
IBML

VisualAge 2000 Test Solution:
Testing Your Year 2000 Conversion

Neil Bloomfield, Merrill Bani, Beth Flint

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-2230-01

International Technical Support Organization

VisualAge 2000 Test Solution:
Testing Your Year 2000 Conversion

April 1998

SG24-2230-01

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix J, “Special Notices” on page 177.

Second Edition (April 1998)

This edition is for use with the versions of tools listed in Chapter 2, “The Tools Used by VisualAge 2000 Test
Solution” on page 9.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . xi

Tables . xii i

Preface . xv
What Is Special About Year 2000 Testing . xvi
Introducing VisualAge 2000 Test Solution . xvi
Start Thinking About Testing Today . xvii
Before You Begin Testing . xvii
Who Should Read This Book . xviii
The Team That Wrote This Redbook . xix
Comments Welcome . xix

Part 1. Preparing for the Test Tutorials . 1

Chapter 1. An Outline of the Testing Process 3
1.1 Previous Steps in the Year 2000 Conversion 3
1.2 The Testing Process . 3
1.3 High- and Low-Risk Applications . 6
1.4 What To Do When Testing Finds a Bug . 6

Chapter 2. The Tools Used by VisualAge 2000 Test Solution 9
2.1 Auto Test Performer . 9

2.1.1 Hardware Requirements . 9
2.1.2 Software Requirements . 10
2.1.3 Installation and Usage Hints . 10

2.2 COBOL Tester . 10
2.2.1 Hardware Requirements . 10
2.2.2 Software Requirements . 11
2.2.3 Installation and Usage Hints . 11

2.3 Coverage Assistant . 11
2.3.1 Hardware Requirements . 12
2.3.2 Software Requirements . 12
2.3.3 Installation and Usage Hints . 12

2.4 Debug Tool . 12
2.4.1 Hardware Requirements . 13
2.4.2 Software Requirements . 13
2.4.3 Installation and Usage . 13

2.5 Distillation Assistant . 13
2.5.1 Hardware Requirements . 14
2.5.2 Software Requirements . 14
2.5.3 Installation and Usage Hints . 14

2.6 Enhanced SuperC . 14
2.6.1 Hardware Requirements . 15
2.6.2 Software Requirements . 15
2.6.3 Installation and Usage . 15

2.7 Data Facility Sort . 15
2.7.1 Hardware Requirements . 15
2.7.2 Software Requirements . 16
2.7.3 Installation and Usage . 16

2.8 REXX . 16

 Copyright IBM Corp. 1997, 1998 iii

2.9 Source Audit Assistant . 16
2.9.1 Hardware Requirements . 17
2.9.2 Software Requirements . 17
2.9.3 Installation and Usage Hints . 17

2.10 WITT Year2000 for Windows . 17
2.10.1 Hardware Requirements . 17
2.10.2 Software Requirements . 17
2.10.3 Installation and Usage Hints . 18

Chapter 3. Installation and Customization . 19
3.1 Prerequisite Software . 19

3.1.1 OS/390 . 19
3.1.2 VSE . 19
3.1.3 Workstation . 20

3.2 Structure of CD-ROM . 20
3.3 Installing Files on OS/2 . 21
3.4 Installing Files on Windows 95 or Windows NT 22
3.5 Loading OS/390 Files . 22

3.5.1 Partitioned Data Sets . 22
3.5.2 Sequential Data Sets . 24
3.5.3 Customizing Files for OS/390 . 24
3.5.4 Initializing for OS/390 . 25
3.5.5 Setting Up for Debug Tool . 26
3.5.6 Conventions in This Redbook for OS/390 27

3.6 Loading VSE Files . 27
3.6.1 Uploading Files from a Windows Platform 28
3.6.2 Uploading Files from an OS/2 Platform 29
3.6.3 Processing Uploaded Files . 30
3.6.4 Customizing Batch Jobs . 30
3.6.5 Initializing for VSE . 31
3.6.6 Conventions in This Redbook for VSE 31

Part 2. The Test Tutorials . 33

Chapter 4. Introducing The Tutorials . 35
4.1 An Outline of the Tutorials . 35
4.2 An Outline of the Sample Application . 36

Chapter 5. Developing Path Coverage and Distilling the Testbed 37
5.1 Paths, Nodes and Sub-paths . 37
5.2 The Path Coverage Process . 38

5.2.1 Targeted coverage . 40
5.3 The Distillation Process . 40
5.4 Path Coverage and Data Distillation - COBOL Tester 41

5.4.1 Starting COBOL Tester . 42
5.4.2 Creating a Testcase . 42
5.4.3 Saving the Testcase . 42
5.4.4 Temporarily Suspending the Tutorial 43
5.4.5 Creating the First Script . 43
5.4.6 Saving the Script . 45
5.4.7 Running the Script . 45
5.4.8 Checking Coverage . 45
5.4.9 Setting an Output Value and Running the Script 45
5.4.10 Extending Coverage . 47

iv VisualAge 2000 Test Solution

5.4.11 Completing the Tutorial . 50
5.5 Introducing Application Testing Collection 50
5.6 Building Path Coverage with Coverage Assistant 51

5.6.1 The Coverage Process Step By Step 52
5.6.2 A Sample Coverage Assistant Report 53
5.6.3 Further Comments on Coverage Assistant 54

5.7 Developing Targeted Coverage with Source Audit Assistant 55
5.7.1 Running Source Audit Assistant . 55
5.7.2 A Sample Source Audit Assistant Report 56
5.7.3 Further Comments on Source Audit Assistant 57

5.8 Using Debug Tool to Check Coverage . 57
5.8.1 Recreating the Original Testbed . 58
5.8.2 Setting up the Auto Test Performer Transactions 58
5.8.3 Starting the CICS Job, and Setting up for Debug Tool 58
5.8.4 Using Auto Test Performer to Enter Transactions 59
5.8.5 Looking at the Frequency Counts . 60
5.8.6 An Explanation of the Debug Tool Script 60

5.9 Distilling a File with Distillation Assistant 61
5.9.1 The Distillation Process Step By Step 62
5.9.2 A Sample Distillation Assistant Report 62
5.9.3 Further Comments on Distillation Assistant 63

5.10 Using Debug Tool to Build a Distilled Key List 63
5.10.1 Recreating the Distilled Testbed . 64
5.10.2 Starting the CICS Job and Opening Files 64
5.10.3 Entering Transactions . 64
5.10.4 Looking at the Distillation Key List . 65
5.10.5 An Explanation of the Debug Tool Script 66
5.10.6 Extending This Example . 67

Chapter 6. Creating the Baseline Results . 69
6.1 Screen Capture and Script Creation - Auto Test Performer 70

6.1.1 Creating a Sample Distilled Master File 70
6.1.2 Capturing the Screens and Scripts - Auto Test Performer 70
6.1.3 Starting the CICS Session . 71
6.1.4 Starting Auto Test Performer . 72
6.1.5 Enter the Transactions . 73
6.1.6 Ending the CICS Session . 76
6.1.7 A Comment on the Script . 76
6.1.8 Looking at the Script . 76

6.2 Creating a Baseline Report . 77

Chapter 7. Building the Converted Testbed . 79
7.1 Converting the Master File . 80
7.2 Backing up the Converted Master File . 82
7.3 Converting the Auto Test Performer Script File 82

Chapter 8. Creating the Post-Fix Results . 85
8.1 Playback and Screen Capture - Auto Test Performer 85

8.1.1 Starting the CICS Session . 86
8.1.2 Using Auto Test Performer to Enter Transactions 86
8.1.3 Ending the CICS Session . 87
8.1.4 Viewing the Log File . 87

8.2 Creating a Post-Fix Report . 87

Chapter 9. Comparing the Baseline Results with the Post-Fix Results 89

Contents v

9.1 Screen Comparisons - Auto Test Performer 90
9.2 Data Comparisons - SuperC . 92
9.3 Report Comparisons - SuperC . 93
9.4 Tracking Down the Bug . 94

Chapter 10. Restarting Testing . 97
10.1 Restoring the Baseline . 97
10.2 Playback and Screen Capture - Auto Test Performer 97

10.2.1 Starting the CICS Session . 97
10.2.2 Using Auto Test Performer to Enter Transactions 98
10.2.3 Ending the CICS Session . 98
10.2.4 Viewing the Log File . 98

10.3 Creating a Post-Fix Report . 99
10.4 Screen Comparisons - Auto Test Performer 99
10.5 Data Comparisons - SuperC . 100
10.6 Report Comparisons - SuperC . 101

Chapter 11. Building the Aged Testbed . 103
11.1 Creating a Testbed for Aging . 104
11.2 Aging the Master File . 104
11.3 Backing up the Aged Master File . 105
11.4 Aging the Auto Test Performer Script File 105

Chapter 12. Creating the 19xx Results . 107
12.1 Playback and Screen Capture - Auto Test Performer 107

12.1.1 Starting the CICS Session . 107
12.1.2 Using Auto Test Performer to Enter Transactions 109
12.1.3 Ending the CICS Session . 109
12.1.4 Viewing the Log File . 110

12.2 Creating a 19xx Report . 110

Chapter 13. Comparing the Post-Fix Results with the 19xx Results 111
13.1 Screen Comparisons - Auto Test Performer 111
13.2 Data Comparisons - SuperC . 113
13.3 Report Comparisons - SuperC . 115

Chapter 14. Creating the 20xx Results . 117
14.1 Creating a Testbed for 20xx Testing . 117
14.2 Date Simulation . 118
14.3 Playback and Screen Capture - Auto Test Performer 118

14.3.1 Starting the CICS Session . 118
14.3.2 Using Auto Test Performer to Enter Transactions 119
14.3.3 Ending the CICS Session . 120
14.3.4 Viewing the Log File . 120

14.4 Creating a 20xx Report . 120
14.5 Returning the Date to Today . 121

Chapter 15. Comparing the 19xx Results with the 20xx Results 123
15.1 Screen Comparisons - Auto Test Performer 123
15.2 Data Comparisons - SuperC . 124
15.3 Report Comparisons - SuperC . 125

Part 3. Appendixes . 127

vi VisualAge 2000 Test Solution

Appendix A. Other Matters to Consider Before You Test 129
A.1 Critical Dates . 129
A.2 Including Dates to Allow for Coverage After Conversion 129
A.3 How Much to Age? . 130

A.3.1 Watch out for Leap Years . 131
A.4 Skipping the 19xx Results . 131
A.5 Stress and Performance Testing . 131

Appendix B. Using WITT Year2000 for Windows 133
B.1 Starting WITT Year2000 for Windows . 133

B.1.1 Creating the Test Project . 133
B.1.2 Creating a Test Unit and Script . 133

B.2 Looking at the Script . 134
B.3 Converting the WITT Year2000 for Windows Script File 135
B.4 Using WITT Year2000 for Windows to Enter Transactions 137
B.5 Screen Comparisons - WITT Year2000 for Windows 138
B.6 Aging the WITT Year2000 for Windows Script File 140

Appendix C. The Slide-Show Demonstrations 143
C.1 Starting the Slide-Show . 143
C.2 Working the Demonstration . 143

Appendix D. A Taste of The Millennium Language Extensions 145
D.1 A COBOL Example . 145

D.1.1 Compiler Directing Statements . 145
D.1.2 Data Division clauses . 146
D.1.3 Procedure Division ′MOVE′ Statements 146

D.2 A PL/I Example . 147
D.2.1 Compiler Directing Statements . 147
D.2.2 Built in Function . 147
D.2.3 Variable Declarations . 147
D.2.4 Variable Assignments . 148

D.3 Report Outputs . 148

Appendix E. Using Debug Tool to Check Code Conversion 149
E.1 Recreating the Distilled Testbed and Converted Testbed 149
E.2 Starting the CICS Job and Opening Files 149
E.3 Running the First Debug Tool Script . 150
E.4 Running the Second Debug Tool Script 151
E.5 Ending the CICS Session . 151
E.6 Log Comparisons - SuperC . 152
E.7 An Explanation of the Debug Tool Scripts 152
E.8 An Explanation of the SuperC Job . 155
E.9 Extending This Example . 155

Appendix F. Establishing a Test Environment 157
F.1 Using a P/390 or R/390 . 157

F.1.1 Setting up a Test Environment . 158
F.1.2 The Advantages of Running Year 2000 Testing on a P/390 or R/390 158
F.1.3 For More Information . 159

F.2 Using Logical Partitions . 159
F.2.1 Isolating an LPAR for Year 2000 Testing 159
F.2.2 Setting the Date on an LPAR for OS/390 161
F.2.3 Setting the Date on an LPAR for VSE/ESA 162

Contents vii

Appendix G. Program Information for Tools Used by VisualAge 2000 Test
Solution . 163

G.1.1 Debug Tool . 163
G.1.2 IBM Application Testing Collection 163
G.1.3 IBM Data Facility Sort . 163
G.1.4 Enhanced SuperC—part of IBM High Level Assembler for MVS &

VM & VSE . 163
G.1.5 IBM VisualAge Test for OS/2 . 163
G.1.6 WITT Year2000 for OS/2 . 164
G.1.7 WITT Year2000 for Windows . 164

Appendix H. Employee Master File Descriptions 165
H.1 The Legacy Employee Master File Record 165
H.2 The Converted Employee Master File Record 165

Appendix I. Files Used In the Tutorials . 167
I.1 OS/390 Files . 167

I.1.1 hlq.VA2000TS.ATC . 167
I.1.2 hlq.VA2000TS.CLIST . 167
I.1.3 hlq.VA2000TS.CNTL . 168
I.1.4 hlq.VA2000TS.COBOL . 168
I.1.5 hlq.VA2000TS.DATA . 169
I.1.6 hlq.VA2000TS.DEBUG . 169
I.1.7 hlq.VA2000TS.LISTING . 169
I.1.8 hlq.VA2000TS.LOAD . 170
I.1.9 hlq.VA2000TS.PLI . 170
I.1.10 VSAM Data Sets . 171
I.1.11 Other OS/390 Data Sets . 171

I.2 VSE Files . 171
I.2.1 *.A . 171
I.2.2 *.C . 172
I.2.3 *.CMD . 172
I.2.4 *.LIST . 172
I.2.5 *.LOG . 173
I.2.6 *.P . 173
I.2.7 *.PHASE . 173
I.2.8 *.PROC . 174
I.2.9 *.Z . 174

I.3 OS/2 . 175
I.4 Windows . 175

Appendix J. Special Notices . 177

Appendix K. Related Publications . 179
K.1 Redbooks on CD-ROMs . 179
K.2 Web Publications . 179

How to Get ITSO Redbooks . 181
How IBM Employees Can Get ITSO Redbooks 181
How Customers Can Get ITSO Redbooks . 182
IBM Redbook Order Form . 183

Glossary . 185

List of Abbreviations . 187

viii VisualAge 2000 Test Solution

Index . 189

ITSO Redbook Evaluation . 191

Contents ix

x VisualAge 2000 Test Solution

Figures

 1. The Testing Process . 4
 2. A Summary of the Testing Process . 6
 3. Nodes and Sub-paths . 38
 4. Nested Nodes and Sub-paths . 38
 5. The Coverage Process . 39
 6. The Distillation Process . 41
 7. Application Testing Collection Primary Option Menu 51
 8. Coverage Assistant and Distillation Assistant Menu 51
 9. Segment of Coverage Assistant Report . 54
10. The Source Audit Assistant Control Panel 56
11. Item Redefinitions in the Source Audit Assistant Report 56
12. Replaced Lines in the Procedure Division, from the Source Audit

Assistant Report . 57
13. Debug Tool Script for Path Coverage . 61
14. Distillation Assistant Key List . 63
15. Lines from the Distillation Key List . 66
16. Debug Tool Script for Distillation . 66
17. Creating the Baseline Results . 69
18. Converting the Distilled Testbed to Produce the Converted Testbed . . 79
19. Using DFSORT to Expand Dates . 80
20. The Legacy Employee Master Record . 81
21. Using IEBGENER to Convert Dates to COMP-3 81
22. The Converted Employee Master Record 82
23. Creating the Post-Fix Results . 85
24. Comparing Baseline and Post-Fix Master Files 89
25. Comparing Baseline and Post-Fix Reports 90
26. Comparing Baseline and Post-Fix Screen Images 90
27. SuperC Summary Output Comparing Distilled and Post-Fix Master Files 92
28. Details from the SuperC Record Comparison 92
29. SuperC Process Statements, Baseline to Post-Fix Data Comparison . . 93
30. SuperC Process Statements, Baseline to Post-Fix Report Comparison . 94
31. Segment of Code in Error in the Converted Program 95
32. The Correct Code . 95
33. SuperC Summary Output for the Re-comparison 101
34. Aging the Converted Testbed to Produce the Aged Testbed 103
35. The Parameters to Control Aging . 104
36. Creating the 19xx Results . 107
37. The CEMT File List for OS/390 . 108
38. The CEMT File List for VSE . 108
39. Comparing Post-Fix and 19xx Master Files 111
40. SuperC Summary Output Comparing Post-Fix and 19xx Master Files . 113
41. The SuperC Details for Henry Stacker 113
42. SuperC Process Statements, Post-Fix to 19xx Data Comparison 114
43. SuperC Process Statements, Post-Fix to 19xx Report Comparison . . . 115
44. Creating the 20xx Results . 117
45. Comparing 19xx and 20xx Master Files 123
46. SuperC Summary Output Comparing 19xx and 20xx Master Files . . . 124
47. SuperC Process Statements, 19xx to 20xx Data Comparison 124
48. SuperC Process Statements, 19xx to 20xx Report Comparison 125
49. Debug Tool Script for COBOL Code Testing, Unconverted Program . . 153
50. Output from Debug Tool Script for COBOL Code Testing 154

 Copyright IBM Corp. 1997, 1998 xi

51. Portion of Debug Tool Script for COBOL Code Testing, Converted
Program . 154

52. SuperC Process Statements, Debug Script Logs 155

xii VisualAge 2000 Test Solution

Tables

 1. ATC Procedures for OS/390 . 167
 2. CLISTs and REXX Procedures for OS/390 167
 3. Job Control Language for OS/390 . 168
 4. COBOL Source for OS/390 . 168
 5. Debug Tool Command Files for OS/390 169
 6. Listings for OS/390 . 169
 7. Load Modules for OS/390 . 170
 8. PL/I Source for OS/390 . 170
 9. VSAM Data Sets for OS/390 . 171
10. Other OS/390 Data Sets . 171
11. CICS File Control Table for VSE . 171
12. COBOL Source for VSE . 172
13. Debug Tool Command Files for VSE . 172
14. Listings for VSE . 172
15. Debug Tool Log Files for VSE . 173
16. PL/I Source Code for VSE . 173
17. Program Phases for VSE . 173
18. REXX Procedures for VSE . 174
19. Batch Jobs for VSE . 174
20. OS/2 Data Sets . 175
21. Windows File . 175

 Copyright IBM Corp. 1997, 1998 xiii

xiv VisualAge 2000 Test Solution

Preface

This redbook, VisualAge 2000 Test Solution: Testing Your Year 2000 Conversion,
demonstrates the VisualAge 2000 Test Solution in action, through a series of
tutorials.

It is for managers or executives who wish to have a clearer understanding of
Year 2000 testing, applications programmers who are involved in testing, and
system programmers who support the applications programmers.

Part 1 sets out the framework of the VisualAge 2000 Test Solution, describes the
tools that are used in the redbook, and describes how to install the sample files.

Part 2 presents the tutorials, where each tutorial works through one of the steps
in the Test Solution. The tutorials provide detailed instructions for using the
nominated tools.

By working through the tutorials, you will have a much clearer understanding of
what is involved in Year 2000 testing.

This edition of the redbook is for OS/390 or VSE users running COBOL or PL/I
programs, and using an OS/2- or Windows NT- or Windows 95-based work
station.

Note that MVS is also supported by the book. MVS users should assume that for
“OS/390” they can read “MVS,” except in product names.

A CD-ROM is provided with the redbook. The CD-ROM contains sample
programs, data, and JCL, to work through the tutorials. As well, the CD-ROM
contains a “slide-show” demonstration, which runs under Windows and
Win-OS/2. The demonstration shows the various tools in action, and is a quick
introduction to the tutorials, or for people who do not have access to a particular
tool.

The tools used extensively in the tutorials of this redbook are:

• Enhanced SuperC
• Auto Test Performer (from WITT Year2000 for OS/2 or from VisualAge for

COBOL, Test for OS/2) or WITT Year2000 for Windows
• DFSORT

The following tools are used in one tutorial, or are discussed in a tutorial:

• VisualAge for COBOL, Test for OS/2, COBOL Tester
• IBM Application Testing Collection, Coverage Assistant
• IBM Application Testing Collection, Distillation Assistant
• IBM Application Testing Collection, Source Audit Assistant

Debug Tool is used in three tutorials.

 Copyright IBM Corp. 1997, 1998 xv

What Is Special About Year 2000 Testing
Year 2000 testing is different from other testing. Here are some of the
differences:

• The Year 2000 has a deadline. This deadline is fixed and firm. You cannot
push it out a few days. If your applications are not working by 2000, the
outcome could be disastrous.

• With Year 2000 conversions, you are not trying to change anything. You are
trying to make sure that things stay the same.

• When you test, you are testing two different situations. One is that your
applications are able to handle dates beyond 1999. The other is that your
applications are able to run beyond 2000. You have to test both of these
situations.

Your IT organization already knows about building testbeds, change control,
parallel running, regression testing, and putting changes into production. All of
these skills are used in Year 2000 testing. But your IT organization also needs to
understand how to test your Year 2000 conversion properly. When the calendar
ticks over to 2000, you do not have time for major bug fixing. You only get one
chance to get your Year 2000 conversion right.

This redbook will help you along the way.

Introducing VisualAge 2000 Test Solution
This redbook is part of VisualAge 2000 Test Solution.

VisualAge 2000 Test Solution is IBM′s comprehensive Year 2000 test process,
which is designed to facilitate Year 2000 testing, which is fundamentally different
from traditional testing.

This redbook does not propound a revolutionary method of testing. Rather, it
extends, in a practical way, the test process outlined in VisualAge 2000:
Methodology and Tools Implementation, available from
http://www.software.ibm.com/ad/va2000/y2k/.

This redbook is a set of related tutorials. Each tutorial is one step in the
complete process of testing Year 2000 changes. The complete process builds a
prototype, and establishes that it works.

The framework of the test process set out in the Internet article suggests
appropriate tools for each step. However, some steps are not explicitly spelled
out. For example, what tool do you use to convert a distilled testbed? And what
tool do you use to age a converted testbed?

This redbook extends the test process by testing it. And along the way, it
provides extra tools or sets of procedures which fill the gaps. By the end of the
redbook, the example application has been successfully tested for Year 2000
changes.

The purpose of this redbook is not to set down the only way to test Year 2000
fixes. Rather, it is to suggest a sound framework for testing, and to demonstrate
tools that can fill the framework.

xvi VisualAge 2000 Test Solution

The problems that were encountered while the redbook was being developed
are listed in Appendix A, “Other Matters to Consider Before You Test” on
page 129. If you think that Year 2000 testing poses no challenges, have a read.

The tutorials show in detail the ways in which the tools and procedures work.
Your challenge is to take these tools and procedures, and adapt them to the
needs of your particular environment and applications. By doing so, you can
hopefully turn our narrow track into a six lane highway.

Start Thinking About Testing Today
Traditionally, testing comes last. After you have identified the problem, and
planned how to deal with it, and coded the changes, you finally get around (if
you have the time) to testing the changes.

To make Year 2000 testing successful, you must start thinking about it
immediately. The only way to successfully develop test data is to have an
intimate knowledge of your system. Here are some examples:

• After you have converted your application, is a particular date held in an
expanded or windowed format? If you do not know the answer, you cannot
develop an appropriate test regime for the date. And the best time to find
this out is when you are identifying code that needs change, and planning
what sort of changes to make.

• There are a set of dates that in particular need thorough testing. These
include 31 December 1999, 1 January 2000, 28 February 2000, 29 February
2000, 1 March 2000. For your organization, there are sure to be more. If you
are aware of these high-profile dates when you are coding, then you build
your code to make sure it handles these dates correctly. This is much better
than finding out when you test that these dates are not handled correctly.
The whole point of testing is to find problems, but you want to find as few
problems as possible.

• When you age your data for testing, should you age it by a few years, or by
28 years? Unless you have an intimate understanding of your applications,
you will not know the answer to this question. If you learn the answer to this
question while you are identifying problems, then you can start to plan for
proper testing. And you need to know the answer early, because it is
possible that the answer is a few years, ten years and 28 years—so you need
to be ready to age data not once, but many times.

From a distance, Year 2000 testing may look straight-forward. Our experience, in
developing this set of tutorials, has been that thorough Year 2000 testing is
tedious, repetitious, and full of challenges. The sooner you start thinking about
testing, the greater your chance of actually getting everything finished before
January 1, 2000.

Before You Begin Testing
If you have done no previous reading about Year 2000 fixes, you will find it useful
to read about the steps that come before testing, bearing in mind the previous
comments that testing begins now.

The steps are to:

Preface xvii

• Inventory your software and hardware portfolio.

• Identify Year 2000 exposure.

• Determine what date changing technique or techniques you are going to use
to fix Year 2000 problems.

• Apply the techniques to convert your code and data.

This redbook assumes that you have an understanding of these previous steps,
and provides no guidance on these steps.

There are many sources available to provide this sort of information, in
particular:

• The document VisualAge 2000: Methodology and Tools Implementation,
available from http://www.software.ibm.com/ad/va2000/y2k/, which as well as
outlining the test methodology deals with the prior steps.

• The Year 2000 and 2-Digit Dates: A Guide for Planning and Implementation
available from http://www.software.ibm.com/year2000/resource.html.

Who Should Read This Book
This book is for the following people:

The manager or executive who should focus on Chapter 1, “An Outline of the
Testing Process” on page 3, which provides an outline of the whole
testing process. Your system programmers and applications
programmers worry about the fine details of the testing. (You may
need to consult with these people to find out how long the process
can be expected to take, and what tools they want to use.)

The system programmer who should find Chapter 2, “The Tools Used by
VisualAge 2000 Test Solution” on page 9, and Chapter 3, “Installation
and Customization” on page 19, of most interest.

Chapter 2, “The Tools Used by VisualAge 2000 Test Solution” on
page 9, lists the tools that are used in the VisualAge 2000 Test
Solution testing process. As well, the chapter points you to the places
in the documentation of the tools that tells you how to install the tools
onto your test computer.

Chapter 3, “Installation and Customization” on page 19, provides
explicit instructions for copying sample files from the provided
CD-ROM to host and work station, and for customizing the host files.
This chapter also lists the setup steps needed before you can run the
tutorials.

The applications programmer who is the prime user of the tutorials, which start
at Chapter 4, “Introducing The Tutorials” on page 35. This chapter
introduces the tutorials, and the following tutorial chapters work
through the testing process in detail. For each process, the tutorial
sets out the aim of the process, the input to the process and the
output of the process. It then explains the process, and breaks it up
into the individual tasks and steps needed with the recommended
tool.

xviii VisualAge 2000 Test Solution

The Team That Wrote This Redbook
This redbook was produced by a team based at the Australian Programming
Centre.

Neil Bloomfield has 15 years of experience as an applications programmer,
working on a wide variety of commercial systems, and ten years of experience in
Information Development, writing software user guides and on-line help, and
testing interactive systems.

Merrill Bani has 21 years experience as an applications developer, working on
the VSE and MVS platforms. She has designed and implemented
commercial-based systems for a variety of companies ranging from large
cooperatives to banks.

Beth Flint edited this redbook. Beth is an Advisory Programmer in IBM USA with
20 years programming experience in the fields of operating systems, utility
programs, and compilers. Currently, she is the web master for the IBM Year 2000
Technical Support Center web site. In life prior to IBM, she taught Computer
Science at North Carolina State University.

This Redbook was commissioned by Tom Dunham . Tom is Program Director for
the IBM Year 2000 Technical Support Centers and Manager of IBM VisualAge
Services for Application Development. He has been involved with the
development and delivery of a wide number of language products and solutions
from IBM′s Santa Teresa Laboratory for 12 years.

Valuable support for this project was provided by experts from the Australian
Programming Centre.

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found at the back of this book to the fax number
shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

Preface xix

xx VisualAge 2000 Test Solution

Part 1. Preparing for the Test Tutorials

 Copyright IBM Corp. 1997, 1998 1

2 VisualAge 2000 Test Solution

Chapter 1. An Outline of the Testing Process

This redbook demonstrates a process that you can apply to your Year 2000
testing. In addition to describing the concepts and structure of the process, this
redbook provides instructions for using particular tools. Where possible, these
instructions are presented as detailed, step-by-step procedures that use sample
files supplied on the CD-ROM.

1.1 Previous Steps in the Year 2000 Conversion
The testing process is the final stage of a Year 2000 conversion.

The other stages in a Year 2000 conversion are:

• Developing an inventory and assessing Year 2000 impact

• Analyzing code and data, and planning for implementation

• Modifying code—finding and fixing

• Modifying data

Of course, while you are working through these four steps, you need to be aware
of what is required in testing. In fact, you must start preparing for testing before
you start modifying code and data. If you do not, testing will become more
difficult because you will not have a sensible pre-change benchmark for
comparison.

1.2 The Testing Process
The overall testing process is displayed in Figure 1 on page 4.

This redbook is basically concerned with the process of validating your Year
2000 changes. The focus is very much on making sure that you haven′ t
introduced any bugs into your code, and this is what is shown in the figure. The
final steps of testing, performance and acceptance testing, are mentioned only in
passing in this redbook. You should be able to use or adapt your standard
performance and acceptance testing to Year 2000 testing.

A “testbed” is a set of master files (or databases) and the transactions that are
applied to the master files to update them. The updated master files and any
reports that are produced constitute the “results.”

 Copyright IBM Corp. 1997, 1998 3

Data Code Result

Original ───────� Original code
testbed (running ″today″)
│
│(Coverage Assistant)
│(Distillation Assistant)
│(Source Audit Assistant)
│(COBOL Tester)
│(Debug Tool)
│
�

Distilled ──────� Original code ───────� Baseline results
testbed (running ″today″) 	
│ │(ATP) │
│ Conversion │(WITT Year2000 │Comparison 1
│ utility │ for Windows) │ (ATP)
│(DFSORT) │ │ (WITT Year2000 for Windows)
│(REXX exec) │ │ (SuperC)
� � �

Converted ──────� Converted code ──────� Post-fix results
testbed (running ″today″) 	
│ (ATP) │
│ Aging (WITT Year2000 │Comparison 2
│ utility for Windows) │ (ATP)
│(DFSORT) │ (WITT Year2000 for Windows)
│(REXX exec) │ (SuperC)
� �

Aged ───────────� Converted code ──────� 19xx results
testbed (running ″today″) 	

(ATP) │
(WITT Year2000 │Comparison 3
for Windows) │ (ATP)

│ (WITT Year2000 for Windows)
│ (SuperC)
�

Aged ───────────� Converted code ──────� 20xx results
testbed (running ″20xx″)

(ATP)
(WITT Year2000
for Windows)

Figure 1. The Testing Process

The first column shows how the data changes over the period of testing. The first
set of data is the original testbed. As a result of coverage and distillation, this is
transformed to the distilled testbed. The distilled testbed is converted to take
into account whatever data structure changes are applied for Year 2000
conversion. At this stage, the testbed holds only 19xx dates. The final step for the
data is to age dates, so that some dates fall into 20xx. This aged testbed is used
to produce two sets of results.

The second column shows the progress with code and the test environment. The
first set of code is the original (current) code, running “today” (with a 19xx
system clock date). This code is used twice, to distill the data, and to provide the
baseline results. The code is then converted, to account for Year 2000 changes.
The converted code is used three times, twice “today” with different input data,
and finally at some 20xx system clock date, using data that includes 20xx dates.

4 VisualAge 2000 Test Solution

The third column shows the results. Each set of results should vary from the
previous set in a predictable way. The whole point of testing is to try and find
variations that are not predicted.

The data in the results can be described, so that the comparison tool is able to
take into account the known, predicted, differences. The comparison tool rejects
a comparison as a mismatch only if the difference has not been described.

Comprehensive testing has ten steps:

Step 1. Developing Path Coverage and Distilling the Testbed
Build a testbed that exercises the maximum amount of code, but
contains no superfluous data. This testbed is used at least four times
during Year 2000 testing, so it makes sense to keep it as small as
possible.

Step 2. Creating the Baseline Results
Process the original testbed through the legacy code, to produce
updated master files, reports, and screen images.

Step 3. Building the Converted Testbed
Apply conversion processes to the distilled testbed. The conversion
processes change dates, so that the dates are formatted in the
manner that the converted programs expect. Different conversion
techniques are applied to the master files and the transactions. The
outcome after conversion is the converted testbed.

Step 4. Creating the Post-Fix Results
Process the converted testbed through the converted code, to
produce converted master files, reports, and screen images.

Step 5. Comparing the Baseline with the Post-Fix Results
Compare the baseline results with the post-fix results. All matches
should be exact, after accounting for conversion. If a match is not
exact, then the converted code may be in error, though the error
might also be in the conversion or the comparison.

Step 6. Building the Aged Testbed
Apply aging techniques to the converted testbed, to produce an aged
testbed. The information in this testbed is the same as the converted
testbed, except all dates are “older.” For example, a date in 1997
might move to 2005.

Step 7. Creating the 19xx Results
Process the aged testbed through the converted code, to produce
aged master files, reports, and screen images.

Step 8. Comparing the Post-Fix Results with the 19xx Results
Compare the post-fix results with the 19xx results. All matches should
be exact, after accounting for aging. If a match is not exact, then the
converted code may be unable to correctly process dates that are
beyond 1999, though the error may arise from aging techniques or be
in the comparison.

Step 9. Creating the 20xx Results
Process the aged testbed through the converted code running after
1999, to produce updated aged master files, reports, and screen
images. 19xx results and 20xx results are produced from the same
testbed. The only difference is the system clock date.

Chapter 1. An Outline of the Testing Process 5

Step 10. Comparing the 19xx Results with the 20xx Results
Compare the 19xx results with the 20xx results. All matches should be
exact. If a match is not exact, then the converted code may be
unable to process correctly when it is run after 1999.

Figure 2 provides a summary of testing, and shows how each new set of results
is the result of one more factor being changed from “today” to Year 2000, 20xx,
readiness. “Time” in this chart represents the system clock date.

┌──────────┬─────────┬─────────┬─────────┐
│ Results │ Code │ Dates │ Time │
├──────────┼─────────┼─────────┼─────────┤
│ Baseline │ Today │ Today │ Today │
├──────────┼─────────┼─────────┼─────────┤
│ Post-fix │ 20xx │ Today │ Today │
├──────────┼─────────┼─────────┼─────────┤
│ 19xx │ 20xx │ 20xx │ Today │
├──────────┼─────────┼─────────┼─────────┤
│ 20xx │ 20xx │ 20xx │ 20xx │
└──────────┴─────────┴─────────┴─────────┘

Figure 2. A Summary of the Testing Process

The testing process may seem complicated and cumbersome, but the summary
shows how only one factor is changed at a time. This means that if a comparison
brings up an unexpected result, you need focus only on the change of one factor.
By using an approach that is methodical and thorough, you should end up saving
time.

1.3 High- and Low-Risk Applications
A high-risk application is an application that, if it were to fail when “00” arrives,
would have catastrophic results—such as putting you out of business or halving
your profit. You must test such applications thoroughly. This means that, in
particular, you make sure that the testbed is built using coverage and distillation.
And you do not leave out any step in the testing process.

A low-risk application is one where failure is inconvenient, but the application
can be put to one side till you get around to fixing it. Although the testing
process is the same, you may not bother to develop a testbed using coverage
and distillation. Instead, you may use whatever you have on hand, without
testing for particular conditions. And you may not even bother to go beyond
comparing baseline and post-fix results, with the thought that you can fix any
problems with the converted programs if and when they arise.

The “best” strategy is to treat every application as a high-risk application.
However, you may simply not have enough time to deal with all applications
equally. In this case, it makes sense to prioritize applications, so that you can
ensure the high-risk applications are ready in time.

1.4 What To Do When Testing Finds a Bug
Imagine that you are comparing baseline results with post-fix results. They do
not match. You have found a bug in the code! Well, maybe you have and maybe
you haven′ t.

6 VisualAge 2000 Test Solution

While the tutorials were being developed, the comparisons failed. Investigation
found three different problems:

• The conversion utility introduced spurious characters into the master file.

• The window parameter for the conversion utility was set incorrectly.

• The converted program was incorrect.

One of these problems has been left in the tutorials, to demonstrate the “restart”
process.

An error in a conversion routine must be attended to, because at some stage
production files will be converted, and errors must not be introduced into
production files. An error in an aging utility is not of great concern, because
production data is not aged through an aging utility. It just grows old “naturally.”

So when testing finds a bug, keep an open mind, and look not just at the
converted code, but also at the other tools that support the testing process.

Chapter 1. An Outline of the Testing Process 7

8 VisualAge 2000 Test Solution

Chapter 2. The Tools Used by VisualAge 2000 Test Solution

This chapter briefly describes tools that are part of the VisualAge 2000 Test
Solution. The chapter also suggests where you can find information about
installing and using each tool.

For information about ordering the tools, see Appendix G, “Program Information
for Tools Used by VisualAge 2000 Test Solution” on page 163.

2.1 Auto Test Performer
Auto Test Performer (ATP) is a component of WITT Year2000 for OS/2 and of
VisualAge COBOL, Test for OS/2. It runs on the OS/2 desktop.

ATP is a record, replay, and compare tool for automated testing of client
applications. You can use ATP to test interactive applications that have an OS/2,
a 3270, or a 5250 user interface. ATP does not support DOS or WIN-OS/2
applications.

The equivalent Windows 95 and Windows NT product is WITT Year2000 for
Windows (see 2.10, “WITT Year2000 for Windows” on page 17).

ATP can create a script by recording keystrokes and mouse actions as you use
the application. At a later stage, you can replay the script with ATP. This means
that ATP is effectively typing the keys and controlling the mouse. The big
advantage of this approach is that it provides identical input to the application
every time, which is critical for accurate regression testing.

ATP also captures screens, and provides a means of comparing equivalent
screens from two different processing runs.

If screens are changed structurally as part of the Year 2000 conversion, the
screen comparison will always fail. An example of a structural change is adding
the century in front of the year in a date (for example, “970318” becomes
“19970318”). Looking at many screens to find differences, and make sure that
the differences are OK, is a tiring and difficult process. Masking areas of a
screen to avoid comparing these areas makes the comparisons meaningless.

Thus, the preferred process is to use ATP to capture screens, then use
Enhanced SuperC to compare the screens. This works provided that the screens
hold only text information. The advantage of using Enhanced SuperC is that it
can be configured to take into account structural differences when doing the
comparison.

2.1.1 Hardware Requirements
• Processor: i486 66MHz minimum (i486 100MHz or later recommended)
• Display: VGA minimum (SVGA recommended)
• RAM:

− Base Package - 16MB minimum, 24MB recommended
− Full Package - 24MB minimum, 32MB recommended

• Disk Space:
− 30MB for Base Package (excluding prerequisite software)
− 50MB for Full Package (excluding prerequisite software)

 Copyright IBM Corp. 1997, 1998 9

2.1.2 Software Requirements
• OS/2 Warp Version 3.0 or later
• To use Auto Test Performer′s 3270/5250 capability, at least one of the

following:
− Communications Manager/2 Version 1.11
− Personal Communications AS/400 and 3270 for OS/2 Version 4.1
− Personal Communications 3270 for OS/2 Version 4.1 (3270 only)
− Personal Communications AS/400 for OS/2 Version 4.1 (5250 only)

2.1.3 Installation and Usage Hints
If you want to use ATP with OS/2 Warp Version 4.0, you must install ATP Version
1.10 or later. VisualAge Test Version 1.0 contains ATP Version 1.01, for which you
can obtain an upgrade to ATP Version 1.11 from:

ftp://ftp.software.ibm.com/ps/products/visualagetest/fixes/atp/atp111.zip

or (internally to IBM)

http://cuvatest.yamato.ibm.com/atp111/index.html

For online information about ATP, double-click the Auto Test Performer User′s
Guide in the VisualAge Test Information group within the VisualAge Test group.

2.2 COBOL Tester
COBOL Tester is a component of VisualAge Test for OS/2. It runs on the OS/2
desktop.

You can use COBOL Tester to perform the initial testing of new and changed
code in a program module written in a language compatible with COBOL/370.
COBOL Tester does not yet support testing of features introduced in COBOL for
MVS & VM or COBOL for OS/390 & VM, such as object-oriented features.

Without your preparing special test drivers for the module, COBOL Tester assists
you in defining the input values and expected output values of data, running the
module, verifying the actual output values of data, and assuring adequate path
coverage.

COBOL Tester allows you to interactively increase the path coverage of a
program. To increase the path coverage, you must provide input values. After
you have achieved 100% coverage, the input values constitute a distilled data
set.

COBOL Tester can compare calculated output values with expected output
values for the given input values. This provides a variation of regression testing.

2.2.1 Hardware Requirements
• Processor: i486 DX2 66MHz minimum (i486 100MHz or higher

 recommended)
• Display: VGA minimum (SVGA recommended)
• RAM: 24MB minimum, (32MB recommended)
• Disk Space: 50MB for Full Package (excluding prerequisite software)

10 VisualAge 2000 Test Solution

2.2.2 Software Requirements
• OS/2 Warp Version 3.0 or later
• VisualAge for COBOL for OS/2 Version 1 Release 1 or later
• IBM WorkFrame (to use COBOL Tester with IBM WorkFrame)

If you use VisualAge for COBOL for OS/2 Version 1 Release 1, you require IBM
WorkFrame Version 3 if you want to use COBOL Tester with WorkFrame. Later
versions of VisualAge for COBOL for OS/2 contain WorkFrame.

VisualAge for COBOL for OS/2 Version 2.1 requires OS/2 Warp Version 4.0 or
later.

2.2.3 Installation and Usage Hints
If you want to use COBOL Tester with VisualAge for COBOL, Version 2.0, install
the fixpack ct1001, available from the ftp site:

ftp://ftp.software.ibm.com/ps/products/visualagetest/fixes/cobtest

For online information about COBOL Tester, double-click the COBOL Tester
User′s Guide in the VisualAge Test Information group within the VisualAge Test
group.

2.3 Coverage Assistant
Coverage Assistant is a member of the IBM Application Testing Collection (ATC).

Coverage Assistant displays code coverage for application programs that are
written in COBOL or PL/I and compiled by any of these compilers:

• IBM COBOL for MVS & VM Version 1 Release 2 Modification 0
• IBM VS COBOL II Version 1 Release 4 Modification 0
• IBM OS/VS COBOL Version 1 Release 2 Modification 4
• IBM PL/I for MVS & VM Version 1 Release 1 Modification 1
• IBM OS PL/I Optimizing Compiler Version 2 Release 3 Modification 0
• IBM PL/I Optimizing Compiler Version 1 Release 5 Modification 1

Coverage Assistant coverage reports provide the percentage of lines executed.
The reports list unexecuted code segments or conditional branches that did not
execute in both directions.

The program listing displays symbols showing whether an instruction was
executed or how a conditional branch instruction was executed.

Coverage Assistant reports on an entire program or particular segments of code.
This makes it possible to focus on code that handles dates.

Running Coverage Assistant requires setup, execution and report steps.

An ISPF panel interface provides the means to create JCL to run the Coverage
Assistant steps.

During the setup steps, Coverage Assistant analyzes assembler statements in
the compiler output listings to determine where to place breakpoints in copies of
the object modules to be examined, and inserts the breakpoints.

Chapter 2. The Tools Used by VisualAge 2000 Test Solution 11

2.3.1 Hardware Requirements
OS/390 system resource requirements for Coverage Assistant are detailed in
“Resources Needed by Coverage Assistant and Distillation Assistant” in IBM
Application Testing Collection for MVS Version 1 Release 2 User′s Guide. The
OS/390 system disk space and storage space required are affected by the size of
the object module, the number of breakpoints and the number and size of the
report listings.

2.3.2 Software Requirements
• OS/390
• ISPF
• Language Environment for MVS and VM Version 1.5 (or later) runtime library

2.3.3 Installation and Usage Hints
To use Coverage Assistant, you must install the Application Testing Collection.
This involves performing a system installation for each OS/390 system, and a
user installation for each user.

Refer to “Installation” in IBM Application Testing Collection for MVS Version 1
Release 2 User′s Guide for system installation directions.

Refer to “Installation” in IBM Application Testing Collection for MVS Version 1
Release 2 User′s Guide for user installation directions.

It is recommended that you test the installation using the sample programs and
their JCL, as appropriate, depending on the versions of compiler you use. The
sample programs and their JCL are shipped with the tool.

2.4 Debug Tool
Debug Tool is a general-purpose debug tool that is available as a part of the
following IBM COBOL C, C++, and PL/I compiler products for host systems:

• IBM COBOL for OS/390 & VM
• IBM COBOL for MVS & VM
• IBM C/C++ for MVS & VM
• OS/390 C/C++
• IBM PL/I for MVS & VM
• IBM COBOL for VSE/ESA
• IBM C for VSE/ESA
• IBM PL/I for VSE/ESA

Debug Tool is included also in the Cooperative Development Environment/370
(CODE/370) for the older languages:

• IBM SAA AD/Cycle C/370
• IBM SAA AD/Cycle COBOL/370
• IBM SAA AD/Cycle PL/I for MVS & VM
• IBM VS COBOL II
• IBM OS PL/I

Debug Tool is applicable for application programs that are written in COBOL,
PL/I, or C/C++, and compiled by any of the above compilers.

12 VisualAge 2000 Test Solution

Debug Tool runs on the host, but under OS/390 it can be run from a workstation
using the remote debug facility. You can use Debug Tool interactively or in
batch. You can record a debug session in a log file, which enables you to replay
the session.

You can use Debug Tool to create and execute test scripts and to monitor
program variables and modified lines of code.

Debug Tool allows you to set breakpoints in code, and to display the values of
selected variables at each breakpoint. You can single-step through a program,
following the program logic.

You can use Debug Tool to capture test cases for program validation. You can
use the frequency count of Debug Tool to check the coverage of a program.

And you can use its general features to debug programs that are failing to
perform to expectations.

Year 2000 scripts for Debug Tool are available from:

http://www.software.ibm.com/year2000/tools19.html

The Debug Tool script files show code examples that use date expansion,
compression, and fixed and sliding windows. Input scripts for Debug Tool can be
used by programmers and testers to help validate that Year 2000 conversion
techniques have been properly implemented.

2.4.1 Hardware Requirements
Debug Tool runs on any processor supported by the operating systems listed in
Software Requirements below.

2.4.2 Software Requirements
Debug Tool requires one of the following operating systems:

• MVS
• VM
• OS/390
• VSE/ESA

2.4.3 Installation and Usage
For installation directions, refer to the Installation and Customization Guide for
Debug Tool for your operating system. For usage instructions, refer to the User′s
Guide and Reference for Debug Tool for your operating system.

2.5 Distillation Assistant
Distillation Assistant is a member of the IBM Application Testing Collection
(ATC).

Distillation Assistant supports the distillation of QSAM or VSAM input data sets
for applications compiled by the following IBM compilers:

• IBM COBOL for MVS & VM Version 1 Release 2 Modification 0
• IBM VS COBOL II Version 1 Release 4 Modification 0
• IBM OS/VS COBOL Version 1 Release 2 Modification 4

Chapter 2. The Tools Used by VisualAge 2000 Test Solution 13

• IBM PL/I for MVS & VM Version 1 Release 1 Modification 1
• IBM OS PL/I Optimizing Compiler Version 2 Release 3 Modification 0
• IBM PL/I Optimizing Compiler Version 1 Release 5 Modification 1

Distillation is the process of reducing an input data set to a minimum size,
without reducing coverage. Using a distilled data set may greatly reduce testing
time.

While a program under test is running, the Distillation Assistant monitor records
the logical keys (for data from a specified input data set) that cause new
coverage. When you have finished testing, you can use Distillation Assistant to
make a new input data set consisting of the input records that have those logical
keys. The new input data set is the distilled data set.

2.5.1 Hardware Requirements
OS/390 system resource requirements for Distillation Assistant are described in
“Resources Needed by Coverage Assistant and Distillation Assistant” in IBM
Application Testing Collection for MVS Version 1 Release 2 User′s Guide.

2.5.2 Software Requirements
• OS/390
• ISPF

2.5.3 Installation and Usage Hints
To use Distillation Assistant, you must install the Application Testing Collection.
This involves performing a system installation for each OS/390 system, and a
user installation for each user.

Refer to “Installation” in IBM Application Testing Collection for MVS Version 1
Release 2 User′s Guide for system installation directions.

Refer to “Installation” in IBM Application Testing Collection for MVS Version 1
Release 2 User′s Guide for user installation directions.

It is recommended that you test the installation using the sample programs and
their JCL, as appropriate, depending on the versions of compiler you use. The
sample programs and their JCL are shipped with the tool.

2.6 Enhanced SuperC
You can use the Enhanced SuperC tool to compare two files. It is supplied as a
PTF for High Level Assembler for MVS & VM & VSE Toolkit Feature.

For Year 2000 testing, Enhanced SuperC is used to compare files on a record by
record basis. When used in this way, it can compare files, reports and screen
images.

Enhanced SuperC is an extended version of SuperC designed to handle Year
2000 testing. In particular, Enhanced SuperC is able to compare dates stored
with two digits for the year (YY), and dates stored with four digits for the year
(YYYY). Because Enhanced SuperC is able to compensate for differences in the
representation of dates, any differences it finds between files should point to
genuine problems.

14 VisualAge 2000 Test Solution

Enhanced SuperC runs interactively or in batch mode under VM, and in batch
mode under OS/390 and VSE/ESA.

2.6.1 Hardware Requirements
Enhanced SuperC runs on any processor supported by the operating systems
listed below.

2.6.2 Software Requirements
Enhanced SuperC requires one of the following operating systems:

• VM
• OS/390
• VSE/ESA

2.6.3 Installation and Usage
For installation instructions, refer to the High Level Assembler for MVS & VM &
VSE Toolkit Feature Installation and Customization Guide Release 2,
GC26-8711-02. For usage instructions, refer to the High Level Assembler for MVS
& VM & VSE Toolkit Feature User′s Guide Release 2, GC26-8710-03.

2.7 Data Facility Sort
IBM Data Facility Sort (DFSORT) is a program for OS/390 or VSE for sorting,
merging, and copying small to very large amounts of data. You can also use
DFSORT to analyze data and produce reports, and to transform data at the
record, field, and bit level.

Year 2000 features of DFSORT allow you to sort, merge and transform a wide
variety of dates with two-digit years, according to a specified sliding or fixed
century window.

New formats and a run-time option allow you to:

• Set the appropriate century window for your applications
• Order two-digit character, zoned decimal, packed decimal, or decimal year

dates according to the century window
• Transform two-digit character, zoned decimal, packed decimal, or decimal

year dates to four-digit character (or zoned decimal) year dates according to
the century window

• Order parts of packed decimal fields (such as month and day in date fields)
• Transform packed decimal and zoned decimal fields to character fields, and

insert literals such as ′ / ′ in transformed fields

Year 2000 features of DFSORT are provided in DFSORT/VSE Version 3 Release 3,
in PTF UN99635 for DFSORT/VSE Version 3 Release 2, and in PTF UN90139 and
PTF UQ05520 for DFSORT Version 1 Release 13 (for MVS).

2.7.1 Hardware Requirements
DFSORT runs on any processor supported by the operating systems listed in
Software Requirements below.

Chapter 2. The Tools Used by VisualAge 2000 Test Solution 15

2.7.2 Software Requirements
DFSORT requires one of the following operating systems:

• OS/390
• VSE/ESA

2.7.3 Installation and Usage
You can install PTF UQ00530 for DFSORT Version 1 Release 13 to simplify the
installation of DFSORT under OS/390. For other installation information for
DFSORT under OS/390, refer to the DFSORT Release 13 Installation and
Customization Guide, SC26-4109.

For usage instruction for DFSORT under OS/390, refer to DFSORT Release 13
Getting Started with DFSORT, SC26-4109.

For instructions for installing DFSORT/VSE, refer to DFSORT/VSE Installation and
Tuning Guide, SC26-7041.

For usage instructions for DFSORT/VSE, refer to DFSORT/VSE Getting Started
with DFSORT/VSE, SC26-7101.

For information about the Year 2000 features of DFSORT (for OS/390 and VSE),
look under the Sort Specific Papers heading of:

http://www.software.ibm.com/year2000/resource.html

2.8 REXX
REXX is used to customize files, before the tutorials run.

If you are running under VSE, and you do not have REXX, you have to customize
the files by hand. REXX is supplied with VSE/ESA Version 2. REXX was an
optional product with VES/ESA 1.4.3.

2.9 Source Audit Assistant
Source Audit Assistant is a member of the IBM Application Testing Collection
(ATC).

Source Audit Assistant compares two levels of source code, usually before and
after modification. Source Audit Assistant currently supports OS/390 and the
following programming languages:

• C/C++
• PL/I
• COBOL

Running Source Audit Assistant is a matter of providing details about the old and
new source files. The Compare report shows which lines are deleted, inserted or
changed. The Focus output report also uses seeds (variable names) to extract
information from the Compare report. The Focus report identifies all specified
variables that did not appear in any New line in the Compare report, and all
lines in the Compare report that did not contain at least one seed.

16 VisualAge 2000 Test Solution

The Compare report provides the vehicle for targeted coverage. Your test
strategy must produce coverage for the lines that have changed.

2.9.1 Hardware Requirements
OS/390 system resource requirements for Source Audit Assistant are described
in “Resources Needed by Source Audit Assistant” in IBM Application Testing
Collection for MVS Version 1 Release 2 User′s Guide.

2.9.2 Software Requirements
• OS/390
• ISPF

2.9.3 Installation and Usage Hints
To use Source Audit Assistant, you must install the Application Testing
Collection. This involves performing a system installation for each OS/390
system, and a user installation for each user.

Refer to “Installation” in IBM Application Testing Collection for MVS Version 1
Release 2 User′s Guide for system installation directions.

Refer to “Installation” in IBM Application Testing Collection for MVS Version 1
Release 2 User′s Guide for user installation directions.

2.10 WITT Year2000 for Windows
WITT Year2000 for Windows is functionally equivalent to ATP (see 2.1, “Auto Test
Performer” on page 9), except that it runs under Windows 95 and Windows NT,
instead of OS/2.

Note that WITT Year2000 for Windows captures only graphical images of screens.
It does not capture character versions, and so the images cannot be compared
using SuperC.

2.10.1 Hardware Requirements
• Processor: i486 100MHz minimum (Pentium 90MHz or higher recommended)
• Display: VGA minimum (SVGA recommended)
• RAM:

− Windows 95 - 24MB minimum
− Windows NT - 32MB minimum

Memory to run testing application is needed in addition to above
requirements.

• Disk Space:
− 30MB (excluding prerequisite software and swap area)

2.10.2 Software Requirements
• Microsoft Windows 95 with Service Pack 1, or Microsoft Windows NT4.0 with

Service Pack 2
• To use 3270/5250 capability, at least one of the following:

− For Windows 95, Personal Communications AS/400 and 3270 for Windows
95, Version 4.1 + CSD2

− For Windows NT, Personal Communications AS/400 and 3270 for
Windows NT, Version 4.1 plus fixes for following APARs:

Chapter 2. The Tools Used by VisualAge 2000 Test Solution 17

- IC16625
- IC16624
- IC17453

• To access the online User′s Guide and Tutorial, an HTML browser such as
Netscape Navigator 3.0 or Internet Explorer 3.0 is needed.

2.10.3 Installation and Usage Hints
The file hcsehlnt.exe, which provides the fixes for the NT APARs listed above, is
available from:

ftp://ps.software.ibm.com/ps/products/pcom/fixes/v4.1x/winnt/pcsehlnt/

For online information about WITT Year2000 for Windows, double-click the User′s
Guide in the IBM WITT Year2000 for Windows group.

18 VisualAge 2000 Test Solution

Chapter 3. Installation and Customization

The files required to run the tutorials in this book are on the CD-ROM provided
with the book.

This chapter tells you how to install these files on your host system and
workstation, and how to customize them to your installation′s requirements.

There are instructions for installing files to a host running under OS/390 and
VSE, and from a workstation running Windows or OS/2. Select the instructions
appropriate for your installation.

The instruction assume that the CD-ROM is in drive e. Change where necessary.

3.1 Prerequisite Software
See documentation provided with the following products for installation and
customization information.

3.1.1 OS/390
The following software was used on the OS/390 system to produce the tutorials:

• Customer Information Control System (CICS), Version 5 Release 1

• Language Environment (LE), Version 1 Release 5

• Debug Tool (DT), Version 1 Release 2

• Enhanced SuperC (High Level Assembler Tool Kit Feature, Version 1 Release
2 + PTF UQ09985)

• DFSORT Version 1 Release 13 + PTF UQ00530

• Interactive System Productivity Facility (ISPF), Version 4 Release 4

It is recommended that your system have these products at these levels, or
later.

3.1.2 VSE
The following software was used on the VSE system to produce the tutorials:

• VSE/ESA, Version 2 Release 2

• Customer Information Control System (CICS), Version 2 Release 3

• Language Environment (LE/VSE) Version 1 Release 4

• Debug Tool (DT/VSE), Version 1 Release 1

• Enhanced SuperC (High Level Assembler Tool Kit feature, Version 1 Release
2 + PTF UQ09948)

• DFSORT/VSE Version 3 Release 3

It is recommended that your system have these products at these levels, or
later.

 Copyright IBM Corp. 1997, 1998 19

3.1.3 Workstation
The following software is required on the workstation to support the tutorials:

• VisualAge Test for OS/2, Version 1 (or later) or

• WITT Year2000 for OS/2, Version 3 (or later) or

• WITT Year2000 for Windows NT and Windows 95, Version 1

The following software is required on the workstation to view this book online:

• Library Reader/2

− Provided on the CD-ROM accompanying this book—see README.TXT

• Adobe Acrobat Reader

− Available for downloading from Adobe Systems:

http://www.adobe.com/prodindex/acrobat/main.html

Host emulation software is also required. The following instructions are based on
using Personal Communications AS/400 and 3270 for OS/2 V4.1 (PC/3270) for
OS/2, or Personal Communications AS/400 and 3270 for Windows V3.1, or an
equivalent.

3.2 Structure of CD-ROM
The CD-ROM has been created in a form which can be read by OS/2 and
Windows. The directory structure is:

README.TXT Supplementary information; please read first.

DEMO Demonstration “slide-show,” that runs under Windows:

ABOUT.DMR Information about the demos

ATP1.DMR Auto Test Performer demo, part 1

ATP2.DMR Auto Test Performer demo, part 2

CICSA.DMR Auto Test Performer demo, part 3

CICSW.DMR WITT Year2000 for Windows demo, part 3

COBT1.DMR COBOL Tester demo

OVER1.DMR Overview of all the tools

OVER2.DMR Overview of the testing process

USING.DMR Instructions on how to use the demos

VA2000T.DMR The main menu

VA2000T.EXE The demonstration player

WITT1.DMR WITT Year2000 for Windows demo, part 1

WITT2.DMR WITT Year2000 for Windows demo, part 2

For instructions on running the demonstration slide-show, see
Appendix C, “The Slide-Show Demonstrations” on page 143.

DOC This book:

SG242230.BOO For BookManager Read

SG242230.PDF For Adobe Acrobat Reader

20 VisualAge 2000 Test Solution

OS390 The data sets for uploading to OS/390:

ATC.PDS Application Testing Collection (ATC) batch jobs
and source code

CLIST.PDS CLISTs and REXX procedures

CNTL.PDS JCL

COBOL.PDS COBOL source of example programs

DATA.PDS Data required by programs or procedures

DEBUG.PDS Debug Tool command scripts

DEPT.DAT Department Master data file

EMP.DAT Employee Master data file

LISTING.PDS Debug Tool listings and ATC report samples

LOAD.PDS Load modules for example programs

PLI.PDS PL/I source of example programs

SENDPDS.BAT Windows BAT file to send PDS files to OS/390
platform

TARSEND.CMD REXX procedure to send PDS files to OS/390
platform

OS2 The data sets required on the workstation:

TARADJST.CMD REXX procedure to convert and age ATP
scripts

TARDTE3.COB COBOL program used as COBOL Tester
example program

READ2 Library Reader/2

VSE The sample JCL, source and phases for uploading to VSE:

VSELOAD1.Z Sample JCL, source, and data members

VSELOAD2.Z Phases

WINDOWS The data set required on a Windows workstation:

TARADJST.TSC LotusScript procedure to convert and age
WITT Year2000 for Windows scripts

3.3 Installing Files on OS/2
If you intend to work through the COBOL Tester tutorial, or if you intend to use
Auto Test Performer to create a script, copy the OS/2 files into directories on
your workstation, using the following commands:

e:
 cd \os2
 d:
 md va
 cd va
 copy e:taradjst.cmd
 md vatest
 cd vatest
 copy e:tardte3.cob

Chapter 3. Installation and Customization 21

This assumes a hard disk drive d.

3.4 Installing Files on Windows 95 or Windows NT
If you intend to use WITT Year2000 for Windows to create a script, copy the
Windows file into a directory on your workstation, using the following commands:

e:
 cd \windows
 d:
 md va
 cd va
 copy e:taradjst.tsc

This assumes a hard disk drive d.

3.5 Loading OS/390 Files
There are many ways of transferring and loading files to OS/390 systems. This
section shows two ways; one from OS/2 and one from Windows. Each way
assumes that you are logged onto TSO at the READY prompt. The examples
assume that you are on TSO session f.

If you prefer to use an alternative method to transfer the files, please do so.

3.5.1 Partitioned Data Sets
Make sure you are logged on to TSO at the READY prompt.

3.5.1.1 Sending from OS/2
 1. On the workstation enter:

 e:
 cd \os390
 tarsend

The message Please enter os390 session id or 999 to exit appears.

 2. Enter the ID of the session (for example f).

The message

Sending file send atc.pds f:atc
Press any key when ready . . .

appears.

 3. Press a key.

The message The file transfer request is being processed. appears.

The number of bytes being transferred is displayed and updated as the file
transfer takes place.

The message File transfer is complete. appears once the transfer is
finished.

This process repeats for the remaining files:

22 VisualAge 2000 Test Solution

• CLIST
• CNTL
• COBOL
• DATA
• DEBUG
• LISTING
• LOAD
• PLI

When all nine files have been sent, the message

 File Transfer Completed

appears.

Go to 3.5.1.3, “Receiving the files in TSO” to receive the files into TSO.

3.5.1.2 Sending from Windows
 1. Open up a command line or a DOS window.

 2. Enter:

 e:
 cd \os390
 sendpds f

where f is the OS/390 session id to send the files to.

This procedure sends nine PDS files.

Go to 3.5.1.3, “Receiving the files in TSO” to receive the files.

3.5.1.3 Receiving the files in TSO
 1. On the TSO command line enter:

 receive inds(clist)

A message such as

 INMR901I Dataset VA2000TS.CLIST from ROSSB on PTHMVS4
 INMR906A Enter restore parameters or ′ DELETE′ or ′ END′ +

appears.

 2. You must now enter parameters to restore the PDS with the name and
attributes that fit your installation′s standards. If your high-level qualifier is
the same as your login ID, press Enter. Otherwise, enter the full PDS. For
example, to restore to a PDS using another chosen high-level qualifier:

dsn(′ hlq.va2000ts.clist′)

For more information on the use of the receive command, in ISPF enter TSO
HELP RECEIVE.

You have now restored the CLISTs. You can now use the TARREC
procedure to receive the other data sets.

 3. On the TSO command line enter:

 altlib act app(clist) dsn(′ hlq.va2000ts.clist′)
 tarrec

(Note altlib includes the clist library in your procedure library
concatenation—see page 25.)

This procedure asks for the high level qualifier.

Chapter 3. Installation and Customization 23

 4. Press Enter if the user ID is the high level qualifier, or enter the high level
qualifier.

The proposed high level qualifier appears.

 5. Enter 1 to accept.

The remaining eight PDS files are restored. The end of each restore is
flagged with File received. The restored files are:

• hlq.VA2000TS.ATC
• hlq.VA2000TS.CLIST
• hlq.VA2000TS.CNTL
• hlq.VA2000TS.COBOL
• hlq.VA2000TS.DATA
• hlq.VA2000TS.DEBUG
• hlq.VA2000TS.LISTING
• hlq.VA2000TS.LOAD
• hlq.VA2000TS.PLI

3.5.2 Sequential Data Sets
Make sure you are still logged on to TSO at the READY prompt.

On the workstation (OS/2 or Windows) enter:

E:
 cd \os390
 send dept.dat f:′ hlq.dept.data′
 send emp.dat f:′ hlq.emp.data′ lrecl(200)

This creates data sets named hlq.dept.data, and hlq.emp.data. These provide
the data for the initial VSAM data sets used by the tutorials.

3.5.3 Customizing Files for OS/390
Every installation has its own standards for data set names, job cards and CICS
transactions.

The TARCNTL procedure applies a base level of customization to jobs that are run
during the tutorials. Before running this procedure, make sure that you know:

• The high level qualifier
• The location of Enhanced SuperC

 1. On the TSO command line enter:

 altlib act app(clist) dsn(′ hlq.va2000ts.clist′)
 tarcntl

The procedure asks for four values.

 2. For the file to be edited, the high level qualifier, and the job name prefix, the
procedure displays the default value which is used if you press Enter. Either
accept the default value by pressing Enter, or enter a different value.

 3. For the Enhanced SuperC Job library and whether COBOL or PL/I, you must
type a value.

 4. If you wish to terminate the procedure, you can enter 999 at any step.

 5. After the details you have entered appear, enter 1 to confirm.

The procedure lists each member as it is customized.

24 VisualAge 2000 Test Solution

The message ALL MEMBERS HAVE BEEN UPDATED indicates that the procedure has
finished.

The partitioned data sets which you installed in 3.5, “Loading OS/390 Files” on
page 22 assume certain things:

• Unchanged second and subsequent data set name qualifiers

• Simple job cards without installation-specific information

• DFSORT in a linklist library (if not, JOBLIB or STEPLIB will need to be added)

• Program names of the form TARMUx

• CICS transactions of the form NBxx (for COBOL programs) or MBxx (for PL/I
programs)

You will need to make changes to these if they do not fit your installation′s
standards.

3.5.4 Initializing for OS/390
Before you can run the tutorials you need to:

• Allocate and initialize the VSAM data sets required

• Allocate the report data sets required

• Define transactions, programs and files to CICS

• Add hlq.VA2000TS.LOAD to the CICS DFHRPL DD statement

Note: SCEECICS and SCEERUN Language Environment libraries also need
to be added if they are not there already.

You may find it convenient to add the hlq.VA2000TS.CLIST to your SYSPROC or
SYSUPROC concatenation in your TSO logon procedure. If you prefer to not do
this, then at the start of each TSO session you should, on the TSO command
line, enter:

 altlib act app(clist) dsn(′ hlq.va2000ts.clist′)

When you use one of these methods, then you can invoke CLISTs and REXX
procedures by entering the member name only, that is rexxname rather than ex
′ hlq.va2000ts.clist(rexxname)′ . The rest of this book assumes the entry of only
the member name.

3.5.4.1 Allocating and Initializing VSAM Data Sets
The initial VSAM data sets for the tutorials are quite small. The Employee
Master file has 13 records (200 bytes each) and the Department Master file has
11 records (80 bytes each).

 1. On the option line, running under ISPF, enter:

 tardvsam

The message Please enter data set name high-level qualifier appears.

 2. Enter your chosen data set name high-level qualifier. .

The procedure then creates VSAM data sets:

hlq.DEPT.MASTER.ONLINE
hlq.EMP.MASTER.START

Chapter 3. Installation and Customization 25

3.5.4.2 Allocating Non-VSAM Data Sets
This step allocates the small sequential data sets to hold reports and log files
generated by, and used in, the tutorials.

 1. On the option line, running under ISPF, enter:

 tardnvsm

The message:

 Current data set name high-level qualifier is: hlq
 Press Enter (with no data) to accept this,
 or enter new high-level qualifier and then press Enter

appears.

 2. Press Enter, or enter a different high-level qualifier.

The procedure then creates sequential data sets:

hlq.TARRPA1.REPORT
hlq.TARRPA2.REPORT
hlq.TARRPA3.REPORT
hlq.TARRPA4.REPORT
hlq.TARMU3.LOG
hlq.TARMU3.LOG2
hlq.TARMU3X.LOG
hlq.PL1MU3.LOG
hlq.PL1MU3X.LOG

3.5.4.3 CICS Definitions
Sample CICS definitions (for programs, files, transactions) are supplied in
hlq.VA2000TS.DATA(CICSDEF); sample JCL to apply these is in
hlq.VA2000TS.CNTL(CICSDEF).

Note: These will need to be tailored to meet your installation′s standards.

3.5.4.4 CICS Startup JCL
The following is an example of the statements that need to be added to the
started procedure for the CICS system running VisualAge 2000 Test Solution:
...
//DFHRPL DD DSN=...
...
// DD DSN=...SCEECICS,DISP=SHR <== LE CICS
// DD DSN=...SCEERUN,DISP=SHR <== LE
// DD DSN=...EQAWV120.SEQAMOD,DISP=SHR <== DEBUG TOOL
// DD DSN=hlq.VA2000TS.LOAD,DISP=SHR <== VA2000TS

Note: This will need to be tailored to meet your installation′s standards.

3.5.5 Setting Up for Debug Tool
Debug Tool script files use compiler listings and log files. These members must
be adjusted, to use the appropriate high level qualifier. The REXX procedure
tardbg does the adjusting. The procedure asks for two items of information: the
name of the PDS that needs to be adjusted, and the high level qualifier pointing
to where the compiler listings and log files are stored. Make sure you know
these two items before you run the procedure.

 1. On the TSO command line, enter:

 tardbg

26 VisualAge 2000 Test Solution

An explanatory message appears. Then the message:

 Optionally enter name of file containing the
 members to be globally edited by this EXEC. Enter 999 to exit at any time.
 Default file = hlq.VA2000TS.DEBUG

appears.

 2. Press Enter to accept the default name, or enter the full name of the file to
be adjusted.

The response:

 Default value used

appears. Then the message:

 Optionally enter high-level qualifier or 999 to exit
 Default hlq = hlq

appears.

 3. Press Enter to accept the default high level qualifier, or enter a different high
level qualifier.

The response:

 Updating members in hlq.VA2000TS.DEBUG
High level qualifier = hlq

appears. Then the confirmatory message appears.

 4. Enter 1 to accept the details.

The list of updated members appears.

The Debug Tool script files are now customized.

3.5.6 Conventions in This Redbook for OS/390
• When the text says “Execute job TARABC,” then you should submit member

TARABC from hlq.VA20000TS.CNTL, where hlq is the high level qualifier you are
using.

• When the text says “Execute Rexx procedure TARABC,” then you should run
REXX procedure TARABC from hlq.VA20000TS.CLIST.

• When the text says “Check the report from the job, by browsing
TARABC.REPORT,” then you should browse the report hlq.TARABC.REPORT,
through ISPF or an equivalent facility.

• When reports are mentioned, prefix their name with hlq.

• The high level qualifier, hlq, takes the value you provide at installation.

3.6 Loading VSE Files
The following steps show how to:

• Upload the files to VSE.

• Process the files to produce individual members in the selected library.

Chapter 3. Installation and Customization 27

3.6.1 Uploading Files from a Windows Platform
 1. Make sure that:

• Windows NT or Windows 95 is up and running.

• A host emulator session is started.

• The host emulator is configured for file transfer (for example, IBM
Personal Communication/3270 for Windows V3.1):

− From the File menu, select API settings . Ensure that the DOS-Mode
EHLLAPI is ON.

− From the Transfer menu, select the transfer type of your host
operating system.

− From the Transfer menu select Setup - Miscellaneous Settings .
Check that the correct PC code page is specified (in most cases the
international code page 850 is satisfactory).

 2. Logon to the VSE/ESA host system to place the session into VSE file transfer
mode.

 3. Select fast path 596 if you have programmer authority (an administrator
would select fast path 386).

This CICS session should be defined as a DFT terminal—the upload does not
work if it is defined as a CUT terminal. If you are unsure, run the INWQ
transaction which indicates what type of terminal it is. If you do not know
how to select a DFT terminal, see your systems programmer.

 4. Open a command-line window.

 5. Enter:

 e:
 cd \vse
 send vseload1.z <S>:vseload1 Z

(file=lib l=<LIB> s=<SUBLIB> binary nocrlf lrecl=80
 send vseload2.z <S>:vseload2 Z

(file=lib l=<LIB> s=<SUBLIB> binary nocrlf lrecl=80

where:

e is the CD-ROM drive.

<S> is the emulator session you are uploading to.

<LIB> is the name of the library where the two uploaded files are to go.

<SUBLIB> is the name of the sublibrary where the two uploaded files are to
go.

For example: To upload two files to host session A into PRD2.PROD enter:

SEND VSELOAD1.Z A:VSELOAD1 Z
(FILE=LIB L=PRD2 S=PROD BINARY NOCRLF LRECL=80

SEND VSELOAD2.Z A:VSELOAD2 Z
(FILE=LIB L=PRD2 S=PROD BINARY NOCRLF LRECL=80

Go to 3.6.3, “Processing Uploaded Files” on page 30 to process these files on
the host.

28 VisualAge 2000 Test Solution

3.6.2 Uploading Files from an OS/2 Platform
 1. Make sure that:

• A host emulator session is started. It must be configured via attachment
IEEE802.2, not TCP/IP.

• The host emulator is configured for file transfer. The following setup
refers to IBM Personal Communications AS/400 and 3270 for OS/2 V4.1
(PC/3270):

− From the File menu, select API settings . Ensure that the DOS-Mode
EHLLAPI is ON.

− From the Transfer menu, select the transfer type of your host
operating system.

− From the Transfer menu, select Setup - Miscellaneous Settings .
Check that the correct PC code page is specified (in most cases the
international code page 850 is satisfactory).

 2. Logon to the VSE/ESA host system to place the session into VSE file transfer
mode.

 3. Select fast path 596 if you have programmer authority (an administrator
would select fast path 386)

This CICS session should be defined as a DFT terminal—the upload will not
work if it is defined as a CUT terminal. If you are unsure, run the INWQ
transaction which will indicate what type of terminal it is. If you do not know
how to select a DFT terminal, see your systems programmer.

 4. Open a command-line window (an OS/2 prompt window).

 5. Enter:

 e:
 cd \vse
 send vseload1.z <S>:vseload1 Z

(file=lib l=<LIB> s=<SUBLIB> binary nocrlf lrecl=80
 send vseload2.z <S>:vseload2 Z

(file=lib l=<LIB> s=<SUBLIB> binary nocrlf lrecl=80

where:

e is the CD-ROM drive.

<S> is the emulator session you are uploading to.

<LIB> is the name of the library where the two uploaded files are to go.

<SUBLIB> is the name of the sublibrary where the two uploaded files are to
go.

For example: To upload two files to host session A into PRD2.PROD enter:

SEND VSELOAD1.Z A:VSELOAD1 Z
(FILE=LIB L=PRD2 S=PROD BINARY NOCRLF LRECL=80

SEND VSELOAD2.Z A:VSELOAD2 Z
(FILE=LIB L=PRD2 S=PROD BINARY NOCRLF LRECL=80

Go to 3.6.3, “Processing Uploaded Files” on page 30 to process these files on
the host.

Chapter 3. Installation and Customization 29

3.6.3 Processing Uploaded Files
Each of the uploaded files must be processed to create the individual members
contained within them. To do this:

 1. Punch VSELOAD1.Z from the library in which it is installed. This can be
achieved by:

a. Librarian PUNCH command from a batch LIBR job. Add the
FORMAT=NOHEADER operand to the PUNCH statement to suppress the
punching of CATALOG and EOD commands. This could be used to place
the file in a CMS environment for editing.

b. Using the ICCF LIBRP macro to place the file in an ICCF library or punch
area for editing.

 2. Edit the file to:

• Add VSE/POWER statements, if required.

• Change the ACCESS statement to point to the required library and
sublibrary.

 3. Submit the job for processing. This will create all the JCL, source and data
members.

 4. Punch VSELOAD2.Z from the library in which it is installed. This can be
achieved by:

a. Librarian PUNCH command from a batch LIBR job. Add the
FORMAT=NOHEADER operand to the PUNCH statement to suppress the
punching of CATALOG and EOD commands. This could be used to place
the file in a CMS environment for editing.

b. Using the ICCF LIBRP macro to place the file in an ICCF library or punch
area for editing.

 5. Edit the file to:

• Add VSE/POWER statements, if required.

• Change the SETPARM statement to point to the required library and
sublibrary.

 6. Submit the job for processing. This wil l l inkedit the phases into the indicated
sublibrary.

3.6.4 Customizing Batch Jobs
The tutorials include the running of batch jobs. These jobs must be customized
to reflect the correct user libraries, disk volumes, and starting track numbers.
Also, you have to specify if you are running COBOL or PL/I.

Member RTARCHG.Z is a sample job stream that customizes the JCL run as part
of the tutorials. This batch job executes two REXX procedures:

TARCHG Uses parameters read via sysipt to update specific batch jobs. User
library, disk volumes and starting track numbers are set up here.

TARCHG2 Updates specific batch jobs to execute either COBOL or PL/I
programs

 1. Punch the member RTARCHG.Z from the installation sublibrary and edit it so
that it reflects how you want the batch jobs set up:

• Replace ′COMMON.VA2000′ userlib on // SETPARM statement.

30 VisualAge 2000 Test Solution

• Update the ′replacement value′ portion of the TARCHG parameters (such
as COMMON.VA2000, SYSWK1, SYSWK2, 3000, 3005).

• Set parameter 2 of TARCHG2 to either COBOL or PL1.

 2. Submit RTARCHG.Z for processing.

Members that are updated are listed. RTARCGG.Z updates members in the
installation sublibrary itself.

 3. Check that all values have been correctly updated.

3.6.5 Initializing for VSE
Before you can run the tutorials you need to:

• Allocate and initialize the VSAM data sets required

• Define transactions, programs and files to CICS

3.6.5.1 Allocating and Initializing VSAM Files
 1. Punch TARDVSAM.Z from the installation sublibrary and submit.

This defines and initializes three files.

The default LE/VSE library is PRD2.SCEEBASE. Change this, if necessary,
before submitting.

3.6.5.2 CICS Definitions
 1. Punch TARCSD.Z from the installation sublibrary and submit.

This job defines transactions and programs for CICS processing.

 2. You need to add five files to your FCT (File Control Table). FCT definitions for
these files are supplied in TARFCT.A. Include this member in your FCT.

 3. If necessary, install the group VA2000, with the command

CEDA I G(VA2000)

3.6.5.3 CICS Startup JCL
You need to add DLBL statements for the five files to your CICS startup JCL.
These are:

// DLBL IJSYSUC,′ VSESP.USER.CATALOG′ , , VSAM
// DLBL EMPMAST,′ VA2000.EMP.MASTER.ONLINE′ , , VSAM
// DLBL EMPMST2,′ VA2000.EMP.MASTER.ONLINE2′ , , VSAM
// DLBL EMPMST3,′ VA2000.EMP.MASTER.ONLINE3′ , , VSAM
// DLBL EMPMST4,′ VA2000.EMP.MASTER.ONLINE4′ , , VSAM
// DLBL DEPMAST,′ VA2000.DEPT.MASTER.ONLINE′ , , VSAM

Multiple versions of the Employee Master file (EMP.MASTER.ONLINE) are created
during the tutorials. This eases the flow through the tutorials.

You should perform a CICS cold start to activate VA2000.

3.6.6 Conventions in This Redbook for VSE
• When the text says “Execute job TARABC,” then you should punch TARABC.Z

from the installation sublibrary, and submit.

• When the text says “Execute Rexx procedure TARABC,” then you should punch
TARABC.Z from the installation sublibrary, and submit.

Chapter 3. Installation and Customization 31

• When the text says “Check the report from the job, by browsing
TARABC.REPORT,” then you should browse the report hlq.TARABC.REPORT.

• When reports are mentioned, prefix their name with hlq.

• The high level qualifier, hlq, takes the value VA2000.

32 VisualAge 2000 Test Solution

Part 2. The Test Tutorials

 Copyright IBM Corp. 1997, 1998 33

34 VisualAge 2000 Test Solution

Chapter 4. Introducing The Tutorials

The following tutorials work through the steps in the testing methodology as
outlined in Figure 1 on page 4.

The tutorials are based on a common application (described later).

4.1 An Outline of the Tutorials
The first tutorial, Chapter 5, “Developing Path Coverage and Distilling the
Testbed” on page 37, is a stand alone tutorial that you can work through at any
time.

The second and subsequent tutorials, from Chapter 6, “Creating the Baseline
Results” on page 69, to Chapter 15, “Comparing the 19xx Results with the 20xx
Results” on page 123, form a series. You must start with the first tutorial in the
series, and work through the tutorials in order. Part of the output of a tutorial is
often used in one or more of the following tutorials.

Backup checkpoints are built into the tutorials so that if a process fails, it is
possible for you to restore from backup, and then continue, without needing to
start the process from the second tutorial.

Each tutorial starts with a summary, followed by a detailed outline of the
procedures followed in the tutorial process. After this introductory material, the
tutorial lists each step in the procedure.

There may be more than one procedure in a tutorial. For example, when Auto
Test Performer is used for screen capture and script creation, the tutorial also
includes instructions on backing up the distilled master file, starting a CICS
session, starting ATP, entering the CICS transactions, and so on.

To work through a procedure, the user should be competent in the standard
applications. For example, the user who enters CICS transactions should know
how to invoke a CICS program, and how to enter information.

The interactive tutorials have a lot of steps. Some of the other tutorials require
merely the submission of a few jobs. However, you may benefit by taking time to
look at the jobs. From them you may learn approaches that help you with your
testing.

Each tutorial assumes that the tools have been installed on the workstation or
host, as required. For an introduction to each tool, and pointers on how to install
them and the example programs, see Chapter 2, “The Tools Used by VisualAge
2000 Test Solution” on page 9.

For script recording and playback, and screen image capture and comparison,
there are two alternatives: Auto Test Performer and WITT Year2000 for Windows.
The following tutorials perform these functions using Auto Test Performer. The
equivalent actions, as carried out using WITT Year2000 for Windows, are
provided in Appendix B, “Using WITT Year2000 for Windows” on page 133.

 Copyright IBM Corp. 1997, 1998 35

4.2 An Outline of the Sample Application
The application around which the tutorials are built is a simple master file
update.

The main file is the Employee Master file. This file holds basic information about
employees:

• Employee name

• Department in which the employee works

• Employee address details

• Dates:

− When the employee joined the organization

− When the employee left the organization (was terminated)

− When the employee was born (birth date)

− When the employee′s security pass expires (expiry date)

This information is maintained through a CICS interactive program.

As well, the system includes three batch programs:

• A report program that lists all employee details.

• A report program that lists in expiry date order the security pass expiry
dates for employees still employed. This particular program does not need to
be converted to handle Year 2000 dates. The required bridging can be
handled by adjusting the JCL.

• A batch program that updates the security pass expiry date.

The application also includes a Department Master file, used for reference and
not updated.

A set of data files is provided to start the process. A job copies the Employee
Master file from a source file, so that the tutorials can be worked through as
often as you want, without needing to reload any files.

This sample application is fairly simple, by design. The intention is to allow you
to focus on the testing steps and procedures, and so understand what is involved
in Year 2000 testing.

The COBOL and PL/I source provided are not required for running the tutorials.
Once again, you may find that the source provides useful techniques to apply to
your applications.

36 VisualAge 2000 Test Solution

Chapter 5. Developing Path Coverage and Distilling the Testbed

The aim of this process is to develop a testbed of transactions and master file
records that tests every sub-path in the program, but contains no superfluous
test transactions.

Input Original program code, original testbed (or cut-down production data)

Output Distilled testbed

You may not have set aside any data specifically for testing. In this case, the
easiest way to create a starting point is to extract data from a production
system. The first step in the testing process refines and expands this data to
overcome its inadequacies as a proper testbed.

An alternative approach may be to start with no data, and use a path coverage
tool to build up a testbed.

The purpose of this process is to create a distilled testbed. A distilled testbed is
a small testbed, where the master files are as small as possible, and the number
of transactions has been reduced to a minimum (commensurate with the
high-risk or low-risk testing strategy that you are adopting).

The reason for producing a distilled testbed is that the testbed and variations of
the testbed are used at least four times during Year 2000 testing. This means
that the testbed should be as small as possible.

For high-risk (critical) applications, you must include test cases to cover every
path in the code, whether the path includes a Year 2000 conversion or not. The
resulting testbed is substantially larger, because of the comprehensive testing
required. If you are running out of time or resources, and so are unable to
develop 100% coverage, you may prefer to develop “targeted coverage” using a
tool such as Source Audit Assistant to focus on the lines of code that are
changed during conversion.

For low-risk applications, you may seek to cover only those paths in the code
that include a Year 2000 conversion. This limits the size of the testbed to what is
practical and necessary. Targeted coverage will identify these paths.

5.1 Paths, Nodes and Sub-paths
To understand path coverage, you must know about paths, nodes and sub-paths.

A path in code is the lines of code that are used to process an individual data
record. Each path is made up of sub-paths and nodes.

A node is a decision point, followed by two or more sub-paths. A particular
record takes a particular sub-path, depending on the values in the record.

A sub-path is the executable code between two nodes. Figure 3 on page 38
shows code containing a node and two sub-paths.

 Copyright IBM Corp. 1997, 1998 37

Node IF MESSAGE = SPACES THEN
Sub-path-1A MOVE DATE-YYMMDD TO TERM-DATE

ELSE
Sub-path-1B MOVE 6 TO WORK-ERROR-CODE
Sub-path-1B SET ERRORS TO TRUE

END-IF

Figure 3. Nodes and Sub-paths

The first sub-path is “Sub-path-1A,” and is one line of code. The second sub-path
is “Sub-path-1B,” and is two lines of code. The only node in the code is the first
line. The “ELSE” and “END-IF” lines are not executable code, and so are not part
of the sub-paths. These lines delimit the sub-paths following the node.

When nodes are nested, they produce further sub-paths (see Figure 4).

Node 1 IF MESSAGE = SPACES THEN
Sub-path-1A MOVE DATE-YYDDMM TO TERM-DATE
Node 11 IF TERM-DATE(1:2) = 00
Sub-path-11A MOVE 1 TO CENTURY-IND

ELSE
Sub-path-11B MOVE 0 TO CENTURY-IND

END-IF
ELSE

Sub-path-1B MOVE 6 TO WORK-ERROR-CODE
Sub-path-1B SET ERRORS TO TRUE

END-IF

Figure 4. Nested Nodes and Sub-paths

There are potentially many different paths within a program. For example, if the
program has ten independent two-way decision points (nodes), then there are
1 024 different paths through the program. A complete test would thus require
over a thousand test transactions. And if the program has 20 two-way nodes,
then the complete test requires more than a million test transactions. As a
program grows in complexity, it becomes impossible to provide complete testing.

However, to cover all the sub-paths, both programs (one with ten nodes, and one
with 20) need only two test transactions, if the data is set up so that each choice
is taken at a node. And even when nested nodes provide more choices, three or
four test transactions may still be enough.

5.2 The Path Coverage Process
Figure 5 on page 39 shows the cyclical nature of the coverage process.

38 VisualAge 2000 Test Solution

┌───────────┐
│ │
│ Original │
│ testbed │
│ │
└─────┬─────┘

�
├�────────────────────────────────┐
� │

┌──────────┴──────────┐ │
│ List path coverage │ │
│ for testbed │ │
└──────────┬──────────┘ │

� │
┌──────────┴──────────┐ │
│ Look for uncovered │ │
│ sub-path or │ │
│ partially executed │ │
│ node │ │
└──────────┬──────────┘ │

� ┌─────────────┐ │
 ┌───────┴───────┐ No │ Add more │ │
 │ Coverage ├──────�┤ data to the ├───┘

│ satisfactory? │ │ testbed │
└───────┬───────┘ └─────────────┘

│ Yes
�

┌─────┴─────┐
│ │
│ Enhanced │
│ testbed │
│ │
└───────────┘

Figure 5. The Coverage Process

Starting with the original testbed, you list the coverage (using the appropriate
tool). You then examine this coverage. If it is satisfactory, the process is finished,
and the testbed is the enhanced testbed.

If the coverage is not satisfactory, then you must add to the testbed. By looking
at the nodes preceding the sub-paths that are not covered, you should be able to
develop test data to cover the sub-paths. After you have added to the testbed,
you then repeat the process.

If you are testing a high-risk application, then the aim is 100% coverage. Note
that you may find that you cannot gain 100% coverage. This may be because the
node is checking for conditions that are very difficult or impossible to force using
normal test data. For example, you may be testing for failure to open a file, when
the file can be opened except for extraordinary conditions. In this case, you can
do nothing but accept that it is not possible to cover the code. Also, you may
also find that code is not covered because it is logically impossible to cover
it—maybe the code is a procedure that is never called. In this case you should
remove the code. Leaving it could later lead to confusion and waste time,
especially if someone puts in effort applying a Year 2000 conversion to it.

If you are testing a low-risk application, the aim is to cover every sub-path that
includes Year 2000 code, and every node that tests a Year 2000 condition. The
coverage may be only 30%, but you may consider this to be satisfactory.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 39

5.2.1 Targeted coverage
In theory, the maximum coverage should be 100%. However, resource
constraints may make this impracticable. You may have the choice of maximum
coverage for some programs and no coverage for others, or some coverage for
every program.

The second choice is the best, if you can make the coverage as significant as
possible. In particular, you want to provide coverage for all of the paths through
code that handle dates, and are being (or have been) converted.

A quick way of identifying this code is to use a tool such as Source Audit
Assistant. Source Audit Assistant is a part of the Application Testing Collection.
It compares two program sources, and reports on lines that have been inserted,
deleted or changed; precisely the lines that need coverage.

Source Audit Assistant is also able to identify date fields that were not part of a
change to the source code. This provides a means of checking that all required
changes have been made.

5.3 The Distillation Process
After you have completed path coverage, you can be confident that your code is
being adequately exercised. However, the resultant testbed might be quite
large.

It is desirable to use the smallest possible testbed, since such a testbed requires
less storage, uses less computer time for processing, generates fewer records
for comparisons, and requires less effort for converting and aging.

The aim is to produce a testbed that includes no redundant records. This
process, called distillation, is shown in Figure 6 on page 41.

40 VisualAge 2000 Test Solution

┌─────────────┐
│ │
│ Enhanced │
│ testbed │
│ │
└──────┬──────┘

│
├�─────────────────────────┐
� │

┌──────┴──────┐ │
 │ Get │ │
 │ data item │ │
 └──────┬──────┘ │

│ │
� │

 ┌──────────┴───────────┐ No │
 │ Does data item ├──┐ │
 │ cover new sub-path? │ │ │
 └──────────┬───────────┘ │ │

│ Yes │ │
� │ │ Yes

 ┌──────────┴───────────┐ � ┌───────┴───────┐ No
 │ Add data item to ├──┴──�┤ Any more ├──┐
│ distilled testbed │ │ data items? │ │
└──────────────────────┘ └───────────────┘ │

�
┌─────┴─────┐
│ │
│ Distilled │
│ testbed │
│ │
└───────────┘

Figure 6. The Distil lation Process

This figure is different to Figure 5 on page 39 in that the decisions are made
within the distillation process. You do not have to make any decisions during
distillation; you just run the distillation utility.

In effect, the distillation utility checks the path coverage after each data item has
been processed, and discards all data items which do not add to the coverage.

The distillation process may, under unusual circumstances, remove data items
that are required for complete coverage. To eliminate this possibility, you may
consider running the distilled testbed through the coverage utility, and adding
any data items needed to ensure that coverage is satisfactory.

If you are doing performance testing, you may wish to develop two testbeds. One
is the distilled version, which uses the smallest number of transactions, for
speed of testing. The other is the performance testing version, which includes a
lot of redundant data, but puts the program under a measurable load.

5.4 Path Coverage and Data Distillation - COBOL Tester
This tutorial shows you how to use COBOL Tester to develop path coverage in a
sample program. VisualAge for COBOL, Test for OS/2, COBOL Tester (COBOL
Tester) works by building up coverage from nothing. Provided each transaction
you add increases the coverage, the final set of transactions is a distilled set of
transactions.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 41

The sample program used in the tutorial is “TARDTE3,” a utility program that
converts a date from one format to another. This program accepts the input date,
the input date format, and the output date format as parameters. If the
parameters are valid, the program returns the date in the requested output
format. If the parameters are not valid, the program returns an error message.

COBOL Tester is appropriate to use on original code. It may not be suitable for
use on converted code, since it does not support testing of items such as
object-oriented features, or Millennium Language Extensions.

5.4.1 Starting COBOL Tester
 1. Double-click the VisualAge Test folder icon.

 2. Double-click the COBOL Tester folder icon.

 3. Double-click the COBOL Tester icon.

The COBOL Tester: Testcase window appears.

5.4.2 Creating a Testcase
A testcase links a COBOL source program with a series of scripts. Each script is
one pass of the program, providing input data, and producing output data. The
output data can be checked against expected output data.

One script is unlikely to cover the entire program. You can create a number of
scripts, so that among them they cover the program.

Before you create scripts, you have to create a testcase.

 1. From the Testcase menu, select New...

The New dialog box appears.

 2. Click File list...

The COBOL Source File List dialog box appears.

 3. Search through the directories and find the TARDTE3.COB program. (If the
files were installed as suggested in the previous section, this file should be
in the vavatest directory.)

 4. Click on TARDTE3.COB to highlight it.

 5. Click OK .

 6. Click New .

The .Untitled - Source Analysis box appears. This shows messages about
COBOL source analysis, logical path analysis, and so on.

 7. When the message “The analysis process is successful” appears, click OK .

5.4.3 Saving the Testcase
The testcase file is not yet saved. Save it as TARDTE3.CTA.

 1. From the Testcase menu, select Save .

The Save as filename dialog box appears.

The default filename of TARDTE3.cta is displayed.

Click Save As .

42 VisualAge 2000 Test Solution

The COBOL Tester window appears. It now has a filename at the top
(D:vavatesttardte3.cta).

5.4.4 Temporarily Suspending the Tutorial
If you want to suspend the tutorial, you can save the testcase, then return to it
(and the tutorial) by opening the testcase and continuing the tutorial. Just select
Testcase and Save before you leave COBOL Tester (which you do by
double-clicking the control box at the top left corner of the COBOL Tester
window).

To re-open the testcase:

 1. Start COBOL Tester.

 2. From the Testcase menu, select Open...

 3. Type in the file name TARDTE3.CTA, or click File list... and browse through
your directories till you find this file.

 4. Click Open .

5.4.5 Creating the First Script
Now that you have created the testcase, you must add scripts to it. Each script
consists of a unique set of input data which is used to generate output data.
Each script covers part of the code of the program, with as few duplications of
the same code as possible:

 1. From the Edit menu, select Create script .

The Script window appears; it displays the Procedure Division of the
TARDTE3 COBOL program.

 2. Browse the Script window.

a. The left side of the window shows line numbers. If a number is greyed,
then the line cannot be executed (it is a node, a delimiter or a comment).

b. The right side of the window shows the COBOL lines, much as you would
see them in a listing.

 c. Between the line numbers and the lines of code there are vertical lines,
with short horizontal lines at each end. These lines are called “nested
brackets.” The nested brackets link nodes and delimiters. The lines
between the ends of a bracket are sub-paths.

For example, if you scroll down to lines 33 (000033) through lines 38, you
will notice that they are joined by the ends of a bracket. Line 33 holds an
IF statement. Line 36 holds an intermediate ELSE statement, and line 38
holds the concluding END-IF statement.

d. Scroll to the top of the file. The four input data items are displayed on the
top four lines. There is a pink box to the right of each input item. The
pink color indicates that the item is not yet defined. The “IN:” tag
indicates that these are input values. Whenever you run a script, you
must provide input values.

e. Scroll downwards. There are four more pink boxes near the end of the
file. The tag “EX:” indicates that these are expected output values. You
do not need to provide expected output values, but if you do, COBOL
Tester is able to compare the expected results with the actual results.

 3. Enter the first input value.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 43

a. Scroll to the top of the program.

b. Double-click the variable name INPUT-DATE in the rounded box.

The Set Data dialog box appears.

Normally, the Data Available box lists all the data items that you have
defined for this data item. The list is empty, because none are yet
defined.

 c. Define a new data item.

1) Click New .

The Edit Data window appears.

This window shows a data item (INPUT-DATE) and its attribute (X(8)),
so that you enter a value that makes sense.

2) Type the value 03/17/98 and press Enter.

Dates are entered in the format “MM/DD/YY.”

The value is displayed beside the data item.

3) From the Data menu, select Save .

The Save As dialog box appears.

Name the data item and its associated value. After the item is
named, you can use it with another script.

4) Enter MM/DD/YY-OK and click Save as .

5) Close the Edit Data box (by double-clicking the control box).

The Set Data box appears. Now MM/DD/YY-OK appears in the list of
Data Available.

d. Assign this data value as input, by clicking < < Input .

e. Close the Set Data window, by clicking Close .

The Script window reappears. Note that the first input value box is blue.
This shows that the variable now has an input value.

 4. Repeat the process to set values for INPUT-FORMAT, OUTPUT-FORMAT, and
MSG.

a. Double-click the variable name INPUT-FORMAT in the rounded box.

b. Click New .

 c. Type the value MM/DD/YY and press Enter. From the Data menu select the
Save option. Save the data to INF-MM/DD/YY. Close the Edit Data window.

d. Click < < Input , to assign this value.

e. Click Next .

f. Repeat the procedure, to create a new value and assign it to
OUTPUT-FORMAT. Assign this the value YYMMDD and the name
OUTF-YYMMDD. Then repeat the procedure, to create a new value and
assign it to MSG. Do not assign it a value, but assign it the name OK.

g. Click Close to close the Set Data window. This returns to the Script
window. All of the input boxes are now blue.

The entry of the script is complete. You now need to save it and run it.

44 VisualAge 2000 Test Solution

5.4.6 Saving the Script
 1. From the Script menu, select Save .

The Save As window appears.

 2. Enter the value SCRIPT-01, and click Save as .

When you come to creating scripts for your programs, you may prefer to give
them descriptive names.

 3. Close the Script window by double-clicking the control box.

The Testcase window appears, and shows one script. To the right of the script
name, the Result column shows Not yet run. It is time to run the script.

5.4.7 Running the Script
 1. Select the script.

 2. From the Selected menu, select Run . (A shortcut is to press the F4 key.)

The Run window appears, and shows messages as the program is compiled,
and the test module is built and run.

 3. When the Script run ended message appears, click Close .

The Testcase window displays the result of running this script. The result is OK,
and the coverage is 41%. The reason that the result is OK is that no output
values were entered. Since there was nothing to compare, COBOL Tester
assumes that no comparisons are wanted, and so the run is marked as
successful.

5.4.8 Checking Coverage
The test run shows 41% coverage. It is possible to look at what is covered by
this script, and to increase the coverage (looking for 100% coverage).

 1. Double-click on the script SCRIPT-01.

The Script window appears.

 2. Look at the line numbers. The numbers for the first nine lines should have a
light gray background. If they do not, from the View menu, select Paths run
by script . The gray background shows that the line has been covered.

 3. Scroll down the code. There is grey shading from lines 1-10, 31, 40, 43-44,
47-48, 54, 58, 60, 77-78, 81-84, 86-89, 92, 95-96.

Before extending the coverage, the tutorial shows what happens if you put in an
expected value.

5.4.9 Setting an Output Value and Running the Script
 1. Scroll to line 81.

 2. Double-click INPUT-DATE in the rounded box.

The Set Data dialog box appears.

 3. Create a new Data Available item. Assign it the value 980318. Remember to
press Enter after you type the value. Assign it the name OUT-YYMMDD. Select
OUT-YYMMDD, and assign it as an expected output, by clicking < < Expected .

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 45

This date has the right format, but the wrong value. It should be 980317, if it
is to match with the input date.

 4. Click Close to close the Set Data window.

The Script window appears.

 5. Press F4, to run the script. (You can run the script from the Script window, or
from the Testcase window.)

 6. Respond to the Run message about the script being modified by clicking Yes .

 7. When the script run ends, click Close .

 8. From the Script menu, select Show report .

The script report appears. The coverage is displayed as 0 %, because the
Result is an Unexpected result.

 9. Click the Result tab.

The results appear.

10. If necessary, widen the window by dragging the right hand side, so that you
can see the text in the Result column.

11. Look under the Result column. The fifth line has a Differ result.

12. Double-click the fifth line (line number 81).

The detailed result for INPUT-DATE appears.

13. Look at the bottom of the window. The expected output is displayed as
980318 and the output is displayed as 980317.

14. Close the Detailed Result and the Report windows.

The Script window reappears.

15. Close the Script window.

The Tester window reappears. The red cross through the script icon
indicates that it has been run, but the result was unexpected.

It is possible to change a data value from the Testcase window, instead of
through a script.

16. From the Testcase menu, select Manage data .

INPUT-DATE is displayed in the Parameter field. This is the parameter that
needs changing. You can access other parameters from this field, by clicking
the down arrow at the right edge of the field—but do not do that now.

17. Double-click OUT-YYMMDD, in the Data Available box.

The Edit Data window appears.

18. Change the value to 980317 and press Enter.

19. Close the Edit Data window by double-clicking the control box.

20. Respond to the Close message by clicking Save .

21. Respond to the Save message by clicking Yes .

22. Close the Manage Data window by double-clicking the control box.

You have now changed the expected output for one data item of the script. In
the Testcase window, the Result has changed to Not yet run, since the
change in data invalidated the previous test run.

23. Run the script.

46 VisualAge 2000 Test Solution

After the script has finished running, return to the Testcase window. Notice
that the red cross has been replaced by a blue √ , indicating that the result
was OK. The coverage is again shown as 41%.

5.4.10 Extending Coverage
You extend coverage by changing the values of the input variables. To identify
suitable new values, search the script for black line numbers that are not yet
backed by grey.

 1. Double-click the script.

The Script window appears.

 2. Look down the script.

Lines 11 and 16 are not covered, but the line numbers are greyed. This
shows that they are nodes, and therefore cannot be covered.

The first line needing coverage is line 12.

 3. Take a blank sheet of paper, and on it jot down INPUT-FORMAT, which is the
input variable, and YY/DD/MM, which is the value for this variable. Skip to line
30.

Lines 12 to 30 are covered by other values of INPUT-FORMAT.

Line 31 is an EVALUATE clause. You are going to set INPUT-FORMAT to
“YY/DD/MM,” so the code bracketed by lines 32 to 38 cannot be covered by
this test script.

 4. The next line that can be covered is line 41, which is covered when
WRK-DTE-YY < “00” OR > “99.” To find out where WRK-DTE-YY comes
from, scroll to lines 8− 1 0 . These lines show that WRK-DTE-YY is derived
from INPUT-DATE.

 5. On the sheet of paper, jot down INPUT-DATE and AA/03/03. This date needs to
be given the format set by INPUT-FORMAT. The leading “AA” should force
the error condition.

 6. Scroll back to line 41.

 7. Look beyond the bracket lines covering line 41. The next line that can be
covered is line 55.

In fact, by placing an error value in the year of INPUT-DATE, this line of code
is covered. Furthermore, the error condition forces a jump in the COBOL
program to TARDATE-END.

For the next script, you have only written down two variables. There is no
need to create a new value for OUTPUT-FORMAT, because no code using
OUTPUT-FORMAT is going to be executed by this script.

To cater for these input variable values, create a new script.

 1. Close the script window.

The Testcase window appears.

 2. From the Edit menu, select Create script .

 3. Assign the new data item called YY/MM/DD-BAD-YY with the value AA/03/03 to
INPUT-DATE.

 4. Assign the new data item called INF-YY/DD/MM with the value YY/DD/MM to
INPUT-FORMAT.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 47

 5. Assign OUTF-YYMMDD to OUTPUT-FORMAT. Make sure you highlight the correct
item before you click < < Input . Assign OK to MSG.

 6. Save the script as SCRIPT-02.

 7. Run the script.

 8. When the script is finished, close it, and look at the testcase window.

The script coverage is 25%, and testcase coverage has increased to 50%.

To increase coverage, you now have to repeat the process, by creating new
scripts. Inspect the path coverage to date, jot down new values for the
INPUT-FORMAT, INPUT-DATE and OUTPUT-FORMAT, then create a script that
uses the new values.

Make sure that when you are looking at the script, you set the coverage to Paths
covered by testcase (set from the View menu).

The following sections suggest values for each variable, and the coverage after
each new script is added.

Script 3

• INPUT-DATE = “ABCDE” name = “YYDDD-BAD”
• INPUT-FORMAT = “YYDDD” name = “INF-YYDDD”
• OUTPUT-FORMAT = existing OUTF-YYMMDD
• MSG = exist ing OK
• Script name = “SCRIPT-03”

Run the script. After it is finished, close it, and check the coverage. The script
coverage is 27% and the testcase coverage is now at 58%.

Script 4

• INPUT-DATE = “930015” name = “YYMMDD-BAD-MM”
• INPUT-FORMAT = “YYMMDD” name = “INF-YYMMDD”
• OUTPUT-FORMAT = existing OUTF-YYMMDD
• MSG = exist ing OK
• Script name = “SCRIPT-04”

Run the script. After it is finished, close, and check the coverage. The script
coverage is 45%, and the testcase coverage is now at 63%. The testcase
coverage is increasing only slowly, but this is because the scripts are testing
error conditions.

Script 5

You can create this script quickly by right-clicking on Script 4 (SCRIPT-04), and
selecting Copy from the menu, then typing in the name of the new script
(SCRIPT-05), and pressing Copy . Then open the new script and edit it to change
just the INPUT-FORMAT.

• INPUT-DATE = existing YYMMDD-BAD-MM
• INPUT-FORMAT = “BBAADD” name = “INF-BAD”
• OUTPUT-FORMAT = existing OUTF-YYMMDD
• MSG = exist ing OK
• Script name = “SCRIPT-05”

48 VisualAge 2000 Test Solution

Run the script. After it is finished, close, and check the coverage. The script
coverage is 21% and the testcase coverage is now at 67%.

Script 6

• INPUT-DATE = “96060” name = “YYDDD-LEAP-YR”
• INPUT-FORMAT = existing INF-YYDDD
• OUTPUT-FORMAT = “YYDDD” name = “OUTF-YYDDD”
• MSG = exist ing OK
• Script name = “SCRIPT-06”

Run the script. After it is finished, close, and check the coverage. The script
coverage is 60% and the testcase coverage has jumped to 92%.

Script 7

• INPUT-DATE = “02/29/97” name = “MM/DD/YY-BAD-DD”
• INPUT-FORMAT = existing INF-MM/DD/YY
• OUTPUT-FORMAT = existing OUTF-YYDDD
• MSG = exist ing OK
• Script name = “SCRIPT-07”

Run the script. After it is finished, close, and check the coverage. The script
coverage is 43%, and the testcase coverage has increased to 94%

Script 8

• INPUT-DATE = “98371” name = “YYDDD-TOO-MANY”
• INPUT-FORMAT = existing INF-YYDDD
• OUTPUT-FORMAT = “MM/DD/YY” name = “OUTF-MM/DD/YY”
• MSG = exist ing OK
• Script name = “SCRIPT-08”

Run the script. After it is finished, close, and check the coverage. The script
coverage is 54%, and the testcase coverage is up to 96%.

Script 9

• INPUT-DATE = “98355” name = “YYDDD-OK”
• INPUT-FORMAT = existing INF-YYDDD
• OUTPUT-FORMAT = existing OUTF-MM/DD/YY
• MSG = exist ing OK
• Script name = “SCRIPT-09”

Run the script. After it is finished, close, and check the coverage. The script
coverage is 54%, and the testcase coverage is up to 98%.

Script 10

• INPUT-DATE = existing YYDDD-OK
• INPUT-FORMAT = existing INF-YYDDD
• OUTPUT-FORMAT = “BBAADD” name = “OUTF-BAD”
• MSG = exist ing OK
• Script name = “SCRIPT-10”

Run the script. After it is finished, close, and check the coverage. The script
coverage is 56%, and the testcase coverage has finally reached 100%.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 49

5.4.11 Completing the Tutorial
This completes the tutorial using COBOL Tester.

You can experiment further, if you wish, to find out more about COBOL Tester ′s
capabilities. In particular, you may wish to add expected output values to the
sample scripts, and run them again. If you wish to test the program thoroughly,
you should do this.

As well, you may need more scripts. Although the sample scripts provide 100%
coverage, they do not exercise the code completely. For example, the PERFORM
UNTIL statement (line 99) is really 12 nodes compressed into one. To test the
code thoroughly, you would want to check it against a date from each month.
Likewise, the check on the number of days in each month (line 40) also needs
checking 12 times, for each month (maybe 13, if you include leap years).

Even though COBOL Tester can make it much easier for you to create test
records, you still need to apply commonsense to what it provides.

You also need to transfer the input values into a proper set of transactions, to
create the distilled testbed. A quick way to list the values for input records is to
run a report. You can do this by selecting all the scripts (from the Testcase
window), and choosing Print report from the Selected menu.

When you finish experimenting, from the Testcase menu choose Save , then close
COBOL Tester and close the associated folders.

The tutorial demonstrated the development of coverage for a legacy program.
COBOL Tester may be unable to develop coverage for converted programs,
because at the moment it is unable to handle Language Environment (LE) calls.

5.5 Introducing Application Testing Collection
The Application Testing Collection (ATC) is a set of tools that focus on path
coverage and distillation. The three tools in ATC are:

• Coverage Assistant

Coverage Assistant measures code coverage in application programs written
in the COBOL and PL/I languages and compiled by specific IBM COBOL and
PL/I compilers.

• Distillation Assistant

Distillation Assistant monitors file reads for a specified file that contains
logical keys and determines which keys increase code coverage. It then
creates a ″distil led″ copy of the input file, containing only the records
containing these keys.

You use the smaller distilled file during program testing to obtain equivalent
code coverage, using less time and resources. Distillation Assistant distills
files for applications written in the COBOL language and compiled by specific
IBM COBOL compilers.

• Source Audit Assistant

Source Audit Assistant compares two levels of source code and places the
results in a comparison report. Source Audit Assistant helps locate
differences, which makes it easy for you to verify if changes are valid, or

50 VisualAge 2000 Test Solution

examine items that may need attention. In particular, using Source Audit
Assistant allows you to develop targeted coverage. Instead of attempting to
develop path coverage for an entire program, you provide data such that the
coverage includes all the lines which Source Audit Assistant has indicated
are different. Final coverage may be less than 100%, but it will be targeted
at the lines that have changed, and thus are most critical in testing the
conversion.

Application Testing Collection supplies interactive screens to make it easy for
you to set up the batch jobs needed to run each process. Here are some
examples:

------------------------ ATC Primary Option Menu V1R1M0 ---------------
Option ===> 1

 0 Defaults Manipulate ATC defaults
 1 CA/DA Coverage and Distillation Assistant
 2 SAA Source Audit Assistant

Enter X to Terminate

Figure 7. Application Testing Collection Primary Option Menu

The Primary Option menu gives you access to all of the tools in Application
Testing Collection, and also gives you access to Application Testing Collection
defaults, which apply to all the tools.

Coverage Assistant and Distillation Assistant share many processes. This is
reflected in the structure of their common menu:

----------------- Coverage and Distillation Assistant -----------------
Option ===>

1 CntlFile Work with the CA/DA Control File
2 Setup Create JCL for Setup
3 StartMon Create JCL to Start the Monitor
4 CA Coverage Reports
5 DA Distillation
6 Monitor Control the CA/DA Monitor

Enter END to Terminate

Figure 8. Coverage Assistant and Distil lation Assistant Menu

5.6 Building Path Coverage with Coverage Assistant
Coverage Assistant provides a series of steps which process a program. The
outcome of this processing is an annotated program listing, showing the path
coverage that arises from the supplied testbed.

Before a program can be tested for coverage, it must first be instrumented by:

• Editing a control file to specify setup information. The control file identifies
compiler listing and object code locations.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 51

• Executing the setup job. This creates control breaks in the object code to
produce a “zapped” object module.

• Linking the object module. This object module is now ready to check for
coverage.

The monitor must be running while the test jobstream is executing, as the
monitor picks up information based on the control breaks and writes it to files
used by Coverage Assistant. The monitor is stopped once the test jobstream
has finished executing.

Coverage Assistant uses the output files created during the monitoring process
to produce its coverage reports and annotated listings. Coverage Assistant
produces output for COBOL or PL/I.

The sample program run through the Coverage Assistant processing is a
program that checks the master file, and updates by one year any SECURITY
CARD EXPIRY date that is expired.

5.6.1 The Coverage Process Step By Step
This section does not include a detailed, step-by-step, tutorial that you can use
to run Coverage Assistant—if you do not have ATC, then you can′ t run a tutorial,
and if you do have ATC, the package already provides a detailed tutorial.

The only difference between developing path coverage as a general testing
technique, and developing path coverage for Year 2000 testing is that when you
are developing path coverage for Year 2000 testing, you may be content with
coverage of all date functions, and not worry about the coverage of other pieces
of code.

For those without Coverage Assistant, the following information outlines the
steps to produce output using Coverage Assistant, plus a sample output.

Each step also shows the sample jobs that have been installed from the CD-ROM
(hlq.VA2000TS.ATC). The COBOL sample is listed first, followed by the PL/I
sample:

 1. Compile the program

CTARMU6X or CPL1MU6X

 2. Run the setup JCL

This JCL puts breakpoints into the compiled object modules—STARMU6X or
SPL1MU6X

 3. Run the link JCL

This JCL links the object modules with the inserted breakpoints—LTARMU6X
or LPL1MU6X

 4. Start the monitor

The monitor handles breakpoint processing when the program is
run—XTARMU6X or XPL1MU6X

 5. Run the program

GTARMU6X or GPL1MU6X

 6. Stop the monitor

52 VisualAge 2000 Test Solution

The monitor is controlled through the ATC online facility

 7. Generate Coverage Assistant reports

RTARMU6X (for report RTARMU6X) or RPL1MU6X (for report RPLMU6X)

 8. Inspect the reports. If necessary, restore the databases, add more data, and
repeat the coverage process, by returning to step 4 on page 52.

5.6.2 A Sample Coverage Assistant Report
The sample Coverage Assistant report is found at
hlq.VA2000TS.LISTING(RTARMU6X) for COBOL, and
hlq.VA2000TS.LISTING(RPL1MU6X) for PL/I.

The first few pages of this report show summary information.

The bulk of the report is the coverage listing. This is a listing of the program,
annotated by symbols indicating the type of coverage. The following segment of
the program, Figure 9 on page 54, shows the main control logic of the program,
with annotations.

The annotations (under column �A�) have the following meanings:

& A conditional branch instruction that has executed both ways

> A conditional branch instruction that has branched but not fallen through

V A conditional branch instruction that has fallen through but not branched

: Non-branch instruction that has executed

¬ Instruction that has not executed

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 53

�A�
000275 200-MAIN-PROCESS.

000276
000277 : READ EMPLOYEE-MASTER-FILE

000278 AT END
000279 : 1 GO TO 200-EXIT
000280 END-READ.
000281
000282 > IF EMPLOYEE-ID = ″999999″ THEN �B�
000283 ¬ 1 GO TO 200-MAIN-PROCESS. �C�
000284
000285 & IF EMPLOYEE-DATE-TERMINATED = ZEROS THEN �D�
000286
000287 : 1 MOVE EMPLOYEE-SECURITY-EXP TO TARDATE-DATE-YYDDD
000288 : 1 MOVE ″YYDDD″ TO TARDATE-INPUT-FORMAT
000289 : 1 MOVE ″YYYYDDD″ TO TARDATE-OUTPUT-FORMAT
000290 : 1 CALL TARDTE3X USING TARDATE-DATE
000291 1 TARDATE-INPUT-FORMAT
000292 1 TARDATE-OUTPUT-FORMAT
000293 1 TARDATE-MESSAGE
000294 : 1 MOVE TARDATE-DATE-YYYYDDD TO WORK-SEC-YYYYDDD
000295
000296 & 1 IF WORK-SEC-YYYYDDD <= WORK-DATE-YYYYDDD THEN
000297
000298 : 2 PERFORM 300-PRINT-REPORT THRU 300-EXIT
000299
000300 1 END-IF
000301
000302 END-IF.
000303
000304 : GO TO 200-MAIN-PROCESS.
000305
000306 200-EXIT.
000307 : EXIT.

Figure 9. Segment of Coverage Assistant Report

For example, line �B� is a conditional branch that has been branched, but not
fallen through—no employee has the ID of “999999.” Consequently line �C� is an
instruction that has never been executed. In contrast, line �D� is a conditional
branch that has been executed both ways, so the following instructions have also
been executed.

Once you have reviewed the coverage report, you may then add more data to
the testbed, and rerun the coverage process (as illustrated in Figure 5 on
page 39).

5.6.3 Further Comments on Coverage Assistant
Path coverage applies to one program. When you are using Coverage Assistant,
you can zap many programs (or modules), and run the path coverage process
over all the programs in one monitored run. Coverage Assistant is able to
provide coverage statistics for each module, or the run as a whole.

When you are undertaking system testing, where information is processed by a
series of programs, you may find that the information that provides full path
coverage for the first program in the series does not provide full path coverage
for the last program in the series.

54 VisualAge 2000 Test Solution

Here are some possible approaches to this problem:

• Check the path coverage of the last program in the series, and then work
towards the start of the series, making sure that at each stage, the output of
the previous program provides adequate coverage for the following program.

• Focus on the program that seems to be the most complex. Build maximum
path coverage for this, and don′ t worry about the other programs in the
series.

When building path coverage, you are seeking to maximize it. You may find that
it is not possible to build the coverage to 100%. There could easily be error
conditions that are difficult to test. Remember that this is Year 2000 testing, and
make sure that the path coverage covers all date-related code.

5.7 Developing Targeted Coverage with Source Audit Assistant
Source Audit Assistant provides a comparison of two levels of a program source
code, normally before and after conversion. The result is a comparison report,
which highlights differences between the programs.

This comparison report provides the means for developing targeted coverage.
You must make sure that any path coverage covers at least the lines mentioned
in the comparison report. These are the lines of code that have changed with
conversion, and therefore are lines that must be tested.

5.7.1 Running Source Audit Assistant
This section provides an outline of the running of Source Audit Assistant.

Source Audit Assistant looks at two static items—two source code listings. It
does not need to look at the dynamic execution of a program. Thus the process
is simpler than running Coverage Assistant or Distillation Assistant.

Running Source Audit Assistant takes one step. The Source Audit Assistant
control panel, shown in Figure 10 on page 56, provides the run options and the
parameters controlling the run.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 55

------------------------ Execute Source Audit Assistant ---------------
Option ===>

 1 Run Run Source Audit Assistant
 2 ViewCmp View Source Audit Assistant Compare File
 3 ViewLog View Source Audit Assistant Log File

Enter END to Terminate

New Source File:
Data Set Name ′ ATC.VA2000.COBOL.JCL.CNTL(TARMU6X)′

Old Source File:
Data Set Name ′ ATC.VA2000.COBOL.JCL.CNTL(TARMU6)′

SAA Output Compare File:
Data Set Name ′ hlq.TEST.SAA.CMP′

SAA Output Log File:
Data Set Name ′ hlq.TEST.SAA.LOG′

Programming Language:
Source Language . . . COBOL (C|C++|PL/I|COBOL|LCOB)

Select Line Audit Filters:
Comments NO (Yes|No) Declares NO (Yes|No) Reformatted NO (Yes|No)

Figure 10. The Source Audit Assistant Control Panel

By selecting filters, you can control the information displayed on the report. For
example, you can tellSource Audit Assistant to disregard any differences that
occur in comment lines, or lines that have been reformatted, but not otherwise
changed. By selecting filters carefully, you can remove from the report
information that you do not want.

With the parameters provided, Source Audit Assistant is able to proceed, and
compare the two files.

5.7.2 A Sample Source Audit Assistant Report
The sample Source Audit Assistant report is found at
hlq.VA2000TS.LISTING(SAAREPT), for COBOL. It is about 360 lines long. The
following segments of the report illustrate the contents. Figure 11 shows the
redefinition of a few items in Working Storage. In particular, note item
TARDATE-DATE-YYYY, on line �A�.

THE FOLLOWING LINE PAIR(S) HAVE BEEN REPLACED

 174 New 05 TARDATE-DATE-YYYY PIC 9(4). �A�
 153 Old 05 TARDATE-DATE-YY PIC 9(2).

 175 New 03 TARDATE-INPUT-FORMAT PIC X(10).
 154 Old 03 TARDATE-INPUT-FORMAT PIC X(8).

 176 New 03 TARDATE-OUTPUT-FORMAT PIC X(10).
 155 Old 03 TARDATE-OUTPUT-FORMAT PIC X(8).

Figure 11. Item Redefinit ions in the Source Audit Assistant Report

The second segment, Figure 12 on page 57, shows this particular item used in
the Procedure Division, line �B�.

56 VisualAge 2000 Test Solution

THE FOLLOWING LINE PAIR(S) HAVE BEEN REPLACED

 333 New MOVE ″YYYYDDD″ TO TARDATE-INPUT-FORMAT.
 265 Old MOVE ″YYDDD″ TO TARDATE-INPUT-FORMAT.

 334 New MOVE ″MM/DD/YYYY″ TO TARDATE-OUTPUT-FORMAT.
 266 Old MOVE ″MM/DD/YY″ TO TARDATE-OUTPUT-FORMAT.

 335 New CALL TARDTE3X USING TARDATE-DATE
 267 Old CALL ″TARDTE3″ USING TARDATE-DATE

 343 New MOVE ″MM/DD/YYYY″ TO TARDATE-OUTPUT-FORMAT.
 275 Old MOVE ″MM/DD/YY″ TO TARDATE-OUTPUT-FORMAT.

 344 New CALL TARDTE3X USING TARDATE-DATE
 276 Old CALL ″TARDTE3″ USING TARDATE-DATE

 348 New ADD 1 TO TARDATE-DATE-YYYY. �B�
 280 Old ADD 1 TO TARDATE-DATE-YY.

Figure 12. Replaced Lines in the Procedure Division, f rom the Source Audit Assistant
Report

When you develop coverage of this program, you want to be sure that this
particular line (line 280 in the old program, or line 348 in the new program) is
covered.

5.7.3 Further Comments on Source Audit Assistant
This example has focused on using Source Audit Assistant to provide targeted
coverage.

Source Audit Assistant can also provide a form of audit, to check the
completeness of code conversion. As well as the Compare report shown above,
you can create a Focus report, by providing a list of seeds, or variable names.
The Focus report is produced by scanning the Compare report, and reporting on
seeds that are not shown in any changed lines, and changed lines that do not
contain at least one seed reference.

The Focus report cannot tell you if lines of code have not been converted when
they ought to be. However, by the judicious selection of seeds, the Focus report
will point out potential problems that require further investigation.

5.8 Using Debug Tool to Check Coverage
Debug Tool is a general purpose tool that allows you to check the running of C,
COBOL and PL/I programs.

Debug Tool allows you to debug a program interactively. It also allows you to
use script files. By this means you can provide the same process to Debug Tool
repeatedly without needing to type in all the Debug Tool commands.

This process shows how Debug Tool can create a frequency count for each line
of code in a program. The frequency count can then be used to check coverage.

In this tutorial, the method is applied to the original CICS transaction, and the
original Employee Master file.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 57

You cannot run this tutorial until you have completed the steps in Chapter 6,
“Creating the Baseline Results” on page 69. The current tutorial assumes the
existence of the first ATP (or WITT Year2000 for Windows) script. It is strongly
suggested that you complete the testing tutorials before you run this tutorial.
Note that the results from this tutorial are not used as input into any other
tutorial.

5.8.1 Recreating the Original Testbed
The current testbed must be returned to the original testbed.

 1. Run the REXX procedure TARDVSM1 from hlq.VA2000TS.CLIST.

This recreates EMP.MASTER.ONLINE.

5.8.2 Setting up the Auto Test Performer Transactions
If you are using WITT Year2000 for Windows to enter transactions, you can skip
this procedure. The method of naming WITT Year2000 for Windows scripts is
different from that used to name ATP scripts.

 1. Open an OS/2 session.

 2. Change to the directory holding the ATP transactions
(X:vaatptartranscicsone).

 3. Type

rename MAIN.TSF AGED.TSF
copy DISTILL.TSF MAIN.TSF

 4. Close the OS/2 session.

5.8.3 Starting the CICS Job, and Setting up for Debug Tool
 1. Start a CICS session.

You must now make sure that the Employee Master file is open for the
exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 3. Find the line starting Fil(EMPMAST).

 4. Look along this line to the second status word, which comes after Vsa.

 5. If the second status word is Ope, go to step 8.

 6. Move the cursor to the second status word, Clo.

 7. Type O, then press Enter.

The status word changes to Ope (for Open).

 8. Press PF3 to exit the CEMT display.

 9. Clear the screen.

10. For VSE users, if necessary, install the group EQA to make Debug Tool
available, with the command:

CEDA I G(EQA)

11. Enter the transaction DTCN

58 VisualAge 2000 Test Solution

The Debug Tool CICS Interactive Facility appears.

12. Against the Transaction Id (entry line 2) type NB03 and against the
Command File (entry line 9) type hlq.VA2000TS.DEBUG(COBDB0) for OS/390 or

userlib.(COBDB0.CMD) for VSE

 Against the Transaction Id (entry line 2) type MB03 and against
the Command File (entry line 9) type hlq.VA2000TS.DEBUG(PL1DB0) for OS/390

or userlib(PL1DB0.CMD) for VSE

13. Press PF4 (Add).

If the add fails because the profile exists, press PF5 (Replace).

14. Press PF3 (Exit).

15. Start program NB03

 Start program MB03

There is a delay, while Debug Tool is initialized, then the update screen
appears.

16. Make sure that Caps Lock is on.

When the screen displays the Employee Update window, your CICS session is
ready for you to enter data.

5.8.4 Using Auto Test Performer to Enter Transactions
The equivalent WITT Year2000 for Windows procedure is found at B.4, “Using
WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Start Auto Test Performer Manager.

ATP starts, and the Manager window appears.

 2. Click on the + sign at the left of the TARTRANS group icon.

The testcases are listed under the group.

 3. Double-click on the CICSONE testcase entry.

The right of the screen lists two scripts and other items.

 4. Right-click on the MAIN.TSF entry.

 5. Select Playback from the pop-up menu.

The log window appears and is currently empty. As well, the Playback
Control window appears. This contains four buttons: Stop playback ,
Start/Resume playback , Pause playback , and Step .

 6. If the Playback Controls window is not at the bottom of the screen, drag it to
the bottom, where the buttons are not obscured by the CICS session.

 7. If the CICS window is minimized, restore it to its normal size.

 8. From the Playback Controls, click Start/Resume playback , the arrow pointing
to the right.

ATP enters the recorded transactions into the CICS session.

Sit back and watch the transactions flow!

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 59

When the playback has finished, ATP displays the message that the script
playback is completed.

 9. Click OK .

5.8.5 Looking at the Frequency Counts
 1. Click the CICS window, and wait.

After a few seconds, the Debug Tool window appears.

The bottom window shows the program frequency counts.

 2. Press PF11 (Zoom Log).

The log now fills the entire window.

 3. Enter TOP, to scroll to the top of the window.

 4. Scroll down the lines in this window. The line numbers relate to the listing of
the program, found at hlq.TARMU3.LIST.

 5. Where there is a “ 0 ” against a line, the line has not been covered. By
inspection of the program, you can work out what data needs to be added to
cover this line.

 6. When you finish your inspection, press PF3, and respond Y to the question
about terminating the session.

 7. Close DTCN, by entering DTCN and pressing F10.

 8. Close the CICS session.

 9. Close ATP Manager.

There is no point in looking at screen images. ATP was used in this tutorial
merely to provide the means of entering the transactions.

If you use this technique to check coverage, you may find that it is useful to add
transactions to the ATP script by using a text editor. Using ATP in this way
guarantees repeatability of results.

5.8.6 An Explanation of the Debug Tool Script
Figure 13 on page 61 shows the working portion of the Debug Tool script (for
VSE users, the format of the SETL LOG and SET SOURCE Debug Tool differ
slightly from this OS/390 example).

60 VisualAge 2000 Test Solution

STEP;
SET LOG ON FILE <hlq>.TARMU3.LOG;
CLEAR LOG;
SET SOURCE ON (″TARMU3″) <hlq>.VA2000TS.LISTING(TARMU3);

SET FREQUENCY ON (TARMU3); �A�

AT APPEARANCE TARDTE3
PERFORM
SET SOURCE ON (″TARDTE3″) <hlq>.VA2000TS.LISTING(TARDTE3);

AT ENTRY TARDTE3
PERFORM
SET FREQUENCY ON (TARDTE3); �B�
GO;

END-PERFORM;
GO;
END-PERFORM;

AT OCCURRENCE CEE067
GO;

AT TERMINATION
LIST FREQUENCY *; �C�

GO;

Figure 13. Debug Tool Script for Path Coverage

In this script, the critical command is SET FREQUENCY ON, which is executed at �A�
and �B�. It is needed twice because it counts the frequency for a program and a
subprogram.

The LIST FREQUENCY * command, at �C�,lists all l ine frequency counts to the log
file.

5.9 Distilling a File with Distillation Assistant
Distillation Assistant is another component of Application Testing Collection
(ATC).

It uses the same approach as Coverage Assistant—a series of steps processing
a program. For Distillation Assistant, the outcome is a list of distilled keys and
optionally a distilled file. Distillation Assistant also modifies object code to insert
breakpoints, and then monitors the running of the modified code. Distillation
Assistant works with COBOL and PL/I. COBOL samples are provided with this
redbook.

The sample program run through the Distillation Assistant processing is a
program that checks the master file, and updates by one year any SECURITY
CARD EXPIRY date that has expired; the same program as for Coverage
Assistant.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 61

5.9.1 The Distillation Process Step By Step
There is no difference in distillation between general testing and Year 2000
testing.

For those without Distillation Assistant, the following information outlines the
steps to produce output using Distillation Assistant, plus a sample distilled key
listing.

Each step also shows the sample jobs that have been installed from the CD-ROM
(hlq.VA2000TS.ATC). The samples are all for COBOL:

 1. Compile the program

CTARMU6X

 2. Run the setup JCL

This JCL puts breakpoints into the compiled object modules—STARMU6X

 3. Run the link JCL

This JCL links the object modules with the inserted breakpoints—LTARMU6X

 4. Start the monitor

The monitor handles breakpoint processing when the program is
run—XTARMU6X

 5. Run the program

GTARMU6X

 6. Stop the monitor

The monitor is controlled through the ATC online facility

 7. Create the distilled file

DISTCOPY

 8. Generate Distil lation Assistant reports

DTARMU6X (for report DTARMU6X)

The first six steps in this process are the same as for Coverage Assistant. Since
the first three steps are setting-up steps, you don′ t need to repeat these if you
have already applied Coverage Assistant to the program.

Developing path coverage is a cyclic process, where you check the path
coverage after each cycle, and then repeat the cycle with more information, if
you want to increase path coverage.

Distillation, on the other hand, is not cyclic. You only go through the distillation
process once for each file.

5.9.2 A Sample Distillation Assistant Report
The sample Distillation Assistant report is found at
hlq.VA2000TS.LISTING(DTARMU6X).

The bottom part of the listing shows the list of distilled keys. The keys were
reduced from 14 (for the master file after updating) to 5. The next figure shows
the original and distilled key lists.

62 VisualAge 2000 Test Solution

Original Distilled
keys keys

000026 ──────────────────────� 000026
000043
000101 ──────────────────────� 000101
000313 ──────────────────────� 000313
000392
000491
001090
002000
002131 ──────────────────────� 002131
002292
006101
007491
032190
044026 ──────────────────────� 044026

Figure 14. Distillation Assistant Key List

Distillation Assistant offers a means of converting this list into a file. However,
the file must be a sequential file, and you may prefer to use your own means to
create an indexed file.

5.9.3 Further Comments on Distillation Assistant
Each distillation pass applies to only one file. If you want to distill more than one
file (for example, a master file and a transaction file), then you have to repeat
the process, adjusting the control file, to indicate the file that you are currently
distill ing.

Before you repeat a distillation against a different file you must restore all files
to their original state.

A distilled file will not necessarily produce 100% path coverage of a program.
Even if you are distilling a large production file, the data on this file may not
exercise all the paths in the program. The more data on the file, the more likely
that coverage is greater.

Also, the process of distilling a file may remove records that are necessary for
more complete coverage. For example, imagine you have a program that is
accumulating a value found on individual records. If you reduce the number of
records, the accumulated value may never exceed a threshold value, so that
some code may not be executed.

For these reasons, you may find it necessary to recheck the path coverage after
you have distilled files.

5.10 Using Debug Tool to Build a Distilled Key List
This procedure uses Debug Tool to build a list of record keys. You can then use
this list to build a distilled file.

This example applies only to COBOL.

The procedure uses a CICS session to enter transactions, but it could be readily
modified to work for a batch program.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 63

During this procedure, you enter information for four employees. The log file
produced during the data entry shows that entering information for two
employees will suffice.

You cannot run this tutorial until you have completed the steps in Chapter 6,
“Creating the Baseline Results” on page 69. The current tutorial is run against
the distilled testbed, although it does not update the testbed. In practice, you run
distillation against an original testbed.

5.10.1 Recreating the Distilled Testbed
There is no need to recreate this testbed, since the procedure does not look at
records that have been updated.

5.10.2 Starting the CICS Job and Opening Files
 1. Start a CICS session.

You must now make sure that the distilled Employee Master files is open for
the exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 3. Find the line starting Fil(EMPMAST).

 4. Look along this line to the second status word, which comes after Vsa.

 5. If the second status word is Ope, go to step 8.

 6. Move the cursor to the second status word, Clo.

 7. Type O, then press Enter.

The status word changes to Ope (for Open).

 8. Press PF3 to exit the CEMT display.

 9. Clear the screen.

The file is now open.

5.10.3 Entering Transactions
 1. Enter the transaction DTCN

The Debug Tool CICS Interactive Facility appears.

 2. Against the Transaction Id (entry line 2) type NB03 and against the Command
File (entry line 9) type hlq.VA2000TS.DEBUG(COBDB2)

 3. Press PF4 (Add).

If the add fails because the profile exists, press PF5 (Replace).

 4. Press PF3 (Exit).

 5. Start program NB03

There is a delay of a few seconds while Debug Tool is initialized.

The Employee Maintenance window appears.

 6. For EMPLOYEE NO type 000101 and press Enter.

64 VisualAge 2000 Test Solution

The information about Peter Seller appears, along with the message
“I-ENTER CHANGE DETAILS.”

The cursor moves to the DEPT CODE field.

 7. Tab to the ZIP CODE.

 8. For ZIP CODE type XXXXX and press Enter.

The message “E-ZIP CODE NOT NUMERIC” appears.

 9. Tab back to the EMPLOYEE NO, type 001090 and press Enter.

The information about Julie Milner-Winter appears, along with the message
“I-ENTER CHANGE DETAILS.”

The cursor moves to the DEPT CODE field.

10. Tab to the ZIP CODE.

11. For ZIP CODE type XXXXX and press Enter.

The message “E-ZIP CODE NOT NUMERIC” appears.

12. Tab back to the EMPLOYEE NO, type 006101 and press Enter.

The information about Penny Marker appears, along with the message
“I-ENTER CHANGE DETAILS.”

The cursor moves to the DEPT CODE field.

13. Tab to the ZIP CODE.

14. For ZIP CODE type XXXXX and press Enter.

The message “E-ZIP CODE NOT NUMERIC” appears.

15. Tab back to the EMPLOYEE NO, type 044026 and press Enter.

The information about Alison Clarke appears, along with the message
“I-ENTER CHANGE DETAILS.”

The cursor moves to the DEPT CODE field.

16. Tab to the ZIP CODE.

17. For ZIP CODE type XXXXX and press Enter.

The message “E-ZIP CODE NOT NUMERIC” appears.

18. Press F3.

The CICS transaction is terminated.

19. Close DTCN, by entering DTCN and pressing F10.

20. Close the CICS session.

5.10.4 Looking at the Distillation Key List
You will find the distillation list at hlq.TARMU3.LOG2 for OS/390, or
userlib(TARMU3.LOG2) for VSE.

The top of the list repeats the Debug Tool script. This is followed by lines that
look like this:

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 65

* ′ DISTILL 575.1 000101 ′
* ′ DISTILL 576.1 000101 ′
* ′ DISTILL 577.1 000101 ′

Figure 15. Lines from the Distil lation Key List

The important item in each line is the third item, “000101.” This is the value of
the key that you entered, which for these three lines is the key for Peter Seller′s
record.

Scan down the list. There are pages and pages for key 000101. However, near
the bottom there are about 15 lines for key 001090. This is the key for Julie
Milner-Winter ′s record.

There are no entries for key 6101 or key 44026.

This list shows that entering the third and fourth key provided no further
coverage of the code in the program. The number of transactions has been
distilled from four to two.

You may be wondering why the list includes two keys, and not just one. The
reason is that the Peter Seller record does not have a terminated date, whereas
the Julie Milner-Winter record one does, and thus exercises new lines of code.

5.10.5 An Explanation of the Debug Tool Script
Figure 16 shows the working portion of the Debug Tool script.

STEP;
SET LOG ON FILE <hlq>.TARMU3.LOG2;
CLEAR LOG;
SET SOURCE ON (″TARMU3″) <hlq>.VA2000TS.LISTING(TARMU3);
SET ECHO OFF;
01 WORK-EMP PIC X(6);
01 OUT-REC PIC X(50);
MOVE SPACES TO WORK-EMP;
MOVE SPACES TO EMP-ID;

AT LINE (489 - 897) �A�
PERFORM
MOVE EMP-ID TO WORK-EMP;
IF WORK-EMP NOT = SPACES

MOVE SPACES TO OUT-REC;
MOVE ″DISTILL″ TO OUT-REC(1:8);
MOVE %LINE TO OUT-REC(9:6);
MOVE WORK-EMP TO OUT-REC(15:6);
LIST UNTITLED(OUT-REC);
CLEAR AT LINE %LINE; �B�

END-IF;
GO;
END-PERFORM;

AT OCCURRENCE CEE067
QUIT;

GO;

Figure 16. Debug Tool Script for Distil lation

66 VisualAge 2000 Test Solution

In this script, the AT LINE (489 - 897) command at �A� sets a breakpoint for each
line in the COBOL procedure division. Each time a breakpoint is encountered,
the details of the employee key are written to the log file. Also, the breakpoint is
cleared (�B�). This means that the execution of a line is logged only the first
time, regardless of how many times the line is executed.

5.10.6 Extending This Example
This example has focussed on the essentials of using Debug Tool to help in
distillation.

There is no need to restrict yourself to online programs. The same technique can
be applied to batch programs.

The current log file has key information for each line of the program that was
executed. You could readily process this list so that it provides a list of the
unique keys, in this case condensing the list to two lines.

Once you have the list of unique keys, you must then create the distilled
transactions. For online entry, you distill the transactions by entering just those
in the key list. For batch processing, you have to remove transactions from the
batch files.

Chapter 5. Developing Path Coverage and Distil l ing the Testbed 67

68 VisualAge 2000 Test Solution

Chapter 6. Creating the Baseline Results

This process creates a set of baseline results, which are compared with the
post-fix results (from Chapter 8, “Creating the Post-Fix Results” on page 85).
The baseline results reflect the state of the system now. They do not include any
Year 2000 dates, as the code has not been changed to handle Year 2000 dates.

Input Original program code, distilled testbed

Output Baseline master files, reports, and screen images

This process is shown in Figure 17.

The basic process is to run distilled transactions through the original code,
updating the distilled master files to produce the baseline master files and
baseline reports.

┌────────────────┐ ┌────────────────┐
│ │ │ │
│ Distilled ├───┐ ┌──────�┤ Baseline │
│ transactions │ │ │ │ reports │
│ │ │ │ │ │
└────────────────┘ │ │ └────────────────┘
┌────────────────┐ │ ┌──────────────┐ │ ┌────────────────┐
│ │ └───�┤ ├───┘ │ │
│ Distilled ├───────�┤ Original ├──────────�┤ Baseline │
│ master files │ │ code (today) │ │ master files │
│ │ │ │─ ─ ┐ │ │
└────────────────┘ └─┬────────────┘ │ └────────────────┘

	 │ │
┌ ─ ─ ─ ─ ─ ─ ─ ─┐ └ ─ ─�┤ ATP │ ┌ ─ ─ ─ ─ ─ ─ ─ ─┐
│ │ │ Record │ │ │
│ Data entry ├─ ─ ─ ─ ─ ─ ─ ─�┤ ├─ ─ ─�┤ ATP recorded │
│ plan │ └ ─ ─ ─ ─ ─ ┘ │ screens and │
│ │ │ script │
└ ─ ─ ─ ─ ─ ─ ─ ─┘ │ │

└ ─ ─ ─ ─ ─ ─ ─ ─┘

Figure 17. Creating the Baseline Results

If the code involves online (interactive) programs, where information is entered
on a screen, then there is a second process. This second process requires the
entry of this online information while Auto Test Performer (ATP) is running. ATP
then captures the entry to produce a script automatically, and records screen
images when requested. In this figure, and following figures, WITT Year2000 for
Windows performs a function identical to ATP.

The diagram Figure 17 refers to “original code.” This is because the process is
not necessarily tied to one program. The original code can be a suite of
programs used to process the transactions. So this process applies equally to
unit (one program) testing and system testing.

 Copyright IBM Corp. 1997, 1998 69

6.1 Screen Capture and Script Creation - Auto Test Performer
This tutorial works through the process of capturing screens and an online
transaction entry script using Auto Test Performer (ATP).

Before starting this tutorial, make sure that:

• ATP is installed on your workstation

• All the sample data and program files are installed on your mainframe

There are data files supplied to start the process. These are:

• hlq.DEPT.MASTER.ONLINE

The Department Master file (not updated, but used for reference)

• hlq.EMP.MASTER.START

The initial Employee Master file. This file is updated as part of the
processing. It is copied to produce hlq.EMP.MASTER.ONLINE, which is the
file that is processed.

6.1.1 Creating a Sample Distilled Master File
This procedure creates the file hlq.EMP.MASTER.ONLINE by copying the file
hlq.EMP.MASTER.START. No JCL is provided to update or delete
hlq.EMP.MASTER.START. Provided this file is not deleted or changed, you can
always come back to this point and work through the chain of tutorials. This
means that the tutorials can be run many times. If the file is damaged, reload it
using the procedure in Chapter 3, “Installation and Customization” on page 19.

 1. Execute REXX procedure TARDVSM1.

(See 3.5.6, “Conventions in This Redbook for OS/390” on page 27, and 3.6.6,
“Conventions in This Redbook for VSE” on page 31, for detailed
instructions.)

6.1.2 Capturing the Screens and Scripts - Auto Test Performer
Auto Test Performer is a workstation product. It is able to capture screens for
comparison, and also to capture keystrokes as they are entered. This part of the
tutorial tells you how to start ATP, and then what to enter as transactions.

If you have to enter online transactions, it is important that you create a Data
Entry Plan. This is where you map out the details of the transactions that you are
going to enter. The plan might take the form of hand-written notes, or entries in
a spreadsheet; the form does not really matter. However, you must know what
you want to enter before you start the session. This means that the script you
create is fairly clean, which means that the script is easier to convert and age.

This tutorial includes the data for you to enter. The transactions correspond to a
distilled data set, though they have been created manually, rather than using a
coverage or distillation tool.

There are only two transactions to enter. One transaction adds a new employee,
the other changes the detail of an existing employee.

Because this is an online program, most of the error checking can be done by
entering an invalid value into a field, and then correcting it immediately.

70 VisualAge 2000 Test Solution

6.1.3 Starting the CICS Session
 1. Start a CICS session.

You must now make sure that the Employee Master file is open for the
exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 3. Find the line starting Fil(EMPMAST)

 4. Check the high level qualifier of the file. If it has the value you want, go to
step 5. If it is not the high level qualifier you want to use, you must change it
by the following procedure:

• For OS/390:

a. Look along the Fil(EMPMAST) line to the second status word, which
comes after Vsa. If the second status word is Clo, go to step 4d.

b. Move the cursor to the second status word, Ope.

 c. Type C, then press Enter.

The status word changes to Clo (for Closed).

d. Move the cursor over the high level qualifier, and change it to the
high level qualifier you want.

• For VSE:

Modify your CICS startup JCL to point to the correct files, and restart
CICS.

 5. Look along the Fil(EMPMAST) line to the second status word, which comes
after Vsa. If the second status word is Ope, go to step 8.

 6. Move the cursor to the second status word, Clo.

 7. Type O, then press Enter.

The status word changes to Ope (for Open).

 8. Press PF3 to exit the CEMT display.

 9. Clear the screen.

You must now make sure that the Department Master file is open for the
exclusive use of CICS.

10. Enter the transaction

CEMT I FI (DEP*)

The list of files starting with DEP appears.

11. Find the line starting Fil(DEPMAST)

12. Look along the Fil(DEPMAST) line to the second status word, which comes
after Vsa. If the second status word is Ope, go to step 15.

13. Move the cursor to the second status word, Clo.

14. Type O, then press Enter.

The status word changes to Ope (for Open).

15. Press PF3 to exit the CEMT display.

Chapter 6. Creating the Baseline Results 71

16. Clear the screen.

17. Start program NB03

 Start program MB03

18. Make sure that Caps Lock is on.

When the screen is displaying the Employee Update window, your CICS session
is ready for you to enter data.

6.1.4 Starting Auto Test Performer
The equivalent WITT Year2000 for Windows procedure is found at B.1, “Starting
WITT Year2000 for Windows” on page 133.

If you are using VisualAge COBOL, Test for OS/2, then:

 1. Double-click the VisualAge Test folder icon.

 2. Double-click the Manager icon.

If you are using WITT Year2000 for OS/2, then:

 1. Double-click the WITT Year2000 folder icon.

 2. Double-click the Manager icon.

ATP is now started, and the Manager window appears.

Having started ATP, you now have to create a group and testcase, to hold the
information that is captured as you enter the CICS details.

6.1.4.1 Entering the Group Path
The group path indicates where information is to be held.

 1. From the Root menu, select Path...

The Group Path dialog box appears.

 2. Enter X:vaatp, where “ X ” is the drive you are using (normally C or D), and
click OK . If you are asked about creating the path, click Yes .

6.1.4.2 Creating a Group and a Testcase
A group is a convenient way of holding in one place all the scripts to be applied
against one program.

 1. From the Edit menu, select Create group...

The Create Group dialog box appears.

 2. Enter TARTRANS and click Create .

The TARTRANS group is listed on the left of the screen.

 3. Right-click on the TARTRANS group.

 4. Select Create testcase... from the pop-up menu.

The Create Testcase: TARTRANS dialog box appears.

 5. Enter CICSONE and click Create .

 6. Click on the + sign at the left of the TARTRANS group icon.

The CICSONE testcase entry appears.

72 VisualAge 2000 Test Solution

 7. Double-click on the CICSONE testcase entry.

The MAIN.TSF entry appears on the right of the screen.

 8. Right-click on the MAIN.TSF entry.

 9. Select Record from the pop-up menu.

The MAIN.TSF - Record window appears.

The large area holds the recorded script, although it shows nothing yet. The
window in the top right corner is the Record Controls window. It includes the
Stop record, Start record, Select session and Save images buttons.

10. Drag the Record Controls window to the bottom of the screen. Position it so
that you can see the buttons, and the buttons are not obscured when your
CICS session is running.

The buttons are used to control the recording of the script, and the capture
of screen images.

11. From the Record Controls, click Select session .

The MAIN.TSF - Select session dialog box appears.

12. Click Host session under target.

13. Select the Host session ID (for example, G).

14. Click Select .

The EMPLOYEE MAINTENANCE window in CICS appears, ready for you to enter
transactions.

6.1.5 Enter the Transactions

 In this section, steps between the OS/2 tags are undertaken using

Auto Test Performer.

 In this section, steps between the Windows tags are undertaken

using WITT Year2000 for Windows.

ATP is now ready to capture the transaction details as you enter them.

Attention: Before you start entering transactions, a word of warning. There are
quite a few dates on the CICS screen. When you are entering a date, you may be
tempted to use the cursor keys to jump over values that have not changed, or
not bother to enter the year if the default year value has not changed. When you
enter a date, make sure that you type the complete date. Be sure not to use the
cursor keys to skip values, and be sure to type the year. The reason is that later
in the testing process, you will convert the ATP script. This conversion will not
be correct if you do not enter complete dates.

This tutorial focuses on exercising date fields. This means that sometimes a bad
date is entered, to make sure that the program checks the date. For complete
coverage, you could enter bad data in other fields. This is not done in the current
tutorial, to minimize the number of tutorial steps.

As you enter information into the EMPLOYEE MAINTENANCE window, ATP (or
WITT Year2000 for Windows) records the information.

Chapter 6. Creating the Baseline Results 73

Here are the details to type. Note that after typing the data into a field, you press
either Tab or Enter. The instructions tell you which to press:

 1. For EMPLOYEE NO type 002000 and press Enter.

The message “I-ENTER EMPLOYEE DETAILS” appears in the message line,
which starts “MSG==>” and is near the bottom of the screen.

This shows that you have entered an employee number that is not in the
Employee Master file, and hence is a new employee.

The cursor moves to the DEPT CODE field.

 2. For DEPT CODE type 0002 and press Tab.

 3. For NAME type CHARLES ROGERS and press Tab.

 4. For ADDRESS 1 type 34 MILES WAY and press Tab.

 5. For ADDRESS 2 type WAYVILLE and press Tab.

 6. For ADDRESS 3 type SOUTH CAROLINA and press Tab.

 7. For ZIP CODE type 34567 and press Tab.

 8. For JOINED type 08/14/97 and press Tab.

 9. For BIRTHDATE type 31/02/77. This time, press Enter.

A default SECURITY CARD EXPIRY date is entered (one year from the
JOINED date).

The CICS transaction now validates the information typed so far.

The message “E-INVALID DATE” appears, and the cursor is still on the
BIRTHDATE.

The month and day are in the wrong order for the BIRTHDATE.

10. To correct BIRTHDATE type 02/31/77 and press Enter.

The message “E-INVALID DATE” is still displayed.

Too many days in February for the BIRTHDATE.

11. To correct BIRTHDATE type 02/28/77 and press Enter.

The message “I-SCR VALID PF10 TO UPDATE” appears.

This message indicates that the data on the screen is now valid. The record
can be added to the file. However, to finish, enter the TERMINATED date and
replace the default SECURITY CARD EXPIRY date.

12. Tab to the TERMINATED field.

13. For TERMINATED type 08/14/96 and press Enter.

The message “E-JOINED > TERMINATED DATE” appears.

This message indicates that joined date is less than the terminated date.
This does not make sense. How can you leave a job before you start it?

The cursor is on the JOINED date. This date is OK. It is the TERMINATED
date that is at fault.

14. Tab to the TERMINATED field.

15. To correct TERMINATED type 08/14/98 and press Tab.

The cursor moves to the SECURITY CARD EXPIRY field.

16. For SECURITY CARD EXPIRY type 08/14/98 and press Enter.

74 VisualAge 2000 Test Solution

All the information is now entered and correct. Now it is time to take a
picture of the screen.

17. Click the Save images button on the Record Controls. This button

looks like a camera. The window blinks as ATP takes its picture.

 Press <Ctr l+Al t+F10>, to save an image.

18. Press F10, to add the record.

The message “I-RECORD ADDED” appears.

The record for the new employee has been successfully added.

To complete the transaction entry, update the record of an existing
employee.

19. Press Tab.

The cursor moves to the EMPLOYEE NO field.

20. For EMPLOYEE NO type 000043. and press Enter.

The information about Mary Gardener appears, along with the message
“I-ENTER CHANGE DETAILS.”

21. Tab to the TERMINATED field.

22. For TERMINATED type 06/07/96 and press Enter.

The message “I-SCR VALID PF10 TO UPDATE” appears.

The record can now be updated on the file.

23. Click the Save images button on the Record Controls to save

another image.

 Press <Ctr l+Al t+F10>, to save another image.

24. Press F10.

The message “I-RECORD CHANGED” shows that the record has been
successfully updated.

25. Press F3.

The CICS transaction is terminated.

To finish recording, you need to stop ATP Record or WITT Year2000 for Windows
recording.

 To stop ATP:

 1. Click the Stop record button on the Record Controls.

The ATP recording session is now over. The MAIN.TSF - Record window
appears.

 2. Close the Record window, and click Yes when asked if you want to save the

file.

 To stop WITT Year2000 for Windows recording:

 1. Press < C t r l + A l t + F 1 2 > .

Chapter 6. Creating the Baseline Results 75

6.1.6 Ending the CICS Session
The Employee Master file must be closed, so that other jobs can use it.

 1. In your CICS session, clear the window, then enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 2. Find the line starting Fil(EMPMAST).

 3. Look along this line to the second status word, which comes after Vsa.

 4. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

The status word changes to Clo (for Closed).

 5. Press PF3 to exit the CEMT display.

 6. Clear the screen.

 7. Close the CICS session.

The recording session is now finished.

6.1.7 A Comment on the Script
This script includes the entry of values that are in error, and are subsequently
changed. When you are creating your own scripts, you should not include such
values. Either make sure that you do not enter values in error, or if you do, edit
the script to remove them.

There is one time when you want to deliberately enter values that are in error.
This is when you want to check that the error has been detected. To do this,
enter the error value, and immediately capture a screen image which includes
an error message.

6.1.8 Looking at the Script
The equivalent WITT Year2000 for Windows procedure is found at B.2, “Looking
at the Script” on page 134.

The script that you have created in ATP is a text file which you can edit:

 1. In the ATP window, right-click on the MAIN.TSF file.

 2. Select Open from the pop-up menu.

The script is displayed in a text editor.

 3. Look at the script.

You should be able to see where you have pressed the Tab key or Enter key,
or typed a date. With a little more effort, you should also be able to see
where you entered a field. The two “Window_Compare” lines come from the
screen captures.

When you entered the script, it is possible that you may have typed a wrong
key, and then pressed Backspace or Left Arrow to move the cursor to
replace the wrong keystroke. If you did, the routine that converts the script
will not convert everything, as it is expecting dates to be in “MM/DD/YY”
format.

76 VisualAge 2000 Test Solution

Check your script, and make sure that all your dates are properly entered. If
not, edit the script to make sure that they are. (This normally involves
deleting a few lines, to “close up” the date information.)

The following sample shows the script when the start of the JOINED date is
entered as “08/41.” The mistake was noticed and corrected by back spacing
and typing the day “14,” before adding “/97.”

′ Enter_Text ″08/41″′
′ Enter_Key <BCKSP>, 2′
′ Enter_Text ″14/97″′

This mistake is corrected by deleting from (and including) ′41′ on the first
line up to (and including) the ″ before ′14′ on the third line, to consolidate the
date entry into one line:

′ Enter_Text ″08/14/97″′

If you edit the script file, make sure you save it before closing the Editor
window.

 4. Close the Editor window.

 5. Close the Manager window, and the ATP groups.

In the process you have just completed, you achieved three things:

• You used ATP to capture data entry, and thus create a script which you can
play back through ATP.

• You used ATP to capture screen images, which you can use for comparison.

• You updated the Employee Master file, and along the way exercised the
update program.

The updated Employee Master file is the baseline result that you will later
compare with the post-fix results.

The script is going to be converted, so that it can be used to provide data entry
to the converted code.

6.2 Creating a Baseline Report
This job creates the report TARRPA1.REPORT, which is the Security Card Expiry
Dates report. The report lists the dates on which security cards will expire, in
date order, and also lists the associated employee ′s ID and name.

The program that prints the report is basic. However, the JCL that runs the print
job selects only employees that are still employed (Terminated Date has the
value “000000”), and creates an input file for the report program, selecting only
the relevant fields from the Employee Master file.

 1. Execute job TARRPA1. For VSE users: The default Language Environment
library is PRD2.SCEEBASE. Change in the job if necessary.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report from the job, by browsing TARRPA1.REPORT.

The report should list six employees, starting with Drummond Rapper and
ending with Vi Sproika.

Chapter 6. Creating the Baseline Results 77

The report is catalogued, so that it can be used later when the baseline results
and post-fix results are compared.

78 VisualAge 2000 Test Solution

Chapter 7. Building the Converted Testbed

This process creates a set of files adjusted to reflect the Year 2000 changes put
into the programs. The converted testbed does not include Year 2000 dates.

Input Distilled testbed

Output Converted testbed

This process is shown in Figure 18.

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ Distilled │ │ Distilled │ │ ATP │
│ transactions │ │ master files │ │ script │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
� � �

┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐
│ │ │ │ │ │
│ Conversion │ │ Conversion │ │ Conversion │
│ routine │ │ routine │ │ routine │
│ │ │ │ │ │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘

│ │ │
� � �

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ Converted │ │ Converted │ │ Converted │
│ transactions │ │ master files │ │ ATP script │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘

Figure 18. Converting the Distil led Testbed to Produce the Converted Testbed

After you have worked out the techniques you are going to apply to handle Year
2000 dates, you may have to modify the data, so that it can be handled by the
new techniques.

If you are using a windowing technique, then there is no need to adjust any date
fields in your records (though you may need to remove some records if they fall
outside the bounds of your window). It is possible that you are using a
windowing technique, but you are also changing the way in which you store your
dates. For example, you might want to change their format from “MMDDYY” to
“YYMMDD” In this case, even though you are using a windowing technique, you
will have to run the master files and transactions through a conversion routine.

For this tutorial, you do not need to convert distilled transactions, because there
are none. In reality, transactions are converted using techniques similar to
converting master files.

 Copyright IBM Corp. 1997, 1998 79

7.1 Converting the Master File
This procedure uses DFSORT to convert date fields to Year 2000 ready formats.
Most of the dates are converted by expanding them, by changing the year from
YY to YYYY. During conversion, three of the fields are converted to packed
(COMP-3) format. The security expiry date is being held as a windowed date,
and thus is not converted.

 1. Execute REXX procedure TARDVSM2.

This job creates EMP.MASTER.ONLINE2 (before conversion) from
EMP.MASTER.START.

 2. Execute job TARCNV2.

This job converts EMP.MASTER.ONLINE2, leaving the results in the same file.

 3. Check the output of the job.

 4. If the job failed, determine the reason, correct, and resubmit.

The job prints out the converted master file, so that you can check the dates.

This job illustrates the use of the DFSORT Year 2000 features. The parameters
for the first DFSORT pass are shown in Figure 19. Compare these with the
legacy COBOL file description Figure 20 on page 81. The PL/I file description
has the same structure.

SORT FIELDS=COPY
OPTION Y2PAST=1900
OUTFIL OUTREC=(1,135,136,2,Y2C,138,3,141,2,Y2C,143,4,147,2,Y2C,

149,3,152,2,Y2C,154,39)

Figure 19. Using DFSORT to Expand Dates

• The first OUTREC pair, “1,135,” selects the text information.

• The next OUTREC triplet, “136,2,Y2C,” selects “YY” from the
EMP-DATE-JOINED field, and expands it to “YYYY.”

• The next OUTREC pair, “138,3,” selects “DDD” from the EMP-DATE-JOINED
field.

• Likewise, the EMP-DATE-TERMINATED, EMP-DATE-MAINTAINED, and
EMP-BIRTH-DATE fields are expanded.

• The last date, the EMP-SECURITY-DATE, is not expanded.

• The “Y2PAST=1900” option sets the base year for the 100-year window
(1900-1999) applied to all two-digit dates.

80 VisualAge 2000 Test Solution

01 EMPLOYEE-MASTER-RECORD.
* ** key field

03 EMP-ID PIC X(6).
03 EMP-DEPT-CODE PIC X(4).
03 EMP-NAME PIC X(30).
03 EMP-ADDR-1 PIC X(30).
03 EMP-ADDR-2 PIC X(30).
03 EMP-ADDR-3 PIC X(30).
03 EMP-ZIP-CODE PIC X(5).

* ** format (yyddd)
03 EMP-DATE-JOINED PIC 9(5).

* ** format (yymmdd)
03 EMP-DATE-TERMINATED PIC 9(6).

* ** format (yyddd)
03 EMP-DATE-MAINTAINED PIC 9(5).

* ** format (yyddd)
03 EMP-BIRTH-DATE PIC 9(5).

* ** format (yyddd)
03 EMP-SECURITY-EXP PIC 9(5) COMP-3.
03 FILLER PIC X(41).

Figure 20. The Legacy Employee Master Record

The OS/390 job uses the IEBGENER utility to convert some date fields to packed
(COMP-3) format. The VSE job uses the COBOL program TARCONV to achieve
the same results. The parameters in the IEBGENER step are shown in
Figure 21.

GENERATE MAXFLDS=5,
MAXLITS=6

RECORD FIELD=(150,1,,1),
FIELD=(7,151,ZP,151),
FIELD=(7,158,ZP,155),
FIELD=(36,165,,159),
FIELD=(6,′ ′ , , 1 9 5)

Figure 21. Using IEBGENER to Convert Dates to COMP-3

Here IEBGENER is used to convert the expanded EMP-DATE-MAINTAINED and
EMP-BIRTH-DATE fields into COMP-3 fields, as shown in Figure 22 on page 82.

Chapter 7. Building the Converted Testbed 81

01 EMPLOYEE-MASTER-RECORD.
* ** key field

03 EMP-ID PIC X(6).
03 EMP-DEPT-CODE PIC X(4).
03 EMP-NAME PIC X(30).
03 EMP-ADDR-1 PIC X(30).
03 EMP-ADDR-2 PIC X(30).
03 EMP-ADDR-3 PIC X(30).
03 EMP-ZIP-CODE PIC X(5).

* ** format (yyyyddd) date expanded
03 EMP-DATE-JOINED PIC 9(7).

* ** format (yyyymmdd) date expanded
03 EMP-DATE-TERMINATED PIC 9(8).

* ** format (yyyyddd) packed date compressed
03 EMP-DATE-MAINTAINED PIC 9(7) COMP-3.

* ** format (yyyyddd) packed date compressed
03 EMP-BIRTH-DATE PIC 9(7) COMP-3.

* ** format (yyddd) packed date uses sliding window
03 EMP-SECURITY-EXP PIC 9(5) COMP-3.
03 FILLER PIC X(39).

Figure 22. The Converted Employee Master Record

This job has two sorts and a merge as intermediate steps.

These steps are needed because the EMP-DATE-TERMINATED field is not
mandatory. The file is split in two, depending on whether this field is present or
not, processed, and then merged to provide a consolidated, converted file.

More information about the Year 2000 features of DFSORT is available from
http://www.storage.ibm.com/software/sort.

7.2 Backing up the Converted Master File
This job backs up the converted master file to a file called hlq.EMP.MASTON2.BACK.

 1. Execute REXX procedure TARBON2.

7.3 Converting the Auto Test Performer Script File
The equivalent WITT Year2000 for Windows procedure is found at B.3,
“Converting the WITT Year2000 for Windows Script File” on page 135.

The Auto Test Performer (ATP) script file is a text file. The data it holds includes
dates in the “MM/DD/YY” format. The converted CICS screen has dates entered
in “MM/DD/YYYY” format. If you run the ATP script file against the converted
CICS screen, then you will experience problems.

The REXX routine TARADJST converts dates, and can also age dates.

To run this routine:

 1. Open an OS/2 window.

 2. Change to the ATP directory that holds the script file (for example,
d:vaatptartranscicsone).

 3. Rename the MAIN.TSF file to DISTILL.TSF; type rename main.tsf distill.tsf
and press Enter.

82 VisualAge 2000 Test Solution

 4. Start the TARADJST Rexx procedure; type vataradjst and press Enter.

 5. Enter the FULL source file name: DISTILL.TSF

 6. Enter the source date format: MM/DD/YY

 7. Enter the FULL target file name: MAIN.TSF

 8. Enter the target date format: MM/DD/YYYY

 9. Enter the number of years to age dates: 0

For this procedure, the transactions are not aged.

The routine creates the file MAIN.TSF. This is identical to the original file,
except that the years in dates are now four digits long.

The message indicates that it has updated 8 records, which are the records
containing dates.

The message asking for the source file name appears again.

10. Press Enter without entering any data.

The routine finishes.

11. Close the OS/2 window.

This script file is used in Chapter 8, “Creating the Post-Fix Results” on page 85.

The script is structured so that it can also be used to convert a batch of files.
The batch file is made up of sets of five lines, where each set of lines
corresponds to responses to the five requests mentioned above. Any line
starting with an asterisk (*) is a comment line, and is disregarded. Comment
lines must be placed above each set of five lines.

To invoke batch processing, use the batch file as the standard input, like so:

\va\taradjst < batch.txt

Here is an example of a batch file, which converts three files in one pass:

SCRIPT1.TSF
MM/DD/YY
SCRIPT1C.TSF
MM/DD/YYYY
0
SCRIPT2.TSF
YY/MM/DD
SCRIPT2C.TSF
YYYY/MM/DD
0
SCRIPT1.TSF
MM/DD/YY
SCRIPT1C.TSF
MM/DD/YYYY
0

Chapter 7. Building the Converted Testbed 83

84 VisualAge 2000 Test Solution

Chapter 8. Creating the Post-Fix Results

This process creates a set of post-fix results, which can be compared with the
baseline results (from Chapter 6, “Creating the Baseline Results” on page 69),
and with the 19xx results (from Chapter 12, “Creating the 19xx Results” on
page 107). The post-fix results reflect the state of the system after code has
been changed to handle Year 2000 dates. The post-fix results do not include data
with Year 2000 dates.

Input Converted program code, converted testbed, converted ATP scripts

Output Post-fix master files, reports, and screen images

This process, shown in Figure 23, is similar to that of creating the baseline
results.

The files used to drive the process are the converted files.

┌────────────────┐ ┌────────────────┐
│ │ │ │
│ Converted ├───┐ ┌──────�┤ Post-fix │
│ transactions │ │ │ │ reports │
│ │ │ │ │ │
└────────────────┘ │ │ └────────────────┘
┌────────────────┐ │ ┌──────────────┐ │ ┌────────────────┐
│ │ └───�┤ ├───┘ │ │
│ Converted ├───────�┤ Converted ├──────────�┤ Post-fix │
│ master files │ │ code (today) │ │ master files │
│ │ │ │─ ─ ┐ │ │
└────────────────┘ └─┬────────────┘ │ └────────────────┘

	 │ │
┌ ─ ─ ─ ─ ─ ─ ─ ─┐ └ ─ ─�┤ ATP │ ┌ ─ ─ ─ ─ ─ ─ ─ ─┐
│ │ │ Playback │ │ │
│ Converted ├─ ─ ─ ─ ─ ─ ─ ─�┤ ├─ ─ ─�┤ ATP playback │
│ ATP script │ └ ─ ─ ─ ─ ─ ┘ │ post-fix │
│ │ │ screens │
└ ─ ─ ─ ─ ─ ─ ─ ─┘ │ │

└ ─ ─ ─ ─ ─ ─ ─ ─┘

Figure 23. Creating the Post-Fix Results

A more important difference, if the process uses online programs, is that the
online entries are not entered by hand. Instead, Auto Test Performer (ATP) is
able to read the converted script and so provide data entry. And the output from
ATP is not a script (since this has already been captured), but a log file and a
set of screen images, for comparison.

8.1 Playback and Screen Capture - Auto Test Performer
This process is similar to the process by which Auto Test Performer captured
screen images and the script.

This time Auto Test Performer (ATP) does the hard work. And, of course, the
CICS program that is running is the converted program.

 Copyright IBM Corp. 1997, 1998 85

8.1.1 Starting the CICS Session
 1. Start a CICS session.

You must now make sure that the converted Employee Master file is open for
the exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 3. Find the line starting Fil(EMPMST2).

This time, you are using a converted CICS transaction, which uses a different
version of the Employee Master file.

 4. Look along this line to the second status word, which comes after Vsa.

 5. If the second status word is Ope, go to step8.

 6. Move the cursor to the second status word, Clo

 7. Type O, then press Enter.

The status word changes to Ope (for Open).

 8. Press PF3 to exit the CEMT display.

 9. Clear the screen.

10. Start program NB3E (not NB03)

 Start program MB3E (not MB03)

11. Make sure that Caps Lock is on.

When the screen is displaying the Employee Update window, your CICS session
is ready to receive data.

8.1.2 Using Auto Test Performer to Enter Transactions
The equivalent WITT Year2000 for Windows procedure is found at B.4, “Using
WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Start Auto Test Performer Manager.

ATP starts, and the Manager window appears.

 2. Click on the + sign at the left of the TARTRANS group icon.

The testcases are listed under the group.

 3. Double-click on the CICSONE testcase entry.

The right of the screen lists two scripts and other items.

 4. Right-click on the MAIN.TSF entry.

 5. Select Playback from the pop-up menu.

The log window appears and is currently empty. As well, the Playback
Controls window appears. This contains four buttons: Stop playback ,
Start/Resume playback , Pause playback , and Step .

 6. If the Playback Controls window is not at the bottom of the screen, drag it to
the bottom, where the buttons are not obscured by the CICS session.

 7. If the CICS window is minimized, restore it to its normal size.

86 VisualAge 2000 Test Solution

 8. From the Playback Controls , click Start/Resume p layback , the arrow pointing
to the right.

Your converted transactions are now entered into the CICS session.

Sit back and watch the transactions flow!

When the playback has finished, ATP displays the message that the script
playback is completed.

 9. Click OK .

8.1.3 Ending the CICS Session
 1. In your CICS session, clear the window, then enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 2. Find the line starting Fil(EMPMST2).

 3. Look along this line to the second status word, which comes after Vsa.

 4. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

The status word changes to Clo (for Closed). The file is now available for
processing by other jobs.

 5. Press PF3 to exit the CEMT display.

 6. Clear the screen.

 7. Close the CICS session.

8.1.4 Viewing the Log File
The equivalent WITT Year2000 for Windows procedure is Steps 8 to 10 of B.4,
“Using WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Return to the MAIN.TSF - Playback window, and browse the log. Near the
bottom, ATP has indicated that for the Window_Compares, a compare
mismatch occurred. This is as expected, since the new CICS transaction
displays dates with YYYY instead of YY.

 2. Close the MAIN.TSF - Playback window. Click Yes to save the current log.

 3. Close ATP Manager.

The next tutorial shows you how to use ATP to visually compare the screens.

You have now updated the Employee Master file, creating the post-fix results,
ready for comparison with the baseline results.

8.2 Creating a Post-Fix Report
This job creates the report TARRPA2.REPORT, which is the Security Card Expiry
Dates report, for converted data.

The JCL is essentially the same as for TARRPA1, except that it uses a different
version of the master file, and the DFSORT parameters have been adjusted to
take into account the conversion of the data, and hence the conversion and
repositioning of fields.

 1. Execute job TARRPA2.

Chapter 8. Creating the Post-Fix Results 87

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report TARRPA2.REPORT.

The report should list six employees, starting with Drummond Rapper and
ending with Vi Sproika.

88 VisualAge 2000 Test Solution

Chapter 9. Comparing the Baseline Results with the Post-Fix Results

This process compares the baseline results with the post-fix test results, to
check that the Year 2000 code changes are not causing any problems with
pre-Year 2000 (current) dates.

Input Baseline and post-fix files, reports, and screen images

Output Comparisons of files, reports, and screen images

Figure 24 shows the process of comparing the baseline and post-fix master files.
SuperC compares sequential files, which is why the master files are first
converted from VSAM to sequential non-VSAM files.

┌───────────────┐
│ │
│ Baseline │
│ master files │ ┌────────────┐
│ │ │ Process │
└───────┬───────┘ ┌────────────────┐ │ statements │

� │ │ └─────────┬──┘
┌─────┴─────┐ │ Sequential │ │
│ File ├────�┤ distilled ├───┐ │
│ convertor │ │ master files │ │ �
└───────────┘ │ │ │ ┌───────┴──┐ ┌────────────┐

└────────────────┘ └───�┤ │ │ │
┌────────────────┐ │ SuperC ├────�┤ Comparison │
│ │ ┌───�┤ │ │ report │

┌───────────┐ │ Sequential │ │ └──────────┘ │ │
│ File ├────�┤ post-fix ├───┘ └────────────┘
│ convertor │ │ master files │
└─────┬─────┘ │ │

	 └────────────────┘
┌───────┴───────┐
│ │
│ Post-fix │
│ master files │
│ │
└───────────────┘

Figure 24. Comparing Baseline and Post-Fix Master Files

The process to compare reports is simpler, because the report files are already
sequential non-VSAM files. Figure 25 on page 90 shows this process.

 Copyright IBM Corp. 1997, 1998 89

┌────────────┐
│ Process │
│ statements │

┌────────────────┐ └─────────┬──┘
│ │ │
│ Baseline ├───┐ │
│ reports │ │ �
│ or screens │ │ ┌───────┴──┐ ┌────────────┐
│ │ └───�┤ │ │ │
└────────────────┘ │ SuperC ├────�┤ Comparison │
┌────────────────┐ ┌───�┤ │ │ report │
│ │ │ └──────────┘ │ │
│ Post-fix ├───┘ └────────────┘
│ reports │
│ or screens │
│ │
└────────────────┘

Figure 25. Comparing Baseline and Post-Fix Reports

You compare screen images captured by Auto Test Performer (ATP) by
observation. Figure 26 shows this process.

┌────────────────┐
│ │
│ Baseline ├───┐ ┌───────────┐ ┌─────────────┐
│ screens │ │ │ │ │ │
│ │ └───�┤ ATP │ Observation │ Discrepancy │
└────────────────┘ │ Image ├────────────────�┤ notes │
┌────────────────┐ ┌───�┤ Browser │ │ │
│ │ │ │ │ └─────────────┘
│ Post-fix ├───┘ └───────────┘
│ screens │
│ │
└────────────────┘

Figure 26. Comparing Baseline and Post-Fix Screen Images

9.1 Screen Comparisons - Auto Test Performer
This tutorial uses Auto Test Performer (ATP) to compare the baseline and
post-fix screen images.

The equivalent WITT Year2000 for Windows procedure is found at B.5, “Screen
Comparisons - WITT Year2000 for Windows” on page 138.

 1. Open ATP Manager, and display the contents of the TARTRANS testcase.

 2. Double-click the CICSONE group.

 3. Double-click the IMAGES icon, on the right side of the window.

The CICSONE - Images window appears.

 4. Select all the lines in the table (click on the first line, then hold down Shift
and click on the last line).

 5. Right-click on the highlighted lines.

 6. Select Compare .

 7. If the Screen image - Compare options dialog box appears, click OK .

90 VisualAge 2000 Test Solution

ATP compares Benchmark and Current images and displays the type of
difference (“TEXT”) in the Difference column.

 8. Right-click on the first l ine (Screen CICS0000).

 9. Select Browse .

ATP displays the CICS0000 - Browse window, and a screen image. The
screen image contains the details of the employee added to the master file
(Charles Rogers), just before updating.

10. Adjust the size of the window, so that it shows all of the image.

11. From the icon bar at the top of the window, click the Differences button.

ATP highlights the years for the dates. The current screen image differs from
the benchmark screen image at the highlighted areas. This difference is to
be expected, since the dates have been converted to include YYYY instead of
YY.

12. From the icon bar, click the Benchmark image button.

ATP shows the original screen image, where the years are only two digit.

13. From the icon bar, click the Current image button.

ATP shows the most recent screen image, where the years are four digit.

14. From the icon bar, click the Next image button.

ATP displays the screen image for the employee whose details were
changed (Mary Gardener).

15. Click the Differences button.

Once again, ATP highlights the differences. This time, ATP highlights more
than the years. It also highlights the second digit in the month and day, for
the SECURITY CARD EXPIRY date.

16. Click the Benchmark image button.

17. Note that the SECURITY CARD EXPIRY date is “06/07/96,” the same as the
TERMINATED date.

18. Click the Current image button.

19. Note that the SECURITY CARD EXPIRY date is “01/03/1998,” whereas the
TERMINATED date is “06/07/1996.”

Looks like there has been a problem in converting the code—the
comparisons have more than the expected differences.

Before attempting to track down the problem, complete looking at the other
comparisons.

20. Repeat the process of looking at differences, the benchmark, and the current
image, for the remaining images. Since the text images are essentially the
same as the graphic images, they provide the same answers.

21. Close the Browser window.

The CICSONE - Images window reappears.

The screen image comparison is complete.

At this point in the procedure, you would normally archive the images, which
moves the current images into the benchmark images, destroying the
benchmark images.

Chapter 9. Comparing the Baseline Results with the Post-Fix Results 91

However, the comparisons have shown a problem. The archive step is
delayed until this problem is resolved, and the comparisons provide the
desired result.

22. Close the CICSONE - Images window.

23. Close the ATP Manager window.

9.2 Data Comparisons - SuperC
 1. Execute job SUPERC1A.

This job compares the master files.

 2. Check the job output.

 3. If the job failed, determine the reason, correct, and resubmit. Do not reject
the job if the “SUPERC1A RUN” line shows an error code of 01.

The job produces the SuperC comparison report which includes the summary:

LINE COMPARE SUMMARY AND STATISTICS

13 NUMBER OF LINE MATCHES 1 TOTAL CHANGES (PAIRED+NONPAIRED CHNG) �1�
 0 REFORMATTED LINES 1 PAIRED CHANGES (REFM+PAIRED INS/DEL)
 1 NEW FILE LINE INSERTIONS 0 NON-PAIRED INSERTS
 1 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
14 NEW FILE LINES PROCESSED �5�
14 OLD FILE LINES PROCESSED �6�

Figure 27. SuperC Summary Output Comparing Disti l led and Post-Fix Master Files

Line �1� shows that 13 lines matched, and there was 1 paired change (1 set of
corresponding lines that did not match). Lines �5� and �6� show that there were
14 lines compared from each file.

The top of the SuperC report shows the records that did not match. This is the
information entered for Mary Gardener:

I - 0000430002MARY GARDENER 13/4 SILVER STREET BROKEN HILL
INFO Date cols 136:142 char 1990003 Comp=(1990003)
INFO Date cols 143:150 char 19960607 Comp=(1996 06 07)
INFO Date cols 155:158 packed 1964323 Comp=(1964323)
INFO Date cols 159:161 packed 98003 Comp=(1998003) �5T�

D - 0000430002MARY GARDENER 13/4 SILVER STREET BROKEN HILL
INFO Date cols 136:140 char 90003 Comp=(1990003)
INFO Date cols 141:146 char 960607 Comp=(1996 06 07)
INFO Date cols 152:156 char 64323 Comp=(1964323)
INFO Date cols 157:159 packed 96159 Comp=(1996159) �5B�

Figure 28. Details from the SuperC Record Comparison

Line �5T� (date cols 159:161) of the top record is different from line �5B� of the
bottom record.

These dates are the SECURITY CARD EXPIRY dates. The Julian date of 1998003
corresponds to 01/03/1998, and 1996159 corresponds to 06/07/1996. So SuperC is
reporting the same discrepancy as the ATP comparison.

92 VisualAge 2000 Test Solution

The bottom of the SuperC report, shows the SuperC process statements:

OY2C 136:140 YYDDD �1�
NY2C 136:142 YYYYDDD �2�
OY2C 141:146 YYMMDD,EMPTY �3�
NY2C 143:150 YYYYMMDD,EMPTY �4�
OEXCLUDE COLS 147:151 �5�
NEXCLUDE COLS 151:154 �6�
OY2C 152:156 YYDDD �7�
NY2P 155:158 YYYYDDD �8�
OY2P 157:159 YYDDD �9�
NY2P 159:161 YYDDD �10�
Y2Past 1900 �11�

Figure 29. SuperC Process Statements, Baseline to Post-Fix Data Comparison

These statements tell SuperC how to interpret dates.

• An “O” at the start of a statement (for example, lines �1� and �3�) indicates
the statement applies to the “old” file, and an “N” (for example, lines �2�
and �4�) that the statement applies to the “new” file.

• The “OY2C” and “NY2C” lines come in pairs, for example, the pair of lines
�1� and �2�, and the pair of lines �3� and �4�. They describe the column
locations of dates. For example, the first pair (�1� and �2�) tell SuperC to
compare a date of “YYDDD” starting in column 136 of the baseline master
file to a date of “YYYYDDD” starting in column 136 of the post-fix master file.
This is the “EMP-DATE-JOINED” field. See Appendix H, “Employee Master
File Descriptions” on page 165 for the legacy and converted Employee
Master file descriptions.

• The “EMPTY” keyword at the end of lines �3� and �4� indicates that the field
might be empty—this is the “EMP-DATE-TERMINATED” field.

• The OEXCLUDE and NEXCLUDE statements (lines �5� and �6�) tell SuperC to
exclude columns from the comparison. They exclude the MAINTENANCE
date. This is date when the records were last maintained. They are excluded
because they depend on when the updating tutorials were run. The
MAINTENANCE date is not used in any way in the sample system. If this date
were included, comparisons may fail.

• The last line (�11�) sets the window that SuperC uses to work out 2-digit year
dates. This line sets the window from 1900 to 1999.

9.3 Report Comparisons - SuperC
 1. Execute job SUPERC1B.

This job compares the two report files.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report output. This should show that 12 lines have matched. The
reports have produced the same results.

This SuperC job includes parameters to exclude the first two lines of each
report because the top two lines include the date and time that the report
was printed. This will be different each time the report is produced.

Chapter 9. Comparing the Baseline Results with the Post-Fix Results 93

The report lists only six records, but there are blank lines between each
report line, and SuperC compares all the lines in the report, even the blank
ones.

This comparison produced a perfect match, even though the comparison of the
master files did not. This comparison was only for employees still working. Mary
Gardener was no longer working (her record had a TERMINATED date). Her
record was not included in the comparison.

This job has only two process statements:

OEXCLUDE ROWS 1:2
NEXCLUDE ROWS 1:2

Figure 30. SuperC Process Statements, Baseline to Post-Fix Report Comparison

These two statements tell SuperC to exclude the first two rows, which are the
header rows for the reports. These are excluded because they include the run
date for the report.

9.4 Tracking Down the Bug
There are many methods that can be used to find the bug that has caused the
compares to fail.

These include:

• Using SuperC to compare the legacy and converted COBOL source
programs.

• Using Source Audit Assistant to compare the legacy and converted COBOL
source programs.

• Using Debug Tool to step through the program while it is running.

• More traditional methods, such as a code walk-through, or working from
listings and cross-references.

Just as detailed discussion of the methods of converting programs is outside the
scope of this Redbook, so is a detailed discussion of the methods used to debug
programs.

Using the methods suggested above, you will be able to find that the bug comes
from one line of code which is in the legacy program, but not in the converted
program. When a TERMINATED date is supplied, the line of code moves it to the
SECURITY CARD EXPIRY date.

The error occurs at line 414. Here is the segment of code that is in error:

94 VisualAge 2000 Test Solution

000406 IF TARDATE-MESSAGE NOT = SPACES THEN
000407 MOVE DFHBMASB TO TARM3XMTDATEA
000408 IF NOT ERRORS THEN
000409 SET ERRORS TO TRUE
000410 MOVE -1 TO TARM3XMTDATEL
000411 MOVE 5 TO WORK-MSG-CODE
000412 END-IF
000413 ELSE
000414 MOVE TARDATE-DATE-YYYYDDD TO WORK-TERMINATED-YYYYDDD
000415 IF WORK-TERMINATED-YYYYDDD < WORK-JOINED-YYYYDDD
000416 MOVE DFHBMASB TO TARM3XMJDATEA
000417 TARM3XMTDATEA
000418 IF NOT ERRORS THEN
000419 SET ERRORS TO TRUE
000420 MOVE -1 TO TARM3XMJDATEL
000421 MOVE 12 TO WORK-MSG-CODE
000422 END-IF
000423 END-IF
000424 END-IF

Figure 31. Segment of Code in Error in the Converted Program

Here is the segment of code with the line correctly inserted:

000406 IF TARDATE-MESSAGE NOT = SPACES THEN
000407 MOVE DFHBMASB TO TARM3XMTDATEA
000408 IF NOT ERRORS THEN
000409 SET ERRORS TO TRUE
000410 MOVE -1 TO TARM3XMTDATEL
000411 MOVE 5 TO WORK-MSG-CODE
000412 END-IF
000413 ELSE
000414 MOVE TARM3XMTDATEO TO TARM3XMSDATEO
000415 MOVE TARDATE-DATE-YYYYDDD TO WORK-TERMINATED-YYYYDDD
000416 IF WORK-TERMINATED-YYYYDDD < WORK-JOINED-YYYYDDD
000417 MOVE DFHBMASB TO TARM3XMJDATEA
000418 TARM3XMTDATEA
000419 IF NOT ERRORS THEN
000420 SET ERRORS TO TRUE
000421 MOVE -1 TO TARM3XMJDATEL
000422 MOVE 12 TO WORK-MSG-CODE
000423 END-IF
000424 END-IF
000425 END-IF

Figure 32. The Correct Code

For the purpose of the testing tutorials, the bug has been successfully isolated,
and you are ready to continue testing. The next step shows how to restart
testing.

Chapter 9. Comparing the Baseline Results with the Post-Fix Results 95

96 VisualAge 2000 Test Solution

Chapter 10. Restarting Testing

This process repeats the procedures from Chapter 8, “Creating the Post-Fix
Results” on page 85 and Chapter 9, “Comparing the Baseline Results with the
Post-Fix Results” on page 89. A different version of the CICS program is used,
and so the outcomes should be different.

Input Correctly converted program code, converted testbed, converted ATP
scripts

Output Post-fix master files, reports, and screen images, and comparisons of
these files, reports, and screen images

10.1 Restoring the Baseline
The building of the converted testbed has updated the master file. The file must
be restored so the data used gives the same result.

 1. Execute REXX procedure TARRON2.

This job restores EMP.MASTER.ONLINE2 to the converted file before update.

10.2 Playback and Screen Capture - Auto Test Performer
In this procedure Auto Test Performer (ATP) plays back the converted
transactions into a correctly converted CICS program.

10.2.1 Starting the CICS Session
 1. Start a CICS session.

You must now make sure that the Employee Master file is open for the
exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 3. Find the line starting Fil(EMPMST2).

You are still using the second version of the Employee Master file.

 4. Move the cursor to the second status word for this file, and type O, and then
press Enter.

The status word changes to Ope (for Open).

 5. Press PF3 to exit the CEMT display.

 6. Clear the screen.

 7. Start program NB3X (not NB03 or NB3E)

 Start program MB3X (not MB03 or MB3E)

 8. Make sure that Caps Lock is on.

When the screen is displaying the Employee Update window, your CICS session
is ready for you to enter data.

 Copyright IBM Corp. 1997, 1998 97

10.2.2 Using Auto Test Performer to Enter Transactions
The equivalent WITT Year2000 for Windows procedure is found at B.4, “Using
WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Start Auto Test Performer Manager.

ATP starts, and the Manager window appears.

 2. Click on the + sign at the left of the TARTRANS group icon.

The testcases are listed under the group.

 3. Double-click on the CICSONE testcase entry.

The right of the screen lists two scripts and other items.

 4. Right-click on the MAIN.TSF entry.

 5. Select Playback from the pop-up menu.

The log window appears.

 6. If the Playback Controls window is not at the bottom of the screen, drag it to
the bottom, where the buttons are not obscured by the CICS session.

 7. If the CICS window is minimized, restore it to its normal size.

 8. From the Playback Controls, click Start/Resume playback , the arrow pointing
to the right.

Your aged transactions are now entered into the CICS session.

When the playback has finished, ATP displays the message that the script
playback is completed.

 9. Click OK .

10.2.3 Ending the CICS Session
 1. In your CICS session, clear the window, then enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 2. Find the line starting Fil(EMPMST2).

 3. Look along this line to the second status word, which comes after Vsa.

 4. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

The status word changes to Clo (for Closed). The file is now available for
processing by other jobs.

 5. Press PF3 to exit the CEMT display.

 6. Clear the screen.

 7. Close the CICS session.

10.2.4 Viewing the Log File
The equivalent WITT Year2000 for Windows procedure is Steps 8 to 10 of B.4,
“Using WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Return to the MAIN.TSF - Playback window, and browse the log. Near the
bottom, ATP has indicated that for the Window_Compares, a compare
mismatch occurred.

98 VisualAge 2000 Test Solution

The current screen images are being compared with the baseline screen
images, so the screens are different because instead of YY, dates now
include YYYY.

 2. Close the MAIN.TSF - Playback window. Click Yes to save the current log.

 3. Close ATP Manager.

You have now updated the Employee Master file, creating the post-fix results,
ready for comparison with the baseline results.

10.3 Creating a Post-Fix Report
The report created last time compared correctly. However, for completeness, this
procedure is included. You can skip it if you wish, but in proper retesting, you
should redo every procedure.

 1. Execute job TARRPA2.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report TARRPA2.REPORT.

The report should list six employees, starting with Drummond Rapper and
ending with Vi Sproika.

10.4 Screen Comparisons - Auto Test Performer
This tutorial uses Auto Test Performer (ATP) to compare the baseline and
post-fix screen images.

The equivalent WITT Year2000 for Windows procedure is found at B.5, “Screen
Comparisons - WITT Year2000 for Windows” on page 138.

 1. Open ATP Manager, and display the contents of the TARTRANS testcase.

 2. Double-click the CICSONE group.

 3. Double-click the IMAGES icon, on the right side of the window.

The CICSONE - Images window appears.

 4. Select all the lines in the table.

 5. Right-click on the highlighted lines.

 6. Select Compare .

 7. If the Screen image - Compare options dialog box appears, click OK .

ATP compares Benchmark and Current images and displays the type of
difference (“TEXT”) in the Difference column.

 8. Right-click on the first l ine (Screen CICS0000).

 9. Select Browse .

ATP displays the CICS0000 - Browse window, and a screen image. The
screen image contains the details of the employee added to the master file
(Charles Rogers), just before updating.

10. Adjust the size of the window, so that it shows all of the image.

11. From the icon bar at the top of the window, click the Differences button.

Chapter 10. Restarting Testing 99

ATP highlights the years for the dates. The current screen image differs from
the benchmark screen image at the highlighted areas. This difference is to
be expected, since the dates have been converted to include YYYY instead of
YY.

12. From the icon bar, click the Benchmark image button.

ATP shows the original screen image, where the years are only two digit. For
example, the JOINED date is 08/14/97.

13. From the icon bar, click the Current image button.

ATP shows the most recent screen image, where the years are four digit. For
example, the JOINED date is now 08/14/1997.

14. From the icon bar, click the Next image button.

ATP displays the screen image for the employee whose details were
changed (Mary Gardener).

15. Click the Differences button.

Once again, ATP highlights the differences.

This time, ATP highlights only the years. The bug has been removed
successfully from the CICS program.

16. Look at the benchmark and current images, and the other screen images.

17. Close the Browser window.

The CICSONE - Images window reappears.

At this point, the screen image comparison is complete.

However, screen comparisons are always the current image against the
benchmark image. The benchmark images are baseline images. The next
screen image comparison is post-fix results against 19xx results. The
benchmark images must be removed:

18. Select all the lines in the table.

19. Right-click on the highlighted lines.

20. Select Archive .

21. When the reassurance question appears, click Yes .

The Current and Difference columns are cleared. The “Benchmark” images
are now the Post-fix images. If you wish, you can verify this by browsing the
images.

22. Close the Image window, and close ATP.

That completes the comparison of the screens.

10.5 Data Comparisons - SuperC
 1. Execute job SUPERC1A.

This job compares the master files.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit. Do not reject
the job if the “SUPERC1A RUN” line shows an error code of 01.

100 VisualAge 2000 Test Solution

The job produces the SuperC comparison report which includes the summary:

LINE COMPARE SUMMARY AND STATISTICS

14 NUMBER OF LINE MATCHES 0 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
 0 REFORMATTED LINES 0 PAIRED CHANGES (REFM+PAIRED INS/DEL)
 0 NEW FILE LINE INSERTIONS 0 NON-PAIRED INSERTS
 0 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
14 NEW FILE LINES PROCESSED
14 OLD FILE LINES PROCESSED

Figure 33. SuperC Summary Output for the Re-comparison

The top line shows that 14 lines matched—the comparison was completely
successful.

10.6 Report Comparisons - SuperC
 1. Execute job SUPERC1B.

This job compares the two report files.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report output. This should show that 12 lines have matched. The
reports have produced the same results.

The test results have now been successfully recreated to take into account the
correctly converted program. The next process builds the aged testbed.

Chapter 10. Restarting Testing 101

102 VisualAge 2000 Test Solution

Chapter 11. Building the Aged Testbed

This process creates a set of files adjusted to reflect the Year 2000 changes
made to the programs, and to include dates after 1999.

Input Converted testbed

Output Aged testbed

This process is similar to converting the distilled testbed to create the converted
testbed (Chapter 7, “Building the Converted Testbed” on page 79), replacing the
conversion routine with an aging routine.

The process is shown in Figure 34.

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ Converted │ │ Converted │ │ Converted │
│ transactions │ │ master files │ │ ATP script │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
� � �

┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐
│ │ │ │ │ │
│ Aging │ │ Aging │ │ Aging │
│ routine │ │ routine │ │ routine │
│ │ │ │ │ │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘

│ │ │
� � �

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ Aged │ │ Aged │ │ Aged │
│ transactions │ │ master files │ │ ATP script │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘

Figure 34. Aging the Converted Testbed to Produce the Aged Testbed

Since no transactions are used in the sample system, none need to be updated.

In this tutorial the ATP script and the master file are aged. This means that all
information is properly synchronized.

You may prefer to only age transactions. To do so may produce unwanted
side-effects, especially in the next stage, when you are running with a system
clock set to a date after 1999. For example, you may find that items are flagged
as “OVERDUE,” when really they are “CURRENT.” It is a matter of weighing the
inconvenience of aging master files against the inconvenience of having an
application produce unwanted results.

 Copyright IBM Corp. 1997, 1998 103

11.1 Creating a Testbed for Aging
Before you can age the converted testbed, you have to create a file for aging.

 1. Execute REXX procedure TARDVSM3.

This job creates EMP.MASTER.ONLINE3 from the backup of
EMP.MASTER.ONLINE2.

11.2 Aging the Master File
 1. Execute job TARAGE3T.

This job ages EMP.MASTER.ONLINE3, leaving the result in the same file.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

The job prints the aged master file, so that you can check the dates.

The JCL runs the program TARAGE3 to age all dates by the specified amount of
years, which is the first parameter—in this case “03” specified on line �A� of the
JCL (TARAGE3T) in Figure 35.

000012 //* RUN TARAGE3 PROGRAM
000013 //TARAGE3 EXEC PGM=TARAGE3
000014 //EMPMAST DD DSN=hlq.EMP.MASTER.ONLINE3,DISP=SHR
000015 //AGEPARM DD *
000016 03 0228 �A�

Figure 35. The Parameters to Control Aging

TARAGE3T ages a date by converting it from its storage format to the display
format of “MM/DD/YYYY,” then adding the specified number to the years, then
converting the date back to its storage format.

This approach runs into a problem when aging 29 February in a leap year to a
non-leap year, for example aging 02/29/96 by five years. The second parameter
on line �A� indicates how to handle this. This parameter has the value “0228,”
which means age 29 February to 28 February in a non-leap year. The parameter
could also be set to “0301,” which means to age the date to 1 March. If the
parameter is left blank, then an error occurs if there is an attempt to age 29
February to a non-leap year.

An internal parameter sets the location of the window for dealing with windowed
dates. For this system, the only windowed date is the security expiry date. The
window used is a sliding window, which covers 30 years to the past, and 70
years to the future.

There are some security expiry dates which fall before the 30 year period.
However, these dates apply only to employees from a long time ago. The report
program that uses the security expiry date only looks at current employees, and
for these employees, the security expiry date falls comfortably within the
window. Strictly speaking, the information about long-gone employees should be
removed from the current Employee Master file, and archived.

104 VisualAge 2000 Test Solution

11.3 Backing up the Aged Master File
This job backs up the aged master file into a file called hlq.EMP.MASTON3.BACK

 1. Execute REXX procedure TARBON3.

11.4 Aging the Auto Test Performer Script File
The equivalent WITT Year2000 for Windows procedure is found at B.6, “Aging the
WITT Year2000 for Windows Script File” on page 140.

The ATP script file also needs aging, so that the transactions that are entered
online are synchronized with the data from the master file.

The REXX routine TARADJST ages the dates in the script:

 1. Open an OS/2 window.

 2. Change to the ATP directory that holds the script file (for example,
d:vaatptartranscicsone).

 3. Rename the MAIN.TSF file to CONV.TSF; type rename main.tsf conv.tsf and
press Enter.

 4. Start the TARADJST Rexx procedure; type vataradjst and press Enter.

 5. Enter the FULL source file name: CONV.TSF

 6. Enter the source date format: MM/DD/YYYY

 7. Enter the FULL target file name: MAIN.TSF

 8. Enter the target date format: MM/DD/YYYY

 9. Enter the number of years to age dates: 3

This ages the transactions three years, the same number of years as the
master file data is aged.

The routine creates the file MAIN.TSF. This is identical to the original file,
except that the years in dates are now three years “older.” For example, the
date “02/28/1997” becomes “02/28/2000.”

The message indicates that it has aged 8 records, which are the records
containing dates.

10. Close the OS/2 window.

This script file is used in Chapter 12, “Creating the 19xx Results” on page 107,
and in Chapter 14, “Creating the 20xx Results” on page 117.

Chapter 11. Building the Aged Testbed 105

106 VisualAge 2000 Test Solution

Chapter 12. Creating the 19xx Results

This process creates a set of 19xx results, which are compared with the post-fix
results (from Chapter 8, “Creating the Post-Fix Results” on page 85) and with
the 20xx results (from Chapter 14, “Creating the 20xx Results” on page 117).
The 19xx results reflect the state of the system after code has been changed to
handle Year 2000 dates, and dates beyond 1999 have been included in the data.
The results are produced by running programs “today.”

Input Converted program code, aged testbed, aged ATP scripts

Output 19xx master files, reports, and screen images

This process is shown in Figure 36, and is the same as that for creating the
post-fix results. The files used to drive the process are the aged files, in which
at least some dates are now in 20xx.

┌────────────────┐ ┌────────────────┐
│ │ │ │
│ Aged ├───┐ ┌──────�┤ 19xx date │
│ transactions │ │ │ │ reports │
│ │ │ │ │ │
└────────────────┘ │ │ └────────────────┘
┌────────────────┐ │ ┌──────────────┐ │ ┌────────────────┐
│ │ └───�┤ ├───┘ │ │
│ Aged ├───────�┤ Converted ├──────────�┤ 19xx date │
│ master files │ │ code (today) │ │ master files │
│ │ │ │─ ─ ┐ │ │
└────────────────┘ └─┬────────────┘ │ └────────────────┘

	 │ │
┌ ─ ─ ─ ─ ─ ─ ─ ─┐ └ ─ ─�┤ ATP │ ┌ ─ ─ ─ ─ ─ ─ ─ ─┐
│ │ │ Playback │ │ │
│ Aged ├─ ─ ─ ─ ─ ─ ─ ─�┤ ├─ ─ ─�┤ ATP playback │
│ ATP script │ └ ─ ─ ─ ─ ─ ┘ │ 19xx date │
│ │ │ screens │
└ ─ ─ ─ ─ ─ ─ ─ ─┘ │ │

└ ─ ─ ─ ─ ─ ─ ─ ─┘

Figure 36. Creating the 19xx Results

12.1 Playback and Screen Capture - Auto Test Performer
This process is identical to the process used to create the post-fix results. The
output is different only because the input is different.

This time Auto Test Performer (ATP) does the hard work. And, of course, the
CICS program that is running is the converted program.

12.1.1 Starting the CICS Session
 1. Start a CICS session.

You must now make sure that the Employee Master file is open for the
exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

 Copyright IBM Corp. 1997, 1998 107

The list of files starting with EMP appears.

For OS/390:

a. Find the line starting Fil(EMPMST2).

The file is pointing to the second version of the Employee Master file,
and not the third. This must be changed.

b. Move the cursor to next line, and overtype the final digit, so that the DSN
now reads hlq.EMP.MASTER.ONLINE3

 c. Press Enter.

d. Move the cursor to the second status word for this file, and type O, and
then press Enter.

The status word changes to Ope (for Open).

Figure 37 shows the CEMT file list at the end of this procedure.

 I FI (EMP*)
 STATUS: RESULTS - OVERTYPE TO MODIFY
Fil(EMPMAST) Vsa Clo Une Rea Upd Add Bro Del Sha

Dsn(hlq.EMP.MASTER.ONLINE)
Fil(EMPMST2) Vsa Ope Ena Rea Upd Add Bro Del Sha NORMAL

Dsn(hlq.EMP.MASTER.ONLINE3)

Figure 37. The CEMT File List for OS/390

For VSE:

a. Find the line starting Fil(EMPMST3).

b. Move the cursor to the second status word for this file, and type O, and
then press Enter.

The status word changes to Ope (for Open).

 c. Check the status of the other EMPMSTX files, and make sure that they
are all closed. Close them if you need to.

Figure 38 shows the CEMT file list at the end of this procedure.

 I FI (EMP*)
 STATUS: RESULTS - OVERTYPE TO MODIFY
Fil(EMPMAST) Vsa Clo Ena Rea Upd Add Bro Del
Fil(EMPMST2) Vsa Clo Ena Rea Upd Add Bro Del
Fil(EMPMST3) Vsa Ope Ena Rea Upd Add Bro Del
Fil(EMPMST4) Vsa Clo Ena Rea Upd Add Bro Del

Figure 38. The CEMT File List for VSE

 3. Press PF3 to exit the CEMT display.

 4. Clear the screen.

 5. Start program NB3X

 Start program MB3X

 6. Make sure that Caps Lock is on.

When the screen is displaying the Employee Update window, your CICS session
is ready for you to enter data.

108 VisualAge 2000 Test Solution

12.1.2 Using Auto Test Performer to Enter Transactions
The equivalent WITT Year2000 for Windows procedure is found at B.4, “Using
WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Start Auto Test Performer Manager.

ATP starts, and the Manager window appears.

 2. Click on the + sign at the left of the TARTRANS group icon.

The testcases are listed under the group.

 3. Double-click on the CICSONE testcase entry.

The right of the screen lists three scripts and other items.

 4. Right-click on the MAIN.TSF entry.

 5. Select Playback from the pop-up menu.

 6. If the Playback Controls window is not at the bottom of the screen, drag it to
the bottom, where the buttons are not obscured by the CICS session.

 7. If the CICS window is minimized, restore it to its normal size.

 8. From the Playback Controls, click Start/Resume playback .

ATP enters the recorded transactions into the CICS session.

When the playback has finished, ATP displays the message that the script
playback is completed.

 9. Click OK .

12.1.3 Ending the CICS Session
 1. In your CICS session, clear the window, then enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 2. For OS/390:

• Find the line starting Fil(EMPMST2).

For VSE:

• Find the line starting Fil(EMPMST3).

 3. Look along this line to the second status word, which comes after Vsa.

 4. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

The status word changes to Clo (for Closed). The file is now available for
processing by other jobs.

 5. Press PF3 to exit the CEMT display.

 6. Clear the screen.

 7. Close the CICS session.

Chapter 12. Creating the 19xx Results 109

12.1.4 Viewing the Log File
The equivalent WITT Year2000 for Windows procedure is Steps 8 to 10 of B.4,
“Using WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Return to the MAIN.TSF - Playback window, and browse the log. Near the
bottom, ATP has indicated that for the Window_Compares, a compare
mismatch occurred. This is as expected, since the dates have all had 3
added to the year.

 2. Close the MAIN.TSF - Playback window. Click Yes to save the current log.

 3. Close ATP Manager.

The next tutorial shows you how to use ATP to visually compare the screens.

You have now updated the Employee Master file, creating the 19xx results, ready
for comparison with the post-fix results.

12.2 Creating a 19xx Report
This job creates the report TARRPA3.REPORT, which is the Security Card Expiry
Dates report, for aged data.

The JCL is the same as for TARRPA2, except that it uses a different version of
the master file.

 1. Execute job TARRPA3.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report TARRPA3.REPORT.

The report should list six employees, starting with Drummond Rapper and
ending with Vi Sproika. Note that the dates now show a year of “01” and
“02,” compared with previous reports showing “98” and “99.”

110 VisualAge 2000 Test Solution

Chapter 13. Comparing the Post-Fix Results with the 19xx Results

This process compares the post-fix results with the 19xx results, to check that
running Year 2000 dates through the system is not causing any problems.

Input Post-fix and 19xx files, reports, and screen images

Output Comparisons of files, reports, and screen images

Figure 39 shows the process of comparing the post-fix results and the 19xx
results.

┌───────────────┐
│ │
│ Post-fix │
│ master files │ ┌────────────┐
│ │ │ Process │
└───────┬───────┘ ┌────────────────┐ │ statements │

� │ │ └─────────┬──┘
┌─────┴─────┐ │ Sequential │ │
│ File ├────�┤ post-fix ├───┐ │
│ convertor │ │ master files │ │ �
└───────────┘ │ │ │ ┌───────┴──┐ ┌────────────┐

└────────────────┘ └───�┤ │ │ │
┌────────────────┐ │ SuperC ├────�┤ Comparison │
│ │ ┌───�┤ │ │ report │

┌───────────┐ │ Sequential │ │ └──────────┘ │ │
│ File ├────�┤ 19xx ├───┘ └────────────┘
│ convertor │ │ master files │
└─────┬─────┘ │ │

	 └────────────────┘
┌───────┴───────┐
│ │
│ 19xx │
│ master files │
│ │
└───────────────┘

Figure 39. Comparing Post-Fix and 19xx Master Files

13.1 Screen Comparisons - Auto Test Performer
This tutorial uses Auto Test Performer (ATP) to compare the post-fix and 19xx
screen images.

The equivalent WITT Year2000 for Windows procedure is found at B.5, “Screen
Comparisons - WITT Year2000 for Windows” on page 138.

 1. Open ATP Manager, and display the contents of the CICSONE testcase.

 2. Double-click the IMAGES icon.

The CICSONE - Images window appears.

 3. Select all the lines in the table.

 4. Right-click on the highlighted lines.

 5. Select Compare .

 6. If the Screen image - Compare options dialog box appears, click OK .

 Copyright IBM Corp. 1997, 1998 111

ATP compares Benchmark and Current images and displays the type of
difference (“TEXT”) in the Difference column.

 7. Right-click on the first l ine (Screen CICS0000).

 8. Select Browse .

ATP displays the CICS0000 - Browse window, and a screen image. The
screen image contains the details of the employee added to the master file
(Charles Rogers), just before updating.

 9. Adjust the size of the window, so that it shows all of the image.

10. From the icon bar at the top of the window, click the Differences button.

ATP highlights the years for the dates. The current screen image differs from
the benchmark screen image at the highlighted areas.

For three dates, the four digits of the year are highlighted, since the century
has changed from “19” to “20.” For the fourth date, the birthdate, only the
last two digits are highlighted, since the century has not changed.

11. From the icon bar, click the Benchmark image button.

ATP shows the original screen image, where the years are not aged.

12. From the icon bar, click the Current image button.

ATP shows the most recent screen image, where the years are aged.

13. From the icon bar, click the Next image button.

ATP displays the screen image for the employee whose details were
changed (Mary Gardener).

14. Repeat the process of looking at differences between the benchmark and the
current image.

In this case, only the last digit of the year is highlighted, because this is the
only digit which changed when the information was aged.

15. Close the Browser window.

The CICSONE - Images window reappears.

The screen image comparison is complete, but the images have to be
archived, so that the next ATP comparison will use the correct benchmark
images.

16. Select all the lines in the table.

17. Right-click on the highlighted lines.

18. Select Archive .

19. When the reassurance question appears, click Yes .

The Current and Difference columns are cleared. The “Benchmark” images
are now the Post-fix images.

20. Close the Image window, and close ATP.

That completes the comparison of the screens.

112 VisualAge 2000 Test Solution

13.2 Data Comparisons - SuperC
 1. Execute job SUPERC2A.

This job compares the master files. The job is similar to SUPERC1A except
that the parameters have been changed to reflect the different structure of
the files, and the OY2AGE parameter ages the dates in the old file by 3
years.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit. Do not reject
the job if the “SUPERC2A RUN” line shows an error code of 01.

The job produces the SuperC comparison report, which includes the summary:
table (Figure 40).

LINE COMPARE SUMMARY AND STATISTICS

 0 NUMBER OF LINE MATCHES 14 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
 0 REFORMATTED LINES 14 PAIRED CHANGES (REFM+PAIRED INS/DEL)
14 NEW FILE LINE INSERTIONS 0 NON-PAIRED INSERTS
14 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
14 NEW FILE LINES PROCESSED
14 OLD FILE LINES PROCESSED

Figure 40. SuperC Summary Output Comparing Post-Fix and 19xx Master Files

Looks like something has gone badly wrong. This output shows that there were
no matches. There were problems with all 14 records!

Look carefully at the detailed output—you may find that it is easier to examine if
you print the output report.

The output pairs records. Lines �1� to �6� pertain to the new record for Henry
Stacker, and lines �7� to �12� lines pertain to the old record for Henry Stacker.

Figure 41 shows the first set of lines, the information for Henry Stacker.

I - 0000260001HENRY STACKER 14 CARGO COURT �1�
INFO Date cols 136:142 char 1973015 Comp=(1973015) �2�
INFO Date cols 143:150 char 19990130 Comp=(1999 01 30) �3�
INFO Date cols 151:154 packed 2000218 Comp=(2000218) �4�
INFO Date cols 155:158 packed 1951059 Comp=(1951059) �5�
INFO Date cols 159:161 packed 01015 Comp=(2001015) �6�

D - 0000260001HENRY STACKER 14 CARGO COURT �7�
INFO Date cols 136:142 char 1970015 Comp=(1973015) �8�
INFO Date cols 143:150 char 19960130 Comp=(1999 01 30) �9�
INFO Date cols 151:154 packed 1997217 Comp=(2000217) �10�
INFO Date cols 155:158 packed 1948060 Comp=(1951060) �11�
INFO Date cols 159:161 packed 98015 Comp=(2001015) �11�

Figure 41. The SuperC Details for Henry Stacker

The “Comp=” at the end of each line tells you how SuperC is interpreting the
date, taking into account the description of each field, and any aging that has to
be applied.

Chapter 13. Comparing the Post-Fix Results with the 19xx Results 113

The first date “1973015” (lines �1� and �7�) is the same for both records, and the
second date, “1999 01 30” (lines �2� and �8�), is also the same for both records.
But the third date is “2000218” for the new record (line �3�), and “2000217” for
the old record (line �9�). Likewise, the fourth date (lines �4� and �10�) differs by
1.

The explanation of this behavior lies in the way that the aging routine works. It
ages all dates by converting them to a YYYY-MM-DD format, then adding three
(the supplied parameter) to the year, then converting back to the storage format
of the date. The problem arises when either the old or the new date fell in a leap
year after 29 February, and the date is stored in a Julian format, “YYYYDDD.”
The number of days then differ by one, the leap “day,” which is missing from
one of the years but not the other.

If you work through all the records, you will find that the second date always
compares correctly, because it is stored as “YYYYMMDD.” You will also find that
the third date is wrong by three years for Mary Gardener and Charles Rogers.
This is because this is the maintenance date. In this comparison, the
maintenance date has not been excluded from the comparison, as it was for the
baseline to post-fix comparison.

For more discussion about dates, see Appendix A, “Other Matters to Consider
Before You Test” on page 129.

The SuperC process statements are:

OY2C 136:142 YYYYDDD
NY2C 136:142 YYYYDDD
OY2C 143:150 YYYYMMDD,EMPTY
NY2C 143:150 YYYYMMDD,EMPTY
OY2P 151:154 YYYYDDD
NY2P 151:154 YYYYDDD
OY2P 155:158 YYYYDDD
NY2P 155:158 YYYYDDD
OY2P 159:161 YYDDD
NY2P 159:161 YYDDD
Y2PAST 1903 �11�
OY2AGE 3 �12�

Figure 42. SuperC Process Statements, Post-Fix to 19xx Data Comparison

• Pairs of statements for the old and new file describe the location and format
of the dates as being identical. The comparison is between two files that
have converted dates.

• The last statement, “OY2AGE” on line �12�, tells SuperC to age old dates by
three years. So SuperC compares 1997 with 2000, and finds that they are
equal.

• The “Y2Past” statement (line �11�) applies to dates with unexpanded years,
which in this case is the SECURITY-EXP date. The window of 1903 to 2002
safely covers the dates for active employees.

The failure to match records illustrates the difficulties faced in Year 2000 testing.
The matching failed for two reasons:

• When dates are held as “YYDDD,” then the number of days may change
when switching between leap years and non-leap years.

114 VisualAge 2000 Test Solution

• When system dates are stored as data items, they are not be aged, although
other information is.

When you find that records fail to match, you cannot assume that there are
problems with your converted programs. Instead, you will have to try and work
out the reasons for the mismatch, and decide whether the mismatches come
from programs or testing methods.

13.3 Report Comparisons - SuperC
 1. Execute job SUPERC2B.

This job compares the Post-Fix and 19xx report files. The compare job is
similar to SUPERC1B, but uses a Year 2000 feature, to age Post-Fix dates
before comparing them with 19xx dates.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report output. This should show that 12 lines have matched. The
reports have produced the same results.

The SuperC process statements are:

OEXCLUDE ROWS 1:2 �1�
NEXCLUDE ROWS 1:2 �2�
OY2AGE 3 �3�
Y2PAST 1903 �4�
OY2C 12:19 MM/DD/YY �5�
NY2C 12:19 MM/DD/YY �6�

Figure 43. SuperC Process Statements, Post-Fix to 19xx Report Comparison

By describing the expiry date (lines �5� and �6�), it is possible to age the old
date three years (line �3�), and then compare identical dates. Lines �1� and �2�
exclude the heading line, and line �4� sets the window for the dates (from 1903
to 2002).

Chapter 13. Comparing the Post-Fix Results with the 19xx Results 115

116 VisualAge 2000 Test Solution

Chapter 14. Creating the 20xx Results

This process creates a set of 20xx results, which can be compared with the 19xx
results (from Chapter 12, “Creating the 19xx Results” on page 107). The 20xx
results reflect the final state of the system. Code has been changed to handle
Year 2000 dates, dates beyond 1999 have been included in the data, and the
system is run with the system clock set beyond 1999.

Input Converted program code, aged testbed, aged ATP scripts, system
clock set in 20xx

Output 20xx master files, reports, and screen images

This process, shown in Figure 44, is similar to that used to create the 19xx
results.

The only difference is that the system clock is advanced to a date beyond 1999. If
your application makes use of the system clock, then the advance in the system
date should be the same as the number of years by which dates were aged.

┌───┐
│ │
│ ┌────────────────┐ System clock ┌────────────────┐ │
│ │ │ aging tool │ │ │
│ │ Aged ├───┐ ┌──────�┤ 20xx date │ │
│ │ transactions │ │ │ │ reports │ │
│ │ │ │ │ │ │ │
│ └────────────────┘ │ │ └────────────────┘ │
│ ┌────────────────┐ │ ┌────────────┐ │ ┌────────────────┐ │
│ │ │ └───�┤ ├───┘ │ │ │
│ │ Aged ├───────�┤ Converted ├──────────�┤ 20xx date │ │
│ │ master files │ │ code (20xx)│ │ master files │ │
│ │ │ │ │─ ─ ┐ │ │ │
│ └────────────────┘ └─┬──────────┘ │ └────────────────┘ │
│ 	 │ │ │
│ ┌ ─ ─ ─ ─ ─ ─ ─ ─┐ └ ─�┤ ATP │ ┌ ─ ─ ─ ─ ─ ─ ─ ─┐ │
│ │ │ │ Playback │ │ │ │
│ │ Aged ├─ ─ ─ ─ ─ ─ ─�┤ ├─ ─ ─�┤ ATP playback │ │
│ │ ATP script │ └ ─ ─ ─ ─ ─ ┘ │ 20xx date │ │
│ │ │ │ screens │ │
│ └ ─ ─ ─ ─ ─ ─ ─ ─┘ │ │ │
│ └ ─ ─ ─ ─ ─ ─ ─ ─┘ │
│ │
└───┘

Figure 44. Creating the 20xx Results

14.1 Creating a Testbed for 20xx Testing
The current testbed has been converted and aged, and is ready for updating.
However, you can not use the current version of the Employee Master file, since
it has already been updated. Instead you must create a version prior to updating.

 1. Execute REXX procedure TARDVSM4.

This job creates EMP.MASTER.ONLINE4 from the backup of
EMP.MASTER.ONLINE3.

 Copyright IBM Corp. 1997, 1998 117

You do not need to process this file any more because it is ready for updating.
Neither do you need to back it up, since the file hlq.EMP.MASTON3.BACK is
adequate.

Neither do you need to process the Auto Test Performer (ATP) script file any
more because it is ready to run.

14.2 Date Simulation
At this point, you must now change the system date so that it falls beyond 1999.

If you are running the tutorials on an independent computer, the easiest way to
change the system date is to IPL the computer, and start it with a new date.
Make sure that this computer is completely separate from any production
systems. You do not want a change of date compromising the integrity of
production systems.

An alternative is to use a tool that simulates a different date. One such tool is
TICTOC (IBM product order number 5620-BFV). TICTOC makes it possible to
specify a virtual date to one job or a generic group of jobs, through an ISPF
interface or through simple JCL in the job at execution.

There are other products available which simulate a different date. If you have
one of these, you may prefer to use it. The same warning applies—do not
compromise the integrity of a production computer.

Whatever means you use, make sure that the computer is running with a year of
2000 for this tutorial.

When you are testing your own applications, make sure that you age the system
clock date the same amount as you have aged the dates in your files. For
example, if you are converting programs in 1998, and you age dates by 4 years,
set your system clock date to 2002.

14.3 Playback and Screen Capture - Auto Test Performer
This process is identical to the process used to create the 19xx results.

14.3.1 Starting the CICS Session
 1. Start a CICS session.

You must now make sure that the Employee Master file is open for the
exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

For OS/390:

a. Find the line starting Fil(EMPMST2).

The file is pointing to the third version of the Employee Master file, and
not the fourth. This must be changed.

b. Move the cursor to next line, and overtype the final digit, so that the DSN
now reads hlqEMP.MASTER.ONLINE4

118 VisualAge 2000 Test Solution

 c. Press Enter.

d. Move the cursor to the second status word for this file, and type O, and
then press Enter.

The status word changes to Ope (for Open).

For VSE:

a. Find the line starting Fil(EMPMST4).

b. Move the cursor to the second status word for this file, and type O, and
then press Enter.

The status word changes to Ope (for Open).

 c. Check the status of the other EMPMSTX files, and make sure that they
are all closed. Close them if you need to.

 3. Press PF3 to exit the CEMT display.

 4. Clear the screen.

 5. Start program NB3X

 Start program MB3X

 6. Make sure that Caps Lock is on.

When the screen is displaying the Employee Update window, your CICS session
is ready for you to enter data.

14.3.2 Using Auto Test Performer to Enter Transactions
The equivalent WITT Year2000 for Windows procedure is found at B.4, “Using
WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Start Auto Test Performer Manager.

ATP starts, and the Manager window appears.

 2. Click on the + sign at the left of the TARTRANS group icon.

The testcases are listed under the group.

 3. Double-click on the CICSONE testcase entry.

The right of the screen lists four scripts and other items.

 4. Right-click on the MAIN.TSF entry.

 5. Select Playback from the pop-up menu.

 6. If the Playback Controls window is not at the bottom of the screen, drag it to
the bottom, where the buttons are not obscured by the CICS session.

 7. If the CICS window is minimized, restore it to its normal size.

 8. From the Playback Controls, click Start/Resume playback .

Your aged transactions are now entered into the CICS session.

When the playback has finished, ATP displays the message that the script
playback is completed.

 9. Click OK .

Chapter 14. Creating the 20xx Results 119

14.3.3 Ending the CICS Session
 1. In your CICS session, clear the window, then enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 2. For OS/390:

• Find the line starting Fil(EMPMST2).

For VSE:

• Find the line starting Fil(EMPMST4).

 3. Look along this line to the second status word, which comes after Vsa.

 4. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

The status word changes to Clo (for Closed). The file is now available for
processing by other jobs.

 5. Press PF3 to exit the CEMT display.

 6. Clear the screen.

 7. Close the CICS session.

14.3.4 Viewing the Log File
The equivalent WITT Year2000 for Windows procedure is Steps 8 to 10 of B.4,
“Using WITT Year2000 for Windows to Enter Transactions” on page 137.

 1. Return to the MAIN.TSF - Playback window, and browse the log. There
should be no evidence of compare mismatches.

 2. Close the MAIN.TSF - Playback window. Click Yes to save the current log.

 3. Close ATP Manager.

The next tutorial shows you how to use ATP to visually compare the screens.

You have now updated the Employee Master file, creating the 20xx results, ready
for comparison with the 19xx results.

14.4 Creating a 20xx Report
This job creates the report TARRPA4.REPORT, which is the Security Card Expiry
Dates report.

The JCL is the same as for TARRPA3, except that it uses a different version of
the master file.

 1. Execute job TARRPA4.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report TARRPA4.REPORT.

The report should list six employees, starting with Drummond Rapper and
ending with Vi Sproika. Note that the dates now show a year of “01” and
“02.”

120 VisualAge 2000 Test Solution

14.5 Returning the Date to Today
At this point you should arrange for the system clock to be reset to the present
day. The remaining tutorials can be carried out without reference to the system
date.

Chapter 14. Creating the 20xx Results 121

122 VisualAge 2000 Test Solution

Chapter 15. Comparing the 19xx Results with the 20xx Results

This process compares the 19xx results with the 20xx results, to check that
running dates beyond 1999 through the system at a future time is not causing
any problems.

Input 19xx and 20xx files, reports, and screen images

Output Comparisons of files, reports, and screen images

Figure 45 shows the process of comparing the 19xx and 20xx master files.

┌───────────────┐
│ │
│ 19xx result │
│ master files │ ┌────────────┐
│ │ │ Process │
└───────┬───────┘ ┌────────────────┐ │ statements │

� │ │ └─────────┬──┘
┌─────┴─────┐ │ Sequential │ │
│ File ├────�┤ 19xx ├───┐ │
│ convertor │ │ master files │ │ �
└───────────┘ │ │ │ ┌───────┴──┐ ┌────────────┐

└────────────────┘ └───�┤ │ │ │
┌────────────────┐ │ SuperC ├────�┤ Comparison │
│ │ ┌───�┤ │ │ report │

┌───────────┐ │ Sequential │ │ └──────────┘ │ │
│ File ├────�┤ 20xx ├───┘ └────────────┘
│ convertor │ │ master files │
└─────┬─────┘ │ │

	 └────────────────┘
┌───────┴───────┐
│ │
│ 20xx result │
│ master files │
│ │
└───────────────┘

Figure 45. Comparing 19xx and 20xx Master Files

This process is the “cleanest” comparison, in that the result files should be
identical. There is no need to make allowances for dates stored in different
formats, or dates that are aged or not, because the process is comparing dates
of the same format and same age.

The only possible difference in dates is the MAINTAINED date.

15.1 Screen Comparisons - Auto Test Performer
This tutorial uses Auto Test Performer (ATP) to compare the 19xx and 20xx
screen images.

The equivalent WITT Year2000 for Windows procedure is found at B.5, “Screen
Comparisons - WITT Year2000 for Windows” on page 138.

 1. Open ATP Manager, and display the contents of the CICSONE testcase.

 2. Double-click the IMAGES icon.

The CICSONE - Images window appears.

 Copyright IBM Corp. 1997, 1998 123

 3. Note that there are no entries in the “Current ” column.

There are no entries in this column, because the images that were snapped
were identical to the benchmark images. The screens for 20xx are the same
as those for 19xx.

 4. Close the Image window, and close ATP.

That completes the comparison of the screens.

15.2 Data Comparisons - SuperC
 1. Execute job SUPERC3A.

This job compares the master files and is similar to SUPERC2A. The
differences are:

• It uses different input files.

• The OY2AGE parameter has been removed, because both files have
been aged by the same amount (3 years).

• The OEXCLUDE and NEXCLUDE parameters remove comparison of
columns 151 to 154. This removes the MAINTAINED date from the
comparison.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

The job produces the SuperC comparison report which includes the summary:

LINE COMPARE SUMMARY AND STATISTICS

14 NUMBER OF LINE MATCHES 0 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
 0 REFORMATTED LINES 0 PAIRED CHANGES (REFM+PAIRED INS/DEL)
 0 NEW FILE LINE INSERTIONS 0 NON-PAIRED INSERTS
 0 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
14 NEW FILE LINES PROCESSED
14 OLD FILE LINES PROCESSED

Figure 46. SuperC Summary Output Comparing 19xx and 20xx Master Files

This table shows that every data item has matched.

The SuperC process statements are:

OEXCLUDE COLS 151:154
NEXCLUDE COLS 151:154

Figure 47. SuperC Process Statements, 19xx to 20xx Data Comparison

For this comparison everything should be the same, except possibly for the
maintenance date, and so the two SuperC process statements exclude the
maintenance date.

There is one potential problem with this approach. If the comparison fails, it will
be difficult to work out the dates that were being compared. If this happens, you
may prefer to describe the dates fully to SuperC.

124 VisualAge 2000 Test Solution

15.3 Report Comparisons - SuperC
 1. Execute job SUPERC3B.

This job compares the 19xx and 20xx report files.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report output. This should show that 12 lines have matched. The
reports have produced the same results.

The SuperC process statements are:

OEXCLUDE ROWS 1:2
NEXCLUDE ROWS 1:2

Figure 48. SuperC Process Statements, 19xx to 20xx Report Comparison

These process statements exclude the header lines.

Congratulations. You have completed the main tutorials for the Year 2000 test
solution.

If you have not yet worked through the Debug Tool tutorials, you may wish to
return to these, at 5.8, “Using Debug Tool to Check Coverage” on page 57 and
5.10, “Using Debug Tool to Build a Distilled Key List” on page 63.

The tutorials are designed so that they can be repeated again and again. Don′ t
install from the CD-ROM; just return to Chapter 5, “Developing Path Coverage
and Distilling the Testbed” on page 37 or Chapter 6, “Creating the Baseline
Results” on page 69, and start again.

Chapter 15. Comparing the 19xx Results with the 20xx Results 125

126 VisualAge 2000 Test Solution

Part 3. Appendixes

 Copyright IBM Corp. 1997, 1998 127

128 VisualAge 2000 Test Solution

Appendix A. Other Matters to Consider Before You Test

This appendix briefly outlines some further matters that you should be aware of
when you start planning your Year 2000 testing.

A.1 Critical Dates
When you are dealing with dates, you have to distinguish between two types of
dates:

• System dates

• Dates stored as data

For system dates, there are two “must-test” dates. These are 31 December 1999,
rolling over into 1 January 2000, and 28 February 2000, rolling over into 29
February 2000—2000 is a leap year. If you can run your system spanning these
two times, you should do so.

For data dates, there are many more possibilities. The following dates are a
minimum to test:

• 31 December 1999

• 1 January 2000

• 28 February 2000

• 29 February 2000

• 1 March 2000

• 31 December 2000

• 1 January 2001

• 31 December 2001

• 1 January 2002

However, for some of your systems, there may be other dates that are relevant.
For example, you may want to include the end and beginning of your financial
year, the end and beginning of financial quarters, dates when you send out
statements, the first of each month, and so on.

As you develop path coverage of programs, you should find dates that have
special relevance to your business. However, such dates may not reside in the
programs that perform the every-day tasks of your business. They are more
likely to reside in the special programs that are run every now and then, for
example, programs that handle end-of-period processing.

A.2 Including Dates to Allow for Coverage After Conversion
A coverage tool provides the means to check that you have the maximum test
coverage for programs.

When you apply the coverage tool to a legacy program, you are developing
coverage for the program before conversion. But when you convert the
program, it is possible that you increase the number of nodes in the program.

 Copyright IBM Corp. 1997, 1998 129

This applies particularly if you are using windowing since you have to include
code that determines to which century the date belongs, based on the current
window.

The data that you use to provide maximum coverage for the legacy program may
no longer provide maximum coverage for the converted program.

After you develop the maximum coverage for a legacy program or system, you
should add records to test the converted code fully. These dates are not
required for coverage of the legacy system, but are essential for testing the
converted system.

The alternatives to including extra data now are:

• Do not include the extra dates. This means that converted programs are not
tested fully.

• Create a supplementary test suite and retest using this. Since you have to
enter the supplementary dates either at the start or at the end of testing, it is
better to add them at the start, and then you only have to perform the test
process once.

Note that you if you check the coverage of the converted program and then add
records to increase the coverage, you throw the testing process out, because the
post-fix results are generated by more information than is provided for the
baseline results.

A.3 How Much to Age?
In the tutorials, the information was aged three years.

When you are testing your systems, you are certain to find that you want to use
a different aging value. It is likely that you will want to age the testbed by
several different values. Only by looking carefully at your system will you be able
to determine how much and how often you want to age your data.

The decision to age the data by three years in the tutorial was driven very much
by the Security Expiry date. This date is projected about two years into the future
and is the only date in the converted system that is stored as a windowed date.
By aging three years, some of these dates were projected beyond 2000, and
some were left in 1999. However, none of the birthdates were projected into 2000
or beyond.

To test the sample system thoroughly, it should be aged again, by maybe 20 or
30 years, so that many more dates will fall beyond 1999.

If you have a system where the day on which a date falls is critical, then you
should look at aging it exactly 28 years. When you age by 28 years, every date
ends up on the same day of the week.

130 VisualAge 2000 Test Solution

A.3.1 Watch out for Leap Years
When you are aging data, be aware that leap years can cause problems.

An immediate problem is if you age 29 February in a leap year to a non-leap
year, because this is not a valid date in a non-leap year. For example, the
TARADJST routine supplied with the tutorials does not account for the leap year
day. But there are other problems with leap and non-leap years, which are
more subtle.

For example, if you store dates in the Julian format, when you age a date from a
leap year to a non-leap year, or a non-leap year to a leap year, Julian dates
after 29 February differ by 1. This was illustrated in Chapter 13, “Comparing the
Post-Fix Results with the 19xx Results” on page 111.

A similar effect happens if your system depends on the number of days between
two dates (for example, calculating interest on a daily basis). Once again, the
interval may change by one day (increasing or decreasing depending on the
position of the start date and end date of the interval. For example, the interval
between 8 June 1997 and 8 June 1998 is 365 days, but the interval between 8
June 1999 and 8 June 2000 is 366 days.

A simple way of eliminating this effect is to age by a multiple of four years. In
this way, dates within a leap year age to a leap year, and dates not in a leap
year, age to a non-leap year. However, there may be occasions when aging by
four years is not satisfactory. For example, the range of working dates may be
less than four years, and if you age by four years, you may push all of your
dates into the next century, which means that you don′ t test your programs
satisfactorily.

A.4 Skipping the 19xx Results
If your system relies on the system date for checking dates and for default date
entries, then you may wish to skip creating the 19xx results, and go from
creating the post-fix results to creating the 20xx results. Since the 19xx results
are calculated with the system date set to “today,” the 19xx results may be
different from post-fix results because the system detects that transaction dates
are illegal (they are beyond today), or the status of transactions changes (they
become overdue).

If you skip the 19xx results, the method still works. You just compare post-fix
results with 20xx results. However, if the comparisons fail, you will have to
determine whether the failure was caused by aging data, or by the system being
unable to run with a system date that is set past 1999.

A.5 Stress and Performance Testing
Your Year 2000 changes create more data (expanded dates) or more lines of
code to execute (for example, to handle windowing). As a result, the converted
programs may take more time to run, or your data may take up more storage
space.

If you have plentiful resources, then these changes are not liable to have much
impact when they are put into production. But if resources are currently limited,

Appendix A. Other Matters to Consider Before You Test 131

you may wish to run stress and performance testing, before changes are put into
production.

When you undertake stress and performance testing, you are seeking to
establish the increase in resource usage. Ultimately, you are trying to establish
whether your existing resources will be able to cope with the increase. If not,
you will have to either obtain more of the appropriate resource, or else, adjust
the changes you have made to programs.

It may be that when you work out the methods for converting programs, you
choose a conversion method that suits your resource mix. However, if resources
are potentially a problem, you should check by running stress and performance
testing.

132 VisualAge 2000 Test Solution

Appendix B. Using WITT Year2000 for Windows

An alternative to using Auto Test Performer (ATP) to create scripts and capture
and compare screen images is to use WITT Year2000 for Windows, which works
under Windows 95 and Windows NT.

This appendix provides the WITT Year2000 for Windows equivalents to the ATP
procedures provided in the tutorials. Signposts within the tutorial procedures
point to the relevant procedures of this appendix.

B.1 Starting WITT Year2000 for Windows
This procedure replaces 6.1.4, “Starting Auto Test Performer” on page 72.

 1. Select Programs from the Start menu.

 2. Select IBM WITT Year2000 for Windows .

 3. Select IBM WITT Year2000 .

WITT Year2000 for Windows is now started, and the main window appears.

The left side of this window is the Tree View, and the right side is the List
View.

Having started WITT Year2000 for Windows, you now have to create a test
project, a test unit, and a test script. This is a hierarchical structure, holding the
information that is captured as you enter the CICS details.

B.1.1 Creating the Test Project
The test project is a Windows folder.

 1. From the File menu, select New Test Project...

The Create New Test Project dialog box appears.

 2. Enter TARTRANS.

The List View shows that two items are created automatically: Control
Definitions and class.

B.1.2 Creating a Test Unit and Script
A test unit is a convenient way of holding in one place all the scripts to be
applied against one program.

 1. Select the TARTRANS Test Project.

 2. From the File menu, select New , then select Test Unit .

The new test unit is created in the List View.

 3. Type CICSONE as the name, and press Enter.

 4. Click on the CICSONE test unit in the Tree View (left window).

The script New Test Script appears in the List View.

 5. Rename the script to Script One by typing

Script One

over the top of the original name and pressing Enter.

 Copyright IBM Corp. 1997, 1998 133

 6. Click on the CICSONE test unit in the Tree View (left window).

 7. From the File menu, select Properties .

The CICSONE Properties dialog box appears.

 8. On the Test Script tab, click Host , to indicate that the recording session is
from a host computer, and not from the workstation.

 9. If the “Generates benchmark names automatical ly” box is not selected,
select it.

10. Click OK.

11. Double-click Script One.

The Script One - Script Editor window appears.

12. From the Script menu, select Start Record .

The Recorder Open dialog box appears.

13. Select the appropriate Session ID (for example, B).

14. Click OK.

You can now return to 6.1.5, “Enter the Transactions” on page 73 to continue
creating the baseline results.

B.2 Looking at the Script
This procedure replaces 6.1.8, “Looking at the Script” on page 76.

The script that you have created in WITT Year2000 for Windows is a text file
which you can edit:

 1. Activate and maximize the Script One - Script Editor window.

The script is in the top (Object:) window.

 2. Look at the script.

You should be able to see where you pressed the Tab key or Enter key, or
typed a date. With a little more effort, you should also be able to see where
you entered a field.

The two “ThWindowCompare” lines come from the screen captures.

When you entered the script, it is possible that you may have typed a wrong
key, and then pressed Backspace or Left Arrow to move the cursor to
replace the wrong keystroke. If you did, the routine that converts the script
will not convert everything, as it is expecting dates to be in “MM/DD/YY”
format.

Check your script, and make sure that all your dates are properly entered. If
not, edit the script to make sure that they are. (This normally involves
deleting a few lines, to “close up” the date information.)

The following sample shows the script when the start of the JOINED date is
entered as “08/41.” The mistake was noticed and corrected by back spacing
and typing the day “14,” before adding “/97.”

ThEnterText ″08/41″
ThEnterKey ″<BCKSP>″, 2
ThEnterText ″14/97″

134 VisualAge 2000 Test Solution

This mistake is corrected by deleting from (and including) ′41′ on the first
line up to (and including) the ″ before ′14′ on the third line, to consolidate the
date entry into one line:

ThEnterText ″08/14/97″

 3. Close the Script Editor window.

The Save Test Script dialog box appears.

 4. Click Yes to save the script.

 5. Close the WITT Year2000 for Windows main window.

In the process you have just completed (from B.1, “Starting WITT Year2000 for
Windows” on page 133 through B.2, “Looking at the Script”) you achieved three
things:

• You used WITT Year2000 for Windows to capture data entry, and thus create
a script which you can play back with WITT Year2000 for Windows.

• You used WITT Year2000 for Windows to capture screen images, which you
can use for comparison.

• You updated the Employee Master file, and along the way exercised the
update program.

The updated Employee Master file is the baseline result that you will later
compare with the post-fix results.

The script is going to be converted, so that it can be used to provide data entry
to the converted code.

You can now return to 6.2, “Creating a Baseline Report” on page 77 to create
the baseline report.

B.3 Converting the WITT Year2000 for Windows Script File
This procedure replaces 7.3, “Converting the Auto Test Performer Script File” on
page 82.

The WITT Year2000 for Windows script file Script One is a text file. The data it
holds includes dates in the “MM/DD/YY” format. The converted CICS screen
has dates entered in “MM/DD/YYYY” format. If you replay Script One against
the converted CICS screen, then you will experience problems.

The following procedure explains how to convert Script One so that all the dates
in the script file appear in the correct format:

 1. Copy the file Taradjst.tsc from the directory d:\va\ to the directory
d:\ibmwittw\Bin\Tartrans\Cicsone\, adjusting the drive letter if necessary.

The first directory is where the file Taradjst.tsc should have been copied as
part of the installation (see 3.4, “Installing Files on Windows 95 or Windows
NT” on page 22). If you can′ t find the file on your PC, you can also copy it
from the installation CD-ROM, from directory e:\windows.

The second directory is where your WITT Year2000 for Windows scripts are
stored. If you can′ t find this directory, use Windows Find to look for the file
Script One.tsc, which is the script.

 2. Start WITT Year2000 for Windows.

Appendix B. Using WITT Year2000 for Windows 135

 3. From the File menu, select Open Test Project...

The Open Test Project dialog box appears.

 4. Select TARTRANS.vap and OK.

 5. Double-click the CICSONE test unit.

The components of the test unit appear.

The component list should now include the script Taradjst.tsc.

 6. If the script Taradjst.tsc is not included, within Windows, rename the file to
Tar_adjst.tsc, then shut down the CICSONE test unit, then re-open the
CICSONE test unit. The new script Tar_adjst.tsc should now be listed.
Rename back to Taradjst.tsc, and close and re-open the CICSONE test unit.

 7. Double-click the TARADJST.TSC script.

The Taradjst - Script Editor window appears.

 8. From the Script menu, select Start Playback .

The Playback Status window appears. As well, the InputBox window for a
batched request file appears.

 9. Press Cancel.

The request for the source file name appears.

The batched request file is a text file. Each set of five lines holds information
about one file that is to be converted (where the five lines correspond to the
five questions that are asked when information is entered manually). Any
line preceded by an asterisk (*) is a comment line, and is disregarded.

10. Enter the full source file name, and click OK. The full source file name is
d:\ibmwittw\bin\tartrans\cicsone\script one.tsc, adjusting the drive letter if
necessary.

The request for the source date format appears.

11. Enter the source date format MM/DD/YY and click OK.

The request for the target file name appears.

12. Enter the full target file name, and click OK. The full target file name is
d:\ibmwittw\bin\tartrans\cicsone\script two.tsc, adjusting the drive letter if
necessary.

The request for the target date format appears.

13. Enter the target date format MM/DD/YYYY and click OK.

The request for the number of years to age the script appears.

14. Enter 0 and press OK.

For this script, the transactions are not aged.

The request for the source file name appears again.

15. Press Cancel.

A report on the script run appears.

16. Close the report without saving it.

The CICSONE testcase now holds the additional script, Script two. You can
open this script and look at it. The script is identical to Script One, except
that all dates now have a year that is four digits, instead of two.

136 VisualAge 2000 Test Solution

This script file is used in Chapter 8, “Creating the Post-Fix Results” on page 85.
You can return there to start creating the post-fix results.

B.4 Using WITT Year2000 for Windows to Enter Transactions
This procedure replaces:

• 8.1.2, “Using Auto Test Performer to Enter Transactions” on page 86
(Chapter 8, “Creating the Post-Fix Results”)

• 10.2.2, “Using Auto Test Performer to Enter Transactions” on page 98
(Chapter 10, “Restarting Testing”)

• 12.1.2, “Using Auto Test Performer to Enter Transactions” on page 109
(Chapter 12, “Creating the 19xx Results”)

• 14.3.2, “Using Auto Test Performer to Enter Transactions” on page 119
(Chapter 14, “Creating the 20xx Results”)

• 5.8.4, “Using Auto Test Performer to Enter Transactions” on page 59 (5.8,
“Using Debug Tool to Check Coverage”)

This procedure uses WITT Year2000 for Windows to enter transactions into a
CICS program, and along the way captures screen images for later comparison.

 1. Select Programs from the Start menu.

 2. Select IBM WITT Year2000 for Windows .

 3. Select IBM WITT Year2000 .

WITT Year2000 for Windows is now started, and the main window appears.

 4. From the File menu, select Open Test Project...

The Open Test Project dialog box appears.

 5. Select TARTRANS.vap and click OK.

 6. Double-click the CICSONE test unit.

The components of the test unit appear.

 7. The script that you now invoke depends on what you are doing:

• If you are using Debug Tool to check coverage, double-click Script One.

• If you are creating the post-fix results, or restarting the testing,
double-click Script two.

• If you are creating the 19xx results, or creating the 20xx results,
double-click Script three.

The Script Editor window appears.

 8. From the Script menu, select Start Playback .

Your transactions are now entered into the CICS session.

When the playback has finished, the Report - Test Report window appears.

 9. Note the results of the window captures, shown in the Event List, the window
at the bottom right:

• For post-fix, restart, and Year 19xx results, the compares Fail.

• For Year 20xx results, the compares Pass.

Appendix B. Using WITT Year2000 for Windows 137

These results are explained more fully in the following section B.5, “Screen
Comparisons - WITT Year2000 for Windows.”

10. Close the Test Report, saving the report to the default name.

11. Close the Script Editor.

12. Close the WITT Year2000 for Windows main window.

You can now return to:

• 8.1.3, “Ending the CICS Session” on page 87 to continue creating post-fix
results.

• 10.2.3, “Ending the CICS Session” on page 98 to continue creating post-fix
results, after the code correction and restart.

• 12.1.3, “Ending the CICS Session” on page 109 to continue creating 19xx
results.

• 14.3.3, “Ending the CICS Session” on page 120 to continue creating 20xx
results.

• 5.8.5, “Looking at the Frequency Counts” on page 60 to look at the frequency
counts from the Debug Tool session.

B.5 Screen Comparisons - WITT Year2000 for Windows
This procedure replaces:

• 9.1, “Screen Comparisons - Auto Test Performer” on page 90 (Chapter 8,
“Creating the Post-Fix Results”)

• 10.4, “Screen Comparisons - Auto Test Performer” on page 99 (Chapter 10,
“Restarting Testing”)

• 13.1, “Screen Comparisons - Auto Test Performer” on page 111 (Chapter 13,
“Comparing the Post-Fix Results with the 19xx Results”)

• 15.1, “Screen Comparisons - Auto Test Performer” on page 123 (Chapter 15,
“Comparing the 19xx Results with the 20xx Results”)

This procedure compares two sets of screen images.

 1. Open WITT Year2000 for Windows Manager, and display the contents of the
TARTRANS testcase.

 2. Double-click the CICSONE test unit.

 3. Double-click the latest Test Report.

The Test Report window appears.

 4. Double-click the first ThWindowCompare command in the Event List.

The Host Image Result window appears.

The Host Image Result window shows the difference between the benchmark
and current image, as well as the benchmark image and the current image.

The Host Image Result window doesn′ t appear if there are no differences in
the images, which should be the case when comparing 19xx and 20xx
windows. In this case, you can look at the screen image by double-clicking it
where it is listed in the contents of the test unit.

138 VisualAge 2000 Test Solution

 5. Maximize the window, and increase the image display area, until all the
screen image appears.

 6. Click on the Difference tab, if the Difference window is not displayed.

This image shows the information for Charles Rogers. The differences are
shown in reverse video.

The differences are:

• For benchmark to post-fix (before and after fixing)

In the benchmark image, the years are two digit, and in the current
(post-fix), they are four digit.

• For post-fix to 19xx

Aging has changed every year from a 19xx date to a 20xx date, so all
four digits in the year are changed, except for BIRTHDATE, where only
the last two digits are changed.

• For 19xx to 20xx

There should be no difference in the images. If the report shows a match,
with a blue circle, when you double-click on the line, nothing happens.

 7. Close the Host Image Result window.

 8. Double-click the second ThWindowCompare command in the Event List.

The Host Image Result window appears.

 9. Maximize the window, and increase the image display area, until all the
screen image appears.

10. Click on the Difference tab, if the Difference window is not displayed.

This image shows the information for Mary Gardener.

The differences are as for the first image, except:

• For benchmark to post-fix (before fixing)

As well as highlighting the years, the second digit of the month and day
in the SECURITY CARD EXPIRY date is highlighted.

Check the benchmark and current images, to see that this date changes
from “06/07/96” to “01/03/98.” This is possibly a problem with the
conversion of the program.

11. Close the Host Image Result window.

If you are comparing baseline results with post-fix results for the first time (and
not as part of restarting testing), then return to 9.2, “Data Comparisons -
SuperC” on page 92. Otherwise, continue with this procedure.

Once the screen comparison is complete and there is no need to retain
benchmark images, you must archive them. Archiving removes the benchmark
image, and moves the current image to the benchmark, ready for comparison
when the next current image is captured.

 1. Double-click the first ThWindowCompare command in the Event List.

The Host Image Result window appears.

 2. Select Archive from the File menu.

 3. Click Yes in response to the question about really wanting to archive.

Appendix B. Using WITT Year2000 for Windows 139

 4. Close the Host Image Result window.

 5. Repeat the process for the second ThWindowCompare command.

 6. Close the Test Report window.

 7. Close the WITT Year2000 for Windows main window.

You can now return to:

• 10.5, “Data Comparisons - SuperC” on page 100 to continue comparing
benchmark and post-fix results.

• 13.2, “Data Comparisons - SuperC” on page 113 to continue comparing
post-fix and 19xx results.

• 15.2, “Data Comparisons - SuperC” on page 124 to continue comparing 19xx
and 20xx results.

B.6 Aging the WITT Year2000 for Windows Script File
This procedure replaces 11.4, “Aging the Auto Test Performer Script File” on
page 105.

The procedure explains how to convert Script Two so that all the dates in the
script file are aged by three years:

 1. Start WITT Year2000 for Windows.

 2. From the File menu, select Open Test Project...

The Open Test Project dialog box appears.

 3. Select TARTRANS.vap and OK.

 4. Double-click the CICSONE test unit.

The components of the test unit appear, including the script Taradjst.tsc.

 5. Double-click the TARADJST.TSC script.

The Taradjst - Script Editor window appears.

 6. From the Script menu, select Start Playback .

The Playback Status window appears. As well, the InputBox window for a
batched request file appears.

 7. Press Cancel.

The request for the source file name appears.

 8. Enter the full source file name, and click OK. The full source file name is
d:\ibmwittw\bin\tartrans\cicsone\script two.tsc, adjusting the drive letter if
necessary.

The request for the source date format appears.

 9. Enter the source date format MM/DD/YYYY and click OK.

The request for the target file name appears.

10. Enter the full target file name, and click OK. The full target file name is
d:\ibmwittw\bin\tartrans\cicsone\script three.tsc, adjusting the drive letter
if necessary.

The request for the target date format appears.

11. Enter the target date format MM/DD/YYYY and click OK.

140 VisualAge 2000 Test Solution

The request for the number of years to age the script appears.

12. Enter 3 and press OK.

For this script, the transactions are aged three years.

The request for the source file name appears again.

13. Press Cancel.

A report on the script run appears.

14. Close the report without saving it.

The CICSONE testcase now holds the additional script, Script three. You can
open this script and look at it. The script is identical to Script One, except
that all dates are aged by three years.

This script file is used in Chapter 12, “Creating the 19xx Results” on page 107,
and in Chapter 14, “Creating the 20xx Results” on page 117. You can return to
Chapter 12, “Creating the 19xx Results” on page 107 to start creating the 19xx
results.

Appendix B. Using WITT Year2000 for Windows 141

142 VisualAge 2000 Test Solution

Appendix C. The Slide-Show Demonstrations

The slide-show demonstrations provide a quick way for you to look at some of
the products, without needing to install or set up anything.

There are four primary demonstrations:

• The overview lists the testing processes and the tools relevant to the
process, and shows about half a dozen screens of each tool at work.

• The detailed product demonstrations (for COBOL Tester, Auto Test
Performer, and WITT Year2000 for Windows) work through the steps of the
tutorials, and show appropriate screen captures and an explanation.

Because these product demonstrations are based on the tutorials, they make
an ideal introduction to the tutorials. The demonstrations don′ t work through
every step of the tutorial, nor are they “how-to” training demonstrations.
Instead, they focus on what each package can give you, especially with
relevance to Year 2000 testing.

Each demonstration lasts about five minutes.

The slide-show runs directly from the CD-ROM. It runs under Windows 3.1 (and
hence Win-OS/2), Windows 95, and Windows NT.

C.1 Starting the Slide-Show
 1. Insert the CD-ROM into your CD-ROM drive.

 2. Find the file VA2000T.EXE, on the directory demo of the CD-ROM.

 3. Start the program.

• If you are running Win-OS/2, run the program by finding it under File
Manager, and double-clicking on it. Running it directly from an OS/2
prompt lengthens automatic advancement pauses.

• If you are running under a native Windows, you can run the program
through the Run command. Run g:\demo\va2000t.exe, where g is the
CD-ROM drive letter.

• You can′ t run the program directly from a DOS window.

C.2 Working the Demonstration
The slide-show consists of screens of text, and screens that are a screen dump
plus annotation (in a blue text box).

• To move forward from one screen to the next, press PgDn.

• To move backwards to the previous screen, press PgUp.

• For alternative navigation methods, press F1 while running a demonstration.

• If the text finishes with ... the slide-show advances automatically to the next
screen after an appropriate pause. You can also advance manually if you
want.

• The main menu lets you select your demonstration, by clicking on a line, or
typing a number.

 Copyright IBM Corp. 1997, 1998 143

If you wish, you can copy the files from the CD-ROM to your hard disk, so that
you can look at a demonstration at your convenience.

144 VisualAge 2000 Test Solution

Appendix D. A Taste of The Millennium Language Extensions

One of the most popular ways of changing applications to address the Year 2000
problem is by using a windowing technique when processing 2-digit years in
dates. The windowing technique addressed the Year 2000 problem by removing
the assumption that all 2-digit year fields represent years from 1900 to 1999.
Instead, the technique enables 2-digit year fields to represent years within any
100-year range from 1900 to 2098.

For example, if a 2-digit year field contains the value 15, most current
applications would interpret the year as 1915. However, if the window of valid
years is 1960 to 2059, then the year is interpreted as 2015.

With this concept in mind the Millennium Language Extensions (MLE) have been
added to COBOL and PL/I Year 2000-ready compilers.

The primary objective of the MLE enhancements is to extend the useful life of
existing programs using 2-digit years. Program source changes are held to the
minimum, and the data itself is preserved in its current non-expanded form.

This appendix shows an example of a program converted to use MLE. The
sample is not meant to be a comprehensive exposition of MLE and how it works.
Instead, the sample provides you with a snippet to whet your appetite—a taste of
MLE.

The sample program is the program used in the tutorials to provide a report. The
COBOL version is based on TARMU5, and the PL/I version is based on PL1MU5.
The converted MLE version is called MLEMU5 for both languages.

The following listings show changed segments of the programs. Lines starting
with “>” are source statement lines, and lines tagged with �C� are MLE
modifications. Explanatory text follows the source lines. The complete listings
are available as part of the VA2000 files loaded from the CD-ROM.

The code listings are followed by listings of the report output before and after
modification.

D.1 A COBOL Example
The sample uses a windowing compiler option, and the DATE FORMAT “move”
statements, to expand the 2-digit year to its 4-digit year equivalent.

D.1.1 Compiler Directing Statements
> �C� CBL DATEPROC YEARWINDOW(1935)

DATEPROC enables the MLE extensions.

YEARWINDOW(base-year) sets the window parameters. base-year is the first year of
the 100-year window. In this case the 100 year window is from 1935 - 2034.

 Copyright IBM Corp. 1997, 1998 145

D.1.2 Data Division clauses
> 01 WORK-DATE-YYMMDD.
> �C� 03 WORK-DATE-YY PIC XX DATE FORMAT IS YY.
> 03 WORK-DATE-MM PIC XX.
> 03 WORK-DATE-DD PIC XX.

> * ** report headings & detail line
> 01 REPORT-HEAD1.
> 03 FILLER PIC X(01) VALUE ″1″.
> 03 FILLER PIC X(48) VALUE
> ″REPORT ID MLEMU5″ .
> 03 FILLER PIC X(62) VALUE
> ″EMPLOYEE DETAILS REPORT″ .
> 03 RPT-HD1-DATE.
> 05 RPT-HD1-MM PIC XX.
> 05 FILLER PIC X VALUE ″ / ″ .
> 05 RPT-HD1-DD PIC XX.
> 05 FILLER PIC X VALUE ″ / ″ .
> �C� 05 RPT-HD1-YY PIC X(4) DATE FORMAT IS YYYY.
> 03 FILLER PIC XX VALUE SPACES.
> 03 RPT-HD1-TIME PIC X(8).
> 03 FILLER PIC XX VALUE SPACES.

> 01 TARDATE-PARAMETERS.
> 03 TARDATE-DATE.
> 05 TARDATE-MMDD PIC X(6).
> �C� 05 TARDATE-YY PIC X(2) DATE FORMAT IS YY.

> 01 REPORT-DETAIL.
> 03 FILLER PIC X(01) VALUE ″0″.
> 03 FILLER PIC X(10) VALUE SPACES.
> 03 RPT-DET-SEC-EXP.
> 05 RPT-DET-MMDD PIC X(6).
> �C� 05 RPT-DET-YY PIC X(4) DATE FORMAT IS YYYY.
> 03 FILLER PIC X(04) VALUE SPACES.
> 03 RPT-DET-ID PIC X(06).
> 03 FILLER PIC X(04) VALUE SPACES.
> 03 RPT-DET-NAME-ADDR PIC X(30).
> 03 FILLER PIC X(04) VALUE SPACES.
> 03 RPT-DET-ERROR PIC X(30).
> 03 FILLER PIC X(34) VALUE SPACES.

DATE FORMAT IS indicates that a data item is a date field or year field. The year
field can be represented in a non-expanded form (YY) or in an expanded form
(YYYY).

D.1.3 Procedure Division ′MOVE′ Statements
...
> �C� MOVE WORK-DATE-YY TO RPT-HD1-YY.
...
> �C� MOVE TARDATE-YY TO RPT-DET-YY.

146 VisualAge 2000 Test Solution

These move statements move a windowed year field to an expanded year field.
The move is performed with the value in ′...YY′ right justified in YYYY, which is
prefixed with the appropriate century.

D.2 A PL/I Example
The sample uses a windowing compiler option, and the new attributes of the
DATE built-in function. Implicit date conversions take place when 2-digit year
fields are assigned to 4-digit year fields.

D.2.1 Compiler Directing Statements
> �C� *PROCESS SOURCE,LIST,STMT,RESPECT(DATE),WINDOW(1935)

RESPECT(DATE)causes the compiler to honor any specification of the DATE
attribute when assigning the result of the DATE built-in function.

WINDOW(1935) represents a 100 year window commencing at 1935.

D.2.2 Builtin Function
> �C� DCL DATE BUILTIN;

This built-in function has been extended to support additional date patterns, such
as YY, YYYY, YYMM, and YYYYMM.

D.2.3 Variable Declarations
> DCL 1 REPORT_DETAIL,
> 2 RD_CTL CHAR(1) INIT(′ 0 ′) ,
> 2 R1 CHAR(10) INIT(′ ′) ,
> 2 RPT_DET_SEC_EXP,
> 3 RPT_DET_MMDD CHAR(6),
> �C� 3 RPT_DET_YY CHAR(4) DATE(′ YYYY′) ,
> 2 R2 CHAR(5) INIT(′ ′) ,
> 2 RPT_DET_ID CHAR(6),
> 2 R3 CHAR(4) INIT(′ ′) ,
> 2 RPT_DET_NAME_ADDR CHAR(30),
> 2 R4 CHAR(4) INIT(′ ′) ,
> 2 RPT_DET_ERROR CHAR(30),
> 2 R5 CHAR(33) INIT(REPEAT(′ ′ , 3 3)) ;

> DCL 1 PARAM CHAR(54) EXTERNAL;
> DCL 1 PARAM_RED DEF PARAM,
> 2 INPUT_DATE,
> 3 INPUT_DATE_MMDD CHAR(6),
> �C� 3 INPUT_DATE_YY CHAR(2) DATE(′ YY′) ,
> 2 INPUT_FORMAT CHAR(8),
> 2 OUTPUT_FORMAT CHAR(8),
> 2 MSG CHAR(30);

Variables have the new DATE attributes (YY and YYYY).

Appendix D. A Taste of The Millennium Language Extensions 147

D.2.4 Variable Assignments
> RPT_DET_YY = INPUT_DATE_YY;

This assignment will implicitly expand the 2-digit source date to a 4-digit target
date, using the windowed year values of 1935-2034.

D.3 Report Outputs
Here is the output from the original program TARMU5/PL1MU5:

REPORT ID xxxMU5 EMPLOYEE DETAILS REPORT 12/09/97 09:14:34

SEC/EXPIRED ID NAME

01/01/01 000313 DRUMMOND RAPPER

04/30/01 002131 RICK LAYER

02/28/02 044026 ALISON CLARKE

06/16/02 000101 PETER SELLER

06/22/02 006101 PENNY MARKER

08/31/02 002292 VI SPROIKA

Here is the output from the converted program MLEMU5:

REPORT ID MLEMU5 EMPLOYEE DETAILS REPORT 12/09/1997 09:18:13

SEC/EXPIRED ID NAME

01/01/2001 000313 DRUMMOND RAPPER

04/30/2001 002131 RICK LAYER

02/28/2002 044026 ALISON CLARKE

06/16/2002 000101 PETER SELLER

06/22/2002 006101 PENNY MARKER

08/31/2002 002292 VI SPROIKA

148 VisualAge 2000 Test Solution

Appendix E. Using Debug Tool to Check Code Conversion

Tutorial examples in this book show how Debug Tool distilling files and listing
path coverage for a program.

This final tutorial further illustrates the versatility of Debug Tool It shows how
Debug Tool can test a small segment of code. This code is used heavily by other
programs, and so it makes sense to exercise and test it thoroughly.

Debug Tool is driven by a script, and the script produces an output file. This
approach has many benefits:

• You can test a small segment of code within an existing program, without
needing to copy the code into an isolated test program.

• Because a script is used, you can repeat the test, and apply it to code before
and after conversion.

• Because an output file is produced, you can run SuperC to compare the two
output files (before and after conversion).

• In this particular instance, the script does not read any values from a
testbed, so there is no need to restore any testbed. Neither does it update
any values, so there is no need to restore any testbed after the script is run.

The example used in this tutorial forces three different date values through the
TARDTE3 date conversion routine. This is the same example as that used for
COBOL Tester (see 5.4, “Path Coverage and Data Distillation - COBOL Tester”
on page 41).

The example can be extended by forcing through more date values, or by testing
different parts of code. If you do this, you will need to adjust the Debug Tool
scripts, and also adjust the SuperC comparison parameters.

This tutorial should be run after all the tutorials in the main part of the redbook
have been run.

E.1 Recreating the Distilled Testbed and Converted Testbed
There is no need to recreate either testbed, since values are not read from any
files.

E.2 Starting the CICS Job and Opening Files
 1. Start a CICS session.

You must now make sure that both the distilled and converted Employee
Master files are open for the exclusive use of CICS.

 2. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 3. Find the line starting Fil(EMPMAST).

 4. Look along this line to the second status word, which comes after Vsa.

 Copyright IBM Corp. 1997, 1998 149

 5. If the second status word is Ope, go to step 8 on page 150.

 6. Move the cursor to the second status word, Clo.

 7. Type O, then press Enter.

The status word changes to Ope (for Open).

 8. Find the line starting Fil(EMPMST2).

 9. Look along this line to the second status word, which comes after Vsa.

10. If the second status word is Ope, go to step 13.

11. Move the cursor to the second status word, Clo.

12. Type O, then press Enter.

The status word changes to Ope (for Open).

13. Press PF3 to exit the CEMT display.

14. Clear the screen.

The files are now open.

E.3 Running the First Debug Tool Script
This procedure creates a log file for the unconverted code.

 1. Enter the transaction DTCN

The Debug Tool CICS Interactive Facility appears.

 2. Against the Transaction Id (entry line 2) type NB03 and against the
Command File (entry line 9) type hlq.VA2000TS.DEBUG(COBDB1) for OS/390 or

userlib(COBDB1.CMD) for VSE

 Against the Transaction Id (entry line 2) type MB03 and against
the Command File (entry line 9) type hlq.VA2000TS.DEBUG(PL1DB1) for OS/390

or userlib(PL1DB1.CMD) for VSE

 3. Press PF4 (Add).

If the add fails because the profile exists, press PF5 (Replace).

 4. Press PF3 (Exit).

 5. Start program NB03

 Start program MB03

There is a delay, while Debug Tool is initialized, then the Debug Tool window
appears.

 6. Press F9 (GO) repeatedly, pausing after each press until the X SYSTEM
message disappears.

 7. When the message Do you really want to terminate this session? appears,
type Y and press Enter.

The transaction name reappears.

 8. Clear the screen. The running of the first script is finished.

 9. Close DTCN, by entering DTCN and pressing F10.

150 VisualAge 2000 Test Solution

E.4 Running the Second Debug Tool Script
This procedure creates a log file for the converted code.

 1. Enter the transaction DTCN

The Debug Tool CICS Interactive Facility appears.

 2. Against the Transaction Id (entry line 2) type NB3X and against the
Command File (entry line 9) type hlq.VA2000TS.DEBUG(COBXDB1) for OS/390 or

userlib(COBXDB1.CMD) for VSE

 Against the Transaction Id (entry line 2) type MB3X and against
the Command File (entry line 9) type hlq.VA2000TS.DEBUG(PL1XDB1) for OS/390

or userlib(PL1XDB1.CMD) for VSE

 3. Press PF4 (Add).

 4. If the add fails because the profile exists, press PF5 (Replace).

 5. Press PF3 (Exit).

 6. Start program NB3X

 Start program MB3X

There is a delay, while Debug Tool is initialized, then the Debug Tool window
appears.

 7. Press F9 (GO) repeatedly, pausing after each press until the X SYSTEM
message disappears.

 8. When the message Do you really want to terminate this session? appears,
type Y and press Enter.

The transaction name reappears.

 9. Clear the screen. The running of the second script is finished.

10. Close DTCN, by entering DTCN and pressing F10.

E.5 Ending the CICS Session
The Employee Master files must be closed, so that other jobs can use them.

 1. Enter the transaction

CEMT I FI (EMP*)

The list of files starting with EMP appears.

 2. Find the line starting Fil(EMPMAST).

 3. Look along this line to the second status word, which comes after Vsa.

 4. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

The status word changes to Clo (for Closed).

 5. Find the line starting Fil(EMPMST2).

 6. Look along this line to the second status word, which comes after Vsa.

 7. Move the cursor to the second status word, which is Ope, and type C, and
then press Enter.

Appendix E. Using Debug Tool to Check Code Conversion 151

The status word changes to Clo (for Closed).

 8. Press PF3 to exit the CEMT display.

 9. Clear the screen.

10. Close the CICS session.

The creation of the two log files is now finished.

E.6 Log Comparisons - SuperC
 1. Execute job SUPERC5A for COBOL, or SUPERC5B for PL/I.

This job compares the logs from the two Debug Tool sessions.

 2. Check the output of the job.

 3. If the job failed, determine the reason, correct, and resubmit.

 4. Check the report output. This should show that 3 lines have matched. The
reports have produced the same results.

E.7 An Explanation of the Debug Tool Scripts
This section briefly explains the Debug Tool scripts used for COBOL and PL/I.
The scripts are not identical, but are sufficiently similar that the explanation of
one also explains the other. The script for the unconverted COBOL program is:

152 VisualAge 2000 Test Solution

* IBM Debug Tool Version 1 Release 2 Mod 0
* 11/18/1997 10:11:19 AM
* 5688-194 (C) Copyright IBM Corp. 1992, 1995
01 CNT PIC 9(4) COMP ;
01 DISPLAYED-DATE PIC X(30) ;
MOVE 0 TO CNT ;
AT APPEARANCE TARDTE3
PERFORM
AT ENTRY TARDTE3
PERFORM
COMPUTE CNT = CNT + 1 ;
IF CNT = 1 THEN �A�
MOVE ′11/01/97′ TO INPUT-DATE ;
MOVE ′ MM/DD/YY′ TO INPUT-FORMAT ;
MOVE ′ YYDDD′ TO OUTPUT-FORMAT ;

END-IF ;
IF CNT = 2 THEN
MOVE ′96060′ TO INPUT-DATE ;
MOVE ′ YYDDD′ TO INPUT-FORMAT ;
MOVE ′ YYMMDD′ TO OUTPUT-FORMAT ;

END-IF ;
IF CNT = 3 THEN
MOVE ′960229′ TO INPUT-DATE ;
MOVE ′ YYMMDD′ TO INPUT-FORMAT ;
MOVE ′ MM/DD/YY′ TO OUTPUT-FORMAT ; �A�

END-IF ;
END-PERFORM ;

AT EXIT TARDTE3
PERFORM
MOVE SPACES TO DISPLAYED-DATE ; �B�
MOVE ′ *′ TO DISPLAYED-DATE (31 : 1) ;
IF CNT = 1 THEN
MOVE INPUT-DATE TO DISPLAYED-DATE (1 : 10) ;

END-IF ;
IF CNT = 2 THEN
MOVE INPUT-DATE TO DISPLAYED-DATE (11 : 10) ;

END-IF ;
IF CNT = 3 THEN
MOVE INPUT-DATE TO DISPLAYED-DATE (21 : 10) ;

END-IF ;
LIST UNTITLED (DISPLAYED-DATE) ; �B�

END-PERFORM ;
END-PERFORM ;

AT LINE 497 �C�
PERFORM
IF CNT >= 3 THEN
QUIT ;

ELSE
GOTO 493 ;

END-IF ;
END-PERFORM ; �C�

AT OCCURRENCE CEE067
QUIT ;

Figure 49. Debug Tool Script for COBOL Code Testing, Unconverted Program

The lines between the two �A� markers set up the input parameters for the
TARDTE3 routine. There are three possibilities.

The lines between the two �B� markers format the output from the routine. The
“*” marker in position 31 on the output line marks the output log lines as
different from all the other lines in the log.

Appendix E. Using Debug Tool to Check Code Conversion 153

Different outputs are placed in different positions on an output line. This makes it
possible for SuperC to look at three different output formats in one job.

The lines between the two �C� markers force program execution to return to the
start of the TARDTE3 routine for three passes, then quits the running of the script
after three passes.

The script for the converted COBOL program has the same structure, but uses
different values as input to the TARDTE3 routine.

The log file produced by this script starts with a listing of the script. Appended
to this is the output built by the script, which looks like this:

GO ;
GO ;
GO ;

* ′97305 *′
GO ;
GO ;

* ′ 960229 *′
GO ;
GO ;

* ′ 02/29/96 *′
GO ;

Figure 50. Output from Debug Tool Script for COBOL Code Testing

This figure shows clearly how the dates are placed in different positions on the
output line, and how the “*” tags the end of each date output line. The script for
the converted COBOL program is similar. This portion from the start of the script
shows how the dates are expanded:

AT ENTRY TARDTE3X
PERFORM
COMPUTE CNT = CNT + 1;
IF CNT = 1 THEN

MOVE ′11/01/1997′ TO INPUT-DATE;
MOVE ′ MM/DD/YYYY′ TO INPUT-FORMAT;
MOVE ′ YYYYDDD′ TO OUTPUT-FORMAT;

END-IF;
IF CNT = 2 THEN

MOVE ′1996060′ TO INPUT-DATE;
MOVE ′ YYYYDDD′ TO INPUT-FORMAT;
MOVE ′ YYYYMMDD′ TO OUTPUT-FORMAT;

END-IF;
IF CNT = 3 THEN

MOVE ′19960229′ TO INPUT-DATE;
MOVE ′ YYYYMMDD′ TO INPUT-FORMAT;
MOVE ′ MM/DD/YYYY′ TO OUTPUT-FORMAT;

END-IF;
END-PERFORM;

Figure 51. Portion of Debug Tool Script for COBOL Code Testing, Converted Program

154 VisualAge 2000 Test Solution

E.8 An Explanation of the SuperC Job
The SuperC job that compares the two log files (before conversion and after
conversion) has two parts. The first part uses DFSORT to extract just the date
records from the log file, using the

INCLUDE COND=(40,1,CH,EQ,C′ *′)

command. Note that the examples are from the COBOL version. For the PL/I
version, the column positions are five characters to the left, though the principle
is exactly the same.

The second part of the job uses SuperC to compare the three dates. The
process statements for this part are as follows:

OFOCUS COLS 10:39 �1�
NFOCUS COLS 10:39 �2�
OY2C 10:14 YYDDD,EMPTY �3�
NY2C 10:16 YYYYDDD,EMPTY
OY2C 20:25 YYMMDD,EMPTY
NY2C 20:27 YYYYMMDD,EMPTY
OY2C 30:37 MM/DD/YY,EMPTY
NY2C 30:39 MM/DD/YYYY,EMPTY �8�
Y2PAST 65

Figure 52. SuperC Process Statements, Debug Script Logs

Lines �1� and �2� discard any information outside columns 10 to 39. Lines �3� to
�8� provide descriptions of the dates, in pairs, for the date before conversion and
the date after conversion. The EMPTY parameter warns SuperC that there might
be no date. Since matching pairs are empty, the comparison succeeds.

E.9 Extending This Example
The technique used in this tutorial can be readily extended to cater for more
dates and more date formats.

There is a limitation of 80 characters to a line of output in the log file. However,
this is probably irrelevant, since the three different date formats probably
account for most dates.

Instead of changing the position of each date, you could add a position flag. This
means that you could test with a large number of different dates, placing them
all in the same position.

The main thing is to make sure that whatever dates and formats are in the
Debug Tool script for testing the routine before conversion, the equivalent
converted dates and formats must be in the Debug Tool script for testing the
routine after conversion. Provided you keep the one-to-one correspondence,
SuperC can compare the two log files.

Appendix E. Using Debug Tool to Check Code Conversion 155

156 VisualAge 2000 Test Solution

Appendix F. Establishing a Test Environment

It is imperative that Year 2000 testing is quarantined from normal production
runs. Otherwise the different system dates that are used as part of Year 2000
testing are going to contaminate the data held in the production system, with
undesirable consequences.

This appendix discusses the two most common methods of establishing a
separate test environment, and points to more information about these methods.

The IBM RS/6000 and System/390 Server on Board (R/390), and the IBM PC
Server System/390 (P/390), provide a totally separate environment for you to use
for testing. In contrast, Logical Partitions (LPARs) make it possible for you to
use existing hardware, and establish an isolated test environment that co-exists
on the hardware with other environments.

For more information about setting up a test system, see
http://www.software.ibm.com/year2000/y2ktestsystem.html.

F.1 Using a P/390 or R/390
The P/390 and R/390 provide a low cost stand-alone environment suitable for
application development and Year 2000 testing.

These devices are essentially a large server (IBM PC or RS/6000) unit and a
P/390 or R/390 card, which supports a System/390 processor. The System/390
processor is fully functional. It runs standard S/390 operating systems and
applications, without the need for modification or special versions. Software
drivers handle the emulation of S/370 and S/390 devices, in particular, DASD
which is stored within the RAID array on the server.

The S/390 operating systems (OS/390, VM and VSE) are available as
preconfigured systems. They are distributed in CD-ROM format, ready for easy
installation.

These devices and associated operating systems (including a S/390 operating
system or systems) are available only as a complete package. They are
provided exclusively by certified Business Partner - Distributors.

The P/390 and R/390 are supplied with OS/2 Warp or AIX. Supplied driver
software provides the emulation of S/390 I/O devices such as tape devices (3420,
3480) and DASD (FBA, 3380, 3390). The PC processor or RS/6000 processor
performs I/O.

There are many connectivity options. Lan Adapters (Ethernet or Token Ring) can
be made to look like a 3172 control unit, enabling the connection of display
terminals, printers and other SNA or TCP/IP devices to the S/390 operating
system. The S/390 Parallel Channel Adapter connects to most S/370 and S/390
devices, but not to host DASD devices.

 Copyright IBM Corp. 1997, 1998 157

F.1.1 Setting up a Test Environment
The DASD system of the P/390 and R/390 is flexible. As a consequence, there
are many ways to copy a host system and move it to the smaller unit,
preparatory to Year 2000 testing:

• Copy volumes as DFSMS/DSS dumps, using NETVIEW FTP.

• Restore the VM/ESA system from tape backups. The backups can be from
either VM/ESA DDR or VSE/ESA FASTCOPY. In either case, you use a
channel-attached unit or a SCSI-attached unit which can read magnetic
media such as 3480/3490 cartridges. The P/390 or R/390 can be IPLed in a
standalone manner to load the DDR or FASTCOPY program.

• Use VM/ESA with OS/390 or VSE/ESA as guests.

By transferring the operating system, you can set up an isolated test machine
which uses exactly the same software as your host, and where developers
access the P/390 or R/390 as if it were the host. This makes the unit ideal for
function testing.

Once you have set up the operating system, you can transfer application
programs and test data, to complete the setting up of the test environment.

The performance of the unit is limited—the bottle-neck is I/O. This means that
the unit may NOT be appropriate for production processing. Neither is it
appropriate for stress or performance testing.

To use a P/390 or R/390 for Year 2000 testing, it must be completely isolated
from any other computer. In particular, it must NOT share DASD, nor must it
share tape drives or a tape library.

Note that IBM software run on a P/390 or R/390 is available at a special price.
Many third party vendor software suppliers also support special prices for
software run on these platforms.

F.1.2 The Advantages of Running Year 2000 Testing on a P/390 or R/390
Running a P/390 or R/390 as a test environment for Year 2000 testing has many
advantages:

• If the P/390 or R/390 is isolated from all other computers, it provides the
ideal platform for the conversion of programs. Data is isolated from
production data or other test data.

You can check the running of programs under future date conditions
thoroughly. Changing the system date for a P/390 or R/390 is a matter of
IPLing, and changing the date to whatever you want. There is no external
reference for the system.

This means that your developers and systems programmers can change the
system date frequently, checking for the change of year from 1999 to 2000,
the change of date from 28 February 2000 to 29 February 2000, and then on to
1 March 2000, and so on, for other critical dates.

• Alternatively, the P/390 or R/390 may be left “ticking over,” with the date
advancing at the normal rate as time advances. By advancing at a more
sedate pace, testing may find errors in routines unlikely to be exercised in
spot checking.

158 VisualAge 2000 Test Solution

• A testing regime can be quite exhaustive and upon completion, the P/390 or
R/390 can be restored from backup to its original state. This facilitates
repeat testing.

• The P/390 or R/390 system has a small footprint and requires no special
environmental considerations. It can be located with any Testing Group or
Development Team, giving them control of the system, in particular, IPLing to
change the system date.

• You can use the P/390 or R/390 to check for date problems, without looking
at source code. Set production programs running over a local copy of
production data, at a date in the next century, and see what “breaks.” This is
not an exhaustive approach to finding Year 2000 problems, but it quickly
provides a starting-point for your investigations.

• Once you have finished Year 2000 testing, you can continue to use the P/390
or R/390 for installing and testing software.

F.1.3 For More Information
For more information about P/390 or R/390 systems and Year 2000 testing, see
http://www.s390.ibm.com/stories/year2000/. And for information about P/390 or
R/390 systems, see http://www.s390.ibm.com/products/p390/p390hp.html.

F.2 Using Logical Partitions
Logical Partitions (LPARs) provide a way of physically dividing a processor
complex into a number of individual environments, each of which can support its
own operating system, such as OS/390, MVS/ESA, or VSE/ESA.

LPAR support on the IBM mainframes is provided by the hardware feature
known as Processor Resource/Systems Manager (PR/SM). This handles the
allocation of central processors, central storage, expanded storage, and channel
paths amongst the logical partitions.

The number of Logical Partitions supported on a processor complex depends on
processor model and configuration. The P/390 and R/390 processors do not
support LPAR mode.

An LPAR can share central processors and channels paths (ESCON channels)
only on processors with the ESCON Multiple Image Facility (EMIF) feature
installed. Central and expanded storage must be dedicated to an individual
LPAR but, depending of the system configuration, can be reconfigured to another
LPAR when the storage is no longer in use.

PR/SM Planning Guide provides more information about logical partitions (S/390
PR/SM Planning Guide, GA22-7236, and ES/9000 and ES/3090 PR/SM Planning
Guide, GA22-7123).

F.2.1 Isolating an LPAR for Year 2000 Testing
In a normal production environment a number of LPARs or physically separate
machines can share external devices, including tape drives, disk storage, and
networks. In an LPAR where the system date for that LPAR is to be changed to
undertake Year 2000 Testing, it is important to achieve sufficient isolation of
resources to the extent that it will not interfere with another system or LPAR.

Appendix F. Establishing a Test Environment 159

Undertaking Year 2000 testing—especially changing the system date—in a
multiple operating systems environment running either a Sysplex or Parallel
Sysplex is beyond the scope of this redbook, but is explored in the Time
Management redbook, S/390 Time Management and IBM 9037 Sysplex Timer
(SG24-2070), also at http://www.redbooks.ibm.com/SG242070/y2000.html.

F.2.1.1 Central Processors
The Central Processors for an LPAR can be defined as either shared (amongst
other LPARs) or dedicated. The sharing of central processors does not cause
problems running a Year 2000 Test system.

F.2.1.2 Central and Expanded Storage
It is not possible to share central or expanded storage concurrently between
LPARs.

Sufficient storage must be available for each LPAR to meet the workload
requirements of that LPAR. The amount of central storage available to a Year
2000 Test systems determines the performance of any Year 2000 testing.

F.2.1.3 Channel Paths
Parallel channels cannot be shared concurrently between LPARs. Providing they
are defined correctly, they can be dynamically reconfigured between LPARs.
ESCON channels can be shared where the ESCON Multiple Image Facility (EMIF)
feature is installed.

There are no issues with sharing or dynamically reconfiguring channel paths
between a Year 2000 Test system and other systems. Consideration needs to be
given to the devices connected to the channels as discussed in the following
sections.

F.2.1.4 Disk Storage
There is a high risk of either data corruption or data loss by sharing disk storage
between a Year 2000 Test system and other systems. To protect your business
investment and your production data, the sharing of disk storage should be
avoided.

A consequence of a Year 2000 Test system not being able to share disk storage
is that the system cannot participate in the same Sysplex or Parallel Sysplex as
non-Year 2000 systems. Also, it cannot share tape management catalogs,
security databases, or similar resource management systems with non-Year
2000 systems.

Plan carefully to determine the amount of extra disk storage needed to set up a
Year 2000 Test environment. Disk storage is required for:

• System Residence (or IPL) volume(s)
• System and Product datasets
• JES2 or JES3 spool
• Paging datasets
• Application data

Start with the storage needed to duplicate the current system packs, and then
add storage needed for data packs. The test data may require much less storage
than production data.

160 VisualAge 2000 Test Solution

F.2.1.5 Disk Controllers
The outcome of sharing disk controllers is not clear. As with disk storage, it is
important to protect your business investment. Given the uncertainty of sharing,
the sharing of disk controllers is best avoided.

F.2.1.6 Tape Drive
Tape libraries require shared disk storage and therefore cannot be shared
between a Year 2000 Test system and other systems.

Tapes drives generally interface with one form or other of a tape management
catalog. This prevents the sharing of tape drives between a Year 2000 Test
system and other systems. It also means that you should establish a separate
tape pool for scratch tapes for Year 2000 testing.

F.2.1.7 Networks
Sharing networks between a Year 2000 Test system and other systems needs
careful consideration.

A Year 2000 Test system generating TCP/IP traffic must not share a network with
other systems. However, a Year 2000 Test system generating only SNA data
streams can share.

Network Job Entry (NJE) data between a Year 2000 Test system and other
systems is also supported and may provide a useful way of copying small
amounts of data between the different systems. NJE connections are relatively
slow and using NJE impacts the amount of JES2 or JES3 Spool space required.

F.2.1.8 Other Devices
A Year 2000 Test system requires a separate non-SNA controller for the Master
console. Depending on your network requirements, this controller can also be
used to provide additional 3270 terminals and isolated access to a Year 2000
Test system.

A Sysplex Timer (9037) must not be shared between a Year 2000 Test system
and other non-Year 2000 systems. It is the Sysplex timer that provides the date
and time when an operating system is loaded (IPLed).

Channel attached printers cannot be shared, but can be dynamically
reconfigured between different LPARs. This present no problems, except that
the people who distribute printouts must know when the printer is printing output
from the Year 2000 Test system.

F.2.2 Setting the Date on an LPAR for OS/390
Setting the date and time for a Year 2000 Test environment depends on the
hardware configuration of the environment.

For a single LPAR in a Year 2000 Test system, the date and time of the Support
Element should not be changed as this affects other systems.

The preferred method is to specify the date and time at IPL time by
 using a CLOCKxx member in SYS1.PARMLIB with:

Appendix F. Establishing a Test Environment 161

OPERATOR PROMPT
ETRMODE NO
ETRZONE NO
TIMEZONE W.00.00.00

The TIMEZONE parameter specifies the difference between GMT and local time.
This parameter should be set as required.

During IPL, the operator is prompted to set the clock when the following
messages are issued:

IEA598I TIME ZONE = W.05.00.00
IEA888A GMT DATE=1997.116,CLOCK=15.29.24
* IEA888A LOCAL DATE=1997.116,CLOCK=10.29.24 REPLY U,
OR GMT/LOCAL TIME

R 00,DATE=1999.365,CLOCK=23.45.00,GMT
IEE600I REPLY TO 00 IS;CLOCK=23.45.00,DATE=1999.365,GMT
* IEA903A REPLY U WHEN THE ENTERED TIME OCCURS

R 00,U
IEE600I REPLY TO 00 IS;U

The operator can set the year 2000 test date with the response to message
IEA888A, as shown above.

There is a lot more information about this topic in the Time Management
redbook, S/390 Time Management and IBM 9037 Sysplex Timer (SG24-2070), also
available at http://www.redbooks.ibm.com/SG242070/y2000.html.

F.2.3 Setting the Date on an LPAR for VSE/ESA
If you are using VSM for the directory entry for the VSE guest machine, you need
to specify the TODENABLE option on the options card. Then reload the directory.

Once you have completed the date and time settings, use the systems procedure
to enable the TOD clock for the LPAR being IPLed:

 1. Modify the IPL procedure member to include the following statement after
the DLF command but before the SVA command is issued:

SET DATE=,CLOCK=,ZONE=NORMAL ZONE SETTING

 2. IPL the VSE system.

During IPL the following message appears:

0I87D INVALID SPECIFICATION FOR KEYWORK DATE

 3. Reply to this message with the desired settings in the following format:

SET DATE=MM/DD/YYYY,CLOCK=HH/MM/SS,ZONE=normal zone setting

The IPL now continues as normal.

162 VisualAge 2000 Test Solution

Appendix G. Program Information for Tools Used by VisualAge 2000
Test Solution

G.1.1 Debug Tool
Debug Tool is available from IBM as a full function offering of the compilers:

• IBM COBOL for OS/390 & VM (5648-A25)

• IBM COBOL for MVS & VM (5688-197)

• IBM C/C++ for MVS & VM (5655-121)

• IBM OS/390 C/C++ (before Release 4, 5645-001; after Release 4, 5647-A01)

• IBM PL/I for MVS & VM (5688-235)

• IBM COBOL for VSE/ESA (5686-068)

• IBM C for VSE/ESA (5686-A01)

• IBM PL/I for VSE/ESA (5686-069)

Debug Tool is also available from IBM as part of CODE/370 (5688-194).

G.1.2 IBM Application Testing Collection
IBM Application Testing Collection is available from IBM as IBM Application
Testing Collection for MVS (5799-GBN).

This collection contains Coverage Assistant, Distillation Assistant, and Source
Audit Assistant.

G.1.3 IBM Data Facility Sort
IBM Data Facility Sort with Year 2000 features is available from IBM:

• For OS/390, as IBM Data Facility Sort (DFSORT) Version 1 Release 13
(5740-SM1) with PTF UN90139 and PTF UQ05520

• For VSE, as IBM DFSORT/VSE Version 3 Release 3 (5746-SM3), or IBM
DFSORT/VSE Version 3 Release 2 (5746-SM3) with PTF UN99635

G.1.4 Enhanced SuperC—part of IBM High Level Assembler for MVS & VM &
VSE

IBM High Level Assembler for MVS & VM & VSE Toolkit Feature is available from
IBM as an optional feature of IBM High Level Assembler for MVS & VM & VSE
(5696-234).

This package includes Enhanced SuperC.

G.1.5 IBM VisualAge Test for OS/2
IBM VisualAge Test for OS/2, Version 1, is available from IBM as IBM VisualAge
for COBOL, Test for OS/2, Version 1 Release 2 (33H005).

This package includes COBOL Tester and Auto Test Performer.

 Copyright IBM Corp. 1997, 1998 163

G.1.6 WITT Year2000 for OS/2
IBM WITT Year2000 for OS/2, Version 3, is available from IBM as IBM WITT
Year2000 for OS/2, Version 3.0 (33H0036).

This package includes Auto Test Performer.

G.1.7 WITT Year2000 for Windows
WITT Year2000 for Windows Version 1, which runs under Windows 95 and
Windows NT, is available from IBM as IBM WITT Year2000 for Windows, Version
1.0 (33H0050).

164 VisualAge 2000 Test Solution

Appendix H. Employee Master File Descriptions

This appendix lists the record descriptions for the legacy and converted
Employee Master File.

The examples are for COBOL. PL/I files have the same structure.

H.1 The Legacy Employee Master File Record
01 EMPLOYEE-MASTER-RECORD.
* ** key field

03 EMP-ID PIC X(6).
03 EMP-DEPT-CODE PIC X(4).
03 EMP-NAME PIC X(30).
03 EMP-ADDR-1 PIC X(30).
03 EMP-ADDR-2 PIC X(30).
03 EMP-ADDR-3 PIC X(30).
03 EMP-ZIP-CODE PIC X(5).

* ** format (yyddd)
03 EMP-DATE-JOINED PIC 9(5).

* ** format (yymmdd)
03 EMP-DATE-TERMINATED PIC 9(6).

* ** format (yyddd)
03 EMP-DATE-MAINTAINED PIC 9(5).

* ** format (yyddd)
03 EMP-BIRTH-DATE PIC 9(5).

* ** format (yyddd)
03 EMP-SECURITY-EXP PIC 9(5) COMP-3.
03 FILLER PIC X(41).

H.2 The Converted Employee Master File Record
01 EMPLOYEE-MASTER-RECORD.
* ** key field

03 EMP-ID PIC X(6).
03 EMP-DEPT-CODE PIC X(4).
03 EMP-NAME PIC X(30).
03 EMP-ADDR-1 PIC X(30).
03 EMP-ADDR-2 PIC X(30).
03 EMP-ADDR-3 PIC X(30).
03 EMP-ZIP-CODE PIC X(5).

* ** format (yyyyddd) date expanded
03 EMP-DATE-JOINED PIC 9(7).

* ** format (yyyymmdd) date expanded
03 EMP-DATE-TERMINATED PIC 9(8).

* ** format (yyyyddd) packed date compressed
03 EMP-DATE-MAINTAINED PIC 9(7) COMP-3.

* ** format (yyyyddd) packed date compressed
03 EMP-BIRTH-DATE PIC 9(7) COMP-3.

* ** format (yyddd) packed date uses sliding window
03 EMP-SECURITY-EXP PIC 9(5) COMP-3.
03 FILLER PIC X(39).

 Copyright IBM Corp. 1997, 1998 165

166 VisualAge 2000 Test Solution

Appendix I. Files Used In the Tutorials

This appendix briefly describes the files used in the tutorials, as they appear on
the host or the work station.

I.1 OS/390 Files
There are 9 partitioned data sets (PDS) used in the tutorials.

I.1.1 hlq.VA2000TS.ATC
This PDS contains source programs and batch jobs used by the ATC processes:

Table 1. ATC Procedures for OS/390

Member Use

CPL1MU6X Compiles PL1MU6X

CTARMU6X Compiles TARMU6X

DISTCOPY Copies VSAM file to be distilled to a sequential file

DTARMU6X Disti l lation listing

GPL1MU6X Runs PL1MU6X

GTARMU6X Runs TARMU6X

LPL1MU6X Links PL1MU6X

LTARMU6X Links TARMU6X

PL1MU6X PL1MU6X source

RPL1MU6X Creates CA reports

SPL1MU6X Setup

STARMU6X Setup

TARMU6 TARMU6 source

TARMU6X TARMU6X source

XPL1MU6X Starts monitor

XTARMU6X Starts monitor

I.1.2 hlq.VA2000TS.CLIST
This PDS contains REXX procedures and CLISTs used in the tutorials:

Table 2 (Page 1 of 2). CLISTs and REXX Procedures for OS/390

Member Use

TARBON2 Creates hlq.EMP.MASTON2.BACK and copies hlq.EMP.MASTER.ONLINE2 into it
(creates a backup copy)

TARBON3 Creates hlq.EMP.MASTON3.BACK and copies hlq.EMP.MASTER.ONLINE3 into it
(creates a backup copy)

TARCNTL REXX procedure that customizes batch job control

TARDBG REXX procedure that customizes Debug Tool command files.

TARDHLQ Prompts you for hlq and saves it for later use—called by other REXX procedures

 Copyright IBM Corp. 1997, 1998 167

Table 2 (Page 2 of 2). CLISTs and REXX Procedures for OS/390

Member Use

TARDNVSM Allocates report data sets

TARDVSAM Creates initial VSAM data sets (hlq.EMP.MASTER.START and
hlq.DEPT.MASTER.ONLINE) with records needed by the tutorials

TARDVSM1 Creates hlq.EMP.MASTER.ONLINE from hlqEMP.MASTER.START

TARDVSM2 Creates hlq.EMP.MASTER.ONLINE2

TARDVSM3 Creates hlq.EMP.MASTER.ONLINE3 from hlq.EMP.MASTON2.BACK

TARDVSM4 Creates hlq.EMP.MASTER.ONLINE4 from hlq.EMP.MASTON3.BACK

TARREC REXX procedure that receives PDS files sent from PC.

TARRON2 Restores hlq.EMP.MASTER.ONLINE2 from hlq.EMP.MASTON2.BACK

VSAMBROW Not used by tutorials—allows you to browse a VSAM data set

I.1.3 hlq.VA2000TS.CNTL
This PDS contains JCL for jobs used in the tutorials:

Table 3. Job Control Language for OS/390

Member Use

CICSDEF Sample to create CICS CSD entries

SUPERC1A Compares baseline and post-fix Employee Master files

SUPERC1B Compares baseline and post-fix reports

SUPERC2A Compares post-fix and 19xx Employee Master files

SUPERC2B Compares post-fix and 19xx reports

SUPERC3A Compares 19xx and 20xx Employee Master files

SUPERC3B Compares 19xx and 20xx reports

SUPERC5A Compares Debug Tool COBOL log files

SUPERC5B Compares Debug Tool PL/I log files

TARAGE3T Ages hlq.EMP.MASTER.ONLINE3 by 3 years

TARCNV2 Builds hlq.EMP.MASTER.ONLINE2 from hlq.EMP.MASTER.START by expanding date
fields

TARRPA1 Creates baseline security card expiry dates report

TARRPA2 Creates post-fix security card expiry dates report

TARRPA3 Creates 19xx security card expiry dates report

TARRPA4 Creates 20xx security card expiry dates report

I.1.4 hlq.VA2000TS.COBOL
This PDS contains COBOL source for programs used in the tutorials:

Table 4 (Page 1 of 2). COBOL Source for OS/390

Member Use

MLEMU5 MLE version of TARMU5 report program

TARAGE3 Program to age Employee Master file

168 VisualAge 2000 Test Solution

Table 4 (Page 2 of 2). COBOL Source for OS/390

Member Use

TARDTE3 Date uti l i ty program

TARDTE3X Y2K date uti l i ty program

TARMU3 Program for CICS transaction NB03 (before conversion)

TARMU3E Program for CICS transaction NB3E (converted, but with error)

TARMU3X Program for CICS transaction NB3X (converted, with error corrected)

TARMU5 Report program

I.1.5 hlq.VA2000TS.DATA
This PDS contains SYSIN data for jobs and procedures used in the tutorials.
Examine the hlq.VA2000TS.CNTL and hlq.VA2000TS.CLIST data sets to see where
members are used.

I.1.6 hlq.VA2000TS.DEBUG
This PDS contains Debug Tool command files:

Table 5. Debug Tool Command Files for OS/390

File name Contents

COBDB0 CMD Checking coverage

COBDB1 CMD Checking code conversion

COBDB2 CMD Building a distilled key list

COBXDB1 CMD Checking code conversion

PL1DB0 CMD Checking coverage

PL1DB1 CMD Checking code conversion

PL1XDB1 CMD Checking code conversion

I.1.7 hlq.VA2000TS.LISTING
This PDS contains program listing files used by Debug Tool and ATC reports:

Table 6 (Page 1 of 2). Listings for OS/390

Member Use

DTARMU6X ATC Distil lation Assistant report

PL1DTE3 Compiler l isting

PL1DT3X Compiler l isting

PL1MU3 Compiler l isting

PL1MU3X Compiler l isting

RPL1MU6X ATC Coverage Assistant report

RTARMU6X ATC Coverage Assistant report

SAAREPT ATC Source Audit Assistant compare of TARMU6 and TARMU6X source programs

TARDTE3 Compiler l isting

TARDTE3X Compiler l isting

Appendix I. Files Used In the Tutorials 169

Table 6 (Page 2 of 2). Listings for OS/390

Member Use

TARMU3 Compiler l ist ing

TARMU3X Compiler l isting

I.1.8 hlq.VA2000TS.LOAD
This PDS contains load modules used in the tutorials:

Table 7. Load Modules for OS/390

Member Use

PL1AGE3 PL/I program to age Employee Master File

PL1DTE3 PL/I date utility

PL1DT3X PL/I Y2K date utility

PL1MU3 PL/I CICS program used by transaction MB03

PL1MU3E PL/I CICS program used by transaction MB3E

PL1MU3X PL/I CICS program used by transaction MB3X

PL1MU5 PL/I report program

PL1MU6X ATC PL/I sample program.

TARAGE3 Program to age Employee Master file

TARDTE3 Date uti l i ty program

TARDTE3X COBOL Y2K date utility

TARMU3 Program for CICS transaction NB03 (before conversion)

TARMU3E Program for CICS transaction NB3E (converted, but with error)

TARMU3M Mapset for CICS transaction NB03

TARMU3X Program for CICS transaction NB3X (converted, with error corrected)

TARMU5 Report program

TARMU6X ATC COBOL sample program

TARM3XM Mapset for CICS transaction NB3X

I.1.9 hlq.VA2000TS.PLI
This PDS contains PL/I source for programs used in the tutorials:

Table 8 (Page 1 of 2). PL/I Source for OS/390

Member Use

MLEMU5 MLE version of PL1MU5 program.

PL1AGE3 Program to age Employee Master file

PL1DTE3 Date uti l i ty

PL1DT3X Year 2000 date utility

PL1MU3 CICS program used by transaction MB03

PL1MU3E CICS program used by transaction MB3E

PL1MU3X CICS program used by transaction MB3X

170 VisualAge 2000 Test Solution

Table 8 (Page 2 of 2). PL/I Source for OS/390

Member Use

PL1MU5 Report program

I.1.10 VSAM Data Sets
There is only one Department Master file (hlq.DEPT.MASTER.ONLINE) as it not
updated by the tutorials. The Employee Master file proceeds through 7 versions:

Table 9. VSAM Data Sets for OS/390

Data set name Contents

hlq.EMP.MASTER.ONLINE Copy of START, used to establish baseline

hlq.EMP.MASTER.ONLINE2 ONLINE with date fields expanded (post-fix)

hlq.EMP.MASTER.ONLINE3 ONLINE2 aged 3 years (19xx)

hlq.EMP.MASTER.ONLINE4 ONLINE3 updated with system date year set to 2000 (20xx)

hlq.EMP.MASTER.START Initial Employee Master

hlq.EMP.MASTON2.BACK Backup of ONLINE2, used to create ONLINE3

hlq.EMP.MASTON3.BACK Backup of ONLINE3, used to create ONLINE4

I.1.11 Other OS/390 Data Sets
There are two other files used in the OS/390 side of the tutorials:

Table 10. Other OS/390 Data Sets

Data set name Contents

hlq.EMP.DATA Unloaded copy of hlq.EMP.MASTER.START

hlq.DEPT.DATA Unloaded copy of hlq.DEPT.MASTER.ONLINE

I.2 VSE Files
The following files are punched into the nominated sublibrary.

I.2.1 *.A
This file is the CICS File Control Table:

Table 11. CICS File Control Table for VSE

File name Contents

TARFCT A The CICS File Control Table

Appendix I. Files Used In the Tutorials 171

I.2.2 *.C
These files are the COBOL source files for programs used in the tutorials:

Table 12. COBOL Source for VSE

File name Contents

MLEMU5 C MLE version of TARMU5 report program

TARAGE3 C Program to age Employee Master file

TARDTE3 C Date uti l i ty program

TARDTE3X C Y2K date uti l i ty program

TARMU3 C Program for CICS transaction NB03 (before conversion)

TARMU3E C Program for CICS transaction NB3E (converted, but with error)

TARMU3M C Mapset for CICS transaction NB03

TARMU3X C Program for CICS transaction NB3X (converted, with error corrected)

TARMU5 C Report program

TARM3XM C Mapset for CICS transaction NB3X

I.2.3 *.CMD
These files are Debug Tool command files:

Table 13. Debug Tool Command Files for VSE

File name Contents

COBDB0 CMD Checking coverage

COBDB1 CMD Checking code conversion

COBDB2 CMD Building a distilled key list

COBXDB1 CMD Checking code conversion

PL1DB0 CMD Checking coverage

PL1DB1 CMD Checking code conversion

PL1XDB1 CMD Checking code conversion

I.2.4 *.LIST
These files are program listing files used by Debug Tool:

Table 14. Listings for VSE

File name Contents

PL1DTE3 LIST Compiler l isting

PL1DT3X LIST Compiler l isting

PL1MU3 LIST Compiler l isting

PL1MU3X LIST Compiler l isting

TARDTE3 LIST Compiler l isting

TARMU3 LIST Compiler l isting

TARMU3X LIST Compiler l isting

172 VisualAge 2000 Test Solution

I.2.5 *.LOG
These are log files created by Debug Tool command files:

Table 15. Debug Tool Log Files for VSE

File name Contents

PL1MU3 LOG Disti l lation example

PL1MU3X LOG Disti l lation example

TARMU3 LOG Disti l lation example

TARMU3X LOG Disti l lation example

TARMU3 LOG2 Disti l lation example

I.2.6 *.P
These files are PL/I source code files:

Table 16. PL/I Source Code for VSE

File name Contents

MLEMU5 P MLE version of TARMU5 report program

PL1AGE3 P Program to age Employee Master file

PL1DTE3 P Date uti l i ty program

PL1DT3X P Y2K date uti l i ty program

PL1MU3 P Program for CICS transaction MB03 (before conversion)

PL1MU3E P Program for CICS transaction MB3E (converted, but with error)

PL1MU3X P Program for CICS transaction MB3X (converted, with error corrected)

PL1MU5 P Report program

I.2.7 *.PHASE
These files are program phases:

Table 17 (Page 1 of 2). Program Phases for VSE

File name Contents

PL1AGE3 PHASE PL/I program to age Employee Master File

PL1DTE3 PHASE PL/I date utility

PL1DT3X PHASE PL/I Y2K date utility

PL1MU3 PHASE PL/I CICS program used by transaction MB03

PL1MU3E PHASE PL/I CICS program used by transaction MB3E

PL1MU3X PHASE PL/I CICS program used by transaction MB3X

PL1MU5 PHASE PL/I report program

TARAGE3 PHASE Program to age Employee Master file

TARCONV PHASE Program to convert Employee Master fi le

TARDTE3 PHASE Date uti l i ty program

TARLOAD PHASE Program to build Employee Master file

TARMU3 PHASE Program for CICS transaction NB03 (before conversion)

Appendix I. Files Used In the Tutorials 173

Table 17 (Page 2 of 2). Program Phases for VSE

File name Contents

TARMU3E PHASE Program for CICS transaction NB3E (converted, but with error)

TARMU3M PHASE Mapset for CICS transaction NB03

TARMU3X PHASE Program for CICS transaction NB3X (converted, with error corrected)

TARMU5 PHASE Report program

TARM3XM PHASE Mapset for CICS transaction NB3X

I.2.8 *.PROC
These files are REXX procedures used during installation:

Table 18. REXX Procedures for VSE

File name Contents

TARCHG PROC Updates batch jobs at time of installation

TARCHG2 PROC Updates batch jobs at time of installation

I.2.9 *.Z
These are the batch jobs submitted as part of tutorials:

Table 19 (Page 1 of 2). Batch Jobs for VSE

File name Contents

RTARCHG Z Customizes batch jobs at time of installation

SUPERC1A Z Compares baseline and post-fix Employee Master files

SUPERC1B Z Compares baseline and post-fix reports

SUPERC2A Z Compares post-fix and 19xx Employee Master files

SUPERC2B Z Compares post-fix and 19xx reports

SUPERC3A Z Compares 19xx and 20xx Employee Master files

SUPERC3B Z Compares 19xx and 20xx reports

SUPERC5A Z Compares Debug Tool COBOL log files

SUPERC5B Z Compares Debug Tool PL/I log files

TARAGE3T Z Ages hlq.EMP.MASTER.ONLINE3 by 3 years

TARBON2 Z Creates hlq.EMP.MASTON2.BACK and copies hlq.EMP.MASTER.ONLINE2 into it
(creates a backup copy)

TARBON3 Z Creates hlq.EMP.MASTON3.BACK and copies hlq.EMP.MASTER.ONLINE3 into it
(creates a backup copy)

TARCNV2 Z Builds hlq.EMP.MASTER.ONLINE2 from hlq.EMP.MASTER.START by expanding date
fields

TARCSD Z Set-up job, defines transactions and programs for CICS processing

TARDVSAM Z Creates initial VSAM data sets (hlq.EMP.MASTER.START and
hlq.DEPT.MASTER.ONLINE) with records needed by the tutorials

TARDVSM1 Z Creates hlq.EMP.MASTER.ONLINE from hlqEMP.MASTER.START

TARDVSM2 Z Creates hlq.EMP.MASTER.ONLINE2

174 VisualAge 2000 Test Solution

Table 19 (Page 2 of 2). Batch Jobs for VSE

File name Contents

TARDVSM3 Z Creates hlq.EMP.MASTER.ONLINE3 from hlq.EMP.MASTON2.BACK

TARDVSM4 Z Creates hlq.EMP.MASTER.ONLINE4 from hlq.EMP.MASTON3.BACK

TARRON2 Z Restores hlq.EMP.MASTER.ONLINE2 from hlq.EMP.MASTON2.BACK

TARRPA1 Z Creates baseline security card expiry dates report

TARRPA2 Z Creates post-fix security card expiry dates report

TARRPA3 Z Creates 19xx security card expiry dates report

TARRPA4 Z Creates 20xx security card expiry dates report

I.3 OS/2
There are two OS/2 files:

Table 20. OS/2 Data Sets

Data set name Contents

TARADJST.CMD REXX procedure to convert and age ATP scripts

TARDTE3.COB Program used in COBOL Tester example

I.4 Windows
There is one Windows files:

Table 21. Windows File

Data set name Contents

TARADJST.TSC Lotus Script procedure to convert and age WITT Year2000 for Windows scripts

Appendix I. Files Used In the Tutorials 175

176 VisualAge 2000 Test Solution

Appendix J. Special Notices

This publication is intended to help people involved in Year 2000 testing to
understand the Year 2000 Test Solution. The information in this publication is
not intended as a specification of any programming interfaces that are provided
by the tools discussed in this publication. See the PUBLICATIONS section of the
IBM Programming Announcement for the tools listed in Chapter 2, “The Tools
Used by VisualAge 2000 Test Solution” for more information about what
publications are considered to be product documentation.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples contain
the names of individuals. All of these names are fictitious, and any similarity to
the names and addresses of actual people is entirely coincidental.

Any pointers in this publication to websites are provided for convenience only
and do not in any manner serve as an endorsement of these websites.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

 Copyright IBM Corp. 1997, 1998 177

The following terms are trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

Other company, product, and service names may be trademarks or
service marks of others.

AD/Cycle AIX
AS/400 BookManager
C/370 CICS
COBOL/370 DFSMS
DFSORT ESCON
IBM Language Environment
Library Reader MVS/ESA
OS/2 OS/3
OS/390 Parallel Sysplex
PR/SM PROFS
RS/6000 S/370
S/390 SAA
Sysplex Timer System/390
VisualAge VM/ESA
VSE/ESA WIN-OS/2

178 VisualAge 2000 Test Solution

Appendix K. Related Publications

The publications listed in this section provide more information about the Year
2000 challenge.

K.1 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

K.2 Web Publications
These World Wide Web publications are relevant as further information sources:

• VisualAge 2000: Methodology and Tools Implementation,
http://www.software.ibm.com/ad/va2000/y2k/

• The Year 2000 and 2-Digit Dates: A Guide for Planning and Implementation,
http://www.software.ibm.com/year2000/resource.html

• Year 2000 scripts for Debug Tool,
http://www.software.ibm.com/year2000/tools19.html

• DFSORT′s Year 2000 and performance enhancements,
http://www.storage.ibm.com/software/sort/srtmy2p.htm

 Copyright IBM Corp. 1997, 1998 179

180 VisualAge 2000 Test Solution

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1997, 1998 181

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

182 VisualAge 2000 Test Solution

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 183

184 VisualAge 2000 Test Solution

Glossary

A
acceptance tests . Formal tests of the system, carried
out by the users when all changes to the system have
been made. If the results of the acceptance tests are
not what the users expected, further changes are
required. See also performance test.

aged testbed . The converted testbed after it has
been aged. The aged testbed holds information in the
formats required for Year 2000 readiness, and
includes dates in 20xx. The aged testbed is used to
produce Year 19xx results and Year 20xx results.

aging . The process whereby dates in testbeds are
advanced. For testing purposes, dates should be
advanced beyond 1999. For example, if a date
includes the year 1987, this can be advanced to 2015.
Testbeds can also be aged by adding master file
records and transactions that include dates beyond
1999, but this method introduces problems when
results are compared. All dates in the testbed must
be advanced by the same interval.

archive . Applies to Auto Test Performer and WITT
Year2000 for Windows screen images. When the
images are archived, the Benchmark images are
discarded, and the Current images are made the
Benchmark images, and hence become the basis for
any future image comparisons.

B
baseline . The output that results from processing
transactions against the master files. A baseline is
then stored, and later in the test cycle, is compared
against other results. The differences between the
baseline and other results should arise from the Year
2000 conversion. The main purpose of testing is to
find differences that cannot be explained.

black box testing . Testing that is driven by the
functional specifications or external design
specifications of the system, without regard to the
internal composition of programs. See also white box
testing.

C
control box . The control box is the small icon at the
top left corner of an OS/2 window. Click on it once to
show the control menu, or double-click it to close the
window.

converted code . The code after it has been modified
to deal with any Year 2000 problems.

converted testbed . The distilled testbed after it has
been converted, so that any dates are in the format
required for Year 2000 readiness. If a window
technique is used for a date, then it does not require
converting. Otherwise, when expansion or
compression techniques are used, the date must be
converted. The converted testbed is used to produce
the Post-fix results, and is aged to produce the aged
testbed.

coverage . The lines of code that have been executed
when a set of data is run against the code. Coverage
is increased by providing more data items. The ideal
is 100% coverage.

critical application . The same as a high-risk
application.

D
distillation . The process of removing records that do
not contribute to an increase in path coverage.

distilled testbed . The original testbed after it has
been augmented by checking the coverage, and
refined by distillation. All dates are in original
formats. The distilled testbed is used to produce the
Baseline results, and is converted to produce the
converted testbed.

E
enhanced testbed . The testbed after additional data
has been added to it, so that coverage is at a
maximum.

H
high-risk application . An application which, if it failed,
would cause major operational difficulties to your
business. For example, if an invoicing application
fails, customers will stop making payments to your
business.

L
low-risk application . An application which, if it fails,
can be fixed without causing too much inconvenience
to your business. Any failure will be treated as a
low-priority fix.

 Copyright IBM Corp. 1997, 1998 185

N
node . A line of code where processing can proceed
more than one way, depending on a decision made on
the basis of the value of a variable, or the values of
some variables.

O
original code . The code before it is converted to deal
with any Year 2000 problems.

original testbed . The testbed that is available before
any Year 2000 conversion and testing commences. It
is either a testbed that has been maintained for
testing purposes, or a cut-down version of production
files. The original testbed is distilled, to produce the
distilled testbed.

P
performance test . A test that focuses on the time
taken for processing and the resources used by the
processing, especially hard disk storage. A
performance test is usually undertaken with a large
volume of information. Results are possibly not
checked thoroughly.

R
results . In this redbook, results refer to the updated
files, the reports produced after updating, and the
screen images captured during the entry of
transactions. There are four sets of results, baseline,
post-fix, 19xx, and 20xx. These results are compared.
An exact comparison (after allowing for conversion
and aging) is a strong indication that program
conversion is correct.

S
sub-path . The part of a path between two nodes.
Because there are nodes (or decision points) in the
sub-path, all of the code in the sub-path is executed
to process a particular transaction.

system clock . The clock provided by the computer or
operating system. Provides the system date.

system date . The date provided by the computer or
operating system. Often provide the validation check
for a date—the date must not be in advance of
“today”—or the date stamp for transactions. When
testing, extreme precautions should be taken before
changing the system date, to make sure that the

changed date does not flow into current production
systems.

system test . Test of the entire system of programs
and modules. (Testing one program or module is a
unit test.) The purpose of the system test is to check
the flow of information between programs, and also to
check the relationship between programs written for
the system and util it ies provided by the system.

system test plan . A document describing the testing
to be carried out for the entire system, and the
expected result for each test.

T
targeted coverage . Developing coverage by
comparing source code before and after conversion,
and making sure that all changed lines of code are
covered.

testbed . A set of databases (or master files) and
transactions. Transactions are processed by code to
produce results (reports and updated master files).
See original testbed, distilled testbed, converted
testbed, and aged testbed.

U
unit test . The test of one program or module, to
ensure that there are no programming or analysis
errors. See also system test.

unit test plan . A document describing the testing to
be carried out for each program or module, and the
expected result for each test.

W
white box testing . Testing that is produced by
examining the internal structure and logic of
programs. See also black box testing.

Y
year 2000 ready . A program or system that is able to
correctly process, receive and provide dates within
and between the 20th and 21st centuries.

Z
zapped module . A module used by Coverage
Assistant and Distil lation Assistant, where breakpoints
have been inserted into the object code. This makes it
possible for Coverage Assistant and Distil lation
Assistant to monitor the execution of code, and thus
create a coverage report or distil l fi les.

186 VisualAge 2000 Test Solution

List of Abbreviations

APA all points addressable

ATC Application Testing Collection

ATP Auto Test Performer

CICS Customer Information Control
System

DT Debug Tool

LE Language Environment

IBM International Business
Machines Corporation

MLE Mil lennium Language
Extensions

ITSO International Technical
Support Organization

PDS partit ioned data set

PROFS Professional Office System

PTF Program Temporary Fix

WITT Workstation Interactive Test
Tool

 Copyright IBM Corp. 1997, 1998 187

188 VisualAge 2000 Test Solution

Index

Numerics
19xx results

comparing with 20xx results 123
master f i le 124
report 125
screen images 123

comparing with post-fix results 111
master f i le 113
report 115
screen images 111

creating 107
master f i le 107
report 110
screen images 110

skipping 131
20xx results

comparing with 19xx results 123
master f i le 124
report 125
screen images 123

creating 117
master f i le 117
report 120
screen images 120

A
abbreviations 187
acronyms 187
aged testbed

building 103
aging data 103

See also aged testbed
aging the ATP script file 105
aging the master file 104
aging the WITT Year2000 for Windows script

fi le 140
problem aging Julian dates 114

Application Testing Collection
introducing 50

ATP
See Auto Test Performer

Auto Test Performer
capturing transactions 73
entering transactions 86, 109, 118, 119
saving screen images 75
screen images

archiving 112
benchmark 112
capturing 75
comparing 111
current 112

script
aging 105
convert ing 82

Auto Test Performer (continued)
script (continued)

correcting 77
creating 73
looking at 76
playing back 87

start ing 72

B
baseline results

comparing with post-fix results 89
master f i le 92, 100
report 93, 101
screen images 90, 99, 138

creating 69
master f i le 70
report 77
screen images 70

bibliography 179

C
CD-ROM

structure 20
CICS

sample definitions for OS/390 26
sample JCL for OS/390 26

COBOL Tester
creating a testcase 42
opening 42
script

checking coverage 45
creating 43
extending coverage 47
running 45
saving 45

start ing 42
code

converted
See converted code

original
See original code

comparisons
19xx to 20xx 123
baseline to post-fix 89
master fi les 92, 100, 113, 124
post-fix to 19xx 111
reports 93, 101, 115, 125
screen images 90, 99, 111, 123, 138

converted code 4, 42
converted testbed

aging 103
building 79

 Copyright IBM Corp. 1997, 1998 189

convert ing data
ATP scripts 82
master files 80
WITT Year2000 for windows scripts 135

coverage
building

with COBOL Tester 41
with Coverage Assistant 55

checking
with Debug Tool 57

targeted 37, 40, 55
Coverage Assistant 11

building coverage 51, 55
introduced 50
process step by step 52
report annotations 53
sample report 53

customizing files for OS/390 24

D
date changing techniques

expansion 80
windowing 80

date simulation 118
Debug Tool 12, 163

checking converted code 149
displaying coverage 57

DFSORT
expanding dates 80

directory 28, 29
disti l lation 40

aim of 40
process 41
with Distil lation Assistant 63

Distil lation Assistant 13
distil l ing files 63
introduced 50

distil led testbed
creating 37
reason for creating 37

E
emulator session 28, 29

F
fi les

CD-ROM 20
customizing for OS/390 24
installing on OS/2 21
non-VSAM allocation 26
VSAM allocation 25
Windows 22

G
glossary 185

H
high-risk application

approach to testing 6

I
initial allocation for VSAM data sets 25
initial setup for OS/390 25, 31
installation

OS/2 21
prerequisites 19
Windows 22

Internet addresses
Adobe Acrobat Reader 20
Auto Test Performer Version 1.11 10
Debug Tool Year 2000 scripts 13
DFSORT′s Year 2000 and Performance

Enhancements 82
IBM PC Server System/390 159
S/390 Year 2000 Stories 159
Setting up a Year 2000 Test System 157
The Year 2000 and 2-Digit Dates: A Guide for

Planning and Implementation xvii i
VisualAge 2000: Methodology and Tools

Implementation xvi

J
Julian dates

problem with aging 114

L
library name, VSE 28, 29
low-risk application

approach to testing 6

N
node

defined 37
non-VSAM files

initial allocation 26

O
original code 4, 42, 69
original testbed 39

P
path

defined 37
path coverage

See also coverage

190 VisualAge 2000 Test Solution

path coverage (continued)
process 38

post-fix results
comparing with 19xx results 111

master f i le 113
report 115
screen images 111

comparing with baseline results 89
master f i le 92, 100
report 93, 101
screen images 90, 99, 138

creating 85
master f i le 85
report 87
screen images 85

pre-requisite software 19

R
reports

comparing
19xx to 20xx 125
baseline to post-fix 93, 101
post-fix to 19xx 115

creating
19xx 110
20xx 120
baseline 77
post-fix 87, 99

results
19xx

See 19xx results
20xx

See 20xx results
baseline

See baseline results
post-fix

See post-fix results

S
sample application

customized 19
described 36
installed 19

screens
comparing

19xx to 20xx 123
baseline to post-fix 90, 99, 138
post-fix to 19xx 111

creating
19xx 107
20xx 118
baseline 70
post-fix 85, 97

script
See Auto Test Performer, script
See COBOL Tester, script

Source Audit Assistant
developing targeted coverage 55
introduced 50

sub-path
as displayed in COBOL Tester 43
defined 37

sublibrary name, VSE 28, 29
SuperC

comparing master fi les 113
comparing report f i les 93, 101, 115, 125, 152
process statements

aging dates 114, 115
describing dates 93, 114, 115
excluding columns 93, 124
excluding rows 94, 115, 125
handling possibly empty values 93, 114
setting window 93, 114, 115

system clock date
changing 118

T
TARADJST REXX routine and LotusScript script

aging dates 105, 140
and leap years 131
batch processing 83
converting dates 83, 136
copying to OS/2 21
copying to Windows 135
running from OS/2 82
running through WITT Year2000 for Windows 135

testbed
aged

See aged testbed
converted

See converted testbed
disti l led

See distil led testbed
original

See original testbed
testcase

See COBOL Tester, creating a testcase
testing converted code

using Debug Tool 149
testing process

outl ined 3
tutorials

introduced 35
prerequisite software 19

U
upload 28, 29
URL

See Internet addresses

Index 191

V
VSAM files

init ial allocation 25

W
window 28, 29
WITT Year2000 for Windows

capturing transactions 133
entering transactions 137
saving screen images 75
screen images

archiving 139
benchmark 138
capturing 75
comparing 138
current 138

script
aging 140
convert ing 135
correcting 134
creating 133
looking at 134
playing back 137

start ing 133

192 VisualAge 2000 Test Solution

ITSO Redbook Evaluation

VisualAge 2000 Test Solution: Testing Your Year 2000 Conversion
SG24-2230-01

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997, 1998 193

S
G

24
-2

23
0-

01
P

rin
te

d
in

 t
he

 U
.S

.A
.

VisualAge 2000 Test Solution: Testing Your Year 2000 Conversion SG24-2230-01

IB
M

L

	VisualAge 2000 Test Solution:
	Testing Your Year 2000 Conversion
	Contents
	Figures
	Tables
	Preface
	What Is Special About Year 2000 Testing
	Introducing VisualAge 2000 Test Solution
	Start Thinking About Testing Today
	Before You Begin Testing
	Who Should Read This Book
	The Team That Wrote This Redbook
	Comments Welcome

	Part 1. Preparing for the Test Tutorials
	Chapter 1. An Outline of the Testing Process
	Previous Steps in the Year 2000 Conversion
	The Testing Process
	High- and Low- Risk Applications
	What To Do When Testing Finds a Bug

	Chapter 2. The Tools Used by VisualAge 2000 Test Solution
	Auto Test Performer
	Hardware Requirements
	Software Requirements
	Installation and Usage Hints
	COBOL Tester
	Hardware Requirements
	Software Requirements
	Installation and Usage Hints
	Coverage Assistant
	Hardware Requirements
	Software Requirements
	Installation and Usage Hints
	Debug Tool
	Hardware Requirements
	Software Requirements
	Installation and Usage
	Distillation Assistant
	Hardware Requirements
	Software Requirements
	Installation and Usage Hints
	Enhanced SuperC
	Hardware Requirements
	Software Requirements
	Installation and Usage
	Data Facility Sort
	Hardware Requirements
	Software Requirements
	Installation and Usage
	REXX
	Source Audit Assistant
	Hardware Requirements
	Software Requirements
	Installation and Usage Hints
	WITT Year2000 for Windows
	Hardware Requirements
	Software Requirements
	Installation and Usage Hints

	Chapter 3. Installation and Customization
	Prerequisite Software
	OS/ 390
	VSE
	Workstation
	Structure of CD- ROM
	Installing Files on OS/ 2
	Installing Files on Windows 95 or Windows NT
	Loading OS/ 390 Files
	Partitioned Data Sets
	Sequential Data Sets
	Customizing Files for OS/ 390
	Initializing for OS/ 390
	Setting Up for Debug Tool
	Conventions in This Redbook for OS/390
	Loading VSE Files
	Uploading Files from a Windows Platform
	Uploading Files from an OS/ 2 Platform
	Processing Uploaded Files
	Customizing Batch Jobs
	Initializing for VSE
	Conventions in This Redbook for VSE

	Part 2. The Test Tutorials
	Chapter 4. Introducing The Tutorials
	An Outline of the Tutorials
	An Outline of the Sample Application

	Chapter 5. Developing Path Coverage and Distilling the Testbed
	Paths, Nodes and Sub- paths
	The Path Coverage Process
	Targeted coverage
	The Distillation Process
	Path Coverage and Data Distillation - COBOL Tester
	Starting COBOL Tester
	Creating a Testcase
	Saving the Testcase
	Temporarily Suspending the Tutorial
	Creating the First Script
	Saving the Script
	Running the Script
	Checking Coverage
	Setting an Output Value and Running the Script
	Extending Coverage
	Completing the Tutorial
	Introducing Application Testing Collection
	Building Path Coverage with Coverage Assistant
	The Coverage Process Step By Step
	A Sample Coverage Assistant Report
	Further Comments on Coverage Assistant
	Developing Targeted Coverage with Source Audit Assistant
	Running Source Audit Assistant
	A Sample Source Audit Assistant Report
	Further Comments on Source Audit Assistant
	Using Debug Tool to Check Coverage
	Recreating the Original Testbed
	Setting up the Auto Test Performer Transactions
	Starting the CICS Job, and Setting up for Debug Tool
	Using Auto Test Performer to Enter Transactions
	Looking at the Frequency Counts
	An Explanation of the Debug Tool Script
	Distilling a File with Distillation Assistant
	The Distillation Process Step By Step
	A Sample Distillation Assistant Report
	Further Comments on Distillation Assistant
	Using Debug Tool to Build a Distilled Key List
	Recreating the Distilled Testbed
	Starting the CICS Job and Opening Files
	Entering Transactions
	Looking at the Distillation Key List
	An Explanation of the Debug Tool Script
	Extending This Example

	Chapter 6. Creating the Baseline Results
	Screen Capture and Script Creation - Auto Test Performer
	Creating a Sample Distilled Master File
	Capturing the Screens and Scripts - Auto Test Performer
	Starting the CICS Session
	Starting Auto Test Performer
	Enter the Transactions
	Ending the CICS Session
	A Comment on the Script
	Looking at the Script
	Creating a Baseline Report

	Chapter 7. Building the Converted Testbed
	Converting the Master File
	Backing up the Converted Master File
	Converting the Auto Test Performer Script File

	Chapter 8. Creating the Post-Fix Results
	Playback and Screen Capture - Auto Test Performer
	Starting the CICS Session
	Using Auto Test Performer to Enter Transactions
	Ending the CICS Session
	Viewing the Log File
	Creating a Post- Fix Report

	Chapter 9. Comparing the Baseline Results with the Post-Fix Results
	Screen Comparisons - Auto Test Performer
	Data Comparisons - SuperC
	Report Comparisons - SuperC
	Tracking Down the Bug

	Chapter 10. Restarting Testing
	Restoring the Baseline
	Playback and Screen Capture - Auto Test Performer
	Starting the CICS Session
	Using Auto Test Performer to Enter Transactions
	Ending the CICS Session
	Viewing the Log File
	Creating a Post- Fix Report
	Screen Comparisons - Auto Test Performer
	Data Comparisons - SuperC
	Report Comparisons - SuperC

	Chapter 11. Building the Aged Testbed
	Creating a Testbed for Aging
	Aging the Master File
	Backing up the Aged Master File
	Aging the Auto Test Performer Script File

	Chapter 12. Creating the 19xx Results
	Playback and Screen Capture - Auto Test Performer
	Starting the CICS Session
	Using Auto Test Performer to Enter Transactions
	Ending the CICS Session
	Viewing the Log File
	Creating a 19xx Report

	Chapter 13. Comparing the Post-Fix Results with the 19xx Results
	Screen Comparisons - Auto Test Performer
	Data Comparisons - SuperC
	Report Comparisons - SuperC

	Chapter 14. Creating the 20xx Results
	Creating a Testbed for 20xx Testing
	Date Simulation
	Playback and Screen Capture - Auto Test Performer
	Starting the CICS Session
	Using Auto Test Performer to Enter Transactions
	Ending the CICS Session
	Viewing the Log File
	Creating a 20xx Report
	Returning the Date to Today

	Chapter 15. Comparing the 19xx Results with the 20xx Results
	Screen Comparisons - Auto Test Performer
	Data Comparisons - SuperC
	Report Comparisons - SuperC

	Part 3. Appendixes
	Appendix A. Other Matters to Consider Before You Test
	A.1 Critical Dates
	A. 2 Including Dates to Allow for Coverage After Conversion
	A.3 How Much to Age?
	A. 3.1 Watch out for Leap Years
	A.4 Skipping the 19xx Results
	A. 5 Stress and Performance Testing

	Appendix B. Using WITT Year2000 for Windows
	B. 1 Starting WITT Year2000 for Windows
	B. 1.1 Creating the Test Project
	B. 1.2 Creating a Test Unit and Script
	B. 2 Looking at the Script
	B. 3 Converting the WITT Year2000 for Windows Script File
	B. 4 Using WITT Year2000 for Windows to Enter Transactions
	B. 5 Screen Comparisons - WITT Year2000 for Windows
	B. 6 Aging the WITT Year2000 for Windows Script File

	Appendix C. The Slide-Show Demonstrations
	C. 1 Starting the Slide- Show
	C. 2 Working the Demonstration

	Appendix D. A Taste of The Millennium Language Extensions
	D. 1 A COBOL Example
	D. 1.1 Compiler Directing Statements
	D. 1.2 Data Division clauses
	D. 1.3 Procedure Division MOVE¢ Statements
	D. 2 A PL/ I Example
	D. 2.1 Compiler Directing Statements
	D. 2.2 Builtin Function
	D. 2.3 Variable Declarations
	D. 2.4 Variable Assignments
	D. 3 Report Outputs

	Appendix E. Using Debug Tool to Check Code Conversion
	E.1 Recreating the Distilled Testbed and Converted Testbed
	E.2 Starting the CICS Job and Opening Files
	E.3 Running the First Debug Tool Script
	E.4 Running the Second Debug Tool Script
	E.5 Ending the CICS Session
	E.6 Log Comparisons - SuperC
	E.7 An Explanation of the Debug Tool Scripts
	E.8 An Explanation of the SuperC Job
	E.9 Extending This Example

	Appendix F. Establishing a Test Environment
	F. 1 Using a P/ 390 or R/ 390
	F. 1.1 Setting up a Test Environment
	F. 1.2 The Advantages of Running Year 2000 Testing on a P/ 390 or R/ 390
	F. 1.3 For More Information
	F. 2 Using Logical Partitions
	F. 2.1 Isolating an LPAR for Year 2000 Testing
	F. 2.2 Setting the Date on an LPAR for OS/ 390
	F. 2.3 Setting the Date on an LPAR for VSE/ ESA

	Appendix G. Program Information for Tools Used by VisualAge 2000 Test Solution
	G. 1.1 Debug Tool
	G. 1.2 IBM Application Testing Collection
	G. 1.3 IBM Data Facility Sort
	G. 1.4 Enhanced SuperC part of IBM High Level Assembler for MVS & VM &
	VSE
	G. 1.5 IBM VisualAge Test for OS/ 2
	G. 1.6 WITT Year2000 for OS/ 2
	G. 1.7 WITT Year2000 for Windows

	Appendix H. Employee Master File Descriptions
	H. 1 The Legacy Employee Master File Record
	H. 2 The Converted Employee Master File Record

	Appendix I. Files Used In the Tutorials
	I. 1 OS/ 390 Files
	I. 1.1 VA2000TS. ATC
	I. 1.2 VA2000TS. CLIST
	I. 1.3 VA2000TS. CNTL
	I. 1.4 VA2000TS. COBOL
	I. 1.5 VA2000TS. DATA
	I. 1.6 VA2000TS. DEBUG
	I. 1.7 VA2000TS. LISTING
	I. 1.8 VA2000TS. LOAD
	I. 1.9 VA2000TS. PLI
	I. 1.10 VSAM Data Sets
	I. 1.11 Other OS/ 390 Data Sets
	I. 2 VSE Files
	I. 2.1 *. A
	I. 2.2 *. C
	I. 2.3 *. CMD
	I. 2.4 *. LIST
	I. 2.5 *. LOG
	I. 2.6 *. P
	I. 2.7 *. PHASE
	I. 2.8 *. PROC
	I. 2.9 *. Z
	I. 3 OS/ 2
	I. 4 Windows

	Appendix J. Special Notices
	Appendix K. Related Publications
	K. 1 Redbooks on CD- ROMs
	K. 2 Web Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	A
	D
	E B
	H
	L
	C
	N
	O
	T
	P
	U
	R
	W
	S
	Y
	Z
	List of Abbreviations
	Index
	Numerics
	B
	C
	A
	G
	H
	I
	D
	J
	L
	N E
	F
	O
	P
	R
	T
	S
	U
	V
	W
	ITSO Redbook Evaluation

