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Agenda

Technical Platform
Experimental Results to Date
Future R&D
Commercialization Plans (CEI)
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Technology platform

Self-feeding cell, refueled pneumatically, 
internal pyrolysis of cleaned coal 
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• Essential reactions: C + O2 = CO2 V ~ 0.8 V at 1-2 kA/m2, 80% efficiency HHV
• Stable electrolyte: No (K,Na)2CO3 reaction with CO2, 700-750 oC
• Fuels preparation: external de-ashing; waste cell heat completes pyrolysis
• Periodic pneumatic refueling: τ1/2  for pyrolysis ~ 10-3 τ1/2 for fuel cell conversion 
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Technology platform

Ultimate application: coal to electricity plus H2

Various de-ashing processes yield fuel < $2-3/GJ
UCC Ltd. (Sydney), NEDO process (Japan), SASOL,… 

H2 co-generation by energy-efficient pyrolysis
Avoids entropy swing of gasification, uses waste cell heat by conduction

Carbon to electricity via single unit process: simplicity
If best fuel cells used for H2 and C fuels, formal efficiency > 70% HHV
DCFC does not presuppose any particular use of H2—thermal, chemical, fuel cell,..

Coal, 15.1 
MMBTU/lb DAF

De-ashing, 
0.5 % ash, 2 % S

Pyrolysis to non-
agglomerating 

char + H2-rich gas

99 J

H2-rich 
fuel cell

(1-xc)0.6
100 J

71 J

Carbon 
Fuel Cell xc 0.8
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Technology platform 

Approach grounded in industrial practice

Pyrolysis to C + gas uses in situ cell 
heat

Pyrolysis complete in ~ 103 s
Fuel conversion takes ~ 106 s
Option to decompose LMW HC’s

Melt-wetted char is fluid 
Non-agglomeration
Cf. Molten-salt coal gasification

Some analogy to Soderberg Process
Granular coal derivative charred in 
situ is reactive, highly conductive
Tolerance of S, ash; yields CO2
Scales to 104 A
Invariant activity of C, CO2

=> full fuel utilization in single 
pass
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Experimental Results

Wide survey of turbostratic carbons using cells 
of 2- and 60-cm2 in common configuration
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Adapt MCFC cathode, porous 
separator, Ni anode
No scale-up loss; needs bipolar 
plate; electrolyte drainage 
Angled cell prefigures wedge design
20-30 carbon materials surveyed: 
rates of 0.5-1.25 kW/m2

Cathode performance is major loss
80% HHV efficiency routinely 
obtained with fossil chars, pet-coke, 
bio-chars, carbon blacks
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Cell efficiency, rate depend on 
disorder, not carbon purity

Experimental Results

Efficiency, power depend on disorder, not purity or area
Literature base: Carbon anode in molten salt yields CO2
20-30 fuels surveyed: rate at 80% efficiency ~ disorder
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•Turbine fuel (UCC, Pty. Ltd), 0.17 % ash
• Australian bituminous, 84% C DAF, 15.1 MBTU/lb 
• Electrolyte life reached in ~1.5 y @ 1 kA/m2
• Price $3/GJ ($96/ton ) 
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Experimental Results

Cell voltage decomposed into constituents: 
cathode polarization is major loss
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UT data on MCFC cathode

Current experiments use high gas flow rates: low Nernst loss
Power plant needs S = 2 flow, higher Nernst loss, SOA cathode
Efficiency ~ 80% = (0.8 V)*(100% utilization) /1.02 V
We are not getting SOA polarization out of NiOx cathodes
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(a) Sulfur rejected as COS gas in CO2
(b) Ash is tolerable in $2-3/GJ fuels

Experimental Results

Minor Component (mol)
Case CO CO2 COS CS2 H2O H2S H2 CH4 Na2CO3 C Na2S FeS

1 1 mole COS 15.197 4.358 0.021715 2.74E-05 49.02 42.4 0.978
2 1 mole FeS2 14.56 4.176 0.02081 2.62E-05 49.02 42.2 0.979 1
3 1 mole CH3SCH3 14.76 3.744 0.014596 1.44E-05 0.4629 7.56E-02 2.419 2.08E-02 49.09 44.4 0.91
4 1 mole S 14.56 4.176 0.02081 2.62E-05 49.02 42.2 0.979
5 1 mole Na2SO4 15.197 4.358 0.021715 2.74E-05 50.02 40.4 0.978
6 1 mole Na2SO3 14.56 4.177 0.02081 2.63E-05 50.02 41.2 0.979

Gas products, moles Solid products, moles
Initial conditions 750 C (1023 K): 50 mol C + 50 mol Na2CO3+ 10 mol CO2 + minor component

(a)

Thermodynamic equilibrium in C/Carbonate/CO2 system with S additives
S reduced to NaS + COS gas,  regardless of original oxidation state
Reaction: Na2S + 2CO2 =  COS + Na2CO3,   K750 = 0.022 atm-1

0.066 moles S removed per mole of CO2: process tolerates high S coal

$140/tonb,1.00.04-0.340-50WVU-NMP solvent]
--0.50.01-0.0640-70Solvent, U. Kentucky[]

~ $2/GJ--<0.0260%NEDO process]

$3.0-3.3 /GJ0.420.17-0.27--Bayer leaching; UCC 
Energy, Ltd. Pty. 

$60/ton1-2<190U. Ky.
Mechanical separation [i]

Fuel CostS, %Ash, %Yield, 
%Process/

Developer

$140/tonb,1.00.04-0.340-50WVU-NMP solvent]
--0.50.01-0.0640-70Solvent, U. Kentucky[]

~ $2/GJ--<0.0260%NEDO process]

$3.0-3.3 /GJ0.420.17-0.27--Bayer leaching; UCC 
Energy, Ltd. Pty. 

$60/ton1-2<190U. Ky.
Mechanical separation [i]

Fuel CostS, %Ash, %Yield, 
%Process/

Developer Economic sources of low-ash fuel
Electrolyte stable for ash to 10%

1.5 y for 0.17% at 1 kA/m2

Energy cost ~ 1%: mostly from 
grinding; caustic leach small

(b)
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Using pure carbon, test 5-cell, self-
feeding bipolar stack

Future R&D

Cathode diffuser

Separator/catalyst 
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Cathode diffuser
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assembly
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Carbon fuel

Refueling tubes Alumina

Scale: 5 x 150 cm2, 75-150 W Fuel: conventional carbon blacks
Configuration: bipolar stack Diagnostics: gas collection, 2 ref electrodes
Gas distribution: SS mesh Containment: dense alumina, high T graphite



10

Major problem areas
Future R&D

Start with pure carbon in 
excess melt; then granular coal

Configuration vs. feed
Continuity and rate

Proprietary: based on 
published corrosion data, 
bonding practice

Corrosion of Metal-clad 
bipolar plate

Properties of ceramics; Grover 
Coors to advise

Separator wetting

Literature base of MCFC; Rob 
Selman, IIT, to advise

Cathode improvement
Approach Problem
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Concurrent Research Needs
Future R&D

Determine of impurity distribution
Examine CO/CO2 distribution: OCV to 0.8 V
Use EIS to elucidate reaction distribution

Distinguish electronic, ionic, transport 
processes; identify other possible reactions

Examine other cathode structures & catalysis
Identify life-limiting processes (corrosion, …)
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Commercialization

Contained Energy’s Value Proposition

Cost-Effective:  8 ¢ per kWh total cost
Total installed capital target cost: ~ $2,500/kW
Fuel cost:    ~1.4 ¢ per kWh 
O&M cost:  ~2.0 ¢ per kWh

Environmentally friendly
Half the CO2 per kWh 
Negative CO2 system with biomass fuels
No NOx, readily separable SO2

Distributed Power Generation
More robust generation network
Reduced requirement for T&D grid
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Commercialization

DCFC Can Hit Realistic Target Costs

~1.45.2Fuel cost (¢/kWh)

~2.00.8O&M Cost (¢/kWh)

~ $2,500< $700Allowable Capital 
Cost ($/kW)

>75% HHV,
$3/MMBtu

>50% LHV
$7/MMBtu

Fuel Efficiency, 
Fuel Cost** 

88Total cost (¢/kWh)

Contained Energy 
DCFC*

EPRI H2 Fuel 
Cell Example*

*   8 ¢/kWh target cost example assumes retail rates average 7-8 ¢/kWh nationally

**  Natural gas currently at $12/MMBtu, de-ashed coal at <$4/MMBtu
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Commercialization

Opportunities and Challenges
Opportunities

Environmental and energy scarcity concerns
T&D constraints
Rising fuel costs and retail rates helps DCFC relative 
to other technologies
Have secured over $2M in angel funding
Grant opportunities

Challenges
Technology transfer and building our team
Reliability on the order of 8 years
Fuel distribution
Securing initial customers
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