUpdateConsoleProgress(″STEM″) ;
 If (Rc <> 0) Then Do

Call ErrMsg(″IwfUpdateConsoleStatus failed, Rc was:″ Rc)
End

 Call InfMsg(″ (″g.step″)″ text)
 stem.pszStatusText = text
 rc = IwfUpdateConsoleStatus(″STEM″) ;
 If (Rc <> 0) Then Do

Call ErrMsg(″IwfUpdateConsoleStatus failed, Rc was:″ Rc)
End

 Return

Figure 36 (Part 14 of 22). TWI_PRJ.CMD

142 TeamConnection and WorkFrame Integration

/* ---*\
Add Environment variable

--/
AddVar: Procedure Expose XRc g. stem.

 Parse Arg VarName , VarValue

 stem.pszName = Strip(VarName)

 If (Strip(VarValue) = ″″)
Then stem.pszValue = ″ ″ /* WF does not handle ′ ′ correctly! */
Else stem.pszValue = Strip(VarValue)

 Rc = IwfAddVariable(″STEM″)

 If (Rc <> 0)
Then Call Abort Rc ″Could not Add Variable:″ stem.pszName ″ (Rc=″Rc″)″

 Return

/* ---*\
Get environment information from user ...

- Restore variable set from catalog
- Start Variable Dialog
- Check that all required variables are set (R)
- Set global variables (g.) from user input
- Save variable set in catalog
- Set OS/2 Environment Variables from user input

--/
GetEnvironmentInfo: Procedure Expose XRc g. stem.

/* --------------------------------------*\
Try to restore variables from catalog

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ Trying to retieve Environment Variable set″ ,
stem.pszApplication,

″¬ from Catalog″ stem.pszCatalog)
End

Figure 36 (Part 15 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 143

/* --------------------------------------*\
This fixes some IwfXxxxVariables bugs:
- empty variables get %variablename%
as their value

- backsalash (\) is trated as C control
character by IwFQueryVariables. Use /

---------------------------------------/
 Rc = IwfRestoreVariables(″STEM″) ;
 If (Rc <> 0) Then Do

Call InfMsg(″¬ Error restoring variable settings.″ ,
″¬3 IwfRestoreVariables Rc was:″ Rc″ . ″ ,
″¬3 . . .default values will be used.″)

End

 Do i=1 to stem.usVariableCount
If (stem.pszVariableName.i = stem.pszVariableValue.i)
Then stem.pszVariableValue.i =″″

End i
/* --------------------------------------*\

Open variable dialog
---------------------------------------/

 Do loop = 1 Until (AllRequiredVarsSet?)
Do Until (Rc = 0)
Rc = IwfQueryVariables(″STEM″) ;
If (Rc = g.RC_CANCEL)
Then Call Cancel
Else If (Rc <> 0)

Then Call Abort(Rc ″¬ Error querying variable settings.″ ,
″¬ Return Code of IwfQueryVariables was:″ Rc);

End
/* --------------------------------------*\

For problem determination only ...
---------------------------------------/

If (g.trace?) Then Do
Call InfMsg(″¬ Current Environment Setting:″ ,

″″)
Do i=1 to stem.usVariableCount
Say ″ ″ stem.pszVariableName.i″:″ stem.pszVariableValue.i
Say ″ (″stem.pszVariableDescription.i″)″
End i

End

Figure 36 (Part 16 of 22). TWI_PRJ.CMD

144 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Check that all required variables
have been set by the user !

---------------------------------------/
AllRequiredVarsSet? = 1
Do i=1 to stem.usVariableCount
If (Left(stem.pszVariableDescription.i,3) = ″ (R)″) ,
& (stem.pszVariableValue.i = stem.pszVariableDescription.i) Then Do
AllRequiredVarsSet? = 0
Call InfMsg(″¬ There is at least one of the required (R) variables″ ,

″ not set!″ ,
″″)

Call RxMessageBox ″There is at least one of the required (R)″ ,
″variables not set!″ ,
,g.myname″ : ″ ,
,″ENTER″ ,
,″EXCLAMATION″

Leave i
End

End i
End loop

/* --------------------------------------*\
Set the G.xxx and the OS/2 environment
variables from the users input
- take care of empty variables)

---------------------------------------/
 trc_lines = ″″
 Do i=1 to stem.usVariableCount

VarName = Strip(stem.pszVariableName.i,″BOTH″,″%″)
If (stem.pszVariableValue.i <> stem.pszVariableDescription.i)
Then g.VarName = Strip(Translate(stem.pszVariableValue.i,″ ″ , CRLF()))
Else g.VarName = ″″

Call Value varname , g.varname , ″OS2ENVIRONMENT″
stem.pszVariableValue.i = g.varname
stem.pszVariableValue.i = Translate(g.varname,″ / ″ , ″\″)
trc_lines = trc_lines ″¬3 g.″varname″:″ g.varname
End i

 If (g.trace?) Then Do
Call InfMsg(″¬ Final Environment definition:″ trc_lines)
End

Figure 36 (Part 17 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 145

/* --------------------------------------*\
Save variable settings in catalog

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ Trying to save Environment Variable set″ ,
stem.pszApplication,

″¬ into Catalog″ stem.pszCatalog)
End

 Rc = IwfSaveVariables(″STEM″) ;
 If (Rc <> 0)

Then Call InfMsg(″. . . Error saving variable settings.″ ,
″¬3 IwfSaveVariables Rc was:″ Rc″ . ″)

 Return

/* ---*\
Confirm Cancellation

--/
Cancel:
 rc = RxMessageBox(″Do you really want to cancel?″ ,

,g.myname″ : ″ ,
,″YESNO″ ,
,″QUERY″)

 If (rc = 6 /*YES*/) Then Do
Call InfMsg(″ cancelled by the user !″)
Call Done(8)
End

 Return;

/* ---*\
Stop processing issuing an error message and giving back an Rc

--/
Abort: Procedure Expose XRc g. stem.
 Parse Arg retcode message
 Call ErrMsg(message)
 Call Done(retcode)
 Return

Figure 36 (Part 18 of 22). TWI_PRJ.CMD

146 TeamConnection and WorkFrame Integration

/* ---*\
ErrMsg/InfMsg:

Issue an Error or Informational message
- Messages are preceeded by the program name
- Messages are formatted to fit into a 80 Column line
- Special formatting characters supported:

¬n = Line Break and set line indentation level to n (0=default)
= Required Blank

- ERROR Messages go to SDTERR
--/
ErrMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

InfMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

WrtMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring

 nam = g.myname″: ″
 nams = Copies(″ ″ ,Length(nam))
 max = 75-(Length(nam))

/* --------------------------------------*\
Format the text lines

---------------------------------------/
 n = 1;
 c = 0;
 msgl. = ″ ″ ;
 indent = 0;
 msgl.in.1 = indent;

 Do i = 1 While (msgstring <> ″″)
Parse VAR msgstring w msgstring
c = c + Length(w) +1
Select

Figure 36 (Part 19 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 147

/* --------------------------------------*\
Handle Line break and indention

---------------------------------------/
When (Left(w,1) = ″¬″ /* Indention */) Then Do
indent = Substr(w,2)
If (\DataType(indent,″W″)) Then indent = 0
c = 0
n = n + 1
msgl.in.n = indent
End

/* --------------------------------------*\
Compose the lines..

---------------------------------------/
Otherwise Do
If (c <= max) Then Do
msgl.n = msgl.n w
End

Else Do
n = n + 1
c = Length(w) +1
msgl.n = w
msgl.in.n = indent
End

End /* Otherwise */
End /* Select */

End i
/* --------------------------------------*\

Write the lines ...
and handle the required blanks

---------------------------------------/
 Say
 Say nam || Copies(″ ″ ,msgl.in.1) || Translate(Strip(msgl.1),″ ″ ,″″)
 Do i = 2 to n

Say nams || Copies(″ ″ ,msgl.in.i) || Translate(Strip(msgl.i),″ ″ ,″″)
End i

 Return

Figure 36 (Part 20 of 22). TWI_PRJ.CMD

148 TeamConnection and WorkFrame Integration

/* ===*\
 * Here we catch all the errors ...
==/
ERROR:
FAILURE:
NOTREADY: Procedure Expose sigl Rc XRc g. stem.
NOVALUE:
SYNTAX:

 Parse Upper Source myenv mycall mypname .
 Parse Value FileSpec(″NAME″ , mypname) With myname ″ . ″ .

 traptype = Condition(″C″)
 calltype = Condition(″I″)

 Say ″REXX trap″ calltype ″on″ traptype ″in″ mypname ″ : ″

 Say ″--->″ sigl″:″ Strip(SourceLine(sigl))

Figure 36 (Part 21 of 22). TWI_PRJ.CMD

Appendix A. Sample REXX Programs 149

/* ----------------------------*\
Trap specific processing

-----------------------------/
 Select
When (traptype = ″FAILURE″) | (traptype = ″ERROR″) then do
Say ″Command :″ Condition(″D″)
Say ″Rc was :″ Rc
end

When traptype = ″HALT″ then do
Say ″Program has been interrupted by an external event!″
end

When traptype = ″NOVALUE″ then do
Say ″Variable :″ Condition(″D″)
end

When traptype = ″SYNTAX″ then do
Say ″Errortype :″ ErrorText(Rc)
end

When traptype = ″NOTREADY″ then do
Say ″Stream :″ Condition(″D″)
end

Otherwise do
Say ″Unknown REXX trap condition >″traptype″<″
Say ″Trap Description :″ Condition(″D″)
end

end /* Select */

 Call BEEP 1000,100

 If (calltype = ″SIGNAL″) Then Exit 998
Else Return 999

Figure 36 (Part 22 of 22). TWI_PRJ.CMD

150 TeamConnection and WorkFrame Integration

TWI_XBT: Extracting a Whole Build Tree

The TWI_XBT program (see Figure 37 on page 152) takes a list of parts and for every part
climbs the TeamConnection build tree to find the “nearest” build part. For each build part
identified in this way, the program extracts all of the parts of its build tree and places them
in a directory structure according to the value of the OS/2 environment variable,
TWI_RELATIVE.

The list of parts to start with is either the list of files in the OS/2 environment variable,
TWI_WORK_PARTS, or the files that already exist in the directory tree below the path specified in
TWI_RELATIVE.

TWI_XBT basically uses the TeamConnection command line interface (-report), the REXX
queue interface (RxQueue), and REXX STEM variables to perform its task.

Appendix A. Sample REXX Programs 151

/* **
TeamConnection / WorkFrame Integration

File ..: TWI_XBT.CMD
 Project: Extract a build tree based on a part

Author : L. Sparmann (SPARMANN @ BOEVM2)
Owner .: L. Sparmann (SPARMANN @ BOEVM2)

Description :

Extract TC Build Tree(s) belonging to a set of files specified in
the OS/2 Environment Variable TWI_WORK_PARTS. If this variable is
not set, and there are files found in the directory structure below
the base directory specified in the OS/2 Environment Variable
TWI_RELATIVE, the build trees are extracted based on this set of
files.

(For further information, please have a look to the code ...)

Version and Change History:
--------------------------*/
version = ″1.00 dated: 2.Apr.96 by: L. Sparmann″

 reason = ″Initial version ...″
/*

***/
 Address CMD
″@ECHO OFF″

/*-----------------------------*\
Setup for error trapping

-----------------------------/

 Signal on NOVALUE ; Signal on SYNTAX ; /* SIGNAL only ! */
Call on FAILURE ; Call on ERROR ; /* SIGNAL & CALL */
 Call on NOTREADY ; Signal on HALT ; /* SIGNAL & CALL */

 /* --*\
Set up the global variables...

 ---/
 XRc = 0

Figure 37 (Part 1 of 14). TWI_XBT.CMD

152 TeamConnection and WorkFrame Integration

 /* --*\
Basic setup ...

 ---/
 g. = ″?″ /* All my global variables ... */

/* --------------------------------------*\
Get the call environment

---------------------------------------/
 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .
 g.mypath = FileSpec(″PATH″ ,g.mypname)
 g.mydrive = FileSpec(″DRIVE″ , g.mypname)

 /* --*\
Setup the environment ...

 ---/
/* --------------------------------------*\

Load OS/2 built-In Utilities
---------------------------------------/

 If (RxFuncQuery(″SysLoadFuncs″)) Then Do
Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs
End

/* --------------------------------------*\
It′ s good practice to clean up the
REXX Queue in the beginnig

---------------------------------------/
 Do Queued(); Pull .; End

/* --------------------------------------*\
Look for debug or trace setings

---------------------------------------/
 If (Value(″TWI_TRACE″ , , ″ OS2ENVIRONMENT″) = ″ON″) Then g.trace? = 1

Else g.trace? = 0

Figure 37 (Part 2 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 153

 /* --*\
Get Arguments (as typed = mixed case) and provide help if desired

 ---/
 Parse Arg allargs

 If (allargs <> ″″) Then Do
Call InfMsg(″¬ Syntax:″ g.myname

″¬″,
″¬ For function description see file header ...″ ,
″¬″,
″¬ Additional output for problem determination will be″ ,
″ produced, if the TWI_TRACE environment variable″ ,
″ is set to ON.″)

Call Done(100)
End

/* ---*\
Start processing now...

--/
/*---------------------------------------*\

Get Arguments from OS/2 Environment
---------------------------------------/

 g.TWI_RELATIVE = Value(″TWI_RELATIVE″ ,,″OS2ENVIRONMENT″)
 g.TWI_WORK_PARTS = Value(″TWI_WORK_PARTS″ ,,″OS2ENVIRONMENT″)

 g.TC_RELEASE = Value(″TC_RELEASE″ ,,″OS2ENVIRONMENT″)
 g.TC_WORKAREA = Value(″TC_WORKAREA″ ,,″OS2ENVIRONMENT″)

 /* --*\
If Work Parts specified, generate a list (stem)

 ---/
 If (g.TWI_WORK_PARTS <> ″″) Then Do

i = 0
Do While (g.TWI_WORK_PARTS <> ″″)
Parse Var g.TWI_WORK_PARTS part g.TWI_WORK_PARTS
i = i + 1
workpart.i = Strip(part)
End /* Do While */

workpart.0 = i
End

Figure 37 (Part 3 of 14). TWI_XBT.CMD

154 TeamConnection and WorkFrame Integration

 /* --*\
If there were not Work Parts specifies, inspect the TWI_Relative
directory for files to be taken as a work parts

 ---/
 Else Do

Call SysFileTree g.twi_relative″*″ , ″workpart″ , ″FSO″
End

 If (workpart.0 = 0) Then Do
button = MsgBox(″There was not list of workparts specified !″ ,

,g.myname″ : ″ ,
,″OK″ ,
,″EXCLAMATION″)

Call Done(99)
End

 /* --*\
Convert file names into TC part names

 ---/
 u_base = Translate(g.twi_relative)
 Do i = 1 to workpart.0
 file = workpart.i

u_file = Translate(file)
If (Left(u_file,Length(u_base)) = u_base)
Then file = Substr(file,Length(u_base)+1)

file = Translate(file,″ / ″ , ″\″) /* no ′ \′ allowed in TC queries! */
workpart.i = Strip(file,″Leading″ , ″ / ″)
End i

/*---------------------------------------*\
For problem determination only

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ This is the list of Work Parts:″)
Do i = 1 to workpart.0
Say ″ ″ workpart.i
End i

End

 /* --*\
Ask the user to extract the build target from the TC Workarea ...
(this will allow us to extract the files from TC to WF)

 ---/

Figure 37 (Part 4 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 155

/* --------------------------------------*\
Ask if user wants to do the extract

---------------------------------------/
 button = MsgBox(″Do you want me to Extract the build tree(s) ?″ ,

,g.myname″ : ″ ,
,″YESNO″ ,
,″QUERY″)

 /* --*\
Find the build parts and extract the build trees

 ---/
 If (button = ″YES″) Then Do

p = 0 /* this counts packages */
fmax = 11 /* Maximum package size */
f = fmax /* this counts files in package */
XPack. = ″″ /* Extract Packages */
Do wpi = 1 to workpart.0
partname = workpart.wpi
If (g.btree.partname.InList? = 1) Then Iterate wpi

buildpart = FindBuildPart(partname)

If (g.btree.buildpart.InList? = 1) Then Iterate wpi
If (buildpart = ″″) Then Iterate wpi

/* --------------------------------------*\
Find parts of Build Tree

---------------------------------------/
″TEAMC Report -raw -view bPartView″ ,

″-where ″″nuPathName=′ ″ buildpart″ ′ ″ ″ ″ ,
″ | RxQueue″

Figure 37 (Part 5 of 14). TWI_XBT.CMD

156 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Sort out duplicates and create packages

---------------------------------------/
If (Queued() > 0) Then Do
Do Queued()
Parse Pull . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ partname ″ | ″ .
If (g.btree.partname.InList? = g.undefined) Then Do
f = f + 1
If (f > fmax) Then do
f = 1
p = p + 1
End

XPack.p = XPack.p partname
g.btree.partname.InList? = 1
End

End /* Do Queued() */
End /* If (Queued() > 0) */

End wpi
/* --------------------------------------*\

Extract the parts
---------------------------------------/

Call InfMsg(″¬ Starting extract of parts... ¬″)
″@ECHO ON″

Do i=1 to p
″TEAMC Part -extract″ XPack.i ,

″-relative″ g.twi_relative
XRc = XRc + Rc
End i

End /* If (button = ″YES″) */

 Call Done(0)

Figure 37 (Part 6 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 157

/* ---*\
Jump to this point to exit the program

--/
Done:

 Arg XRc
 Call MsgBox ″Extracting the files from TC Work Area″ g.TC_WORKAREA,

″Ended with a return code of″ XRc ″ . ″ ,
,g.myname″ : ″ ,
,″OK″ ,
,″INFORMATION″

/* --------------------------------------*\
This should better be reset in case
the program was interrupted by CTL-C

---------------------------------------/
HALT:

 Exit XRc

/* ===*\
 * Start of local subroutines ...
==/
/* ---*\

This routine is going up the build trees in order to find the first
build part relative to the part specified as a starting point.

We use the REXX stem PARTLIST to walk up the build LEVELs for a
maximum of 9.

If we did not find a build part, a ″?″ is returned instead of a part
name !

--/
FindBuildPart: Procedure Expose XRc g.

/* --------------------------------------*\
Get name of start part and convert the
′ \′ characters to ′ / ′ for TC Queries!

---------------------------------------/
 Parse Arg startpart .
 startpart = Translate(startpart,″ / ″ , ″\″)

/* --------------------------------------*\
We better clean up the REXX Queue first

---------------------------------------/
 Do Queued(); Pull . ; End;

Figure 37 (Part 7 of 14). TWI_XBT.CMD

158 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Initialize level and partlist

---------------------------------------/
 buildpart = ″″
 level = 0
 partlist. = ″0″
 partlist.level.0 = ″1″
 partlist.level.1 = startpart

 /* --*\
Now start stepping up the build tree level by level...

 ---/
 Do level = 0 to 9

partindex = 0
nextlevel = level+1
Do i = 1 to (partlist.level.0)
mypart = partlist.level.i
If (g.trace?) Then Do
Say ″Looking at part″ mypart ″now ...″
End

/* --------------------------------------*\
Check if Part is build part ...

---------------------------------------/
″TEAMC Report -raw -view PartView″ ,

″-where ″″nuPathName = ′ ″ mypart″ ′ ″ ″ ″ ,
″-release″ g.TC_RELEASE,
″-workarea″ g.TC_WORKAREA ″ | RXQueue″

builder1 = ″″
If (Queued())
Then Parse Pull . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ ,

. ″ | ″ . ″ | ″ . ″ | ″ . ″ | ″ builder1 ″ | ″ .

Do Queued() /* We only expect one line on the queue, */
Pull . ; End /* ... but just be sure ! */

/* --------------------------------------*\
If its a build part, we are done !

---------------------------------------/
If (builder1 <> ″″) Then do
buildpart = mypart
Leave level /* loop */
End

Figure 37 (Part 8 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 159

/* --*\
It′ s no build part, so look for any parent parts now..

---/
Else Do
If (g.trace?) Then Do
Say ″ ... was not a builder part !″
End

″TEAMC Part -view″ mypart ,
″-long -release″ g.TC_RELEASE,
″-workarea″ g.TC_WORKAREA ″ | RXQueue″

/* --------------------------------------*\
Save everything in a stem, we need the
REXX Queue within the loop again!

---------------------------------------/
QSaved.=″″
QSize = Queued()
Do QLine = 1 to QSize
Parse Pull Qsaved.QLine
End QLine

InBuildRelationshipSection = 0

Do QLine = 1 to Qsize

If (QSaved.QLine = ″build relationships:″) Then Do
InBuildRelationshipSection = 1
Iterate QLine /* loop */
End

If (\InBuildRelationshipSection)
Then Iterate Qline /* loop */

If (QSaved.QLine = ″versions:″)
Then Leave QLine /* loop */

Figure 37 (Part 9 of 14). TWI_XBT.CMD

160 TeamConnection and WorkFrame Integration

/* --*\
So let′ s scan the build relationship lines for build parts

---/
Parse Var QSaved.QLine partname parttype relation .

/*---------------------------------------*\
Put potential candidates into partlist
for inspection in the next level

---------------------------------------/
If (relation = ″OutputOf″) ,
| (relation = ″DependsOn″) Then Do
partname = Strip(partname)
If (g.btree.partname.InList? = 1) Then Do
buildpart = partname
Leave level /* loop */
End

partindex = partindex + 1
partlist.nextlevel.partindex = partname
If (g.trace?) Then Do
Say ″ ... saved for next iteration:″ partname
End

End
End qline /* loop */

End /* If (builder2 = ″″) Else */
End i
partlist.nextlevel.0 = partindex

End level /* loop */

FBP_Return:

 If (buildpart = ″″)
Then Say ″>>> Could no find a build part for:″ startpart
Else Say ″>>> Using build part:″ buildpart

 Return buildpart

/* ---*\
Stop processing issuing an error message and giving back an Rc

--/
Abort: Procedure Expose XRc g. stem.
 Parse Arg retcode message
 Call ErrMsg(message)
 Call Done(retcode)
 Return

Figure 37 (Part 10 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 161

/* ---*\
ErrMsg/InfMsg:

Issue an Error or Informational message
- Messages are preceeded by the program name
- Messages are formatted to fit into a 80 Column line
- Special formatting characters supported:

¬n = Line Break and set line indentation level to n (0=default)
= Required Blank

- ERROR Messages go to SDTERR
--/
ErrMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

InfMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

WrtMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring

 nam = g.myname″: ″
 nams = Copies(″ ″ ,Length(nam))
 max = 75-(Length(nam))

/* --------------------------------------*\
Format the text lines

---------------------------------------/
 n = 1;
 c = 0;
 msgl. = ″ ″ ;
 indent = 0;
 msgl.in.1 = indent;

 Do i = 1 While (msgstring <> ″″)
Parse VAR msgstring w msgstring
c = c + Length(w) +1
Select

Figure 37 (Part 11 of 14). TWI_XBT.CMD

162 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Handle Line break and indention

---------------------------------------/
When (Left(w,1) = ″¬″ /* Indention */) Then Do
indent = Substr(w,2)
If (\DataType(indent,″W″)) Then indent = 0
c = 0
n = n + 1
msgl.in.n = indent
End

/* --------------------------------------*\
Compose the lines..

---------------------------------------/
Otherwise Do
If (c <= max) Then Do
msgl.n = msgl.n w
End

Else Do
n = n + 1
c = Length(w) +1
msgl.n = w
msgl.in.n = indent
End

End /* Otherwise */
End /* Select */

End i
/* --------------------------------------*\

Write the lines ...
and handle the required blanks

---------------------------------------/
 Say
 Say nam || Copies(″ ″ ,msgl.in.1) || Translate(Strip(msgl.1),″ ″ ,″″)
 Do i = 2 to n

Say nams || Copies(″ ″ ,msgl.in.i) || Translate(Strip(msgl.i),″ ″ ,″″)
End i

 Return

Figure 37 (Part 12 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 163

/* ===*\
 * Here we catch all the errors ...
==/
ERROR:
FAILURE:
NOTREADY: Procedure Expose sigl Rc XRc g. stem.
NOVALUE:
SYNTAX:

 Parse Upper Source myenv mycall mypname .
 Parse Value FileSpec(″NAME″ , mypname) With myname ″ . ″ .

 traptype = Condition(″C″)
 calltype = Condition(″I″)

 Say ″REXX trap″ calltype ″on″ traptype ″in″ mypname ″ : ″

 Say ″--->″ sigl″:″ Strip(SourceLine(sigl))

Figure 37 (Part 13 of 14). TWI_XBT.CMD

164 TeamConnection and WorkFrame Integration

/* ----------------------------*\
Trap specific processing

-----------------------------/
 Select
When (traptype = ″FAILURE″) | (traptype = ″ERROR″) then do
Say ″Command :″ Condition(″D″)
Say ″Rc was :″ Rc
end

When traptype = ″HALT″ then do
Say ″Program has been interrupted by an external event!″
end

When traptype = ″NOVALUE″ then do
Say ″Variable :″ Condition(″D″)
end

When traptype = ″SYNTAX″ then do
Say ″Errortype :″ ErrorText(Rc)
end

When traptype = ″NOTREADY″ then do
Say ″Stream :″ Condition(″D″)
end

Otherwise do
Say ″Unknown REXX trap condition >″traptype″<″
Say ″Trap Description :″ Condition(″D″)
end

end /* Select */

 Call BEEP 1000,100

 Say ″Hit any Key to continue ...″
 Pull .

 If (calltype = ″SIGNAL″) Then Exit 998
Else Return 999

Figure 37 (Part 14 of 14). TWI_XBT.CMD

Appendix A. Sample REXX Programs 165

Creating a Project Template

TWI_GPT: Generate Project Template

There are two ways to create and maintain a WorkFrame project setup:

• By using the WorkFrame GUI

or
• By using the WorkFrame Project Smarts interface.

If you already have a good base, and only a few modifications are necessary, the GUI may
be suitable for maintaining a project setup. But if you have to create a large number of
actions frequently (as we had to), or your setup has to fit into different inherited
environments and thus should have different action priorities, using the Project Smarts
interface from a REXX program might be much more efficient.

Unfortunately there are some things that cannot be done from REXX, such as setting the
project or file options for actions that use the default action support DLL (IWFOPT.DLL).
Even if this final step must be done manually through the GUI, however, building the basic
project setup using a REXX program will be easier and faster than using the GUI for every
modification.

We used the REXX routine in Figure 38 on page 167 to create the base for the TWI_PRJ
project file.

166 TeamConnection and WorkFrame Integration

/* **
TeamConnection / WorkFrame Integration

File ..: TWI_GPT.cmd
 Project: Generate WF Project template (Actions) for the functions

contained in the TWI_Do.Cmd script. The template project
will be put into the VA C++ \smarts\projects directory.

Author : L. Sparmann (SPARMANN @ BOEVM2)
Owner .: L. Sparmann (SPARMANN @ BOEVM2)

Description :

(For further information, please see help!)

Version and Change History:
--------------------------*/
version = ″0.01 dated: ??.Mar.96 by: L. Sparmann″

 reason = ″Initial version ...″
/*
version = ″0.00 dated: 05.Mar.96 by: L. Sparmann″

 reason = ″Copied from C2O_MON″

***/
 Address CMD
″@ECHO OFF″

/* ----------------------------*\
Setup for error trapping

-----------------------------/

 Signal on NOVALUE ; Signal on SYNTAX ; /* SIGNAL only ! */
Call on FAILURE ; Call on ERROR ; /* SIGNAL & CALL */
 Call on NOTREADY ; Signal on HALT ; /* SIGNAL & CALL */

 /* --*\
Set up the global variables...

 ---/
 XRc = 0

Figure 38 (Part 1 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 167

 /* --*\
Basic setup ...

 ---/
 g. = ″?″ /* All my global variables ... */

/*-----------------------------*/
 g.step = 0 /* STEP and LASTSTEP are used */
 g.laststep = 11 /* to indicate the progress. */

/*-----------------------------*/
 g.exitcmds = ″″ /* Cmds to be executed on Exit */

/* --------------------------------------*\
Setup WF specific Variables & Constants

---------------------------------------/
 stem. = ″?″
 stem.undefined = stem.undefined

/* --------------------------------------*\
Get the call environment

---------------------------------------/
 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .
 g.mypath = FileSpec(″PATH″ ,g.mypname)
 g.mydrive = FileSpec(″DRIVE″ , g.mypname)
 /* --*\

We switch on monitoring as early as possible for debug reasons !
 ---/
 XRc = IwfOpenConsole(″STEM″) ;
 If (XRc <> 0) Then Do

Call RxMessageBox ″IwfOpenConsole failed, Rc was:″ XRC,
,g.myname″ : ″ ,
,″ENTER″ ,
,″EXCLAMATION″

Call Done(XRc)
End

/* --------------------------------------*\
Initial Monitor message

---------------------------------------/
 Call UpdateStatus(″Initializing ...″)

/* --------------------------------------*\
Load OS/2 built-In Utilities

---------------------------------------/
 If (RxFuncQuery(″SysLoadFuncs″)) Then Do

Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs
End

Figure 38 (Part 2 of 17). TWI_GPT.CMD

168 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Load support for Project tools setup

---------------------------------------/
 If (RxFuncQuery(″IwfEnvPrfLoadFuncs″)) Then Do

Call RxFuncAdd ″IwfEnvPrfLoadFuncs″ , ′ IWFPAPI′ , ″ IwfRxEnvPrfLoadFuncs″
Call IwfEnvPrfLoadFuncs
Call IwfInitEnvPrfAPIs
End

/* --------------------------------------*\
It′ s good practice to clean up the
REXX Queue in the beginnig

---------------------------------------/
 Do Queued(); Pull .; End

 /* --*\
Get Arguments (as typed = mixed case) and provide help if desired

 ---/
 Parse Arg allopts

 If (allopts = ″?″) Then Do
Call InfMsg(″¬ Syntax:″ g.myname ″<options>″ ,

″¬″,
″¬ Additional output for problem determination will be″ ,

″produced, if the TRACE option is specified with this″ ,
″command.″)

Call Done(100)
End

 /* --*\
Look for debug or trace setings

 ---/
 If (POS(″TRACE″ , Translate(allopts)) = 0)

Then g.trace? = 0
Else Do

g.trace? = 1
Call Value ″TWI_TRACE″ , ″ON″ , ″OS2ENVIRONMENT″
End

/* ---*\
Start processing now...

--/
 /* --*\

Wee hook into the VA C++ projects smarts
 ---/
 Call UpdateStatus(″Searching for Projects Smarts folder...″)

Figure 38 (Part 3 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 169

/* --------------------------------------*\
Find location of template project

---------------------------------------/
 TemplatePath = g.mydrive||Strip(g.mypath,″Trailing″ , ″\″)
 If (TemplatePath = ″″)

Then Call Abort(99 ″Error obtaining Project Smarts template path.″) ;
/* --------------------------------------*\

Preset interface variables and start
Location dialog ...

---------------------------------------/
 stem.pszTargetProject = ″TWI_GPT″
 stem.pszTargetDirectory = ″D:\not-applicable″
 stem.pszTargetFolder = TemplatePath

/* --------------------------------------*\
For problem determination only ...

---------------------------------------/
 If (g.trace?) Then Do

Call InfMsg(″¬ Target Information:″ ,
″¬3 TargetProject:″ stem.pszTargetProject,
″¬3 TargetDirectory:″ stem.pszTargetDirectory,
″¬3 TargetFolder:″ stem.pszTargetFolder,
″″)

 End

 /* --*\
Now create the WF project template ...

 ---/
 Call UpdateStatus(″The project will be created in ″ | | stem.pszTargetFolder)

Figure 38 (Part 4 of 17). TWI_GPT.CMD

170 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Create the project now...

---------------------------------------/
 setup_string = ″RUNPROMPT=FALSE;″ ,

|| ″RUNMONITORED=FALSE;″ ,
|| ″FILTER=*.*;″ ,
|| ″PAMORDER=IWFBPAM;″ ,
|| ″MONAUTOSCROLL=YES;″ ,
|| ″MONAUTOERASE=NO;″ ,
|| ″MONDISPLAYONSTART=YES;″ ,
|| ″MONHIDECOMPLETION=NO;″ ,
|| ″″

 If (g.trace?) Then Do
Call InfMsg(″¬ Object Setup String: ¬3″ setup_string)
End

 CORc = SysCreateObject(″IWFProject″ , ,
stem.pszTargetProject ,,
stem.pszTargetFolder ,,
setup_string,,
″REPLACE″)

 If (g.trace?) Then Do
Call InfMsg(″SysCreateObject returned:″ CORc)
End

 If (CORc = 0)
Then Call Abort Rc ″Could not create Object:″ stem.pszTargetProject,

″Return code from SysCreateObject was″ CORc

Figure 38 (Part 5 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 171

 /* --*\
Create Tools Setup (Actions...)

 ---/
 Call UpdateStatus(″Creating File Actions ...″)

 stem.pszProject = stem.pszTargetFolder″\″stem.pszTargetProject

 stem.pszCommand = ″TWI_DO.CMD″
 stem.pszDllName = ″IWFOPT″
 stem.pszHelpCmd = ″VIEW″
 stem.pszHelpTopic = ″none″
 stem.pszPam = ″IWFBPAM″

 stem.pszSrcMask = ″*.*″
 stem.pszTgtMask = ″ ″

Figure 38 (Part 6 of 17). TWI_GPT.CMD

172 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
File actions

---------------------------------------/
/* Action Class: Action Name: Source Mask:

-------------- -------------------- -----------
IWFOPT: Key Pri FPB: DFWM: POT Parameters:
------- --- --- ------- ------- --- -----------------*/

 Call AddAction ″Edit ″ , ″TC Edit ″ , ″Editable ″ , ,
″EDIT ″ ,″ ″ ,71 ,″FILE ″ , ″Default″ , ″x--″ , ″EDIT %a %z″

 Call AddAction ″TeamConnection″ , ″TC Touch ″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,63 ,″FILE ″ , ″Monitor″ , ″x--″ , ″TOUCH %a %z″

 Call AddAction ″TeamConnection″ , ″TC CheckIn (Forced) ″ , ″Editable ″ , ,
″DEFAULT″ ,″ ″ ,68 ,″FILE ″ , ″Monitor″ , ″x--″ , ″CHECKIN+ %a %z″

 Call AddAction ″TeamConnection″ , ″TC CheckIn ″ , ″Editable ″ , ,
″DEFAULT″ ,″ ″ ,67 ,″FILE ″ , ″Monitor″ , ″x--″ , ″CHECKIN %a %z″

 Call UpdateStatus(″Creating File Actions″)

 Call AddAction ″TeamConnection″ , ″TC CheckOut ″ , ″Editable ″ , ,
″DEFAULT″ ,″ ″ ,66 ,″FILE ″ , ″Monitor″ , ″x--″ , ″CHECKOUT %a %z″

 Call AddAction ″TeamConnection″ , ″TC Lock ″ , ″Editable ″ , ,
″DEFAULT″ ,″ ″ ,65 ,″FILE ″ , ″Monitor″ , ″x--″ , ″LOCK %a %z″

 Call AddAction ″TeamConnection″ , ″TC UnLock ″ , ″Editable ″ , ,
″DEFAULT″ ,″ ″ ,64 ,″FILE ″ , ″Monitor″ , ″x--″ , ″UNLOCK %a %z″

 Call AddAction ″TeamConnection″ , ″TC Extract Part(s) ″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,62 ,″FILE ″ , ″Monitor″ , ″x--″ , ″EXTRACT %a %z″

 Call UpdateStatus(″Creating File Actions″)

 Call AddAction ″View ″ , ″TC View Build Messages″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,66 ,″FILE ″ , ″Monitor″ , ″x--″ , ″VIEWBLDMSG %a %z″

 Call AddAction ″Build ″ , ″TC Build Part ″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,67 ,″FILE ″ , ″Monitor″ , ″x--″ , ″BLDPNORM %f ″

 Call AddAction ″Build ″ , ″TC Build Part Forced ″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,66 ,″FILE ″ , ″Monitor″ , ″x--″ , ″BLDPFORCE %f ″

Figure 38 (Part 7 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 173

/* --------------------------------------*\
Project actions

---------------------------------------/
 Call UpdateStatus(″Creating Project Actions ...″)

 Call AddAction ″Build ″ , ″TC Build Target ″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,97 ,″PROJECT″ , ″Monitor″ , ″x-x″ , ″BLDTNORM ″

 Call AddAction ″Build ″ , ″TC Build Target Forced″ , ″NotTcSaved″ , ,
″DEFAULT″ ,″ ″ ,96 ,″PROJECT″ , ″Monitor″ , ″x--″ , ″BLDTFORCE ″

 Call UpdateStatus(″Creating Project Actions″)

 Call AddAction ″TeamConnection″ , ″TC Freeze WorkArea ″ , ,,
″DEFAULT″ ,″ ″ ,67 ,″PROJECT″ , ″Monitor″ , ″x--″ , ″WAFREEZE ″

 Call AddAction ″TeamConnection″ , ″TC Task List ″ , ,,
″DEFAULT″ ,″ ″ ,66 ,″PROJECT″ , ″Default″ , ″x-x″ , ″TCTASK ″

 Call AddAction ″TeamConnection″ , ″TC Show WorkArea ″ , ,,
″DEFAULT″ ,″ ″ ,65 ,″PROJECT″ , ″Default″ , ″x--″ , ″WASHOW ″

 /* --*\
Register useful Type Classes ...

 ---/
 Call UpdateStatus(″Registering useful Type Classes ...″)

 Call RegisterIWFTypeClasses

 /* --*\
Create Types ...

 ---/
 Call UpdateStatus(″Creating Types ...″)

 Call AddType ″TcSaved ″ , ″FileMask ″ , ″*.$*″
 Call AddType ″NotTcSaved ″ , ″NOT IN FileMask ″ , ″*.$*″

 Call Done(0)

Figure 38 (Part 8 of 17). TWI_GPT.CMD

174 TeamConnection and WorkFrame Integration

/* ---*\
Jump to this point to exit the program

--/
Done:

 Arg XRc

 Call UpdateStatus(″Generation of Workframe Projects completed, (Rc=″XRc″) ″)

 Call RxMessageBox ″The Creation of the Teamconnection/Workframe″ ,
″integration project template has ended.″ ,
″Return Code was″ XRc ″ ! ″ ,
,g.myname″ : ″ ,
,″OK″ ,
,″INFORMATION″

/* --------------------------------------*\
This should better be reset in case
the program was interrupted by CTL-C

---------------------------------------/
HALT:

/* --------------------------------------*\
Close Installation Console ...

---------------------------------------/
 dyRc = IwfTermEnvPrfAPIs()
 dyRc = IwfEnvPrfDropFuncs()
 dyRc = IwfCloseConsole(″STEM″) ;

 Exit XRc

/* ===*\
 * Start of local subroutines ...
==/

Figure 38 (Part 9 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 175

/* ---*\
Update the status line and write a log entry indicating the current
step of the project setup...

--/
UpdateStatus: Procedure Expose XRc g. stem.

 Parse Arg text

 g.step = g.step + 1
 If (g.step > g.laststep) Then Do

Call ErrMsg(″too many steps, please update G.LASTSTEP to:″ g.step ″ ! ″)
stem.usPercent = g.laststep
End

 Else stem.usPercent = (100 / g.laststep * g.step) % 1

 rc = IwfUpdateConsoleProgress(″STEM″) ;
 If (Rc <> 0) Then Do

Call ErrMsg(″IwfUpdateConsoleStatus failed, Rc was:″ Rc)
End

 Call InfMsg(″ (″g.step″)″ text)
 stem.pszStatusText = text
 rc = IwfUpdateConsoleStatus(″STEM″) ;
 If (Rc <> 0) Then Do

Call ErrMsg(″IwfUpdateConsoleStatus failed, Rc was:″ Rc)
End

 Return

/* ---*\
Register a useful set of IWF Type Classes

--/
RegisterIWFTypeClasses:
 stem.pszDllName = ″IWFTYPES″

 Call RegisterTypeClass ″FileMask″ , ″IWFFileMask″
 Call RegisterTypeClass ″Logical AND″ , ″IWFLogAND″
 Call RegisterTypeClass ″Logical OR″ , ″IWFLogOR″
 Call RegisterTypeClass ″NOT IN FileMask″ , ″IWFNotInFileMask″
 Call RegisterTypeClass ″NOT IN Logical AND″ , ″IWFNotInLogAND″
 Call RegisterTypeClass ″NOT IN Logical OR″ , ″IWFNotInLogOR″

 Return

Figure 38 (Part 10 of 17). TWI_GPT.CMD

176 TeamConnection and WorkFrame Integration

/* ---*\
Register a IWF Type Class

--/
RegisterTypeClass:

 Parse Arg class , entry .

 stem.pszClass = Strip(class)
 stem.pszEntryPoint = Strip(entry)

 Rc = IwfRegisterTypeClass(″STEM″)

 If (Rc <> 0)
Then Call Abort Rc ″Could not register Class:″ stem.pszClass ″ (Rc=″Rc″)″

 Return

/* ---*\
Add IWF Type

--/
AddType:

 Parse Arg type , class , values

 stem.pszName = Strip(type)
 stem.pszClass = Strip(class)
 stem.pszValue = Strip(values)

 Rc = IwfAddType(″STEM″)

 If (Rc <> 0)
Then Call Abort Rc ″Could not Add Type:″ stem.pszName ″ (Rc=″Rc″)″

 Return

Figure 38 (Part 11 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 177

/* ---*\
Add Action to tools setup:

ActClass = Action Class Name
ActName = Action Name
IwfOpt = Entry point of IWFOPT to be used
Key = Accelerator Key (character + Ctrl + SHIFT)
Pri = Priority
fpb = Action applies to: File, Project, Both
dfwm = Session type: Default, Fullscreen, Window, Monitored
pot = If (p=′ -′) then do not add to Project Menu

If (o=′ -′) then do not add to Options Menu
If (t=′ -′) then do not add to Toolbar

--/
AddAction: Procedure Expose g. stem.

 Parse Arg ActClass , ActName , SrcMask , IwfOpt , Key , Priority . ,,
fpb . , dfwm . , pot , Parms

 stem.pszActionClass = Strip(ActClass)
 stem.pszActionName = Strip(ActName)
 stem.pszSrcMask = Strip(SrcMask)
 stem.pszDllEntryName = Strip(IwfOpt)
 stem.pszucAccelKey = Key
 stem.pszPriority = Priority
 stem.pszucActionScope = fpb
 stem.pszucRunMode = Left(dfwm,1)

 If (Substr(pot,1,1) = ″-″)
Then stem.pszfPrjMenu = ″F″ /* Project Menu: F=false */
Else stem.pszfPrjMenu = ″T″ /* Project Menu: T=true */

 If (Substr(pot,2,1) = ″-″)
Then stem.pszfOptMenu = ″F″ /* Options Menu: F=false */
Else stem.pszfOptMenu = ″T″ /* Options Menu: T=true */

 If (Substr(pot,3,1) = ″-″)
Then stem.pszfTBMenu = ″F″ /* Tool Bar : F=false */
Else stem.pszfTBMenu = ″T″ /* Tool Bar : T=true */

 If (stem.pszSrcMask = ″″)
Then stem.pszSrcMask = ″*.*″

Figure 38 (Part 12 of 17). TWI_GPT.CMD

178 TeamConnection and WorkFrame Integration

/***
stem.pszCommand = ″TWI_″Word(parms,1)″ . cmd″
***/

 Rc = IwfAddAction(″STEM″)

 If (Rc <> 0)
Then Call Abort Rc ″Could not Add Action:″ stem.pszActionName ″ (Rc=″Rc″)″

 Return

/* ---*\
Confirm Cancellation

--/
Cancel:
 rc = RxMessageBox(″Do you really want to cancel?″ ,

,g.myname″ : ″ ,
,″YESNO″ ,
,″QUERY″)

 If (rc = 6 /*YES*/)
Then Call Done(8)

 Return;

/* ---*\
Stop processing issuing an error message and giving back an Rc

--/
Abort: Procedure Expose XRc g. stem.
 Parse Arg retcode message
 Call ErrMsg(message)
 Call Done(retcode)
 Return

Figure 38 (Part 13 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 179

/* ---*\
ErrMsg/InfMsg:

Issue an Error or Informational message
- Messages are preceeded by the program name
- Messages are formatted to fit into a 80 Column line
- Special formatting characters supported:

¬n = Line Break and set line indentation level to n (0=default)
= Required Blank

- ERROR Messages go to SDTERR
--/
ErrMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

InfMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring
 Call WrtMsg(msgstring)
 Return

WrtMsg: Procedure Expose XRc g. stem.
 Parse Arg msgstring

 nam = g.myname″: ″
 nams = Copies(″ ″ ,Length(nam))
 max = 75-(Length(nam))

/* --------------------------------------*\
Format the text lines

---------------------------------------/
 n = 1;
 c = 0;
 msgl. = ″ ″ ;
 indent = 0;
 msgl.in.1 = indent;

 Do i = 1 While (msgstring <> ″″)
Parse VAR msgstring w msgstring
c = c + Length(w) +1
Select

Figure 38 (Part 14 of 17). TWI_GPT.CMD

180 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Handle Line break and indention

---------------------------------------/
When (Left(w,1) = ″¬″ /* Indention */) Then Do
indent = Substr(w,2)
If (\DataType(indent,″W″)) Then indent = 0
c = 0
n = n + 1
msgl.in.n = indent
End

/* --------------------------------------*\
Compose the lines..

---------------------------------------/
Otherwise Do
If (c <= max) Then Do
msgl.n = msgl.n w
End

Else Do
n = n + 1
c = Length(w) +1
msgl.n = w
msgl.in.n = indent
End

End /* Otherwise */
End /* Select */

End i
/* --------------------------------------*\

Write the lines ...
and handle the required blanks

---------------------------------------/
 Say
 Say nam || Copies(″ ″ ,msgl.in.1) || Translate(Strip(msgl.1),″ ″ ,″″)
 Do i = 2 to n

Say nams || Copies(″ ″ ,msgl.in.i) || Translate(Strip(msgl.i),″ ″ ,″″)
End i

 Return

Figure 38 (Part 15 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 181

/* ===*\
 * Here we catch all the errors ...
==/
ERROR:
FAILURE:
NOTREADY: Procedure Expose sigl Rc XRc g. stem.
NOVALUE:
SYNTAX:

 Parse Upper Source myenv mycall mypname .
 Parse Value FileSpec(″NAME″ , mypname) With myname ″ . ″ .

 traptype = Condition(″C″)
 calltype = Condition(″I″)

 Say ″REXX trap″ calltype ″on″ traptype ″in″ mypname ″ : ″

 Say ″--->″ sigl″:″ Strip(SourceLine(sigl))

Figure 38 (Part 16 of 17). TWI_GPT.CMD

182 TeamConnection and WorkFrame Integration

/* ----------------------------*\
Trap specific processing

-----------------------------/
 Select
When (traptype = ″FAILURE″) | (traptype = ″ERROR″) then do
Say ″Command :″ Condition(″D″)
Say ″Rc was :″ Rc
end

When traptype = ″HALT″ then do
Say ″Program has been interrupted by an external event!″
end

When traptype = ″NOVALUE″ then do
Say ″Variable :″ Condition(″D″)
end

When traptype = ″SYNTAX″ then do
Say ″Errortype :″ ErrorText(Rc)
end

When traptype = ″NOTREADY″ then do
Say ″Stream :″ Condition(″D″)
end

Otherwise do
Say ″Unknown REXX trap condition >″traptype″<″
Say ″Trap Description :″ Condition(″D″)
end

end /* Select */

 Call BEEP 1000,100

 If (calltype = ″SIGNAL″) Then Exit 998
Else Return 999

Figure 38 (Part 17 of 17). TWI_GPT.CMD

Appendix A. Sample REXX Programs 183

Other Useful REXX Programs

A REXX Message Box for non-Presentation Manager Environments

The REXX utility functions (REXXUTIL) provide the RcMessageBox function, which enables you
to pop up a message box from a REXX program if you want to inform the user about some
event that happened in a background task. Unfortunately, this function only works when
invoked from a Presentation Manager (PM) application.

The MSGBOX.CMD (Figure 39 on page 185) and MSGBOX1.CMD (Figure 40 on page 188)
files provide a way of using the RxMessageBox function from a non-PM environment.
MSGBOX has the same call interface as RxMessageBox, but it returns the name of the
button instead of the return code.

Examples:

button = MsgBox(″Do you want to check in″ part, /* Text */
,g.myname″:″ g.U_function, /* Title */
,″YesNo″ , /* Buttons */
,″Query″) /* Icon */

If (button = ″YES″) Then Do
...
End

184 TeamConnection and WorkFrame Integration

/* ---*\
MsgBox.CMD

Together with it′ s counterpart, MsgBox1.CMD, this program provides
a way of using the RxMessageBox function in a non PM environment.

MsgBox returns the button that was pressed by the user. The values
returned will be one of the list below:

OK, CANCEL, ABORT, RETRY, IGNORE, YES, NO, ENTER

The string ′ ??? ′ will be returned if an undefined value is returned
by the RxMessageBox Function !

L. Sparmann (SPARMANN at BOEVM2)
--/

 Address ′ CMD′
 Signal On Halt

″@ECHO OFF″
/* --------------------------------------*\

Get the call environment
---------------------------------------/

 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .

/* --------------------------------------*\
Create a REXX queue for communication

---------------------------------------/
 MBoxQ = RXQueue(″CREATE″)
 SessQ = RxQueue(″SET″ , MBoxQ)
 Do Queued(); Pull . ; End; /* Clean up the queue ! */

 /* --*\
Now let′ s do the job...

 ---/

Figure 39 (Part 1 of 3). MSGBOX.CMD

Appendix A. Sample REXX Programs 185

/* --------------------------------------*\
Get arguments (case sensitive)

---------------------------------------/
 Parse Arg parm1 , parm2 , parm3 , parm4
 If (parm2 = ″″)

Then Parse Var parm1 parm1 ′ , ′ parm2 ′ , ′ parm3 ′ , ′ parm4

 parm1 = Strip(parm1)
 parm2 = Strip(parm2)
 parm3 = Strip(parm3)
 parm4 = Strip(parm4)

/* --------------------------------------*\
Starting my PM counterpart now ...

---------------------------------------/
″START /PM CMD /K″ g.myname″1″ MBoxQ

/* --------------------------------------*\
Wait until couterpart indicates that
it is ready by sending Id of MBoxQ1

---------------------------------------/
 Do infinite_loop=1

If (Queued() = 1) Then Do
Parse Pull MBoxQ1
Leave infinite_loop
End
Else Call SysSleep 1

End infinite_loop
/* --------------------------------------*\

Send parameters over MBoxQ1 ...
---------------------------------------/

 Call RxQueue ″SET″ , MBoxQ1
 Do Queued(); Pull . ; End; /* Clean it up first ! */
 Queue parm1
 Queue parm2
 Queue parm3
 Queue parm4

Figure 39 (Part 2 of 3). MSGBOX.CMD

186 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Wait for users response on MBoxQ ...

---------------------------------------/
 Call RxQueue ″SET″ , MBoxQ
 Do infinite_loop=1

If (Queued() = 1) Then Do
Parse Pull MBXRc
Leave infinite_loop
End

Else Call SysSleep 1
End infinite_loop

/* --------------------------------------*\
Translate MBXRc to button

---------------------------------------/
 Select

When (MBXRc = 1) Then button = ″OK″
When (MBXRc = 2) Then button = ″CANCEL″
When (MBXRc = 3) Then button = ″ABORT″
When (MBXRc = 4) Then button = ″RETRY″
When (MBXRc = 5) Then button = ″IGNORE″
When (MBXRc = 6) Then button = ″YES″
When (MBXRc = 7) Then button = ″NO″
When (MBXRc = 8) Then button = ″ENTER″
Otherwise button = ″???″
End

/* ---*\
We are done, clean up the environment !

--/
Clean_Exit:
Halt:

 dyRc = RXQueue(″SET″ , SessQ)
 dyRc = RXQueue(″DELETE″ , MBoxQ)

 If (g.mycall = ″COMMAND″)
Then Say button
Else Return button

 Exit XRc

Figure 39 (Part 3 of 3). MSGBOX.CMD

Appendix A. Sample REXX Programs 187

/* ---*\
MsgBox1.CMD

Is the counterpart to MsgBox.CMD providing the RxMessageBox
functionality for a non PM environment...

L. Sparmann (SPARMANN at BOEVM2)
--/

 Address ′ CMD′
 Signal On Halt

″@ECHO OFF″
/* --------------------------------------*\

Get the call environment
---------------------------------------/

 g. = ″″
 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .

/* --------------------------------------*\
Create a REXX queue to be used for
parameter passing...
Send name of this queue to the caller

---------------------------------------/
 MBoxQ1 = RXQueue(″CREATE″)

 /* --*\
Let′ s do the job now ...

 ---/
/* --------------------------------------*\

Get callers Queue Id
---------------------------------------/

 Parse Arg MBoxQ
 Say g.myname″ : Got Queue Id:″ MBoxQ

/* --------------------------------------*\
Send back own queue Id

---------------------------------------/
 SessQ = RxQueue(″SET″ , MBoxQ)
 Queue MBoxQ1

Figure 40 (Part 1 of 2). MSGBOX1.CMD

188 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Get prameters for RxMessageBox

---------------------------------------/
 Call RxQueue ″SET″ , MBoxQ1
 Do infinite_loop=1

If (Queued() = 4) Then Do /* Start if everything is available ... */
Parse Pull parm1
Parse Pull parm2
Parse Pull parm3
Parse Pull parm4
Leave infinite_loop
End

Else Call SysSleep 1
End infinite_loop

/* --------------------------------------*\
Display Message Box now and return Rc

---------------------------------------/
 MBXrc = RxMessageBox(parm1,parm2,parm3,parm4)

 Call RxQueue ″SET″ , MBoxQ
 Queue MBXRc

/* ---*\
We are done, don′ t forget to delete our queue !

--/
Clean_Exit:
Halt:

 dyRc = RXQueue(″SET″ , SessQ)
 dyRc = RXQueue(″DELETE″ , MBoxQ1)

 Exit 0

Figure 40 (Part 2 of 2). MSGBOX1.CMD

Appendix A. Sample REXX Programs 189

LXSYNC: A Synchronous Way of Invoking LPEX

The powerful l ive parsing editor (LPEX) included in VisualAge for C++ does not provide a
synchronous call/return interface. In fact, the editor itself stays in memory after the first
invocation, and in all subsequent invocations the editor will return to its caller as soon as a
file is loaded. Therefore the caller is not informed when the editing session ends.

Some actions (like TC Edit) require a synchronous invocation and have to know when the
editing session ends. Therefore we devised a quick solution for a synchronous invocation,
using RxQueue (Figure 41) and an editor macro (Figure 42 on page 193) that intercepts the
File and Quit command processing of the editor.

/* ---*\
LxSync.CMD

Is the counterpart to LxSync.LX trying to simulate a synchronous
invocation of an LPEX editor session. LxSync starts the LPEX Editor
(EVFXLXPM) for ONE file, so that the macro LxSync.LX is invoked with
the SETUP parameter and the name of a REXX Queue that is used for
communication.

LxSync.LX returns the information whether the user ended the LPEX
session in a FILE or QUIT like manner followed by the filename.

LxSync.CMD returns depending on the type of invocation:

COMMAND - Returncode
FUNCTION - Returncode Filename

A return code of 99 means that the user ended the editor session
by QUITting without SAVEing

L. Sparmann (SPARMANN at BOEVM2)
--/

 Address ′ CMD′
 Signal On Halt

″@ECHO OFF″
 XRc = 100

Figure 41 (Part 1 of 3). LXSYNC.CMD

190 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Get the call environment

---------------------------------------/
 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .
 g.mypath = FileSpec(″PATH″ ,g.mypname)
 g.mydrive = FileSpec(″DRIVE″ , g.mypname)

/* --------------------------------------*\
Get arguments (case sensitive)

---------------------------------------/
 Parse Arg allargs
 Parse Var allargs file . ″/″ allopts
 If (allopts <> ″″) Then allopts = ″ / ″allopts

/* --------------------------------------*\
OS/2 built-In Utilities

---------------------------------------/
 If (RxFuncQuery(″SysLoadFuncs″)) Then Do

Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs
End

/* --------------------------------------*\
Create a REXX queue to communicate
with the LPEX session an initially
clean it up !

---------------------------------------/
 LxSyncQ = RXQueue(″CREATE″)
 SesQ = RxQueue(″SET″ , LxSyncQ) /* saves name of active REXX queue */
 Do Queued(); Pull . ; End;

 /* --*\
Invoke LPEX so that my .LX counterpart gains control ...
Note, that an additional /CM is passed to it as a parameter !

 ---/
 Say g.myname″ invoking:″
 Say ″ START EVFXLXPM″ file ″ / CM″ g.myname″ . LX SETUP″ LxSyncQ allopts

″START EVFXLXPM″ file ″ / CM″ g.myname″ . LX SETUP″ LxSyncQ allopts

Figure 41 (Part 2 of 3). LXSYNC.CMD

Appendix A. Sample REXX Programs 191

 /* --*\
Look if the LPEX editor session has put something on the queque

 ---/
 Do infinite_loop=1

Do q_loop=1 to Queued()
Parse Pull message filename
message = Translate(message)
If (message = ″CONNECTED″) Then Do
Iterate q_loop
End

If (message = ″FILE″) Then Do
Xrc = 0
Leave infinite_loop
End

If (message = ″QUIT″) Then Do
Xrc = 99
Leave infinite_loop
End

Say ″Garbage received on Queue (″LxSyncQ″) : ″ message filename
End q_loop

Call SysSleep 2
End infinite_loop

/* ---*\
We are done, clean up the environment !

--/
Clean_Exit:
Halt:

 Call RXQueue ″Set″ , SesQ
 dyRc = RXQueue(″DELETE″ , LxSyncQ)

 If (g.mycall = ″COMMAND″) Then Do
Say XRc filename
Exit XRc
End

 Return XRc filename

Figure 41 (Part 3 of 3). LXSYNC.CMD

192 TeamConnection and WorkFrame Integration

/* ---*\
LxSync.LX

Is the counterpart to LxSync.CMD trying to simulate a synchronous
invocation of an LPEX editor session. LxSyn intercepts the FILE ans
QUIT commands to communicate the end of an editing session to the
calling program (LxSyn.CMD).
A REXX Queue is used for communication. The name of the queue as well
as the proevious settings of the synonyms file & quit are remembered
in LPEX synonyms starting with LXSYNC_.

LxSync.LX returns the information whether the user ended the LPEX
session in a FILE or QUIT like manner followed by the filename.

L. Sparmann (SPARMANN at BOEVM2)
--/
 Trace o

 Arg func LxSyncQ other_lpex_command

 Parse Upper Source g.myenv g.mycall g.mypname .
 Parse Value FileSpec(″NAME″ , g.mypname) With g.myname ″ . ″ .

/* --------------------------------------*\
Provide help on invalid calls

---------------------------------------/
 If (func = ″″) Then Do

″MSG Syntax:″ g.myname ″•SETUP qname <macrocall> | FILE | QUIT“″
Exit 100
End

/* --------------------------------------*\
Estabish Synonyms for File & Quit...
...and execute other macro if specified

---------------------------------------/
 Select

When (func = ″SETUP″) Then Do

″Extract name ″
Say g.myname″:>>>″ LxSyncQ ″on:″ name

SesQ = RxQueue(″SET″ , LxSyncQ)
Queue ″CONNECTED″ /* Signal successful connection */
Call RxQueue ″SET″ , SesQ

″Set Synonym.″g.myname″_Queue″ LxSyncQ

Figure 42 (Part 1 of 3). LXSYNC.LX

Appendix A. Sample REXX Programs 193

/* --------------------------------------*\
Do not use LXN QQUIT in a workframe
environment, they too are intercepting
the end of the session setting a
Synonym on QQUIT !!!

---------------------------------------/
″Set SYNONYM.QUIT MULT ;″ g.myname″ . LX QUIT ;″ /*LXN*/ ″QQUIT″
″Set SYNONYM.FILE MULT ;″ g.myname″ . LX FILE ;″ /*LXN*/ ″QQUIT″

If (other_lpex_command <> ″″) Then Do
Say g.myname″:>>> Invoking:″
Say ″ ″ other_lpex_command
other_lpex_command
End

End
/* --------------------------------------*\

If QUIT was executed...
ask if user wants to save the file
... and return to the caller !

---------------------------------------/
When (func = ″QUIT″) Then Do

/* We do not look for the CHANGES parameter, because it might not
be set if the user did not really hit enter before he quits! */

action = RxMessageBox(″Do you want to save the changes?″ , ,
g.myname″ : ″ , ″YESNO″ , ″QUESTION″)

If (action = 6) /* YES */ Then do
″LXN SAVE″
Call Send_Completion_Msg ″FILE″
End

Else Do
Call Send_Completion_Msg func
End

End
/* --------------------------------------*\

Save the file and return to the caller.
---------------------------------------/

When (func = ″FILE″) Then Do
″LXN SAVE″
Call Send_Completion_Msg func
End

Figure 42 (Part 2 of 3). LXSYNC.LX

194 TeamConnection and WorkFrame Integration

/* --------------------------------------*\
Just in case ...

---------------------------------------/
Otherwise Do
″MSG″ g,myname″ : Unsupported function″ func
End

End /* SELECT */

Exit 0

/* ---*\
Indicate completion to the caller ...

SAVE - File has been saved by the user
QUIT - User did not want to save the file

--/
Send_completion_msg:

 Arg cmsg .

″Extract name Synonym.″g.myname″_Queue into LxSyncQ″
Parse Var LxSyncQ . LxSyncQ

 Say g.myname″:<<<″ LxSyncQ cmsg name
 SesQ = RxQueue(″SET″ , LxSyncQ)
 Queue cmsg name
 Call RxQueue ″SET″ , SesQ

 Return

Figure 42 (Part 3 of 3). LXSYNC.LX

Appendix A. Sample REXX Programs 195

196 TeamConnection and WorkFrame Integration

Glossary

This glossary defines the terms and
abbreviations used in this book. If you do
not find the term you are looking for, refer
to the IBM Dictionary of Computing, New
York: McGraw-Hill, 1994.

A

absolute path name . A directory or a part
expressed as a sequence of directories
followed by a part name beginning from the
root directory.

access list . A set of objects that controls
access to data. Each object consists of a
component, a user, and the authority that
the user is granted or is restricted from in
that component. See also authority and
restricted authority.

action . A task performed by the
TeamConnection server and requested by a
TeamConnection client. A TeamConnection
action is the same as issuing one
TeamConnection command.

agent . See build agent.

alternate version ID . In collision records,
the name of a version of a driver, release,
or work area where the conflicting version
of a part is visible.

approval record . A status record on which
an approver must give an opinion of the

proposed part changes required to resolve
a defect or implement a feature in a
release.

approver . A user who has the authority to
mark an approval record with accept,
reject, or abstain within a specific release.

approver list . A list of user IDs attached to
a release, representing the users who must
review part changes that are required to
resolve a defect or implement a feature in
that release.

attribute . Information contained in a field
that is accessible to the user.
TeamConnection enables family
administrators to customize defect, feature,
user, and part tables by adding new
attributes.

authority . The right to access development
objects and perform TeamConnection
commands. See also access list, base
authority, explicit authority, implicit
authority, and restricted authority.

B

base authority . The set of actions granted
to a user when a user ID is created within a
TeamConnection family. See also
authority. Contrast with implicit authority
and explicit authority

 Copyright IBM Corp. 1996 197

build . The process used to create
applications within TeamConnection.

build agent . A program that handles
access to persistent data on behalf of the
build processor. Each build agent is
connected to one and only one build
processor, through a TCP/IP connection.

build cache . A directory that the build
processor uses to enhance performance.

build dependent . A TeamConnection part
that is needed for the compile operation to
complete but will not be passed directly to
the compiler. An example of this is an
include file. See also dependencies.

builder . An object that can transform one
set of TeamConnection parts into another
by invoking tools such as compilers and
linkers.

build event . An individual step in the build
of an application, such as the compiling of
hello.c into hello.obj.

build input . A TeamConnection part that
will be used as input to the object being
built.

build output . A TeamConnection part that
will be generated as output from a build,
such as an .obj or .exe file.

build pool . A group of build servers that
resides in an environment. The
environment in which several build servers
operate. Typically, several servers are set
up for each environment for which the
enterprise develops applications.

build processor . A program that invokes
tools, such as compilers and linkers, that
construct an application. Each build
processor is connected to one and only one
build agent, through a TCP/IP connection.
See also build agent and build cache.

build scope . A collection of build events
that implement a specific build request.
See also build event.

build script . An executable or command
file that specifies the steps that should
occur during a build operation. This file
can be a compiler, a linker, or the name of
a .cmd file you have written.

build server . The combination of a build
processor and a build agent. See also
build agent and build processor.

build target . The name of the part at the
top of the build tree that is the final output
of a build. TeamConnection uses the build
target to determine the scope of the build.
See also build tree.

build tree . A graphical representation of
the dependencies that the parts in an
application have on one another. If you
change the relationship of one part to
another, the build tree changes
accordingly.

C

change control process . The process of
limiting and auditing changes to parts
through the mechanism of checking parts in
and out of a central, controlled, storage
location. Change control for individual
releases can be integrated with problem
tracking by specifying a process for the
release that includes the tracking
subprocess.

check-in . The return of a TeamConnection
part to version control.

check-out . The retrieval of a version of a
part under TeamConnection control. In
nonconcurrent releases, the check-out
operation does not allow a second user to

198 TeamConnection and WorkFrame Integration

check out a part until the first user has
checked it back in.

child component . Any component in a
TeamConnection family, except the root
component, that is created in reference to
an existing component. The existing
component is the parent component, and
the new component is the child component.
A parent component can have more than
one child component, and a child
component can have more than one parent
component. See also component and
parent component.

child part . Any part in a build tree that has
a parent defined. A child part can be input,
output, or dependent. See also part and
parent part.

client . A functional unit that receives
shared services from a server. Contrast
with server.

collision record . A status record
associated with a work area or driver, a
part, and one of the following:

• The work area or driver′s release

• Another work area

TeamConnection generates a collision
record when a changed version of a part
conflicts with a previously committed and
integrated version of the same part. This is
only related to concurrent development
mode, when more than one developer can
check out the same version of the same
part concurrently. (In serial development,
the part will be locked after the first
check-out.)

command . A request to perform an
operation or run a program from the
command line interface. In
TeamConnection, a command consists of

the command name, one action flag, and
zero or more attribute flags.

command line . (1) An area on the Tasks
window or in the TeamConnection
Commands window where a user can type
TeamConnection commands. (2) An area
on an OS/2 window where you can type
TeamConnection commands.

committed version . The revision of a part
that is visible from the release.

common part . A part that is shared by two
or more releases, and the same version of
the part is the current version for those
releases.

comparison operator . An operator used in
comparison expressions. Comparison
operators used in TeamConnection are >
(greater than), < (less than), >= (greater
than or equal to), <= (less than or equal
to), and = (equal to).

component . A TeamConnection object that
organizes project data into structured
groups and controls configuration
management properties. Component
owners can control access to data and
notification of TeamConnection actions.
Components exist in a parent-child
hierarchy with descendant components
inheriting access and notification
information from ancestor components.
See also access list and notification list.

concurrent development . Several users
can work on the same part at the same
time. TeamConnection requires these
users to reconcile their changes when they
commit or integrate their work areas and
drivers with the release. Contrast with
serial development. See also work area.

configuration management . The process of
identifying, managing, and controlling

Glossary 199

software modules as they change over
time.

connect . The process of linking parts so
that they are included in a build.

context . The current work area or driver
used for part operations.

corequisite work areas . Two or more work
areas designated as corequisites by a user
so that all work areas in the corequisite
group must be included as members in the
same driver, before that driver can be
committed. If the driver process is not
used in the release, corequisite work areas
must be integrated by the same command.
See also prerequisite work areas.

current version . The last visible
modification of a part in a driver, release,
or work area.

current working directory . (1) The
directory that is the starting point for
relative path names. (2) The directory in
which you are working.

D

daemon . A program that runs unattended
to perform a standard service. Some
daemons are triggered automatically to
perform their task; others operate
periodically.

database . A collection of data that can be
accessed and operated by a data
processing system for a specific purpose.

default . A value that is used when an
alternative is not specified by the user.

default query . A database search, defined
for a specific TeamConnection window, that

is issued each time that TeamConnection
window is opened. See also search.

defect . A TeamConnection object used to
formally report a problem. The user who
opens a defect is the defect originator.

delete . If you delete a development object,
such as a part or a user ID, any reference
to that object is removed from
TeamConnection. Certain objects can be
deleted only if certain criteria are met.
Most objects that are deleted can be
re-created.

delta part tree . A directory structure
representing only the parts that were
changed in a specified place.

dependencies . In TeamConnection builds
there are two types of dependencies:

• automatic . These are build
dependencies that a parser identifies.

• manual . These are build dependencies
that a user explicitly identifies in a
build tree.

See also build dependent.

destroy . To remove the part record from
the database on the TeamConnection
server. The only TeamConnection
development object that can be destroyed
is a part.

disconnect . The process of unlinking parts
so that they are not included in a build.

driver . A collection of work areas that
represent a set of changed parts within a
release. Drivers are only associated with
releases whose processes include the track
and driver subprocesses.

driver member . A work area that is added
to a driver.

200 TeamConnection and WorkFrame Integration

E

environment . (1) A user-defined testing
domain for a particular release. (2) A
defect field representing the environment
where the problem occurred. (3) The string
that matches a build agent with a build
event.

environment list . A TeamConnection object
used to specify environments in which a
release should be tested. A list of
environment-user ID pairs attached to a
release, representing the user responsible
for testing each environment. Only one
tester can be identified for an environment.

explicit authority . The ability to perform an
action against a TeamConnection object
because you have been granted the
authority to perform that action. Contrast
with base authority and implicit authority.

extract . A TeamConnection action you can
perform on a part, driver, or release. A
part extraction results in copying the
specified part to a client workstation. A
driver extraction and release extraction
result in all parts for the driver or release
being copied to a designated location.

F

family . A logical organization of related
data. A single TeamConnection server can
support multiple families. The data in one
family cannot be accessed from another
family.

family administrator . A user responsible
for all non-system-related tasks for one or
more TeamConnection families, such as
planning, configuring, and maintaining the
TeamConnection environment and
managing user access to those families.

family server . A workstation running the
TeamConnection server software.

feature . A TeamConnection object used to
formally request and record information
about a functional addition or
enhancement. The user who opens a
feature is the feature originator.

file allocation table (FAT) . The DOS- and
OS/2-compatible file system that manages
input, output, and storage of files on your
system. File names can be up to eight
characters long, followed by a file
extension that can be up to three
characters.

fix record . A status record associated with
a work area and that is used to monitor the
phases of change within each component
affected by a defect or feature for a specific
release.

freeze . The freeze command saves
changed parts to the work area. Thus,
TeamConnection takes a snapshot of the
work area, including all of the current
versions of parts visible from that work
area, and saves this image of the system.
The user can always come back to this
stage of development in the work area.
Note, however, that a freeze action does
not make the changes visible to other users
working in the release.

full part tree . A directory structure
representing a complete set of active parts
associated with the release.

G

graphical user interface (GUI) . A type of
computer interface consisting of a visual
metaphor of a real-world scene, often as a
desktop. Within that scene are icons,
representing actual objects, that the user

Glossary 201

can access and manipulate with a pointing
device.

H

high-performance file system (HPFS) . In
the OS/2 operating system, an installable
file system that uses high-speed buffer
storage, known as a cache, to provide fast
access to large disk volumes. The file
system also supports the existence of
multiple, active file systems on a single
personal computer, with the capacity of
multiple and different storage devices. File
names used with HPFS can have as many
as 254 characters.

host . A host node, host computer, or host
system.

host list . A list associated with each
TeamConnection user ID that indicates the
client machine that can access the family
server and act on behalf of the user. The
family server uses the list to authenticate
the identity of a client machine when the
family server receives a command. Each
entry consists of a login, a host name, and
a TeamConnection user ID.

host name . The identifier associated with
the host computer.

I

implicit authority . The ability to perform an
action on a TeamConnection object without
being granted explicit authority. This
authority is automatically granted through
inheritance or object ownership. Contrast
with base authority and explicit authority

import . To bring in data. In
TeamConnection, to bring selected items
into a field from a matching
TeamConnection object window.

inheritance . The passing of configuration
management properties from parent to
child component. The configuration
management properties that are inherited
are access and notification. Inheritance
within each TeamConnection family or
component hierarchy is cumulative.

integrated problem tracking . The process
of integrating problem tracking with change
control to track all reported defects,
proposed features, and subsequent
changes to parts. See also change control
process.

interest group . The list of actions that
trigger notification to the user IDs
associated with those actions listed in the
notification list.

J

job queue . A queue of build scopes. One
job queue exists for each TeamConnection
family.

L

lock . An action that prevents editing
access to a part stored in the
TeamConnection development environment
so that only one user can change a part at
a time.

login . The name that identifies a user on a
multiuser system. In OS/2, the login value
is obtained from the TC_USER environment
variable.

M

metadata . In databases, data that describe
data objects.

202 TeamConnection and WorkFrame Integration

N

name server . In TCP/IP, a server program
that supplies name-to-address translation
by mapping domain names to Internet
addresses.

notification list . An object that enables
component owners to configure notification.
A list attached to a component that pairs a
list of user IDs and a list of interest groups.
It designates the users and the
corresponding notification interest that they
are being granted for all objects managed
by this component or any of its
descendants.

notification server . A server that sends
notification messages to the client.

O

operator . A symbol that represents an
operation to be done. See also comparison
operator.

originator . The user who opens a defect or
feature and is responsible for verifying the
outcome of the defect or feature on a
verification record. This responsibility can
be reassigned.

owner . The user responsible for a
TeamConnection object within a
TeamConnection family, either because the
user created the object or was assigned
ownership of the object.

P

parent component . All components in each
TeamConnection family, except the root
component, are created in reference to an
existing component. The existing
component is the parent component. See
also child component and component.

parent part . Any part in a build tree that
has a child defined. See also part and
child part.

parser . A tool that can read a source file
and report back a list of dependencies of
that source file. It frees a developer from
knowing the dependencies one part has on
other parts to ensure that a complete build
is performed.

part . A collection of data that is stored by
the family server and retrieved by a path
name. Parts can be text objects, binary
objects, and modeled objects. These parts
can be stored by the user or the tool, or
they can be generated from other parts,
such as when a linker generates an
executable file.

path name . The name of the part under
TeamConnection control. A path name can
be a directory structure and a base name
or just a base name. It must be unique
within each release.

prerequisite work areas . If a part is
changed to resolve more than one defect or
feature, the work area referenced by the
first change is a prerequisite of the work
area referenced by later changes. A work
area is a prerequisite to another work area
if:

• Part changes are checked in, but not
committed, for the first work area.

• One or more of the same parts are
checked out, changed, and checked in
again for the second work area.

problem tracking . The process of tracking
all reported defects through to resolution
and all proposed features through to
implementation.

Glossary 203

process . A combination of
TeamConnection subprocesses, configured
by the family administrator, that controls
the general movement of TeamConnection
objects (defects, features, work areas, and
drivers) from state to state within a
component or release. See also
subprocess and state.

Q

query . A request for information from a
database, for example, a search for all
defects that are in the open state. See also
default query and search.

R

raw format . Information retrieved on the
Report command that has the vertical bar
delimiter separating field information, and
each line of output corresponds to one
database record.

refresh . This TeamConnection command
updates a work area with any changes from
the release. It also freezes the work area,
if it is not already frozen.

relative path name . The name of a
directory or a part expressed as a
sequence of directories followed by a part
name, beginning from the current directory.

release . A TeamConnection object defined
by a user that contains all parts that must
be built, tested, and distributed as a single
entity.

restricted authority . The limitation on a
user ′s ability to perform certain actions at a
specific component. Authority can be
restricted by the superuser, the component
owner, or a user with AccessRestrict
authority. See also authority.

root component . The initial component
created when a TeamConnection family is
configured. All components in a
TeamConnection family are descendants of
the root component. Only the root
component has no parent component. See
also component, child component, and
parent component

S

search . To scan one or more data
elements of a set in a database to find
elements that have certain properties.

serial development . While a user has parts
checked out from a work area, no one else
on the team can check out the part. The
user develops new material without
interacting with other developers on the
project. TeamConnection provides the
opportunity to hold the part until the user is
sure that it integrates with the rest of the
application. Thus, the lock is not released
until the work area as a whole is
committed. Contrast with concurrent
development. See also work area.

server . A workstation that performs a
service for another workstation.

shell script . A series of commands
combined in a file that carry out a function
when the file is run.

sizing record . A status record created for
each component-release pair affected by a
proposed defect or feature. The sizing
record owner must indicate whether the
defect or feature affects the specified
component-release pair and the
approximate amount of work needed to
resolve the defect or implement the feature
within the specified component-release
pair.

204 TeamConnection and WorkFrame Integration

stanza format . Data output generated by
the Report command in which each
database record is a stanza. Each stanza
line consists of a field and its
corresponding values.

state . Work areas, drivers, features, and
defects move through various states during
their life cycles. The state of an object
determines the actions that can be
performed on it. See also process and
subprocess.

subprocess . TeamConnection
subprocesses govern the state changes for
TeamConnection objects. The design, size,
review (DSR) and verify subprocesses are
configured for component processes. The
track, approve, fix, driver, and test
subprocesses are configured for release
processes. See also process and state.

superuser . This privilege lets a user
perform any action available in the
TeamConnection family.

system administrator . A user who is
responsible for all system-related tasks
involving the TeamConnection server, such
as installing, maintaining, and backing up
the TeamConnection server and the
database it uses.

T

task list . The list of tasks displayed in the
Tasks window. The user can customize
this list to issue requests for information
from the server. Tasks can be added,
modified, or deleted from the lists.

TeamConnection client . A workstation that
connects to the TeamConnection server by

a TCP/IP connection and that is running the
TeamConnection client software.

TeamConnection part . A part that is stored
by the TeamConnection server and
retrieved by a path name, release, type,
and work area. See also part, common
part, and type.

TeamConnection superuser . See
superuser.

tester . A user responsible for testing the
resolution of a defect or the implementation
of a feature for a specific driver of a
release and recording the results on a test
record.

test record . A status record used to record
the outcome of an environment test
performed for a resolved defect or an
implemented feature in a specific driver of
a release.

track subprocess . An attribute of a
TeamConnection release process that
specifies that the change control process
for that release will be integrated with the
problem tracking process.

Transmission Control Protocol/Internet
Protocol (TCP/IP) . A set of communication
protocols that support peer-to-peer
connectivity functions for both local and
wide area networks.

type . All parts that are created through the
TeamConnection GUI or on the command
line will show up in reports with the type of
file as the part type. The TeamConnection
GUI and command line can only check in,
check out, and extract parts of the type file.

Note: Parts created through an API
can have other specified types.

Glossary 205

U

user exit . A user exit allows
TeamConnection to call a user-defined
program during the processing of
TeamConnection transactions. User exits
provide a means by which users can
specify additional actions that should be
performed before completing or proceeding
with a TeamConnection action.

user ID . The identifier assigned by the
system administrator to each
TeamConnection user.

V

verification record . A status record that
the originator of a defect or a feature must
mark before the defect or feature can move
to the closed state. Originators use
verification records to verify the resolution
or implementation of the defect or feature
they opened.

version . (1) A specific view of a driver,
release, or work area. (2) A revision of a
part.

version control . The storage of multiple
versions of a single part and information
about each version.

view . An alternative and temporary
representation of data from one or more
tables.

W

work area . An object in TeamConnection
that you create and associate with a
release. When the work area is created,
you see the most current view of the
release and all the parts that it contains.
You can check out the parts in the work
area, make modifications, and check them
back into the work area. You can also test
the modifications without integrating them.
Other users are not aware of the changes
that you make in the work area until you
integrate the work area to the release.
While you work on files in a work area, you
do not see subsequent part changes in the
release until you integrate or refresh your
work area.

working part . The checked-out version of a
TeamConnection part.

206 TeamConnection and WorkFrame Integration

Index

A

access 16
access list 12
actions 42
administrative component 12
approval 20

B

base-directory 40
build environment 29

C

common functions 23
component

access 7, 12
control access 16
notification 7

E

environment variables 65
EPM 52, 56

expectations 5

F

family 84
FHOMIGMK 84, 91
file mask 88
functional component tree 18, 21, 23
functional structure 18, 19, 21

G

group indentifiers 12

I

import rules 86
importing an existing WorkFrame

project 83
integrated build 1

L

LPEX 52, 190

 Copyright IBM Corp. 1996 207

LXSYNC 52, 56, 190

M

make file 70, 84
make file dependency 94
Makefile 70
MSGBOX.CMD 184
MSGBOX1.CMD 184

N

name space 10
naming convention 25
nested build scripts 29
nmake 92
notification 16, 20
NULL builder 32, 33

O

order of actions 62
os/2 environment variable

TWI_RELATIVE 151
TWI_WORK_PARTS 151

P

packaging 1
part

dependencies 27
project environment variables

TC_BECOME 41
TC_CASESENSE 41
TC_FAMILY 41
TC_RELEASE 41
TC_USER 41

project environment variables (continued)
TC_WORKAREA 41
TWI_RELATIVE 41
TWI_TARGET_PART 42
TWI_TRACE 42

project name 10
Project Smarts

catalog 43
Console window 45
notes 98
Target Information window 45
Variable Settings window 47, 48

R

requirements 5
REXX programs 97
rules file

connections 87, 88
file types 87, 88
initial contents 89
TEAMCBINFHOMIGMK.RUL 86

S

sizing 20
software configuration management 1
synchronous invocation 190

T

TC Build Part 62
TC Build Part Forced 42
TC Build Parts 42
TC Build Target 42
TC Build Target Forced 42
TC Checkin 42

208 TeamConnection and WorkFrame Integration

TC Checkin FORCED 42
TC Checkout 42
TC Edit 42, 62
TC Edit action 54, 56
TC Extract 42
TC Freeze WorkArea 42
TC Lock 42
TC Show WorkArea 42
TC Task List 42
TC Touch Parts 42
TC Unlock 42
TC_FAMILY 93
TC_MAKEIMPORTTOP 93
TC_RELEASE 93
TC_WORKAREA 93
TeamConnection

actions for WorkFrame 102
as a stand-alone library management

tool
advantages 37
disadvantages 37

base name 25
build process 40
build script 29
build tree 27
builder 27, 85
component 87
component name 10
component structure 8, 84
components 7, 16
connections 87
defects 7, 8
feature 20
feature originator 20
feature owner 20
features 7, 8
file types 87
integrated build 1
names 7
naming conventions 8
packaging 1
parser 27, 29, 85

TeamConnection (continued)
part name 25
parts 8
parts access 85
path name 25
problem tracking process 20
releases 8
source part 79
target part 40, 79
users 8
version control 1
WorkFrame as a front-end tool 35, 39

TWI_DO.CMD 102
TWI_GPT 166
TWI_PRJ

build 78
Freeze WorkArea 80
project actions 75
REXX program 128
Show Workarea 80
TC Build Part 78
TC Build Part Forced 79
TC Build Target 79
TC Build Target Forced 80
TC Checkin 76
TC Checkin Forced 76
TC Checkout 77
TC Edit 75
TC Extract 77
TC Lock 77
TC Task List 80
TC Touch 78
TC Unlock 77
TC View Build Messages 81

TWI_XBT 151
types 66

U

Index 209

user group name 12

V

version control 1
versions 29

W

WorkFrame
actions 35
Add Action − Support page 70
Add Action − Types page 70
Aettings − Target page 67
as a front-end tool 35
inheritance 67
makemake util ity 95
monitor 78
project settings 67
project setup 166
Settings − Inheritance page 67
Settings − Location page 67
Settings − Monitor page 67
Settings − Target page 70

WorkFrame as a front-end tool
advantages 36
disadvantages 36

WorkFrame project 40

210 TeamConnection and WorkFrame Integration

IBML 

Printed in U.S.A.

SG24-4610-00

	Abstract
	Contents
	Figures
	Special Notices
	Preface
	How This Redbook Is Organized
	Related Publications
	International Technical Support Organization Publications
	ITSO Redbooks on the World Wide Web (WWW)

	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Our Project Development Environment
	The Project
	Development Environment Wish List
	What We Expect from TeamConnection
	What We Expect of the Integration

	Chapter 3. Setting Up TeamConnection
	Basic Concepts and Restrictions
	GUI Capabilities
	Naming Conventions

	Family Administration Issues
	Name Spaces
	User Groups

	Grouping the Parts and Controlling Access
	Structural Considerations
	Project or Product Structure
	Problem Tracking
	Common Functions

	Naming the Parts
	Build Considerations
	Keeping Versions of Parsers and Builders
	Using NULL Builders

	Chapter 4. Using TeamConnection and WorkFrame
	WorkFrame As a TeamConnection Front End
	Advantages
	Disadvantages

	TeamConnection As a Stand-Alone Library Management Tool
	Advantages
	Disadvantages

	Our Approach

	Chapter 5. Setting Up WorkFrame
	Creating WorkFrame Project from TeamConnection Work Area
	TWI_ PRJ Installation Script
	Adding Our Project Install Script to Project Smarts
	Creating WorkFrame Project Using Project Smarts

	Customizing the Settings of the TWI_PRJ Project
	Setting the Project Location
	Changing the Default Editor from LPEX to EPM
	Changing the Applicable Actions on Files
	Changing the Default Actions
	Adding a New Environment Variable
	Adding a New Type

	General Customization of WorkFrame Projects
	Changing the Project Settings
	Adding an Action

	Actions Defined in the TWI_PRJ Project
	TC Edit
	TC CheckIn
	TC CheckIn Forced
	TC CheckOut
	TC Lock
	TC UnLock
	TC Extract
	TC Touch
	TC Build Part
	TC Build Part Forced
	TC Build Target
	TC Build Target Forced
	Show WorkArea
	Freeze WorkArea
	TC Task List
	TC View Build Messages

	Chapter 6. Using WorkFrame Projects
	Importing Existing WorkFrame Projects
	Creating a TeamConnection Family
	Creating a Component Structure
	Creating a Release and a Work Area
	Creating Parsers and Builders
	Determining the Import Rules
	Convert a Make File into a Command File
	Verifying the Results

	Appendix A. Sample REXX Programs
	Notes on Project Smarts
	Defining Our Own Set of WorkFrame Actions
	Generating a Project from a TeamConnection Work Area
	Creating a Project Template
	Other Useful REXX Programs

	Glossary
	Index
	UNKNOWN
	A
	F
	B
	G
	C
	I
	E L
	M
	N
	R
	O
	S
	P
	T
	U
	V
	W

