

Title: D12.3 BT Case Study:
Demonstration Description and
Architecture

Version: 1.1
Date: 16/09/2004
Pages: 15

Responsible Authors:
Alistair Duke, Marc Richardson

Co-Author(s):

Status: Confidentiality:

[
[
[
[

9

]
]
]
]

Draft
To be reviewed
Proposal
Final / Released to CEC

[
[

[

9

]
]

]

Public
INT

Restricted

- for public use
- for SWWS consortium (and Project Officer if requested)

- for SWWS consortium and Project Officer only

Project ID: IST-2002-37134

Deliverable ID: None

Title: D12.3 BT Case Study: Demonstration Description and Architecture

Summary / Contents:

This Document describes the BT Case Study demonstration and outlines the architecture used in its
implementation.

SWWS – Semantic Web Enabled Web Services

BT Case Study Architecture Document

Deliverable ID:

Page : 2 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

SWWS Consortium

This document is part of a research project funded by the IST Programme of the Commission
of the European Communities as project number IST-2002-37134. The partners in this
project are: Leopold-Franzens Universität Innsbruck (IFI, Austria)); National University of
Ireland, Galway (NUI, Galway, Ireland); Forschungszentrum Informatik (FZI, Germany);
Intelligent Software Components S.A. (iSOCO, Spain); OntoText Lab. - Sirma AI Ltd. (SAI,
Bulgaria); Hewlett Packard (HP, UK), British Telecom (BT, UK)

Leopold-Franzens Universität Innsbruck (IFI)

Institut für Informatik
Technikerstrasse 13
A-6020 Innsbruck Austria

Tel: +43 512 507 6489
Fax: +43 512 507 9872

Contact person: Juan Miguel Gomez
E-mail: juan.miguel@uibk.ac.at

National University of Ireland, Galway (NUI)

National University of Ireland,
University Road
Galway, Ireland

Tel: +353 91 750414
Fax: +353 91 562894

Contact person: Liam Caffrey
E-mail: Liam.Caffrey@nuigalway.ie

FZI – Forschungszentrum Informatik

Haid-und-Neu-Str. 10-14
76131 Karlsruhe, Germany

Tel: +49 721 9654816
Fax: +49 721 9654817
Contact person: Adreas Abecker
E-mail: abecker@fzi.de

Intelligent Software Components S.A. (iSOCO)

Francisco Delgado 11, 2nd Flor
28108 Alcobendas, Madrid, Spain

Tel: +34 913 349797
Fax: +34 913 349799

Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

OntoText Lab.- Sirma AI Ltd. (SAI)

OntoText Lab.
38A Chr. Botev Blvd.
Sofia 1000, Bulgaria

Tel: +35 92 9810018,
Fax: +35 92 9819058

Contact person: Atanas Kiryakov
E-mail: Atanas.Kiryakov@sirma.bg

Hewlett Packard (HP)

HP European Laboratories
Filton Road, Stoke Gifford
BS34 8QZ Bristol, UK

Tel: +44 117 3128631
Fax: +44 117 3129285

Contact person: Janet Bruten
E-mail: janet.bruten@hp.com

Associated Partner:
British Telecommunications plc. (BT)
Orion 5/12, Adastral Park
Ipswich ip5 3RE, UK
Tel: +44 1473 609583
Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

BT Case Study Architecture Document

Deliverable ID:

Page : 3 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

Change Log

Vers. Date Author Description
1.0 06/07/04 Alistair Duke First version
1.1 06/08/04 Alistair Duke,

Marc
Richardson

UML Diagrams added

Table of Contents

1 INTRODUCTION...4

2 ARCHITECTURE..4

2.1 UML Class diagrams of the components...5
2.1.1 Browser ...5
2.1.2 Composition..7

2.2 Relationship to SWWS Technical Architecture ...8

3 DEMONSTRATOR DESCRIPTION ..10

4 NEXT STEPS..14

REFERENCES...15

BT Case Study Architecture Document

Deliverable ID:

Page : 4 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

1 Introduction
The BT Case Study is focusing upon a scenario where a designer must find and compose
Service components that will satisfy a particular process which in this case is problem
handling. In the scenario, a number of Service components exist. These are based around
OSS/J (Operational Support System through Java) initiative which attempts to standardize
interfaces for OSS. OSS/J has been used in the Case Study to provide a set of realistic
services at the correct level of granularity. The OSS/J interfaces have been wrapped as
WSDL Web Services and further described semantically using OWL-S.

OWL-S enables the Services to be described in three ways. Firstly, the Services are
categorized according to the eTOM Process Framework. eTom (enhanced Telecom
Operations Map) is an attempt by the TeleManagement Forum to enable OSS processes to
be described in a common way. Secondly, the Services are described according to their data
requirements. A simple data ontology has been created which describes the entities and
associated data elements. This ontology will be linked to the SID (Shared Information / Data
Model) which is the TMF’s data model. Thirdly, a process model for the scenario has been
created. This allows preconditions and postconditions to be attributed to the Services which
relate to the process model.

2 Architecture
The architecture for the case study in based upon BT’s Semantic Web Services Browser
which is a tool to aid in the discovery and composition of Web Services. The main
components of the Browser and their interactions are shown in the Figure 1.

Figure 1. SWS Browser Components

The SWS browser works with Web Services described in OWL-S and stored in a Sesame-
based [1] RDF repository. The browser uses a specific domain ontology of Web Services

BT Case Study Architecture Document

Deliverable ID:

Page : 5 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

Categories. The classes in the domain ontology define high-level categories for Web
Services. Each category allows a number of keywords to be associated with it. This enables
matching of Web Services based on keywords in their description. The browser also enables
a client to browse the ontology hierarchy and select a category. It will then search for and
display all services that are related to this. The client can then choose to execute this service
at which point the browser will prompt for any required input before invocation. If an
appropriate atomic service cannot be found, the user is able to combine several services in
order to perform the desired action.

Having selected one Service, the user can choose to base a composition around this. The
Browser offers the facility to combine Web Services so that the data output of one service
can be fed into the input of another, thus creating a new composite Web Service. Currently,
the Browser assumes that the data types of these inputs and outputs are the same. More
realistically, a mediation function would be required to convert between differing data types.
The Browser provides a graphical view of Web Service composition. The user is able to
select the input of a particular service and search for a related service that can provide the
required data. The Browser will search for services that have outputs that have been
described using the same ontological concept as that attributed to the input.

2.1 UML Class diagrams of the components
This Section outlines the classes associated with the Browser’s two main functions. Firstly
the initial browsing of the category tree and selection of the desired service, and secondly the
composition of this with further services, followed by the final invocation of the composed
service.

2.1.1 Browser
The Browser Component is the interface provided to the user that allows them to browse a
hierarchical tree of concepts or “categories” that can be associated with web services. In our
case study we use the eTOM process framework as a basis for this, but in other scenarios
this would be based on an ontology/taxonomy associated with the problem domain. The
category tree is stored as an OWL ontology in a sesame repository, and uses the subclass
relationship to derive a hierarchical tree.

The CategoryTreePane class (see Figure 2), accesses the sesame repository via the
sesameQueryManager to obtain the category tree which it then displays in a pane in the
Browser. Its main function then is to inform the BrowserPane class when a user selects a
specific category. The BrowserPane class is responsible for fetching and displaying
information on the Web Services stored in the repository. When a user selects a specific
category it will query the sesame repository via the sesameQueryManager to obtain all
services associated with that category. The Service class is used to store an internal
representation of the Web Service, from information obtained from the repository. Once
these services are displayed in the Browser, the use can select one and perform one of two
main functions that the user. These are to

x� directly invoke the service. This will present a form to allow inputs to be entered,
which are then passed to the InvocationManger (shown in Figure 4)

x� create a composition using the selected service as a starting point. This will launch
the composition component.

As well as Browsing the CategoryTree to find services, there are also two types of searches
than can be performed.

BT Case Study Architecture Document

Deliverable ID:

Page : 6 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

x� searchCatagory will search the category tree for matching keywords and display

associated services. As each category is an OWL class you can also associate a text
description with it, which will also be searched with this function.

x� searchFreeText will search the Web Service OWL-S profiles and return any services
with matching keywords

SesameQueryManager
- RqlQueryString : String
+ doQueryServiceProperty (serviceURI : service , property : String) : String
+ doQueryCategory (category : String) : List
+ doQueryService (serviceURI : String) : Service
+ doQuerySearchAll (query : String) : List
+ doQueryRQL (query : String) : String
+ doQueryAdd (URI : String) : void
+ doQueryDelete (URI : String) : void

Service
- Name : String
- Description : String
- URI : String
- PresentedService : String
- Address : String
- URINamespace : int
- URIName : int
- Inputs : List
- Outputs : List
- Preconditions : List
- degreeOfMatch : int
- boolMatch : int
+ New () : void
+ CalculateDegreeOfMatch (wanted : , actual :) : void

CategoryTreePane
- OntogyURL : int
- RootConcept : int
+ new () : void
+ BuildTree () : void
+ NodeClicked () : void

BrowserPane
- ServiceList : List
+ new () : void
+ DisplayServices (ServiceList : List) : void
+ InvokeService (service : service) : void
+ ComposeService (service : service) : void
+ AddService (serviceURI : String , category : String) : void
+ DeleteService (serviceURI : String) : void
+ SearchFreeText (query : String) : List
+ SearchCategory (category : String) : List

1..*

1..* 1..*

Figure 2. UML Class Diagram of Browser Component

The UML Sequence diagram in Figure 3 shows the sequence of operations involved with
initialising the browser and using it to select a service to compose.

BT Case Study Architecture Document

Deliverable ID:

Page : 7 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

 : BrowserPane : CategoryTreePane : SesameQueryManager
1.1 : New()

1.2 : BuildTree ()

1.2.1 : doQueryRQL(QueryString)

[While(hasMoreNodes=True)]

 : category

1.3 : doQueryCategory(Category)

1.4 : DisplayServices(ServiceList)

1.5 : ComposeService(Service)

1.2.3 : SearchCategory(Category)
1.2.2 : nodeClicked()

 : ServiceList

 : acknowledge

Figure 3. UML Sequence diagram of Simple Browser Operation

2.1.2 Composition
The composition component provides the facility to combine Web Services by identifying
semantically equivalent inputs and outputs of different services and allowing them to be
linked. This composition can then be invoked.

Figure 4 shows the classes involved with composition. The compostionGraph class is
responsible for storing the internal representation of the composition as a directed graph. The
model used for composition in the browser at present is simplistic allowing inputs and outputs
to be connected, with no specific process flow modelling.

Given a specific starting service the user then selects an input from the service. The
ServiceTable class will then use SesameQueryManager to find all services that have any
semantically equivalent outputs. This assumes that all inputs and outputs of services have
been linked to concepts in a common ontology. In our case study we used the SID data
model as our common data ontology. It then displays information about these services in a
table, allowing the user to select a service and add it to the composition. The matching
input/output will then be linked in the compostionGraph. If no services are found with a
matching output then there is the option to add input manually.

A composition can be invoked when all inputs are either fed from the output of another
service, or the user has selected the enter input manually. When this is the case the option is
presented to invoke the service. The CompositionManager is responsible for orchestrating
the invocation of the composition. The CompositionManager maintains a table of inputs and
outputs for each service, and handles the passing of outputs from one service to the inputs of
another. It follows a simple iterative process of analysing the list of services to see which is

BT Case Study Architecture Document

Deliverable ID:

Page : 8 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

ready to be invoked (i.e. has all the required inputs). It then passes this information to the
InvocationManger which actually invokes the concrete WSDL service, with the supplied
inputs. The InvocationManager then passes the outputs back to the CompostionManager,
which then updates its table of inputs and outputs and looks for the next ready service.
Eventually all the atomic services will be invoked and the invocation of the composed service
will be complete.

CompositionManager

-allServ ices:List

-allInputs:List

-allOutputs:List

-currentServ ice:serv ice

-currentInputs:List

-currentOutputs:List

+new(CompositionGraph:Jgraph):void

+getNextReady Serv ice():serv ice

+storeOutput(outputValues:List):void

+collectInputs(inputValues:List):void

+display Outputs():void

InvokationManager

-serv iceToInvoke:serv ice

-InputValues:List

-OutputValues :List

+new(serv iceToInvoke:serv ice,InputValues:List):void

+isAlive():Boolean

+invoke():List

ServiceTable

-serv iceTable:Jtable

-serv iceList:List

+getServ icesMatchingInput(input:String):List

+getServ icesMatchingOutput(output:String):List

CompositionGraph

-CompostionGraph:Jgraph

+AddServ ice(serv ice:serv ice,input:string,output:string):void

+LinkInputOutput(input:String,Output:String):void

+LinkOutputInput(output:string,Input:String):v oid

+AddUserInput(Input:String,Value:String):void

+isInv oakble():Boolean

1..*

1..*

SesameQueryManager

-RqlQueryString:String

+doQueryServ iceProperty(serv iceURI:serv ice,property:String):String

+doQueryCategory(category:String):List

+doQueryServ ice(serv iceURI:String):Serv ice

+doQuerySearchAll(query:String):List

+doQueryRQL(query :String):String

+doQueryAdd(URI:String):void

+doQueryDelete(URI:String):v oid

1..*

Figure 4. UML Class diagram of composition Component

The UML Sequence diagram in Figure 5 shows the sequence diagram of the operations
involved with creating a composition and invoking it.

2.2 Relationship to SWWS Technical Architecture
This section relates the Case Study demonstrator to the SWWS Technical Architecture [3].
Two forms of discovery are carried out in the demonstrator. The first is a browsing activity
where the user (in this case the designer) retains the discovery goal in their head rather than
formally stating it as is the case in the SWWS TA. The designer is able to make use of the
ontology of processes (i.e., the eTOM) in order to assist them in discovery. The second form
of discovery is during composition when the user makes a request to find services that are
related to a particular data input of a selected service. This form is more closely related to the
SWWS TA since a simple ontological query is constructed. Following this the TA considers
additional aspects such as matching based upon choreography and mediation that are not
addressed in the demonstrator.

The composition part of the demonstrator aligns with the Composer/Orchestration tool of the
TA in that it allows a simple workflow to be defined and then invoked.

BT Case Study Architecture Document

Deliverable ID:

Page : 9 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

 :CompositionGraph :Serv iceTable :SesameQueryManager :Inv okat ionManager :CompositionManager

1.1 : new(serv ice)

1.1.1: getServ icesMatchingInput(input)

1.1.1.1: doQuery RQL(matchingQuery)

 : serv iceList

1.2 : LinkInputToOutput(input, output)

1.3 : new(compost ionGraph)

1.3.1.1 : isAliv e()

 : Boolean

1.3.1.2: Inv oke()

 : Boolean

1.3.1.3 : StoreOutputs()

1.3.1: getNextReadyServ ice()

1.3.1.4 : DisplayOutputs()

[While(getNextReadyServ ice()!=NULL)]

1.2 : isInvokable()
[While(isInvokable()==False)]

 : Boolean

Figure 5. UML Sequence diagram of Composition

BT Case Study Architecture Document

Deliverable ID:

Page : 10 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

3 Demonstrator Description
The case study scenario has been described in Deliverable 12.2 [3]. This section will take a
part of the scenario and describe how this will be illustrated using the SWS Browser. Figure 6
shows a portion of the storyboard. In this portion, a network alarm is triggered by some
network hardware. This is detected by a message being sent to the Process Manager. The
Process Manager can be considered to be the element that maintains the state of the
process. It is aware of the state model (see Figure 24, D12.2) and conditions the must be
met in order to effect state transitions. These transitions result in messages being sent to
other appropriate entities. The Process Manager extracts the resourceID from the message
which identifies the problem hardware. It then contacts the Inventory Manager to determine
the (Telecoms) service that is affected and the customer(s) who are using the service.
Having gained this information, the Process Manager can request that a Trouble Ticket is
created on the Trouble Ticket system. Once this is done, the Process Manager is informed
and this part of scenario is complete (the subsequent step is that the Trouble Ticket is picked
up by a network adminstrator).

Process
Manager

Inventory
Manager

Trouble
Ticket

System

Network

1. Alarm triggered

2. Get customer
data

3. Customer data

4. Create trouble
ticket

5. Trouble ticket
created

Figure 6. Alarm is triggered and a Trouble Ticket is created

The following are Services that are used to create the composition:

Service: handleAlarm

Description: Receives alarm and provides the affected resourceID

Input(s): alarm

Output(s): resourceID

Service: getServiceFromResource

BT Case Study Architecture Document

Deliverable ID:

Page : 11 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

Description: Searches the Inventory for Services using a particular Resource

Input(s): resourceID

Output(s): serviceID

Service: getCustomerFromResource

Description: Searches the Inventory for Customers using a particular Resource

Input(s): resourceID

Output(s): customerID

Service: createTT

Description: Creates a blank Trouble Ticket

Input(s): none

Output(s): troubleTicketID

Service: populateTT

Description: Add details to a Trouble Ticket

Input(s): troubleTicketID, serviceID, resourceID, Description

Output(s): troubleTicketID, serviceID, resourceID, Description

The Inventory Manager Services are dummy components (based upon simple WSDL
wrapped Java Services) that return fixed customer and resource IDs regardless of the input
they receive. The Trouble Ticket services are backed up by an OSS/J reference
implementation, which is a system that creates unique IDs for trouble tickets and stores them
in a database together with the assigned details.

The OWL-S descriptions stored in the repository are of Atomic Web Services which attribute
the services to processes in the eTOM. These are then shown in the Browser when the
appropriate process is selected (see Figure 7).

BT Case Study Architecture Document

Deliverable ID:

Page : 12 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

Figure 7. Browsing the eTOM to find available Services.

The user can invoke the Services by selecting it from the Browser. They are then presented
with a web form where inputs can be entered. Following invocation with the inputs specified,
the user can view the output.

In the scenario, the designer chooses a service as a basis for their composition (currently this
must be the final service although it is hoped that a more flexible approach can be achieved).
The composer window then opens as shown in Figure 8. The selected Service is shown in
the window in the blue box. Its inputs are shown as red boxes while its output is a grey box.

BT Case Study Architecture Document

Deliverable ID:

Page : 13 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

Figure 8. Service in Composer window.

Further Services can then be added. Upon selecting an input, the repository is searched for
services that provide outputs that have been described, in OWL-S, with the same ontological
concept from the data ontology. The user can choose one of the matching Services which is
then added to the composition.

The competed composition for the scenario is shown in Figure 9.

Preconditions and postconditions have been applied to the service descriptions as described
in Deliverable 12.2 [3]. The browser does not currently interpret these. The aim is that that
during composition, the browser can assist the designer by highlighting appropriate
conditions which the designer can then use to improve their decision making. Ideally, these
conditions will be used during the discovery process to select Services that can, e.g., satisfy
a precondition over a selected input.

BT Case Study Architecture Document

Deliverable ID:

Page : 14 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

Figure 9. Result of Composition

4 Next Steps
There are a number of limitations to the Browser and some of these will be addressed in
ongoing work on the Case Study. Firstly, it only supports very simple control structure during
composition i.e. Services are invoked when the required inputs are present to invoke them.
There is no guarantee one service will be invoked before another, if the required input is
present for both services. This is in fact adequate for the Case Study scenario as is stands. A
more complex scenario would require further support. Secondly, there is no support for a
choice construct in the control flow. This would be required to allow error handling to be
added to the scenario. Thirdly, a very simple matching algorithm is used. Candidate services
are selected where they have data outputs described by the same concept as the input of the
following service and no mediation function can be added if required. Finally, it does not
support the evaluation of preconditions and postconditions when constructing a composed
service. At the very least, such conditions should be presented to the designer so they are
aware of them at design time.

The case study scenario is being used in a separate demonstrator which uses the SWWS
Studio developed by Ontotext. The OWL-S services described in this document are being
converted to WSMO services. The SWWS Studio will be used to further describe these

BT Case Study Architecture Document

Deliverable ID:

Page : 15 of 15

Version: 1.1
Date: 16/09/2004

Status: Proposal
Confid.: Public

services allowing them to be used by the Studio’s composer tool. This tool allows a more
robust orchestration to be carried out in that it allows further control constructs and will
support alignment of the data requirement of the services.

References
[1] Broekstra, J.; Kampman, A.; van Harmelen, F.(2002), Sesame: an architecture for storing

and querying RDF and RDF schema, Proc of the first International Semantic Web
Conference (ISWC2002), pp54-68, Sardinia, Italy, June 2002.

[2] Priest, C. (2004), SWWS Technical Architecture, SWWS Draft Deliverable, August 2004.

[3] Duke, A.; Richardson, M. (2004), VISP Case Study: Ontologies and Services, SWWS
Deliverable, March 2004

