SG24-4610-00

International Technical Support Organization

TeamConnection and WorkFrame Integration
Survival Guide

July 1996

International Technical Support Organization
San Jose Center

SG24-4610-00

International Technical Support Organization

TeamConnection and WorkFrame Integration
Survival Guide

July 1996

—— Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xi.

First Edition (July 1996)

This edition applies to Version 1.0 of TeamConnection, Product Number 31H3744 and
Version 3.0 of IBM VisualAge for C++ for OS/2, Program Number 5875-XXX for use
with the OS/2 Warp Operating System.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader’'s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471 Building 80-E2

650 Harry Road

San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

0 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

An integrated part of IBM VisualAge for C++ for OS/2 and IBM VisualAge for COBOL for
0S/2, the WorkFrame environment has become the environment of choice for developing
applications with these and other 3GL languages. Together with TeamConnection, IBM's
state-of-the-art library and repository, the WorkFrame environment forms a very strong
base for the development of 3GL applications. This redbook shows how to integrate
TeamConnection with the WorkFrame environment without losing the benefits of
WorkFrame's tightly integrated and project-oriented compile, test, and debug. The book
also shows how to take advantage of the integrated build facility of TeamConnection and
set up a new project by using the REXX programs described in the book.

This redbook is written for system administrators, project leaders, developers, and anyone
else who has an interest in learning how to integrate IBM VisualAge for C++ or IBM
VisualAge for COBOL WorkFrame with TeamConnection. The book includes examples of
how to set up a new or an existing project by using WorkFrame and TeamConnection
together. The examples and time limited versions of TeamConnection and VisualAge for
C++ are also included on a complementary CD-ROM.

(210 pages)

[J Copyright IBM Corp. 1996 iii

iv TeamConnection and WorkFrame Integration

Contents

Abstract iii
Figures ix
Special Notices Xi
Preface Xiii
How This Redbook Is Organized Xiv
Related Publications XV
International Technical Support Organization Publications XVi
ITSO Redbooks on the World Wide Web (WWW) XVii
Acknowledgments Xix
Chapter 1. Introduction 1
Chapter 2. Our Project Development Environment 3
The Project 3
Development Environment Wish List L. 5
What We Expect from TeamConnection 5
What We Expect of the Integration L. 6
Chapter 3. Setting Up TeamConnection 7
Basic Concepts and Restrictionso 7
GUI Capabilities 8
Naming Conventions 8
Family Administration Issues 10
Name Spaces 10

User Groups o 0 12
Grouping the Parts and Controlling Access 16
Structural Considerations 18
Project or Product Structure 18
Problem Tracking 20

[J Copyright IBM Corp. 1996 \'

Common Functions 23

Naming the Parts 25
Build Considerations L 27
Keeping Versions of Parsers and Builders 29
Using NULL Builders 32
Chapter 4. Using TeamConnection and WorkFrame 35
WorkFrame As a TeamConnection Front End 35
Advantages 36
Disadvantages 36
TeamConnection As a Stand-Alone Library Management Tool 37
Advantages 37
Disadvantages 37
Our Approach 38
Chapter 5. Setting Up WorkFrame 39
Creating WorkFrame Project from TeamConnection Work Area 40
TWI_PRJ Installation Script 41
Adding Our Project Install Script to Project Smarts 43
Creating WorkFrame Project Using Project Smarts 45
Setting the Basic TeamConnection Variables 47
Setting the Work Area Specific Variables 48
Automatic Extraction of the Build Tree, 49
Customizing the Settings of the TWI_PRJ Project 50
Setting the Project Location 50
Changing the Default Editor from LPEX to EPM 52
Setting the TWI_EDITOR variable 52
Changing the TC Edit Action Options for EPM 54
Changing the Applicable Actions on Files 57
Changing the Default Actions 62
Adding a New Environment Variable 65
Adding a New Type 66
General Customization of WorkFrame Projects 67
Changing the Project Settings 67
Adding an Action 70
Actions Defined in the TWI_PRJ Project 75
TC Edit . . . 75
TC Checkin 76
TC Checkln Forced 76
TC CheckOut 77
TC Lock . . 77
TC UnLock 77
TC EXtract e 77
TC Touch 78
TC Build Part 78

Vi TeamConnection and WorkFrame Integration

TC Build Part Forced 79

TC Build Target 79

TC Build Target Forced 80
Show WorkArea 80
Freeze WorkArea 80

TC Task List 80

TC View Build Messages 81
Chapter 6. Using WorkFrame Projects, 83
Importing Existing WorkFrame Projects 83
Creating a TeamConnection Family 84
Creating a Component Structure 84
Creating a Release and a Work Area 85
Creating Parsers and Builders 85
Determining the Import Rules 86
Convert a Make File into a Command File 91
Verifying the Results 96
Appendix A. Sample REXX Programs 97
Notes on Project Smarts 98
Documentation 98
SysCreateObject(IWFProject,...) 99
IwfCreateProjectFromProject 100
IwfQueryVariables 100
IwfSaveVariables and IwfRestoreVariables 100
IwfAddVariable 100

File and Project Action Options of IWNFOPT.DLL 101
Defining Our Own Set of WorkFrame Actions 102
TWI_DO: TeamConnection Actions for WorkFrame 102
Generating a Project from a TeamConnection Work Area 128
TWI_PRJ: Creating the WorkFrame Project, .. 128
TWI_XBT: Extracting a Whole Build Tree 151
Creating a Project Template 166
TWI_GPT: Generate Project Template 166

Other Useful REXX Programs 184
A REXX Message Box for non-Presentation Manager Environments 184
LXSYNC: A Synchronous Way of Invoking LPEX 190
Glossary . . . 197
INndex . . . 207

Contents Vii

Viii TeamConnection and WorkFrame Integration

Figures

©COoNOGO DR

o
= o

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Functional Structure of FirstShot 4
The TeamConnection Component Structure (lteration 1) 11
The TeamConnection Component Structure (Iteration2) 14
The TeamConnection Component Structure (Iteration 3) 17
The TeamConnection Component Structure (lteration 4) 19
The TeamConnection Component Structure (Iteration5) 22
The TeamConnection Component Structure (Iteration 6) 24
Primary Build Script 29
Secondary Build Script 30
Adding the Project Installation Script 0L 44
Creating a TWI_PRJ Project from Project Smarts (1) 46
Creating a TWI_PRJ Project from Project Smarts (2) 47
Creating a TWI_PRJ Project from Project Smarts (3) 48
Creating a TWI_PRJ Project from Project Smarts (4) 49
Changing the Settings of TWI_PRJ 51
Changing the Default Editor 53
Changing the TC Edit Action Options 55
Applicable Actions on Files 57
Types of Files Set in the Action Definition (1) 58
Types of Files Set in the Action Definition (2) 60
Changing the Priority of an Action (1) 63
Changing the Priority of an Action (2) 64
Adding a New Environment Variable 0. 65
Adding a New Type 66
Changing the Project Settings 68
Adding an Action 71
Changing an Option of an Action 73
Sample WorkFrame Projects 87
Example of a Rules File: Components 87
Example of a Rules File: File Types and Connections 89
Example of a Rules File 3 90
Sample Make File for Projectl 91
Sample Output from nmake 92
Sample Command File for projectl 93

[J Copyright IBM Corp. 1996 iX

35.
36.
37.
38.
39.
40.
41.
42.

X

TWI_DO.CMD 103
TWI_PRJ.CMD 129
TWI_XBT.CMD 152
TWI_GPT.CMD 167
MSGBOX.CMD 185
MSGBOX1.CMD 188
LXSYNC.CMD 190
LXSYNC.LX . . 193

TeamConnection and WorkFrame Integration

Special Notices

This publication is intended to help system administrators, project leaders, developers, and
others who want to integrate IBM VisualAge for C++ or IBM VisualAge for COBOL
WorkFrame with TeamConnection. The information in this publication is not intended as
the specification of any programming interfaces that are provided by TeamConnection or
the WorkFrame products. See the PUBLICATIONS section of the IBM Programming
Announcement for TeamConnection, IBM VisualAge C++ for OS/2, and IBM VisualAge for
COBOL for OS/2 for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to
an IBM product, program, or service is not intended to state or imply that only IBM's
product, program, or service may be used. Any functionally equivalent program that does
not infringe any of IBM's intellectual property rights may be used instead of the IBM
product, program or service.

Information in this book was developed in conjunction with use of the equipment specified,
and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The information about non-IBM (VENDOR) products in this manual
has been supplied by the vendor and IBM assumes no responsibility for its accuracy or
completeness. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to evaluate
and integrate them into the customer’s operational environment. While each item may
have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

[J Copyright IBM Corp. 1996 Xi

You can reproduce a page in this document as a transparency, if that page has the
copyright notice on it. The copyright notice must appear on each page being reproduced.

The following terms are trademarks of the International Business Machines Corporation in
the United States and/or other countries:

C Set ++ CMVC

COBOL/2 Common User Access
CUA IBM

0S/2 Presentation Manager
PS/2 REXX
TeamConnection VisualAge

VisualAge C + + VisualAge for COBOL
WorkFrame Workplace Shell

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

OSF/Motif Open Software Foundation
Oracle Oracle Corporation

Other trademarks are trademarks of their respective companies.

Xii TeamConnection and WorkFrame Integration

Preface

This redbook is intended for system administrators, project leaders, developers, and
anyone else who has an interest in learning how to integrate IBM VisualAge for C++ or
IBM VisualAge for COBOL WorkFrame with TeamConnection. The book shows the user
how to integrate TeamConnection with the WorkFrame environment without losing the
benefits of WorkFrame's tightly integrated and project-oriented compile, test, and debug.
The book also shows how to take advantage of the integrated build facility of
TeamConnection and set up a project by using the REXX programs described in the book.

This redbook and the accompanying REXX examples were written during a residency at the
ITSO San Jose Center (Almaden Research Center, San Jose, California) during February
and March 1996. The goal of the residency was to look at and, if possible, improve the
current integration between TeamConnection and WorkFrame. Thus the book takes you
through the phases of setting up TeamConnection and WorkFrame and discusses such
topics as naming standards, project structure, problem tracking, and build considerations.

The book comes with “ready-to-run” examples that you can modify to fit your own needs.
The examples and time limited versions of TeamConnection and VisualAge for C++ are
also included on a complementary CD-ROM. We hope that you find this redbook valuable
in your effort to integrate TeamConnection and WorkFrame.

Enjoy reading.

vy

Leif Trulsson
ITSO - San Jose, California
July 1996

[J Copyright IBM Corp. 1996 Xiii

How This Redbook Is Organized

The redbook is organized as follows:

Xiv

Chapter 1, “Introduction”

This chapter gives a short introduction to the book.

Chapter 2, “Our Project Development Environment”

This chapter describes our project and what we expect from TeamConnection and its
integration with WorkFrame.

Chapter 3, “Setting Up TeamConnection”

This chapter provides information on how to set up TeamConnection and discusses the
various issues to consider.

Chapter 4, “Using TeamConnection and WorkFrame”

This chapter describes the use of TeamConnection and WorkFrame together.

Chapter 5, “Setting Up WorkFrame”

This chapter describes how to set up WorkFrame with the supplied project template. It
also describes how to customize the project and the defined project actions.

Chapter 6, “Using WorkFrame Projects”

This chapter describes how to migrate existing WorkFrame projects to
TeamConnection.

Appendix A, “Sample REXX Programs”

This chapter describes all of the REXX programs we used in our integration effort.

TeamConnection and WorkFrame Integration

Related Publications

The publications listed in this section are considered particularly suitable for a more

detailed discussion of the topics covered in this redbook.

TeamConnection
IBM TeamConnection for OS/2 Getting Started, SC34-4498
IBM TeamConnection for OS/2 User's Guide, SC34-4499
IBM TeamConnection for OS/2 Commands Reference, SC34-4501

IBM TeamConnection for OS/2 Messages, SC34-4502

VisualAge for C++

Welcome to VisualAge for C++, S25H-6957

VisualAge for C++ User's Guide, S25H-6961

VisualAge for COBOL

IBM VisualAge for COBOL for OS/2 WorkFrame User's Guide, SG24-4604

IBM OS/2 Publications

REXX User's Guide, S10G-6269

REXX Reference, S10G-6268

Preface

XV

International Technical Support Organization
Publications

Introduction to the IBM Application Development Team Suite, SG24-4648
Did You Say CMVC?, GG24-4178
Family Planning and Application Development - TeamConnection Unleashed, SG26-2008

A complete list of International Technical Support Organization publications, known as
redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks, GG24-3070.
To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS as ITSOCAT
TXT. This package is updated monthly.

—— How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing 1-800-445-9269.
Most major credit cards are accepted. Outside the USA, customers should contact their
local IBM office. For guidance on ordering, send a note to BOOKSHOP at DKIBMVM1
or E-mail to bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized sets, called
BOFs, which relate to specific functions of interest. IBM employees and customers may
also order ITSO books in online format on CD-ROM collections, which contain redbooks
on a variety of products.

XVi TeamConnection and WorkFrame Integration

ITSO Redbooks on the World Wide Web (WWW)

Internet users may find information about redbooks on the ITSO World Wide Web home
page. To access the ITSO Web pages, point your Web browser to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal Redbooks home
page may be found at the following URL:

http://w3.itso.ibm.com/redbooks/redbooks.html

—— Subscribing to Internet Listserver

IBM redbook titles/abstracts are now available through Internet E-mail via the IBM
Announcement Listserver. With an Internet E-mail address, anyone can subscribe to an
IBM Announcement Listserver. All it takes is a few minutes to set up a profile, and you
can get news (in ASCII format) from selected categories.

To initiate the service, send an E-mail note to:

announce@webster.ibmlink.ibm.com

with the keyword subscribe in the body of the note (leave the subject line blank). A
category form and detailed instructions will be sent to you.

To obtain more details about this service, employees may type the following:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

Note: INEWS users can select Rellnfo from the action bar to execute this command
automatically.

Preface XVil

XViii TeamConnection and WorkFrame Integration

Acknowledgments

This project was designed and managed by:

Leif Trulsson
International Technical Support Organization, San Jose Center

The authors of this redbook are:

Lutz Sparmann
IBM Germany

Yuhsuke Watanabe
IBM Japan

Leif Trulsson
International Technical Support Organization, San Jose Center

This publication is the result of a residency conducted at the International Technical
Support Organization, San Jose Center.

Thanks to the following people for the invaluable advice and guidance provided in the
production of this redbook:

Maggie Cutler, Editor
International Technical Support Organization, San Jose Center

Stephanie Manning
International Technical Support Organization, San Jose Center

[J Copyright IBM Corp. 1996 XiX

The project leader also would like to thank the following people for their invaluable
assistance in making it all happen:

Elsa Barron
International Technical Support Organization, San Jose Center

Mary Comianos
International Technical Support Organization, San Jose Center

Alan Tippett
International Technical Support Organization, San Jose Center

XX TeamConnection and WorkFrame Integration

Chapter 1. Introduction

Combining TeamConnection and WorkFrame will give you a well-controlled, user-friendly,
and flexible environment for your application development.

WorkFrame's flexibility and its ability to integrate nearly any kind of tool (such as
compilers, editors, browsers, and debuggers) into a versatile development environment
and TeamConnection's integrated build, packaging, and strength in software configuration
management and version control make it worth your while trying to integrate them in a way
that enables you to take full advantage of both products.

In this book we show you one way of integrating TeamConnection and WorkFrame. You
can use it as is or modify it to suit your own needs and what works best for your
environment.

The book is based on TeamConnection Version 1.0 fix level 2 and VisualAge for C++
Version 3.0, WorkFrame fix level CTW302.

[J Copyright IBM Corp. 1996 1

2

TeamConnection and WorkFrame Integration

Chapter 2. Our Project Development Environment

In this chapter we talk about our fictive project and the development environment. We
assume that the reader is familiar with the basic concepts of TeamConnection and
WorkFrame.

The Project

We, ABC Corporation , have decided to use an OS/2-based development environment
consisting of TeamConnection and WorkFrame to develop a new client/server project or
product called FirstShot .

FirstShot will consist of a:
Server building block that can work with DB/2 and Oracle database systems

Client building block providing a command line interface as well as a graphical user
interface (GUI)

GUI building block

Each of these building blocks will finally be available for several target platforms: OS/2,
AIX, and SUN.

Figure 1 shows the functional structure of FirstShot .

[J Copyright IBM Corp. 1996

r---Common Code
r--Database Interface--f---DB/2 Specifics
L__-QOracle Specifics

|
—-Server--+--Al11 other server functions
Building |
Block | r---Common code
L-_Communications Interface-{---NetBIOS
(to clients) L_--TCP/IP

r---Common Code
——-Communications Interface----NetBIOS

(to server) L_--TCP/IP
FirstShot--{--Client--+--A11 the other client functions
Building
Block “--GUI Support Interface

——— GUI-Client Interface

L-GUI----- - A11 other GUI functions
Building
Block r---Common Code
Lo Presentation Interface----0S/2 PM
L---0SF/Moti f

Figure 1. Functional Structure of FirstShot

Our library and build processes have to be able to control several “flavors” of the same
executable at the same time, because we plan to keep one version of an executable for:

Integration testing
Source level debug

Because ABC Corporation does not have any experience with OSF/Motif and Oracle, we
will use the service of two external subcontractors, EasySoft and QuickSoft, to get the
coding done.

4 TeamConnection and WorkFrame Integration

Development Environment Wish List

To end up with a family setup that best fits our needs, it is a good idea to first formulate
our expectations and requirements. For example, think about the things you would like to
query the library system about in the future! Knowing such queries will help you come up
with a naming convention that might simplify (and speed up) database queries.

What We Expect from TeamConnection

We expect to be able to:
Maintain more than one product in one library
Allow controlled sharing of code among different products
Have easy-to-find common functions
Enable the same user groups to access different projects or products in the family
Show the functional structure of the product
List all parts belonging to a functional unit
Keep design specification and product documentation with the product structure
Assign defects and features to functional units
Have common and platform-specific source files that have the same name
Build code for different target environments, using the same file nhames
Build different “flavors” of the same executable for the same target platform:

— Code for function test and integration (built using standard compiler options)
— Source level debug version of code (built using debug-specific compiler options
that can generate additional output files)

Identify or list all subcontractors

Restrict access of subcontractors

List all user IDs of a specific subcontractor

Identify or list all components a single user or group of users can access

Find out who has access to which components

Chapter 2. Our Project Development Environment 5

What We Expect of the Integration
We expect the following of the integration:

One user can work on multiple work areas or different projects or products at the
same time on the same PC.

Library functions can be executed on WorkFrame parts and projects.

A tight edit-compile-debug loop will be supported; that is,

Compiler error messages are displayed and selectable in a scrollable window.
Double-clicking on a compiler error message jumps to line in the editor.
- Switching to code generation for source level debug will be easy.

The latest code version is always in the library.
A build should always be done with the library build setup.

WorkFrame projects can automatically be generated based on a TeamConnection work
area. (The WorkFrame project has to include the WorkFrame tools setup.)

A WorkFrame project can be automatically imported to a TeamConnection work area.

TeamConnection and WorkFrame Integration

Chapter 3. Setting Up TeamConnection

In this chapter, we show you how to set up TeamConnection. We also take a look at the
following issues:

Basic concepts and restrictions
Family administration issues such as:

Name spaces
User groups

Grouping the parts and controlling access
Structural considerations such as:

Project or product structure
Problem tracking
Common functions

Naming the parts
Build considerations such as:

Keeping versions of parsers and builders
Using NULL builders

Basic Concepts and Restrictions

Before we start defining our TeamConnection setup, it is a good idea to review some basic
concepts and restrictions of TeamConnection:

TeamConnection names

Are all case sensitive!

Components

[J Copyright IBM Corp. 1996

Access and notification (inheritance) are controlled through components.
Defects and features are controlled by components.

Parts are grouped by components.

Component names must be unique per family.

Component names must not be longer than 31 characters.

Components can have one or more parent components.

Releases

- A release collects all parts making up a version of a product.
- Release names must be unique per family.

- Release names (currently) cannot be changed.

— The length of a release name is limited to 15 characters.

- Part names have to be unique per release.

Parts

- A part can be attached to only one component.

- A part name consists of a base name and a path name.
- A part name must be unique per component.

- A part name must be unique per release.

— You can define up to 20 configurable fields for parts.

Users

- The maximum length of the user name field is 31 characters.
- The maximum length of the user area field is 15 characters.
— You can define up to 20 configurable fields for users.

Defects and Features
- The maximum length of a defect or feature name is 15 characters.
— You can define up to 20 configurable fields for defects and features.

GUI Capabilities

The GUI of TeamConnection with its tree view of the component structure is very useful for
providing structural information about a project or product or navigating through the family.

Keep in mind, however, that the GUI is relatively slow and sometimes not well suited for
the tasks a developer or an administrator has to perform during their daily work. So, when
making a decision about how to organize a TeamConnection family, always consider the
implications of the decision from both a command line and GUI point of view.

Naming Conventions

Because a component name has to be unique within one family, and to simplify the
retrieval of information from the TeamConnection database, you first have to think about
naming schemes.

The family administrator has to establish naming conventions that will be observed
familywide. 1t will also be useful for the project or product owners to think about a project
or productwide naming convention for both component and part names.

8 TeamConnection and WorkFrame Integration

We discuss and introduce a naming convention in a step-by-step manner when discussing
the different aspects of the TeamConnection setup for the project (see “Name Spaces” on
page 10, “User Groups” on page 12, and “Naming the Parts” on page 25).

Chapter 3. Setting Up TeamConnection 9

Family Administration Issues

In the sections that follow, we look at two family administration issues:

Name spaces
User groups

Name Spaces

—— Consider the following wish list item:

We expect to be able to:

Maintain more than one product in one library

Because the component names have to be unique in the family, we have to define a
familywide naming convention to generate separate component name spaces for the
different projects.

In our family, a name space is defined by using a three-character prefix in every
component name.

If the same person has to work with different projects at the same time (think about
administration and problem reporting), it makes sense to introduce some additional
familywide conventions:

The root component of a project is always named prd.root , where prd is the prefix
defining the project name space.

All other components of the project are children of this project root.

We define the name space for FirstShot to be fst, and, because you always will need a
place where you can attach and organize information related to family administration, we
define the name space adm for this purpose (see Figure 2 on page 11).

Additional familywide conventions for component names will be introduced later when
discussing the different aspects of the TeamConnection setup (see “User Groups” on
page 12, “Grouping the Parts and Controlling Access” on page 16, “Project or Product
Structure” on page 18, and “Naming the Parts” on page 25).

10 TeamConnection and WorkFrame Integration

r-adm.root
|
root --
'L

-fst.root

Figure 2. The TeamConnection Component Structure (lteration 1)

Chapter 3. Setting Up TeamConnection 11

User Groups

—— Consider the following wish list items:

We expect to be able to:

Enable the same user groups to access different projects or products in the family
Identify or list all subcontractors

List all user IDs of a specific subcontractor

Find out who has access to which components

Identify or list all components a single user or group of users can access

Within TeamConnection you can gain access to a component (and the parts belonging to it)
by:

Owning the component

Adding a user to the access list of the component
or

Inheriting the access from parent components

TeamConnection enables you to group users by:

Defining a component and adding the users to the access list

Implementing a naming convention for the user area

or

Creating a configurable field for the user objects and using it for this purpose.

In an environment where the same groups of users have the same type of authority on files
and components in different projects or products, it might soon become a significant effort
to maintain separate access lists for all the projects or products and keep them
synchronized.

For our family we decide to introduce an administrative component, adm.user-groups (see
Figure 3 on page 14), that will be the parent of all the components used to group users
and their authorities. The names of the user groups will be prefixed by adm.ug followed by
the name of this user group. A user group name consists of an authority specification
followed by the group identifier. We will use the following authority specifications:

dev developers
bld builders
tid team leaders

To simplify the search for specific user groups such as subcontractors or temporary
employees, we will start the group identifiers for these user group names with:

s- for subcontractors

12 TeamConnection and WorkFrame Integration

for temporary employees

Chapter 3. Setting Up TeamConnection

13

Examples:
adm.ug.dev.s-easysoft, adm.ug.dev.s-quicksoft, adm.ug.dev.all, adm.ug.bld.all,
adm.ug.dev.t-students

We further decide to:

. Use the user area field to indicate the department to which the user belongs

. Prefix the user IDs of specific user groups to simplify the task of granting access to
them:
S- for subcontractor user IDs
t- for user IDs of temporary employees

Examples:
s-miller, t-frank., turner, angela

r--adm.root

L_--adm.user-groups

mike |

F---adm.ug.dev.t-temporary

F---adm.ug.dev.s-quicksoft

root--q bemmmmeeem
F---adm.ug.dev.s-easysoft

F---adm.ug.bld.all

t---adm.ug.tl1d.all

t--fst.root ...

Figure 3. The TeamConnection Component Structure (Iteration 2)

Note: TeamConnection delivers some sample REXX scripts, which can be used to display
information about access rights and access inheritance:

14 TeamConnection and WorkFrame Integration

ACCCOMP componentname

shows information about access rights
ACCINHER componentname userlogin
shows information about access inheritance

Chapter 3. Setting Up TeamConnection 15

Grouping the Parts and Controlling Access

—— Consider the following wish list item:

We expect to be able to:

Restrict access of subcontractors

TeamConnection components are designed to control access to parts. Because a part can
be associated with only one component, we should group our parts so that access and
notification management can be easily handled.

The only reasons not to attach all parts of a project or product to one single component
are:

To restrict the access to specific parts
To establish a notification service for part changes
To distinguish specific part categories

Because the problem of organizing the parts will be the same for all the projects or
products in our family, we decide, for ease of use, to add a new item to the familywide
naming convention for projects or products:

Each project or product will have a component named prd.source-parts that will be the
base for all components holding source code.

Each source code component will start with the prefix prd.src. followed by the name of
the source code group.

Examples:
fst.src.anything-else, fst.src.quicksoft, fst.src.easysoft

To be able to selectively handle object parts (that is, everything generated by a builder), we
also decide that:

Each project or product will have a component named prd.object-parts that will be the
base for all components holding object parts.

Each component holding object parts will start with the prefix prd.obj. followed by the
name of the object parts group.

Examples:
fst.obj.anything-else, fst.obj.subcontractors

The components holding the parts are connected not only to the prd.source-parts or
prd.object-parts trees but also to the adm.user-groups tree that defines the access rights of
the different user groups to the parts (see Figure 4 on page 17).

16 TeamConnection and WorkFrame Integration

Note: We do not try to group the source parts according to the functional structure of the
project or product. The need to provide additional components for access restriction
and notification purposes would tend to make such a structure confusing and
unmanageable.

r---adm.ug.dev.s-quicksoft ----------- .
r---adm.ug.dev.s-easysoft --------

r---adm.ug.dev.all ----

-
| F---adm.ug.bld.all ---
|
| L---adm.ug.t1d.all
|
|
root -q
F---fst.root
| v
f---fst.object-parts
| v
| r---fst.src.quicksoft
|L v ||

---fst.source-parts-{ v
L__-fst.src.easysoft

t---com.root ...

Figure 4. The TeamConnection Component Structure (lteration 3)

Chapter 3. Setting Up TeamConnection 17

Structural Considerations

In this section we talk about how to organize our component structure according to:
Project or product structure
Problem tracking considerations

Common functions

Project or Product Structure

—— Consider the following wish list items:
We expect to be able to:
Show the functional structure of the product

Keep design specification and product documentation with the product structure
List all parts belonging to a functional unit

The wish to document the functional structure of the project or product in TeamConnection
as well as the desire to organize the design specification, the project documentation, and

the parts by function imply that we will have to create a functional component tree for our
project.

Since this idea also is very likely to be used by other projects, we decide to introduce a
new familywide convention:

If a project will contain a component tree that is a functional description of the system,
the root of this tree will be named prd.functional-view

Each component in this tree will start with the prefix prd.fnc. followed by the name of
the component.

Examples:
fst.fnc.server, fst.fnc.client, fst.fnc.qui

Our decision to have a functional organization (see Figure 5 on page 19) makes the
TeamConnection component structure very much resemble the structure of Firstshot (see
Figure 1 on page 4).

18 TeamConnection and WorkFrame Integration

e ‘i
fst.root adm.root
I----fst.source-parts T T adm.ug.dev.all --T--...--J

L--%é%.functiona]-view <mmmmmmmm - adm.ug.t]d.a.ﬂ'i --J|

r---fst.fnc.server

|
f---fst.fnc.database-iface

| r---fst.fnc.db-common-functions
| ----fst.fnc.db2-specifics

| ~---fst.fnc.oracle-specifics

'L

---fst.fnc.srv-xfer-iface
F---fst.fnc.srv-xfr-common
F---fst.fnc.netbios (!)
L-—-fst.fnc.tcpip (!)

---fst.fnc.client

r---fst.fnc.client-xfer-iface
':———fst. fnc.client-xfer-common
---fst.fnc.netbios (!)
L--fst.fnc.tcpip (!)

----fst.fnc.gui-support

t---fst.fnc.qui

r---fst.fnc.gui-client-iface

----fst.fnc.presentation-iface
f---fst.fnc.gui-pres-common
---fst.fnc.os2pm-functions

L._-fst.fnc.osf-motif-functions

Figure 5. The TeamConnection Component Structure (lteration 4)

Note: For FirstShot , we will maintain only one functional structure. Be aware, however,
that it might be necessary (for access control reasons) to maintain more than one
such functional structure, which may show the product structure in more or less
detail depending on the purpose for which they are used (for example, design
documentation, problem tracking).

Chapter 3. Setting Up TeamConnection 19

Problem Tracking

—— Consider the following wish list item:

We expect to be able to:

Assign defects and features to functional units

In TeamConnection every defect or feature is attached to a component. The feature
originator is the user who opens a feature. The feature owner is, by default, the owner of
the component to which the feature is assigned. Any user within the family can open a
feature against any component in the hierarchy.

If you plan to use the TeamConnection problem tracking process, the way in which you
handle the problem assignment might have an impact on your component structure.
Basically you can handle problem assignment in two ways:

Use a central component (for example, the project or product root) to which to attach
all the defects.
Assign a defect directly to the “right” person (component).

You can of course combine the methods.

Using one central component to which to attach defects might be a good solution if your
product is in maintenance mode. The owner of the component is responsible for assigning
the defect to the person in charge of handling it.

Assigning a defect directly to the right person (component) assumes that:

You have a functional component structure.
The person who describes a problem has a good knowledge about which function is
affected by the problem and who may be in charge of solving it.

This approach is usually a good solution if a project or product is in the test or integration
phase, where a large number of problems will be found and the people who find the
problems are familiar with the product and its structure.

Using a functional structure to attach features or defects to is usually also better when you
are using complex development processes that involve approval, sizing, and notification.

20 TeamConnection and WorkFrame Integration

Note: For FirstShot , we will maintain only one functional structure. Be aware, however,
that it might be necessary (for access control reasons) to maintain a separate functional
structure for defect and feature handling.

Because the function tree approach is very likely to be used by other projects or products,
we decide to introduce a new familywide convention:

If a project or product will contain a separate functional component tree for defect and
feature management, the root of this tree will be named prd.defects-and-features

Each component of this tree will start with the prefix prd.d&f. , followed by the name of
the component. If there are multiple functional trees, it is a good idea to use the same
names in the different trees (see Figure 6 on page 22).

Examples:
fst.d&f.server, fst.d&f.client, fst.d&f.gui

Chapter 3. Setting Up TeamConnection 21

r---adm.root
——--fst.defects-and-features
---fst.d&f.server ...

---fst.d&f.client ...
---fst.d&f.qgui ...

| B B

r---fst.source-parts
root --{---fst.root -
r---fst.object-parts

L---fst.functional-view

---fst.fnc.server ...
---fst.fnc.client ...
---fst.fnc.qui ...

r—r T

Figure 6. The TeamConnection Component Structure (lteration 5)

22 TeamConnection and WorkFrame Integration

Common Functions

—— Consider the following wish list items:

We expect to be able to:

Allow controlled sharing of code among different products
Have easy-to-find common functions

If you are thinking about larger families with multiple projects or products sharing code,
you might have to reconsider the placement of parts that are used by more than one
project or product. The basic reasons for this are:

Changes to a common function involve many different developers as compared to
when a function is used in one project or product only. Having a separate component
structure, using a more complex release process, and having specific notification lists
will turn out to be useful in controlling common functions.

Having one central place to look would significantly simplify the search for an existing
common function.

A component structure that groups common functions in any suitable way in
TeamConnection would offer a list of the existing common functions that is always
up-to-date.

A collection of common functions is nothing other than another project or product, so we
create a new name space (com) for this purpose.

The root component for the common functions will be com.root . The categorization and
grouping of the common functions will be done in the component tree, starting at
com.functional-view . This functional component tree would also be the right place to attach
notification lists, defect reports, and requests for new features. The leaves of this
component tree will identify the different common functions available (see Figure 7 on
page 24).

Note: For the common functions it might be appropriate to attach the sources as well as
the access and notification lists directly to the functional component tree.

Chapter 3. Setting Up TeamConnection 23

r--fst.root

---fst.source-parts

F--com.root

L--adm.root ...

---fst.functional-view
---fst.fnc.server

---fst.fnc.database-iface

---fst.fnc.db-common-functions
---fst.fnc.db2-specifics
---fst.fnc.oracle-specifics

---fst.fnc.srv-xfer-iface

L_-—fst.fnc.srv-xfr-common

r---fst.fnc.client

F---fst.fnc.client-xfer-iface

L.--fst.fnc.client-xfer-common

t---fst.fnc.gui-support
t---fst.fnc.qui
F---fst.fnc.gui-client-iface

----fst.fnc.presentation-iface

---com. functional-view

r---com.fnc.xfer-functions p-----

Jjean
mike
F---com.fnc.netbios
L---com.fnc.tcpip
t---com.fnc.gui-functions --------
steve
michael
bob

F---fst.fnc.gui-pres-common
F---fxt.fnc.os2pm-functions

L-—-fxt.fnc.osf-motif-functions

Figure 7. The TeamConnection Component Structure (Iteration 6)

24 TeamConnection and WorkFrame Integration

Naming the Parts

—— Consider the following wish list items:

We expect to be able to:

Have common and platform-specific source files that have the same name

Allow controlled sharing of code among different products

Build code for different target environments, using the same file names

One user can work on multiple work areas or different projects or products at the
same time on the same PC.

WorkFrame projects can automatically be generated based on a TeamConnection
work area.

Build different “flavors” of the same executable for the same target platform:

All of the items listed above have one thing in common: the need to distinguish different
files with the same name.

There is another important aspect of organizing parts when you think about using a
common function or making an existing function a common function: The naming
convention for path names and file names should be standardized for all projects or
products sharing code!

A TeamConnection part name consists of the base name and the path name. We will
introduce a familywide naming convention that enables us to distinguish:

Common and platform-specific sources

Platform-specific objects

Different “flavors” of the same object code (for example, production code and code
compiled for source level debug).

According to this naming convention, the first section of a part name specifies the platform:

com for platform-independent code
os2 for OS/2-specific code

aix for AlX-specific code

sun for SUN-specific code

The platform section of the directory specification can then be followed by the “flavor.” In
our case, the following code “flavors” will be supported:

src all the source code
obj the production version of the object code
dbg the same objects but compiled for source level debug.

Examples:

Chapter 3. Setting Up TeamConnection 25

There is a common C-source fstprog.c, referencing the fstiface.h interface file as:
#include fstiface.h;.

Because this interface file is common for OS/2 and AIX but has been modified for
SUN, it exists as:

comsrcfstiface.h and sunsrcfstiface.h

The resulting AIX production version of the object will then have the name
aixobjfstprog.obj, the corresponding version compiled for source level debug
aixdbgfstprog.obj.

Note: It is recommended that you also use a naming convention for the parts identifying
the project or product. This simplifies code sharing among different projects or
products (remember the part names must be unique within a release) and simplifies
the selection of parts belonging to a specific project or product or functional area.

In our case, we will use our project prefix, fst, for this purpose.

Examples:
aixdbgfstprog.obj, comsrcfstiface.h, sunsrcfstiface.h

26 TeamConnection and WorkFrame Integration

Build Considerations

The TeamConnection build concept is based on three items:

Build tree
Builders
Parsers

A TeamConnection build tree describes the dependencies of the parts. A build tree is
constructed through the different connections (input, output, dependent) defined
between parts.

A TeamConnection Builder is an object that can transform one set of TeamConnection
parts into another by invoking tools such as compilers and linkers. A builder points to
a build script that performs the steps in the build process. Use builders to define the
specific tools that are needed for your development environment. Typically, your build
administrator creates build scripts and builders, but anyone with the proper authority
can do so.

For example, you are planning to build an executable program file from a set of C files.
Your build process uses a particular compiler and linker. Therefore, you would create
a builder that specifies that compiler and linker. Additionally, if you wanted to use a
particular parser for your builds, you would create a parser object.

A superuser can check in files that are builder output. Once the builder output is
checked in, it cannot be checked out. However, a superuser can replace the old builder
output by checking in the new output.

A TeamConnection Parser is a tool that can read a source file and report back a list of
dependencies of that source file. It frees a developer from having to know the
dependencies one part has on other parts to ensure that a complete build is
performed. For example, a C parser can read a C source code file and report back a
list of the files included by the source file or by the included files.

You use the parse function to extract dependency information from build objects. The
build tool uses this information to validate, maintain, and update interdependencies
among build objects. When TeamConnection determines that a build object is
out-of-date, the build tool invokes the parser you have defined for the object. The
parser then does the following:

Determines the dependencies that exist in the object being parsed

Writes dependency information to a specified output file. An output file can only
be an output for a single buildEvent.

Opens and closes all input and output parts that might be associated with the
parse operation

Chapter 3. Setting Up TeamConnection 27

For example, suppose you have a C source part called MYFILE.C that contains the
following statements:

#include <stdio.h>
#include <stdlib.h>
#include <mystuff.h>

The build invokes your parser (PARSER.EXE) on MYFILE.C and writes the output to a file
called OUTPUT.TXT. OUTPUT.TXT would contain the following:

stdio.h
stdlib.h
mystuff.h

The build function would then do the following:

1. Read the output file
2. Compare the current set of dependencies with those returned by the parser
3. Add, delete, or update the dependencies for the object.

Note: The build function does not delete any dependencies that you add in the
command line or GUI when you use the create or connect actions.

Note: Because the build script is copied to the build processor whenever necessary, keep

28

this file small. Never specify the compiler (for example, ICC.EXE) as the build script,
even if it is possible to do so.

A compiler executable is usually a very large file, and the time needed to send
it to the build processor will be an unnecessary overhead.

If the compiler, for performance reasons, stays in memory even after the build
is finished, a subsequent attempt of the build processor to copy the compiler
again may fail, because the existing file is still “in use” by the system and
therefore cannot be replaced.

TeamConnection and WorkFrame Integration

Keeping Versions of Parsers and Builders

Even though TeamConnection itself does not provide special support to maintain versions
of build scripts and parsers, it might be a good idea to keep versions of these programs
with the project. Keeping versions will enable you to easily go back when there are
problems and identify the changes that were made to these programs over time.

Because build scripts and parsers are really control elements and not the typical source or
parts of your project, they should be kept separate from the other parts. Therefore the
names of these build scripts and parsers should only contain the platform specification and
no flavor specification.

Examples:
comfst_cparser.cmd, os2fst_cbuilder.cmd, aixfst_cbuilder.cmd

Because the builder is an implied dependency for any parts that use it, changing the build
script always causes a rebuild of those parts. Unfortunately this will not be indicated in the
build tree and will immediately affect all work areas of the release. There are two reasons
why rebuild might not be what you want:

You might want to run a test of the new builder first. Thus before you activate the new
builder version, you want to see whether the builder works on all of the parts and the
code compiled with the new builder runs as expected.

Some changes to a build environment, such as moving the same version of a compiler
to a different drive, should not trigger a rebuild, especially if you are dealing with large
families.

Using nested build scripts with a primary command file being the TeamConnection build
script (for example, :cbuilder.cmd; see Figure 8) and one or more secondary build scripts
(for example, :o0s2\cbuilder.cmd; see Figure 9 on page 30) will do the job. If a change in a
secondary build script triggers a rebuild, you have to check in the secondary build part to
TeamConnection and connect it as an input to the parts using the builder. This setup will
enable you to modify your build environment and test it in a work area before making it
available to everyone.

cbuilder.cmd

/** Simple Build script for C on 0S/2 **/

Parse Source myenv mycall mypname .

Parse Value FileSpec(”NAME",mypname) With myname
Parse Arg allargs

"CALL os2\"myname allargs

Exit Rc

non

Figure 8. Primary Build Script

Chapter 3. Setting Up TeamConnection 29

os2\cbuilder.cmd
/** Simple Build script for C on 0S/2 **/
Rc = 99 /* Be a pessimist ! */
my_options = "/c /DTRACE /DDEBUG /DFDEBUG",
"[Fa+ /Fm- /Si+ /Spl /Ss /Su2 /Gd+ /Gm+ /J+ /Q+ /Ti+ /Ge+"

* _______________________________________ */
Parse Upper Source myenv mycall mypname .
Parse Value FileSpec(”NAME" ,mypname) With myname .

/* _______________________________________ *k\

*k _______________________________________ *k/

Parse Arg addargs

tc_input = Value("TC_INPUT”,,"” OS2ENVIRONMENT")
tc_output = Value("TC_OUTPUT",,"” 0S2ENVIRONMENT")
e *\

* _______________________________________ */
inputs = tc_input
tc_input = ""
Do i=1 to Words(inputs)
If (Pos(Word(translate(inputs),i),mypname) = 0)
Then tc_input = tc_input Word(input,i)
End i

Figure 9 (Part 1 of 2). Secondary Build Script

30

TeamConnection and WorkFrame Integration

* _______________________________________ */
"SET INCLUDE=tst\com;tst\os2;%include%”
/* _______________________________________ *\
It's always good to show the arguments
* _______________________________________ */

"n.on

Say myname”:
Say " Inputs...:" tc_input
Say " Outputs..:" tc_output
Say " Arguments:” add_args

"ICC.exe /Fo"tc_output my_options add_args tc_input

Exit Rc

Figure 9 (Part 2 of 2). Secondary Build Script

Chapter 3. Setting Up TeamConnection

31

Using NULL Builders

—— Consider the following wish list item:

We expect to be able to:

List all parts belonging to a functional unit

If all of the parts belonging to a functional component of your project are connected to a
NULL builder, the NULL builder can then be used to selectively trigger the build of the
specific functional component.

If you organize the build and packaging of your project using NULL builders that are
attached to the functional component tree, you can easily find out which parts are
contributing to a specific functional component. Simply run a report on the Build Part View
(bPartView), using the name of the NULL builder in the -where "nuPathName='...'" option:

TEAMC Report -raw -view bPartView
-where "nuPathName="nullbuilderpar

rn

Note: The same part may occur more than once in this report, because it can be a
member of several subtrees of the build tree. You can easily sort out the duplicates,
however, by using the build tree extraction tool, TWI_XBT.CMD (see “TWI_XBT:
Extracting a Whole Build Tree” on page 151).

32 TeamConnection and WorkFrame Integration

Chapter 3. Setting Up TeamConnection 33

34 TeamConnection and WorkFrame Integration

Chapter 4. Using TeamConnection and
WorkFrame

There are two ways of using TeamConnection and WorkFrame together: You can use
WorkFrame as a front-end tool to TeamConnection, integrating TeamConnection and
WorkFrame actions, or you can use TeamConnection as a stand-alone library management
tool, with no direct integration between TeamConnection and WorkFrame. In this chapter
we describe both ways of using TeamConnection and WorkFrame together and explain the
advantages and disadvantages of each.

The basic difference between the two methods is the build and how builds are done:

When you use WorkFrame as a TeamConnection front end, the builds take place in
TeamConnection using TeamConnection’'s integrated build facility.

When you use TeamConnection as a stand-alone library management tool, the builds
are separated from each other. For the WorkFrame user, it will be business as usual,
where edit, compile, and test are done using a “traditional” WorkFrame setup and only
the “final” application build will be done using the TeamConnection build function.

WorkFrame As a TeamConnection Front End

When WorkFrame is used as a front-end tool to TeamConnection, all files are located in the
TeamConnection database, and all builds are done using the TeamConnection build
function. The basic characteristics of this method are:

All data in the WorkFrame project is managed by TeamConnection.
Builds are done remotely on the build servers.

The functions invoked from WorkFrame are the functions provided by the
TeamConnection command line interface or GUI.

[J Copyright IBM Corp. 1996 35

Advantages

The advantages of using WorkFrame as a TeamConnection front end are:

Everything created in WorkFrame is visible to TeamConnection
TeamConnection can manage the versions of files and control file access.

Standardized build process
All compile and link options are controlled in one place by the TeamConnection
build function.

Decrease in client processor use
Because compile and link are done on a remote build server, client processor use
decreases. A fast build processor increases build performance.

Parallel build
You can build two or more parts simultaneously without using the resources on
your own machine.

Independence from individual WorkFrame environments
You can work on different workstations with different WorkFrame setups or even at
different locations, because the data and build settings are stored in the
TeamConnection server.

Build independence of the target platform
By using the TeamConnection build function, you can build an application for 0S/2,
AlX, and MVS without leaving the WorkFrame environment.

Easy to find related parts for a change
A change to a common resource changes the status of related output parts.
Therefore, by viewing the build tree, you can easily spot which parts have to be
rebuilt.

Disadvantages

The disadvantages of using WorkFrame as a TeamConnection front end are:

36

Minimizes the flexibility of WorkFrame
You have to create different build trees depending on the compile options. For
example, if for one build you need an option that creates a map file, you need a
different build tree (even though this disadvantage can be limited by the use of
environment variables and setting the variables at build time by using the
-parameters attribute).
You have to change the build tree if the dependencies change. For example, if you
decide to split one source into two different sources, you have to update the build
tree manually. In a stand-alone WorkFrame environment, the makemake utility
makes these changes automatically. But if you only add a new include statement
in the source, the parser will find the dependency and automatically update the
build tree. The included part has to be created in TeamConnection.

TeamConnection and WorkFrame Integration

Degrades performance
A single compile might be slower because of the communication overhead
between TeamConnection and the build processor. Editor load time might be
slower if a part has to be checked out first.

TeamConnection As a Stand-Alone Library
Management Tool

When you use TeamConnection as a stand-alone library management tool, editing,
compiling, and testing are done locally in the WorkFrame environment:

The basic settings do not change from the VisualAge C++ project. Action, variable,
and type settings are inherited from the VisualAge C++ project.

You can check in the files to TeamConnection whenever you need to.

Production build takes place in a TeamConnection environment.

Advantages

The advantages of using TeamConnection as a stand-alone library management tool are:

Retain the flexibility of WorkFrame

You can change compile and link options easily and add or delete files without having
to think about the build structure.
Same user interface for existing WorkFrame users

For existing WorkFrame users, use of the product does not change.

Disadvantages

The disadvantages of using TeamConnection as a stand-alone library management tool
are:

You are responsible for synchronizing parts

You have to check in all WorkFrame files to TeamConnection when you have
completed your work.
You are responsible for synchronizing build environment

You have to set up the same build environment in TeamConnection as in the local
WorkFrame project. That is, compile and link options must be changed to the local
WorkFrame settings before the production build can be executed.

You have to work on the same workstation

Chapter 4. Using TeamConnection and WorkFrame 37

You cannot change between different workstations, because the WorkFrame
environment may differ between the various machines.

Our Approach

As a starting point, we decided to use WorkFrame as a TeamConnection front-end tool and
then implement VisualAge for C++ functions into WorkFrame to create a realistic and

workable application development environment.

38 TeamConnection and WorkFrame Integration

Chapter 5. Setting Up WorkFrame

TeamConnection provides a customized WorkFrame project for integration with WorkFrame
that enables you to use WorkFrame as a front-end tool. However, this project does not
provide the integrated environment we expect primarily because it starts up the
TeamConnection GUI client for every TeamConnection action that is called from within the
WorkFrame project. For some actions, this is redundant from a user interface point of view.
In addition you have to change the TeamConnection GUI client settings each time you work
on a different project or product. So we decided to create our own project setting, called
TWI_PRJ, to better integrate TeamConnection and WorkFrame. In this TWI_PRJ project, we
defined actions that invoke a REXX program, using the TeamConnection command interface
to reduce the redundancy. We also created an installation script for Project Smarts to set
up the TWI_PRJ project automatically from the TeamConnection work area.

In this chapter, we describe how to create a WorkFrame project from the TeamConnection
work area in general and set up and customize the TWI_PRJ project.

See VisualAge C++ for OS/2 User's Guide Version 3.0, S25H-6961, for more details
regarding the WorkFrame project setup.

[J Copyright IBM Corp. 1996 39

Creating WorkFrame Project from TeamConnection
Work Area

—— Consider the following wish list item:

We expect that:

One user can work on multiple work areas or different projects or products at the
same time on the same PC.

Before creating a WorkFrame project, you must create a work area in TeamConnection.
Then you can create a WorkFrame project that represents the TeamConnection work area.

After you have created the work area, you have to check out the parts that have to be
included in the WorkFrame project and updated in your work area. If you are using a
TeamConnection client, it does not matter which directory TeamConnection uses as long as
it is a working directory. If you are using WorkFrame, however, you must know to which
directory the parts were checked out; otherwise, you will not be able to see the parts that
you want to work on from within the WorkFrame project.

TeamConnection checks out the parts to the directory you specified in the relative name
field if you used the command line interface or in the destination directory field if you used
the TeamConnection GUI. If you work with more than one work area, you must specify a
different directory because you might have the same part name in different work areas.
Therefore your main focus should be to distinguish parts with the same name from each
other. To make a part unique within your workstation, you have to embed the family name,
release name, and work area name in the part name because the parts are unique within a
work area, the work area is unique within a release, and the release is unique within a
family.

We decided to make a directory and check out the required parts to this directory:

base-directoryfamily-nameworkarea-namerelease-name

where:
base-directory Can be any directory path in accordance with your own preference.

We realized that we had to check out not only the parts that we were editing but also the
parts that we were building because, to start a TeamConnection build process, we had to
specify the name of the target part that had to be built. In addition, to get the target part
name into WorkFrame, the part had to exist on the same workstation as the workstation on
which we were working.

40 TeamConnection and WorkFrame Integration

Note: If you use the VisualAge C++ build function in WorkFrame, which is mainly the
local build function, you also have to check out all dependent parts. You do not
have to check out dependent parts if you use our TWI_PRJ installation script, which
extracts all parts required to build a target part.

TWI_PRJ Installation Script

The TWI_PRJ installation script, TWI_PRJ.CMD, automatically creates a TWI_PRJ. See
“TWI_PRJ: Creating the WorkFrame Project” on page 128 for the REXX source.

TWI_PRJ.CMD sets up the project as follows.

1. Creates a project icon

The script creates a TWI_PRJ project icon called release-name workarea-name in the
folder you specify. You can change the name of the folder.

2. Creates the working directory for the project

The script creates a working directory, family-nameworkarea-namerelease-name, under
the directory that you specify. Periods (.) and back slashes () used in the name are
converted to hyphens (-).

3. Sets up the project environment variables in the project 's tools setup
TC_FAMILY
Specifies the family name to be used in the project. This is mandatory.
TC_RELEASE

Specifies the release name to be used in the project. This is mandatory.
TC_WORKAREA
Specifies the work area name to be used in the project. This is mandatory.
TC_USER
Specifies the user ID to be used in the project. This is mandatory.
TC_BECOME
The user ID used to access objects in TeamConnection. It may differ from
TC_USER. This environment variable is optional.
TC_CASESENSE
Specifies whether the case of the arguments in commands are changed to the
upper case or lower case or not changed. You specify UPPER, LOWER, or
IGNORE.
TC_BUILDPOOL
Specifies the build pool name to be used in the project. This is mandatory.
TWI_RELATIVE
Used as relative option name for each TeamConnection command in our REXX
program. The value is the same as the working directory. The default value is
drive:family-nameworkarea-namerelease-name

Chapter 5. Setting Up WorkFrame 41

TWI_TARGET_PART
Specifies the target part name used as the target file name in the project
settings. You provide the name. This parameter is used on the TC Build
Target and TC Build Target Forced actions.

TWI_TRACE
If the value is ON, the trace is turned on for each action.

4. Sets up the actions in the project 's tools setup

TC Edit

TC ChecklIn Forced
TC Checkln

TC CheckOut

TC Lock

TC UnLock

TC Extract

TC Touch Parts

TC Build Part

TC Build Part Forced
TC Build Target

TC Build Target Forced
TC Show WorkArea
TC Freeze WorkArea
TC Task List

See “Actions Defined in the TWI_PRJ Project” on page 75 for details of the actions.

5. Checks out the parts and extracts other required parts

The parts that you select are checked out to the working directory. All other parts that
belong to the build tree of the target part are extracted. Extracted source parts are
changed to read-only files.

42 TeamConnection and WorkFrame Integration

Adding Our Project Install Script to Project Smarts

—— Consider the following wish list item:

We expect that:

WorkFrame projects can automatically be generated based on a TeamConnection
work area.

To create a TWI_PRJ project using Project Smarts, you must first add the project
installation script, TWI_PRJ.CMD, to the Project Smarts catalog (see Figure 10 on page 44).

Open the Project Smarts — Settings window.

Select Add.

On the Project Smarts — Add Entry window enter TeamConnection Work Area for the

project name.

You can enter any text in the Location field because it will not be used.

Enter TWI_PRJ.CMD for the script name.

Enter %project% %catalog% for the parameters.
You can also add the trace option as a parameter to enable the generation of
additional output for debug purposes.

Select Add.

Chapter 5. Setting Up WorkFrame 43

Available projects:

Data Access Applic

IPF Document

Resource Dynamic
Ul Class Library Ap

WorkPlace Shell Ay

B Project Smarts - Settings

If:% C++ Dynamic Link Library
i

i Direct-to-S0OM Application
' |IPF Context-Sensitive Help

Presentation Manager Application

Visual Builder Appl| :

i
Catalog

ation

Link Library
plication
Project Smarts - Add Entry

W

Project: [TeamnConnection workArea

Description: |4 TeamConnection WorkArea project that -

is integrated with TeamConnection

Location: |c:\

‘ Find...

Script: |TWI_PRJ.CMD

Parameters: %project% %catalog%

‘ | Find... I
|

| ,g ‘ Cancel | ‘ Help |

Enter the catalog detail information.

Figure 10. Adding the Project Installation Script

44

TeamConnection and WorkFrame Integration

Creating WorkFrame Project Using Project Smarts

Once you have added the script to your Project Smarts catalog, you can create a
WorkFrame project from Project Smarts (see Figure 11 on page 46):

Double-click on the Project Smarts icon to start Project Smarts.
Select TeamConnection Work Area from the available projects.

Select Create.
On the Project Smarts — Target Information window change the target information

fields according to the message log on the Project Smarts — Console window.

Project Fill in the project name. The default is workarea(release)

Directory Type the base working path name. You must specify at least the drive.

The working directory is basefamilyworkarearelease
Folder Select the folder that will contain the created project icon.

Chapter 5. Setting Up WorkFrame

45

B Project Smarts - Catalog View a1 _

Use Project Smarts to create a proje| Progress Indicator
suit your needs. Select one of the

following customizable projects and
0 10 20 30 40 50 60 70 80 90 1l

on "Create”. . ! ‘ ! ‘
—

Available projects:

Ul Class Library Application
Visual Builder Application Current Status

WorkPlace Shell Application

Querying Project information...

Description of the selected project:

A TeamConnection WorkArea projec Message Lo
that is integrated with TeamConnacti ge tog

TWI_PRJ:
Project (optional):
You may specify the name of your project here. If you leave the
field as it is (?), the release and work area name will he used.
(You will be asked for it.)
Directory (required):
E! ‘ Cancel | | Help | Pleas;J spe?:ify the drive, that should be used to keep the files
of your WorkFrame projects.
A subdirectory structure distinguishing the TC family, the
workarea and the release will then automatically be created.
Folder (required):
You may select a folder where your project Icon will be placed.
(The OS/2 DESKTOP is the default).

B4 Project Smarts - Target Information = 0]

Select a project for creation.

Specify the project name, the directory to contain the
project source files, and the WorkPlace Shell folder to
contain the created project.

Project: [?
Directory: [d:\wrk | [Find... I
Folder:

08/2 System
TeamConnection Group
Visualdge C++

‘ Reset | ‘ Cancel | ‘ Help |

Enter the project target information.

Figure 11. Creating a TWI_PRJ Project from Project Sm arts (1)

46 TeamConnection and WorkFrame Integration

Setting the Basic TeamConnection Variables

In the Project Smarts - Variable Settings window, change the basic TeamConnection

variables to the values you want (see

Note:

Praoject 8Smarts - Variable Settings

Project Smarts substitutes the following symbolic
variables into the source files it creates for your
project. You can change their settings to customi
your project.

Variable: Variable description:

{R) The Name of the
TeamConnection
Family.

%TC_USER?%
%TC_BECOME%

Figure 12).

Project Smarts - Conhsole

Progress Indicator

] 10 20 30 40 50 60 70 80

10t
|

| | |

%TC_CASESENSE%
%TWI_EDITOR%

Variable setting:

testfam

Current Status

Querying basic TC information...|

| oK .I ‘ Reset | ‘ Cancel | ‘ Help |

The symbolic variable name used in file substitution

Message Log

TWI_PRJ: (4) Querying basic TC information...

TwI_PRJ:
Please specify/modify your basic Teamconnection environment by
defining values for the environment variables in the list...
The (R) on the left hand side of the variable description
indicates that a value is required, an (0) indicates optional
variables.

TWI_PRJ:
Error restoring variable settings,
IwfRestoreVariables Re was: 12.
...default values will be used.

Figure 12. Creating a TWI_PRJ Project from Project Sm

arts (2)

Chapter 5. Setting Up WorkFrame

See “TWI_PRJ Installation Script” on page 41 or the Variable description field for
the value of the variables. Variables with (R) are mandatory; variables with (O) are
optional.

47

Setting the Work Area Specific Variables

You can change the work area specific variables to the values you want in the Project
Smarts - Variable Settings window (Figure 13).

Select OK when the message box appears.

Figure 13. Creating a TWI_PRJ Project from Project Sm

48

Project Smarts - Variable Settings

Project Smarts substitutes the following symbolic
variables into the source files it creates for your

project. You can change their settings to customize|

your project.

Variable:

Variable description:

[} Project Smarts - Console

Progress Indicator

0 10 20 30 40 50 60 70 80

: (O) A list of parts you
BTWI_ _| plan to work on.
HTC_WORKAREA%
%TC_RELEASE%

%TC_BUILDPOOL%
%TC COMDONFNT%

90

- 0]

10¢
!

I 1

Current Status

Variable setting:

proji\srciproji.c

Querying project specific information...

Message Log

TWI_PRJ: (5) Querying project specific information...

TWI_PRJ:

| OK! | ‘ Reset | ‘ Cancel | | Help |

Please define the project specific information by setting values
for the environment variables in the list...
The (R) on the left hand side of the variable description

Confirm the variable settings.

indicates that a value is required, an (O) indicates optional
variables.

TWI_PRJ:
Error restoring variable settings.
IwfRestoreVariables Rc was: 12.
...default values will be used.

TWI_PRJ:

The workframe project installation has
finished. Return Code was 0 !

arts (3)

TeamConnection and WorkFrame Integration

Automatic Extraction of the Build Tree

If there is no file or subdirectory in the base\family\workarea\release working directory,
TWI_PRJ.CMD will call the automatic extraction program, TWI_XBT.CMD, to extract parts
that you need in the project. The extraction is asynchronous, so even though the project
has been created, the extraction may still be in progress. TWI_XBT.CMD extracts the parts
in the following manner (see “TWI_XBT: Extracting a Whole Build Tree” on page 151 for the
source code):

1. If the %TWI_WORK_PARTS% is specified, TWI_XBT.CMD uses this as a parts list.

2. If the %TWI_WORK_PARTS% is not specified, TWI_XBT.CMD invokes the
TeamConnection client and lets you extract the parts you need to the working
directory. Then TWI_XBT.CMD uses the files in the working directory as the parts list.

3. For each part in the parts list, TWI_XBT.CMD looks for the closest parent part with an
associated builder.

4. For each parent part that it finds, TWI_XBT.CMD extracts all of the parts in its build
tree.

If you want to use automatic build tree extraction:

Select Yes when the Do you want me to Extract the build tree(s) message appears (see
Figure 14).
Select OK when the message box appears.

TWI_XBT:

Do you want me to Extract the build
tree(s) ?

No TWI_XBT:

Extracting the files from TC Work Area
ywwrk3 Ended with a return code of ©

Figure 14. Creating a TWI_PRJ Project from Project Sm arts (4)

Chapter 5. Setting Up WorkFrame 49

Customizing the Settings of the TWI_PRJ Project

In this section we show you step by step how to customize the settings in the TWI_PRJ
project.

Setting the Project Location

By now you will be able to see the project icon on your desktop or in whichever folder you
specified. Open the project view and check whether all parts are visible from the
WorkFrame. If you do not have any paths in your part name, you will see the parts. If you
have paths, as our project or product has, you will not see any parts in your project. To
see the parts, you must change the location settings of your project to make files visible
from the project. On the TWI_PRJ - Icon view window:

Open the project settings by selecting View — Settings - Location .
Select Find.

Select the desired directory and select Add.

Add all directories and select OK.

Close the Settings window.

Now you should see all of the parts that have been extracted.

50 TeamConnection and WorkFrame Integration

TWI_PRJ - Icon view

Project Selected Monitor e Options Help

lcon
]| -
Tree
-Target
Tools setup Ctrli+T

Information line

Refresh now F5

Toolbars +

Location |
Monitor
Inheritance
View

Sort

—— Twl_PRJ - Settings

=

rLocation - JS/2 Files

Source directories for project files:

divwrkutwi_prjstestfamitst-wa0oQi -

‘Working dircctory:

[d:wrkitwi_prijtestfaritst wa0001 002! *

File
‘Window

General

| Unde | ‘ Default | ‘ Help |

Find directories

Drives:

[b: PROJECT]

Directories:

Selected directories:

Itwi_prj
testfam
Stst-wal001-002
Stst-rel0001
=tst

| QKJ ‘ Cancel | ‘ Help |

Dwrkitwi_privtestfamitst-wa0

Figure 15. Changing the Settings of TWI_PRJ

Chapter 5. Setting Up WorkFrame

51

Changing the Default Editor from LPEX to EPM

In this section we show you how to change the default editor settings from LPEX to, for
example, EPM. We also show you how to change the action options.

Setting the TWI_EDITOR variable

You may want to change the default editor of the TC Edit action from, for example, LPEX
(which we call using the command file, LXSYNC; see “LXSYNC: A Synchronous Way of
Invoking LPEX” on page 190) to another editor such as EPM:

From the TWI_PRJ - Icon view window (Figure 16 on page 53) select the Tools setup
icon or select Tools setup from the View pull-down menu.

On the TWI_PRJ - Tools setup window select the Variables view icon.

Click with mouse button 2 on the TWI_EDITOR variable to display the pop-up menu.
Select Change.

In the Change Environment Variable window change the String field to the name of the
command file or program you use to invoke your editor; for example, epm.exe.

Select the Change push button.

Note: LXSYNC.CMD is the command file that will invoke LPEX synchronously (see
“LXSYNC: A Synchronous Way of Invoking LPEX” on page 190).

52 TeamConnection and WorkFrame Integration

B TwI_PRJ - Icon view a]
Project Selected Monitor Options Help ‘

,.: I
con

Tools setup EEtails
projuIco [msgbox.h gl:teings
[proji.mak [openfile.hy g
24 projirc 0 prodinfo.n Information line
[proj1.RES [projth Toolbars >
EREBEIAF Twi_PRJ - Tools setup
Actions Variables Types View

Help
E=] e |
H*%

Twl_PRJ - Tools setup a0

Actions Variables Types View
Help

Tools setup

28] @

Variable String
TC_BECOME TC_BECOME
TC_BUILDPOOL || pooli
TC_CASESENSE || LOWER
TC_COMPONENT || yw_serve add...
TC_FAMILY testfam (R
TC_RELEASE releasel Copy...
TC_USER yusuke Move...
TC_WORKAREA || workarea pelete

TWI_RELEASE_P| TwI_RELEASE_PART
4 Change Environment Variable

Name

[
P4 Change Environment Variable
strin
= Mame [TwI_EDITOR [
|lxsgnc.cmd
String

| Change H Undo | E [epm.exe |

|ghange H Undo || Cancel || Help |

Figure 16. Changing the Default Editor

Chapter 5. Setting Up WorkFrame 53

Changing the TC Edit Action Options for EPM

As you have changed the editor to be invoked, you must also change the options of the
action (see Figure 17 on page 55):

On the TWI_PRJ - Tools setup window, select the Actions view icon.
Expand the Edit class.

Click with mouse button 2 on TC Edit action to display the pop-up menu.
Select File Options - Change

Change the options of the action:
EDIT %a %z (/W ?FILES?

54 TeamConnection and WorkFrame Integration

B TwI_PRJ - Icon view

TWI_PRJ - Tools setup

Project Selected Moniti e Opti Hel " " n
—rojeet Seecied Tontor Sptions BeP Actions Variables Types View
oen
i Details Help

ools setup
pI‘(I]]].IT‘ [msgbox.h Ireg 1 I@I@l«j“

mak file.h Settings [— ==
0O pro]- .mal O npen. ile. | ey setup CHrl+T Actions view
e projt.re [prodinfo.h Information line TWI_PRJ - Tools setup
[proj1.RES [projih Toolbars - Actions Variables T
[9 helphdir.hpp [proji.hpp | Refresh now F5 TWI_PRJ - Tools setup

Actions

Variables Types

View ﬂeip

S[E=]

R ‘

Parameters

EDIT 3%F (%F /CM WF INIT %d %f %p| |

FiSend Errors to editor
iPrompt

| Reset | Qefault| ‘ Help |

| oK | |Reset| ‘Delaultl ‘Cancell ‘ Help |

QOptions

Actions

TeamConnect

b | View

Edit : File scope - Edit Options

Parameters

Action

Add...
Change...
Copy...
Move...
Delete

Collapse all

Options

EDIT %a %z (/W ?FILES?

$Send Errors to editor
1Prompt

‘ Reset | ‘Qefault| | Help |

| oK kl ‘Reset| Default| ‘Cancel| | Help |

Expand all

File Options # || .Change...

Delete
Copy...

Figure 17. Changing the TC Edit Action Options

Chapter 5. Setting Up WorkFrame

55

56 TeamConnection and WorkFrame Integration

Changing the Applicable Actions on Files

As you can see in Figure 18, the applicable actions differ according to the type of file

selected because the actions have different applicable types in the action settings.

For

example, if you see the types menu in the action definition of TC Edit, the source types are

set to Editable . For the TC Build Part action the source types are set to NotTCSaved .

TWI_PRJ - Icon view
Project Selected Monitor

Open
Settings

[s]azalR] |+ *

projl.Ico

[helphdlr.hpp
[msgbox.hpp
[openfile.hpp
[prodinfo.hpp

Copy...
Hove...

O projih
O proji.hpp

projl.rc

Delete. ..

oy

projl.obj

Project

Create shadow...

TeamConnection

[teamc.log

B TwI_PRJ - lcon view
Selected Monitor

View Options

Help

®zE)] |*-

Open

projiIco

[helphdir.hpp
[msgbox.hpp
[openfile.hpp
[prodinfo.hpp m

Settings

[proji.h
[projt-hpp
24 projt.rc
[proji.cpp

Copy...
Move...

Delete...

Create shadow...

TeamConnection
e e

Figure 18. Applicable Actions on Files

Chapter 5. Setting Up WorkFrame

57

To change the applicable actions for various file types do the following:

Open the TWI_PRJ - Tools setup window (Figure 19).

Select the Actions view icon.

Click with mouse button 2 on TC Edit
Select Change.

TWI_PRJ - Icon view

Part action.

Project Selected Monitor Options Help
R -
* 1
I‘EEI Details
Touls setup Tree
projiIco [msgboxhy — °-
o mak fleh Settings
[projt.ma R " Tools setup Ctrl+T
@4 projl.rc [prodinfo.h Information line
[proji.RES [projth Toolbars -
[helphdirhpp [Y proji.hpp | Refresh now F5

TWI_PRJ - Tools setup
Actions Variables Types
Help

View

Actions
Help

Variables Types Vig

] |
Twl PRJ - Tools setup
Actions Variables Types

View

] (2]

Actions

Help

File Options[#

—
M Add...

S Change... .|

TeamConnection

Build

10]

: Browse

Copy...
Move...

Delete

Action

Expand all
c pse all

TC Create Part
of Build
‘@@ Browse

TeamConnection

Figure 19. Types of Files Set in the Action Definition (1)

58

TeamConnection and WorkFrame Integration

On the Change Action window, select the Types menu (see Figure 20 on page 60).
Select the Types for the TC Build part action as well.

Chapter 5. Setting Up WorkFrame 59

Change Action

IEa Ty pirais v iy g

WA I

i

| Undo || Defautt| | Help |

%general
‘ Undo | ‘ Dafault | | Cancel | ‘ Help |

ypes jSupport fMenus

Class [Ecit
Source types Available types
Name TC Edit ditable] Binary
‘ ” Bitmaps
Program TwWI|_DO.CMD Find... -<<Add Browsable
) - Cinclude
Session : x |Compilerout
&Default “sManitar CcSource
3 Window Full screen Target types DaxState
Driver
. . DynaLib
rAction aoplies to '
FFile {1Project «¢Add ||Editable
i i A
Access method ‘EW%MM ‘ Executable

| Undo || Default || Help |

| ok || undo || pefautt | | cancet | | Help |

Change Action

o [

EREE T ER RN

I I i

Change Action

| undo || vetautt | | Help |

| Undo | | Default | ‘ Cancel | ‘ Help |

Class [Buid | EEEEEEEEE
Source types Available types
Hame |TC Buid Part Binary
‘ ” Bitmaps
Program TWI_DO.CHMD Find... ¢<<Add ||Browsable
Clnclude

rSession CompilerQut

{jDefault % Monitor 3 CSource

< Wincow iFull screen Target types gqxstate

river

rAction apolies to DynaLib

i File “1Project E;‘éable

heoess mathod [rviFBRa | Executable

| undo |[Detaut || Help |

|

[ok || undo | | Defautt | | cancet | | Help |

Figure 20. Types of Files Set in the Action Definition (2)

60

TeamConnection and WorkFrame Integration

If you want to make an action applicable to another type of file, change the source type by
adding or overwriting it. Or add a new type in the Types view and add it to the action
settings (see “Adding Our Project Install Script to Project Smarts” on page 43).

Chapter 5. Setting Up WorkFrame 61

Changing the Default Actions

The order of the actions in the menu represents the priority of the actions. The top action
will be the default action when you double-click on a file. In Figure 18 on page 57, the

default action for the C++ source file is TC Edit and for the object file it is TC Build Part .
So when you double click on a C++ source file, the editor comes up containing the file.

Say you want to change the default action of the source file from TC Edit to TC CheckOut.
To do so, make the priority of TC CheckOut action higher than TC Edit:

Open the TWI_PRJ - Tools setup window (Figure 21 on page 63)
Select the Actions view icon.

Click with mouse button 2 on the TC CheckOut action.

Select Change.

Select the Support menu (Figure 22).

Change the Priority to a number higher than the TC Edit Part action.

62 TeamConnection and WorkFrame Integration

= TWI_PRJ -

Project

lcon view

Selected Monitor

Options

Help

B projrico
[proji.mak
34 projlrc

[proj1.RES
[M helphdir.hpp

=8

e

™ msghox.hi
M ms

[openfile.h
™ prodinfo.h
[proji.h

[proji.hpp

lcon
Details
Tree
Settings

Tools setup Ctri+T

Information line

Toolbars
Refresh now

-
F5

= 'V = 0 .' = 1
Actions Variables Types
Help

§- O

View

E

Actions wiew

TWI_PRJ - Tools setup
Actions Variables
Help

EDEIL|

Types

View

EEIEE

Actions

Action

=

8 Browse

Help

TwWIl_PRJ - Tools setup

Actions

Variables Types View

=[#]=] @]

Figure 21. Changing the Priority of an Action (1)

Actions
‘B TeamConnection
— TC Checkin| '€ Options(3]

Add...

. Freeze WOI’I

* Copy...

. TC Checkin| Move...
Delete

TC Touch | Expand all

Collapse all

i TC Task List

Chapter 5. Setting Up WorkFrame

63

Change Action

R RN RN RN RRRIRRRTT

Class [TeamConnection

Nama [TC CheckOut

Program [TWI_DO.CHD
rSession

Default ¥ Monitor

i Window (iFull screen

rAction annlies to
#File ZiProject

Ancess method |QW?~“€3ME¢

| Undo || Defautt || Help |

ageneral W
LY
‘ Undo | ‘ Default | ‘ Cancel | | Help |

~Customized help for action
Command [VIEwW |
Topic |none |

Action Support DLL

Name [IWFOPT |
Entrypoint [DEFAULT B
Priority 0 - 99

| Undo | |Detautt || Help |

| ok || unde | | Detautt | | cancet | | Help |

Figure 22. Changing the Priority of an Action (2)

64

TeamConnection and WorkFrame Integration

Adding a New Environment Variable

You may find that you need other environment variables that have not been previously

defined. For example, you may want to set d:lcommonlinc as an include directory.

To add a new environment variable:

Switch to the Variables view and click on the Add icon (Figure 23).
In the Add Environment Variable window type include in the Name field.

Type d:commoninc for the string.

Select Add.

TwIl _PRJ - Tools setup
Actions Variables Types View

Help

Warighles wiew

|

TWI_PRJ - Tools setup

Actions Tyes View

Change...
Copy...
Hove...
m Delete
TC_BUILI wWhare defined
TC_CASESENSE ” LOWER
i

Varowle

Disy

| Undo Cancel

| Help

Add a new variable, based on a selected

Figure 23. Adding a New Environment Variable

Chapter 5. Setting Up WorkFrame

65

Adding a New Type

Types are used to distinguish a group of files from other files and to apply actions to
For example, you might create a file type called COBOL Source to apply a

specific files.

COBOL compiler action to files that have a .cb/ extension.

To add a new type:

Switch to the Types view and click on the Add icon (Figure 24).

In the Add Type window, select FileMask (from the Class field's selections) for the

Class field.

Add a new Type COBOLSource in the Name field.

Type *.cbl in the Filter field.
Select Add.

TWI_PRJ - Tools setup

Actions Variables

Help

Types View

TWI_PRJ - Tools setup

Figure 24. Adding a New Type

66

TeamConnection and WorkFrame Integration

Actions Variables View
Help [Ada.. [
[Z] | Change...
= Copy...
Typ=-lame Clag| Move...
Binary Logi|_Delete B
wWhare cdefined
Register class..
[
B4 Add Type
Class |FileMask ¥
E Name [COBOLSource \
T Filter | cphl ’
Ritmans
: Bdd || Undo || cancel || Help
Add a new tglu —

General Customization of WorkFrame Projects

In this section we take a closer look at the general customization of a project in
WorkFrame. We show you how to change the project settings and add an action.

Changing the Project Settings

In the project settings, you would mainly change the target, location, monitor, and
inheritance.

When using TWI_PRJ do not change the working directory in the location menu. If you
change it, some of the actions will not be available.

Inheritance is important because the actions, variables, and types also change. If there is
a setting in your project that has the same name as the project from which you are
inheriting, the setting will not be inherited. For example, if you already have a TC_FAMILY
variable defined, you cannot inherit another TC_FAMILY variable. Also, if you have an
action called Edit, you cannot inherit another action called Edit even if it has different
settings. If you want to change the settings that you inherited, you must change the
settings in the original project.

Figure 25 on page 68 shows an example of customizing project settings. For each Settings
page, we explain the various fields on the page:

Settings - Target page

Specify the target file name in the Name field on the Target page.

Specify the run option in the Run options field on the Target page.

Specify the make file name (not needed for our project) in the Makefile field
on the Target page.

Settings - Location page

Specify the directories to be used for the project in the Source directories
for projects files list field on the Location page.

Specify one of the source directories from the list field as the Working
directory on the Location page.

Settings - Monitor page
Set the appropriate monitor settings on the Monitor page.
Settings - Inheritance page

Add projects from which your project can inherit on the Inheritance page.

Chapter 5. Setting Up WorkFrame 67

Target of project build

Mame

Run options

Target

Location

Makefile

Undo Default

Help

Sample project! - Setting

~Location - 0542 Files

Source directories for project files:

D:Aprojlisrc
D:Aprojitine
iy 1DAprojiibin

Working directory:

§D:\prni1\src

e

Location

Find...

Manitor

Undo Default Help

iInheritance

Figure 25 (Part 1 of 2). Changing the Project Settings

68

TeamConnection and WorkFrame Integration

§ Sample project! - Settings

f: Show on action start
i Auto erase
Auto seroll
Beep on completion
iHide on successful completion

Refresh view{s) on completion

Undo gﬂefault jHeIp

Inherit from:

e Prameats

Dmnate

I 3 S

Undo égefault . Help

Figure 25 (Part 2 of 2). Changing the Project Settings

Chapter 5. Setting Up WorkFrame 69

Adding an Action

In this section we show you the steps to add a new action. You begin by selecting the
Actions view from the TWI_PRJ - tools setup window.

For each Settings page, we explain the various fields on the page (see Figure 26 on
page 71):

Settings - Target page

Specify the target file name in the Name field.
Specify the run option for the target file in the Run options field.
Specify the make file name in the Makefile field.

Add Action - Types page

In the Source types field, specify the types of files that can be applied to the
action.

In the Available types field, you have a list of types defined in the Types
view of the tools setup.

In the Target types field, specify the types of output files required for the
various actions.

Add Action - Support page

Specify the name of the action support DLL in the Action Support DLL -
Name field. The action support DLL:

- Sets the default option

- Displays the interface for options input

- Generates the command line to invoke the action command

- Processes the target and dependencies list

- Parses selected error messages from the monitor

- Enables the DDE communication

Select the priority of the action from the Priority selection scroll list.
Actions with higher priority will be displayed at higher positions in the
selection scroll list. The default action will be the action with the highest
priority.

Add Action - Menus page

Select Add to menus, to display the action in the selected pull-down menu.
Select Add to project Options menu to display the action in the options
pull-down menu.

Select Add to project toolbar to display the action in the toolbar.

Specify in the Ctri+Shift+ field a character to be used as an accelerator
key.

70 TeamConnection and WorkFrame Integration

Build
i Run
. Debug

Edit

¢ TeamConnection

Collapse
Expand all

Collapse all

nD

‘iew Help

Actions

Source types

C3ource
Cinclude
RCSource
Source
Editable

Target types

Executable
EXE
CompilerOut

Undo | .

Default

Help

Available types

Binary
Bitmaps
Browsable

CompilerQut
CSource
DaxState
Driver
DynaLib
Editable
EXE
Executable

HalnFEile

ASupport §

Menus

Figure 26 (Part 1 of 2). Adding an Action

Chapter 5. Setting Up WorkFrame

71

ion

Command

Topic

-Action Support DLL

Name IWFOPT

Entrypoint DEFAULT

Priority 0-199

Undo gbgfault Help

-Action display

i Add to menus
¥ Add to project Options menu

#Add to grolect foolbar

Action accelerator key

Ctri+Shift+

In use {ABCDEFIKLMOPRSYZ

Undo ngfault " Help

‘General

iTypes | Support |

Figure 26 (Part 2 of 2). Adding an Action

72 TeamConnection and WorkFrame Integration

After you have added an action, you can also specify options for the command file invoked
from the action. Figure 27 on page 73 shows the options windows you will see if you used
IWFOPT as the support DLL:

Specify the parameters for the action (when applied to files) in the Parameters field.
Use substitution variables to refer to variable items such as file names.

a %z - specifies all selected files, separated by a space
f — specifies the fully qualified name of the first selected file

Select Send Errors to editor to enable DDE communication with the editor.

Specify the parameters for the action (when applied to a project) in the Parameters
field.

Substitution variables are different from file options.

%p — specifies the fully qualified name of the project target

Sample projectl - Tools setup

ﬁctions Variables Types View ﬂelp%

File Opjions{+ m

Add... X E — S
Change... bl | C Edit : File scope - Edit Options
Copy...

Move...

Delete Parameters

Expand all EDIT %f

Collapse all

Editor
(Ctrl+5hift+E)

i Send Errors to editor
...i Prompt

jﬁeset ;gefault Help

oK Reset éDefault Cancel Help

Figure 27 (Part 1 of 2). Changing an Option of an Action

Chapter 5. Setting Up WorkFrame 73

TC Edit : File scope — Edit Options

Parameters

EDIT %p

¥ Send Errors to editor

:Beset jgefault Help

0K Reset éDefault Cancel Help

Figure 27 (Part 2 of 2). Changing an Option of an Action

74 TeamConnection and WorkFrame Integration

Actions Defined in the TWI_PRJ Project

—— Consider the following wish list items:

We expect that:

Library functions can be executed on WorkFrame parts and projects.
A tight edit-compile-debug loop will be supported

The latest code version is always in the library.

A build should always be done with the library build setup.

In this section we describe the actions that are set in the TWI_PRJ project. For each action
we briefly describe its function and provide the following information:

Advantages

Input

Scope

File types

Implementation

Explains why we added the function. All of our actions were created to
reduce user involvement as much as possible.

Shows the input needed for the action other than the environment
variables. You will see the input defined in the options of the actions.

Actions are defined as file-scoped, project-scoped, or both.

File-scoped actions are actions that apply to specific files in WorkFrame,
and one or more files must be selected to invoke the action. File-scoped
actions will show up in the Selected pull-down menu and file pop-up menu.

Project-scoped actions are invoked only on a project, regardless of
whether or not a file is selected. Project-scoped actions will show up in
the Project pull-down menu and project pop-up menu.

Shows the types of files to which the action is applied. For example, the
TC Edit action will only be applied to editable files. Types are defined only
for file-scoped actions. You will see the types defined in the Types menu
of the Tools setup window.

Shows how we implemented the action.

TC Edit

This action checks out a part, starts an editor, and checks in the selected part. It uses the
editor defined in the TC_EDITOR variable.

Advantage

Releases users from checking out and checking in a part each time they
try to edit it.

Chapter 5. Setting Up WorkFrame 75

Input Single file name (if using LXSYNC.CMD)
List of file names (if using EPM.EXE)

Scope File-scoped

File type Editable files

Implementation

Check out the part selected.

Start an editor (defined in TC_EDITOR) with the selected part name.

When the edit session is closed, you are asked whether the part should be
checked in or not.

When checkin is selected, invoke the TC Checkln Forced action.

If error occurs, abend the action and check the pop-up message.

TC Checkin

This action checks in one or more parts that you select.

Input List of file names
Scope File-scoped
File type Editable

Implementation

Check in the selected parts, using the TeamConnection command line interface.

TC ChecklIn Forced

This action checks in one or more parts that you select. If a part was not checked out
previously, it locks the part and checks it in again.

Advantage You do not have to check out a part.
Input List of file names

Scope File-scoped

File type Editable

Implementation

76 TeamConnection and WorkFrame Integration

Check in the selected parts into TeamConnection.

If the checkin fails, check the error code.

If the error code indicates that the part was not checked out, lock the part and try
to check it in again.

TC CheckOut

This action checks out one or more parts that you select.

Input List of file names
Scope File-scoped
File Type Editable

Implementation

Check out the selected parts, using the TeamConnection command line interface.

TC Lock

This action locks one or more parts that you select.

Input List of file names
Scope File-scoped
File type Editable

Implementation

Lock the selected parts, using the TeamConnection command line interface.

TC UnLock

This action unlocks one or more parts that you select.

Input List of file names
Scope File-scoped
File type Editable

Implementation

Unlock the selected parts, using the TeamConnection command line interface.

TC Extract

This action extracts one or more parts that you select.

Chapter 5. Setting Up WorkFrame 77

Input

Scope

File type
Implementation

List of file names
File-scoped
Any

Extract the selected parts, using the TeamConnection command line interface.

TC Touch

This action invokes the Touch part command for one or more parts.

Advantages

Input

Scope

File type
Implementation

Lets you rebuild the target without changing the parts because the build
process treats touched parts as being changed.

List of file names

File-scoped

Any

Invoke the Touch part command for the selected parts, using the TeamConnection
command line interface.

TC Build Part

This action invokes TeamConnection build from WorkFrame. The build process runs for
one selected file.

Advantages

Input

Scope

File type
Implementation

Because the action is run on a monitor session, you can see the build
messages in the WorkFrame monitor. WorkFrame handles the DDE
communication to let you jump from the error message in the monitor to
the line of a source code where the error occurred. Also, you can start the
build process not only from parts with a builder associated with it but also
from parts without a builder; that is, you can start the build from a source
file or an include file.

List of file names

File-scoped

Any

In the WorkFrame tools setup, select Monitor as the session for the action.
Check whether the selected part has a builder associated with it or not.

If the part does not have a builder, search for its parent part in the build tree.
Check whether the parent part has a builder associated with it or not. If it does
not, search for the next parent until a part with a builder associated with it is

found.

78 TeamConnection and WorkFrame Integration

Execute TeamConnection build with the selected part or the parent parts, using the
TeamConnection command line interface.
Issue the viewmsg command to show the result of the build.

Note: If you double-click on the error message in the monitor, the TC Edit Part action will
be invoked, and the part will be checked out automatically.

TC Build Part Forced

This action invokes the TeamConnection build process with force option.

Advantage You can rebuild everything regardless of the state of the last build.
Scope File-scoped
File type Any

TC Build Target

This action invokes a TeamConnection build for the target file specified in the
TC_TARGET_PART environment variable.

Advantage You can build the whole build tree for the build target. This enables you to
build the whole application or project.
Scope Project-scoped

Chapter 5. Setting Up WorkFrame 79

TC Build Target Forced

This action invokes the TC Target Build action with the force option.

Scope Project-scoped

Show WorkArea

This action invokes a TeamConnection GUI session that shows the Partfull view of the work
area.

Scope Project-scoped
Implementation

Invoke the Partfull view, using the TEAMCGUI command.

Note: Our intention was to show the part view of the TeamConnection client. However,
TeamConnection does not provide an official interface for the TEAMCGUI command,
so we could only invoke the Partfull view. We found the TEAMCGUI options by using
the integrated interface that TeamConnection provides.

Freeze WorkArea

This action freezes the work area to make a backup of a whole project so that you can
return to the same stage of development.

Scope Project-scoped
Implementation

Invoke the freeze workarea command, using the TeamConnection command line
interface.

TC Task List

This action invokes the Task List window of the TeamConnection GUI. You can switch to the
TeamConnection GUI whenever you have to.

Scope Project-scoped
Implementation

Invoke the Task List window of the TeamConnection client, using the TEAMCGUI
command.

80 TeamConnection and WorkFrame Integration

TC View Build Messages

This action shows the latest build message, sent to the WorkFrame monitor, of the selected
part.

Scope File-scoped
Implementation

Invoke the Touch part command for the selected part(s), using the TeamConnection
command line interface.

Chapter 5. Setting Up WorkFrame 81

82 TeamConnection and WorkFrame Integration

Chapter 6. Using WorkFrame Projects

In this chapter we describe a way of importing an existing WorkFrame project into a
TeamConnection project. We believe that this will give directions of how to migrate your
existing WorkFrame projects to a TeamConnection environment.

Importing Existing WorkFrame Projects

—— Consider the following wish list item:

We expect that:

A WorkFrame project can be automatically imported to a TeamConnection work
area.

Basically WorkFrame files (that is, source code, object code, and executable code) are
implemented as TeamConnection parts. And WorkFrame build descriptions in a make file
are converted to a TeamConnection build tree. To create a new part in a TeamConnection
environment, you have to create other TeamConnection objects in advance.

The fundamental steps for migration are:
1. Create a TeamConnection family

2. Create a component structure

3. Create a release and a work area
4. Create parsers and builders

5. Determine the import rules

6. Convert a make file into a command file

[J Copyright IBM Corp. 1996 83

TeamConnection provides a utility called FHOMIGMK that will convert an NMAKE make
file into a TeamConnection command file. But we will describe this step in general to
help you import from other make files also.

7. Run the command file

8. Verify the results

Creating a TeamConnection Family

We recommend that you use a new family to import WorkFrame projects. If you are using
an existing family, do not forget to take a backup before migration because it may be
extremely difficult to roll back an import.

Creating a Component Structure

When you import a WorkFrame project into the TeamConnection environment, you must
create a component structure or at least one component to attach the WorkFrame files.
You must consider access control, problem tracking, and organizational structure to have
the most suitable component structure. Keep the component structure as simple as
possible so that the parts can be imported automatically. Refer to “Grouping the Parts and
Controlling Access” on page 16 for more information about assigning parts to components.

84 TeamConnection and WorkFrame Integration

Creating a Release and a Work Area

In this step you create a release and a work area, using your naming convention. This step
is a prerequisite for creating parsers and builders.

Creating Parsers and Builders

You do not have to create a parser or a builder until you run a build process in
TeamConnection. If you are considering creating a build tree from a make file, however,
you should create parsers and builders at this point. It is your responsibility to create
parsers and builders from a make file definition or other definitions.

Parser
The function of a parser is to analyze source files and parse all dependent files.

Chapter 6. Using WorkFrame Projects 85

Builder
For each compiler and each linker you should create a builder. Do not use the
compiler itself as a build script because the build script is copied to the cache
directory for performance. Also, the compiler will stay in memory, so you may get
unexpected results on the next build.

Sample parsers are available for C (fhbopars.cmd), COBOL (fhbcbprs.cmd), and PL/I
(fhbplprs.cmd).

TeamConnection also provides sample build scripts for the VisualAge C++ compiler
(fhbocomp.cmd); VisualAge C++ link (fhbolin2.cmd); VisualAge C++ ilink (fhbolink.cmd);
VisualAge COBOL compiler (fhbcob2.cmd); VisualAge COBOL link (fhbcob2l.cmd); Resource
Compiler (fhborc.cmd); OS/2 PL/I compiler (fhbplbld.cmd); and OS/2 PL/I link (fhbplink.cmd).
We recommend that you create different builders when using the same compiler with
different compiler options. For example, you should create a builder for production and a
builder for debugging.

For more information about parsers and builders, see the IBM TeamConnection for OS/2
User's Guide, SC34-4499.

Note: The FHOMIGMK import utility uses default TeamConnection parser names and
TeamConnection builder names. The default parser for C or C++ source code is
called c, and for resource files it is called rc. The default builder for the C and
C++ compiler is icc, and for the C and C++ linker it is linker. Other default
builders are ipfc for the help file compiler and res for the resource compiler. Create
these parsers and builders for the release before you run this utility.

Determining the Import Rules

When you are importing make files with the FHOMIGMK utility, you have to prepare a file
that contains all rules for importing the make files. This rules file is also useful for
checking whether you have defined all information required to import a WorkFrame project,
even if you are not using the FHOMIGMK utility. If you create a rules file, it will be easier
to import a project that does not use make files. It may be easier to modify a default rules
file that TeamConnection provides than to create a new one. The default rules file is
TEAMC\BIN\FHOMIGMK.RUL

In this section we create a new rules file to import the sample WorkFrame projects shown
in Figure 28 on page 87. Each sample project has a root directory and some
subdirectories containing different types of files.

86 TeamConnection and WorkFrame Integration

projectl D:\projl\bin - contains target files (*.exe, *.obj, *.res)
D:\projl\src - contains source files (*.c)
contains resource files (*.rc)

contains make files (*.mak)
contains map files (*.map)
contains icon files (*.ico)

D:\projl\inc - contains include files (*.h)

project2 D:\proj2\bin - contains target files (*.exe, *.obj, *.res)
contains map files (*.map)
D:\proj2\src - contains source files (*.c)
contains resource files (*.rc)

contains make files (*.mak)
contains ipf files (*.ipf)
D:\proj2\hlp - contains icon files (*.ico)
contains help files *.h1p)

D:\proj2\inc - contains include files (*.h)

Figure 28. Sample WorkFrame Projects

Determine the component

First of all you must determine the components to which parts are being attached. For
each part, define a component. To make life easier, use wild cards (* and ?) in part
names.

Generally WorkFrame projects have a directory structure for project management. If
S0, you can use this directory structure as a file mask.

For example, let us assume that projectl in Figure 28 will be attached to a component,
server, and project2, to a component, client. Your rules file will contain file masks and
components as in Figure 29.

file masks components
D:\proj1* server
D:\proj2* client

Figure 29. Example of a Rules File: Components

2.

Define the file types and the connections

You must decide on the file type of each part. Parts can be either binary, text, or none,
depending on the data they contain:

binary
Indicates that the part being created is a binary file

Chapter 6. Using WorkFrame Projects 87

88

text
Indicates that the part being created is a text file (the default)

none
Indicates that the part being created will never contain data. This type will not
be used if you are importing an existing WorkFrame project.

You also must decide on the connection between a part and its parent:

input
Specifies that the part is an input to the build of its parent. A source file is an
example.

out