
c© Graham Hutton

Version of August 10, 2005
NOT FOR DISTRIBUTION

For Annette, Callum and Tom

Contents

Preface 7

1 Introduction 9
1.1 Functions . 9
1.2 Functional programming . 10
1.3 Features of Haskell . 12
1.4 Historical background . 14
1.5 A taste of Haskell . 15
1.6 Chapter remarks . 17
1.7 Exercises . 17

2 First Steps 19
2.1 The Hugs system . 19
2.2 The standard prelude . 19
2.3 Function application . 22
2.4 Haskell scripts . 22
2.5 Chapter remarks . 25
2.6 Exercises . 25

3 Types and Classes 27
3.1 Basic concepts . 27
3.2 Basic types . 28
3.3 List types . 30
3.4 Tuple types . 30
3.5 Function types . 31
3.6 Curried functions . 32
3.7 Polymorphic types . 33
3.8 Overloaded types . 34
3.9 Basic classes . 34
3.10 Chapter remarks . 39
3.11 Exercises . 39

4 Defining Functions 41
4.1 New from old . 41
4.2 Conditional expressions . 42

3

4 CONTENTS

4.3 Guarded equations . 42
4.4 Pattern matching . 43
4.5 Lambda expressions . 46
4.6 Sections . 47
4.7 Chapter remarks . 48
4.8 Exercises . 48

5 List Comprehensions 51
5.1 Generators . 51
5.2 Guards . 52
5.3 The zip function . 54
5.4 String comprehensions . 55
5.5 The Caesar cipher . 55
5.6 Chapter remarks . 60
5.7 Exercises . 60

6 Recursive Functions 63
6.1 Basic concepts . 63
6.2 Recursion on lists . 65
6.3 Multiple arguments . 67
6.4 Multiple recursion . 68
6.5 Mutual recursion . 69
6.6 Advice on recursion . 70
6.7 Chapter remarks . 75
6.8 Exercises . 75

7 Higher-Order Functions 77
7.1 Basic concepts . 77
7.2 Processing lists . 78
7.3 The foldr function . 80
7.4 The foldl function . 83
7.5 The composition operator . 85
7.6 String transmitter . 86
7.7 Chapter remarks . 89
7.8 Exercises . 89

8 Functional Parsers 91
8.1 Parsers . 91
8.2 The parser type . 92
8.3 Basic parsers . 92
8.4 Sequencing . 94
8.5 Choice . 95
8.6 Derived primitives . 96
8.7 Handling spacing . 98
8.8 Arithmetic expressions . 99
8.9 Chapter remarks . 103

CONTENTS 5

8.10 Exercises . 103

9 Interactive Programs 105
9.1 Interaction . 105
9.2 The input/output type . 106
9.3 Basic actions . 107
9.4 Sequencing . 107
9.5 Derived primitives . 108
9.6 Calculator . 110
9.7 Game of life . 113
9.8 Chapter remarks . 116
9.9 Exercises . 116

10 Declaring Types and Classes 119
10.1 Type declarations . 119
10.2 Data declarations . 120
10.3 Recursive types . 122
10.4 Tautology checker . 125
10.5 Abstract machine . 130
10.6 Class and instance declarations 132
10.7 Chapter remarks . 135
10.8 Exercises . 135

11 The Countdown Problem 137
11.1 Introduction . 137
11.2 Formalising the problem . 138
11.3 Brute force solution . 140
11.4 Combining generation and evaluation 142
11.5 Exploiting algebraic properties 143
11.6 Chapter remarks . 144
11.7 Exercises . 144

12 Lazy Evaluation 147
12.1 Introduction . 147
12.2 Evaluation strategies . 148
12.3 Termination . 151
12.4 Number of reductions . 152
12.5 Infinite structures . 154
12.6 Modular programming . 155
12.7 Strict application . 158
12.8 Chapter remarks . 161
12.9 Exercises . 161

6 CONTENTS

13 Reasoning About Programs 163
13.1 Equational reasoning . 163
13.2 Reasoning about Haskell . 164
13.3 Simple examples . 165
13.4 Induction on numbers . 166
13.5 Induction on lists . 169
13.6 Making append vanish . 171
13.7 Compiler correctness . 174
13.8 Chapter remarks . 179
13.9 Exercises . 179

A Standard Prelude 181
A.1 Classes . 181
A.2 Logical values . 182
A.3 Characters and strings . 183
A.4 Numbers . 184
A.5 Tuples . 185
A.6 Maybe . 185
A.7 Lists . 185
A.8 Functions . 189
A.9 Input/Output . 190

B Symbol Table 191

Bibliography 192

Index 196

Preface

. . . there are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies and
the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

— Tony Hoare, 1980 ACM Turing Award Lecture

This book is about an approach to programming in which simplicity, clarity
and elegance are the key goals. More specifically, it is an introduction to the
functional style of programming, using the language Haskell.

The functional style is quite different to that promoted by most current
languages, such as Java, C++, C, and Visual Basic. In particular, most current
languages are closely linked to the underlying hardware, in the sense that
programming is based upon the idea of changing stored values. In contrast,
Haskell promotes a more abstract style of programming, based upon the idea of
applying functions to arguments. As we shall see, moving to this higher-level
leads to considerably simpler programs, and supports a number of powerful
new ways to structure and reason about programs.

The book is primarily aimed at students studying computing science at
university level, but is also appropriate for a broader spectrum of readers who
would like to learn about programming in Haskell. No previous programming
experience is required or assumed, and all the concepts are explained from
first principles, with the aid of carefully chosen examples.

The version of Haskell used in the book is Haskell 98, the standard version
of the language, for which the recently published definition is the culmination
of fifteen years of work by its designers. As this is an introductory text, we
do not attempt to cover all aspects of Haskell 98 and its associated libraries.
Around half of the book is dedicated to introducing the main features of the
language, while the other half comprises examples and case studies of program-
ming of Haskell. Each chapter includes a series of exercises, and suggestions
for further reading on more advanced and specialist topics.

The book is based upon course material that has been refined and class-
tested over many years at the University of Nottingham. Most of the material
from the book can be covered in twenty hours of lectures, supported by ap-
proximately forty hours of private study, practical sessions in a supervised

7

8 CONTENTS

laboratory, and take-home programming courseworks. However, additional
time would be required to cover some of the later chapters in more detail,
along with some of the later programming examples.

The web site for the book, www.cs.nott.ac.uk/~gmh/book.html, provides
a range of supporting material, including lecture slides for each chapter, and
Haskell code for each of the extended examples. Instructors can also obtain
model answers to the exercises for each chapter, together with a large collection
of exam questions and their model answers.

Acknowledgements

The Foundations of Programming group at the University of Nottingham is
an excellent environment in which to do research and teaching on functional
programming. I am grateful to the University for providing a sabbatical to
start work on this book; all the students and tutors on my Haskell courses for
their feedback; and Thorsten Altenkirch, Mark Jones (now in Oregon), Conor
McBride and Henrik Nilsson in the FOP group for our many discussions about
functional ideas and how to present them.

I would also like to thank Rik van Geldrop and Jaap van der Woude for
their feedback on using draft versions of the book; Ian Bayley for providing
useful comments; Kees van den Broek, Frank Heitmann and Bill Tonkin for
pointing out errors; Mark Jones for the Hugs interpreter for Haskell; Ralf
Hinze and Andres Löh for the lhs2TeX system for typesetting Haskell; and
Fritz Ruehr for producing the cover design.

Graham Hutton
Nottingham, Summer 2005

Chapter 1

Introduction

In this chapter we set the stage for the rest of the book. We start by reviewing
the notion of a function, then introduce the concept of functional program-
ming, summarise the main features of Haskell and its history, and conclude
with two small examples that give a taste of Haskell.

1.1 Functions

In Haskell, a function is a mapping that takes one or more arguments and
produces a single result, and is defined using an equation that gives a name
for the function, a name for each of its arguments, and a body that specifies
how the result can be calculated in terms of the arguments.

For example, a function double that takes a number x as its argument, and
produces the result x + x , can be defined by the following equation:

double x = x + x

When a function is applied to actual arguments, the result is obtained by
substituting these arguments into the body of the function in place of the
argument names. This process may immediately produce a result that cannot
be further simplified, such as a number. More commonly, however, the result
will be an expression containing other function applications, which must then
be processed in the same way to produce the final result.

For example, the result of the application double 3 of the function double
to the number 3 can be determined by the following calculation, in which each
step is explained by a short comment in curly parentheses:

double 3
= { applying double }

3 + 3
= { applying + }

6

Similarly, the result of the nested application double (double 2) in which the
function double is applied twice can be calculated as follows:

9

10 CHAPTER 1. INTRODUCTION

double (double 2)
= { applying the inner double }

double (2 + 2)
= { applying + }

double 4
= { applying double }

4 + 4
= { applying + }

8

Alternatively, the same result could also be calculated by starting with the
outer application of the function double rather than the inner:

double (double 2)
= { applying the outer double }

double 2 + double 2
= { applying the first double }

(2 + 2) + double 2
= { applying the first + }

4 + double 2
= { applying double }

4 + (2 + 2)
= { applying the second + }

4 + 4
= { applying + }

8

However, this calculation requires two more steps than our original version,
because the expression double 2 is duplicated in the first step and hence simpli-
fied twice. In general, the order in which functions are applied in a calculation
does not affect the value of the final result, but it may affect the number
of steps required, and may affect whether the calculation process terminates.
These issues are explored in more detail in chapter 12.

1.2 Functional programming

What is functional programming? Opinions differ, and it is difficult to give a
precise definition. Generally speaking, however, functional programming can
be viewed as a style of programming in which the basic method of computation
is the application of functions to arguments. In turn, a functional program-
ming language is one that supports and encourages the functional style.

To illustrate these ideas, let us consider the task of computing the sum of
the integers (whole numbers) between one and some larger number n. In most
current programming languages, this would normally be achieved using two
variables that store values that can be changed over time, one such variable
used to count up to n, and the other used to accumulate the total.

1.2. FUNCTIONAL PROGRAMMING 11

For example, if we use the assignment symbol := to change the value of a
variable, and the keywords repeat and until to repeatedly execute a sequence
of instructions until a condition is satisfied, then the following sequence of
instructions computes the required sum:

count := 0
total := 0
repeat

count := count + 1
total := total + count

until
count = n

That is, we first initialise both the counter and the total to zero, and then
repeatedly increment the counter and add this value to the total until the
counter reaches n, at which point the computation stops.

In the above program, the basic method of computation is changing stored
values, in the sense that executing the program results in a sequence of assign-
ments. For example, the case of n = 5 gives the following sequence, in which
the final value assigned to the variable total is the required sum:

count := 0
total := 0
count := 1
total := 1
count := 2
total := 3
count := 3
total := 6
count := 4
total := 10
count := 5
total := 15

In general, programming languages in which the basic method of computation
is changing stored values are called imperative languages, because programs
in such languages are constructed from imperative instructions that specify
precisely how the computation should proceed.

Now let us consider computing the sum of the numbers between one and
n using Haskell. This would normally be achieved using two library functions,
one called [. .] used to produce the list of numbers between one and n, and
the other called sum used to produce the sum of this list:

sum [1 . . n]

In this program, the basic method of computation is applying functions to
arguments, in the sense that executing the program results in a sequence of
applications. For example, the case of n = 5 gives the following sequence, in
which the final result is the required sum:

12 CHAPTER 1. INTRODUCTION

sum [1 . . 5]
= { applying [. .] }

sum [1, 2, 3, 4, 5]
= { applying sum }

1 + 2 + 3 + 4 + 5
= { applying + }

15

Most imperative languages support some form of programming with func-
tions, so the Haskell program sum [1 . . n] could be translated into such lan-
guages. However, most imperative languages do not encourage programming
in the functional style. For example, many languages discourage or prohibit
functions from being stored in data structures such as lists, from construct-
ing intermediate structures such as the list of numbers in the above example,
from taking functions as arguments or producing functions as results, or from
being defined in terms of themselves. In contrast, Haskell imposes no such
restrictions on how functions can be used, and provides a range of features to
make programming with functions both simple and powerful.

1.3 Features of Haskell

For reference, the main features of Haskell are listed below, along with the
particular chapters of this book that give further details.

• Concise programs (chapters 2 and 4)

Due to the high-level nature of the functional style, programs written
in Haskell are often much more concise than in other languages, as il-
lustrated by the example in the previous section. Moreover, the syntax
of Haskell has been designed with concise programs in mind, in partic-
ular by having few keywords, and by allowing indentation to be used to
indicate the structure of programs. Although it is difficult to make an
objective comparison, Haskell programs are often between two and ten
times shorter than programs written in other current languages.

• Powerful type system (chapters 3 and 10)

Most modern programming languages include some form of type system
to detect incompatibility errors, such as attempting to add a number and
a character. Haskell has a type system that requires little type informa-
tion from the programmer, but allows a large class of incompatibility
errors in programs to be automatically detected prior to their execution,
using a sophisticated process called type inference. The Haskell type
system is also more powerful than most current languages, by allowing
functions to be “polymorphic” and “overloaded”.

• List comprehensions (chapter 5)

1.3. FEATURES OF HASKELL 13

One of the most common ways to structure and manipulate data in com-
puting is using lists. To this end, Haskell provides lists as a basic concept
in the language, together with a simple but powerful comprehension no-
tation that constructs new lists by selecting and filtering elements from
one or more existing lists. Using the comprehension notation allows
many common functions on lists to be defined in a clear and concise
manner, without the need for explicit recursion.

• Recursive functions (chapter 6)

Most non-trivial programs involve some form of repetition or looping.
In Haskell, the basic mechanism by which looping is achieved is by us-
ing recursive functions that are defined in terms of themselves. Many
computations have a simple and natural definition in terms of recursive
functions, particularly when “pattern matching” and “guards” are used
to separate different cases into different equations.

• Higher-order functions (chapter 7)

Haskell is a higher-order functional language, which means that func-
tions can freely take functions as arguments and produce functions as
results. Using higher-order functions allows common programming pat-
terns, such as composing two functions, to be defined as functions within
the language itself. More generally, higher-order functions can be used
to define “domain specific languages” within Haskell, such as for list
processing, parsing, and interactive programming.

• Monadic effects (chapters 8 and 9)

Functions in Haskell are pure functions that take all their input as argu-
ments and produce all their output as results. However, many programs
require some form of side effect that would appear to be at odds with
purity, such as reading input from the keyboard, or writing output to the
screen, while the program is running. Haskell provides a uniform frame-
work for handling effects without compromising the purity of functions,
based upon the mathematical notion of a monad .

• Lazy evaluation (chapter 12)

Haskell programs are executed using a technique called lazy evaluation,
which is based upon the idea that no computation should be performed
until its result is actually required. As well as avoiding unnecessary
computation, lazy evaluation ensures that programs terminate whenever
possible, encourages programming in a modular style using intermediate
data structures, and even allows data structures with an infinite number
of elements, such as an infinite list of numbers.

• Reasoning about programs (chapter 13)

Because programs in Haskell are pure functions, simple equational rea-
soning can be used to execute programs, to transform programs, to

14 CHAPTER 1. INTRODUCTION

prove properties of programs, and even to derive programs directly from
specifications of their behaviour. Equational reasoning is particularly
powerful when combined with the use of “induction” to reason about
functions that are defined using recursion.

1.4 Historical background

Many of the features of Haskell are not new, but were first introduced by
other languages. To help place Haskell in context, some of the main historical
developments related to the language are briefly summarised below.

• In the 1930s, Alonzo Church developed the lambda calculus, a simple
but powerful mathematical theory of functions.

• In the 1950s, John McCarthy developed Lisp (“LISt Processor”), gener-
ally regarded as being the first functional programming language. Lisp
had some influences from the lambda calculus, but still adopted variable
assignments as a central feature of the language.

• In the 1960s, Peter Landin developed ISWIM (“If you See What I
Mean”), the first pure functional programming language, based strongly
on the lambda calculus and having no variable assignments.

• In the 1970s, John Backus developed FP (“Functional Programming”), a
functional programming language that particularly emphasised the idea
of higher-order functions and reasoning about programs.

• Also in the 1970s, Robin Milner and others developed ML (“Meta-
Language”), the first of the modern functional programming languages,
which introduced the idea of polymorphic types and type inference.

• In the 1970s and 1980s, David Turner developed a number of lazy func-
tional programming languages, culminating in the commercially pro-
duced language Miranda (meaning “admirable”).

• In 1987, an international committee of researchers initiated the devel-
opment of Haskell (named after the logician Haskell Curry), a standard
lazy functional programming language.

• In 2003, the committee published the Haskell Report, which defines a
long-awaited stable version of Haskell, and is the culmination of fifteen
years of work on the language by its designers.

It is worthy of note that three of the above researchers — McCarthy, Backus
and Milner — have each received the ACM Turing Award, which is generally
regarded as being the computing equivalent of a Nobel prize.

1.5. A TASTE OF HASKELL 15

1.5 A taste of Haskell

We conclude this chapter with two small examples that give a taste of pro-
gramming in Haskell. First of all, recall the function sum used earlier in this
chapter, which produces the sum of a list of numbers. In Haskell, this function
can be defined using the following two equations:

sum [] = 0
sum (x : xs) = x + sum xs

The first equation states that the sum of the empty list is zero, while the
second states that the sum of any non-empty list comprising a first number x
and a remaining list of numbers xs is given by adding x and the sum of xs .
For example, the result of sum [1, 2, 3] can be calculated as follows:

sum [1, 2, 3]
= { applying sum }

1 + sum [2, 3]
= { applying sum }

1 + (2 + sum [3])
= { applying sum }

1 + (2 + (3 + sum []))
= { applying sum }

1 + (2 + (3 + 0))
= { applying + }

6

Note that even though the function sum is defined in terms of itself and is
hence recursive, it does not loop forever. In particular, each application of
sum reduces the length of the argument list by one, until the list eventually
becomes empty at which point the recursion stops. Returning zero as the sum
of the empty list is appropriate because zero is the identity for addition. That
is, 0 + x = x and x + 0 = x for any number x .

In Haskell, every function has a type that specifies the nature of its argu-
ments and results, which is automatically inferred from the definition of the
function. For example, the function sum has the following type:

Num a ⇒ [a]→ a

This type states that for any type a of numbers, sum is a function that maps a
list of such numbers to a single such number. Haskell supports many different
types of numbers, including integers such as 123, and “floating-point” numbers
such as 3.14159. Hence, for example, sum could be applied to a list of integers,
as in the calculation above, or to a list of floating-point numbers.

Types provide useful information about the nature of functions, but more
importantly, their use allows many errors in programs to be automatically
detected prior to executing the programs themselves. In particular, for every

16 CHAPTER 1. INTRODUCTION

function application in a program, a check is made that the type of the actual
arguments is compatible with the type of the function itself. For example,
attempting to apply the function sum to a list of characters would be reported
as an error, because characters are not a type of numbers.

Now let us consider a more interesting function concerning lists, which
illustrates a number of other aspects of Haskell. Suppose that we define a
function called qsort by the following two equations:

qsort [] = []
qsort (x : xs) = qsort smaller ++ [x] ++ qsort larger

where
smaller = [a | a ← xs , a � x]
larger = [b | b ← xs, b > x]

In this definition, ++ is an operator that appends two lists; for example,
[1, 2, 3] ++ [4, 5] = [1, 2, 3, 4, 5]. In turn, where is a keyword that introduces
local definitions, in this case a list smaller that consists of all elements a from
the list xs that are less than or equal to x , together with a list larger that
consists of all elements b from xs that are greater than x . For example, if
x = 3 and xs = [5, 1, 4, 2], then smaller = [1, 2] and larger = [5, 4].

What does qsort actually do? First of all, we show that it has no effect on
lists with a single element, in the sense that qsort [x] = [x] for any x :

qsort [x]
= { applying qsort }

qsort [] ++ [x] ++ qsort []
= { applying qsort }

[] ++ [x] ++ []
= { applying ++ }

[x]

In turn, we now work through the application of qsort to an example list,
using the above property to simplify the calculation:

qsort [3, 5, 1, 4, 2]
= { applying qsort }

qsort [1, 2] ++ [3] ++ qsort [5, 4]
= { applying qsort }

(qsort [] ++ [1] ++ qsort [2]) ++ [3] ++ (qsort [4] ++ [5] ++ qsort [])
= { applying qsort , above property }

([] ++ [1] ++ [2]) ++ [3] ++ ([4] ++ [5] ++ [])
= { applying ++ }

[1, 2] ++ [3] ++ [4, 5]
= { applying ++ }

[1, 2, 3, 4, 5]

1.6. CHAPTER REMARKS 17

In summary, qsort has sorted the example list into numerical order. More
generally, this function produces a sorted version of any list of numbers. The
first equation for qsort states that the empty list is already sorted, while the
second states that any non-empty list can be sorted by inserting the first
number between the two lists that result from sorting the remaining numbers
that are smaller and larger than this number. This method of sorting is called
quicksort , and is one of the best such methods known.

The above implementation of quicksort is an excellent example of the power
of Haskell, being both clear and concise. Moreover, the function qsort is also
more general than might be expected, being applicable not just with numbers,
but with any type of ordered values. More precisely, the type

qsort :: Ord a ⇒ [a]→ [a]

states that for any type a of ordered values, qsort is a function that maps
between lists of such values. Haskell supports many different types of ordered
values, including numbers, single characters such as ’a’, and strings of char-
acters such as "abcde". Hence, for example, the function qsort could also be
used to sort a list of characters, or a list of strings.

1.6 Chapter remarks

The Haskell Report is freely available on the web from the Haskell home page,
www .haskell .org , and has also been published as a book [26]. A more detailed
historical account of the development of functional programming languages is
given in Hudak’s survey article [11].

1.7 Exercises

1. Give another possible calculation for the result of double (double 2).

2. Show that sum [x] = x for any number x .

3. Define a function product that produces the product of a list of numbers,
and show using your definition that product [2, 3, 4] = 24.

4. How should the definition of the function qsort be modified so that it
produces a reverse sorted version of a list?

5. What would be the effect of replacing � by < in the definition of qsort?
Hint: consider the example qsort [2, 2, 3, 1, 1].

18 CHAPTER 1. INTRODUCTION

Chapter 2

First Steps

In this chapter we take our first proper steps with Haskell. We start by intro-
ducing the Hugs system and the standard prelude, then explain the notation
for function application, develop our first Haskell script, and conclude by dis-
cussing a number of syntactic conventions concerning scripts.

2.1 The Hugs system

As we saw in the previous chapter, small Haskell examples can be executed by
hand. In practice, however, we usually require an implementation of Haskell
that can execute programs automatically. In this book we use an interac-
tive system called Hugs, which is the most widely used implementation of
Haskell 98, the recently defined stable version of the language.

The interactive nature of Hugs makes it well suited for teaching and proto-
typing purposes, and its performance is sufficient for most applications. How-
ever, if greater performance or a stand-alone executable version of a Haskell
program is required, a number of compilers for Haskell 98 are also available,
of which the most widely used is the Glasgow Haskell Compiler.

2.2 The standard prelude

When the Hugs system is started it first loads a library file called Prelude .hs ,
and then displays a > prompt to indicate that the system is waiting for the
user to enter an expression to be evaluated. For example, the library file
defines many familiar functions that operate on integers, including the five
main arithmetic operations of addition, subtraction, multiplication, division,
and exponentiation, as illustrated below:

> 2 + 3
5

19

20 CHAPTER 2. FIRST STEPS

> 2− 3
−1

> 2 ∗ 3
6

> 7 ‘div ‘ 2
3

> 2 ↑ 3
8

Note that the integer division operator is written as ‘div‘, and rounds down
to the nearest integer if the result is a proper fraction.

Following normal mathematical convention, exponentiation has higher pri-
ority than multiplication and division, which in turn have higher priority than
addition and subtraction. For example, 2∗3↑4 means 2∗ (3↑4), while 2+3∗4
means 2+ (3∗ 4). Moreover, exponentiation associates (brackets) to the right,
while the other four arithmetic operators associate to the left. For example,
2↑3↑4 means 2↑(3↑4), while 2−3+4 means (2−3)+4. In practice, however,
it is often clearer to use explicit parentheses in such arithmetic expressions,
rather than relying on the above conventions.

In addition to functions on integers, the library file also provides a range
of useful functions that operate on lists. In Haskell, the elements of a list are
enclosed in square parentheses, and are separated by commas. Some of the
most commonly used library functions on lists are illustrated below.

• Select the first element of a non-empty list:

> head [1, 2, 3, 4, 5]
1

• Remove the first element from a non-empty list:

> tail [1, 2, 3, 4, 5]
[2, 3, 4, 5]

• Select the nth element of list (counting from zero):

> [1, 2, 3, 4, 5] !! 2
3

• Select the first n elements of a list:

> take 3 [1, 2, 3, 4, 5]
[1, 2, 3]

2.2. THE STANDARD PRELUDE 21

• Remove the first n elements from a list:

> drop 3 [1, 2, 3, 4, 5]
[4, 5]

• Calculate the length of a list:

> length [1, 2, 3, 4, 5]
5

• Calculate the sum of a list of numbers:

> sum [1, 2, 3, 4, 5]
15

• Calculate the product of a list of numbers:

> product [1, 2, 3, 4, 5]
120

• Append two lists:

> [1, 2, 3] ++ [4, 5]
[1, 2, 3, 4, 5]

• Reverse a list:

> reverse [1, 2, 3, 4, 5]
[5, 4, 3, 2, 1]

Some of the functions in the standard prelude may produce an error for
certain values of their arguments. For example, attempting to divide by zero
or select the first element of an empty list will produce an error:

> 1 ‘div ‘ 0
Error

> head []
Error

In practice, when an error occurs the Hugs system also produces a message
that provides some information about the likely cause, but these messages are
often rather technical, and are not discussed further in this book.

For reference, appendix A presents some of the most commonly used defi-
nitions from the standard prelude, and appendix B shows how special Haskell
symbols, such as ↑ and ++, are typed using a normal keyboard.

22 CHAPTER 2. FIRST STEPS

2.3 Function application

In mathematics, the application of a function to its arguments is usually de-
noted by enclosing the arguments in parentheses, while the multiplication of
two values is often denoted silently, by writing the two values next to one
another. For example, in mathematics the expression

f(a, b) + c d

means apply the function f to two arguments a and b, and add the result
to the product of c and d. Reflecting its primary status in the language,
function application in Haskell is denoted silently using spacing, while the
multiplication of two values is denoted explicitly using the operator ∗. For
example, the expression above would be written in Haskell as follows:

f a b + c ∗ d

Moreover, function application has higher priority than all other operators.
For example, f a + b means (f a) + b. The following table gives a few fur-
ther examples to illustrate the differences between the notation for function
application in mathematics and in Haskell:

Mathematics Haskell
f(x) f x
f(x, y) f x y
f(g(x)) f (g x)
f(x, g(y)) f x (g y)
f(x) g(y) f x ∗ g y

Note that parentheses are still required in the Haskell expression f (g x)
above, because f g x on its own would be interpreted as the application of
the function f to two arguments g and x , whereas the intention is that f is
applied to one argument, namely the result of applying the function g to an
argument x . A similar remark holds for the expression f x (g y).

2.4 Haskell scripts

As well as the functions provided in the standard prelude, it is also possible to
define new functions. New functions cannot be defined at the > prompt within
Hugs, but must be defined within a script , a text file comprising a sequence
of definitions. By convention, Haskell scripts usually have a .hs suffix on their
filename to differentiate them from other kinds of files.

My first script

When developing a Haskell script, it is useful to keep two windows open, one
running an editor for the script, and the other running Hugs. As an example,

2.4. HASKELL SCRIPTS 23

suppose that we start a text editor and type in the following two function
definitions, and save the script to a file called test .hs :

double x = x + x
quadruple x = double (double x)

In turn, suppose that we leave the editor open, and in another window start
up the Hugs system and instruct it to load the new script:

> :load test .hs

Now both Prelude.hs and test .hs are loaded, and functions from both scripts
can be freely used. For example:

> quadruple 10
40

> take (double 2) [1, 2, 3, 4, 5, 6]
[1, 2, 3, 4]

Now suppose that we leave Hugs open, return to the editor, add the following
two function definitions to those already typed in, and then resave the file:

factorial n = product [1 . . n]
average ns = sum ns ‘div ‘ length ns

We could equally well have defined average ns = div (sum ns) (length ns), but
writing div between its two arguments is more natural. In general, any func-
tion with two arguments can be written between its arguments by enclosing
the name of the function in single back quotes ‘ ‘.

Hugs does not automatically reload scripts when they are modified, so a
reload command must be executed before the new definitions can be used:

> :reload

> factorial 10
3628800

> average [1, 2, 3, 4, 5]
3

For reference, the table below summarises the meaning of some of the most
commonly used Hugs commands. Note that any command can be abbreviated
by its first character. For example, :load can be abbreviated by :l . The
command :type is explained in more detail in the next chapter.

24 CHAPTER 2. FIRST STEPS

Command Meaning
:load name load script name
:reload reload current script
:edit name edit script name
:edit edit current script
:type expr show type of expr
:? show all commands
:quit quit Hugs

Naming requirements

When defining a new function, the names of the function and its arguments
must begin with a lower-case letter, but can then be followed by zero or more
letters (both lower and upper-case), digits, underscores, and forward single
quotes. For example, the following are all valid names:

myFun fun1 arg 2 x ′

The following list of keywords have a special meaning in the language, and
cannot be used as the names of functions or their arguments:

case class data default deriving do else
if import in infix infixl infixr instance

let module newtype of then type where

By convention, list arguments in Haskell usually have the suffix s on their
name to indicate that they may contain multiple values. For example, a list
of numbers might be named ns, a list of arbitrary values might be named xs ,
and a list of list of characters might be named css.

The layout rule

When constructing a script, each definition must begin in precisely the same
column. This layout rule makes it possible to determine the grouping of defi-
nitions from their indentation. For example, in the script

a = b + c
where

b = 1
c = 2

d = a ∗ 2

it is clear from the indentation that b and c are local definitions for use within
the body of a. If desired, such grouping can be made explicit by enclosing a
sequence of definitions in curly parentheses and separating each definition by

2.5. CHAPTER REMARKS 25

a semi-colon. For example, the above script could also be written as:

a = b + c
where
{b = 1;
c = 2}

d = a ∗ 2

In general, however, it is usually clearer to rely on the layout rule to determine
the grouping of definitions, rather than use explicit syntax.

Comments

In addition to new definitions, scripts can also contain comments that will be
ignored by Hugs. Haskell provides two kinds of comments, called ordinary and
nested . Ordinary comments begin with the symbol -- and extend to the end
of the current line, as in the following examples:

-- Factorial of a positive integer:
factorial n = product [1 . . n]
-- Average of a list of integers:
average ns = sum ns ‘div ‘ length ns

Nested comments begin and end with the symbols {- and -}, may span mul-
tiple lines, and may be nested in the sense that comments can contain other
comments. Nested comments are particularly useful for temporarily removing
sections of definitions from a script, as in the following example:

{-
double x = x + x
quadruple x = double (double x)
-}

2.5 Chapter remarks

The Hugs system is freely available on the web from the Haskell home page,
www .haskell .org , which also contains a wealth of other useful resources.

2.6 Exercises

1. Parenthesise the following arithmetic expressions:

2 ↑ 3 ∗ 4
2 ∗ 3 + 4 ∗ 5
2 + 3 ∗ 4 ↑ 5

26 CHAPTER 2. FIRST STEPS

2. Work through the examples from this chapter using Hugs.

3. The script below contains three syntactic errors. Correct these errors
and then check that your script works properly using Hugs.

N = a ’div’ length xs
where

a = 10
xs = [1, 2, 3, 4, 5]

4. Show how the library function last that selects the last element of a non-
empty list could be defined in terms of the library functions introduced
in this chapter. Can you think of another possible definition?

5. Show how the library function init that removes the last element from
a non-empty list could similarly be defined in two different ways.

Chapter 3

Types and Classes

In this chapter we introduce types and classes, two of the most fundamental
concepts in Haskell. We start by explaining what types are and how they are
used in Haskell, then present a number of basic types and ways to build larger
types by combining smaller types, discuss function types in more detail, and
conclude with the concepts of polymorphic types and type classes.

3.1 Basic concepts

A type is a collection of related values. For example, the type Bool contains
the two logical values False and True, while the type Bool → Bool contains
all functions that map arguments from Bool to results from Bool , such as the
logical negation function ¬. We use the notation v :: T to mean that v is a
value in the type T , and say that v “has type” T . For example:

False :: Bool
True :: Bool
¬ :: Bool → Bool

More generally, the symbol :: can also be used with expressions that have not
yet been evaluated, in which case e ::T means that evaluation of the expression
e will produce a value of type T . For example:

¬ False :: Bool
¬ True :: Bool
¬ (¬ False) :: Bool

In Haskell, every expression must have a type, which is calculated prior
to evaluating the expression by a process called type inference. The key to
this process is a typing rule for function application, which states that if f is
a function that maps arguments of type A to results of type B , and e is an
expression of type A, then the application f e has type B :

f :: A→ B e :: A
f e :: B

27

28 CHAPTER 3. TYPES AND CLASSES

For example, the typing ¬ False ::Bool can be inferred from this rule using the
fact that ¬ ::Bool → Bool and False ::Bool . On the other hand, the expression
¬ 3 does not have a type under the above rule for function application, because
this would require that 3 :: Bool , which is not valid because 3 is not a logical
value. Expressions such as ¬ 3 that do not have a type are said to contain a
type error, and are deemed to be invalid expressions.

Because type inference precedes evaluation, Haskell programs are type safe,
in the sense that type errors can never occur during evaluation. In practice,
type inference detects a very large class of program errors, and is one of the
most useful features of Haskell. Note, however, that the use of type inference
does not eliminate the possibility that other kinds of error may occur during
evaluation. For example, the expression 1 ‘div ‘ 0 is free from type errors, but
produces an error when evaluated because division by zero is undefined.

The downside of type safety is that some expressions that evaluate success-
fully will be rejected on type grounds. For example, the conditional expression
if True then 1 else False evaluates to the number 1, but contains a type error
and is hence deemed invalid. In particular, the typing rule for a conditional
expression requires that both possible results have the same type, whereas in
this case the first such result, 1, is a number and the second, False , is a logical
value. In practice, however, programmers quickly learn how to work within
the limits of the type system and avoid such problems.

In Hugs, the type of any expression can be displayed by preceding the
expression by the command :type. For example:

> :type ¬
¬ :: Bool → Bool

> :type ¬ False
¬ False :: Bool

> :type ¬ 3
Error

3.2 Basic types

Haskell provides a number of basic types that are built-in to the language, of
which the most commonly used are described below.

Bool - logical values

This type contains the two logical values False and True.

Char - single characters

This type contains all single characters that are available from a normal key-
board, such as ’a’, ’A’, ’3’ and ’_’, as well as a number of control characters

3.2. BASIC TYPES 29

that have a special effect, such as ’\n’ (move to a new line) and ’\t’ (move
to the next tab stop). As is standard in most programming languages, single
characters must be enclosed in single forward quotes ’ ’.

String - strings of characters

This type contains all sequences of characters, such as "abc", "1+2=3", and
the empty string "". Again, as is standard in most programming languages,
strings of characters must be enclosed in double quotes " ".

Int - fixed-precision integers

This type contains integers such as −100, 0, and 999, with a fixed amount of
computer memory being used for their storage. For example, the Hugs system
has values of type Int in the range −231 to 231 − 1. Going outside this range
can give unexpected results. For example, evaluating 2 ↑ 31 :: Int using Hugs
(the use of :: forces the result to an Int rather than some other numeric type)
gives a negative number as the result, which is incorrect.

Integer - arbitrary-precision integers

This type contains all integers, with as much memory are necessary being used
for their storage, thus avoiding the imposition of lower and upper limits on the
range of numbers. For example, evaluating 2 ↑ 31 :: Integer using any Haskell
system will produce the correct result.

Apart from the different memory requirements and precision for numbers
of type Int and Integer , the choice between these two types is also one of per-
formance. In particular, most computers have built-in hardware for processing
fixed-precision integers, whereas arbitrary-precision integers must usually be
processed using the slower medium of software, as sequences of digits.

Float - single-precision floating-point numbers

This type contains numbers with a decimal point, such as −12.34, 1.0, and
3.14159, with a fixed amount of memory being used for their storage. The
term floating-point comes from the fact that the number of digits permitted
after the decimal point depends upon the magnitude of the number. For exam-
ple, evaluating sqrt 2 :: Float using Hugs gives the result 1.41421 (the library
function sqrt calculates the square root of a number), which has five digits
after the point, whereas sqrt 99999 ::Float gives 316.226, which only has three
digits after the point. Programming with floating-point numbers is a specialist
topic that requires a careful treatment of rounding errors, and we say little
more about such numbers in this introductory text.

We conclude this section by noting a single number may have more than
one numeric type. For example, 3 :: Int , 3 :: Integer , and 3 ::Float are all valid
typings for the number 3. This raises the question of what type such numbers

30 CHAPTER 3. TYPES AND CLASSES

should be assigned during type inference, which will be answered later in this
chapter when we consider type classes.

3.3 List types

A list is a sequence of elements of the same type, with the elements being
enclosed in square parentheses and separated by commas. We write [T] for
the type of all lists whose elements have type T . For example:

[False,True ,False] :: [Bool]
[’a’, ’b’, ’c’, ’d’] :: [Char]
["One", "Two", "Three"] :: [String]

The number of elements in a list is called its length. The list [] of length
zero is called the empty list, while lists of length one, such as such as [False]
and [’a’], are called singleton lists. Note that [[]] and [] are different lists,
the former being a singleton list comprising the empty list as its only element,
and the latter being simply the empty list.

There are three further points to note about list types. First of all, the
type of a list conveys no information about its length. For example, the lists
[False ,True] and [False,True ,False] both have type [Bool], even though they
have different lengths. Secondly, there are no restrictions on the type of the
elements of a list. At present we are limited in the range of examples that
we can give because the only non-basic type that we have introduced at this
point is list types, but we can have lists of lists, such as:

[[’a’, ’b’], [’c’, ’d’, ’e’]] :: [[Char]]

Finally, there is no restriction that a list must have a finite length. In partic-
ular, due to the use of lazy evaluation in Haskell, lists with an infinite length
are both natural and practical, as we shall see in chapter 12.

3.4 Tuple types

A tuple is a finite sequence of components of possibly different types, with the
components being enclosed in round parentheses and separated by commas.
We write (T1, T2, . . . , Tn) for the type of all tuples whose ith components have
type Ti for any i in the range 1 to n. For example:

(False ,True) :: (Bool ,Bool)
(False , ’a’,True) :: (Bool ,Char ,Bool)
("Yes",True, ’a’) :: (String ,Bool ,Char)

The number of components in a tuple is called its arity . The tuple () of
arity zero is called the empty tuple, tuples of arity two are called pairs, tuples

3.5. FUNCTION TYPES 31

of arity three are called triples, and so on. Tuples of arity one, such as (False),
are not permitted because they would conflict with the use of parentheses to
make evaluation order explicit, such as in (1 + 2) ∗ 3.

As with list types, there are three further points to note about tuple types.
First of all, the type of a tuple conveys its arity. For example, the type
(Bool ,Char) contains all pairs comprising a first component of type Bool and
a second component of type Char . Secondly, there are no restrictions on the
types of the components of a tuple. For example, we can now have tuples of
tuples, tuples of lists, and lists of tuples:

(’a’, (False , ’b’)) :: (Char , (Bool ,Char))
([’a’, ’b’], [False ,True]) :: ([Char], [Bool])
[(’a’,False), (’b’,True)] :: [(Char ,Bool)]

Finally, note that tuples must have a finite arity, in order to ensure that tuple
types can always be calculated prior to evaluation.

3.5 Function types

A function is a mapping from arguments of one type to results of another
type. We write T1 → T2 for the type of all functions that map arguments of
type T1 to results of type T2 . For example:

¬ :: Bool → Bool
isDigit :: Char → Bool

(The library function isDigit decides if a character is a numeric digit.) Because
there are no restrictions on the types of the arguments and results of a function,
the simple notion of a function with a single argument and result is already
sufficient to handle multiple arguments and results, by packaging multiple
values using lists or tuples. For example, we can define a function add that
calculates the sum of a pair of integers, and a function zeroto that returns the
list of integers from zero to a given limit, as follows:

add :: (Int , Int)→ Int
add (x , y) = x + y
zeroto :: Int → [Int]
zeroto n = [0 . . n]

In these examples we have followed the Haskell convention of preceding func-
tion definitions by their types, which serves as useful documentation. Any
such types provided manually by the user are checked for consistency with the
types calculated automatically using type inference.

Note that there is no restriction that functions must be total on their
argument type, in the sense that there may be some arguments for which the
result of a function is not defined. For example, the result of library function
head that selects the first element of a list is undefined if the list is empty.

32 CHAPTER 3. TYPES AND CLASSES

3.6 Curried functions

Functions with multiple arguments can also be handled in another, perhaps
less obvious way, by exploiting the fact that functions are free to return func-
tions as results. For example, consider the following definition:

add ′ :: Int → (Int → Int)
add ′ x y = x + y

The type states that add ′ is a function that takes an argument of type Int ,
and returns a result that is a function of type Int → Int . The definition itself
states that add ′ takes an integer x followed by an integer y , and returns the
result x + y . More precisely, add ′ takes an integer x and returns a function,
which in turn takes an integer y and returns the result x + y .

Note that the function add ′ produces the same final result as the function
add from the previous section, but whereas add takes its two arguments at
the same time packaged as a pair, add ′ takes its two arguments one at a time,
as reflected in the different types of the two functions:

add :: (Int , Int)→ Int
add ′ :: Int → (Int → Int)

Functions with more than two arguments can also be handled using the same
technique, by returning functions that return functions, and so on. For exam-
ple, a function mult that takes three integers, one at a time, and returns their
product, can be defined as follows:

mult :: Int → (Int → (Int → Int))
mult x y z = x ∗ y ∗ z

This definition states that mult takes an integer x and returns a function,
which in turn takes an integer y and returns another function, which finally
takes an integer z and returns the result x ∗ y ∗ z .

Functions such as add ′ and mult that take their arguments one at a time are
called curried . As well as being interesting in their own right, curried functions
are also more flexible than functions on tuples, because useful functions can
often be made by partially applying a curried function with less than its full
complement of arguments. For example, a function that increments an integer
is given by the partial application add ′ 1 :: Int → Int of the curried function
add ′ with only one of its two arguments.

To avoid excess parentheses when working with curried functions, two sim-
ple conventions are adopted. First of all, the function arrow → in types is
assumed to associate to the right. For example,

Int → Int → Int → Int

means
Int → (Int → (Int → Int))

3.7. POLYMORPHIC TYPES 33

Consequently, function application, which is denoted silently using spacing, is
assumed to associate to the left. For example,

mult x y z

means
((mult x) y) z

Unless tupling is explicitly required, all functions in Haskell with multiple
arguments are normally defined as curried functions, and the two conventions
above are used to reduce the number of parentheses that are required.

3.7 Polymorphic types

The library function length calculates the length of any list, irrespective of the
type of the elements of the list. For example, it can be used to calculate the
length of a list of integers, a list of strings, or even a list of functions:

> length [1, 3, 5, 7]
4

> length ["Yes", "No"]
2

> length [isDigit , isLower , isUpper]
3

The idea that the function length can be applied to lists whose elements have
any type is made precise in its type by the inclusion of a type variable. Type
variables must begin with a lower-case letter, and are usually simply named
a, b, c, and so on. For example, the type of length is as follows:

length :: [a]→ Int

That is, for any type a, the function length has type [a]→ Int . A type that
contains one or more type variables is called polymorphic (“of many forms”),
as is an expression with such a type. Hence, [a]→ Int is a polymorphic type
and length is a polymorphic function. More generally, many of the functions
provided in the standard prelude are polymorphic. For example:

fst :: (a, b)→ a
head :: [a]→ a
take :: Int → [a]→ [a]
zip :: [a]→ [b]→ [(a, b)]
id :: a → a

34 CHAPTER 3. TYPES AND CLASSES

3.8 Overloaded types

The arithmetic operator + calculates the sum of any two numbers of the same
numeric type. For example, it can be used to calculate the sum of two integers,
or the sum of two floating-point numbers:

> 1 + 2
3

> 1.1 + 2.2
3.3

The idea that the operator + can be applied to numbers of any numeric type is
made precise in its type by the inclusion of a class constraint . Class constraints
are written in the form C a, where C is the name of a class and a is a type
variable. For example, the type of + is as follows:

(+) :: Num a ⇒ a → a → a

That is, for any type a that is a instance of the class Num of numeric types,
the function (+) has type a → a → a. (Parenthesising an operator converts
it into a curried function, and is explained in more detail in the next chapter.)
A type that contains one or more class constraints is called overloaded , as is
an expression with such a type. Hence, Num a ⇒ a → a → a is an overloaded
type and (+) is an overloaded function. More generally, most of the numeric
functions provided in the standard prelude are overloaded. For example:

(−) :: Num a ⇒ a → a → a
(∗) :: Num a ⇒ a → a → a
negate :: Num a ⇒ a → a
abs :: Num a ⇒ a → a
signum :: Num a ⇒ a → a

Moreover, numbers themselves are also overloaded. For example, 3::Num a ⇒
a means that for any numeric type a, the number 3 has type a.

3.9 Basic classes

Recall that a type is a collection of related values. Building upon this notion, a
class is a collection of types that support certain overloaded operations called
methods. Haskell provides a number of basic classes that are built-in to the
language, of which the most commonly used are described below.

Eq - equality types

This class contains types whose values can be compared for equality and in-
equality using the following two methods:

(==) :: a → a → Bool
(�=) :: a → a → Bool

3.9. BASIC CLASSES 35

All the basic types Bool , Char , String , Int , Integer , and Float are instances
of the Eq class, as are list and tuple types, provided that their element and
component types are instances of the class. For example:

> False == False
True

> ’a’ == ’b’
False

> "abc" == "abc"
True

> [1, 2] == [1, 2, 3]
False

> (’a’,False) == (’a’,False)
True

Note that function types are not in general instances of the Eq class, because
it is not feasible in general to compare two functions for equality.

Ord - ordered types

This class contains types that are instances of the equality class Eq , but in ad-
dition whose values are totally (linearly) ordered, and as such can be compared
and processed using the following six methods:

(<) :: a → a → Bool
(�) :: a → a → Bool
(>) :: a → a → Bool
(�) :: a → a → Bool
min :: a → a → a
max :: a → a → a

All the basic types Bool , Char , String , Int , Integer , and Float are instances
of the Ord class, as are list types and tuple types, provided that their element
and component types are instances of the class. For example:

> False < True
True

> min ’a’ ’b’
’a’

> "elegant"< "elephant"
True

36 CHAPTER 3. TYPES AND CLASSES

> [1, 2, 3] < [1, 2]
False

> (’a’, 2) < (’b’, 1)
True

> (’a’, 2) < (’a’, 1)
False

Note that strings, lists and tuples are ordered lexicographically, that is, in the
same way as words in a dictionary. For example, two pairs of the same type
are in order if their first components are in order, in which case their second
components are not considered, or if their first components are equal, in which
case their second components must be in order.

Show - showable types

This class contains types whose values can be converted into strings of char-
acters using the following method:

show :: a → String

All the basic types Bool , Char , String , Int , Integer , and Float are instances of
the Show class, as are list types and tuple types, provided that their element
and component types are instances of the class. For example:

> show False
"False"

> show ’a’
"’a’"

> show 123
"123"

> show [1, 2, 3]
"[1,2,3]"

> show (’a’,False)
"(’a’,False)"

Read - readable types

This class is dual to Show , and contains types whose values can be converted
from strings of characters using the following method:

read :: String → a

3.9. BASIC CLASSES 37

All the basic types Bool , Char , String , Int , Integer , and Float are instances of
the Read class, as are list types and tuple types, provided that their element
and component types are instances of the class. For example:

> read "False" :: Bool
False

> read "’a’" :: Char
’a’

> read "123" :: Int
123

> read "[1,2,3]" :: [Int]
[1, 2, 3]

> read "(’a’,False)" :: (Char ,Bool)
(’a’,False)

The use of :: in these examples resolves the type of the result. In practice,
however, the necessary type information can usually be inferred automatically
from the context. For example, the expression ¬ (read "False") requires
no explicit type information, because the application of the logical negation
function ¬ implies that read "False" must have type Bool .

Note that the result of read is undefined if its argument is not syntactically
valid. For example, the expression ¬ (read "hello") produces an error when
evaluated, because "hello" cannot be read as a logical value.

Num - numeric types

This class contains types that are instances of the equality class Eq and show-
able class Show , but in addition whose values are numeric, and as such can
be processed using the following six methods:

(+) :: a → a → a
(−) :: a → a → a
(∗) :: a → a → a
negate :: a → a
abs :: a → a
signum :: a → a

(The method negate returns the negation of a number, abs returns the absolute
value, while signum returns the sign.) The basic types Int , Integer and Float
are instances of the Num class. For example:

> 1 + 2
3

38 CHAPTER 3. TYPES AND CLASSES

> 1.1 + 2.2
3.3

> negate 3.3
−3.3

> abs (−3)
3

> signum (−3)
−1

Note that the Num class does not provide a division method, but as we shall
now see, division is handled separately using two special classes, one for inte-
gral numbers and one for fractional numbers.

Integral - integral types

This class contains types that are instances of the numeric class Num, but in
addition whose values are integers, and as such support the methods of integer
division and integer remainder:

div :: a → a → a
mod :: a → a → a

In practice, these two methods are often written between their two arguments
by enclosing their names in single back quotes. The basic types Int and Integer
are instances of the Integral class. For example:

> 7 ‘div ‘ 2
3

> 7 ‘mod ‘ 2
1

For efficiency reasons, a number of prelude functions that involve both lists
and integers (such as length, take and drop) are restricted to the type Int of
finite-precision integers, rather than being applicable to any instance of the
Integral class. If required, however, such generic versions of these functions
are provided as part of an additional library file called List .hs .

Fractional - fractional types

This class contains types that are instances of the numeric class Num, but in
addition whose values are non-integral, and as such support the methods of
fractional division and fractional reciprocation:

(/) :: a → a → a
recip :: a → a

3.10. CHAPTER REMARKS 39

The basic type Float is an instance of the Fractional class. For example:

> 7.0 / 2.0
3.5

> recip 2.0
0.5

3.10 Chapter remarks

The term Bool for the type of logical values celebrates the pioneering work
of George Boole on symbolic logic, while the term curried for functions that
take their arguments one at a time celebrates the work of Haskell Curry (after
whom the language Haskell itself is named) on such functions. A more de-
tailed account of the type system is given in Haskell Report [26], while formal
descriptions for specialists can be found in [21, 6].

3.11 Exercises

1. What are the types of the following values?

[’a’, ’b’, ’c’]
(’a’, ’b’, ’c’)
[(False , ’O’), (True , ’1’)]
([False ,True], [’0’, ’1’])
[tail , init , reverse]

2. What are the types of the following functions?

second xs = head (tail xs)
swap (x , y) = (y , x)
pair x y = (x , y)
double x = x ∗ 2
palindrome xs = reverse xs == xs
twice f x = f (f x)

Hint: take care to include the necessary class constraints if the functions
are defined using overloaded operators.

3. Check your answers to the preceding two questions using Hugs.

4. Why is it not feasible in general for function types to be instances of the
Eq class? When is it feasible? Hint: two functions of the same type are
equal if they always return equal results for equal arguments.

40 CHAPTER 3. TYPES AND CLASSES

Chapter 4

Defining Functions

In this chapter we introduce a range of mechanisms for defining functions in
Haskell. We start with conditional expressions and guarded equations, then
introduce the simple but powerful idea of pattern matching, and conclude with
the concepts of lambda expressions and sections.

4.1 New from old

Perhaps the most straightforward way to define new functions is simply by
combining one or more existing functions. For example, a number of library
functions that are defined in this way are shown below.

• Decide if a character is a digit:

isDigit :: Char → Bool
isDigit c = c � ’0’ ∧ c � ’9’

• Decide if an integer is even:

even :: Integral a ⇒ a → Bool
even n = n ‘mod ‘ 2 == 0

• Split a list at the nth element:

splitAt :: Int → [a]→ ([a], [a])
splitAt n xs = (take n xs , drop n xs)

• Reciprocation:

recip :: Fractional a ⇒ a → a
recip n = 1 / n

Note the use of the class constraints in the types for even and recip above,
which make precise the idea that these functions can be applied to numbers
of any integral and fractional types, respectively.

41

42 CHAPTER 4. DEFINING FUNCTIONS

4.2 Conditional expressions

Haskell provides a range of different ways to define functions that choose be-
tween a number of possible results. The simplest are conditional expressions,
which use a logical expression called a condition to choose between two results
of the same type. If the condition is True then the first result is chosen, other-
wise the second is chosen. For example, the library function abs that returns
the absolute value of an integer can be defined as follows:

abs :: Int → Int
abs n = if n � 0 then n else − n

Conditional expressions may be nested, in the sense that they can contain
other conditional expressions. For example, the library function signum that
returns the sign of an integer can be defined as follows:

signum :: Int → Int
signum n = if n < 0 then− 1 else

if n == 0 then 0 else 1

Note that unlike in some programming languages, conditional expressions
in Haskell must always have an else branch, which avoids the well-known
“dangling else” problem. For example, if else branches were optional then
the expression if True then if False then 1 else 2 could either return the
result 2 or produce an error, depending upon whether the single else branch
was assumed to be part of the inner or outer conditional expression.

4.3 Guarded equations

As an alternative to using conditional expressions, functions can also be de-
fined using guarded equations, in which a sequence of logical expressions called
guards is used to choose between a sequence of results of the same type. If
the first guard is True then the first result is chosen, otherwise if the second
is True then the second result is chosen, and so on. For example, the library
function abs can also be defined as follows:

abs n | n � 0 = n
| otherwise = −n

The symbol | is read as “such that”, and the guard otherwise is defined in the
standard prelude simply by otherwise = True. Ending a sequence of guards
with otherwise is not necessary, but provides a convenient way of handling
“all other cases”, as well as clearly avoiding the possibility that none of the
guards in the sequence are True, which would result in an error.

The main benefit of guarded equations over conditional expressions is that
definitions with multiple guards are easier to read. For example, the library

4.4. PATTERN MATCHING 43

function signum is easier to understand when defined as follows:

signum n | n < 0 = −1
| n == 0 = 0
| otherwise = 1

4.4 Pattern matching

Many functions have a particularly simple and intuitive definition using pattern
matching , in which a sequence of syntactic expressions called patterns is used
to choose between a sequence of results of the same type. If the first pattern
is matched then the first result is chosen, otherwise if the second is matched
then the second result is chosen, and so on. For example, the library function
¬ that returns the negation of a logical value is defined as follows:

¬ :: Bool → Bool
¬ False = True
¬ True = False

Functions with more than one argument can also be defined using pattern
matching, in which case the patterns for each argument are matched in order
within each equation. For example, the library operator ∧ that returns the
conjunction of two logical values can be defined as follows:

(∧) :: Bool → Bool → Bool
True ∧ True = True
True ∧ False = False
False ∧ True = False
False ∧ False = False

However, this definition can be simplified by combining the last three equations
into a single equation that returns False independent of the values of the two
arguments, using the wildcard pattern that matches any value:

True ∧ True = True
∧ = False

This version also has the benefit that, under lazy evaluation as discussed in
chapter 12, if the first argument is False then the result False is returned
without the need to evaluate the second argument. In practice, the prelude
defines ∧ using equations that have this same property, but make the choice
about which equation applies using the value of the first argument only:

True ∧ b = b
False ∧ = False

That is, if the first argument is True then the result is the value of the second
argument, and if the first argument is False then the result is False .

44 CHAPTER 4. DEFINING FUNCTIONS

Note that for technical reasons, the same name may not be used for more
than one argument in a single equation. For example, the following definition
for the operator ∧ is based upon the observation that if the two arguments
are equal then the result is the same value, otherwise the result is False , but
is invalid because of the above naming requirement:

b ∧ b = b
∧ = False

If desired, however, a valid version of this definition can be obtained by using
a guard to decide if the two arguments are equal:

b ∧ c | b == c = b
| otherwise = False

So far, we have only considered basic patterns that are either values, vari-
ables, or the wildcard pattern. In the remainder of this section we introduce
three useful ways to build larger patterns by combining smaller patterns.

Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of the same
arity whose components all match the corresponding patterns in order. For
example, the library functions fst and snd that select the first and second
components of a pair are defined as follows:

fst :: (a, b)→ a
fst (x ,) = x
snd :: (a, b)→ b
snd (, y) = y

List patterns

Similarly, a list of patterns is itself a pattern, which matches any list of the
same length whose elements all match the corresponding patterns in order.
For example, a function test that decides if a list contains precisely three
characters beginning with ’a’ can be defined as follows:

test :: [Char]→ Bool
test [’a’, ,] = True
test = False

Up to this point we have viewed lists as a primitive notion in Haskell. In
fact they are not primitive as such, but are actually constructed one element
at a time starting from the empty list [] using an operator : called cons that
constructs a new list by prepending a new element to the start of an existing
list. For example, the list [1, 2, 3] can be decomposed as follows:

4.4. PATTERN MATCHING 45

[1, 2, 3]
= { list notation }

1 : [2, 3]
= { list notation }

1 : (2 : [3])
= { list notation }

1 : (2 : (3 : []))

That is, [1, 2, 3] is just an abbreviation for 1 : (2 : (3 : [])). To avoid excess
parentheses when working with such lists, the cons operator is assumed to
associate to the right. For example, 1 : 2 : 3 : [] means 1 : (2 : (3 : [])).

As well as being used to construct lists, the cons operator can also be
used to construct patterns, which match any non-empty list whose first and
remaining elements match the corresponding patterns in order. For example,
we can now define a more general version of the function test that decides if
a list containing any number of characters begins with ’a’:

test :: [Char]→ Bool
test (’a’ :) = True
test = False

Similarly, the library functions null , head and tail that decide if a list is empty,
select the first element of a non-empty list, and remove the first element of a
non-empty list are defined as follows:

null :: [a]→ Bool
null [] = True
null (:) = False
head :: [a]→ a
head (x :) = x
tail :: [a]→ [a]
tail (: xs) = xs

Note that cons patterns must be parenthesised, because function applica-
tion has higher priority than all other operators. For example, the definition
tail : xs = xs without parentheses means (tail) : xs = xs , which is both the
incorrect meaning and an invalid definition.

Integer patterns

As a special case that is sometimes useful, Haskell also allows integer patterns
of the form n+k , where n is an integer variable and k>0 is an integer constant.
For example, a function pred that maps zero to itself and any strictly positive
integer to its predecessor can be defined as follows:

pred :: Int → Int
pred 0 = 0
pred (n + 1) = n

46 CHAPTER 4. DEFINING FUNCTIONS

There are two points to note about n + k patterns. First of all, they only
match integers � k . For example, evaluating pred (−1) produces an error,
because neither of the two patterns in the definition for pred matches negative
integers. Secondly, for the same reason as cons patterns, integer patterns
must be parenthesised. For example, the definition pred n + 1 = n without
parentheses means (pred n) + 1 = n, which is an invalid definition.

4.5 Lambda expressions

As an alternative to defining functions using equations, functions can also be
constructed using lambda expressions, which comprise a pattern for each of
the arguments, a body that specifies how the result can be calculated in terms
of the arguments, but do not give a name for the function itself. In other
words, lambda expressions are nameless functions.

For example, a nameless function that takes a single number x as its ar-
gument, and produces the result x + x , can be constructed as follows:

λx → x + x

The symbol λ is the lower-case Greek letter “lambda”. Despite the fact that
they have no names, functions constructed using lambda expressions can be
used in the same way as any other functions. For example:

> (λx → x + x) 2
4

As well as being interesting in their own right, lambda expressions have a
number of practical applications. First of all, they can be used to formalise
the meaning of curried function definitions. For example, the definition

add x y = x + y

can be understood as meaning

add = λx → (λy → x + y)

which makes precise that add is a function that takes a number x and returns
a function, which in turn takes a number y and returns the result x + y .

Secondly, lambda expressions are also useful when defining functions that
return functions as results by their very nature, rather than as a consequence
of currying. For example, the library function const that returns a constant
function that always produces a given value can be defined as follows:

const :: a → b → a
const x = x

4.6. SECTIONS 47

However, it is more appealing to define const in a way that makes explicit
that it returns a function as its result, by including parentheses in the type
and using a lambda expression in the definition itself:

const :: a → (b → a)
const x = λ → x

Finally, lambda expressions can be used to avoid having to name a function
that is only referenced once. For example, a function odds that returns the
first n odd integers can be defined as follows:

odds :: Int → [Int]
odds n = map f [0 . . n − 1]

where f x = x ∗ 2 + 1

(The library function map applies a function to all elements of a list.) However,
because the locally defined function f is only referenced once, the definition
for odds can be simplified by using a lambda expression:

odds n = map (λx → x ∗ 2 + 1) [0 . . n − 1]

4.6 Sections

Functions such as + that are written between their two arguments are called
operators. As we have already seen, any function with two arguments can be
converted into an operator by enclosing the name of the function in single back
quotes, as in 7 ‘div ‘ 2. However, the converse is also possible. In particular,
any operator can be converted into a curried function that is written before its
arguments by enclosing the name of the operator in parentheses, as in (+) 1 2.
Moreover, this convention also allows one of the arguments to be included in
the parentheses if desired, as in (1+) 2 and (+2) 1.

In general, if ⊕ is an operator then expressions of the form (⊕), (x ⊕) and
(⊕ y) for arguments x and y are called sections, whose meaning as functions
can be formalised using lambda expressions as follows:

(⊕) = λx → (λy → x ⊕ y)
(x ⊕) = λy → x ⊕ y
(⊕ y) = λx → x ⊕ y

Sections have three main applications. First of all, they can be used to
construct a number of simple but useful functions in a particularly compact
way, as shown in the following examples:

(+) is the addition function λx → (λy → x + y)

(1+) is the successor function λy → 1 + y

(1/) is the reciprocation function λy → 1 / y

(∗2) is the doubling function λx → x ∗ 2

(/2) is the halving function λx → x / 2

48 CHAPTER 4. DEFINING FUNCTIONS

Secondly, sections are necessary when stating the type of operators, be-
cause an operator itself is not a valid expression in Haskell. For example, the
type of the logical conjunction operator ∧ is stated as follows:

(∧) :: Bool → Bool → Bool

Finally, sections are also necessary when using operators as arguments to
other functions. For example, the library function and that decides if all logical
values in a list are True is defined by using the operator ∧ as an argument to
the library function foldr , which is itself discussed in chapter 7:

and :: [Bool]→ Bool
and = foldr (∧) True

4.7 Chapter remarks

A formal meaning for pattern matching by translation using more primitive
features of the language is given in the Haskell Report [26]. The Greek letter λ
used when defining nameless functions comes from the lambda calculus, the
mathematical theory of functions upon which Haskell is founded.

4.8 Exercises

1. Using library functions, define a function halve :: [a] → ([a], [a]) that
splits an even-lengthed list into two halves. For example:

> halve [1, 2, 3, 4, 5, 6]
([1, 2, 3], [4, 5, 6])

2. Consider a function safetail :: [a] → [a] that behaves as the library
function tail , except that safetail maps the empty list to itself, whereas
tail produces an error in this case. Define safetail using:

(a) a conditional expression;

(b) guarded equations;

(c) pattern matching.

Hint: make use of the library function null .

3. In a similar way to ∧, show how the logical disjunction operator ∨ can
be defined in four different ways using pattern matching.

4. Redefine the following version of the conjunction operator using condi-
tional expressions rather than pattern matching:

True ∧ True = True
∧ = False

4.8. EXERCISES 49

5. Do the same for the following version, and note the difference in the
number of conditional expressions required:

True ∧ b = b
False ∧ = False

6. Show how the curried function definition mult x y z = x ∗ y ∗ z can be
understood in terms of lambda expressions.

50 CHAPTER 4. DEFINING FUNCTIONS

Chapter 5

List Comprehensions

In this chapter we introduce list comprehensions, which allow many functions
on lists to be defined in simple manner. We start by explaining generators and
guards, then introduce the function zip and the idea of string comprehensions,
and conclude by developing a program to crack the Caesar cipher.

5.1 Generators

In mathematics, the comprehension notation can be used to construct new
sets from existing sets. For example, the comprehension {x2 | x ∈ {1..5}}
produces the set {1, 4, 9, 16, 25} of all numbers x2 such that x is an element
of the set {1..5}. In Haskell, a similar comprehension notation can be used to
construct new lists from existing lists. For example:

> [x ↑ 2 | x ← [1 . . 5]]
[1, 4, 9, 16, 25]

The symbols | and← are read as “such that” and “is drawn from” respectively,
and the expression x ← [1 . . 5] is called a generator . A list comprehension can
have more than one generator, with successive generators being separated by
commas. For example, the list of all possible pairings of an element from the
list [1, 2, 3] with an element from [4, 5] can be produced as follows:

> [(x , y) | x ← [1, 2, 3], y ← [4, 5]]
[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]

Changing the order of the two generators in this example produces the same
set of pairs, but arranged in a different order:

> [(x , y) | y ← [4, 5], x ← [1, 2, 3]]
[(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)]

In particular, whereas in this case the x components of the pairs change more
frequently than the y components (1,2,3,1,2,3 versus 4,4,4,5,5,5), in the pre-
vious case the y components change more frequently than the x components

51

52 CHAPTER 5. LIST COMPREHENSIONS

(4,5,4,5,4,5 versus 1,1,2,2,3,3). These behaviours can be understood by think-
ing of later generators as being more deeply nested, and hence changing the
values of their variables more frequently than earlier generators.

Later generators can also depend upon the values of variables from earlier
generators. For example, the list of all possible ordered pairings of elements
from the list [1 . . 3] can be produced as follows:

> [(x , y) | x ← [1 . . 3], y ← [x . . 3]]
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]

As another example of this idea, the library function concat that concatenates
a list of lists can be defined by using one generator to select each list in turn,
and another to select each element from each list:

concat :: [[a]]→ [a]
concat xss = [x | xs ← xss , x ← xs]

The wildcard pattern is sometimes useful in generators to discard cer-
tain elements from a list. For example, a function that selects all the first
components from a list of pairs can be defined as follows:

firsts :: [(a, b)]→ [a]
firsts ps = [x | (x ,)← ps]

Similarly, the library function that calculates the length of a list can be defined
by replacing each element by one and summing the resulting list:

length :: [a]→ Int
length xs = sum [1 | ← xs]

In this case, the generator ← xs simply serves as a counter to govern the
production of the appropriate number of ones.

5.2 Guards

List comprehensions can also use logical expressions called guards to filter the
values produced by earlier generators. If a guard is True then the current
values are retained, otherwise they are discarded. For example, the compre-
hension [x | x ← [1 . . 10], even x] produces the list [2, 4, 6, 8, 10] of all even
numbers from the list [1 . . 10]. Similarly, a function that maps a positive
integer to its list of positive factors can be defined as follows:

factors :: Int → [Int]
factors n = [x | x ← [1 . . n],n ‘mod ‘ x == 0]

For example:

5.2. GUARDS 53

> factors 15
[1, 3, 5, 15]

> factors 7
[1, 7]

Recall than an integer greater than one is prime if its only positive factors are
one and the number itself. Hence, using factors a simple function that decides
if an integer is prime can be defined as follows:

prime :: Int → Bool
prime n = factors n == [1,n]

For example:

> prime 15
False

> prime 7
True

Note that deciding that a number such as 15 is not prime does not require the
function prime to produce all of its factors, because under lazy evaluation the
result False is returned as soon as any factor other than one or the number
itself is produced, which for this example is given by the factor 3.

Returning to list comprehensions, using prime we can now define a function
that produces the list of all prime numbers up to a given limit:

primes :: Int → [Int]
primes n = [x | x ← [2 . . n], prime x]

For example:

> primes 40
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

In chapter 12 we will present a more efficient program to generate prime
numbers using the famous “sieve of Eratosthenes”, which has a particularly
clear and concise implementation in Haskell.

As a final example concerning guards, suppose that we represent a lookup
table by a list of pairs comprising keys and values. Then for any type of keys
that is an equality type, a function find that returns the list of all values that
are associated with a given key in a table can be defined as follows:

find :: Eq a ⇒ a → [(a, b)]→ [b]
find k t = [v | (k ′, v)← t , k == k ′]

For example:

> find ’b’ [(’a’, 1), (’b’, 2), (’c’, 3), (’b’, 4)]
[2, 4]

54 CHAPTER 5. LIST COMPREHENSIONS

5.3 The zip function

The library function zip produces a new list by pairing successive elements
from two existing lists until either or both are exhausted. For example:

> zip [’a’, ’b’, ’c’] [1, 2, 3, 4]
[(’a’, 1), (’b’, 2), (’c’, 3)]

The function zip is often useful when programming with list comprehensions.
For example, suppose that we define a function pairs that returns the list of
all pairs of adjacent elements from a list as follows:

pairs :: [a]→ [(a, a)]
pairs xs = zip xs (tail xs)

For example:

> pairs [1, 2, 3, 4]
[(1, 2), (2, 3), (3, 4)]

Then using pairs we can now define a function that decides if a list of elements
of any ordered type is sorted by simply checking that all pairs of adjacent
elements from the list are in the correct order:

sorted :: Ord a ⇒ [a]→ Bool
sorted xs = and [x � y | (x , y)← pairs xs]

For example:

> sorted [1, 2, 3, 4]
True

> sorted [1, 3, 2, 4]
False

Similarly to the function prime , deciding that a list such as [1, 3, 2, 4] is not
sorted may not require the function sorted to produce all pairs of adjacent
elements, because the result False is returned as soon as any non-ordered pair
is produced, which in this example is given by the pair (3, 2).

Using zip we can also define a function that returns the list of all positions
at which a value occurs in a list, by pairing each element with its position,
and selecting those positions at which the desired value occurs:

positions :: Eq a ⇒ a → [a]→ [Int]
positions x xs = [i | (x ′, i)← zip xs [0 . . n], x == x ′]

where n = length xs − 1

For example:

> positions False [True,False ,True,False]
[1, 3]

5.4. STRING COMPREHENSIONS 55

5.4 String comprehensions

Up to this point we have viewed strings as a primitive notion in Haskell. In fact
they are not primitive as such, but are actually constructed as lists of charac-
ters. For example, "abc" :: String is just an abbreviation for [’a’, ’b’, ’c’] ::
[Char]. Because strings are just special kinds of lists, any polymorphic func-
tion on lists can also be used with strings. For example:

> "abcde" !! 2
’c’

> take 3 "abcde"
"abc"

> length "abcde"
5

> zip "abc" [1, 2, 3, 4]
[(’a’, 1), (’b’, 2), (’c’, 3)]

For the same reason, list comprehensions can also be used to define functions
on strings, such as functions that return the number of lower-case letters and
particular characters that occur in a string, respectively:

lowers :: String → Int
lowers xs = length [x | x ← xs , isLower x]
count :: Char → String → Int
count x xs = length [x ′ | x ′ ← xs , x == x ′]

For example:

> lowers "Haskell�98"
6

> count ’s’ "Mississippi"
4

5.5 The Caesar cipher

We conclude this chapter with an extended example. Consider the problem
of encoding a string in order to disguise its contents from unintended readers.
A well-known encoding method is the Caesar cipher , named after its use by
Julius Caesar. To encode a string, Caesar simply replaced each letter in the
string by the letter three places further down in the alphabet, wrapping around
at the end of the alphabet. For example, the string

"haskell�is�fun"

56 CHAPTER 5. LIST COMPREHENSIONS

would be encoded as
"kdvnhoo�lv�ixq"

More generally, the shift factor of three used by Caesar can be replaced by
any integer between one and twenty-five, thereby giving twenty-five different
ways of encoding a string. For example, with a shift factor of ten, the original
string above would be encoded as

"rkcuovv�sc�pex"

In the remainder of this section we show how Haskell can be used to imple-
ment the Caesar cipher, and how the cipher itself can easily be “cracked” by
exploiting information about letter frequencies.

Encoding and decoding

For simplicity, we will only encode the lower-case letters within a string, leaving
other characters such as upper-case letters and punctuation unchanged. We
begin by defining a function let2int that converts a lower-case letter between
’a’ and ’z’ into the corresponding integer between 0 and 25, together with
a function int2let that performs the opposite conversion:

let2int :: Char → Int
let2int c = ord c − ord ’a’

int2let :: Int → Char
int2let n = chr (ord ’a’+ n)

(The library functions ord ::Char → Int and chr ::Int → Char convert between
characters and their Unicode representation as integers.) For example:

> let2int ’a’
0

> int2let 0
’a’

Using these two functions, we can define a function shift that applies a shift
factor to a lower-case letter by converting the letter into the corresponding
integer, adding on the shift factor and taking the remainder when divided
by twenty-six (thereby wrapping around at the end of the alphabet), and
converting the resulting integer back into a lower-case letter:

shift :: Int → Char → Char
shift n c | isLower c = int2let ((let2int c + n) ‘mod ‘ 26)

| otherwise = c

Note that this function accepts both positive and negative shift factors, and
that only lower-case letters are changed. For example:

5.5. THE CAESAR CIPHER 57

> shift 3 ’a’
’d’

> shift 3 ’z’
’c’

> shift (−3) ’c’
’z’

> shift 3 ’�’
’�’

Using shift within a string comprehension, it is now easy to define a function
that encodes a string using a given shift factor:

encode :: Int → String → String
encode n xs = [shift n x | x ← xs]

A separate function to decode a string is not required, because this can be
achieved by simply using a negative shift factor. For example:

> encode 3 "haskell�is�fun"
"kdvnhoo�lv�ixq"

> encode (−3) "kdvnhoo�lv�ixq"
"haskell�is�fun"

Frequency tables

Some letters in English are used more frequently than others. By analysing
a large volume of text, one can derive the following table of approximate
percentage frequencies of the twenty-six letters of alphabet:

table :: [Float]
table = [8.2, 1.5, 2.8, 4.3, 12.7, 2.2, 2.0, 6.1, 7.0, 0.2, 0.8, 4.0, 2.4,

6.7, 7.5, 1.9, 0.1, 6.0, 6.3, 9.1, 2.8, 1.0, 2.4, 0.2, 2.0, 0.1]

For example, the letter ’e’ occurs most often, with a frequency of 12.7%,
while ’q’ and ’z’ occur least often, with a frequency of just 0.1%. It is also
useful to produce frequency tables for individual strings. To this end, we first
define a function that calculates the percentage of one integer with respect to
another, returning the result as a floating-point number:

percent :: Int → Int → Float
percent n m = (fromInt n / fromInt m) ∗ 100

58 CHAPTER 5. LIST COMPREHENSIONS

(The library function fromInt :: Int → Float converts an integer into the cor-
responding floating-point number.) Using percent within a string comprehen-
sion, together with the functions lowers and count from the previous section,
we can define a function that returns the frequency table for any string:

freqs :: String → [Float]
freqs xs = [percent (count x xs) n | x ← [’a’ . . ’z’]]

where n = lowers xs

For example:

> freqs "abbcccddddeeeee"
[6.7, 13.3, 20.0, 26.7, 33.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, · · · , 0.0]

That is, the letter ’a’ occurs with a frequency of 6.7%, the letter ’b’ with a
frequency of 13.3%, and so on. The use of the local definition n = lowers xs
within freqs ensures that the number of lower-case letters in the argument
string is calculated once, rather than each of the twenty-six times that this
number is used within the string comprehension.

Cracking the cipher

A standard method for comparing a list of observed frequencies os with a list
of expected frequencies es is the chi-square statistic, defined by the following
formulae in which n denotes the length of the two lists, and xs i denotes the
ith element of a list xs counting from zero:

n−1∑

i=0

(osi − esi)2

esi

The details of chi-square statistic need not concern us here, only the fact
that the smaller the value it produces the better the match between the two
frequency lists. Using the library function zip and a list comprehension, it is
easy to translate the above formula into a function definition:

chisqr :: [Float]→ [Float]→ Float
chisqr os es = sum [((o − e) ↑ 2) / e | (o, e)← zip os es]

In turn, we define a function that rotates the elements of a list n places
to the left, wrapping around at the start of the list, and assuming that n is
between zero and the length of the list:

rotate :: Int → [a]→ [a]
rotate n xs = drop n xs ++ take n xs

For example:

> rotate 3 [1, 2, 3, 4, 5]
[4, 5, 1, 2, 3]

5.5. THE CAESAR CIPHER 59

Now suppose that we are given an encoded string, but not the shift factor
that was used to encode it, and wish to determine this number in order that we
can decode the string. This can usually be achieved by producing the frequency
table of the encoded string, calculating the chi-square statistic for each possible
rotation of this table with respect to the table of expected frequencies, and
using the position of the minimum chi-square value as the shift factor. For
example, if table ′ = freqs "kdvnhoo�lv�ixq" then

[chisqr (rotate n table ′) table | n ← [0 . . 25]]

gives the result

[1408.8, 640.3, 612.4, 202.6, 1439.8, 4247.2, 651.3, · · · , 626.7]

in which the minimum value, 202.6, appears at position three in this list.
Hence, we conclude that three is the most likely shift factor that can be used
to decode the string. Using the function positions from earlier in this chapter,
this procedure can be implemented as follows:

crack :: String → String
crack xs = encode (−factor) xs

where
factor = head (positions (minimum chitab) chitab)
chitab = [chisqr (rotate n table ′) table | n ← [0 . . 25]]
table ′ = freqs xs

For example:

> crack "kdvnhoo�lv�ixq"
"haskell�is�fun"

> crack "vscd�mywzboroxcsyxc�kbo�ecopev"
"list�comprehensions�are�useful"

More generally, the crack function can decode most strings produced using
the Caesar cipher. Note, however, that it may not be successful if the string
is short or has an unusual distribution of letters. For example:

> crack (encode 3 "haskell")
"piasmtt"

> crack (encode 3 "the�five�boxing�wizards�jump�quickly")
"dro�psfo�lyhsxq�gsjkbnc�tewz�aesmuvi"

60 CHAPTER 5. LIST COMPREHENSIONS

5.6 Chapter remarks

The term comprehension comes from the “axiom of comprehension” in set
theory, which makes precise the idea of constructing a set by selecting all values
satisfying a particular property. A formal meaning for list comprehensions by
translation using more primitive features of the language is given in the Haskell
Report [26]. A popular account of the Caesar cipher, and many other famous
cryptographic methods, is given in The Code Book [30].

5.7 Exercises

1. Using a list comprehension, give an expression that calculates the sum
12 + 22 + . . . 1002 of the first one hundred integer squares.

2. In a similar way to the function length, show how the library function
replicate :: Int → a → [a] that produces a list of identical elements can
be defined using a list comprehension. For example:

> replicate 3 True
[True,True ,True]

3. A triple (x, y, z) of positive integers can be termed pythagorean if x2 +
y2 = z2. Using a list comprehension, define a function pyths :: Int →
[(Int , Int , Int)] that returns the list of all pythagorean triples whose
components are at most a given limit. For example:

> pyths 10
[(3, 4, 5), (4, 3, 5), (6, 8, 10), (8, 6, 10)]

4. A positive integer is perfect if it equals the sum of its factors, excluding
the number itself. Using a list comprehension and the function factors ,
define a function perfects :: Int → [Int] that returns the list of all perfect
numbers up to a given limit. For example:

> perfects 500
[6, 28, 496]

5. Show how the single comprehension [(x , y) | x ← [1, 2, 3], y ← [4, 5, 6]]
with two generators can be re-expressed using two comprehensions with
single generators. Hint: make use of the library function concat and nest
one comprehension within the other.

6. Redefine the function positions using the function find .

7. The scalar product of two lists of integers xs and ys of length n is given
by the sum of the products of corresponding integers:

5.7. EXERCISES 61

n−1∑

i=0

(xsi ∗ ysi)

In a similar manner to the function chisqr , show how a list comprehen-
sion can be used to define a function scalarproduct :: [Int]→ [Int]→ Int
that returns the scalar product of two lists. For example:

> scalarproduct [1, 2, 3] [4, 5, 6]
32

8. Modify the Caesar cipher program to also handle upper-case letters.

