

Title:
Report on Development of Web
Service Discovery Framework

Version: 1.0
Date: October 06, 2003
Pages: 30

Responsible Authors:
Boris Motik, FZI

Co-Author(s):
Andreas Abecker, FZI

Status: Confidentiality:

[
[
[
[

X

]
]
]
]

Draft
To be reviewed
Proposal
Final / Released to CEC

[
[

[

X

]
]

]

Public
INT

Restricted

- for public use
- for SWWS consortium (and Project Officer if requested)

- for SWWS consortium and Project Officer only

Project ID: IST-2002-37134

Deliverable ID: 3.1

Workpackage No: WP3

Title:

Report on Development of Web Service Discovery Framework

Summary / Contents:

This document describes the current status of the Web Service Discovery Framework. In
particular, it describes its functionality and initial architecture.

SWWS – Semantic Web Enabled Web Services

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 2 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

SWWS Consortium

This document is part of a research project funded by the IST Programme of the Commission
of the European Communities as project number IST-2002-37134. The partners in this
project are: Leopold-Franzens Universität Innsbruck (IFI, Austria)); National University of
Ireland, Galway (NUI, Galway, Ireland); Forschungszentrum Informatik (FZI, Germany);
Intelligent Software Components S.A. (iSOCO, Spain); OntoText Lab. - Sirma AI Ltd. (SAI,
Bulgaria); Hewlett Packard (HP, UK), British Telecom (BT, UK)

Leopold-Franzens Universität Innsbruck (IFI)

Institut für Informatik
Technikerstrasse 13
A-6020 Innsbruck Austria

Tel: +43 512 507 6489
Fax: +43 512 507 9872

Contact person: Juan Miguel Gomez
E-mail: juan.miguel@uibk.ac.at

National University of Ireland, Galway (NUI)

National University of Ireland,
University Road
Galway, Ireland

Tel: +353 91 750414
Fax: +353 91 562894

Contact person: Liam Caffrey
E-mail: Liam.Caffrey@nuigalway.ie

FZI – Forschungszentrum Informatik

Haid-und-Neu-Str. 10-14
76131 Karlsruhe, Germany

Tel: +49 721 9654816
Fax: +49 721 9654817
Contact person: Adreas Abecker
E-mail: abecker@fzi.de

Intelligent Software Components S.A. (iSOCO)

Francisco Delgado 11, 2nd Flor
28108 Alcobendas, Madrid, Spain

Tel: +34 913 349797
Fax: +34 913 349799

Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

OntoText Lab.- Sirma AI Ltd. (SAI)

OntoText Lab.
38A Chr. Botev Blvd.
Sofia 1000, Bulgaria

Tel: +35 92 9810018,
Fax: +35 92 9819058

Contact person: Atanas Kiryakov
E-mail: Atanas.Kiryakov@sirma.bg

Hewlett Packard (HP)

HP European Laboratories
Filton Road, Stoke Gifford
BS34 8QZ Bristol, UK

Tel: +44 117 3128631
Fax: +44 117 3129285

Contact person: Janet Bruten
E-mail: janet.bruten@hp.com

Associated Partner:
British Telecommunications plc. (BT)

Orion 5/12, Adastral Park
Ipswich ip5 3RE, UK

Tel: +44 1473 609583
Fax: +44 1473 609832

Contact person: John Davies
E-mail: john.nj.davies@bt.com

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 3 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

Table of Contents

1 Introduction ..6
2 Usage Scenario ..8

2.1 Types of actors...8
2.2 Locating services by human users ..8
2.3 Querying details about services...9
2.4 Service registration ..10
2.5 Automatic Service Registration..10

3 Service Modelling Ontology..12
3.1 Modelling services using ontologies ..12
3.2 Describing information at different levels of abstraction..14
3.3 Service modelling ontology structure...14
3.4 Domain ontology ..15
3.5 Business partner ontology ...15
3.6 Service capabilities ontology..16
3.7 Service modelling ontology ..17
3.8 Low-level description of services ...18

4 Query Interface...20
4.1 Approaches to Service Description Querying..20
4.2 Navigation as a Complement for Queries..20
4.3 Instance querying ...21
4.4 Template queries..23

5 Service Registry...25
6 Obtaining Service Description Semi-Automatically ..26

6.1 Obtaining descriptions from UDDI ...26
6.2 Obtaining descriptions from the Web...27

7 Conclusion..29
8 References..30

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 4 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

List of Figures

Figure 1. High-Level Tasks of Service Discovery Component.. 6

Figure 2. Structure of Ontologies Involved in Service Modelling .. 15
Figure 3. Business Partner Ontology... 16

Figure 4. Service Ontology Structure... 18

Figure 5. Result of an Example F-Logic Query ... 20

Figure 6. Service Registry Architecture ... 25

Figure 7. Correspondences among UDDI Model and Service Modelling Ontology 27

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 5 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

List of Acronyms and Abbreviations

Acronym/abbreviation Resolution

DAML+OIL … a semantic markup language for Web resources

http://www.daml.org/2001/03/daml+oil-index.html

KAON Karlsruhe Ontology and Semantic Web Tool Suite

http://kaon.semanticweb.org/

OWL Web Ontology Language

http://www.w3.org/TR/owl-ref/

RDF(S) Resource Description Framework (Schema)

http://www.w3.org/RDF/

RDFS-MT RDF Model Theory Semantics

http://www.w3.org/TR/rdf-mt/

UDDI Universal Description, Discovery and Integration of Web Services

http://uddi.org/

WSDL Web Service Description Language

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 6 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

1 Introduction
Service discovery component is of paramount importance to supporting semantic Web
services in practice. Adopting a parallel with the classical, non-semantic Web, the discovery
component is roughly similar in role and functionality to search engines, such as Google,
providing means for searching the information space. We explain the functionality of the
service discovery component on a very simple, but general example.

In order to enable service consumers to reuse a service, the service provider must first
describe his service using some formal language. This description should capture the
semantics of the service as closely as possible – this enables easier selection of the service
later by potential service users.

After the service description is ready, the service provider must store it in some public
repository. In such a way the service description is made persistent and made available for
the general public.

Some service consumer will query the persisted descriptions in order to locate the service
that may accomplish his task at hand. In order to obtain only those services that really fulfil
his task, he relies on the formal semantics in the description of the service. He issues a
query that formulates as close as possible his needs formally. The query is then matched
against the formal service descriptions and corresponding services are located.

This simple, yet effective example of the functionality of the service discovery component
within SWWS is presented schematically in Figure 1. The figure highlights the basic tasks
which are performed and are related to the discovery, from which we derive the following
subcomponents of the service discovery component:

• The Service Modelling Ontology provides a way of describing services in a formal
way. Its main role is to provide means for capturing the semantics of the service.

• The Service Registry is responsible for persisting and managing a large number of
service descriptions.

• The Query Interface provides a way for querying registered services.

Service Modelling
Ontology

Provider
WS

Service Registry

Query
Interface

Consumer

?

Figure 1. High-Level Tasks of Service Discovery Component

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 7 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

In order to have impact on the state-of-the-art of service description standards, the service
discovery component should not start from scratch and neglect existing standards. In
particular, the UDDI standard has become prominent in industry. It offers simple capabilities
for tagging services with keywords and associating them with information about the business
partners. Based on these observations, one goal of the service discovery component would
be to extend the UDDI model with semantics, rather than replace it with a new and
incompatible model.

Apart from the three main components mentioned in the above discussion, producing Web
service descriptions manually is a tedious and error-prone process. Hence, it makes sense to
investigate whether and how existing registries of Web service information, such as UDDI
registries, may be reused. In particular, a mechanism for enriching non-semantic service
descriptions with semantics is needed. In that light, we identify these two additional
components:

• The UDDI Integration Engine provides a way for extracting service descriptions from
existing UDDI repositories.

• The Profile Crawler provides a way for extracting service descriptions from the Web.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 8 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

2 Usage Scenario
In this section we present a more concrete usage scenario which will drive our architecture
design in the following section. The usage scenario is a rather typical B2B integration
problem.

Let us assume that there is some company A, which specializes in production of sports
utilities for adventure sports, such as climbing. Hence, it produces items such as ‘climbing
rope’ or ‘harness’. The goal of the company A is to participate in an electronic marketplace,
in hope of increasing its productivity through the automation potential arising from that. The
business activities that A participates in are typical in the manufacturing industry and include
taking an order, shipping the goods and collecting payment.

Let us assume that B is a big sports utilities store. B also wants to increase its productivity
and automate business processes as much as possible. Business activities that it
participates in include monitoring the stock, ordering items that are out of stock, receiving the
shipment, payment, and searching for new manufacturers.

In order to automate some of their business processes, both A and B create several Web
services, by means of which it is possible to conduct some of the business activities. There
are certainly some activities which cannot be automated in this way (e.g. shipping involves
human interaction). However, many activities, such as placing an order, payment processing
or locating the business partner of interest are prime candidates for automation using Web
services.

Since this document describes the service discovery architecture, we shall focus on
explaining the requirements related to service description and discovery. Since the basic
requirement on the service discovery component is locating services, we start with use cases
related to searching for services. Based on these, we derive the requirements on service
description. Although description must be done before searching, it seems reasonable to
expect that the requirements on locating the service will determine how the service must be
described in the first place.

2.1 Types of actors
In descriptions of use cases we use three types of actors:

• Service provider – this actor represents the entity or person which creates a service
and makes it available to others for usage. An example of a service provider is the
company A which produces sports utility equipment.

• Service consumer – this actor has a business need which might be satisfied by
using some web service. An example of a service consumer is the company B which
buys sports utility equipment from the providers. A subtype of this actor is the Human
service consumer.

• Registry manager – this actor is responsible for managing a service registry.

2.2 Locating services by human users

Actors: Human service consumer

Use case flow:

1. The actor formulates the query using the constructs of the query API.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 9 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

2. The actor submits the query to the service registry.

3. Service registry locates the services matching the conditions of the query.

4. Service registry returns the collection of located services to the actor.

Examples queries:

What are the services that sell pieces of climbing gear?

Where can I buy the climbing rope which is produced by the company
Mammut?

Where can I submit an order for 100 karabiners produced by the company
Petzl?

Which service can I use to check the status of my order?

Discussion:

A human will typically want to locate a service by specifying features that the
service must fulfil. This specification is usually not formal and does not contain
technical details on how the service should be invoked. Rather, the query
specifies in general terms what the service should accomplish. In the example,
the user is not interested in knowing the exact sequence of operations that must
be performed to submit an order or to check the order status. The details may
include supplying various parameters, such as details about the items ordered, or
about the order the status of which is being checked. These details are not
important in this use case. Rather, it is important to define the semantics of
various concepts common in business, such as the concept of buying, selling or
checking the order status. Further, it is important to define the semantics of the
domain vocabulary. Such queries are very important to be able to broadly
navigate through the space of offered services without getting lost.

2.3 Querying details about services

Actors: Service consumer

Use case flow:

1. The actor formulates the business goal that needs to be fulfilled.

2. The actor builds an execution plan which fulfils the plan.

3. The actor contacts the service registry to query for services which may fulfil
certain steps in the plan.

4. The registry responds with the collection of services that may fulfil the task.

5. The actor examines the result and if needed, continues with step 3.

Examples queries:

What information I need to check the order status?

What other things must I do to place an order for 100 karabiners?

What is the process of order fulfilment by the company offering this service?

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 10 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

Discussion:

The flow of this use case is similar to the flow of the use case “Locating services
by human users” as it is also concerned with querying the service registry.
However, queries and the context in which querying is performed, are radically
different.

The overall context is different since the actor is trying to build a plan for fulfilling
a goal. Therefore, the high-level information about the service is not sufficient.
Rather, information about which steps need to be performed in an interaction with
the service, as well as what parameters must be transferred in each step, must
be described. Hence, this use case reveals the need for a completely different
level of granularity of service description.

2.4 Service registration

Actors: Service provider

Use case flow:

1. The actor chooses appropriate vocabulary for service description.

2. The actor builds the service profile.

3. The actor submits the profile to the service registry.

4. The system registers a service.

5. The system provides a confirmation of the registration.

6. The actor makes the profile available on-line.

Discussion:

This use case reveals the need to manage the profiles of each service. Further, a
need for referring to a common vocabulary is needed.

2.5 Automatic Service Registration

Actors: Registry manager

Use case flow:

1. The actor specifies several entry points in the information space by giving the
addresses of pages describing interfaces of Web services.

2. The system obtains on-line profiles for the services.

3. The system enriches obtained information with semantics.

4. The system stores located profiles into the registry.

5. The system examines the available links that lead to other profiles.

6. The system repeats the step 2 starting from these links. The actual algorithm for
remain to be specified.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 11 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

Discussion:

This use case reveals a need to collect service profiles from on-line resources.
These resources may include e.g. WSDL pages describing interfaces of Web
services. Another type of information source may be a UDDI registry.

The exact mechanisms for adding semantics to the obtained descriptions remain
to be specified. The basic idea is to try to use a natural language processing and
information extraction techniques for aligning service interface descriptions
against a domain ontology.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 12 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

3 Service Modelling Ontology
Based on the requirements from the previous section, in this section we elaborate the
aspects of the service modelling ontology that we consider relevant for the service discovery
component. It is important to understand that defining such an ontology for the SWWS
project is not within the scope of the service discovery component. In particular, such an
ontology will be delivered in work package 2 in the context of the ongoing work on the Web
Service Modelling Framework, which will result in the deliverable D2.3. In this section we
merely focus on the aspects of the service modelling ontology which we identified as
important from the standpoint of service discovery. In that light, we harmonized the
terminology with the one used in deliverable 2.1 as much as possible. Still, there are some
differences in the terminology and conceptualization which will be resolved as the work on
creating the actual service modelling ontology progresses.

3.1 Modelling services using ontologies
As may be inferred from the name, we believe that services should be modelled using a
suitable ontology formalism. This has numerous advantages, from the standpoint of service
discovery:

• Ontologies provide a vocabulary for modelling knowledge in a limited domain. They
are created by achieving consensus within a community of interest. In such a way,
the community lays the foundations for seamless knowledge interchange.

• Ontology languages are usually equipped with formal semantics, typically founded in
mathematical formalisms, such as model theory or first-order logic. This in turn
unambiguously specifies the meaning of various constructs of the ontology language.
Based on these definitions, it is possible to infer new information from explicitly
present information.

• Common vocabulary and mathematical specification of semantics open the way to
automatic information processing. In such a way the information is not only
understood by humans, but may be (partially) understood by machines as well.

Since ontologies have proven themselves as useful for modelling semantics, we propose
modelling service descriptions as instances. This allows us to reap the benefits of the
ontology technology, such as inferencing, in the context of service discovery.

Many ontology formalisms have been developed, differing often in the choice of the
fundamental logical formalism. An overview of the major formalisms has been given in [1].
Many ontology languages (e.g. F-Logic) are rooted in Horn logic. This puts certain
boundaries on the expressivity of the language. For example, in Horn logic it is not possible
to reason about indefinite disjunctive statements (e.g. statements such as ‘this service is
offered by either company A or company B, but we are not really sure which’ cannot be
made in F-logic). Also, an important drawback of the whole class of languages is the Horn
logic is known not to be decidable. If a logic is undecidable, this means that a complete
algorithm for query answering in such a logic does not exist – either evaluation of some
queries will not terminate, or some queries will be evaluated partially. In the latter case this
means that the query evaluation algorithm in some cases does not return all correct answers
to a query and that there is no general way of estimating the effects of this incompleteness.

In light of these difficulties, OWL [4] has been recently proposed as the language of choice
for applications in the Semantic Web. OWL is actually a syntactical variant of the SHOIN(D+)

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 13 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

description logic. Description logics are a family of well-researched knowledge representation
formalisms. A common denominator of most description logics is the existence of a sound,
complete and decidable inference procedure. Hence, each query can always be answered
correctly. Further, the trade-offs between expressivity and computational complexity have
been studied for almost each class of the logic. The description logic that OWL is based
upon offers a significant degree of expressivity, including reasoning with negative and
disjunctive statements, as well as limited reasoning with equality. Further, OWL comes in
three flavours:

• OWL-Lite is a simplified language which has been created with the goal of being
implemented easily. In reality, the level of expressivity offered by OWL is still
relatively high and requires advanced implementation techniques.

• OWL-DL includes the full SHOIN(D+) description logic. Implementing it requires
advanced techniques, such as tableaux calculus.

• OWL-Full goes beyond SHOIN(D+) and blurs the distinction between classes and
instances. Whereas in OWL-DL (and OWL-Lite) some symbol is either a class or an
instance, in OWL-Full something can be a class and an instance at the same time.
However, this comes at the expense of a non-standard formal semantics, whose
consequences have not been studied in detail yet.

Since the activity in the SWWS project is closely related to the Semantic Web initiative, it is
quite natural to use OWL as the ontology formalism. However, there is a practical problem
related to this choice. Namely, at the time this document was written, the tool support for
OWL was quite limited. Existing tools can be separated into two classes:

• Inference engines for description logics, of which the most prominent example is
RACER. Such tools usually provide a sound and complete inference procedure for
(most of the features of) OWL. However, the performance of such tools is usually
quite limited, in particular in case of ontologies containing a large number of
instances.

• Tools evolved out of the RDFS initiative, of which examples are Jena and Protégé.
Such tools usually provide reasonable performance. However, they often support a
very limited subset of OWL-Lite, and the support for OWL-Lite is not at the maturity
level that is desired.

However, an alternative to OWL might be the language presented in [1] and implemented in
KAON1 – an ontology management system developed at FZI and AIFB at the University of
Karlsruhe. The ontology language of KAON has been designed with typical business
requirements in mind, such as persistence and scalability. Whereas the detailed discussion
of the language is out of scope, we just outline some main features of KAON.

Briefly, the ontology language is based on RDF(S) [2], but with clean separation of modelling
primitives from the ontology itself (thus avoiding the pitfalls of self-describing primitives such
as subClassOf), thus departing from RDFS-MT [3] semantics. Further, several commonly
used modelling primitives have been incorporated into the ontology model, such as transitive,
symmetric and inverse properties. In order to preserve tractability and enable ontology

1 http://kaon.semanticweb.org/

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 14 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

evolution in our approach, we treat property domain and range specifications as constraints,
not as axioms. We found this view to be intuitive and desired by most users having a strong
background in object-oriented and database technologies. A distinguishing feature of our
model is the explicit support for modelling meta-classes and explicit modelling of lexical
information. All information is organized in so-called OI-models (ontology-instance models),
containing both ontology entities (concepts and properties) and their instances2. This allows
grouping of concepts with their well-known instances into self-contained units.

We consider the question of which ontology language to use and which tools can support the
chosen language not definitely answered by the SWWS consortium. These choices have a
moderate impact on the service discovery component. The most of material presented in this
document tries to be agnostic of the ontology language and/or the tool platform.

3.2 Describing information at different levels of abstraction
As already contrasted in use cases “Locating services by human users” and “Querying
details about services”, we anticipate that services will be queried with different goals in
mind, therefore requiring different levels of abstraction:

• One should be able to describe the high-level capabilities of the service. This
includes saying what the service does in broad terms, rather than how the service
does it.

• One should be able to describe the low-level capabilities of the service. This includes
specifying exactly the actions that the service may perform along with the
parameters needed for the action.

The support for these two levels of abstraction must be reflected in the service modelling
ontology. In a way, the low-level description of the service depends on the high-level
description. Because of that, we consider defining the higher level of abstraction more
important for the SWWS project and the service discovery component.

3.3 Service modelling ontology structure
In this section we present the next level of details related to the structure of the service
modelling ontology, as required by the service discovery component. We have identified the
need for the following type of information:

• Domain ontology – A domain ontology provides the general vocabulary about things
from the business domain in which services are used. In the scenario from section 2,
the domain ontology would define terms such as ‘climbing gear’, ‘rope’ and ‘harness’.

• Business partner information – Obviously, information about who is offering a
service is very important for the service discovery. It is easy to imagine a use case
where an important criterion for locating a service is the name of the business partner
offering a service. This information is generally canonical; however, it might also
contain links to the domain ontology. For example, description of the company A may
reflect the fact that this company produces ‘climbing gear’.

• Service capabilities – A central criterion for locating services is what the service
really does, i.e., what the capabilities of the service are. In order to express this, a

2 In the rest of this paper we use the terms OI-model and ontology interchangeably.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 15 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

taxonomy of standard capabilities is needed. From the point of service discovery, it
should define the meaning of general concepts such as ‘buying’, ‘selling’ etc. This
taxonomy may capabilities at different levels of granularity. In fact, it should get
specific enough and define the meaning of ancillary information needed to really
perform the action and (e.g., to sell a book, the service will need a payment method)
and specifies what is obtained by performing an action (e.g., after the book is sold,
the service sends the buyer an invoice).

In order to keep the service modelling ontology modular and maintainable, it is necessary to
build it modularly. In particular, we propose to build a separate ontology for each area of
concern (domain ontology, business partner information and service capabilities) and to
integrate them in one service modelling ontology. As discussed in [5], a good approach is to
keep each ontology autonomous and rely on inclusion facilities of the underlying ontology
management platform to link the ontologies at run-time. Hence, Figure 2 shows a way how
these ontologies might be assembled, where the lines represent the inclusion dependencies.

3.4 Domain ontology
As already explained, the role of the domain ontology is to provide the vocabulary for a
business domain. A lot of work has been devoted to creating and managing ontologies, and
this work is immediately applicable to service discovery.

For example, in [5] an infrastructure for managing domain ontologies in a distributed setting
was discussed. In particular, the work addresses the problem of reusing ontologies in
situations when they are developed by multiple institutions which are distributed on the web.
The proposed approach solves the problem of reusing distributed ontologies by replicating
the included ontology to the node where the ontology is included. Replication introduces the
problem of keeping the replicated ontology in synchrony with the original ontology – if the
original ontology changes, these changes must be propagated to all replicas on the Web.
The proposed approach deals with this situation by keeping an evolution log for each
ontology, containing information about each change performed. This log may be used to
replay changes to each replica on demand. We see this approach being immediately
applicable to service discovery component of the SWWS project.

3.5 Business partner ontology
The role of the business ontology is to capture information about business partners actually
providing services. The possible design of this ontology is presented in Figure 3. In the rest

Legend: A B ontology A includes ontology B

Domain
Ontology

Service Capabilities
Ontology

Business Partner
Ontology

Service Modelling
Ontology

Figure 2. Structure of Ontologies Involved in Service Modelling

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 16 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

of this subsection we briefly discuss the various parts of this ontology.

The business partner ontology follows the ‘Party’ analysis pattern presented in [6]. This
pattern is based on the observation that entities involved in business may be individuals, but
are often also groups of individuals. Hence, a general ‘Party’ term is brought into the object
model which is then partitioned into groups and individuals. Groups are represented as
consisting of several ‘Parties’. In such way hierarchical organisational structure may be
represented. In our case, the ‘Party’ analysis pattern is applied as follows:

• The concept ‘Business Partner’ represents the general notion of a business partner,
regardless of whether it is a single entity or a group.

• The concept ‘Group’ represents a group of business partners. Members of a group
are represented using has-members transitive property.

• Various types of individual business partners are represented as subconcepts of the
‘Business Partner’ concept. We did not include an intermediate subconcept capturing
individual partners, since from our requirements for the time being this need is not
clear and we wanted to keep the ontology as simple as possible.

Other information is canonical:

• Each business partner has some name.

• Each business partner has a contact address.

In case of a ‘Group’, one may specify a separate address for the group as a whole. In later
stages of the project we plan to include a mechanism for designating the address of one
group member as the main address of the group.

3.6 Service capabilities ontology
The role of the service capabilities ontology is to define the taxonomy and the structure of
common capabilities that recur in business scenario, such as buying and selling. It is
important to understand that the role of this ontology is not to define the semantics of each
individual operation of the Web service. Rather, the goal to define the functionality offered by
the Web service in an abstract way using the traditional business vocabulary.

In order to be interoperable in the context of the semantic Web, the taxonomy of capabilities
is obviously needed. Only by reusing capabilities from a catalogue of common capabilities,

Figure 3. Business Partner Ontology

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 17 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

we see it possible to locate services in a semantically meaningful way. Hence, it makes
sense to investigate existing similar taxonomies/catalogues and to evaluate the reuse
potential.

One such existing catalogue of common business activities is the MIT Process Handbook3,
which is being built within the Center for Coordination Science4 by the MIT Sloan School of
Economics. The goal of the Process Handbook is to provide a repository of the structure of
typical business processes. For example, the Process Handbook defines the following five
top-level business activities:

• Buy,

• Make,

• Sell,

• Design and

• Manage a business.

Almost all business processes involve one or many of these fundamental activities.

Further, the Handbook contains a repository of more coarse business models which are
organized around these activities. For example, ‘Produce as a business’ is the most high-
level business model, under which many other models are defined. An example of a concrete
business model is ‘Produce as a Creator’. In this model a certain business partner obtains
‘Raw Materials’ from ‘Suppliers’, transforms them into a ‘Product’ and sells them to the
‘Buyer’.

Since the Process Handbook defines the basic business activities, it makes sense to reuse
as much as possible of it for defining a common vocabulary of capabilities. The main hurdle
in accomplishing this task is the fact that the Process Handbook is not presented in a format
compatible with any of the ontology language standards. Therefore, it cannot be readily
reused for service discovery. Rather, an effort must be invested in selecting the relevant part
and then transforming it into the ontology format.

3.7 Service modelling ontology
The service modelling ontology is the point for where all information about a service is
merged. It provides the vocabulary needed for describing services and linking them to
capabilities, business partners and objects in the domain ontology.

Our proposed structure of the ontology is presented in Figure 4. The central concept in the
ontology is the ‘Service’ concept, representing one Web service. Each service is named by
means of the ‘service-name’ attribute. Services are associated with a business partner by
means of the ‘provided-by’ property. Normally, the service modelling ontology should provide
a way to link services with the respective groundings. However, since this information is not
crucial to service discovery, we do not further elaborate this topic.

3 http://ccs.mit.edu/ph/

4 http://ccs.mit.edu/

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 18 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

As already explained, instead of focusing on the operations that services provide, each
‘Service’ may be associated with a capability through the ‘has-capability’ property. Thus the
semantics of the service may be described in terms of a well-known vocabulary.

3.8 Low-level description of services
As already mentioned, our current focus was to provide means for high-level description of
the semantics of services. However, we are aware that the specification of semantics of low-
level service operations is also very important in practice. In particular, it is indispensable for
(semi-)automatic service composition – in order to join several services with the goal of
solving a task at hand, the exact information required and provided by the service to perform
its task.

WSDL standard provides a starting-point for this task. In its current version 1.2, it provides
means of defining abstract service interfaces as a set of operations. Each operation may
involve different types of abstract messages, representing input and output parameters of the
operation. These abstract operations are linked to a concrete protocol through the notion of
protocol binding. This is very similar to the separation between the ASN.1 (Abstract Syntax
Notation One) and transfer syntax developed within the OSI reference network model.

Before discussing what in our opinion is needed in WSDL to describe semantics in more
detail, we consider an analogy between service composition and a well-known monkey and
banana planning problem (presented e.g. in [8]). By examining this analogy, we hope to elicit
additional requirements on the specification of semantics of Web services.

The problem presents a monkey which is closed in a room with a banana hanging from the
ceiling. The room is filled with various objects. The monkey can move objects around or
climb on top of them. The problem is to devise a sequence of monkey’s actions which will
enable him to reach the banana.

Since search for the solution is the fundamental technique for solving complex problems in
artificial intelligence, it makes sense to formulate the presented problem as a search
problem. In particular, the search space consists of all possible states of the world, with
different objects being in different positions. Transitions among elements of the search space

Figure 4. Service Ontology Structure

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 19 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

are done by actions which move different objects around. The sequence of transitions
represents an action plan. The goal of the search is to discover an action plan leading to the
state of the world where the monkey has gotten hold of the banana. From this solution we
may identify two important components of all planning problems:

• A description of inputs and outputs of service operations are needed.

• A description of the state of the world is needed.

• A description of how this state is changed by individual actions is needed.

Automatic service composition is very closely related to planning: one wants to discover a
sequence of actions (a plan) leading to the completion of some goal. In fact, service compo-
sition is closely related to automatic program construction which has been investigated e.g.
in [7]. Automatic program construction is in fact an instance of a planning problem: the goal is
to discover the sequence of program instructions that will for all input problems modify the
state of variables in the correct way to generate desired output.

Even for simple problems, it has turned out that describing the state of the world is a very
difficult task. There are simply too many variables that need to be taken into account. Also,
the search space grows usually very large. We conjecture that this will also be the case for
Web services, where the state of the world will need to include numerous business variables
of all different partners.

From this analysis we conclude that much more effort is needed in providing a flexible
framework for representing the effects of operations of Web services. One possible direction
which we are investigating is extending WSDL operation specification by preconditions and
postconditions.

A precondition is a logical formula which must evaluate to true before the service is being
called. For example, before an order may be placed, each item in the order must be in stock.

A postcondition is a logical formula which must evaluate to true after the service has been
called. For example, after an order has been placed, the order confirmation is created and
sent to the customer.

In particular, the postconditions often describe the effects of an operation or a service in
terms of the change between the state of the world before and after the service call.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 20 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

4 Query Interface
The role of the query interface is to provide primitives for answering queries over service
descriptions. It is functionally implemented by the service registry. It is beneficial to
conceptualize it separately – the primitives and the expressivity of the query interface may
and should be analysed independently of the implementation.

The discovery query interface is largely defined by the query facility of the underlying
ontology management infrastructure. In this section be only briefly outline its structure.

4.1 Approaches to Service Description Querying
We base our approach for service description querying on the observation that a query can
be seen as a function which, when applied to a data model, instantiates some results. It is
beneficial if the source and target models of queries are the same. In such way, queries can
be composed functionally, giving the user a considerable degree of freedom.

In the case of relational data model and relational algebra, this condition is fully satisfied, as
the source and target models of algebra queries are both relational models, thus allowing the
user to combine queries arbitrarily (e.g. through nesting). On the other hand, the relational
model does not directly represent the semantics of modelled information and is thus not
applicable to ontology modelling.

In other cases, e.g. in F-Logic [9], the source model of queries is the ontology model, but the
target model is a list of variable bindings for which the query is satisfied in the model. We see
several drawbacks to this approach. For one, F-Logic queries cannot be composed
functionally, resulting in a more complex query language. Further, F-Logic queries destroy
the semantics of the information. For example, the query selecting all services and their
capabilities, formulated as FORALL S,C <- S:Service[has-capability ->> C], will
produce a result as given in Figure 5.

We may observe that WS2 has written business actions it can perform, but the query result
reflects this fact by repeating the value WS2 multiple times for S. The explicit information that
there is an n:m relationship between services and capabilities has been lost in the query
process, and is now available only by analyzing the intent of the query. This relationship may
be reconstructed from the query result by collecting all values of C for which S is the same.
In our view this makes the interpretation of the query external to the query itself, which does
not follow the general desire to represent the semantics of information directly.

4.2 Navigation as a Complement for Queries
To remedy the deficiencies mentioned above, we propose a dual solution. The capability of
querying for collections of objects is complemented with the possibility of navigating within

S C

WS1 Buying

WS2 Buying

WS2 Selling

Figure 5. Result of an Example F-Logic Query

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 21 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

the model. Hence, our query language offers two fundamental primitives:

• Instance querying – This primitive provides the means of selecting a set of
instances from the ontology matching some specified condition.

• Ontology navigation – This primitive provides the means of following links between
ontology entities in order to retrieve necessary information.

Hence, the query for all services and their capabilities would be executed in two stages:

• Using the instance querying primitive, the set of all services would be retrieved.

• For each element of the query answer, the navigation primitive would be used to
traverse the “has-capability” link.

One may think of it in this way: instance querying primitive provides entry points, while
retrieval of all ancillary information to each entry point is obtained through the navigational
primitive.

However, there is a significant performance drawback in the specified approach. If there are
n documents, then there will be 2*n+1 query requests issued (one for retrieving all
documents and the two queries per document), which will clearly be a major cause of
performance problems. Further, the order in which the information is retrieved is predefined
by the order in which the navigational primitives are issued. This prevents the usage of
various query optimization strategies that are considered to be the key factor for the success
of relational database systems. There seems to be a mismatch between the desire to
retrieve as much information as needed on one side (to reduce communication overhead and
to allow for optimizations) and to retrieve information using navigation on the underlying
model (in order not to destroy the model’s semantics).

To avoid such problems, we apply the following approach. Our queries can still be treated as
concepts and return individuals or individual pairs at most. However, with each main query
we allow specifying several additional queries. There queries are not part of the query result,
but they are used as hints specifying which information is needed as well. Then a query
unnesting technique is applied to transform the set of these queries into one large query
retrieving all necessary information. Such a query can be efficiently executed. After the
results are fetched, the query nesting is applied, which transforms the result into the original
nested structure. For example, the query from the subsection 4.1 might be executed with the
following pseudo-code, where query primitives are marked in bold:

services := get all services
for each s from services
 caps := get values of has-capability for s
 for each c from caps
 // so something with c
 end
end

4.3 Instance querying
In this section we present in more detail our approach for instance querying. An important
aspect of a query language for service description is ease of use. Our design of the query
language is therefore guided mainly by that requirement.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 22 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

Most existing query languages allow navigation in the data model by using variables for
expressing complex conditions over the data model. Although not immediately apparent, this
feature underlies even the most prominent database query language SQL. For example, in a
schema with service descriptions stored in the Services table and their capabilities stored
in the Capabilities table, one might select all services and their capabilities in the
following way:

SELECT S.Name,C.Name
 FROM Services S,Capabilities C
 WHERE S.Name=C.ServiceName

Although not immediately apparent, names S.Name, C.Name and alike are actually
variables. In a Prolog notation, this query would be written as

Q(S,C) :- Services(S),Capabilities(S,C)

Whereas such approaches to querying are quite flexible and provide a significant degree of
expressivity, they are also quite complicated to understand. Even experts often have
problems with tracking the conditions on various variables.

On the other hand, the description logics provide a more limited, but still quite powerful
approach to information querying that is based on easily understood set operations. Queries
in description logics are built using well-known operations of union, intersection and
complement. Apart from that, there are numerous set constructors that allow asking for sets
of instances fulfilling certain conditions. Let us demonstrate this on an example. The
business partner ontology might contain concepts Buyer and Seller denoting all business
partners who are buyers or sellers, respectively. However, some business partners may be
buyers and sellers at the same time, so it is reasonable to pose a query for both of them.
This might be done in the following way:

[#Buyer] AND [#Seller]

The above query should be read in the following way: “The result of the query is the set of
things which is obtained as intersection of all buyers and sellers”. The Prolog version of the
query is

Q(X) :- Buyer(X),Seller(X)

Whereas this does not seem to be significantly more complicated than the previous query,
the query is usually interpreted in a more complicated way: one needs to deal conceptually
with the fact that both predicates use the same variable X and to understand that the result of
the query are those values of X for which, when the query is instantiated (that is, when X is
replaced with the value), the query evaluates to true. In our opinion it is much simpler to
conceptually comprehend the notion of set intersection than the notion of instantiation of the
query for some values of variables.

Another, more complicated example is a query selecting all services whose capability is
related to selling. In this example we assume that there is a concept Service linked to a
capability through the property has-capability to a concept Capability. Further, we
assume that Selling is a subcapability of the Capability concept. Such a query might
easily be expressed as follows:

[#Service] AND SOME(<#has-capability>,[#Selling])

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 23 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

The query should be interpreted like this: “The result of the query is the set of things obtained
by intersecting the set of all Services and the set of things that are linked through has-
capability property to an instance of the Selling concept”. In the interpretation of the query the
only additional thing that must be conceptualized is the notion of a set of things which are
linked to an instance of some other concept.

However, the Prolog query looks like this:

Q(X) :- Service(X),has-capability(X,Y),Selling(Y)

Again, to interpret this query correctly, it is necessary to conceptually follow the links of
variables among various predicates.

An even more dramatic example is selecting services whose only capabilities are related to
selling. This might be done in the following way:

[#Service] AND ALL(<#has-capability>,[#Selling])

The only difference to the previous example lies in the fact that the set ALL(<#has-
capability>,[#Selling]) should be interpreted as the set of things for which has-
capability property points always to an instance of the Selling concept. However,
expressing such a query in the Prolog style is significantly more involved and requires using
negation-as-failure:

NotOnlySelling(X) :- has-capability(X,Y),not Selling(Y)
Q(X) :- Service(X),not NotOnlySelling(X)

In this case one must use double negation: the NotOnlySelling predicate contains all
things linked through to has-capability property to an instance which is not an instance
of the Selling concept. Then one selects all services which are not in the
NotOnlySelling predicate. This is obviously much more involved than the simple set
notation that we propose.

4.4 Template queries
The structure of the queries will significantly depend on the structure of the service
description ontology. Hence, querying at the ontology layer directly might be too complicated.
Rather, plain ontology queries might be lifted to a higher level of abstraction. Further, we
anticipate that many service queries will share some common structure. Building such
queries from scratch will typically be very tedious, so a way for modularizing common queries
is needed.

In order to address these deficiencies, we propose to include a special template mechanism
over the ontology query language into the query interface of the service discovery
component. This template mechanism would allow defining new query primitives which
would express commonly used queries. The mechanism should be modular and extensible,
so that it can be adapted to the needs of the application at hand. In the rest of this subsection
we describe what such a template mechanism will look like.

It is realistic to expect that many queries will refer to services with the Selling capability. To
simplify the process of querying, a template for selling services might be defined as

SELLING-SERVICE() =
 [#Service] AND SOME(<#has-capability>,[#Selling])

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 24 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

Further, some templates might be parameterized. For example, querying for a service
offered by a specific business partner may be simplified through the following template:

SERVICE-BY-PARTNER(bp) =
 [#Service] AND SOME(<#provided-by>=bp)

In this case, now querying for selling services provided by FZI may be done by this simple
query:

SELLING-SERVICE() AND SERVICE-BY-PARTNER(!#FZI!)

The query above hides the complexity of navigating in the service description ontology and is
therefore much more suitable for usage by the end users. The service discovery component
will take care of expanding this abbreviation into

[#Service]
 AND SOME(<#has-capability>,[#Selling])
 AND SOME(<#provided-by>=!#FZI!)

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 25 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

5 Service Registry
The fundamental function of the service discovery component is to locate services through
appropriate query interface. It is obvious that, to accomplish this task, a registry of service
descriptions is needed. However, querying for services is not the only task of such a registry
– for example, persistence and description management are other activities that must be
taken case of by such a registry.

In the SWWS project such a registry will be delivered as deliverable 5.1, which will take care
of all of the functionality required. However, since service discovery in invariably linked with
the functionality of such a registry, in this section we explain the requirements on the registry
from the service discovery point of view. In order to keep the discussion complete, we also
present a possible architecture of such a registry.

A one possible such architecture is presented in Figure 6. The important component of the
registry is to provide a higher-level API for management of service descriptions. In this way,
the users of the registry do not operate on the ontology level (and manipulate individual
instances), but work on a higher level (and manipulate service descriptions). Internally,
though, the service registry is realized on top of some ontology server, which provides
features such as persistence or ontology querying and inference.

The service modelling ontology, whose requirements have been stated in Section 3 and
which is a significant part of the service discovery is stored in the ontology server subsystem.
Further, all individual service descriptions are stored as instances of the service description
ontology and are also managed by the ontology server.

The query interface of the service discovery component, as described in the Section 4, is
obviously an integral part of the service registry. Hence, a significant amount of coordination
related to technical details of how the query interface is physically embedded into the registry
will be needed among the partners.

Other two service discovery components, namely the Service Crawler and the UDDI
Integration Engine will be realized on top of the registry and will rely on the registry API for
management of service descriptions. The actual role of these two components is explained in
subsequent sections.

 Service Registry

UDDI
Ont.

Server

Service
Profiles

UDDI
Integration

Engine

Profile
Crawler WWW

Q
u

er
y

In
te

rf
ac

e

Registry API

User

Figure 6. Service Registry Architecture

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 26 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

6 Obtaining Service Description Semi-Automatically
In this section we explain in more detail two subcomponents of service discovery, namely,
the UDDI Integration Engine and the Profile Crawler. These two components have the task of
filling the service registry with service descriptions (semi-)automatically.

6.1 Obtaining descriptions from UDDI
In this subsection we investigate in more detail the integration of the discovery component
with existing UDDI systems. In particular, we explain the role and the function of the UDDI
Integration Engine from the Figure 6.

Since the way of describing services as proposed by the SWWS project will be non-standard,
it is unrealistic to expect that many services will actually be described using the presented
framework any time soon. Hence, the project faces the risk of not having enough data to
realistically validate the approach. Irrespective of that, we believe it makes sense to examine
whether existing repositories of service descriptions can be reused in some way as starting
points for providing semantic descriptions according to the project goals. Therefore, we
identified a need for a subcomponent called UDDI Integration Engine.

The main task of the UDDI integration engine is to reuse descriptions from existing UDDI
repositories and to enrich them with semantic information. It is clear that this goal cannot be
achieved in a way that will be hundred percent satisfactory, as it would require artificial
intelligence techniques which are beyond current technology state-of-the-art. In the sequel
we analyse the possibilities for integration at different levels.

As explained in Section 3, the design of the service modelling ontology should be compatible
by existing standard such as UDDI. Hence, some information from the UDDI registry might
be relatively easily mapped to the service modelling ontology. Figure 7 highlights which
structural parts of the UDDI model might correspond to different parts of the service
modelling ontology. The left side of the figure presents the UDDI data model. It basically
consists of three major components:

• White Pages – contains information about business partners,

• Yellow Pages – contains information about services offered by various partners,

• Green Pages – contains technical information about services.

White and Green pages can be matched to the service modelling ontology in a canonical
way – White Pages information may easily be converted to the format represented by the
business partner ontology, whereas Green Pages can be matched to service grounding
information (not currently the scope of the service discovery component). Also, White, Yellow
and Green pages are all related to the domain ontology.

The most difficult part of the integration is the Yellow Pages information, which is in UDDI
based on the UNSPC classification of possible business activities. These actions correspond
to some extent to service capabilities in the service modelling ontology. However, the
semantic discrepancies are significant.

Further, the White Pages do not contain information related to preconditions and
postconditions, describing the capabilities at the higher level. Hence, we expect that
discovery of such services will be impaired.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 27 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

Whereas the exact ways of attacking this problem are unclear as of yet, we will investigate
the following options:

• It might be possible to develop translation schemes for certain classes of UNSPC
classifications. These translation schemes will, of course, be highly domain-specific.
However, it seems that developing some translation patterns is possible. These
patterns would provide typical parts of service descriptions then could then be
combined heuristically to enrich UDDI registrations with semantics.

• One might try to analyze the semantics of the WSDL specification of the service’s
interface. This analysis is obviously a very hard problem. However, some heuristics,
e.g. based on analyzing the lexical properties of elements in the specification,
complemented by matching them against a background domain ontology, might
provide a partial solution to the problem.

• The process of enriching UDDI service descriptions might be semi-automatic. That is,
after initial descriptions are imported into the service registry, the user might manually
provide the missing elements of the description, possibly by interpreting the WSDL
service definition.

6.2 Obtaining descriptions from the Web
Apart from existing UDDI repositories, the Web may serve as the source for Web service
descriptions. It is the tack of the Profile Crawler subcomponent to collect these profiles from
the Web and store them into the registry.

One mode of operation for the Profile Crawler is to collect existing service descriptions by
collecting descriptions published on the Web. In this case, the descriptions are already in the
adequate format. Hence, the task of the Profile Crawler is relatively simple, as it simply
needs to follow the links among Web pages and extract existing descriptions from them.

 Service Modelling Ontology UDDI Model

White Pages

Business Partner
Information

Yellow Pages

Service
Information

Green Pages

Technical
Information

Domain Ontology

Service Capability
Ontology

Business Partner
Ontology

Service Modelling
Ontology

Figure 7. Correspondences among UDDI Model and Service Modelling Ontology

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 28 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

A more advanced mode of operation is obtaining service descriptions by introspecting the
interface of the service. In this case the crawler is not provided with an existing, valid
description, but tries to extract the description from available information. In particular, we
consider the WSDL interface definition as the possible source of information.

For the second case, one may observe that the task of the Profile Crawler is very similar to
the task of the UDDI Integration Engine. Hence, the mechanisms for extracting service
descriptions will be shared among these two components. Because of that, technically, both
components might be realized as one common software module. Still, we introduced both
components separately in Figure 6 in order to stipulate that there is some inherent difference
among these two components.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 29 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

7 Conclusion
This document presents use cases for the service discovery component within the SWWS
project. On that basis, the document presents the current state of component’s architecture.
The presentation concentrates on discussing three important architectural elements: service
modelling ontology, query interface, the service registry.

This document presented the requirements on the Web service modelling ontology, which
provide the formal framework for describing services. A factor we consider important for the
service discovery is some degree of compatibility with existing standards, notably UDDI and
WSDL. The proposal for the service modelling ontology design makes reasonable efforts to
maintain compatibility with either of them.

Further, this document presented the query interface by means of which discovery is actually
performed. This interface provides a powerful language for querying service descriptions and
is based on an existing ontology query language.

The query interface will be realized within the service registry, which is the focus of the
deliverable 5.1. This document presents the requirements and a possible architecture for that
registry. In particular, it tries to highlight the requirements that discovery poses for the
registry.

The Web service composition provides an approach for (semi-)automatic composition of
Web services into agents solving complex problems. The relationship with composition has
been briefly analysed in section 3.8. The focus of our current work was on high-level
description of Web services, which is not so relevant to composition. However, as mentioned
in section 3.8, specifying services at the level of detail which will enable service composition
should be the major focus of our future work.

Next steps for accomplishing the SWWS discovery component can be characterized as
follows:

• Finalize the service modelling ontology by taking into account the principles outlined
in this document.

• Realize the prototype for service discovery.

• Provide a pre- and postcondition language, sufficiently expressive to meet case study
requirements, yet being processable for service discovery in a tractable manner.

Report on Development of Web Service Discovery
Framework

Deliverable ID: 3.1

Page : 30 of 30

Version: 1.0
Date: October 06 2003

Status: Final
Confid.: Public

8 References
1. B. Motik, A. Maedche and R. Volz: A Conceptual Modeling Approach for building

semantics-driven enterprise applications. Proceedings of the First International
Conference on Ontologies, Databases and Application of Semantics (ODBASE-2002),
Springer, LNAI, California, USA, 2002

2. O. Lassila, R. R. Swick: Resource Description Framework (RDF) Model and Syntax
Specification. http://www.w3.org/TR/REC-rdf-syntax/

3. P. Hayes: RDF Model Theory. http://www.w3.org/TR/rdf-mt/

4. P. F. Patel-Schneider and P. Hayes and I. Horrocks and F. van Harmelen: Web
Ontology Language (OWL) Abstract Syntax and Semantics.
http://www.w3.org/TR/owl-semantics/

5. A. Maedche and B. Motik and L. Stojanovic and R. Studer and R. Volz: An
Infrastructure for Searching, Reusing and Evolving Distributed Ontologies, WWW
2003, May 20-24, 2003, Budapest, Hungary

6. M. Fowler: Analysis Patterns: Reusable Object Models, Addison-Wesley, 1996, ISBN:
0201895420

7. C.L. Chang and R.C. Lee: Symbolic Logic and Mechanical Theorem Proving,
Academic Press Inc., New York, 1973, ISBN: 0121703509

8. G. F. Luger and W. A. Stubblefield: Artificial Intelligence: Structures and Strategies for
Complex Problem Solving, 3rd edition, Addison-Wesley, 1997, ISBN: 0805311963

9. M. Kifer and G. Lausen and J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages, Journal of the ACM, vol. 42, pp. 741–843, July, 1995

