
Hands On: C/C++ Programming and
Unix Application Design:

UNIX System Calls and Subroutines using C,
Motif, C++

c© A. D. Marshall 1998/9

ii

Contents

1 The Common Desktop Environment 1
1.1 The front panel . 1
1.2 The file manager . 3
1.3 The application manager . 3
1.4 The session manager . 4
1.5 Other CDE desktop tools . 4
1.6 Application development tools 5
1.7 Application integration . 5
1.8 Windows and the Window Manager 6
1.9 The Root Menu . 10
1.10 Exercises . 12

2 C/C++ Program Compilation 13
2.1 Creating, Compiling and Running Your Program 13

2.1.1 Creating the program 13
2.1.2 Compilation . 14
2.1.3 Running the program 15

2.2 The C Compilation Model . 15
2.2.1 The Preprocessor . 15
2.2.2 C Compiler . 17
2.2.3 Assembler . 17
2.2.4 Link Editor . 17
2.2.5 Some Useful Compiler Options 17
2.2.6 Using Libraries . 18
2.2.7 UNIX Library Functions 19
2.2.8 Finding Information about Library Functions 19

2.3 Lint — A C program verifier 20
2.4 Exercises . 21

iii

iv CONTENTS

3 C Basics 23

3.1 History of C . 23

3.2 Characteristics of C . 24

3.3 C Program Structure . 26

3.4 Variables . 28

3.4.1 Defining Global Variables 29

3.4.2 Printing Out and Inputting Variables 31

3.5 Constants . 31

3.6 Arithmetic Operations . 32

3.7 Comparison Operators . 33

3.8 Logical Operators . 34

3.9 Order of Precedence . 34

3.10 Exercises . 36

4 Conditionals 39

4.1 The if statement . 39

4.2 The ? operator . 40

4.3 The switch statement . 41

4.4 Exercises . 43

5 Looping and Iteration 45

5.1 The for statement . 45

5.2 The while statement . 46

5.3 The do-while statement . 48

5.4 break and continue . 49

5.5 Exercises . 49

6 Arrays and Strings 55

6.1 Single and Multi-dimensional Arrays 55

6.2 Strings . 56

6.3 Exercises . 57

7 Functions 59

7.1 void functions . 60

7.2 Functions and Arrays . 60

7.3 Function Prototyping . 61

7.4 Exercises . 63

CONTENTS v

8 Further Data Types 69
8.1 Structures . 69

8.1.1 Defining New Data Types 70
8.2 Unions . 71
8.3 Coercion or Type-Casting . 73
8.4 Enumerated Types . 74
8.5 Static Variables . 75
8.6 Exercises . 76

9 Pointers 77
9.1 What is a Pointer? . 77
9.2 Pointer and Functions . 81
9.3 Pointers and Arrays . 83
9.4 Arrays of Pointers . 85
9.5 Multidimensional arrays and pointers 86
9.6 Static Initialisation of Pointer Arrays 89
9.7 Pointers and Structures . 89
9.8 Common Pointer Pitfalls . 90

9.8.1 Not assigning a pointer to memory address before using it 90
9.8.2 Illegal indirection . 91

9.9 Exercise . 92

10 Dynamic Memory Allocation and Dynamic Structures 93
10.1 Malloc, Sizeof, and Free . 93
10.2 Calloc and Realloc . 95
10.3 Linked Lists . 96
10.4 Full Program: queue.c . 96
10.5 Exercises . 100

11 Advanced Pointer Topics 103
11.1 Pointers to Pointers . 103
11.2 Command line input . 105
11.3 Pointers to a Function . 106
11.4 Exercises . 108

12 Low Level Operators and Bit Fields 111
12.1 Bitwise Operators . 111
12.2 Bit Fields . 113

vi CONTENTS

12.2.1 Bit Fields: Practical Example 114
12.2.2 A note of caution: Portability 116

12.3 Exercises . 116

13 The C Preprocessor 119
13.1 #define . 120
13.2 #undef . 121
13.3 #include . 121
13.4 #if — Conditional inclusion 121
13.5 Preprocessor Compiler Control 122
13.6 Other Preprocessor Commands 123
13.7 Exercises . 124

14 C, UNIX and Standard Libraries 125
14.1 Advantages of using UNIX with C 125
14.2 Using UNIX System Calls and Library Functions 126

15 Integer Functions, Random Number, String Conversion, Search-
ing and Sorting: <stdlib.h> 129
15.1 Arithmetic Functions . 129
15.2 Random Numbers . 131
15.3 String Conversion . 133
15.4 Searching and Sorting . 134
15.5 Exercises . 135

16 Mathematics: <math.h> 137
16.1 Math Functions . 137
16.2 Math Constants . 138

17 Input and Output (I/O):stdio.h 141
17.1 Reporting Errors . 141

17.1.1 perror() . 141
17.1.2 errno . 142
17.1.3 exit() . 142

17.2 Streams . 142
17.2.1 Predefined Streams . 143

17.3 Basic I/O . 144
17.4 Formatted I/O . 145

CONTENTS vii

17.4.1 Printf . 145
17.5 scanf . 147
17.6 Files . 147

17.6.1 Reading and writing files 148
17.7 sprintf and sscanf . 149

17.7.1 Stream Status Enquiries 150
17.8 Low Level I/O . 150
17.9 Exercises . 152

18 String Handling: <string.h> 155
18.1 Basic String Handling Functions 155

18.1.1 String Searching . 157
18.2 Character conversions and testing: ctype.h 159
18.3 Memory Operations: <memory.h> 159
18.4 Exercises . 160

19 File Access and Directory System Calls 163
19.1 Directory handling functions: <unistd.h> 163

19.1.1 Scanning and Sorting Directories:<sys/types.h>,<sys/dir.h>164
19.2 File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h . 167

19.2.1 File Access . 167
19.2.2 File Status . 168
19.2.3 File Manipulation:stdio.h, unistd.h 169
19.2.4 Creating Temporary FIles:<stdio.h> 170

19.3 Exercises . 170

20 Time Functions 173
20.1 Basic time functions . 173
20.2 Example time applications . 174

20.2.1 Example 1: Time (in seconds) to perform some com-
putation . 175

20.2.2 Example 2: Set a random number seed 175
20.3 Exercises . 176

21 Process Control: <stdlib.h>,<unistd.h> 177
21.1 Running UNIX Commands from C 177
21.2 execl() . 178
21.3 fork() . 179

viii CONTENTS

21.4 wait() . 180
21.5 exit() . 180
21.6 Exerises . 184

22 Interprocess Communication (IPC), Pipes 185
22.1 Piping in a C program: <stdio.h> 185
22.2 popen() — Formatted Piping 186
22.3 pipe() — Low level Piping 186
22.4 Exercises . 192

23 IPC:Interrupts and Signals: <signal.h> 193
23.1 Sending Signals — kill(), raise() 194
23.2 Signal Handling — signal() 195
23.3 sig talk.c — complete example program 197
23.4 Other signal functions . 199

24 IPC:Message Queues:<sys/msg.h> 201
24.1 Initialising the Message Queue 203
24.2 IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>204
24.3 Controlling message queues 205
24.4 Sending and Receiving Messages 206
24.5 POSIX Messages: <mqueue.h> 208
24.6 Example: Sending messages between two processes 209

24.6.1 message send.c — creating and sending to a simple
message queue . 209

24.6.2 message rec.c — receiving the above message 211
24.7 Some further example message queue programs 213

24.7.1 msgget.c: Simple Program to illustrate msget() . . . 213
24.7.2 msgctl.cSample Program to Illustrate msgctl() . . . 215
24.7.3 msgop.c: Sample Program to Illustrate msgsnd() and

msgrcv() . 219
24.8 Exercises . 224

25 IPC:Semaphores 227
25.1 Initializing a Semaphore Set 228
25.2 Controlling Semaphores . 229
25.3 Semaphore Operations . 231
25.4 POSIX Semaphores: <semaphore.h> 234

CONTENTS ix

25.5 semaphore.c: Illustration of simple semaphore passing 234
25.6 Some further example semaphore programs 240

25.6.1 semget.c: Illustrate the semget() function 240
25.6.2 semctl.c: Illustrate the semctl() function 241
25.6.3 semop() Sample Program to Illustrate semop() 248

25.7 Exercises . 253

26 IPC:Shared Memory 255
26.1 Accessing a Shared Memory Segment 256

26.1.1 Controlling a Shared Memory Segment 257
26.2 Attaching and Detaching a Shared Memory Segment 258
26.3 Example two processes comunicating via shared memory:shm server.c,

shm client.c . 260
26.3.1 shm server.c . 260
26.3.2 shm client.c . 262

26.4 POSIX Shared Memory . 263
26.5 Mapped memory . 263

26.5.1 Address Spaces and Mapping 264
26.5.2 Coherence . 265
26.5.3 Creating and Using Mappings 265
26.5.4 Other Memory Control Functions 266

26.6 Some further example shared memory programs 267
26.6.1 shmget.c:Sample Program to Illustrate shmget() . . . 268
26.6.2 shmctl.c: Sample Program to Illustrate shmctl() . . 270
26.6.3 shmop.c: Sample Program to Illustrate shmat() and

shmdt() . 274
26.7 Exercises . 280

27 IPC:Sockets 281
27.1 Socket Creation and Naming 282
27.2 Connecting Stream Sockets . 283
27.3 Stream Data Transfer and Closing 284
27.4 Datagram sockets . 284
27.5 Socket Options . 285
27.6 Example Socket Programs:socket server.c,socket client . 285

27.6.1 socket server.c . 285
27.6.2 socket client.c . 288

27.7 Exercises . 291

x CONTENTS

28 Threads: Basic Theory and Libraries 293

28.1 Processes and Threads . 293

28.1.1 Benefits of Threads vs Processes 294

28.1.2 Multithreading vs. Single threading 295

28.1.3 Some Example applications of threads 296

28.2 Thread Levels . 297

28.2.1 User-Level Threads (ULT) 297

28.2.2 Kernel-Level Threads (KLT) 299

28.2.3 Combined ULT/KLT Approaches 299

28.3 Threads libraries . 300

28.4 The POSIX Threads Library:libpthread, <pthread.h> . . . 301

28.4.1 Creating a (Default) Thread 301

28.4.2 Wait for Thread Termination 302

28.4.3 A Simple Threads Example 303

28.4.4 Detaching a Thread . 304

28.4.5 Create a Key for Thread-Specific Data 305

28.4.6 Delete the Thread-Specific Data Key 306

28.4.7 Set the Thread-Specific Data Key 306

28.4.8 Get the Thread-Specific Data Key 307

28.4.9 Global and Private Thread-Specific Data Example . . . 308

28.4.10Getting the Thread Identifiers 310

28.4.11Comparing Thread IDs 311

28.4.12 Initializing Threads . 311

28.4.13Yield Thread Execution 311

28.4.14Set the Thread Priority 312

28.4.15Get the Thread Priority 312

28.4.16Send a Signal to a Thread 313

28.4.17Access the Signal Mask of the Calling Thread 313

28.4.18Terminate a Thread 314

28.5 Solaris Threads: <thread.h> 315

28.5.1 Unique Solaris Threads Functions 316

28.5.2 Similar Solaris Threads Functions 322

28.6 Compiling a Multithreaded Application 328

28.6.1 Preparing for Compilation 329

28.6.2 Debugging a Multithreaded Program 330

CONTENTS xi

29 Further Threads Programming:Thread Attributes (POSIX)333
29.1 Attributes . 333
29.2 Initializing Thread Attributes 335
29.3 Destroying Thread Attributes 337
29.4 Thread’s Detach State . 337
29.5 Thread’s Set Scope . 339
29.6 Thread Scheduling Policy . 340

29.6.1 Thread Inherited Scheduling Policy 341
29.6.2 Set Scheduling Parameters 342

29.7 Thread Stack Size . 343
29.7.1 Building Your Own Thread Stack 344

30 Further Threads Programming:Synchronization 347
30.1 Mutual Exclusion Locks . 348

30.1.1 Initializing a Mutex Attribute Object 348
30.1.2 Destroying a Mutex Attribute Object 349
30.1.3 The Scope of a Mutex 350
30.1.4 Initializing a Mutex . 351
30.1.5 Locking a Mutex . 352
30.1.6 Destroying a Mutex . 354
30.1.7 Mutex Lock Code Examples 354
30.1.8 Nested Locking with a Singly Linked List 357
30.1.9 Solaris Mutex Locks 358

30.2 Condition Variable Attributes 359
30.2.1 Initializing a Condition Variable Attribute 360
30.2.2 Destoying a Condition Variable Attribute 361
30.2.3 The Scope of a Condition Variable 361
30.2.4 Initializing a Condition Variable 362
30.2.5 Block on a Condition Variable 363
30.2.6 Destroying a Condition Variable State 368
30.2.7 Solaris Condition Variables 369

30.3 Threads and Semaphores . 370
30.3.1 POSIX Semaphores . 370
30.3.2 Basic Solaris Semaphore Functions 370

31 Thread programming examples 371
31.1 Using thr create() and thr join() 371
31.2 Arrays . 377

xii CONTENTS

31.3 Deadlock . 380
31.4 Signal Handler . 382
31.5 Interprocess Synchronization 387
31.6 The Producer / Consumer Problem 390
31.7 A Socket Server . 395
31.8 Using Many Threads . 399
31.9 Real-time Thread Example . 402
31.10POSIX Cancellation . 404
31.11Software Race Condition . 409
31.12Tgrep: Threadeds version of UNIX grep 410
31.13Multithreaded Quicksort . 449

32 Remote Procedure Calls (RPC) 459
32.1 What Is RPC . 459
32.2 How RPC Works . 459
32.3 RPC Application Development 461

32.3.1 Defining the Protocol 462
32.3.2 Defining Client and Server Application Code 462
32.3.3 Compliling and running the application 463

32.4 Overview of Interface Routines 464
32.4.1 Simplified Level Routine Function 464
32.4.2 Top Level Routines . 464

32.5 Intermediate Level Routines 465
32.5.1 Expert Level Routines 465
32.5.2 Bottom Level Routines 465

32.6 The Programmer’s Interface to RPC 466
32.6.1 Simplified Interface . 466
32.6.2 Passing Arbitrary Data Types 471
32.6.3 Developing High Level RPC Applications 474
32.6.4 Sharing the data . 477

32.7 Exercise . 480

33 Protocol Compiling and Lower Level RPC Programming 481
33.1 What is rpcgen . 481
33.2 An rpcgen Tutorial . 482

33.2.1 Converting Local Procedures to Remote Procedures . . 482
33.3 Passing Complex Data Structures 490
33.4 Preprocessing Directives . 497

CONTENTS xiii

33.4.1 cpp Directives . 498
33.4.2 Compile-Time Flags 499
33.4.3 Client and Server Templates 499
33.4.4 Example rpcgen compile options/templates 499

33.5 Recommended Reading . 500
33.6 Exercises . 500

34 Writing Larger Programs 503
34.1 Header files . 503
34.2 External variables and functions 507

34.2.1 Scope of externals . 507
34.3 Advantages of Using Several Files 509
34.4 How to Divide a Program between Several Files 509
34.5 Organisation of Data in each File 510
34.6 The Make Utility . 511
34.7 Make Programming . 512
34.8 Creating a makefile . 513
34.9 Make macros . 515
34.10Running Make . 516

35 Introduction to X/Motif Programming 519
35.1 Why Learn X Window and Motif? 519
35.2 How to use this book . 520

35.2.1 About this book . 520
35.2.2 Conventions used . 521

35.3 Graphical User Interfaces (GUIs) 521
35.3.1 Why Use GUIs? . 522
35.3.2 Designing GUIs . 523

35.4 History of X/Motif . 523
35.4.1 Communication before X 524
35.4.2 The Motif/Open Look War 525
35.4.3 Versions of Motif . 526

35.5 Culture . 527
35.5.1 Operating Systems . 527
35.5.2 The Common Desktop Environment (CDE) 528
35.5.3 C/C++ programming 530

35.6 Religion . 531
35.6.1 OSF, X Consortium, Open Group 531

xiv CONTENTS

35.6.2 Motif and COSE . 532

35.6.3 Motif Style Guide . 532

36 The X Window System Environment 535

36.1 What is the X Window system? 535

36.1.1 X Window Principles 535

36.2 The Window Manager . 536

37 The X Window Programming Model 539

37.1 X System Concepts and Definitions 539

37.1.1 Clients and Servers . 539

37.2 The X Programming Model 540

37.2.1 Xlib . 541

37.2.2 Xt Intrinsics . 542

37.2.3 The Motif Toolkit . 542

37.3 Currency . 542

37.3.1 Widget Classes and Hierarchies 543

37.3.2 Motif Style — GUI Design 543

38 A First Motif Program 545

38.1 What will our program do? 545

38.2 What will we learn from this program? 546

38.3 The push.c program . 547

38.4 Calling Motif, Xt and Xlib functions 548

38.4.1 Header Files . 548

38.5 Compiling Motif Programs . 548

38.6 Basic Motif Programming Principles 549

38.6.1 Initialising the toolkit 550

38.6.2 Widget Creation . 551

38.7 Managing Widgets . 552

38.8 Events and Callback Functions 552

38.8.1 Principles of Event Handling 552

38.8.2 Translation tables . 553

38.8.3 Adding callbacks . 554

38.8.4 Declaring callback functions 554

38.9 Finishing off — displaying widgets and event loops 555

38.10Exercises . 556

CONTENTS xv

39 Widget Basics 557
39.1 Widget Classes . 557

39.1.1 Shell Widgets . 558
39.1.2 Constraint Widgets . 559
39.1.3 Construction widgets 559

39.2 Primitive Widgets . 560
39.3 Gadgets . 564
39.4 Manager Widgets . 566

39.4.1 Motif 2.0 Widgets . 570
39.5 Widget Resources . 572
39.6 Strings in Motif . 573
39.7 Exercises . 574

40 Widget Resources 577
40.1 Overriding Resource Defaults 577
40.2 User Resource (.Xdefaults) File 579
40.3 Class Resource File . 581
40.4 Command Line Parameters 581
40.5 The Resource Manager Database 583
40.6 Hard-coding Resources Within a Program 585

40.6.1 Dynamic control of resources 585
40.6.2 Setting resources at creation 586

40.7 Fallback Resources . 587

41 Combining Widgets 589
41.1 Arranging and Positioning Widgets 589
41.2 The RowColumn Widget . 590
41.3 Forms . 593

41.3.1 Simple Attachment —form1.c 593
41.3.2 Attach positions — form2.c 596
41.3.3 Opposite attachment — form3.c 599
41.3.4 A more complete form program — arrows.c 603

42 The MainWindow Widget and Menus 609
42.1 The MainWindow widget . 611
42.2 The MenuBar . 611

42.2.1 A simple MenuBar . 612
42.2.2 PullDown Menus . 615

xvi CONTENTS

42.2.3 Tear-off menus . 624

42.3 Other MainWindow children 624

43 Dialog Widgets 631

43.1 What are Dialogs? . 631

43.2 Basic Dialog Management . 632

43.3 The WarningDialog . 633

43.4 The InformationDialog Widget 635

43.5 The dialog1.c program . 635

43.6 Error, Working and Question Dialogs 639

43.7 Unwanted Dialog Buttons . 639

43.8 The PromptDialog Widget . 641

43.8.1 The prompt.c program 643

43.9 Selection and FileSelection Dialogs 650

43.9.1 The file select.c program 652

43.10User Defined Dialogs . 658

43.11Exercises . 658

44 Text Widgets 659

44.1 Text Widget Creation . 660

44.2 Putting text into a Text Widget 660

44.3 Example Text Program - text.c 661

44.4 Editing Text . 665

44.5 Scrolling Control . 667

44.6 Text Callbacks . 667

44.7 Editing and Scrolling in Practice 668

44.8 Exercises . 669

45 List Widgets 671

45.1 List basics . 672

45.1.1 List selection modes 672

45.1.2 Adding and removing list items 673

45.2 Selecting and Deselecting items 674

45.2.1 List Enquiry . 674

45.3 List Callbacks . 675

45.4 The list.c program . 676

CONTENTS xvii

46 The Scale Widget 681

46.1 Scale basics . 681

46.2 Scale Callbacks . 682

46.3 The scale.c program . 683

46.4 Scale Style . 684

46.4.1 Motif 1.2 Style . 684

46.4.2 The Motif 2.0 Style . 685

47 ScrolledWindow and ScrollBar Widgets 687

47.1 ScrolledWindow Widgets . 688

47.2 ScrollBar Widgets . 688

48 Toggle Widgets 691

48.1 Toggle Basics . 691

48.2 Toggle Callbacks . 693

48.3 The toggle.c program . 693

48.4 Grouping Toggles . 695

49 Xlib and Motif 697

49.1 Xlib Basics . 698

49.2 Graphics Contexts . 700

49.3 Two Dimensional Graphics . 701

49.4 Pixmaps . 702

49.5 Fonts . 705

49.6 XEvents . 706

49.6.1 XEvent Types . 706

49.6.2 Writing Your Own Event Handler 707

50 The DrawingArea Widget 711

50.1 Creating a DrawingArea Widget 711

50.2 DrawingArea Resources and Callbacks 711

50.3 Using DrawingAreas in Practice 712

50.3.1 Basic Drawing — draw.c 712

50.3.2 draw input1.c — Input to a DrawingArea 721

50.3.3 Drawing to a pixmap — draw input2.c 733

50.4 Exercises . 743

xviii CONTENTS

51 Colour 745
51.1 Why is colour so complex? . 745
51.2 Colour Basics . 746
51.3 Displaying Colour . 746

51.3.1 Colourmaps . 747
51.4 Colour in X/Motif . 747

51.4.1 Colour Database . 748
51.4.2 Explicit Colour Coding 748
51.4.3 The Colour.c program 749

52 Motif Style 757
52.1 The Motif Style Guide . 758
52.2 Menu Style . 758
52.3 Dialog Widgets . 761
52.4 Drag and Drop . 762
52.5 Interaction . 762
52.6 International Markets . 764

53 On to C++ 767
53.1 Function Prototypes Are Required 767
53.2 Getting C Code to Run under C++ 768

53.2.1 Automatic Type Conversion 768
53.2.2 Scope Issues . 768

53.3 New Features of C++ . 770
53.3.1 Comment block markers 770
53.3.2 The iostream . 771
53.3.3 iostream and Objects 776
53.3.4 Default Argument Initializers 776
53.3.5 Reference Variables . 777
53.3.6 Function Name Overloading 781
53.3.7 The new and delete Operators 785
53.3.8 The Scope Resolution Operator, :: 788
53.3.9 Inline Functions . 790

54 Object Oriented Programming 793
54.1 Objects . 793
54.2 Encapsulating Data and Functions 796
54.3 Creating an Object . 797

CONTENTS xix

54.3.1 The Current Object 798
54.3.2 The This Object Pointer 799

54.4 Destroying an Object . 800
54.5 Member Functions . 800

54.5.1 The Constructor Function 801
54.5.2 The Destructor Function 803

54.6 Access Priveleges . 805
54.7 employee.cpp, source code . 807
54.8 Friends . 809

54.8.1 Three Types of Friends 810
54.8.2 A Friendly Example 812

55 Inheritance, Derived Functions, Virtual Functions 817
55.1 Inheritance . 817
55.2 Access and Inheritance . 819
55.3 A Class Derivation Example 820
55.4 Derivation, Constructors and Destructors 824

55.4.1 The Derivation Chain 824
55.4.2 A Derivation Chain Example 825

55.5 Base Classes and Constructors with Parameters 829
55.6 Overriding Member Function 834

55.6.1 Creating a Virtual Function 835
55.6.2 A Virtual Function Example 836

55.7 Exercises . 840

56 Operator Overloading 841
56.1 Overiding Built-in Operators 841

56.1.1 Calling an Operator Overloading Function 843
56.1.2 Operator Overloading Using a Member Function 843
56.1.3 Multiple Overloading Functions 844
56.1.4 An Operator Overloading Example 845

56.2 A Few Overload Restrictions 850
56.3 Mutiple Overloaded Operations 852

56.3.1 Overloading an Overloading Function 853
56.3.2 menu.cpp:An Overloader Overloading Example 854

56.4 Some Special Cases . 859
56.4.1 Overloading new and delete 859
56.4.2 Overloading () . 862

xx CONTENTS

56.4.3 Overloading [] . 865

56.4.4 Overloading − > . 868

56.4.5 Overloading = . 872

57 The iostream 879

57.1 The Character-Based Interface 879

57.1.1 The iostream Classes 880

57.1.2 The istream and ostream classes 880

57.2 Some Useful Utilities . 886

57.3 Reading Data from a File . 887

57.3.1 The iostream State Bits 888

57.4 Writing Data to a File . 892

57.5 read(), write(), and Others 893

57.6 Customizing the iostream . 894

57.6.1 An >> and << Overloading Example 895

57.6.2 Formatting Your Output 899

57.6.3 A Formatting Example,formatter.cpp 901

57.6.4 More Flags and Methods 904

57.7 Manipulators . 905

57.8 The istrstream and ostrstream 906

57.9 Templates . 909

57.9.1 The Need for Templates 909

57.9.2 Defining Templates . 910

57.9.3 Function Templates . 912

58 Multiple Inheritance 915

58.1 What is Multiple Inheritance? 915

58.2 A Multiple Inheritance Example, multInherit.cpp 917

58.3 Resolving Ambiguities . 923

58.4 Multiple Roots . 924

58.4.1 A Multiple-Root Example, nonVirtual.cpp 924

58.4.2 The Virtual Base Class Alternative 927

58.4.3 A Virtual Base Class Example, virtual.cpp 929

59 Wrappers 933

59.1 Wrapping Up a C libraray . 933

59.2 Standard C Header Files . 935

CONTENTS xxi

60 Threads and C++ 937
60.1 Matrix Multiplication . 937

61 Further Reading, Information and References 949
61.1 C References . 949

61.1.1 Basic C and UNIX . 949
61.1.2 Threads and Remote Procedure Calls 950
61.1.3 Internet Resources on C 950

61.2 Motif/X Window Programming 951
61.2.1 Motif/CDE/X Books 951
61.2.2 Motif distribution . 953
61.2.3 WWW and Ftp Access 953
61.2.4 Valuable Information Resources 954

61.3 C++ . 956

A C Compiler Options and the GNU C++ compiler 957
A.1 Common Compiler Options 957
A.2 GCC - The GNU C/C++ Compiler 960

A.2.1 Introduction to GCC 960
A.2.2 Languages compiled by GCC 960
A.2.3 Portability and Optimization 961
A.2.4 GNU CC Distribution Policy 962
A.2.5 Compile C, C++, or Objective C 962
A.2.6 GNU CC Command Options 963

A.3 Extensions to the C Language Family 1008

Chapter 1

The Common Desktop
Environment

In order to use Solaris and most other Unix Systems you will need to be
familiar with the Common Desktop Environment (CDE). Before embarking
on learning C with briefly introduce the main features of the CDE.

Most major Unix vendors now provide the CDE as standard. Conse-
quently, most users of the X Window system will now be exposed to the
CDE. Indeed, continuing trends in the development of Motif and CDE will
probably lead to a convergence of these technologies in the near future. This
section highlights the key features of the CDE from a Users perspective.

Upon login, the user is presented with the CDE Desktop (Fig. 1.1). The
desktop includes a front panel (Fig. 1.2), multiple virtual workspaces, and
window management. CDE supports the running of applications from a file
manager, from an application manager and from the front panel. Each of
the subcomponents of the desktop are described below.

1.1 The front panel

The front panel (Fig. 1.2) contains a set of icons and popup menus (more like
roll-up menus) that appear at the bottom of the screen, by default (Fig. 1.1).
The front panel contains the most regularly used applications and tools for
managing the workspace. Users can drag-and-drop application icons from
the file manager or application manager to the popups for addition of the
application(s) to the associated menu. The user can also manipulate the

1

2 CHAPTER 1. THE COMMON DESKTOP ENVIRONMENT

Figure 1.1: Sample CDE Desktop

Trash

Help

Desktop
Applications

Style
Manager

Printer
Manager

Exit
Button

Virtual
Workspace
Selection

Front Panel
Lock

Mail

Personal
Applications

Desktop
Manager

Calender

Clock

1.2. THE FILE MANAGER 3

default actions and icons for the popups. The front panel can be locked so
that users can’t change it. A user can configure several virtual workspaces —
each with different backgrounds and colors if desired. Each workspace can
have any number of applications running in it. An application can be set to
appear in one, more than one, or all workspaces simultaneously.

Figure 1.2: The CDE Front Panel

1.2 The file manager

CDE includes a standard file manager. The functionality is similar to that of
the Microsoft Windows, Macintosh, or Sun Open Look file manager. Users
can directly manipulate icons associated with UNIX files, drag-and-drop
them, and launch associated applications.

1.3 The application manager

The user interaction with the application manager is similar to the file man-
ager except that is is intended to be a list of executable modules available to
a particular user. The user launches the application manager from an icon in
the front panel. Users are notified when a new application is available on a

4 CHAPTER 1. THE COMMON DESKTOP ENVIRONMENT

server by additions (or deletions) to the list of icons in the application man-
ager window. Programs and icons can be installed and pushed out to other
workstations as an integral part of the installation process. The list of work-
stations that new software is installed on is configurable. The application
manager comes preconfigured to include several utilities and programs.

1.4 The session manager

The session manager is responsible for the start up and shut down of a user
session. In the CDE, applications that are made CDE aware are warned via
an X Event when the X session is closing down. The application responds
by returning a string that can be used by the session manager at the user’s
next login to restart the application. CDE can remember two sessions per
user. One is the current session, where a snapshot of the currently running
applications is saved. These applications can be automatically restarted at
the user’s next login. The other is the default login, which is analogous to
starting an X session in the Motif window manager. The user can choose
which of the two sessions to use at the next login.

1.5 Other CDE desktop tools

CDE 1.0 includes a set of applications that enable users to become productive
immediately. Many of these are available directly from the front panel, others
from the desktop or personal application managers. Common and productive
desktop tools include:

Mail Tool — Used to compose, view, and manage electronic mail through
a GUI. Allows the inclusion of attachments and communications with
other applications through the messaging system.

Calendar Manager — Used to manage, schedule, and view appointments,
create calendars, and interact with the Mail Tool.

Editor — A text editor with common functionality including data transfer
with other applications via the clipboard, drag and drop, and primary
and quick transfer.

Terminal Emulator — An xterm terminal emulator.

1.6. APPLICATION DEVELOPMENT TOOLS 5

Calculator — A standard calculator with scientific, financial, and logical
modes.

Print Manager — A graphical print job manager for the scheduling and
management of print jobs on any available printer.

Help System — A context-sensitive graphical help system based on Stan-
dard Generalized Markup Language (SGML).

Style Manager — A graphical interface that allows a user to interactively
set their preferences, such as colors, backdrops, and fonts, for a session.

Icon Editor — This application is a fairly full featured graphical icon (pixmap)
editor.

1.6 Application development tools

CDE includes two components for application development. The first is a
shell command language interpreter that has built-in commands for most X
Window system and CDE functions. The interpreter is based on ksh93 (The
Korn Shell), and should provide anyone familiar with shell scripts the ability
to develop X, Motif, and CDE applications.

To support interactive user interface development, developers can use
the Motif Application Builder. This is a GUI front end for building Motif
applications that generates C source code. The source code is then compiled
and linked with the X and Motif libraries to produce the executable binary.

1.7 Application integration

CDE provides a number of tools to ease integration. The overall model of the
CDE session is intended to allow a straightforward integration for virtually all
types of applications. Motif and other X toolkit applications usually require
little integration.

The task of integrating in-house and third party applications into a desk-
top, often the most difficult aspect of a desktop installation, is simplified by
CDE. The power and advantage of CDE functionality can be realized in most
cases without recompiling applications.

6 CHAPTER 1. THE COMMON DESKTOP ENVIRONMENT

For example, Open Look applications can be integrated through the use
of scripts that perform front-end execution of the application and scripts that
perform pre- and post-session processing.

After the initial task of integrating applications so that they fit within
session management, further integration can be done to increase their overall
common look-and-feel with the rest of the desktop and to take advantage of
the full range of CDE functionality. Tools that ease this aspect of integration
include an Icon Editor used to create colour and monochrome icons. Images
can be copied from the desktop into an icon, or they can be drawn freehand.

The Action Creation Utility is used to create action entries in the action
database. Actions allow applications to be launched using desktop icons, and
they ease administration by removing an application’s specific details from
the user interface.

The Application Gather and Application Integrate routines are used to
control and format the application manager. They simplify installations so
that applications can be accessible from virtually anywhere on the network.

1.8 Windows and the Window Manager

From a user’s perspective, one of the first distinguishing features of Motif’s
look and feel is the window frame (Fig. 1.3). Every application window is
contained inside such a frame. The following items appear in the window
frame:

Title Bar — This identifies the window by a text string. The string is
usually the name of the application program. However, an application’s
resource controls the label (Chapter 40).

Window Menu — Every window under the control of mwm has a window
menu. The application has a certain amount of control over items
that can be placed in the menu. The Motif Style Guide insists that
certain commands are always available in this menu and that they
can be accessed from either mouse or keyboard selection. Keyboard
selections are called mnemonics and allow routine actions (that may
involve several mouse actions) to be called from the keyboard. The
action from the keyboard usually involves pressing two keys at the
same time: the Meta key1 and another key.

1The Meta key is an abstraction of the X Window System which is usually alt on

Title Bar
Maximize
Button

Minimize
Button

Window
Menu
Button

1.8. WINDOWS AND THE WINDOW MANAGER 7

Figure 1.3: The Motif Window Frame

The default window menu items and mnemonics are listed below and
illustrated in Fig. 1.4:

• Restore (Meta+F5) — Restore window to previous size after
iconification (see below).

• Move (Meta+F7) — Allows the window to be repositioned with
a drag of the mouse.

• Size (Meta+F8) — Allows the size of the window to be changed
by dragging on the corners of the window.

• Minimize (Meta+F9) — Iconify the window.

• Maximize (Meta+F10) — Make the window the size of the root
window, usually the whole of the display size.

• Lower (Meta+F3) — Move the window to the bottom of the win-
dow stack. Windows may be tiled on top of each other (see below).
The front window being the top of the stack.

• Close (Meta+F4) — Quit the program. Some simple applications
(Chapter 38) provide no internal means of termination. The Close
option being the only means to achieve this.

most systems. However some systems may not posses such a key. Apple Macintoshes
use the Apple key instead, for example. On Sun Type 4 keyboards the Meta key is the
diamond shape key next to the alt key (not the alt key). Local X implementation should
be consulted for further clarification. In this book we will simply refer to the Meta key.

8 CHAPTER 1. THE COMMON DESKTOP ENVIRONMENT

Figure 1.4: The Window Menu

Minimize Button — another way to iconify a window.

Maximize Button — another way to make a window the size of the root
window.

The window manager must also be able to manage multiple windows from
multiple client applications. There are a few important issues that need to be
resolved. When running several applications together, several windows may
be displayed on the screen. As a result, the display may appear cluttered
and hard to navigate. The window manager provides two mechanisms to
help deal with such problems:

Active Window — Only one window can receive input at any time. If you
are selecting a graphical object with a mouse, then it is relatively easy
for the window manager to detect this and schedule appropriate actions
related to the chosen object. It is not so easy when you enter data or
make selections directly from the keyboard. To resolve this only one
window at a time is allowed keyboard focus. This window is called the

1.8. WINDOWS AND THE WINDOW MANAGER 9

active window. The selection of the active window will depend on the
system configuration which the user typically has control over. There
are two common methods for selecting the active window:

Focus follows pointer — The active window is the window is the
window underneath mouse pointer.

Click-to-type — The active window is selected, by clicking on an
area of the window, and remains active until another window is
selected no matter where the mouse points.

When a window is made active its appearance will change slightly:

• Its outline frame will become shaded.

• The cursor will change appearance when placed in the window.

• The window may jump, or be raised to the top of the window
stack.

The exact appearance of the above may vary from system to system
and may be controlled by the user by setting environment settings in
the window manager.

Window tiling — Windows may be stacked on top of each other. The
window manager tries to maintain a three-dimensional look and feel.
Apart from the fact that buttons, dialog boxes appear to be elevated
from the screen, windows are shaded and framed in a three-dimensional
fashion. The top window (or currently active window) will have slightly
different appearance for instance.

The window menu has a few options for controlling the tiling of a
window. Also a window can be brought to the top of the stack, or
raised by clicking a part of its frame.

Iconification — If a window is currently active and not required for input or
displaying output then it may be iconified or minimised thus reducing
the screen clutter. An icon (Fig. 1.5) is a small graphical symbol that
represents the window (or application). It occupies a significantly less
amount of screen area. Icons are usually arranged around the perimeter
(typically bottom or left side) of the screen. The application will still
be running and occupying computer memory. The window related to

10 CHAPTER 1. THE COMMON DESKTOP ENVIRONMENT

the icon may be reverted to by either double clicking on the icon, or
selecting Restore or Maximise from the icon’s window menu.

Figure 1.5: Sample Icon from Xterm Application

1.9 The Root Menu

The Root Menu is the main menu of the window manager. The root menu
typically is used to control the whole display, for example starting up new
windows and quitting the desktop. To display the Root menu:

• Move the mouse pointer to the Root Window.

• Hold down the left mouse button.

The default Root Menu has the following The root menu can be cus-
tomised to start up common applications for example. The root menu for
the mwm (Fig. 1.6) and dtwm (Fig. 1.7) have slightly different appearance
but have broadly similar actions, which are summarised below:

Program (dtwm) — A sub-menu is displayed that allows a variety of pro-
grams to be called from the desktop, for example to create a new
window. The list of available programs can be customised from the
desktop.

New Window (mwm) — Create a new window which is usually an Xterm
window.

Shuffle Up — Move the bottom of the window stack to the top.

Shuffle Down — Move the top of the window stack to the bottom.

Refresh — Refresh the current screen display.

1.9. THE ROOT MENU 11

Figure 1.6: The mwm Root Menu

Figure 1.7: The CDE dtwm Root Menu

12 CHAPTER 1. THE COMMON DESKTOP ENVIRONMENT

Restart — Restart the Workspace.

Logout (dtwm) — Quit the Window Manager.

1.10 Exercises

Exercise 1.1 Add an application to the application manager

Exercise 1.2 Practice opening, closing and moving windows around the screen
and to/from the background/foreground. Get used to using the mouse and its
buttons for such tasks.

Exercise 1.3 Figure out the function of each of the three mouse buttons.
Pay particular attention to the different functions the buttons in different
windows (applications) and also when the mouse is pointing to the back-
ground.

Exercise 1.4 Find out how to resize windows etc. and practice this.

Exercise 1.5 Fire up the texteditor of your choice (You may use dtpad (ba-
sic but functional), textedit application (SOLARIS basic editor), emacs/Xemacs,
or vi) and practice editing text files. Create any files you wish for now. Fig-
ure out basic options like cut and paste of text around the file, saving and
loading files, searching for strings in the text and replacing strings.

Particularly pay attention in getting used to using the Key Strokes and /
or mouse to perform the above tasks.

Exercise 1.6 Use Unix Commands to

1. Copy a file (created by text editor or other means) to another file called
spare.

2. Rename your original file to one called new.

3. Delete the file spare.

4. Display your original file on the terminal.

5. Print your file out.

Exercise 1.7 Familiarise yourself with other UNIX functions by creating
various files of text etc. and trying out the various functions listed in hand-
outs.

Chapter 2

C/C++ Program Compilation

In this chapter we begin by outlining the basic processes you need to go
through in order to compile your C (or C++) programs. We then proceed
to formally describe the C compilation model and also how C supports ad-
ditional libraries.

2.1 Creating, Compiling and Running Your

Program

The stages of developing your C program are as follows. (See Appendix A
and exercises for more info.)

2.1.1 Creating the program

Create a file containing the complete program, such as the above example.
You can use any ordinary editor with which you are familiar to create the
file. One such editor is textedit available on most UNIX systems.

The filename must by convention end “.c” (full stop, lower case c), e.g.
myprog.c or progtest.c. The contents must obey C syntax. For example, they
might be as in the above example, starting with the line /* Sample

(or a blank line preceding it) and ending with the line } /* end of program

*/ (or a blank line following it).

13

14 CHAPTER 2. C/C++ PROGRAM COMPILATION

2.1.2 Compilation

There are many C compilers around. The cc being the default Sun compiler.
The GNU C compiler gcc is popular and available for many platforms. PC
users may also be familiar with the Borland bcc compiler.

There are also equivalent C++ compilers which are usually denoted by
CC (note upper case CC. For example Sun provides CC and GNU GCC. The
GNU compiler is also denoted by g++

Other (less common) C/C++ compilers exist. All the above compilers
operate in essentially the same manner and share many common command
line options. Below and in Appendix A we list and give example uses many
of the common compiler options. However, the best source of each compiler
is through the online manual pages of your system: e.g. man cc.

For the sake of compactness in the basic discussions of compiler operation
we will simply refer to the cc compiler — other compilers can simply be
substituted in place of cc unless otherwise stated.

To Compile your program simply invoke the command cc. The command
must be followed by the name of the (C) program you wish to compile.
A number of compiler options can be specified also. We will not concern
ourselves with many of these options yet, some useful and often essential
options are introduced below — See Appendix A or online manual help for
further details.

Thus, the basic compilation command is:

cc program.c

where program.c is the name of the file.

If there are obvious errors in your program (such as mistypings, mis-
spelling one of the key words or omitting a semi-colon), the compiler will
detect and report them.

There may, of course, still be logical errors that the compiler cannot
detect. You may be telling the computer to do the wrong operations.

When the compiler has successfully digested your program, the compiled
version, or executable, is left in a file called a.out or if the compiler option
-o is used : the file listed after the -o.

It is more convenient to use a -o and filename in the compilation as in

cc -o program program.c

which puts the compiled program into the file program (or any file you
name following the ”-o” argument) instead of putting it in the file a.out .

2.2. THE C COMPILATION MODEL 15

2.1.3 Running the program

The next stage is to actually run your executable program. To run an exe-
cutable in UNIX, you simply type the name of the file containing it, in this
case program (or a.out)

This executes your program, printing any results to the screen. At this
stage there may be run-time errors, such as division by zero, or it may become
evident that the program has produced incorrect output.

If so, you must return to edit your program source, and recompile it, and
run it again.

2.2 The C Compilation Model

We will briefly highlight key features of the C Compilation model (Fig. 2.1)
here.

2.2.1 The Preprocessor

We will study this part of the compilation process in greater detail later
(Chapter 13. However we need some basic information for some C programs.

The Preprocessor accepts source code as input and is responsible for

• removing comments

• interpreting special preprocessor directives denoted by #.

For example

• #include — includes contents of a named file. Files usually called
header files. e.g

– #include <math.h> — standard library maths file.

– #include <stdio.h> — standard library I/O file

• #define — defines a symbolic name or constant. Macro substitution.

– #define MAX ARRAY SIZE 100

16 CHAPTER 2. C/C++ PROGRAM COMPILATION

Figure 2.1: The C Compilation Model

2.2. THE C COMPILATION MODEL 17

2.2.2 C Compiler

The C compiler translates source to assembly code. The source code is
received from the preprocessor.

2.2.3 Assembler

The assembler creates object code. On a UNIX system you may see files with
a .o suffix (.OBJ on MSDOS) to indicate object code files.

2.2.4 Link Editor

If a source file references library functions or functions defined in other source
files the link editor combines these functions (with main()) to create an
executable file. External Variable references resolved here also. More on this
later (Chapter 34).

2.2.5 Some Useful Compiler Options

Now that we have a basic understanding of the compilation model we can
now introduce some useful and sometimes essential common compiler options.
Again see the online man pages and Appendix A for further information and
additional options.

-c Suppress the linking process and produce a .o file for each source file
listed. Several can be subsequently linked by the cc command, for
example:

cc file1.o file2.o -o executable

-llibrary Link with object libraries. This option must follow the source file
arguments. The object libraries are archived and can be standard, third
party or user created libraries (We discuss this topic briefly below and
also in detail later (Chapter 34). Probably the most commonly used
library is the math library (math.h). You must link in this library
explicitly if you wish to use the maths functions (note do note forget
to #include <math.h> header file), for example:

cc calc.c -o calc -lm

Many other libraries are linked in this fashion (see below)

18 CHAPTER 2. C/C++ PROGRAM COMPILATION

-Ldirectory Add directory to the list of directories containing object-library
routines. The linker always looks for standard and other system li-
braries in /lib and /usr/lib. If you want to link in libraries that you
have created or installed yourself (unless you have certain privileges
and get the libraries installed in /usr/lib) you will have to specify
where you files are stored, for example:

cc prog.c -L/home/myname/mylibs mylib.a

-Ipathname Add pathname to the list of directories in which to search for
#include files with relative filenames (not beginning with slash /).

BY default, The preprocessor first searches for #include files in the di-
rectory containing source file, then in directories named with -I options
(if any), and finally, in /usr/include. So to include header files stored
in /home/myname/myheaders you would do:

cc prog.c -I/home/myname/myheaders

Note: System library header files are stored in a special place (/usr/include)
and are not affected by the -I option. System header files and user
header files are included in a slightly different manner (see Chapters 13
and 34)

-g invoke debugging option. This instructs the compiler to produce addi-
tional symbol table information that is used by a variety of debugging
utilities.

-D define symbols either as identifiers (-Didentifer) or as values (-Dsymbol=value)
in a similar fashion as the #define preprocessor command. For more
details on the use of this argument see Chapter 13.

For further information on general compiler options and the GNU com-
piler refer to Appendix A.

2.2.6 Using Libraries

C is an extremely small language. Many of the functions of other languages
are not included in C. e.g. No built in I/O, string handling or maths func-
tions.

What use is C then?
C provides functionality through a rich set function libraries.

2.2. THE C COMPILATION MODEL 19

As a result most C implementations include standard libraries of functions
for many facilities (I/O etc.). For many practical purposes these may be
regarded as being part of C. But they may vary from machine to machine.
(cf Borland C for a PC to UNIX C).

A programmer can also develop his or her own function libraries and also
include special purpose third party libraries (e.g. NAG, PHIGS).

All libraries (except standard I/O) need to be explicitly linked in with
the -l and, possibly, -L compiler options described above.

2.2.7 UNIX Library Functions

The UNIX system provides a large number of C functions as libraries. Some
of these implement frequently used operations, while others are very spe-
cialised in their application.

Do Not Reinvent Wheels: It is wise for programmers to check whether
a library function is available to perform a task before writing their own
version. This will reduce program development time. The library functions
have been tested, so they are more likely to be correct than any function
which the programmer might write. This will save time when debugging the
program.

Later chapters deal with all important standard library issues and other
common system libraries.

2.2.8 Finding Information about Library Functions

The UNIX manual has an entry for all available functions. Function doc-
umentation is stored in section 3 of the manual, and there are many other
useful system calls in section 2. If you already know the name of the function
you want, you can read the page by typing (to find about sqrt):

man 3 sqrt

If you don’t know the name of the function, a full list is included in the
introductory page for section 3 of the manual. To read this, type

man 3 intro

There are approximately 700 functions described here. This number tends
to increase with each upgrade of the system.

On any manual page, the SYNOPSIS section will include information on
the use of the function. For example:

20 CHAPTER 2. C/C++ PROGRAM COMPILATION

#include <time.h>

char *ctime(time_t *clock)

This means that you must have

#include <time.h>

in your file before you call ctime. And that function ctime takes a pointer
to type time t as an argument, and returns a string (char *). time t will
probably be defined in the same manual page.

The DESCRIPTION section will then give a short description of what
the function does. For example:

ctime() converts a long integer, pointed to by clock, to a

26-character string of the form produced by asctime().

2.3 Lint — A C program verifier

You will soon discover (if you have not already) that the C compiler is pretty
vague in many aspects of checking program correctness, particularly in type
checking. Careful use of prototyping of functions can assist modern C com-
pilers in this task. However, There is still no guarantee that once you have
successfully compiled your program that it will run correctly.

The UNIX utility lint can assist in checking for a multitude of program-
ming errors. Check out the online manual pages (man lint) for complete
details of lint. It is well worth the effort as it can help save many hours
debugging your C code.

To run lint simply enter the command:

lint myprog.c.

Lint is particularly good at checking type checking of variable and func-
tion assignments, efficiency, unused variables and function identifiers, un-
reachable code and possibly memory leaks. There are many useful options
to help control lint (see man lint).

2.4. EXERCISES 21

2.4 Exercises

Exercise 2.1 Enter, compile and run the following program:

main()

{ int i;

printf("\t Number \t\t Square of Number\n\n");

for (i=0; i<=25;++i)

printf("\t %d \t\t\t %d \n",i,i*i);

}

Exercise 2.2 The following program uses the math library. Enter compile
and run it correctly.

#include <math.h>

main()

{ int i;

printf("\t Number \t\t Square Root of Number\n\n");

for (i=0; i<=360; ++i)

printf("\t %d \t\t\t %d \n",i, sqrt((double) i));

}

Exercise 2.3 Look in /lib and /usr/lib and see what libraries are avail-
able.

• Use the man command to get details of library functions

• Explore the libraries to see what each contains by running the command
ar t libfile.

Exercise 2.4 Look in /usr/include and see what header files are available.

22 CHAPTER 2. C/C++ PROGRAM COMPILATION

• Use the more or cat commands to view these text files

• Explore the header files to see what each contains, note the include,
define, type definitions and function prototypes declared in them

Exercise 2.5 Suppose you have a C program whose main function is in
main.c and has other functions in the files input.c and output.c:

• What command(s) would you use on your system to compile and link
this program?

• How would you modify the above commands to link a library called
process1 stored in the standard system library directory?

• How would you modify the above commands to link a library called
process2 stored in your home directory?

• Some header files need to be read and have been found to located in
a header subdirectory of your home directory and also in the current
working directory. How would you modify the compiler commands to
account for this?

Exercise 2.6 Suppose you have a C program composed of several separate
files, and they include one another as shown below:

File Include Files
main.c stdio.h, process1.h

input.c stdio.h, list.h

output.c stdio.h

process1.c stdio.h, process1.h

process2.c stdio.h, list.h

• Which files have to recompiled after you make changes to process1.c?

• Which files have to recompiled after you make changes to process1.h?

• Which files have to recompiled after you make changes to list.h?

Chapter 3

C Basics

Before we embark on a brief tour of C’s basic syntax and structure we offer
a brief history of C and consider the characteristics of the C language.

In the remainder of the Chapter we will look at the basic aspects of C
programs such as C program structure, the declaration of variables, data
types and operators. We will assume knowledge of a high level language,
such as PASCAL.

It is our intention to provide a quick guide through similar C principles
to most high level languages. Here the syntax may be slightly different but
the concepts exactly the same.

C does have a few surprises:

• Many High level languages, like PASCAL, are highly disciplined and
structured.

• However beware — C is much more flexible and free-wheeling. This
freedom gives C much more power that experienced users can employ.
The above example below (mystery.c) illustrates how bad things could
really get.

3.1 History of C

The milestones in C’s development as a language are listed below:

• UNIX developed c. 1969 — DEC PDP-7 Assembly Language

23

24 CHAPTER 3. C BASICS

• BCPL — a user friendly OS providing powerful development tools de-
veloped from BCPL. Assembler tedious long and error prone.

• A new language “B” a second attempt. c. 1970.

• A totally new language “C” a successor to “B”. c. 1971

• By 1973 UNIX OS almost totally written in “C”.

3.2 Characteristics of C

We briefly list some of C’s characteristics that define the language and also
have lead to its popularity as a programming language. Naturally we will be
studying many of these aspects throughout the course.

• Small size

• Extensive use of function calls

• Loose typing — unlike PASCAL

• Structured language

• Low level (BitWise) programming readily available

• Pointer implementation - extensive use of pointers for memory, array,
structures and functions.

C has now become a widely used professional language for various reasons.

• It has high-level constructs.

• It can handle low-level activities.

• It produces efficient programs.

• It can be compiled on a variety of computers.

3.2. CHARACTERISTICS OF C 25

Its main drawback is that it has poor error detection which can make
it off putting to the beginner. However diligence in this matter can pay off
handsomely since having learned the rules of C we can break them. Not
many languages allow this. This if done properly and carefully leads to the
power of C programming.

As an extreme example the following C code (mystery.c) is actually legal
C code.

#include <stdio.h>

main(t,_,a)

char *a;

{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,

main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (-94, -27+t, a

)&&t == 2 ?_<13 ?main (2, _+1, "%s %d %d\n"):9:16:t<0?t<-72?main(_,

t,"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\

,/+#n+,/#;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l q#’+d’K#!/\

+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;#){n\

l]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#\

n’wk nw’ iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \

;;{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;\

#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# }’+}##(!!/")

:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == ’/’)+t,_,a\

+1):0<t?main (2, 2 , "%s"):*a==’/’||main(0,main(-61,*a, "!ek;dc \

i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

It will compile and run and produce meaningful output. Try this program
out. Try to compile and run it yourself.

Clearly nobody ever writes code like or at least should never. This
piece of code actually one an international Obfuscated C Code Contest (see
http://reality.sgi.com/csp/iocc)

The standard for C programs was originally the features set by Brian
Kernighan. In order to make the language more internationally acceptable,
an international standard was developed, ANSI C (American National Stan-
dards Institute).

26 CHAPTER 3. C BASICS

3.3 C Program Structure

A C program basically has the following form:

• Preprocessor Commands

• Type definitions

• Function prototypes — declare function types and variables passed to
function.

• Variables

• Functions

We must have a main() function.

3.3. C PROGRAM STRUCTURE 27

A function has the form:

type function name (parameters)
{

local variables

C Statements

}

If the type definition is omitted C assumes that function returns an in-
teger type. NOTE: This can be a source of problems in a program.

So returning to our first C program:

/* Sample program */

main()

{

printf(‘‘I Like C \n’’);

exit (0);

}

NOTE:

• C requires a semicolon at the end of every statement.

• printf is a standard C function — called from main.

• \n signifies newline. Formatted output — more later.

• exit() is also a standard function that causes the program to terminate.
Strictly speaking it is not needed here as it is the last line of main() and
the program will terminate anyway.

Let us look at another printing statement: printf(‘‘.\n.1\n..2\n...3\n’’);

The output of this would be:

28 CHAPTER 3. C BASICS

.

.1

..2

...3

3.4 Variables

C has the following simple data types:

C type Size (bytes) Lower bound Upper bound
char 1 — —
unsigned char 1 0 255
short int 2 −32768 +32767
unsigned short int 2 0 65536
(long) int 4 −231 +231 − 1
float 4 −3.2 × 10±38 +3.2 × 10±38

double 8 −1.7 × 10±308 +1.7 × 10±308

The Pascal Equivalents are:

C type Pascal equivalent
char char
unsigned char —
short int integer
unsigned short int —
long int longint
float real
double extended

On UNIX systems all ints are long ints unless specified as short int

explicitly.

NOTE: There is NO Boolean type in C — you should use char, int

or (better) unsigned char.

Unsigned can be used with all char and int types.

To declare a variable in C, do:
var type list variables;

e.g. int i,j,k;

3.4. VARIABLES 29

float x,y,z;

char ch;

3.4.1 Defining Global Variables

Global variables are defined above main() in the following way:-

short number,sum;

int bignumber,bigsum;

char letter;

main()

{

}

It is also possible to pre-initialise global variables using the = operator for
assignment.

NOTE: The = operator is the same as := is Pascal.

For example:-

float sum=0.0;

int bigsum=0;

char letter=‘A’;

main()

{

}

This is the same as:-

float sum;

int bigsum;

char letter;

30 CHAPTER 3. C BASICS

main()

{

sum=0.0;

bigsum=0;

letter=‘A’;

}

...but is more efficient.

C also allows multiple assignment statements using =, for example:

a=b=c=d=3;

...which is the same as, but more efficient than:

a=3;

b=3;

c=3;

d=3;

This kind of assignment is only possible if all the variable types in the
statement are the same.

You can define your own types use typedef. This will have greater rel-
evance later in the course when we learn how to create more complex data
structures.

As an example of a simple use let us consider how we may define two new
types real and letter. These new types can then be used in the same way
as the pre-defined C types:

typedef float real;

typedef char letter;

Variables declared:
real sum=0.0;

letter nextletter;

3.5. CONSTANTS 31

3.4.2 Printing Out and Inputting Variables

C uses formatted output. The printf function has a special formatting
character (%) — a character following this defines a certain format for a
variable:

%c — characters
%d — integers
%f — floats

e.g. printf(‘‘%c %d %f’’,ch,i,x);

NOTE: Format statement enclosed in “...”, variables follow after. Make
sure order of format and variable data types match up.

scanf() is the function for inputting values to a data structure: Its format
is similar to printf:

i.e. scanf(‘‘%c %d %f’’,&ch,&i,&x);

NOTE: & before variables. Please accept this for now and remember to
include it. It is to do with pointers which we will meet later (Section 17.4.1).

3.5 Constants

ANSI C allows you to declare constants. When you declare a constant it is
a bit like a variable declaration except the value cannot be changed.

The const keyword is to declare a constant, as shown below:

int const a = 1;

const int a =2;

Note:

• You can declare the const before or after the type. Choose one an
stick to it.

• It is usual to initialise a const with a value as it cannot get a value
any other way.

32 CHAPTER 3. C BASICS

The preprocessor #define is another more flexible (see Preprocessor Chap-
ters) method to define constants in a program.

You frequently see const declaration in function parameters. This says
simply that the function is not going to change the value of the parameter.

The following function definition used concepts we have not met (see
chapters on functions, strings, pointers, and standard libraries) but for com-
pletenes of this section it is is included here:

void strcpy(char *buffer, char const *string)

The second argiment string is a C string that will not be altered by the
string copying standard library function.

3.6 Arithmetic Operations

As well as the standard arithmetic operators (+ − ∗ /) found in most lan-
guages, C provides some more operators. There are some notable differences
with other languages, such as Pascal.

Assignment is = i.e. i = 4; ch = ‘y’;

Increment ++, Decrement −− which are more efficient than their long
hand equivalents, for example:- x++ is faster than x=x+1.

The ++ and −− operators can be either in post-fixed or pre-fixed. With
pre-fixed the value is computed before the expression is evaluated whereas
with post-fixed the value is computed after the expression is evaluated.

In the example below, ++z is pre-fixed and the w−− is post-fixed:

int x,y,w;

main()
{

x=((++z)−(w−−)) % 100;

}

This would be equivalent to:

3.7. COMPARISON OPERATORS 33

int x,y,w;

main()
{

z++;
x=(z−w) % 100;
w−−;

}

The % (modulus) operator only works with integers.

Division / is for both integer and float division. So be careful.

The answer to: x = 3/2 is 1 even if x is declared a float!!

RULE: If both arguments of / are integer then do integer division.

So make sure you do this. The correct (for division) answer to the above
is x = 3.0/2 or x = 3/2.0 or (better) x = 3.0/2.0.

There is also a convenient shorthand way to express computations in C.

It is very common to have expressions like: i = i + 3 or x = x ∗ (y + 2)

This can written in C (generally) in a shorthand form like this:
expr1 op = expr2

which is equivalent to (but more efficient than):
expr1 = expr1 op expr2

So we can rewrite i = i + 3 as i+ = 3

and x = x ∗ (y + 2) as x∗ = y + 2.

NOTE: that x∗ = y + 2 means x = x ∗ (y + 2) and NOT x = x ∗ y + 2.

3.7 Comparison Operators

To test for equality is ==

A warning: Beware of using “=” instead of “==”, such as writing
accidentally

34 CHAPTER 3. C BASICS

if (i = j)

This is a perfectly LEGAL C statement (syntactically speaking) which
copies the value in ”j” into ”i”, and delivers this value, which will then be
interpreted as TRUE if j is non-zero. This is called assignment by value
— a key feature of C.

Not equals is: ! =

Other operators < (less than) , > (grater than), <= (less than or equals),
>= (greater than or equals) are as usual.

3.8 Logical Operators

Logical operators are usually used with conditional statements which we shall
meet in the next Chapter.

The two basic logical operators are:

&& for logical AND, || for logical OR.

Beware & and | have a different meaning for bitwise AND and OR (more
on this later in Chapter 12).

3.9 Order of Precedence

It is necessary to be careful of the meaning of such expressions as a + b *

c

We may want the effect as either

(a + b) ∗ c

or

a + (b ∗ c) All operators have a priority, and high priority operators

are evaluated before lower priority ones. Operators of the same priority are
evaluated from left to right, so that

a - b - c

is evaluated as

(a - b) - c

3.9. ORDER OF PRECEDENCE 35

as you would expect.

From high priority to low priority the order for all C operators (we have
not met all of them yet) is:

() [] − > .
! ∼ − ∗ & sizeof cast + + −−

(these are right->left)
∗ / %
+ −
< <= >= >
== ! =
&
∧
|
&&
||
?: (right->left)
= + = − = (right->left)
, (comma)

Thus
a < 10 && 2 ∗ b < c

is interpreted as (a < 10) && ((2 ∗ b) < c)

and

a =

b =

spokes / spokes per wheel

+ spares;

as

a =

(b =

(spokes / spokes per wheel)

+ spares

);

36 CHAPTER 3. C BASICS

3.10 Exercises

Write C programs to perform the following tasks.

Exercise 3.1 Input two numbers and work out their sum, average and sum
of the squares of the numbers.

Exercise 3.2 Input and output your name, address and age to an appropri-
ate structure.

Exercise 3.3 Write a program that works out the largest and smallest values
from a set of 10 inputted numbers.

Exercise 3.4 Write a program to read a ”float” representing a number of
degrees Celsius, and print as a ”float” the equivalent temperature in degrees
Fahrenheit. Print your results in a form such as

100.0 degrees Celsius converts to 212.0 degrees Fahrenheit.

Exercise 3.5 Write a program to print several lines (such as your name and
address). You may use either several printf instructions, each with a newline
character in it, or one printf with several newlines in the string.

Exercise 3.6 Write a program to read a positive integer at least equal to 3,
and print out all possible permutations of three positive integers less or equal
to than this value.

Exercise 3.7 Write a program to read a number of units of length (a float)
and print out the area of a circle of that radius. Assume that the value of
pi is 3.14159 (an appropriate declaration will be given you by ceilidh – select
setup).

Your output should take the form: The area of a circle of radius ... units
is units.

If you want to be clever, and have looked ahead in the notes, print the
message Error: Negative values not permitted. if the input value is negative.

Exercise 3.8 Given as input a floating (real) number of centimeters, print
out the equivalent number of feet (integer) and inches (floating, 1 decimal),
with the inches given to an accuracy of one decimal place.

Assume 2.54 centimeters per inch, and 12 inches per foot.
If the input value is 333.3, the output format should be:
333.3 centimeters is 10 feet 11.2 inches.

3.10. EXERCISES 37

Exercise 3.9 Given as input an integer number of seconds, print as output
the equivalent time in hours, minutes and seconds. Recommended output
format is something like

7322 seconds is equivalent to 2 hours 2 minutes 2 seconds.

Exercise 3.10 Write a program to read two integers with the following sig-
nificance.

The first integer value represents a time of day on a 24 hour clock, so
that 1245 represents quarter to one mid-day, for example.

The second integer represents a time duration in a similar way, so that
345 represents three hours and 45 minutes.

This duration is to be added to the first time, and the result printed out
in the same notation, in this case 1630 which is the time 3 hours and 45
minutes after 12.45.

Typical output might be Start time is 1415. Duration is 50. End time is
1505.

There are a few extra marks for spotting.
Start time is 2300. Duration is 200. End time is 100.

38 CHAPTER 3. C BASICS

Chapter 4

Conditionals

This Chapter deals with the various methods that C can control the flow of
logic in a program. Apart from slight syntactic variation they are similar to
other languages.

As we have seen following logical operations exist in C:

==, ! =, ‖, &&.

One other operator is the unitary – it takes only one argument – not !.

These operators are used in conjunction with the following statements.

4.1 The if statement

The if statement has the same function as other languages. It has three
basic forms:

if (expression)
statement

...or:

if (expression)
statement1

else

statement2

39

40 CHAPTER 4. CONDITIONALS

...or:

if (expression)
statement1

else if (expression)
statement2

else

statement3

For example:-

int x,y,w;

main()

{

if (x>0)

{
z=w;

........

}
else

{
z=y;

........

}

}

4.2 The ? operator

The ? (ternary condition) operator is a more efficient form for expressing
simple if statements. It has the following form:

expression1 ? expression2 : expression3

4.3. THE SWITCH STATEMENT 41

It simply states:

if expression1 then expression2 else expression3

For example to assign the maximum of a and b to z:

z = (a>b) ? a : b;

which is the same as:

if (a>b)

z = a;

else

z=b;

4.3 The switch statement

The C switch is similar to Pascal’s case statement and it allows multiple
choice of a selection of items at one level of a conditional where it is a far
neater way of writing multiple if statements:

switch (expression) {
case item1:

statement1;
break;

case item2:

statement2;
break;
...
...

case itemn:

statementn;
break;

default:

statement;
break;

}

42 CHAPTER 4. CONDITIONALS

In each case the value of itemi must be a constant, variables are not
allowed.

The break is needed if you want to terminate the switch after execution
of one choice. Otherwise the next case would get evaluated. Note: This is
unlike most other languages.

We can also have null statements by just including a ; or let the switch
statement fall through by omitting any statements (see e.g. below).

The default case is optional and catches any other cases.

For example:-

switch (letter)

{
case ‘A’:

case ‘E’:

case ‘I’:

case ‘O’:

case ‘U’:

numberofvowels++;

break;

case ‘ ’:

numberofspaces++;

break;

default:

numberofconstants++;

break;

}

In the above example if the value of letter is ‘A’, ‘E’, ‘I’, ‘O’ or ‘U’ then
numberofvowels is incremented.

If the value of letter is ‘ ’ then numberofspaces is incremented.

If none of these is true then the default condition is executed, that is
numberofconstants is incremented.

4.4. EXERCISES 43

4.4 Exercises

Exercise 4.1 Write a program to read two characters, and print their value
when interpreted as a 2-digit hexadecimal number. Accept upper case letters
for values from 10 to 15.

Exercise 4.2 Read an integer value. Assume it is the number of a month
of the year; print out the name of that month.

Exercise 4.3 Given as input three integers representing a date as day, month,
year, print out the number day, month and year for the following day’s date.

Typical input: 28 2 1992 Typical output: Date following 28:02:1992 is
29:02:1992

Exercise 4.4 Write a program which reads two integer values. If the first is
less than the second, print the message up. If the second is less than the first,
print the message down If the numbers are equal, print the message equal If
there is an error reading the data, print a message containing the word Error
and perform exit(0);

44 CHAPTER 4. CONDITIONALS

Chapter 5

Looping and Iteration

This chapter will look at C’s mechanisms for controlling looping and iteration.
Even though some of these mechanisms may look familiar and indeed will
operate in standard fashion most of the time. NOTE: some non-standard
features are available.

5.1 The for statement

The C for statement has the following form:

for (expression1; expression2; expression3)

statement;
or {block of statements}

expression1 initialises; expression2 is the terminate test; expression3 is the
modifier (which may be more than just simple increment);

NOTE: C basically treats for statements as while type loops

For example:

int x;

main()

{
for (x=3;x>0;x--)

45

46 CHAPTER 5. LOOPING AND ITERATION

{
printf("x=%d\n",x);
}

}

...outputs:

x=3

x=2

x=1

...to the screen

All the following are legal for statements in C. The practical application
of such statements is not important here, we are just trying to illustrate
peculiar features of C for that may be useful:-

for (x=0;((x>3) && (x<9)); x++)

for (x=0,y=4;((x>3) && (y<9)); x++,y+=2)

for (x=0,y=4,z=4000;z; z/=10)

The second example shows that multiple expressions can be separated a
,.

In the third example the loop will continue to iterate until z becomes 0;

5.2 The while statement

The while statement is similar to those used in other languages although
more can be done with the expression statement — a standard feature of
C.

The while has the form:

while (expression)
statement

5.2. THE WHILE STATEMENT 47

For example:

int x=3;

main()

{ while (x>0)

{ printf("x=%d\n",x);
x--;

}
}

...outputs:

x=3

x=2

x=1

...to the screen.

Because the while loop can accept expressions, not just conditions, the
following are all legal:-

while (x--);

while (x=x+1);

while (x+=5);

Using this type of expression, only when the result of x−−, x=x+1, or
x+ = 5, evaluates to 0 will the while condition fail and the loop be exited.

We can go further still and perform complete operations within the while
expression:

while (i++ < 10);

while ((ch = getchar()) != ‘q’)

putchar(ch);

48 CHAPTER 5. LOOPING AND ITERATION

The first example counts i up to 10.

The second example uses C standard library functions (See Chapter 18)
getchar() – reads a character from the keyboard – and putchar() – writes a
given char to screen. The while loop will proceed to read from the keyboard
and echo characters to the screen until a ’q’ character is read. NOTE: This
type of operation is used a lot in C and not just with character reading!! (See
Exercises).

5.3 The do-while statement

C’s do-while statement has the form:

do

statement;
while (expression);

It is similar to PASCAL’s repeat ... until except do while expression
is true.

For example:

int x=3;

main()

{ do {
printf("x=%d\n",x--);
}

while (x>0);

}

..outputs:-

x=3

x=2

x=1

NOTE: The postfix x-- operator which uses the current value of x while
printing and then decrements x.

5.4. BREAK AND CONTINUE 49

5.4 break and continue

C provides two commands to control how we loop:

• break — exit form loop or switch.

• continue — skip 1 iteration of loop.

Consider the following example where we read in integer values and pro-
cess them according to the following conditions. If the value we have read
is negative, we wish to print an error message and abandon the loop. If the
value read is great than 100, we wish to ignore it and continue to the next
value in the data. If the value is zero, we wish to terminate the loop.

while (scanf(“%d”, &value) == 1 && value ! = 0) {

if (value < 0) {
printf(“Illegal value\n”);
break;
/* Abandon the loop */

}

if (value > 100) {
printf(“Invalid value\n”);
continue;
/* Skip to start loop again */

}

/* Process the value read */
/* guaranteed between 1 and 100 */
....;

....;
} /* end while value ! = 0 */

5.5 Exercises

Exercise 5.1 Write a program to read in 10 numbers and compute the av-
erage, maximum and minimum values.

50 CHAPTER 5. LOOPING AND ITERATION

Exercise 5.2 Write a program to read in numbers until the number -999 is
encountered. The sum of all number read until this point should be printed
out.

Exercise 5.3 Write a program which will read an integer value for a base,
then read a positive integer written to that base and print its value.

Read the second integer a character at a time; skip over any leading non-
valid (i.e. not a digit between zero and “base-1”) characters, then read valid
characters until an invalid one is encountered.

Input Output

========== ======

10 1234 1234

8 77 63 (the value of 77 in base 8, octal)

2 1111 15 (the value of 1111 in base 2, binary)

The base will be less than or equal to 10.

Exercise 5.4 Read in three values representing respectively
a capital sum (integer number of pence),
a rate of interest in percent (float),
and a number of years (integer).
Compute the values of the capital sum with compound interest added over

the given period of years. Each year’s interest is calculated as
interest = capital * interest rate / 100;
and is added to the capital sum by
capital += interest;
Print out money values as pounds (pence / 100.0) accurate to two decimal

places.
Print out a floating value for the value with compound interest for each

year up to the end of the period.
Print output year by year in a form such as:

Original sum 30000.00 at 12.5 percent for 20 years

Year Interest Sum

----+-------+--------

1 3750.00 33750.00

2 4218.75 37968.75

5.5. EXERCISES 51

3 4746.09 42714.84

4 5339.35 48054.19

5 6006.77 54060.96

6 6757.62 60818.58

7 7602.32 68420.90

8 8552.61 76973.51

9 9621.68 86595.19

10 10824.39 97419.58

Exercise 5.5 Read a positive integer value, and compute the following se-
quence: If the number is even, halve it; if it’s odd, multiply by 3 and add 1.
Repeat this process until the value is 1, printing out each value. Finally print
out how many of these operations you performed.

Typical output might be:

Inital value is 9

Next value is 28

Next value is 14

Next value is 7

Next value is 22

Next value is 11

Next value is 34

Next value is 17

Next value is 52

Next value is 26

Next value is 13

Next value is 40

Next value is 20

Next value is 10

Next value is 5

Next value is 16

Next value is 8

Next value is 4

Next value is 2

Final value 1, number of steps 19

If the input value is less than 1, print a message containing the word

Error

52 CHAPTER 5. LOOPING AND ITERATION

and perform an

exit(0);

Exercise 5.6 Write a program to count the vowels and letters in free text
given as standard input. Read text a character at a time until you encounter
end-of-data.

Then print out the number of occurrences of each of the vowels a, e, i, o
and u in the text, the total number of letters, and each of the vowels as an
integer percentage of the letter total.

Suggested output format is:

Numbers of characters:

a 3 ; e 2 ; i 0 ; o 1 ; u 0 ; rest 17

Percentages of total:

a 13%; e 8%; i 0%; o 4%; u 0%; rest 73%

Read characters to end of data using a construct such as

char ch;

while(

(ch = getchar()) >= 0

) {

/* ch is the next character */

}

to read characters one at a time using getchar() until a negative value is
returned.

Exercise 5.7 Read a file of English text, and print it out one word per line,
all punctuation and non-alpha characters being omitted.

For end-of-data, the program loop should read until ”getchar” delivers
a value ¡= 0. When typing input, end the data by typing the end-of-file
character, usually control-D. When reading from a file, ”getchar” will deliver
a negative value when it encounters the end of the file.

Typical output might be

Read

a

file

5.5. EXERCISES 53

of

English

text

and

print

it

out

one

etc.

54 CHAPTER 5. LOOPING AND ITERATION

Chapter 6

Arrays and Strings

In principle arrays in C are similar to those found in other languages. As
we shall shortly see arrays are defined slightly differently and there are many
subtle differences due the close link between array and pointers. We will look
more closely at the link between pointer and arrays later in Chapter 9.

6.1 Single and Multi-dimensional Arrays

Let us first look at how we define arrays in C:

int listofnumbers[50];

BEWARE: In C Array subscripts start at 0 and end one less than the
array size. For example, in the above case valid subscripts range from 0 to
49. This is a BIG difference between C and other languages and does require
a bit of practice to get in the right frame of mind.

Elements can be accessed in the following ways:-

thirdnumber=listofnumbers[2];

listofnumbers[5]=100;

Multi-dimensional arrays can be defined as follows:

int tableofnumbers[50][50];

55

56 CHAPTER 6. ARRAYS AND STRINGS

for two dimensions.
For further dimensions simply add more []:

int bigD[50][50][40][30]......[50];

Elements can be accessed in the following ways:

anumber=tableofnumbers[2][3];

tableofnumbers[25][16]=100;

6.2 Strings

In C Strings are defined as arrays of characters. For example, the following
defines a string of 50 characters:

char name[50];

C has no string handling facilities built in and so the following are all illegal:

char firstname[50],lastname[50],fullname[100];

firstname= "Arnold"; /* Illegal */

lastname= "Schwarznegger"; /* Illegal */

fullname= "Mr"+firstname

+lastname; /* Illegal */

However, there is a special library of string handling routines which we
will come across later.

To print a string we use printf with a special %s control character:
printf(‘‘%s’’,name);

NOTE: We just need to give the name of the string.
In order to allow variable length strings the \0 character is used to indicate

the end of a string.
So we if we have a string, char NAME[50]; and we store the “DAVE” in

it its contents will look like:

6.3. EXERCISES 57

6.3 Exercises

Exercise 6.1 Write a C program to read through an array of any type. Write
a C program to scan through this array to find a particular value.

Exercise 6.2 Read ordinary text a character at a time from the program’s
standard input, and print it with each line reversed from left to right. Read
until you encounter end-of-data (see below).

You may wish to test the program by typing

prog5rev | prog5rev

to see if an exact copy of the original input is recreated.
To read characters to end of data, use a loop such as either

char ch;

while(ch = getchar(), ch >= 0) /* ch < 0 indicates end-of-data */

or

char ch;

while(scanf("%c", &ch) == 1) /* one character read */

Exercise 6.3 Write a program to read English text to end-of-data (type
control-D to indicate end of data at a terminal, see below for detecting it),
and print a count of word lengths, i.e. the total number of words of length 1
which occurred, the number of length 2, and so on.

Define a word to be a sequence of alphabetic characters. You should allow
for word lengths up to 25 letters.

Typical output should be like this:

length 1 : 10 occurrences

length 2 : 19 occurrences

length 3 : 127 occurrences

length 4 : 0 occurrences

length 5 : 18 occurrences

....

To read characters to end of data see above question.

58 CHAPTER 6. ARRAYS AND STRINGS

Chapter 7

Functions

C provides functions which are again similar most languages. One difference
is that C regards main() as function. Also unlike some languages, such
as Pascal, C does not have procedures — it uses functions to service both
requirements.

Let us remind ourselves of the form of a function:

returntype fn name(parameterdef1, parameterdef2, · · ·)

{

localvariables

functioncode

}

Let us look at an example to find the average of two integers:

float findaverage(float a, float b)

{ float average;

average=(a+b)/2;

return(average);

}

59

60 CHAPTER 7. FUNCTIONS

We would call the function as follows:

main()

{ float a=5,b=15,result;

result=findaverage(a,b);

printf("average=%f\n",result);
}

Note: The return statement passes the result back to the main program.

7.1 void functions

The void function provide a way of emulating PASCAL type procedures.
If you do not want to return a value you must use the return type void

and miss out the return statement:

void squares()

{ int loop;

for (loop=1;loop<10;loop++);

printf("%d\n",loop*loop);
}

main()

{ squares();

}

NOTE: We must have () even for no parameters unlike some languages.

7.2 Functions and Arrays

Single dimensional arrays can be passed to functions as follows:-

7.3. FUNCTION PROTOTYPING 61

float findaverage(int size,float list[])

{ int i;

float sum=0.0;

for (i=0;i<size;i++)

sum+=list[i];

return(sum/size);

}

Here the declaration float list[] tells C that list is an array of
float. Note we do not specify the dimension of the array when it is a
parameter of a function.

Multi-dimensional arrays can be passed to
functions as follows:

void printtable(int xsize,int ysize,

float table[][5])

{ int x,y;

for (x=0;x<xsize;x++)

{ for (y=0;y<ysize;y++)

printf("\t%f",table[x][y]);
printf("\n");

}
}

Here float table[][5] tells C that table is an array of dimension N×5
of float. Note we must specify the second (and subsequent) dimension of
the array BUT not the first dimension.

7.3 Function Prototyping

Before you use a function C must have knowledge about the type it returns
and the parameter types the function expects.

62 CHAPTER 7. FUNCTIONS

The ANSI standard of C introduced a new (better) way of doing this than
previous versions of C. (Note: All new versions of C now adhere to the ANSI
standard.)

The importance of prototyping is twofold.

• It makes for more structured and therefore easier to read code.

• It allows the C compiler to check the syntax of function calls.

How this is done depends on the scope of the function (See Chapter 34).
Basically if a functions has been defined before it is used (called) then you
are ok to merely use the function.

If NOT then you must declare the function. The declaration simply
states the type the function returns and the type of parameters used by the
function.

It is usual (and therefore good) practice to prototype all functions at the
start of the program, although this is not strictly necessary.

To declare a function prototype simply state the type the function returns,
the function name and in brackets list the type of parameters in the order
they appear in the function definition.

e.g.

int strlen(char []);

This states that a function called strlen returns an integer value and
accepts a single string as a parameter.

NOTE: Functions can be prototyped and variables defined on the same
line of code. This used to be more popular in pre-ANSI C days since functions
are usually prototyped separately at the start of the program. This is still
perfectly legal though: order they appear in the function definition.

e.g.

int length, strlen(char []);

Here length is a variable, strlen the function as before.

7.4. EXERCISES 63

7.4 Exercises

Exercise 7.1 Write a function “replace” which takes a pointer to a string
as a parameter, which replaces all spaces in that string by minus signs, and
delivers the number of spaces it replaced.

Thus

char *cat = "The cat sat";

n = replace(cat);

should set

cat to "The-cat-sat"

and

n to 2.

Exercise 7.2 Write a program which will read in the source of a C program
from its standard input, and print out all the starred items in the follow-
ing statistics for the program (all as integers). (Note the comment on tab
characters at the end of this specification.)

Print out the following values:

Lines:

* The total number of lines

* The total number of blank lines

(Any lines consisting entirely of white space should be

considered as blank lines.)

The percentage of blank lines (100 * blank_lines / lines)

Characters:

* The total number of characters after tab expansion

* The total number of spaces after tab expansion

* The total number of leading spaces after tab expansion

(These are the spaces at the start of a line, before any visible

character; ignore them if there are no visible characters.)

The average number of

characters per line

characters per line ignoring leading spaces

64 CHAPTER 7. FUNCTIONS

leading spaces per line

spaces per line ignoring leading spaces

Comments:

* The total number of comments in the program

* The total number of characters in the comments in the program

excluding the "/*" and "*/" thenselves

The percentage of number of comments to total lines

The percentage of characters in comments to characters

Identifiers:

We are concerned with all the occurrences of "identifiers" in the

program where each part of the text starting with a letter,

and continuing with letter, digits and underscores is considered

to be an identifier, provided that it is not

in a comment,

or in a string,

or within primes.

Note that

"abc\"def"

the internal escaped quote does not close the string.

Also, the representation of the escape character is

’\\’

and of prime is

’\’’

Do not attempt to exclude the fixed words of the language,

treat them as identifiers. Print

* The total number of identifier occurrences.

* The total number of characters in them.

The average identifier length.

Indenting:

* The total number of times either of the following occurs:

a line containing a "}" is more indented than the preceding line

a line is preceded by a line containing a "{" and is less

indented than it.

The "{" and "}" must be ignored if in a comment or string or

primes, or if the other line involved is entirely comment.

7.4. EXERCISES 65

A single count of the sum of both types of error is required.

NOTE: All tab characters (’�’) on input should be interpreted as multiple
spaces using the rule:

"move to the next modulo 8 column"

where the first column is numbered column 0.

col before tab | col after tab

---------------+--------------

0 | 8

1 | 8

7 | 8

8 | 16

9 | 16

15 | 16

16 | 24

To read input a character at a time the skeleton has code incorporated to read
a line at a time for you using

char ch;

ch = getchar();

Which will deliver each character exactly as read. The ”getline” function
then puts the line just read in the global array of characters ”linec”, null
terminated, and delivers the length of the line, or a negative value if end of
data has been encountered.

You can then look at the characters just read with (for example)

switch(linec[0]) {

case ’ ’: /* space */

break;

case ’\t’: /* tab character */

break;

case ’\n’: /* newline ... */

break;

....

} /* end switch */

End of data is indicated by scanf NOT delivering the value 1.

Your output should be in the following style:

66 CHAPTER 7. FUNCTIONS

Total lines 126

Total blank lines 3

Total characters 3897

Total spaces 1844

Total leading spaces 1180

Total comments 7

Total chars in comments 234

Total number of identifiers 132

Total length of identifiers 606

Total indenting errors 2

You may gather that the above program (together with the unstarred items)
forms the basis of part of your marking system! Do the easy bits first, and
leave it at that if some aspects worry you. Come back to me if you think my
solution (or the specification) is wrong! That is quite possible!

Exercise 7.3 It’s rates of pay again!

Loop performing the following operation in your program:

Read two integers, representing a rate of pay (pence per hour) and a
number of hours. Print out the total pay, with hours up to 40 being paid at
basic rate, from 40 to 60 at rate-and-a-half, above 60 at double-rate. Print
the pay as pounds to two decimal places.

Terminate the loop when a zero rate is encountered. At the end of the
loop, print out the total pay.

The code for computing the pay from the rate and hours is to be written
as a function.

The recommended output format is something like:

Pay at 200 pence/hr for 38 hours is 76.00 pounds

Pay at 220 pence/hr for 48 hours is 114.40 pounds

Pay at 240 pence/hr for 68 hours is 206.40 pounds

Pay at 260 pence/hr for 48 hours is 135.20 pounds

Pay at 280 pence/hr for 68 hours is 240.80 pounds

Pay at 300 pence/hr for 48 hours is 156.00 pounds

Total pay is 928.80 pounds

7.4. EXERCISES 67

The “program features” checks that explicit values such as 40 and 60 appear
only once, as a #define or initialised variable value. This represents good
programming practice.

68 CHAPTER 7. FUNCTIONS

Chapter 8

Further Data Types

This Chapter discusses how more advanced data types and structures can be
created and used in a C program.

8.1 Structures

Structures in C are similar to records in Pascal. For example:

struct gun

{
char name[50];

int magazinesize;

float calibre;

};

struct gun arnies;

defines a new structure gun and makes arnies an instance of it.

NOTE: that gun is a tag for the structure that serves as shorthand for
future declarations. We now only need to say struct gun and the body of
the structure is implied as we do to make the arnies variable. The tag is
optional.

Variables can also be declared between the } and ; of a struct declaration,
i.e.:

69

70 CHAPTER 8. FURTHER DATA TYPES

struct gun

{
char name[50];

int magazinesize;

float calibre;

} arnies;

struct’s can be pre-initialised at declaration:

struct gun arnies={"Uzi",30,7};

which gives arnie a 7mm. Uzi with 30 rounds of ammunition.
To access a member (or field) of a struct, C provides the . operator.

For example, to give arnie more rounds of ammunition:

arnies.magazineSize=100;

8.1.1 Defining New Data Types

typedef can also be used with structures. The following creates a new type
agun which is of type struct gun and can be initialised as usual:

typedef struct gun

{
char name[50];

int magazinesize;

float calibre;

} agun;

agun arnies={"Uzi",30,7};

Here gun still acts as a tag to the struct and is optional. Indeed since
we have defined a new data type it is not really of much use,

agun is the new data type. arnies is a variable of type agun which is a
structure.

C also allows arrays of structures:

8.2. UNIONS 71

typedef struct gun

{
char name[50];

int magazinesize;

float calibre;

} agun;

agun arniesguns[1000];

This gives arniesguns a 1000 guns. This may be used in the following
way:

arniesguns[50].calibre=100;

gives Arnie’s gun number 50 a calibre of 100mm, and:

itscalibre=arniesguns[0].calibre;

assigns the calibre of Arnie’s first gun to itscalibre.

8.2 Unions

A union is a variable which may hold (at different times) objects of different
sizes and types. C uses the union statement to create unions, for example:

union number

{
short shortnumber;

long longnumber;

double floatnumber;

} anumber

defines a union called number and an instance of it called anumber. number
is a union tag and acts in the same way as a tag for a structure.

Members can be accessed in the following way:

72 CHAPTER 8. FURTHER DATA TYPES

printf("%ld\n",anumber.longnumber);

This clearly displays the value of longnumber.

When the C compiler is allocating memory for unions it will always reserve
enough room for the largest member (in the above example this is 8 bytes
for the double).

In order that the program can keep track of the type of union variable
being used at a given time it is common to have a structure (with union
embedded in it) and a variable which flags the union type:

An example is:

typedef struct

{ int maxpassengers;

} jet;

typedef struct

{ int liftcapacity;

} helicopter;

typedef struct

{ int maxpayload;

} cargoplane;

typedef union

{ jet jetu;

helicopter helicopteru;

cargoplane cargoplaneu;

} aircraft;

typedef struct

{ aircrafttype kind;

int speed;

aircraft description;

} an aircraft;

8.3. COERCION OR TYPE-CASTING 73

This example defines a base union aircraft which may either be jet,
helicopter, or
cargoplane.

In the an aircraft structure there is a kind member which indicates
which structure is being held at the time.

8.3 Coercion or Type-Casting

C is one of the few languages to allow coercion, that is forcing one variable
of one type to be another type. C allows this using the cast operator (). So:

int integernumber;

float floatnumber=9.87;

integernumber=(int)floatnumber;

assigns 9 (the fractional part is thrown away) to integernumber.

And:

int integernumber=10;

float floatnumber;

floatnumber=(float)integernumber;

assigns 10.0 to floatnumber.

Coercion can be used with any of the simple data types including char,
so:

int integernumber;

char letter=’A’;

integernumber=(int)letter;

74 CHAPTER 8. FURTHER DATA TYPES

assigns 65 (the ASCII code for ‘A’) to integernumber.

Some typecasting is done automatically — this is mainly with integer
compatibility.

A good rule to follow is: If in doubt cast.

Another use is the make sure division behaves as requested: If we have
two integers internumber and anotherint and we want the answer to be a
float then :

e.g.
floatnumber =
(float) internumber / (float) anotherint;

ensures floating point division.

8.4 Enumerated Types

Enumerated types contain a list of constants that can be addressed in integer
values.

We can declare types and variables as follows.

enum days {mon, tues, ..., sun} week;

enum days week1, week2;

NOTE: As with arrays first enumerated name has index value 0. So mon

has value 0, tues 1, and so on.

week1 and week2 are variables.

We can define other values:

enum escapes { bell = ‘\a’,
backspace = ‘\b’, tab = ‘\t’,
newline = ‘\n’, vtab = ‘\v’,
return = ‘\r’};

8.5. STATIC VARIABLES 75

We can also override the 0 start value:

enum months {jan = 1, feb, mar,, dec};
Here it is implied that feb = 2 etc.

8.5 Static Variables

A static variable is local to particular function. However, it is only initialised
once (on the first call to function).

Also the value of the variable on leaving the function remains intact. On
the next call to the function the the static variable has the same value as
on leaving.

To define a static variable simply prefix the variable declaration with
the static keyword. For example:

void stat(); /* prototype fn */

main()

{ int i;

for (i=0;i<5;+ + i)
stat();

}

stat()

{ int auto var = 0;

static int static var = 0;

printf(‘‘auto = %d, static = %d \n’’,
auto var, static var);

++auto var;

++static var;

}

Output is:

76 CHAPTER 8. FURTHER DATA TYPES

auto var = 0, static var= 0

auto var = 0, static var = 1

auto var = 0, static var = 2

auto var = 0, static var = 3

auto var = 0, static var = 4

Clearly the auto var variable is created each time. The static var is
created once and remembers its value.

8.6 Exercises

Exercise 8.1 Write program using enumerated types which when given to-
day’s date will print out tomorrow’s date in the for 31st January, for example.

Exercise 8.2 Write a simple database program that will store a persons de-
tails such as age, date of birth, address etc.

Chapter 9

Pointers

Pointer are a fundamental part of C. If you cannot use pointers properly then
you have basically lost all the power and flexibility that C allows. The secret
to C is in its use of pointers.

C uses pointers a lot. Why?:

• It is the only way to express some computations.

• It produces compact and efficient code.

• It provides a very powerful tool.

C uses pointers explicitly with:

• Arrays,

• Structures,

• Functions.

NOTE: Pointers are perhaps the most difficult part of C to understand.
C’s implementation is slightly different DIFFERENT from other languages.

9.1 What is a Pointer?

A pointer is a variable which contains the address in memory of another
variable. We can have a pointer to any variable type.

77

78 CHAPTER 9. POINTERS

The unary or monadic operator & gives the “address of a variable”.
The indirection or dereference operator * gives the “contents of an object

pointed to by a pointer”.
To declare a pointer to a variable do:
int *pointer;

NOTE: We must associate a pointer to a particular type: You can’t
assign the address of a short int to a long int, for instance.

Consider the effect of the following code:

int x = 1, y = 2;

int *ip;

ip = &x;

y = *ip;

x = ip;

*ip = 3;

It is worth considering what is going on at the machine level in memory
to fully understand how pointer work. Consider Fig. 9.1. Assume for the
sake of this discussion that variable x resides at memory location 100, y at
200 and ip at 1000. Note A pointer is a variable and thus its values need
to be stored somewhere. It is the nature of the pointers value that is new.

Now the assignments x = 1 and y = 2 obviously load these values into
the variables. ip is declared to be a pointer to an integer and is assigned to
the address of x (&x). So ip gets loaded with the value 100.

Next y gets assigned to the contents of ip. In this example ip currently
points to memory location 100 — the location of x. So y gets assigned to the
values of x — which is 1.

We have already seen that C is not too fussy about assigning values of
different type. Thus it is perfectly legal (although not all that common) to
assign the current value of ip to x. The value of ip at this instant is 200.

Finally we can assign a value to the contents of a pointer (∗ip).

9.1. WHAT IS A POINTER? 79

Figure 9.1: Pointer, Variables and Memory

80 CHAPTER 9. POINTERS

IMPORTANT: When a pointer is declared it does not point anywhere.
You must set it to point somewhere before you use it.

So ...

int *ip;

*ip = 100;

will generate an error (program crash!!).
The correct use is:

int *ip;

int x;

ip = &x;

*ip = 100;

We can do integer arithmetic on a pointer:

float *flp, *flq;

*flp = *flp + 10;

++*flp;

(*flp)++;

flq = flp;

NOTE: A pointer to any variable type is an address in memory — which
is an integer address. A pointer is definitely NOT an integer.

The reason we associate a pointer to a data type is so that it knows how
many bytes the data is stored in. When we increment a pointer we increase
the pointer by one “block” memory.

So for a character pointer ++ch ptr adds 1 byte to the address.
For an integer or float ++ip or ++flp adds 4 bytes to the address.

9.2. POINTER AND FUNCTIONS 81

Figure 9.2: Pointer Arithmetic

Consider a float variable (fl) and a pointer to a float (flp) as shown in
Fig. 9.2.

Assume that flp points to fl then if we increment the pointer (++flp)
it moves to the position shown 4 bytes on. If on the other hand we added 2
to the pointer then it moves 2 float positions i.e 8 bytes as shown in the
Figure.

9.2 Pointer and Functions

Let us now examine the close relationship between pointers and C’s other
major parts. We will start with functions.

When C passes arguments to functions it passes them by value.

There are many cases when we may want to alter a passed argument in
the function and receive the new value back once to function has finished.
Other languages do this (e.g. var parameters in PASCAL). C uses point-
ers explicitly to do this. Other languages mask the fact that pointers also
underpin the implementation of this.

The best way to study this is to look at an example where we must be
able to receive changed parameters.

Let us try and write a function to swap variables around?

The usual function call:

swap(a, b) WON’T WORK.

Pointers provide the solution: Pass the address of the variables to the
functions and access address of function.

Thus our function call in our program would look like this:

82 CHAPTER 9. POINTERS

swap(&a, &b)

The Code to swap is fairly straightforward:

void swap(int *px, int *py)

{ int temp;

temp = *px;

/* contents of pointer */

*px = *py;

*py = temp;

}

We can return pointer from functions. A common example is when pass-
ing back structures. e.g.:

typedef struct {float x,y,z;} COORD;

main()

{ COORD p1, *coord fn();

/* declare fn to return ptr of

COORD type */

....

p1 = *coord fn(...);

/* assign contents of address returned */

....

}

COORD *coord fn(...)

{ COORD p;

.....

9.3. POINTERS AND ARRAYS 83

p =;

/* assign structure values */

return &p;

/* return address of p */

}

Here we return a pointer whose contents are immediately unwrapped into
a variable. We must do this straight away as the variable we pointed to was
local to a function that has now finished. This means that the address space
is free and can be overwritten. It will not have been overwritten straight
after the function ha squit though so this is perfectly safe.

9.3 Pointers and Arrays

Pointers and arrays are very closely linked in C.

Hint: think of array elements arranged in consecutive memory locations.

Consider the following:

int a[10], x;

int *pa;

pa = &a[0]; /* pa pointer to address of a[0] */

x = *pa;

/* x = contents of pa (a[0] in this case) */

To get somewhere in the array (Fig. 9.3) using a pointer we could do:

pa + i ≡ a[i]

WARNING: There is no bound checking of arrays and pointers so you
can easily go beyond array memory and overwrite other things.

C however is much more subtle in its link between arrays and pointers.

84 CHAPTER 9. POINTERS

Figure 9.3: Arrays and Pointers

For example we can just type

pa = a;

instead of

pa = &a[0]

and

a[i] can be written as *(a + i).
i.e. &a[i] ≡ a + i.

We also express pointer addressing like this:

pa[i] ≡ *(pa + i).

However pointers and arrays are different:

• A pointer is a variable. We can do
pa = a and pa++.

• An Array is not a variable. a = pa and a++ ARE ILLEGAL.

This stuff is very important. Make sure you understand it. We will see a
lot more of this.

We can now understand how arrays are passed to functions.

When an array is passed to a function what is actually passed is its initial
elements location in memory.

So:

strlen(s) ≡ strlen(&s[0])

This is why we declare the function:

int strlen(char s[]);

9.4. ARRAYS OF POINTERS 85

An equivalent declaration is : int strlen(char *s);

since char s[] ≡ char *s.

strlen() is a standard library function (Chapter 18) that returns the
length of a string. Let’s look at how we may write a function:

int strlen(char *s)

{ char *p = s;

while (*p != ‘\0);
p++;

return p-s;

}

Now lets write a function to copy a string to another string. strcpy() is
a standard library function that does this.

void strcpy(char *s, char *t)

{ while ((*s++ = *t++) != ‘\0);}

This uses pointers and assignment by value.

Very Neat!!

NOTE: Uses of Null statements with while.

9.4 Arrays of Pointers

We can have arrays of pointers since pointers are variables.

Example use:

Sort lines of text of different length.

NOTE: Text can’t be moved or compared in a single operation.

Arrays of Pointers are a data representation that will cope efficiently and
conveniently with variable length text lines.

How can we do this?:

86 CHAPTER 9. POINTERS

• Store lines end-to-end in one big char array (Fig. 9.4). \n will delimit
lines.

• Store pointers in a different array where each pointer points to 1st char
of each new line.

• Compare two lines using strcmp() standard library function.

• If 2 lines are out of order — swap pointer in pointer array (not text).

Figure 9.4: Arrays of Pointers (String Sorting Example)

This eliminates:

• complicated storage management.

• high overheads of moving lines.

9.5 Multidimensional arrays and pointers

We should think of multidimensional arrays in a different way in C:

A 2D array is really a 1D array, each of whose elements is itself an array

9.5. MULTIDIMENSIONAL ARRAYS AND POINTERS 87

Hence

a[n][m] notation.

Array elements are stored row by row.

When we pass a 2D array to a function we must specify the number of
columns — the number of rows is irrelevant.

The reason for this is pointers again. C needs to know how many columns
in order that it can jump from row to row in memory.

Considerint a[5][35] to be passed in a function:

We can do:

f(int a[][35]) {.....}
or even:

f(int (*a)[35]) {.....}
We need parenthesis (*a) since [] have a higher precedence than *

So:

int (*a)[35]; declares a pointer to an array of 35 ints.

int *a[35]; declares an array of 35 pointers to ints.

Now lets look at the (subtle) difference between pointers and arrays.
Strings are a common application of this.

Consider: char *name[10];

char Aname[10][20];

We can legally do name[3][4] and Aname[3][4] in C.
However

• Aname is a true 200 element 2D char array.

• access elements via
20∗row + col + base address
in memory.

• name has 10 pointer elements.

NOTE: If each pointer in name is set to point to a 20 element array then
and only then will 200 chars be set aside (+ 10 elements).

88 CHAPTER 9. POINTERS

Figure 9.5: 2D Arrays and Arrays of Pointers

The advantage of the latter is that each pointer can point to arrays be of
different length.

Consider:

char *name[] = { ‘‘no month’’, ‘‘jan’’,

‘‘feb’’, ... };
char Aname[][15] = { ‘‘no month’’, ‘‘jan’’,

‘‘feb’’, ... };

9.6. STATIC INITIALISATION OF POINTER ARRAYS 89

9.6 Static Initialisation of Pointer Arrays

Initialisation of arrays of pointers is an ideal application for

an internal static array.

some fn()

{ static char *months = { ‘‘no month’’,

‘‘jan’’, ‘‘feb’’,

... };

}

static reserves a private permanent bit of memory.

9.7 Pointers and Structures

These are fairly straight forward and are easily defined. Consider the follow-
ing:

struct COORD {float x,y,z;} pt;
struct COORD *pt ptr;

pt ptr = &pt; /* assigns pointer to pt */

the −> operator lets us access a member of the structure pointed to by
a pointer.i.e.:

pt ptr−>x = 1.0;

pt ptr−>y = pt ptr−>y - 3.0;

Example: Linked Lists

typedef struct { int value;

ELEMENT *next;

} ELEMENT;

90 CHAPTER 9. POINTERS

ELEMENT n1, n2;

n1.next = &n2;

Figure 9.6: Linking Two Nodes

NOTE: We can only declare next as a pointer to ELEMENT. We cannot
have a element of the variable type as this would set up a recursive definition
which is NOT ALLOWED. We are allowed to set a pointer reference since
4 bytes are set aside for any pointer.

The above code links a node n1 to n2 (Fig. 9.6) we will look at this matter
further in the next Chapter.

9.8 Common Pointer Pitfalls

Here we will highlight two common mistakes made with pointers.

9.8.1 Not assigning a pointer to memory address be-
fore using it

int *x;

*x = 100;

we need a physical location say: int y;

x = &y;

*x = 100;

9.8. COMMON POINTER PITFALLS 91

This may be hard to spot. NO COMPILER ERROR. Also x could
some random address at initialisation.

9.8.2 Illegal indirection

Suppose we have a function malloc() which tries to allocate memory dynam-
ically (at run time) and returns a pointer to block of memory requested if suc-
cessful or a NULL pointer
otherwise.

char *malloc() — a standard library function (see later).

Let us have a pointer: char *p;

Consider:

*p = (char *) malloc(100); /* request 100 bytes of memory */

*p = ‘y’;

There is mistake above. What is it?

No * in

*p = (char *) malloc(100);

Malloc returns a pointer. Also p does not point to any address.

The correct code should be:

p = (char *) malloc(100);

If code rectified one problem is if no memory is available and p is NULL.
Therefore we can’t do: *p = ‘y’;.

A good C program would check for this:

p = (char *) malloc(100);

if (p == NULL)

{ printf(‘‘Error: Out of Memory \n’’);
exit(1);

}
*p = ‘y’;

92 CHAPTER 9. POINTERS

9.9 Exercise

Exercise 9.1 Write a C program to read through an array of any type using
pointers. Write a C program to scan through this array to find a particular
value.

Exercise 9.2 Write a program to find the number of times that a given
word(i.e. a short string) occurs in a sentence (i.e. a long string!).

Read data from standard input. The first line is a single word, which
is followed by general text on the second line. Read both up to a newline
character, and insert a terminating null before processing.

Typical output should be:

The word is "the".

The sentence is "the cat sat on the mat".

The word occurs 2 times.

Exercise 9.3 Write a program that takes three variable (a, b, b) in as sep-
arate parameters and rotates the values stored so that value a goes to be, b,
to c and c to a.

Chapter 10

Dynamic Memory Allocation
and Dynamic Structures

Dynamic allocation is a pretty unique feature to C (amongst high level lan-
guages). It enables us to create data types and structures of any size and
length to suit our programs need within the program.

We will look at two common applications of this:

• dynamic arrays

• dynamic data structure e.g. linked lists

10.1 Malloc, Sizeof, and Free

The Function malloc is most commonly used to attempt to “grab” a con-
tinuous portion of memory. It is defined by:

void *malloc(size t number of bytes)

That is to say it returns a pointer of type void * that is the start in
memory of the reserved portion of size number of bytes. If memory cannot
be allocated a NULL pointer is returned.

Since a void * is returned the C standard states that this pointer can
be converted to any type. The size t argument type is defined in stdlib.h

and is an unsigned type.
So:

93

94CHAPTER 10. DYNAMIC MEMORY ALLOCATION AND DYNAMIC STRUCTURES

char *cp;

cp = malloc(100);

attempts to get 100 bytes and assigns the start address to cp.
Also it is usual to use the sizeof() function to specify the number of

bytes:

int *ip;

ip = (int *) malloc(100*sizeof(int));

Some C compilers may require to cast the type of conversion. The (int

*) means coercion to an integer pointer. Coercion to the correct pointer
type is very important to ensure pointer arithmetic is performed correctly.
I personally use it as a means of ensuring that I am totally correct in my
coding and use cast all the time.

It is good practice to use sizeof() even if you know the actual size you
want — it makes for device independent (portable) code.

sizeof can be used to find the size of any data type, variable or structure.
Simply supply one of these as an argument to the function.

SO:

int i;

struct COORD {float x,y,z};
typedef struct COORD PT;

sizeof(int), sizeof(i),

sizeof(struct COORD) and
sizeof(PT) are all ACCEPTABLE

In the above we can use the link between pointers and arrays to treat the
reserved memory like an array. i.e we can do things like:

ip[0] = 100;

or

10.2. CALLOC AND REALLOC 95

for(i=0;i<100;++i) scanf("%d",ip++);

When you have finished using a portion of memory you should always
free() it. This allows the memory freed to be aavailable again, possibly for
further malloc() calls

The function free() takes a pointer as an argument and frees the memory
to which the pointer refers.

10.2 Calloc and Realloc

There are two additional memory allocation functions, Calloc() and Realloc().
Their prototypes are given below:

void *calloc(size_t num_elements, size_t element_size};

void *realloc(void *ptr, size_t new_size);

Malloc does not initialise memory (to zero) in any way. If you wish to
initialise memory then use calloc. Calloc there is slightly more computa-
tionally expensive but, occasionally, more convenient than malloc. Also note
the different syntax between calloc and malloc in that calloc takes the
number of desired elements, num elements, and element size, element size,
as two individual arguments.

Thus to assign 100 integer elements that are all initially zero you would
do:

int *ip;

ip = (int *) calloc(100, sizeof(int));

Realloc is a function which attempts to change the size of a previous
allocated block of memory. The new size can be larger or smaller. If the
block is made larger then the old contents remain unchanged and memory is
added to the end of the block. If the size is made smaller then the remaining
contents are unchanged.

If the original block size cannot be resized then realloc will attempt to
assign a new block of memory and will copy the old block contents. Note a
new pointer (of different value) will consequently be returned. You must use

96CHAPTER 10. DYNAMIC MEMORY ALLOCATION AND DYNAMIC STRUCTURES

this new value. If new memory cannot be reallocated then realloc returns
NULL.

Thus to change the size of memory allocated to the *ip pointer above to
an array block of 50 integers instead of 100, simply do:

ip = (int *) calloc(ip, 50);

10.3 Linked Lists

Let us now return to our linked list example:

typedef struct { int value;

ELEMENT *next;

} ELEMENT;

We can now try to grow the list dynamically:

link = (ELEMENT *) malloc(sizeof(ELEMENT));

This will allocate memory for a new link.

If we want to deassign memory from a pointer use the free() function:

free(link)

See Example programs (queue.c) below and try exercises for further prac-
tice.

10.4 Full Program: queue.c

A queue is basically a special case of a linked list where one data element
joins the list at the left end and leaves in a ordered fashion at the other end.

The full listing for queue.c is as follows:

/* */

/* queue.c */

/* Demo of dynamic data structures in C */

10.4. FULL PROGRAM: QUEUE.C 97

#include <stdio.h>

#define FALSE 0

#define NULL 0

typedef struct {

int dataitem;

struct listelement *link;

} listelement;

void Menu (int *choice);

listelement * AddItem (listelement * listpointer, int data);

listelement * RemoveItem (listelement * listpointer);

void PrintQueue (listelement * listpointer);

void ClearQueue (listelement * listpointer);

main () {

listelement listmember, *listpointer;

int data,

choice;

listpointer = NULL;

do {

Menu (&choice);

switch (choice) {

case 1:

printf ("Enter data item value to add ");

scanf ("%d", &data);

listpointer = AddItem (listpointer, data);

break;

case 2:

if (listpointer == NULL)

printf ("Queue empty!\n");

else

listpointer = RemoveItem (listpointer);

break;

case 3:

PrintQueue (listpointer);

98CHAPTER 10. DYNAMIC MEMORY ALLOCATION AND DYNAMIC STRUCTURES

break;

case 4:

break;

default:

printf ("Invalid menu choice - try again\n");

break;

}

} while (choice != 4);

ClearQueue (listpointer);

} /* main */

void Menu (int *choice) {

char local;

printf ("\nEnter\t1 to add item,\n\t2 to remove item\n\

\t3 to print queue\n\t4 to quit\n");

do {

local = getchar ();

if ((isdigit (local) == FALSE) && (local != ’\n’)) {

printf ("\nyou must enter an integer.\n");

printf ("Enter 1 to add, 2 to remove, 3 to print, 4 to quit\n");

}

} while (isdigit ((unsigned char) local) == FALSE);

*choice = (int) local - ’0’;

}

listelement * AddItem (listelement * listpointer, int data) {

listelement * lp = listpointer;

if (listpointer != NULL) {

while (listpointer -> link != NULL)

listpointer = listpointer -> link;

listpointer -> link = (struct listelement *) malloc (sizeof (listelement))

listpointer = listpointer -> link;

10.4. FULL PROGRAM: QUEUE.C 99

listpointer -> link = NULL;

listpointer -> dataitem = data;

return lp;

}

else {

listpointer = (struct listelement *) malloc (sizeof (listelement));

listpointer -> link = NULL;

listpointer -> dataitem = data;

return listpointer;

}

}

listelement * RemoveItem (listelement * listpointer) {

listelement * tempp;

printf ("Element removed is %d\n", listpointer -> dataitem);

tempp = listpointer -> link;

free (listpointer);

return tempp;

}

void PrintQueue (listelement * listpointer) {

if (listpointer == NULL)

printf ("queue is empty!\n");

else

while (listpointer != NULL) {

printf ("%d\t", listpointer -> dataitem);

listpointer = listpointer -> link;

}

printf ("\n");

}

void ClearQueue (listelement * listpointer) {

while (listpointer != NULL) {

listpointer = RemoveItem (listpointer);

}

100CHAPTER 10. DYNAMIC MEMORY ALLOCATION AND DYNAMIC STRUCTURE

}

10.5 Exercises

Exercise 10.1 Write a program that reads a number that says how many
integer numbers are to be stored in an array, creates an array to fit the exact
size of the data and then reads in that many numbers into the array.

Exercise 10.2 Write a program to implement the linked list as described in
the notes above.

Exercise 10.3 Write a program to sort a sequence of numbers using a bi-
nary tree (Using Pointers). A binary tree is a tree structure with only two
(possible) branches from each node (Fig. 10.1). Each branch then represents
a false or true decision. To sort numbers simply assign the left branch to take
numbers less than the node number and the right branch any other number
(greater than or equal to). To obtain a sorted list simply search the tree in a
depth first fashion.

Your program should: Create a binary tree structure. Create routines for
loading the tree appropriately. Read in integer numbers terminated by a zero.
Sort numbers into numeric ascending order. Print out the resulting ordered
values, printing ten numbers per line as far as possible.

Typical output should be

The sorted values are:

2 4 6 6 7 9 10 11 11 11

15 16 17 18 20 20 21 21 23 24

27 28 29 30

10.5. EXERCISES 101

Figure 10.1: Example of a binary tree sort

102CHAPTER 10. DYNAMIC MEMORY ALLOCATION AND DYNAMIC STRUCTURE

Chapter 11

Advanced Pointer Topics

We have introduced many applications and techniques that use pointers. We
have introduced some advanced pointer issues already. This chapter brings
together some topics we have briefly mentioned and others to complete our
study C pointers.

In this chapter we will:

• Examine pointers to pointers in more detail.

• See how pointers are used in command line input in C.

• Study pointers to functions

11.1 Pointers to Pointers

We introduced the concept of a pointer to a pointer previously. You can have
a pointer to a pointer of any type.

Consider the following:

char ch; /* a character */

char *pch; /* a pointer to a character */

char **ppch; /* a pointer to a pointer to a character */

We can visualise this in Figure 11.1. Here we can see that **ppch refers to
memory address of *pch which refers to the memory address of the variable
ch. But what does this mean in practice?

103

104 CHAPTER 11. ADVANCED POINTER TOPICS

Figure 11.1: Pointers to pointers

Recall that char * refers to a (NULL terminated string. So one com-
mon and convenient notion is to declare a pointer to a pointer to a string
(Figure 11.2)

Figure 11.2: Pointer to String

Taking this one stage further we can have several strings being pointed
to by the pointer (Figure 11.3)

Figure 11.3: Pointer to Several Strings

We can refer to individual strings by ppch[0], ppch[1], Thus
this is identical to declaring char *ppch[].

One common occurrence of this type is in C command line argument
input which we now consider.

11.2. COMMAND LINE INPUT 105

11.2 Command line input

C lets read arguments from the command line which can then be used in our
programs.

We can type arguments after the program name when we run the program.

We have seen this with the compiler for example

c89 -o prog prog.c

c89 is the program, -o prog prog.c the arguments.

In order to be able to use such arguments in our code we must define
them as follows:

main(int argc, char **argv)

So our main function now has its own arguments. These are the only
arguments main accepts.

• argc is the number of arguments typed — including the program name.

• argv is an array of strings holding each command line argument —
including the program name in the first array element.

A simple program example:

#include<stdio.h>

main (int argc, char **argv)

{ /* program to print arguments

from command line */

int i;

printf(‘‘argc = %d\n\n’’,argc);
for (i=0;i<argc;++i)

printf(‘‘argv[%d]: %s\n’’,
i, argv[i]);

}

106 CHAPTER 11. ADVANCED POINTER TOPICS

Assume it is compiled to run it as args.

So if we type:

args f1 ‘‘f2’’ f3 4 stop!

The output would be:

argc = 6

argv[0] = args

argv[1] = f1

argv[2] = f2

argv[3] = f3

argv[4] = 4

argv[5] = stop!

NOTE: • argv[0] is program name.
• argc counts program name
• Embedded “ ” are ignored.
Blank spaces delimit end of arguments.
Put blanks in “ ” if needed.

11.3 Pointers to a Function

Pointer to a function are perhaps on of the more confusing uses of pointers in
C. Pointers to functions are not as common as other pointer uses. However,
one common use is in a passing pointers to a function as a parameter in
a function call. (Yes this is getting confusing, hold on to your hats for a
moment).

This is especially useful when alternative functions maybe used to per-
form similar tasks on data. You can pass the data and the function to be
used to some control function for instance. As we will see shortly the C stan-
dard library provided some basic sorting (qsort) and searching (bsearch)
functions for free. You can easily embed your own functions.

To declare a pointer to a function do:

int (*pf) ();

11.3. POINTERS TO A FUNCTION 107

This simply declares a pointer *pf to function that returns and int. No
actual function is pointed to yet.

If we have a function int f() then we may simply (!!) write:

pf = &f;

For compiler prototyping to fully work it is better to have full function
prototypes for the function and the pointer to a function:

int f(int);

int (*pf) (int) = &f;

Now f() returns an int and takes one int as a parameter.
You can do things like:

ans = f(5);

ans = pf(5);

which are equivalent.
The qsort standard library function is very useful function that is de-

signed to sort an array by a key value of any type into ascending order, as
long as the elements of the array are of fixed type.

qsort is prototyped in (stdlib.h):

void qsort(void *base, size_t num_elements, size_t element_size,

int (*compare)(void const *, void const *));

The argument base points to the array to be sorted, num elements indi-
cates how long the array is, element size is the size in bytes of each array
element and the final argument compare is a pointer to a function.

qsort calls the compare function which is user defined to compare the
data when sorting. Note that qsort maintains it’s data type independence
by giving the comparison responsibility to the user. The compare function
must return certain (integer) values according to the comparison result:

less than zero : if first value is less than the second value

zero : if first value is equal to the second value

greater than zero : if first value is greater than the second value

108 CHAPTER 11. ADVANCED POINTER TOPICS

Some quite complicated data structures can be sorted in this manner.
For example, to sort the following structure by integer key:

typedef struct {

int key;

struct other_data;

} Record;

We can write a compare function, record compare:

int record_compare(void const *a, void const *a)

{ return (((Record *)a)->key - ((Record *)b)->key);

}

Assuming that we have an array of array length Records suitably filled
with date we can call qsort like this:

qsort(array, arraylength, sizeof(Record), record_compare);

Further examples of standard library and system calls that use pointers
to functions may be found in Chapters 15.4 and 19.1.

11.4 Exercises

Exercise 11.1 Write a program last that prints the last n lines of its text
input. By default n should be 5, but your program should allow an optional
argument so that

last -n

prints out the last n lines, where n is any integer. Your program should
make the best use of available storage. (Input of text could be by reading a
file specified from the command or reading a file from standard input)

Exercise 11.2 Write a program that sorts a list of integers in ascending
order. However if a -r flag is present on the command line your program
should sort the list in descending order. (You may use any sorting routine
you wish)

11.4. EXERCISES 109

Exercise 11.3 Write a program that reads the following structure and sorts
the data by keyword using qsort

typedef struct {

char keyword[10];

int other_data;

} Record;

Exercise 11.4 An insertion sort is performed by adding values to an array
one by one. The first value is simply stored at the beginning of the array.
Each subsequent value is added by finding its ordered position in the array,
moving data as needed to accommodate the value and inserting the value in
this position.

Write a function called insort that performs this task and behaves in the
same manner as qsort, i.e it can sort an array by a key value of any type
and it has similar prototyping.

110 CHAPTER 11. ADVANCED POINTER TOPICS

Chapter 12

Low Level Operators and Bit
Fields

We have seen how pointers give us control over low level memory operations.

Many programs (e.g. systems type applications) must actually operate
at a low level where individual bytes must be operated on.

NOTE: The combination of pointers and bit-level operators makes C
useful for many low level applications and can almost replace assembly code.
(Only about 10 % of UNIX is assembly code the rest is C!!.)

12.1 Bitwise Operators

The bitwise operators of C a summarised in the following table:

& AND
| OR
∧ XOR
∼ One’s Compliment

0 → 1
1 → 0

<< Left shift
>> Right Shift

Table 12.1: Bitwise operators

111

112 CHAPTER 12. LOW LEVEL OPERATORS AND BIT FIELDS

DO NOT confuse & with &&: & is bitwise AND, && logical AND.
Similarly for | and ||.

∼ is a unary operator — it only operates on one argument to right of the
operator.

The shift operators perform appropriate shift by operator on the right to
the operator on the left. The right operator must be positive. The vacated
bits are filled with zero (i.e. There is NO wrap around).

For example: x << 2 shifts the bits in x by 2 places to the left.

So:

if x = 00000010 (binary) or 2 (decimal)

then:

x >>= 2 ⇒ x = 00000000 or 0 (decimal)

Also: if x = 00000010 (binary) or 2 (decimal)

x <<= 2 ⇒ x = 00001000 or 8 (decimal)

Therefore a shift left is equivalent to a multiplication by 2.

Similarly a shift right is equal to division by 2

NOTE: Shifting is much faster than actual multiplication (*) or division
(/) by 2. So if you want fast multiplications or division by 2 use shifts.

To illustrate many points of bitwise operators let us write a function,
Bitcount, that counts bits set to 1 in an 8 bit number (unsigned char)
passed as an argument to the function.

int bitcount(unsigned char x)

{ int count;

for (count=0; x != 0; x>>= 1);
if (x & 01)

count++;

return count;

}

12.2. BIT FIELDS 113

This function illustrates many C program points:

• for loop not used for simple counting operation

• x>>= 1 ⇒ x = x >> 1

• for loop will repeatedly shift right x until x becomes 0

• use expression evaluation of x & 01 to control if

• x & 01 masks of 1st bit of x if this is 1 then count++

12.2 Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful
when memory or data storage is at a premium. Typical examples:

• Packing several objects into a machine word. e.g. 1 bit flags can be
compacted — Symbol tables in compilers.

• Reading external file formats — non-standard file formats could be
read in. E.g. 9 bit integers.

C lets us do this in a structure definition by putting :bit length after the
variable. i.e.

struct packed struct {
unsigned int f1:1;

unsigned int f2:1;

unsigned int f3:1;

unsigned int f4:1;

unsigned int type:4;

unsigned int funny int:9;

} pack;

Here the packed struct contains 6 members: Four 1 bit flags f1..f3, a
4 bit type and a 9 bit funny int.

114 CHAPTER 12. LOW LEVEL OPERATORS AND BIT FIELDS

C automatically packs the above bit fields as compactly as possible, pro-
vided that the maximum length of the field is less than or equal to the integer
word length of the computer. If this is not the case then some compilers may
allow memory overlap for the fields whilst other would store the next field in
the next word (see comments on bit fiels portability below).

Access members as usual via:

pack.type = 7;

NOTE:

• Only n lower bits will be assigned to an n bit number. So type cannot
take values larger than 15 (4 bits long).

• Bit fields are always converted to integer type for computation.

• You are allowed to mix “normal” types with bit fields.

• The unsigned definition is important - ensures that no bits are used
as a ± flag.

12.2.1 Bit Fields: Practical Example

Frequently device controllers (e.g. disk drives) and the operating system need
to communicate at a low level. Device controllers contain several registers
which may be packed together in one integer (Figure 12.1).

We could define this register easily with bit fields:

struct DISK_REGISTER {

unsigned ready:1;

unsigned error_occured:1;

unsigned disk_spinning:1;

unsigned write_protect:1;

unsigned head_loaded:1;

unsigned error_code:8;

unsigned track:9;

unsigned sector:5;

unsigned command:5;

};

12.2. BIT FIELDS 115

Figure 12.1: Example Disk Controller Register

To access values stored at a particular memory address, DISK REGISTER MEMORY

we can assign a pointer of the above structure to access the memory via:

struct DISK_REGISTER *disk_reg = (struct DISK_REGISTER *) DISK_REGISTER_MEMORY;

The disk driver code to access this is now relatively straightforward:

/* Define sector and track to start read */

disk_reg->sector = new_sector;

disk_reg->track = new_track;

disk_reg->command = READ;

/* wait until operation done, ready will be true */

while (! disk_reg->ready) ;

/* check for errors */

if (disk_reg->error_occured)

{ /* interrogate disk_reg->error_code for error type */

switch (disk_reg->error_code)

116 CHAPTER 12. LOW LEVEL OPERATORS AND BIT FIELDS

......

}

12.2.2 A note of caution: Portability

Bit fields are a convenient way to express many difficult operations. However,
bit fields do suffer from a lack of portability between platforms:

• integers may be signed or unsigned

• Many compilers limit the maximum number of bits in the bit field to
the size of an integer which may be either 16-bit or 32-bit varieties.

• Some bit field members are stored left to right others are stored right
to left in memory.

• If bit fields too large, next bit field may be stored consecutively in
memory (overlapping the boundary between memory locations) or in
the next word of memory.

If portability of code is a premium you can use bit shifting and masking
to achieve the same results but not as easy to express or read. For example:

unsigned int *disk_reg = (unsigned int *) DISK_REGISTER_MEMORY;

/* see if disk error occured */

disk_error_occured = (disk_reg & 0x40000000) >> 31;

12.3 Exercises

Exercise 12.1 Write a function that prints out an 8-bit (unsigned char)
number in binary format.

Exercise 12.2 Write a function setbits(x,p,n,y) that returns x with the n
bits that begin at position p set to the rightmost n bits of an unsigned char
variable y (leaving other bits unchanged).

12.3. EXERCISES 117

E.g. if x = 10101010 (170 decimal) and y = 10100111 (167 decimal) and
n = 3 and p = 6 say then you need to strip off 3 bits of y (111) and put them
in x at position 10xxx010 to get answer 10111010.

Your answer should print out the result in binary form (see Exercise 12.1
although input can be in decimal form.

Your output should be like this:

x = 10101010 (binary)

y = 10100111 (binary)

setbits n = 3, p = 6 gives x = 10111010 (binary)

Exercise 12.3 Write a function that inverts the bits of an unsigned char x
and stores answer in y.

Your answer should print out the result in binary form (see Exercise 12.1
although input can be in decimal form.

Your output should be like this:

x = 10101010 (binary)

x inverted = 01010101 (binary)

Exercise 12.4 Write a function that rotates (NOT shifts) to the right by
n bit positions the bits of an unsigned char x.ie no bits are lost in this process.

Your answer should print out the result in binary form (see Exercise 12.1
although input can be in decimal form.

Your output should be like this:

x = 10100111 (binary)

x rotated by 3 = 11110100 (binary)

Note: All the functions developed should be as concise as possible

118 CHAPTER 12. LOW LEVEL OPERATORS AND BIT FIELDS

Chapter 13

The C Preprocessor

Recall that preprocessing is the first step in the C program compilation stage
— this feature is unique to C compilers.

The preprocessor more or less provides its own language which can be a
very powerful tool to the programmer. Recall that all preprocessor directives
or commands begin with a #.

Use of the preprocessor is advantageous since it makes:

• programs easier to develop,

• easier to read,

• easier to modify

• C code more transportable between different machine architectures.

The preprocessor also lets us customise the language. For example to
replace { ... } block statements delimiters by PASCAL like begin ... end

we can do:

#define begin {
#define end }

During compilation all occurrences of begin and end get replaced by
corresponding { or } and so the subsequent C compilation stage does not
know any difference!!!.

Lets look at #define in more detail

119

120 CHAPTER 13. THE C PREPROCESSOR

13.1 #define

Use this to define constants or any macro substitution. Use as follows:

#define <macro> <replacement name>

For Example

#define FALSE 0

#define TRUE !FALSE

We can also define small “functions” using #define. For example max.
of two variables:

#define max(A,B) ((A) > (B) ? (A):(B))

? is the ternary operator in C.

Note: that this does not define a proper function max.

All it means that wherever we place max(C†,D†) the text gets replaced
by the appropriate definition. [† = any variable names – not necessarily C
and D]

So if in our C code we typed something like:

x = max(q+r,s+t);

after preprocessing, if we were able to look at the code it would appear
like this:

x = ((q+r) > (r+s) ? (q+r) : (s+t));

Other examples of #define could be:

#define Deg to Rad(X) (X*M PI/180.0)

/* converts degrees to radians, M PI is the value
of pi and is defined in math.h library */

#define LEFT SHIFT 8 <<8

13.2. #UNDEF 121

NOTE: The last macro LEFT SHIFT 8 is only
valid so long as replacement context is valid i.e.
x = y LEFT SHIFT 8.

13.2 #undef

This commands undefined a macro. A macro must be undefined before being
redefined to a different value.

13.3 #include

This directive includes a file into code.

It has two possible forms:

#include <file>

or

#include ‘‘file’’

<file> tells the compiler to look where system include files are held.
Usually UNIX systems store files in \usr\include\ directory.

‘‘file’’ looks for a file in the current directory (where program was run
from)

Included files usually contain C prototypes and declarations from header
files and not (algorithmic) C code (SEE next Chapter for reasons)

13.4 #if — Conditional inclusion

#if evaluates a constant integer expression. You always need a #endif to
delimit end of statement.

We can have else etc. as well by using #else and #elif — else if.

Another common use of #if is with:

122 CHAPTER 13. THE C PREPROCESSOR

#ifdef — if defined and

#ifndef — if not defined

These are useful for checking if macros are set — perhaps from different
program modules and header files.

For example, to set integer size for a portable C program between TurboC
(on MSDOS) and Unix (or other) Operating systems. Recall that TurboC
uses 16 bits/integer and UNIX 32 bits/integer.

Assume that if TurboC is running a macro TURBOC will be defined. So we
just need to check for this:

#ifdef TURBOC

#define INT SIZE 16

#else

#define INT SIZE 32

#endif

As another example if running program on MSDOS machine we want to
include file msdos.h otherwise a default.h file. A macro SYSTEM is set (by
OS) to type of system so check for this:

#if SYSTEM == MSDOS

#include <msdos.h>

#else

#include ‘‘default.h’’

#endif

13.5 Preprocessor Compiler Control

You can use the cc compiler to control what values are set or defined from
the command line. This gives some flexibility in setting customised values
and has some other useful functions. The -D compiler option is used. For
example:

cc -DLINELENGTH=80 prog.c -o prog

13.6. OTHER PREPROCESSOR COMMANDS 123

has the same effect as:
#define LINELENGTH 80

Note that any #define or #undef within the program (prog.c above)
override command line settings.

You can also set a symbol without a value, for example:
cc -DDEBUG prog.c -o prog

Here the value is assumed to be 1.
The setting of such flags is useful, especially for debugging. You can put

commands like:

#ifdef DEBUG

print("Debugging: Program Version 1\");

#else

print("Program Version 1 (Production)\");

#endif

Also since preprocessor command can be written anywhere in a C program
you can filter out variables etc for printing etc. when debugging:

x = y *3;

#ifdef DEBUG

print("Debugging: Variables (x,y) = \",x,y);

#endif

The -E command line is worth mentioning just for academic reasons. It
is not that practical a command. The -E command will force the compiler
to stop after the preprocessing stage and output the current state of your
program. Apart from being debugging aid for preprocessor commands and
also as a useful initial learning tool (try this option out with some of the
examples above) it is not that commonly used.

13.6 Other Preprocessor Commands

There are few other preprocessor directives available:

#error text of error message — generates an appropriate compiler error
message. e.g

124 CHAPTER 13. THE C PREPROCESSOR

#ifdef OS MSDOS

#include <msdos.h>

#elifdef OS UNIX

#include ‘‘default.h’’

#else

#error Wrong OS!!

#endif

line number "string" — informs the preprocessor that the number is
the next number of line of input. "string" is optional and names the
next line of input. This is most often used with programs that translate
other languages to C. For example, error messages produced by the C
compiler can reference the file name and line numbers of the original
source files instead of the intermediate C (translated) source files.

13.7 Exercises

Exercise 13.1 Define a preprocessor macro swap(t, x, y) that will swap
two arguments x and y of a given type t.

Exercise 13.2 Define a preprocessor macro to select:

• the least significant bit from an unsigned char

• the nth (assuming least significant is 0) bit from an unsigned char.

Chapter 14

C, UNIX and Standard
Libraries

There is a very close link between C and most operating systems that run
our C programs. Almost the whole of the UNIX operating system is written
in C. This Chapter will look at how C and UNIX interface together. 1

We have to use UNIX to maintain our file space, edit, compile and run
programs etc..

However UNIX is much more useful than this:

14.1 Advantages of using UNIX with C

• Portability — UNIX, or a variety of UNIX, is available on many
machines. Programs written in standard UNIX and C should run on
any of them with little difficulty.

• Multiuser / Multitasking — many programs can share a machines
processing power.

• File handling — hierarchical file system with many file handling rou-
tines.

1Even though we deal with UNIX and C nearly all the forthcoming discussions are
applicable to MSDOS and other operating systems

125

126 CHAPTER 14. C, UNIX AND STANDARD LIBRARIES

• Shell Programming — UNIX provides a powerful command inter-
preter that
understands over 200 commands and can also run UNIX and user-
defined programs.

• Pipe — where the output of one program can be made the input of
another. This can done from command line or within a C program.

• UNIX utilities — there over 200 utilities that let you accomplish
many routines without writing new programs. e.g. make, grep, diff,
awk, more

• System calls — UNIX has about 60 system calls that are at the heart
of the operating system or the kernel of UNIX. The calls are actually
written in C. All of them can be accessed from C programs. Basic I/0,
system clock access are examples. The function open() is an example
of a system call.

• Library functions — additions to the operating system.

14.2 Using UNIX System Calls and Library

Functions

To use system calls and library functions in a C program we simply call the
appropriate C function.

Examples of standard library functions we have met include the higher
level I/O functions — fprintf(), malloc() ...

Aritmetic operators, random number generators — random(), srandom(),

lrand48(), drand48() etc. and basic C types to string conversion are
memebers of the stdlib.h standard library.

All math functions such as sin(), cos(), sqrt() are standard math
library (math.h) functions and others follow in a similar fashion.

For most system calls and library functions we have to include an appro-
priate header file. e.g. stdio.h, math.h

To use a function, ensure that you have made the required #includes in
your C file. Then the function can be called as though you had defined it
yourself.

14.2. USING UNIX SYSTEM CALLS AND LIBRARY FUNCTIONS 127

It is important to ensure that your arguments have the expected types,
otherwise the function will probably produce strange results. lint is quite
good at checking such things.

Some libraries require extra options before the compiler can support their
use. For example, to compile a program including functions from the math.h
library the command might be

cc mathprog.c -o mathprog -lm

The final -lm is an instruction to link the maths library with the program.
The manual page for each function will usually inform you if any special
compiler flags are required.

Information on nearly all system calls and library functions is available in
manual pages. These are available on line: Simply type man function name.

e.g. man drand48

would give information about this random number generator.
Over the coming chapters we will be investigating in detail many aspects

of the C Standard Library and also other UNIX libraries.

128 CHAPTER 14. C, UNIX AND STANDARD LIBRARIES

Chapter 15

Integer Functions, Random
Number, String Conversion,
Searching and Sorting:
<stdlib.h>

To use all functions in this library you must:
#include <stdlib.h>

There are three basic categories of functions:

• Arithmetic

• Random Numbers

• String Conversion

The use of all the functions is relatively straightforward. We only consider
them briefly in turn in this Chapter.

15.1 Arithmetic Functions

There are 4 basic integer functions:

int abs(int number);

long int labs(long int number);

129

130CHAPTER 15. INTEGER FUNCTIONS, RANDOM NUMBER, STRING CONVERSI

div_t div(int numerator,int denominator);

ldiv_t ldiv(long int numerator, long int denominator);

Essentially there are two functions with integer and long integer compat-
ibility.

abs functions return the absolute value of its number arguments. For exam-
ple, abs(2) returns 2 as does abs(-2).

div takes two arguments, numerator and denominator and produces a quo-
tient and a remainder of the integer division. The div t structure is
defined (in stdlib.h) as follows:

typedef struct {

int quot; /* quotient */

int rem; /* remainder */

} div_t;

(ldiv t is similarly defined).

Thus:

#include <stdlib.h>

....

int num = 8, den = 3;

div_t ans;

ans = div(num,den);

printf("Answer:\n\t Quotient = %d\n\t Remainder = %d\n", \

ans.quot,ans.rem);

Produces the following output:

Answer:

Quotient = 2

Remainder = 2

15.2. RANDOM NUMBERS 131

15.2 Random Numbers

Random numbers are useful in programs that need to simulate random
events, such as games, simulations and experimentations. In practice no
functions produce truly random data — they produce pseudo-random num-
bers. These are computed form a given formula (different generators use
different formulae) and the number sequences they produce are repeatable.
A seed is usually set from which the sequence is generated. Therefore is you
set the same seed all the time the same set will be be computed.

One common technique to introduce further randomness into a random
number generator is to use the time of the day to set the seed, as this will
always be changing. (We will study the standard library time functions later
in Chapter 20).

There are many (pseudo) random number functions in the standard li-
brary. They all operate on the same basic idea but generate different num-
ber sequences (based on different generator functions) over different number
ranges.

The simplest set of functions is:

int rand(void);

void srand(unsigned int seed);

rand() returns successive pseudo-random numbers in the range from 0
to (215)-1.

srand() is used to set the seed. A simple example of using the time of
the day to initiate a seed is via the call:

srand((unsigned int) time(NULL));

The following program card.c illustrates the use of these functions to
simulate a pack of cards being shuffled:

/*

** Use random numbers to shuffle the "cards" in the deck. The second

** argument indicates the number of cards. The first time this

** function is called, srand is called to initialize the random

** number generator.

*/

#include <stdlib.h>

132CHAPTER 15. INTEGER FUNCTIONS, RANDOM NUMBER, STRING CONVERSI

#include <time.h>

#define TRUE 1

#define FALSE 0

void shuffle(int *deck, int n_cards)

{

int i;

static int first_time = TRUE;

/*

** Seed the random number generator with the current time

** of day if we haven’t done so yet.

*/

if(first_time){

first_time = FALSE;

srand((unsigned int)time(NULL));

}

/*

** "Shuffle" by interchanging random pairs of cards.

*/

for(i = n_cards - 1; i > 0; i -= 1){

int where;

int temp;

where = rand() % i;

temp = deck[where];

deck[where] = deck[i];

deck[i] = temp;

}

}

There are several other random number generators available in the stan-
dard library:

double drand48(void);

double erand48(unsigned short xsubi[3]);

long lrand48(void);

15.3. STRING CONVERSION 133

long nrand48(unsigned short xsubi[3]);

long mrand48(void);

long jrand48(unsigned short xsubi[3]);

void srand48(long seed);

unsigned short *seed48(unsigned short seed[3]);

void lcong48(unsigned short param[7]);

This family of functions generates uniformly distributed pseudo-random
numbers.

Functions drand48() and erand48() return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48() and nrand48() return non-negative long integers uni-
formly distributed over the interval [0, 2**31).

Functions mrand48() and jrand48() return signed long integers uniformly
distributed over the interval [-2**31, 2**31).

Functions srand48(), seed48(), and lcong48() set the seeds for drand48(),
lrand48(), or mrand48() and one of these should be called first.

Further examples of using these functions is given is Chapter 20.

15.3 String Conversion

There are a few functions that exist to convert strings to integer, long integer
and float values. They are:

double atof(char *string) — Convert string to floating point value.
int atoi(char *string) — Convert string to an integer value
int atol(char *string) — Convert string to a long integer value.
double strtod(char *string, char *endptr)— Convert string to a float-
ing point value.
long strtol(char *string, char *endptr, int radix)— Convert string
to a long integer using a given radix.
unsigned long strtoul(char *string, char *endptr, int radix)—
Convert string to unsigned long.

Most of these are fairly straightforward to use. For example:

char *str1 = "100";

char *str2 = "55.444";

char *str3 = " 1234";

char *str4 = "123four";

134CHAPTER 15. INTEGER FUNCTIONS, RANDOM NUMBER, STRING CONVERSI

char *str5 = "invalid123";

int i;

float f;

i = atoi(str1); /* i = 100 */

f = atof(str2); /* f = 55.44 */

i = atoi(str3); /* i = 1234 */

i = atoi(str4); /* i = 123 */

i = atoi(str5); /* i = 0 */

Note:

• Leading blank characters are skipped.

• Trailing illegal characters are ignored.

• If conversion cannot be made zero is returned and errno (See Chap-
ter 17) is set with the value ERANGE.

15.4 Searching and Sorting

The stdlib.h provides 2 useful functions to perform general searching and
sorting of data on any type. In fact we have already introduced the qsort()
function in Chapter 11.3. For completeness we list the prototype again here
but refer the reader to the previous Chapter for an example.

The qsort standard library function is very useful function that is de-
signed to sort an array by a key value of any type into ascending order, as
long as the elements of the array are of fixed type.

qsort is prototyped (in stdlib.h):

void qsort(void *base, size_t num_elements, size_t element_size,

int (*compare)(void const *, void const *));

Similarly, there is a binary search function, bsearch() which is proto-
typed (in stdlib.h) as:

void *bsearch(const void *key, const void *base, size_t nel,

size_t size, int (*compare)(const void *, const void *));

15.5. EXERCISES 135

Using the same Record structure and record compare function as the
qsort() example (in Chapter 11.3):

typedef struct {

int key;

struct other_data;

} Record;

int record_compare(void const *a, void const *a)

{ return (((Record *)a)->key - ((Record *)b)->key);

}

Also, Assuming that we have an array of array length Records suitably
filled with date we can call bsearch() like this:

Record key;

Record *ans;

key.key = 3; /* index value to be searched for */

ans = bsearch(&key, array, arraylength, sizeof(Record), record_compare);

The function bsearch() return a pointer to the field whose key filed is
filled with the matched value of NULL if no match found.

Note that the type of the key argument must be the same as the array
elements (Record above), even though only the key.key element is required
to be set.

15.5 Exercises

Exercise 15.1 Write a program that simulates throwing a six sided die

Exercise 15.2 Write a program that simulates the UK National lottery by
selecting six different whole numbers in the range 1 – 49.

Exercise 15.3 Write a program that read a number from command line in-
put and generates a random floating point number in the range 0 – the input
number.

136CHAPTER 15. INTEGER FUNCTIONS, RANDOM NUMBER, STRING CONVERSI

Chapter 16

Mathematics: <math.h>

Mathematics is relatively straightforward library to use again. You must
#include <math.h> and must remember to link in the math library at
compilation:

cc mathprog.c -o mathprog -lm

A common source of error is in forgetting to include the <math.h> file
(and yes experienced programmers make this error also). Unfortunately the
C compiler does not help much. Consider:

double x;

x = sqrt(63.9);

Having not seen the prototype for sqrt the compiler (by default) assumes
that the function returns an int and converts the value to a double with
meaningless results.

16.1 Math Functions

Below we list some common math functions. Apart from the note above they
should be easy to use and we have already used some in previous examples.
We give no further examples here:

double acos(double x) — Compute arc cosine of x.
double asin(double x) — Compute arc sine of x.
double atan(double x) — Compute arc tangent of x.
double atan2(double y, double x) — Compute arc tangent of y/x.
double ceil(double x) — Get smallest integral value that exceeds x.

137

138 CHAPTER 16. MATHEMATICS: <MATH.H>

double cos(double x) — Compute cosine of angle in radians.
double cosh(double x) — Compute the hyperbolic cosine of x.
div_t div(int number, int denom) — Divide one integer by another.
double exp(double x — Compute exponential of x
double fabs (double x) — Compute absolute value of x.
double floor(double x) — Get largest integral value less than x.
double fmod(double x, double y) — Divide x by y with integral quotient
and return remainder.
double frexp(double x, int *expptr) — Breaks down x into mantissa
and exponent of no.
labs(long n) — Find absolute value of long integer n.
double ldexp(double x, int exp) — Reconstructs x out of mantissa and
exponent of two.
ldiv_t ldiv(long number, long denom) — Divide one long integer by an-
other.
double log(double x) — Compute log(x).
double log10 (double x) — Compute log to the base 10 of x.
double modf(double x, double *intptr) — Breaks x into fractional and
integer parts.
double pow (double x, double y) — Compute x raised to the power y.
double sin(double x) — Compute sine of angle in radians.
double sinh(double x) – Compute the hyperbolic sine of x.
double sqrt(double x) — Compute the square root of x.
void srand(unsigned seed) — Set a new seed for the random number gen-
erator (rand).
double tan(double x) — Compute tangent of angle in radians.
double tanh(double x) — Compute the hyperbolic tangent of x.

16.2 Math Constants

The math.h library defines many (often neglected) constants. It is always
advisable to use these definitions:

HUGE — The maximum value of a single-precision floating-point number.

M E — The base of natural logarithms (e).

M LOG2E — The base-2 logarithm of e.

16.2. MATH CONSTANTS 139

M LOG10E – The base-10 logarithm of e.

M LN2 — The natural logarithm of 2.

M LN10 — The natural logarithm of 10.

M PI — π.

M PI 2 — π/2.

M PI 4 — π/4.

M 1 PI — 1/π.

M 2 PI — 2/π.

M 2 SQRTPI — 2/
√

π.

M SQRT2 — The positive square root of 2.

M SQRT1 2 — The positive square root of 1/2.

MAXFLOAT — The maximum value of a non-infinite single- precision floating
point number.

HUGE VAL — positive infinity.

There are also a number a machine dependent values defined in #include <value.h>

— see man value or list value.h for further details.

140 CHAPTER 16. MATHEMATICS: <MATH.H>

Chapter 17

Input and Output
(I/O):stdio.h

This chapter will look at many forms of I/O. We have briefly mentioned some
forms before will look at these in much more detail here.

Your programs will need to include the standard I/O header file so do:

#include <stdio.h>

17.1 Reporting Errors

Many times it is useful to report errors in a C program. The standard
library perror() is an easy to use and convenient function. It is used in
conjunction with errno and frequently on encountering an error you may
wish to terminate your program early. Whilst not strictly part of the stdio.h
library we introduce the concept of errno and the function exit() here. We
will meet these concepts in other parts of the Standard Library also.

17.1.1 perror()

The function perror() is prototyped by:
void perror(const char *message);

perror() produces a message (on standard error output — see Section 17.2.1),
describing the last error encountered, returned to errno (see below) during a
call to a system or library function. The argument string message is printed

141

142 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

first, then a colon and a blank, then the message and a newline. If message
is a NULL pointer or points to a null string, the colon is not printed.

17.1.2 errno

errno is a special system variable that is set if a system call cannot perform
its set task. It is defined in #include <errno.h>.

To use errno in a C program it must be declared via:

extern int errno;

It can be manually reset within a C program (although this is uncommon
practice) otherwise it simply retains its last value returned by a system call
or library function.

17.1.3 exit()

The function exit() is prototyped in #include <stdlib> by:
void exit(int status)

Exit simply terminates the execution of a program and returns the exit
status value to the operating system. The status value is used to indicate
if the program has terminated properly:

• it exist with a EXIT SUCCESS value on successful termination

• it exist with a EXIT FAILURE value on unsuccessful termination.

On encountering an error you may frequently call an exit(EXIT FAILURE)

to terminate an errant program.

17.2 Streams

Streams are a portable way of reading and writing data. They provide a
flexible and efficient means of I/O.

A Stream is a file or a physical device (e.g. printer or monitor) which is
manipulated with a pointer to the stream.

There exists an internal C data structure, FILE, which represents all
streams and is defined in stdio.h. We simply need to refer to the FILE

structure in C programs when performing I/O with streams.

17.2. STREAMS 143

Figure 17.1: Stream I/O Model

We just need to declare a variable or pointer of this type in our programs.

We do not need to know any more specifics about this definition.

We must open a stream before doing any I/O,

then access it

and then close it.

Stream I/O is BUFFERED: That is to say a fixed “chunk” is read from
or written to a file via some temporary storage area (the buffer). This is
illustrated in Fig. 17.1. NOTE the file pointer actually points to this buffer.

This leads to efficient I/O but beware: data written to a buffer does not
appear in a file (or device) until the buffer is flushed or written out. (\n does
this). Any abnormal exit of code can cause problems.

17.2.1 Predefined Streams

UNIX defines 3 predefined streams (in stdio.h):

144 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

stdin, stdout, stderr

They all use text a the method of I/O.

stdin and stdout can be used with files, programs, I/O devices such as
keyboard, console, etc.. stderr always goes to the console or screen.

The console is the default for stdout and stderr. The keyboard is the
default for stdin.

Predefined stream are automatically open.

Redirection

This how we override the UNIX default predefined I/O defaults.

This is not part of C but operating system dependent. We will do redi-
rection from the command line.

> — redirect stdout to a file.

So if we have a program, out, that usually prints to the screen then

out > file1

will send the output to a file, file1.

< — redirect stdin from a file to a program.

So if we are expecting input from the keyboard for a program, in we can
read similar input from a file

in < file2.

| — pipe: puts stdout from one program to stdin of another

prog1 | prog2

e.g. Sent output (usually to console) of a program direct to printer:

out | lpr

17.3 Basic I/O

There are a couple of function that provide basic I/O facilities.

17.4. FORMATTED I/O 145

probably the most common are: getchar() and putchar(). They are
defined and used as follows:

• int getchar(void) — reads a char from stdin

• int putchar(char ch) — writes a char to stdout, returns character
written.

int ch;

ch = getchar();

(void) putchar((char) ch);

Related Functions:

int getc(FILE *stream),

int putc(char ch,FILE *stream)

17.4 Formatted I/O

We have seen examples of how C uses formatted I/O already. Let’s look at
this in more detail.

17.4.1 Printf

The function is defined as follows:

int printf(char *format, arg list ...) —
prints to stdout the list of arguments according specified format string.
Returns number of characters printed.

The format string has 2 types of object:

• ordinary characters — these are copied to output.

• conversion specifications — denoted by % and listed in Table 17.1.

Between % and format char we can put:

146 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

Format Spec (%) Type Result
c char single character

i,d int decimal number
o int octal number

x,X int hexadecimal number
lower/uppercase notation

u int unsigned int
s char * print string

terminated by \0
f double/float format -m.ddd...

e,E ” Scientific Format
-1.23e002

g,G ” e or f whichever
is most compact

% − print % character

Table 17.1: Printf/scanf format characters

- (minus sign) — left justify.

integer number — field width.

m.d — m = field width, d = precision of number of digits after decimal
point or number of chars from a string.

So:

printf("%-2.3f\n",17.23478);

The output on the screen is:

17.235

and:

17.5. SCANF 147

printf("VAT=17.5%%\n");

...outputs:

VAT=17.5%

17.5 scanf

This function is defined as follows:

int scanf(char *format, args....) — reads from stdin and puts
input in address of variables specified in args list. Returns number of chars
read.

Format control string similar to printf

Note: The ADDRESS of variable or a pointer to one is required by scanf.

scanf(‘‘%d’’,&i);

We can just give the name of an array or string to scanf since this corre-
sponds to the start address of the array/string.

char string[80];

scanf(‘‘%s’’,string);

17.6 Files

Files are the most common form of a stream.

The first thing we must do is open a file. The function fopen() does this:

FILE *fopen(char *name, char *mode)

fopen returns a pointer to a FILE. The name string is the name of the file
on disc that we wish to access. The mode string controls our type of access.
If a file cannot be accessed for any reason a NULL pointer is returned.

148 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

Modes include: “r” — read,
“w” — write and
“a” — append.

To open a file we must have a stream (file pointer) that points to a FILE

structure.

So to open a file, called myfile.dat for reading we would do:

FILE *stream, *fopen();

/* declare a stream and prototype fopen */

stream = fopen(‘‘myfile.dat’’,‘‘r’’);

it is good practice to to check file is opened

if ((stream = fopen(‘‘myfile.dat’’,

‘‘r’’)) == NULL)

{ printf(‘‘Can’t open %s\n’’,
‘‘myfile.dat’’);

exit(1);

}
......

17.6.1 Reading and writing files

The functions fprintf and fscanf a commonly used to access files.

int fprintf(FILE *stream, char *format, args..)

int fscanf(FILE *stream, char *format, args..)

These are similar to printf and scanf except that data is read from the
stream that must have been opened with fopen().

17.7. SPRINTF AND SSCANF 149

The stream pointer is automatically incremented with ALL file read/write
functions. We do not have to worry about doing this.

char *string[80]

FILE *stream, *fopen();

if ((stream = fopen(...)) != NULL)

fscanf(stream,‘‘%s’’, string);

Other functions for files:

int getc(FILE *stream), int fgetc(FILE *stream)

int putc(char ch, FILE *s), int fputc(char ch, FILE *s)

These are like getchar, putchar.

getc is defined as preprocessor MACRO in stdio.h. fgetc is a C library
function. Both achieve the same result!!

fflush(FILE *stream) — flushes a stream.
fclose(FILE *stream) — closes a stream.

We can access predefined streams with fprintf etc.

fprintf(stderr,‘‘Cannot Compute!!\n’’);
fscanf(stdin,‘‘%s’’,string);

17.7 sprintf and sscanf

These are like fprintf and fscanf except they read/write to a string.

int sprintf(char *string, char *format, args..)

int sscanf(char *string, char *format, args..)

For Example:

float full tank = 47.0; /* litres */
float miles = 300;
char miles per litre[80];

150 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

sprintf(miles per litre,“Miles per litre
= %2.3f”, miles/full tank);

17.7.1 Stream Status Enquiries

There are a few useful stream enquiry functions, prototyped as follows:

int feof(FILE *stream);

int ferror(FILE *stream);

void clearerr(FILE *stream);

int fileno(FILE *stream);

Their use is relatively simple:

feof() — returns true if the stream is currently at the end of the file. So
to read a stream,fp, line by line you could do:

while (!feof(fp))

fscanf(fp,"%s",line);

ferror() — reports on the error state of the stream and returns true if an
error has occurred.

clearerr() — resets the error indication for a given stream.

fileno() — returns the integer file descriptor associated with the named
stream.

17.8 Low Level I/O

This form of I/O is UNBUFFERED — each read/write request results in
accessing disk (or device) directly to fetch/put a specific number of bytes.

There are no formatting facilities — we are dealing with bytes of infor-
mation.

This means we are now using binary (and not text) files.

17.8. LOW LEVEL I/O 151

Instead of file pointers we use low level file handle or file descriptors

which give a unique integer number to identify each file.

To Open a file use:

int open(char *filename, int flag, int perms) — this returns
a file descriptor or -1 for a fail.

The flag controls file access and has the following predefined in fcntl.h:

O APPEND, O CREAT, O EXCL, O RDONLY, O RDWR, O WRONLY + others
see online man pages or reference manuals.

perms — best set to 0 for most of our applications.

The function:

creat(char *filename, int perms)

can also be used to create a file.

int close(int handle) — close a file

int read(int handle, char *buffer,

unsigned length)

int write(int handle, char *buffer, unsigned length)

are used to read/write a specific number of bytes from/to a file (handle)
stored or to be put in the memory location specified by buffer.

The sizeof() function is commonly used to specify the length.

read and write return the number of bytes read/written or -1 if they fail.

/* program to read a list of floats from a binary file */
/* first byte of file is an integer saying how many */
/* floats in file. Floats follow after it, File name got from */
/* command line */

#include<stdio.h>
#include<fcntl.h>

float bigbuff[1000];

152 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

main(int argc, char **argv)

{ int fd;
int bytes read;
int file length;

if ((fd = open(argv[1],O RDONLY)) = -1)
{ /* error file not open */....

perror(”Datafile”);
exit(1);

}
if ((bytes read = read(fd,&file length,

sizeof(int))) == -1)
{ /* error reading file */...

exit(1);
}

if (file length > 999) {/* file too big */}
if ((bytes read = read(fd,bigbuff,

file length*sizeof(float))) == -1)
{ /* error reading open */...

exit(1);
}

}

17.9 Exercises

Exercise 17.1 Write a program to copy one named file into another named
file. The two file names are given as the first two arguments to the program.

Copy the file a block (512 bytes) at a time.

Check: that the program has two arguments

or print "Program need two arguments"

that the first name file is readable

or print "Cannot open file for reading"

that the second file is writable

or print "Cannot open file for writing"

17.9. EXERCISES 153

Exercise 17.2 Write a program last that prints the last n lines of a text
file, by n and the file name should be specified form command line input. By
default n should be 5, but your program should allow an optional argument
so that

last -n file.txt

prints out the last n lines, where n is any integer. Your program should
make the best use of available storage.

Exercise 17.3 Write a program to compare two files and print out the lines
where they differ. Hint: look up appropriate string and file handling library
routines. This should not be a very long program.

154 CHAPTER 17. INPUT AND OUTPUT (I/O):STDIO.H

Chapter 18

String Handling: <string.h>

Recall from our discussion of arrays (Chapter 6) that strings are defined as
an array of characters or a pointer to a portion of memory containing ASCII
characters. A string in C is a sequence of zero or more characters followed
by a NULL (\0) character:

It is important to preserve the NULL terminating character as it is how
C defines and manages variable length strings. All the C standard library
functions require this for successful operation.

In general, apart from some length-restricted functions (strncat(), strncmp,()

and strncpy()), unless you create strings by hand you should not encounter
any such problems, . You should use the many useful string handling func-
tions and not really need to get your hands dirty dismantling and assembling
strings.

18.1 Basic String Handling Functions

All the string handling functions are prototyped in:
#include <string.h>

The common functions are described below:
char *stpcpy (const char *dest,const char *src)— Copy one string
into another.

155

156 CHAPTER 18. STRING HANDLING: <STRING.H>

int strcmp(const char *string1,const char *string2) – Compare string1
and string2 to determine alphabetic order.
char *strcpy(const char *string1,const char *string2) — Copy
string2 to stringl.
char *strerror(int errnum) — Get error message corresponding to spec-
ified error number.
int strlen(const char *string) — Determine the length of a string.
char *strncat(const char *string1, char *string2, size_t n)—
Append n characters from string2 to stringl.
int strncmp(const char *string1, char *string2, size_t n)— Com-
pare first n characters of two strings.
char *strncpy(const char *string1,const char *string2, size_t n)

— Copy first n characters of string2 to stringl .
int strcasecmp(const char *s1, const char *s2)— case insensitive ver-
sion of strcmp().
int strncasecmp(const char *s1, const char *s2, int n) — case in-
sensitive version of strncmp().

The use of most of the functions is straightforward, for example:

char *str1 = "HELLO";

char *str2;

int length;

length = strlen("HELLO"); /* length = 5 */

(void) strcpy(str2,str1);

Note that both strcat() and strcopy() both return a copy of their first
argument which is the destination array. Note the order of the arguments
is destination array followed by source array which is sometimes easy to get
the wrong around when programming.

The strcmp() function lexically compares the two input strings and re-
turns:

Less than zero — if string1 is lexically less than string2

Zero — if string1 and string2 are lexically equal

Greater than zero — if string1 is lexically greater than string2

18.1. BASIC STRING HANDLING FUNCTIONS 157

This can also confuse beginners and experience programmers forget this
too.

The strncat(), strncmp,() and strncpy() copy functions are string
restricted version of their more general counterparts. They perform a similar
task but only up to the first n characters. Note the the NULL terminated
requirement may get violated when using these functions, for example:

char *str1 = "HELLO";

char *str2;

int length = 2;

(void) strcpy(str2,str1, length); /* str2 = "HE" */

str2 is NOT NULL TERMINATED!! — BEWARE

18.1.1 String Searching

The library also provides several string searching functions:
char *strchr(const char *string, int c) — Find first occurrence

of character c in string.
char *strrchr(const char *string, int c) — Find last occurrence of
character c in string.
char *strstr(const char *s1, const char *s2) — locates the first oc-
currence of the string s2 in string s1.
char *strpbrk(const char *s1, const char *s2) — returns a pointer
to the first occurrence in string s1 of any character from string s2, or a null
pointer if no character from s2 exists in s1

size_t strspn(const char *s1, const char *s2) — returns the num-
ber of characters at the begining of s1 that match s2.
size_t strcspn(const char *s1, const char *s2) — returns the num-
ber of characters at the begining of s1 that do not match s2.
char *strtok(char *s1, const char *s2) — break the string pointed to
by s1 into a sequence of tokens, each of which is delimited by one or more
characters from the string pointed to by s2.
char *strtok_r(char *s1, const char *s2, char **lasts) — has the
same functionality as strtok() except that a pointer to a string placeholder
lasts must be supplied by the caller.

strchr() and strrchr() are the simplest to use, for example:

158 CHAPTER 18. STRING HANDLING: <STRING.H>

char *str1 = "Hello";

char *ans;

ans = strchr(str1,’l’);

After this execution, ans points to the location str1 + 2

strpbrk() is a more general function that searches for the first occurrence
of any of a group of characters, for example:

char *str1 = "Hello";

char *ans;

ans = strpbrk(str1,’aeiou’);

Here, ans points to the location str1 + 1, the location of the first e.
strstr() returns a pointer to the specified search string or a null pointer if

the string is not found. If s2 points to a string with zero length (that is, the
string ””), the function returns s1. For example,

char *str1 = "Hello";

char *ans;

ans = strstr(str1,’lo’);

will yield ans = str + 3.
strtok() is a little more complicated in operation. If the first argument is

not NULL then the function finds the position of any of the second argument
characters. However, the position is remembered and any subsequent calls
to strtok() will start from this position if on these subsequent calls the first
argument is NULL. For example, If we wish to break up the string str1 at
each space and print each token on a new line we could do:

char *str1 = "Hello Big Boy";

char *t1;

for (t1 = strtok(str1," ");

t1 != NULL;

t1 = strtok(NULL, " "))

printf("%s\n",t1);

18.2. CHARACTER CONVERSIONS AND TESTING: CTYPE.H 159

Here we use the for loop in a non-standard counting fashion:

• The initialisation calls strtok() loads the function with the string
str1

• We terminate when t1 is NULL

• We keep assigning tokens of str1 to t1 until termination by calling
strtok() with a NULL first argument.

18.2 Character conversions and testing: ctype.h

We conclude this chapter with a related library #include <ctype.h> which
contains many useful functions to convert and test single characters. The
common functions are prototypes as follows:

Character testing:
int isalnum(int c) — True if c is alphanumeric.

int isalpha(int c) — True if c is a letter.
int isascii(int c) — True if c is ASCII .
int iscntrl(int c) — True if c is a control character.
int isdigit(int c) — True if c is a decimal digit
int isgraph(int c) — True if c is a graphical character.
int islower(int c) — True if c is a lowercase letter
int isprint(int c) — True if c is a printable character
int ispunct (int c) — True if c is a punctuation character.
int isspace(int c) — True if c is a space character.
int isupper(int c) — True if c is an uppercase letter.
int isxdigit(int c) — True if c is a hexadecimal digit

Character Conversion:
int toascii(int c) — Convert c to ASCII .

tolower(int c) — Convert c to lowercase.
int toupper(int c) — Convert c to uppercase.

The use of these functions is straightforward and we do not give examples
here.

18.3 Memory Operations: <memory.h>

Although not strictly string functions the functions are prototyped in #include <string.h>:

160 CHAPTER 18. STRING HANDLING: <STRING.H>

void *memchr (void *s, int c, size_t n) — Search for a character
in a buffer .
int memcmp (void *s1, void *s2, size_t n)— Compare two buffers.
void *memcpy (void *dest, void *src, size_t n)— Copy one buffer
into another .
void *memmove (void *dest, void *src, size_t n) — Move a num-
ber of bytes from one buffer lo another.
void *memset (void *s, int c, size_t n) — Set all bytes of a buffer to
a given character.

Their use is fairly straightforward and not dissimilar to comparable string
operations (except the exact length (n) of the operations must be specified
as there is no natural termination here).

Note that in all case to bytes of memory are copied. The sizeof()

function comes in handy again here, for example:

char src[SIZE],dest[SIZE];

int isrc[SIZE],idest[SIZE];

/* Copy chars (bytes) ok */

memcpy(dest,src, SIZE);

/* Copy arrays of ints */

memcpy(idest,isrc, SIZE*sizeof(int));

memmove() behaves in exactly the same way as memcpy() except that the
source and destination locations may overlap.

memcmp() is similar to strcmp() except here unsigned bytes are compared
and returns less than zero if s1 is less than s2 etc.

18.4 Exercises

Exercise 18.1 Write a function similar to �strlen that can handle untermi-
nated strings. Hint: you will need to know and pass in the length of the
string.

Exercise 18.2 Write a function that returns true if an input string is a
palindrome of each other. A palindrome is a word that reads the same back-
wards as it does forwards e.g ABBA.

18.4. EXERCISES 161

Exercise 18.3 Suggest a possible implementation of the strtok() function:

1. using other string handling functions.

2. from first pointer principles

How is the storage of the tokenised string achieved?

Exercise 18.4 Write a function that converts all characters of an input
string to upper case characters.

Exercise 18.5 Write a program that will reverse the contents stored in mem-
ory in bytes. That is to say if we have n bytes in memory byte n becomes
byte 0, byte n − 1 becomes byte 1 etc.

162 CHAPTER 18. STRING HANDLING: <STRING.H>

Chapter 19

File Access and Directory
System Calls

There are many UNIX utilities that allow us to manipulate directories and
files. cd, ls, rm, cp, mkdir etc. are examples we have (hopefully) already
met.

We will now see how to achieve similar tasks from within a C program.

19.1 Directory handling functions: <unistd.h>

This basically involves calling appropriate functions to traverse a directory
hierarchy or inquire about a directories contents.

int chdir(char ∗path) — changes directory to specified path string.

Example: C emulation of UNIX’s cd command:

#include<stdio.h>
#include<unistd.h>

main(int argc,char ∗∗argv)
{
if (argc < 2)

{ printf(‘‘Usage: %s

<pathname> \n’’,argv[0]);
exit(1);

163

164 CHAPTER 19. FILE ACCESS AND DIRECTORY SYSTEM CALLS

}
if (chdir(argv[1]) ! = 0)

{ printf(‘‘Error in chdir\n’’);
exit(1);

}
}

char ∗getwd(char ∗path) — get the full pathname of the current work-
ing directory. path is a pointer to a string where the pathname will be re-
turned. getwd returns a pointer to the string or NULL if an error occurs.

19.1.1 Scanning and Sorting Directories:<sys/types.h>,<sys/dir

Two useful functions (On BSD platforms and NOT in multi-threaded appli-
cation) are available

scandir(char ∗dirname, struct direct ∗∗namelist, int (*select)(),

int (∗compar)()) — reads the directory dirname and builds an array of
pointers to directory entries or -1 for an error. namelist is a pointer to an
array of structure pointers.

(*select))() is a pointer to a function which is called with a pointer
to a directory entry (defined in <sys/types> and should return a non zero
value if the directory entry should be included in the array. If this pointer is
NULL, then all the directory entries will be included.

The last argument is a pointer to a routine which is passed to qsort (see
man qsort) — a built in function which sorts the completed array. If this
pointer is NULL, the array is not sorted.

alphasort(struct direct ∗∗d1, ∗∗d2) — alphasort() is a built in rou-
tine which will sort the array alphabetically.

Example - a simple C version of UNIX ls utility

#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>

19.1. DIRECTORY HANDLING FUNCTIONS: <UNISTD.H> 165

#include <stdio.h>

#define FALSE 0

#define TRUE !FALSE

extern int alphasort();

char pathname[MAXPATHLEN];

main() { int count,i;

struct direct ∗∗files;
int file select();

if (getwd(pathname) == NULL)

{ printf("Error getting path\n");
exit(0);

}
printf("Current Working Directory = %s\n",pathname);
count =
scandir(pathname, &files, file select, alphasort);

/* If no files found, make a non-selectable menu item */

if (count <= 0)

{ printf(‘‘No files in this directory\n’’);
exit(0);

}
printf(‘‘Number of files = %d\n’’,count);
for (i=1;i<count+1;++i)

printf(‘‘%s ’’,files[i-1]− >d name);

printf(‘‘\n’’); /* flush buffer */

}

int file select(struct direct *entry)

{if ((strcmp(entry− >d name, ‘‘.’’) == 0) ||

(strcmp(entry− >d name, ‘‘..’’) == 0))

166 CHAPTER 19. FILE ACCESS AND DIRECTORY SYSTEM CALLS

return (FALSE);

else

return (TRUE);

}

scandir returns the current directory (.) and the directory above this
(..) as well as all files so we need to check for these and return FALSE so that
they are not included in our list.

Note: scandir and alphasort have definitions in sys/types.h and
sys/dir.h.
MAXPATHLEN and getwd definitions in sys/param.h

We can go further than this and search for specific files: Let’s write a
modified
file select() that only scans for files with a .c, .o or .h suffix:

int file select(struct direct *entry)

{char *ptr;

char *rindex(char *s, char c);

if ((strcmp(entry− >d name, ‘‘.’’) == 0) ||

(strcmp(entry− >d name, ‘‘..’’) == 0))

return (FALSE);

/* Check for filename extensions */

ptr = rindex(entry− >d name, ’.’)

if ((ptr != NULL) &&

((strcmp(ptr, ‘‘.c’’) == 0)

|| (strcmp(ptr, ‘‘.h’’) == 0)

|| (strcmp(ptr, ‘‘.o’’) == 0)))

return (TRUE);

else

return(FALSE);

}

NOTE: rindex() is a string handling function that returns a pointer to
the last occurrence of character c in string s, or a NULL pointer if c does

19.2. FILE MANIPULATION ROUTINES: UNISTD.H, SYS/TYPES.H, SYS/STAT.H167

not occur in the string. (index() is similar function but assigns a pointer to
1st occurrence.)

The function struct direct *readdir(char *dir) also exists in <sys/dir.h>¿
to return a given directory dir listing.

19.2 File Manipulation Routines: unistd.h,

sys/types.h, sys/stat.h

There are many system calls that can applied directly to files stored in a
directory.

19.2.1 File Access

int access(char *path, int mode) — determine accessibility of file.

path points to a path name naming a file. access() checks the named
file for accessibility according to mode, defined in #include <unistd.h>:

R OK – test for read permission

W OK – test for write permission

X OK – test for execute or search permission

F OK – test whether the directories leading to the file can be searched and
the file exists.

access() returns: 0 on success, -1 on failure and sets errno to indicate
the error. See man pages for list of errors.

errno

errno is a special system variable that is set if a system call cannot perform
its set task.

To use errno in a C program it must be declared via:

extern int errno;

It can be manually reset within a C program other wise it simply retains
its last value.

168 CHAPTER 19. FILE ACCESS AND DIRECTORY SYSTEM CALLS

int chmod(char *path, int mode) change the mode of access of a file.
specified by path to the given mode.

chmod() returns 0 on success, -1 on failure and sets errno to indicate the
error. Errors are defined in #include <sys/stat.h>

The access mode of a file can be set using predefined macros in sys/stat.h

— see man pages — or by setting the mode in a a 3 digit octal number.

The rightmost digit specifies owner privileges, middle group privileges
and the leftmost other users privileges.

For each octal digit think of it a 3 bit binary number. Leftmost bit =
read access (on/off) middle is write, right is executable.

So 4 (octal 100) = read only, 2 (010) = write, 6 (110) = read and write,
1 (001) = execute.

so for access mode 600 gives user read and write access others no access.
666 gives everybody read/write access.

NOTE: a UNIX command chmod also exists

19.2.2 File Status

Two useful functions exist to inquire about the files current status. You can
find out how large the file is (st size) when it was created (st ctime) etc.
(see stat structure definition below. The two functions are prototyped in
<sys/stat.h>

int stat(char *path, struct stat *buf),

int fstat(int fd, struct

stat *buf)

stat() obtains information about the file named by path. Read, write or
execute permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable.

fstat() obtains the same information about an open file referenced by
the argument descriptor, such as would be obtained by an open call (Low
level I/O).

stat(), and fstat() return 0 on success, -1 on failure and sets errno

to indicate the error. Errors are again defined in #include <sys/stat.h>

19.2. FILE MANIPULATION ROUTINES: UNISTD.H, SYS/TYPES.H, SYS/STAT.H169

buf is a pointer to a stat structure into which information is placed con-
cerning the file. A stat structure is define in #include <sys/types.h>, as
follows

struct stat {

mode_t st_mode; /* File mode (type, perms) */

ino_t st_ino; /* Inode number */

dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */

dev_t st_rdev; /* ID of device */

/* This entry is defined only for */

/* char special or block special files */

nlink_t st_nlink; /* Number of links */

uid_t st_uid; /* User ID of the file’s owner */

gid_t st_gid; /* Group ID of the file’s group */

off_t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */

time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */

/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */

blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

}

19.2.3 File Manipulation:stdio.h, unistd.h

There are few functions that exist to delete and rename files. Probably the
most common way is to use the stdio.h functions:

int remove(const char *path);

int rename(const char *old, const char *new);

Two system calls (defined in unistd.h) which are actually used by remove()

and rename() also exist but are probably harder to remember unless you are
familiar with UNIX.

int unlink(cons char *path) — removes the directory entry named
by path

170 CHAPTER 19. FILE ACCESS AND DIRECTORY SYSTEM CALLS

unlink() returns 0 on success, -1 on failure and sets errno to indicate
the error. Errors listed in #include <sys/stat.h>

A similar function link(const char *path1, const char *path2) cre-
ates a linking from an existing directory entry path1 to a new entry path2

19.2.4 Creating Temporary FIles:<stdio.h>

Programs often need to create files just for the life of the program. Two
convenient functions (plus some variants) exist to assist in this task. Man-
agement (deletion of files etc) is taken care of by the Operating System.

The function FILE *tmpfile(void) creates a temporary file and opens
a corresponding stream. The file will automatically be deleted when all
references to the file are closed.

The function char *tmpnam(char *s) generate file names that can safely
be used for a temporary file. Variant functions char *tmpnam r(char *s)

and char *tempnam(const char *dir, const char *pfx) also exist
NOTE: There are a few more file manipulation routines not listed here

see man pages.

19.3 Exercises

Exercise 19.1 Write a C program to emulate the ls -l UNIX command
that prints all files in a current directory and lists access privileges etc. DO
NOT simply exec ls -l from the program.

Exercise 19.2 Write a program to print the lines of a file which contain a
word given as the program argument (a simple version of grep UNIX utility).

Exercise 19.3 Write a program to list the files given as arguments, stopping
every 20 lines until a key is hit.(a simple version of more UNIX utility)

Exercise 19.4 Write a program that will list all files in a current directory
and all files in subsequent sub directories.

Exercise 19.5 Write a program that will only list subdirectories in alpha-
betical order.

19.3. EXERCISES 171

Exercise 19.6 Write a program that shows the user all his/her C source pro-
grams and then prompts interactively as to whether others should be granted
read permission; if affirmative such permission should be granted.

Exercise 19.7 Write a program that gives the user the opportunity to re-
move any or all of the files in a current working directory. The name of the
file should appear followed by a prompt as to whether it should be removed.

172 CHAPTER 19. FILE ACCESS AND DIRECTORY SYSTEM CALLS

Chapter 20

Time Functions

In this chapter we will look at how we can access the clock time with UNIX
system calls.

There are many more time functions than we consider here - see man

pages and standard library function listings for full details. In this chapter
we concentrate on applications of timing functions in C

Uses of time functions include:

• telling the time.

• timing programs and functions.

• setting number seeds.

20.1 Basic time functions

Some of thge basic time functions are prototypes as follows:
time t time(time t *tloc) — returns the time since 00:00:00 GMT,

Jan. 1, 1970, measured in seconds.

If tloc is not NULL, the return value is also stored in the location to
which tloc points.

time() returns the value of time on success.

On failure, it returns (time t) -1. time t is typedefed to a long (int) in
<sys/types.h> and <sys/time.h> header files.

173

174 CHAPTER 20. TIME FUNCTIONS

int ftime(struct timeb *tp) — fills in a structure pointed to by tp,
as defined in <sys/timeb.h>:

struct timeb

{ time t time;

unsigned short millitm;

short timezone;

short dstflag;

};

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more precise interval, the local time zone (measured in min-
utes of time westward from Greenwich), and a flag that, if nonzero, indicates
that Day light Saving time applies locally during the appropriate part of the
year.

On success, ftime() returns no useful value. On failure, it returns -1.

Two other functions defined etc. in #include <time.h>

char *ctime(time t *clock),
char *asctime(struct tm *tm)

ctime() converts a long integer, pointed to by clock, to a 26-character
string of the form produced by asctime(). It first breaks down clock to a
tm structure by calling localtime(), and then calls asctime() to convert
that tm structure to a string.

asctime() converts a time value contained in a tm structure to a 26-
character string of the form:

Sun Sep 16 01:03:52 1973

asctime() returns a pointer to the string.

20.2 Example time applications

we mentioned above three possible uses of time functions (there are many
more) but these are very common.

20.2. EXAMPLE TIME APPLICATIONS 175

20.2.1 Example 1: Time (in seconds) to perform some
computation

This is a simple program that illustrates that calling the time function at
distinct moments and noting the different times is a simple method of timing
fragments of code:

/* timer.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()

{ int i;

time t t1,t2;

(void) time(&t1);

for (i=1;i<=300;++i)

printf(‘‘%d %d %d\n’’,i, i*i, i*i*i);

(void) time(&t2);

printf(‘‘\n Time to do 300 squares and

cubes= %d seconds\n’’, (int) t2-t1);

}

20.2.2 Example 2: Set a random number seed

We have seen a similar example previously, this time we use the lrand48()

function to generate of number sequence:

/* random.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()

176 CHAPTER 20. TIME FUNCTIONS

{ int i;

time t t1;

(void) time(&t1);

srand48((long) t1);

/* use time in seconds to set seed */

printf(‘‘5 random numbers

(Seed = %d):\n’’,(int) t1);

for (i=0;i<5;++i)

printf(‘‘%d ’’, lrand48());

printf(‘‘\n\n’’); /* flush print buffer */

}

lrand48() returns non-negative long integers uniformly distributed over
the interval (0, 2**31).

A similar function drand48() returns double precision numbers in the
range [0.0,1.0).

srand48() sets the seed for these random number generators. It is impor-
tant to have different seeds when we call the functions otherwise the same set
of pseudo-random numbers will generated. time() always provides a unique
seed.

20.3 Exercises

Exercise 20.1 Write a C program that times a fragment of code in millisec-
onds.

Exercise 20.2 Write a C program to produce a series of floating point ran-
dom numbers in the ranges (a) 0.0 - 1.0 (b) 0.0 - n where n is any floating
point value. The seed should be set so that a unique sequence is guaranteed.

Chapter 21

Process Control:
<stdlib.h>,<unistd.h>

A process is basically a single running program. It may be a “system” pro-
gram (e.g login, update, csh) or program initiated by the user (textedit,
dbxtool or a user written one).

When UNIX runs a process it gives each process a unique number – a
process ID, pid.

The UNIX command ps will list all current processes running on your
machine and will list the pid.

The C function int getpid() will return the pid of process that called
this function.

A program usually runs as a single process. However later we will see how
we can make programs run as several separate communicating processes.

21.1 Running UNIX Commands from C

We can run commands from a C program just as if they were from the UNIX
command line by using the system() function. NOTE: this can save us a
lot of time and hassle as we can run other (proven) programs, scripts etc. to
do set tasks.

int system(char *string) — where string can be the name of a unix
utility, an executable shell script or a user program. System returns the exit

177

178 CHAPTER 21. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

status of the shell. System is prototyped in <stdlib.h>

Example: Call ls from a program

main()

{ printf(‘‘Files in Directory are:\n’’);
system(‘‘ls -l’’);

}

system is a call that is made up of 3 other system calls: execl(), wait()

and fork() (which are prototyed in <unistd>)

21.2 execl()

execl has 5 other related functions — see man pages.
execl stands for execute and leave which means that a process will get

executed and then terminated by execl.
It is defined by:

execl(char *path, char *arg0,...,char *argn, 0);

The last parameter must always be 0. It is a NULL terminator. Since
the argument list is variable we must have some way of telling C when it is
to end. The NULL terminator does this job.

where path points to the name of a file holding a command that is to be
executed, argo points to a string that is the same as path (or at least its last
component.

arg1 ... argn are pointers to arguments for the command and 0 simply
marks the end of the (variable) list of arguments.

So our above example could look like this also:

main()

{ printf(‘‘Files in Directory are:\n’’);
execl(‘/bin/ls’’,‘‘ls’’, ‘‘-l’’,0);

}

21.3. FORK() 179

21.3 fork()

int fork() turns a single process into 2 identical processes, known as the
parent and the child. On success, fork() returns 0 to the child process and
returns the process ID of the child process to the parent process. On failure,
fork() returns -1 to the parent process, sets errno to indicate the error, and
no child process is created.

NOTE: The child process will have its own unique PID.

The following program illustrates a simple use of fork, where two copies
are made and run together (multitasking)

main()

{ int return value;

printf(‘‘Forking process\n’’);
fork();

printf(‘‘The process id is %d

and return value is %d\n",
getpid(), return value);

execl(‘‘/bin/ls/’’,‘‘ls’’,‘‘-l’’,0);

printf(‘‘This line is not printed\n’’);
}

The Output of this would be:

Forking process

The process id is 6753 and return value is 0

The process id is 6754 and return value is 0

two lists of files in current directory

NOTE: The processes have unique ID’s which will be different at each
run.

It also impossible to tell in advance which process will get to CPU’s time
— so one run may differ from the next.

180 CHAPTER 21. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

When we spawn 2 processes we can easily detect (in each process) whether
it is the child or parent since fork returns 0 to the child. We can trap any
errors if fork returns a -1. i.e.:

int pid; /* process identifier */

pid = fork();

if (pid < 0)

{ printf(‘‘Cannot fork!!\n’’);
exit(1);

}
if (pid == 0)

{ /* Child process */ }
else

{ /* Parent process pid is child’s pid */

.... }

21.4 wait()

int wait (int *status location) — will force a parent process to wait
for a child process to stop or terminate. wait() return the pid of the child or
-1 for an error. The exit status of the child is returned to status location.

21.5 exit()

void exit(int status) — terminates the process which calls this function
and returns the exit status value. Both UNIX and C (forked) programs can
read the status value.

By convention, a status of 0 means normal termination any other value
indicates an error or unusual occurrence. Many standard library calls have
errors defined in the sys/stat.h header file. We can easily derive our own
conventions.

A complete example of forking program is originally titled fork.c:

21.5. EXIT() 181

/* fork.c - example of a fork in a program */

/* The program asks for UNIX commands to be typed and inputted to a string*/

/* The string is then "parsed" by locating blanks etc. */

/* Each command and sorresponding arguments are put in a args array */

/* execvp is called to execute these commands in child process */

/* spawned by fork() */

/* cc -o fork fork.c */

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

main()

{

char buf[1024];

char *args[64];

for (;;) {

/*

* Prompt for and read a command.

*/

printf("Command: ");

if (gets(buf) == NULL) {

printf("\n");

exit(0);

}

/*

* Split the string into arguments.

*/

parse(buf, args);

/*

* Execute the command.

*/

execute(args);

182 CHAPTER 21. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

}

}

/*

* parse--split the command in buf into

* individual arguments.

*/

parse(buf, args)

char *buf;

char **args;

{

while (*buf != NULL) {

/*

* Strip whitespace. Use nulls, so

* that the previous argument is terminated

* automatically.

*/

while ((*buf == ’ ’) || (*buf == ’\t’))

*buf++ = NULL;

/*

* Save the argument.

*/

*args++ = buf;

/*

* Skip over the argument.

*/

while ((*buf != NULL) && (*buf != ’ ’) && (*buf != ’\t’))

buf++;

}

*args = NULL;

}

/*

* execute--spawn a child process and execute

* the program.

21.5. EXIT() 183

*/

execute(args)

char **args;

{

int pid, status;

/*

* Get a child process.

*/

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

/* NOTE: perror() produces a short error message on the standard

error describing the last error encountered during a call to

a system or library function.

*/

}

/*

* The child executes the code inside the if.

*/

if (pid == 0) {

execvp(*args, args);

perror(*args);

exit(1);

/* NOTE: The execv() vnd execvp versions of execl() are useful when the

number of arguments is unknown in advance;

The arguments to execv() and execvp() are the name

of the file to be executed and a vector of strings contain-

ing the arguments. The last argument string must be fol-

lowed by a 0 pointer.

execlp() and execvp() are called with the same arguments as

execl() and execv(), but duplicate the shell’s actions in

searching for an executable file in a list of directories.

The directory list is obtained from the environment.

184 CHAPTER 21. PROCESS CONTROL: <STDLIB.H>,<UNISTD.H>

*/

}

/*

* The parent executes the wait.

*/

while (wait(&status) != pid)

/* empty */ ;

}

21.6 Exerises

Exercise 21.1 Use popen() to pipe the rwho (UNIX command) output into
more (UNIX command) in a C program.

Chapter 22

Interprocess Communication
(IPC), Pipes

We have now began to see how multiple processes may be running on a ma-
chine and maybe be controlled (spawned by fork() by one of our programs.

In numerous applications there is clearly a need for these processes to
communicate with each exchanging data or control information. There are
a few methods which can accomplish this task. We will consider:

• Pipes

• Signals

• Message Queues

• Semaphores

• Shared Memory

• Sockets

In this chapter, we will study the piping of two processes. We will study
the others in turn in subsequent chapters.

22.1 Piping in a C program: <stdio.h>

Piping is a process where the input of one process is made the input of
another. We have seen examples of this from the UNIX command line using
|.

185

186 CHAPTER 22. INTERPROCESS COMMUNICATION (IPC), PIPES

We will now see how we do this from C programs.

We will have two (or more) forked processes and will communicate be-
tween them.

We must first open a pipe

UNIX allows two ways of opening a pipe.

22.2 popen() — Formatted Piping

FILE *popen(char *command, char *type) — opens a pipe for I/O where
the command is the process that will be connected to the calling process thus
creating the pipe. The type is either “r” – for reading, or “w” for writing.

popen() returns is a stream pointer or NULL for any errors.

A pipe opened by popen() should always be closed by pclose(FILE

*stream).

We use fprintf() and fscanf() to communicate with the pipe’s stream.

22.3 pipe() — Low level Piping

int pipe(int fd[2]) — creates a pipe and returns two file descriptors,
fd[0], fd[1]. fd[0] is opened for reading, fd[1] for writing.

pipe() returns 0 on success, -1 on failure and sets errno accordingly.

The standard programming model is that after the pipe has been set up,
two (or more) cooperative processes will be created by a fork and data will
be passed using read() and write().

Pipes opened with pipe() should be closed with close(int fd).

Example: Parent writes to a child

int pdes[2];

pipe(pdes);

if (fork() == 0)

{ /* child */

22.3. PIPE() — LOW LEVEL PIPING 187

close(pdes[1]); /* not required */

read(pdes[0]); /* read from parent */

.....

}
else

{ close(pdes[0]); /* not required */

write(pdes[1]); /* write to child */

.....

}

An futher example of piping in a C program is plot.c and subroutines
and it performs as follows:

• The program has two modules plot.c (main) and plotter.c.

• The program relies on you having installed the freely gnuplot graph
drawing program in the directory /usr/local/bin/ (in the listing be-
low at least) — this path could easily be changed.

• The program plot.c calls gnuplot

• Two Data Stream is generated from Plot

– y = sin(x)

– y = sin(1/x)

• 2 Pipes created — 1 per Data Stream.

• ˚Gnuplot produces “live” drawing of output.

The code listing for plot.c is:

/* plot.c - example of unix pipe. Calls gnuplot graph drawing package to draw

graphs from within a C program. Info is piped to gnuplot */

/* Creates 2 pipes one will draw graphs of y=0.5 and y = random 0-1.0 */

/* the other graphs of y = sin (1/x) and y = sin x */

/* Also user a plotter.c module */

/* compile: cc -o plot plot.c plotter.c */

188 CHAPTER 22. INTERPROCESS COMMUNICATION (IPC), PIPES

#include "externals.h"

#include <signal.h>

#define DEG_TO_RAD(x) (x*180/M_PI)

double drand48();

void quit();

FILE *fp1, *fp2, *fp3, *fp4, *fopen();

main()

{ float i;

float y1,y2,y3,y4;

/* open files which will store plot data */

if (((fp1 = fopen("plot11.dat","w")) == NULL) ||

((fp2 = fopen("plot12.dat","w")) == NULL) ||

((fp3 = fopen("plot21.dat","w")) == NULL) ||

((fp4 = fopen("plot22.dat","w")) == NULL))

{ printf("Error can’t open one or more data files\n");

exit(1);

}

signal(SIGINT,quit); /* trap ctrl-c call quit fn */

StartPlot();

y1 = 0.5;

srand48(1); /* set seed */

for (i=0;;i+=0.01) /* increment i forever use ctrl-c to quit prog */

{ y2 = (float) drand48();

if (i == 0.0)

y3 = 0.0;

else

y3 = sin(DEG_TO_RAD(1.0/i));

y4 = sin(DEG_TO_RAD(i));

/* load files */

fprintf(fp1,"%f %f\n",i,y1);

22.3. PIPE() — LOW LEVEL PIPING 189

fprintf(fp2,"%f %f\n",i,y2);

fprintf(fp3,"%f %f\n",i,y3);

fprintf(fp4,"%f %f\n",i,y4);

/* make sure buffers flushed so that gnuplot */

/* reads up to data file */

fflush(fp1);

fflush(fp2);

fflush(fp3);

fflush(fp4);

/* plot graph */

PlotOne();

usleep(250); /* sleep for short time */

}

}

void quit()

{ printf("\nctrl-c caught:\n Shutting down pipes\n");

StopPlot();

printf("closing data files\n");

fclose(fp1);

fclose(fp2);

fclose(fp3);

fclose(fp4);

printf("deleting data files\n");

RemoveDat();

}

The plotter.c module is as follows:

/* plotter.c module */

/* contains routines to plot a data file produced by another program */

/* 2d data plotted in this version */

/**/

190 CHAPTER 22. INTERPROCESS COMMUNICATION (IPC), PIPES

#include "externals.h"

static FILE *plot1,

*plot2,

*ashell;

static char *startplot1 = "plot [] [0:1.1]’plot11.dat’ with lines,

’plot12.dat’ with lines\n";

static char *startplot2 = "plot ’plot21.dat’ with lines,

’plot22.dat’ with lines\n";

static char *replot = "replot\n";

static char *command1= "/usr/local/bin/gnuplot> dump1";

static char *command2= "/usr/local/bin/gnuplot> dump2";

static char *deletefiles = "rm plot11.dat plot12.dat plot21.dat plot22.dat"

static char *set_term = "set terminal x11\n";

void

StartPlot(void)

{ plot1 = popen(command1, "w");

fprintf(plot1, "%s", set_term);

fflush(plot1);

if (plot1 == NULL)

exit(2);

plot2 = popen(command2, "w");

fprintf(plot2, "%s", set_term);

fflush(plot2);

if (plot2 == NULL)

exit(2);

}

void

RemoveDat(void)

{ ashell = popen(deletefiles, "w");

exit(0);

}

22.3. PIPE() — LOW LEVEL PIPING 191

void

StopPlot(void)

{ pclose(plot1);

pclose(plot2);

}

void

PlotOne(void)

{ fprintf(plot1, "%s", startplot1);

fflush(plot1);

fprintf(plot2, "%s", startplot2);

fflush(plot2);

}

void

RePlot(void)

{ fprintf(plot1, "%s", replot);

fflush(plot1);

}

The header file externals.h contains the following:

/* externals.h */

#ifndef EXTERNALS

#define EXTERNALS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* prototypes */

void StartPlot(void);

void RemoveDat(void);

void StopPlot(void);

void PlotOne(void);

192 CHAPTER 22. INTERPROCESS COMMUNICATION (IPC), PIPES

void RePlot(void);

#endif

22.4 Exercises

Exercise 22.1 Setup a two-way pipe between parent and child processes in
a C program. i.e. both can send and receive signals.

Chapter 23

IPC:Interrupts and Signals:
<signal.h>

In this section will look at ways in which two processes can communicate.
When a process terminates abnormally it usually tries to send a signal in-
dicating what went wrong. C programs (and UNIX) can trap these for di-
agnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when
a event happens. Signals can be synchronously generated by an error in an
application, such as SIGFPE and SIGSEGV, but most signals are asynchronous.
Signals can be posted to a process when the system detects a software event,
such as a user entering an interrupt or stop or a kill request from another
process. Signals can also be come directly from the OS kernel when a hard-
ware event such as a bus error or an illegal instruction is encountered. The
system defines a set of signals that can be posted to a process. Signal deliv-
ery is analogous to hardware interrupts in that a signal can be blocked from
being delivered in the future. Most signals cause termination of the receiving
process if no action is taken by the process in response to the signal. Some
signals stop the receiving process and other signals can be ignored. Each
signal has a default action which is one of the following:

• The signal is discarded after being received

• The process is terminated after the signal is received

• A core file is written, then the process is terminated

193

194 CHAPTER 23. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

• Stop the process after the signal is received

Each signal defined by the system falls into one of five classes:

• Hardware conditions

• Software conditions

• Input/output notification

• Process control

• Resource control

Macros are defined in <signal.h> header file for common signals.

These include:
SIGHUP 1 /* hangup */ SIGINT 2 /* interrupt */
SIGQUIT 3 /* quit */ SIGILL 4 /* illegal instruction *
SIGABRT 6 /* used by abort */ SIGKILL 9 /* hard kill */
SIGALRM 14 /* alarm clock */
SIGCONT 19 /* continue a stopped process */
SIGCHLD 20 /* to parent on child stop or exit */

Signals can be numbered from 0 to 31.

23.1 Sending Signals — kill(), raise()

There are two common functions used to send signals
int kill(int pid, int signal) – a system call that send a signal to

a process, pid. If pid is greater than zero, the signal is sent to the process
whose process ID is equal to pid. If pid is 0, the signal is sent to all processes,
except system processes.

kill() returns 0 for a successful call, -1 otherwise and sets errno accord-
ingly.

int raise(int sig) sends the signal sig to the executing program. raise()
actually uses kill() to send the signal to the executing program:

kill(getpid(), sig);

23.2. SIGNAL HANDLING — SIGNAL() 195

There is also a UNIX command called kill that can be used to send signals
from the command line – see man pages.

NOTE: that unless caught or ignored, the kill signal terminates the
process. Therefore protection is built into the system.

Only processes with certain access privileges can be killed off.

Basic rule: only processes that have the same user can send/receive mes-
sages.

The SIGKILL signal cannot be caught or ignored and will always terminate
a process.

For examplekill(getpid(),SIGINT); would send the interrupt signal to
the id of the calling process.

This would have a similar effect to exit() command. Also ctrl-c typed
from the command sends a SIGINT to the process currently being.

unsigned int alarm(unsigned int seconds)— sends the signal SIGALRM
to the invoking process after seconds seconds.

23.2 Signal Handling — signal()

An application program can specify a function called a signal handler to be
invoked when a specific signal is received. When a signal handler is invoked
on receipt of a signal, it is said to catch the signal. A process can deal with
a signal in one of the following ways:

• The process can let the default action happen

• The process can block the signal (some signals cannot be ignored)

• the process can catch the signal with a handler.

Signal handlers usually execute on the current stack of the process. This lets
the signal handler return to the point that execution was interrupted in the
process. This can be changed on a per-signal basis so that a signal handler
executes on a special stack. If a process must resume in a different context
than the interrupted one, it must restore the previous context itself

Receiving signals is straighforward with the function:

196 CHAPTER 23. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

int (*signal(int sig, void (*func)()))()— that is to say the func-
tion signal() will call the func functions if the process receives a signal sig.
Signal returns a pointer to function func if successful or it returns an error
to errno and -1 otherwise.

func() can have three values:

SIG DFL — a pointer to a system default function SID DFL(), which will
terminate the process upon receipt of sig.

SIG IGN — a pointer to system ignore function SIG IGN() which will disre-
gard the sig action (UNLESS it is SIGKILL).

A function address — a user specified function.

SIG DFL and SIG IGN are defined in signal.h (standard library) header
file.

Thus to ignore a ctrl-c command from the command line. we could do:

signal(SIGINT, SIG IGN);

TO reset system so that SIGINT causes a termination at any place in our
program, we would do:

signal(SIGINT, SIG DFL);

So lets write a program to trap a ctrl-c but not quit on this signal. We
have a function sigproc() that is executed when we trap a ctrl-c. We will
also set another function to quit the program if it traps the SIGQUIT signal
so we can terminate our program:

#include <stdio.h>

void sigproc(void);

void quitproc(void);

main()

{ signal(SIGINT, sigproc);

signal(SIGQUIT, quitproc);

23.3. SIG TALK.C — COMPLETE EXAMPLE PROGRAM 197

printf(‘‘ctrl-c disabled use ctrl-\\ to quit \n’’);
for(;;); /* infinite loop */ }

void sigproc()

{ signal(SIGINT, sigproc); /* */

/* NOTE some versions of UNIX will reset signal to default

after each call. So for portability reset signal each time */

printf(‘‘you have pressed ctrl-c \n’’);
}

void quitproc()

{ printf(‘‘ctrl-\\ pressed to quit\n’’);
exit(0); /* normal exit status */

}

23.3 sig talk.c — complete example pro-

gram

Let us now write a program that communicates between child and parent
processes using kill() and signal().

fork() creates the child process from the parent. The pid can be checked
to decide whether it is the child (== 0) or the parent (pid = child process
id).

The parent can then send messages to child using the pid and kill().

The child picks up these signals with signal() and calls appropriate
functions.

An example of communicating process using signals is sig talk.c:

/* sig_talk.c --- Example of how 2 processes can talk */

/* to each other using kill() and signal() */

/* We will fork() 2 process and let the parent send a few */

/* signals to it‘s child */

198 CHAPTER 23. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

/* cc sig_talk.c -o sig_talk */

#include <stdio.h>

#include <signal.h>

void sighup(); /* routines child will call upon sigtrap */

void sigint();

void sigquit();

main()

{ int pid;

/* get child process */

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

}

if (pid == 0)

{ /* child */

signal(SIGHUP,sighup); /* set function calls */

signal(SIGINT,sigint);

signal(SIGQUIT, sigquit);

for(;;); /* loop for ever */

}

else /* parent */

{ /* pid hold id of child */

printf("\nPARENT: sending SIGHUP\n\n");

kill(pid,SIGHUP);

sleep(3); /* pause for 3 secs */

printf("\nPARENT: sending SIGINT\n\n");

kill(pid,SIGINT);

sleep(3); /* pause for 3 secs */

printf("\nPARENT: sending SIGQUIT\n\n");

kill(pid,SIGQUIT);

sleep(3);

23.4. OTHER SIGNAL FUNCTIONS 199

}

}

void sighup()

{ signal(SIGHUP,sighup); /* reset signal */

printf("CHILD: I have received a SIGHUP\n");

}

void sigint()

{ signal(SIGINT,sigint); /* reset signal */

printf("CHILD: I have received a SIGINT\n");

}

void sigquit()

{ printf("My DADDY has Killed me!!!\n");

exit(0);

}

23.4 Other signal functions

There are a few other functions defined in signal.h:
int sighold(int sig) — adds sig to the calling process’s signal mask
int sigrelse(int sig) — removes sig from the calling process’s signal

mask
int sigignore(int sig) — sets the disposition of sig to SIG IGN

int sigpause(int sig) — removes sig from the calling process’s signal
mask and suspends the calling process until a signal is received

200 CHAPTER 23. IPC:INTERRUPTS AND SIGNALS: <SIGNAL.H>

Chapter 24

IPC:Message
Queues:<sys/msg.h>

The basic idea of a message queue is a simple one.
Two (or more) processes can exchange information via access to a com-

mon system message queue. The sending process places via some (OS)
message-passing module a message onto a queue which can be read by an-
other process (Figure 24.1). Each message is given an identification or type
so that processes can select the appropriate message. Process must share a
common key in order to gain access to the queue in the first place (subject
to other permissions — see below).

IPC messaging lets processes send and receive messages, and queue mes-
sages for processing in an arbitrary order. Unlike the file byte-stream data
flow of pipes, each IPC message has an explicit length. Messages can be
assigned a specific type. Because of this, a server process can direct message
traffic between clients on its queue by using the client process PID as the
message type. For single-message transactions, multiple server processes can
work in parallel on transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be ini-
tialized (through the msgget function see below) Operations to send and
receive messages are performed by the msgsnd() and msgrcv() functions,
respectively.

When a message is sent, its text is copied to the message queue. The
msgsnd() and msgrcv() functions can be performed as either blocking or
non-blocking operations. Non-blocking operations allow for asynchronous
message transfer — the process is not suspended as a result of sending or

201

202 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

Figure 24.1: Basic Message Passing

24.1. INITIALISING THE MESSAGE QUEUE 203

receiving a message. In blocking or synchronous message passing the sending
process cannot continue until the message has been transferred or has even
been acknowledged by a receiver. IPC signal and other mechanisms can be
employed to implement such transfer. A blocked message operation remains
suspended until one of the following three conditions occurs:

• The call succeeds.

• The process receives a signal.

• The queue is removed.

24.1 Initialising the Message Queue

The msgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queue ID (msqid) of the queue correspond-
ing to the key argument. The value passed as the msgflg argument must be
an octal integer with settings for the queue’s permissions and control flags.

The following code illustrates the msgget() function.

#include <sys/ipc.h>;

#include <sys/msg.h>;

...

key_t key; /* key to be passed to msgget() */

int msgflg /* msgflg to be passed to msgget() */

int msqid; /* return value from msgget() */

...

key = ...

msgflg = ...

if ((msqid = msgget(key, msgflg)) == –1)

{

204 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

perror("msgget: msgget failed");

exit(1);

} else

(void) fprintf(stderr, “msgget succeeded");

...

24.2 IPC Functions, Key Arguments, and Cre-

ation Flags: <sys/ipc.h>

Processes requesting access to an IPC facility must be able to identify it.
To do this, functions that initialize or provide access to an IPC facility
use a key t key argument. (key t is essentially an int type defined in
<sys/types.h>

The key is an arbitrary value or one that can be derived from a common
seed at run time. One way is with ftok() , which converts a filename to a
key value that is unique within the system. Functions that initialize or get
access to messages (also semaphores or shared memory see later) return an
ID number of type int. IPC functions that perform read, write, and control
operations use this ID. If the key argument is specified as IPC PRIVATE,
the call initializes a new instance of an IPC facility that is private to the
creating process. When the IPC CREAT flag is supplied in the flags argument
appropriate to the call, the function tries to create the facility if it does not
exist already. When called with both the IPC CREAT and IPC EXCL flags, the
function fails if the facility already exists. This can be useful when more
than one process might attempt to initialize the facility. One such case
might involve several server processes having access to the same facility. If
they all attempt to create the facility with IPC EXCL in effect, only the first
attempt succeeds. If neither of these flags is given and the facility already
exists, the functions to get access simply return the ID of the facility. If
IPC CREAT is omitted and the facility is not already initialized, the calls fail.
These control flags are combined, using logical (bitwise) OR, with the octal
permission modes to form the flags argument. For example, the statement
below initializes a new message queue if the queue does not exist.

msqid = msgget(ftok("/tmp",

key), (IPC_CREAT | IPC_EXCL | 0400));

24.3. CONTROLLING MESSAGE QUEUES 205

The first argument evaluates to a key based on the string (”/tmp”). The
second argument evaluates to the combined permissions and control flags.

24.3 Controlling message queues

The msgctl() function alters the permissions and other characteristics of a
message queue. The owner or creator of a queue can change its ownership or
permissions using msgctl() Also, any process with permission to do so can
use msgctl() for control operations.

The msgctl() function is prototypes as follows:

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

The msqid argument must be the ID of an existing message queue. The
cmd argument is one of:

IPC STAT — Place information about the status of the queue in the data
structure pointed to by buf. The process must have read permission
for this call to succeed.

IPC SET — Set the owner’s user and group ID, the permissions, and the
size (in number of bytes) of the message queue. A process must have
the effective user ID of the owner, creator, or superuser for this call to
succeed.

IPC RMID — Remove the message queue specified by the msqid argument.

The following code illustrates the msgctl() function with all its various
flags:

#include<sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

if (msgctl(msqid, IPC_STAT, &buf) == -1) {

perror("msgctl: msgctl failed");

exit(1);

}

...

206 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

if (msgctl(msqid, IPC_SET, &buf) == -1) {

perror("msgctl: msgctl failed");

exit(1);

}

...

24.4 Sending and Receiving Messages

The msgsnd() and msgrcv() functions send and receive messages, respec-
tively:

int msgsnd(int msqid, const void *msgp, size_t msgsz,

int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,

int msgflg);

The msqid argument must be the ID of an existing message queue. The
msgp argument is a pointer to a structure that contains the type of the
message and its text. The structure below is an example of what this user-
defined buffer might look like:

struct mymsg {

long mtype; /* message type */

char mtext[MSGSZ]; /* message text of length MSGSZ */

}

The msgsz argument specifies the length of the message in bytes.
The structure member msgtype is the received message’s type as specified

by the sending process.
The argument msgflg specifies the action to be taken if one or more of

the following are true:

• The number of bytes already on the queue is equal to msg qbytes.

• The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

24.4. SENDING AND RECEIVING MESSAGES 207

• If (msgflg & IPC NOWAIT) is non-zero, the message will not be sent
and the calling process will return immediately.

• If (msgflg & IPC NOWAIT) is 0, the calling process will suspend execu-
tion until one of the following occurs:

– The condition responsible for the suspension no longer exists, in
which case the message is sent.

– The message queue identifier msqid is removed from the system;
when this occurs, errno is set equal to EIDRM and -1 is returned.

– The calling process receives a signal that is to be caught; in this
case the message is not sent and the calling process resumes exe-
cution.

Upon successful completion, the following actions are taken with re-
spect to the data structure associated with msqid:

– msg qnum is incremented by 1.

– msg lspid is set equal to the process ID of the calling process.

– msg stime is set equal to the current time.

The following code illustrates msgsnd() and msgrcv():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buffer */

int msgsz; /* message size */

long msgtyp; /* desired message type */

int msqid /* message queue ID to be used */

...

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf)

208 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",

"could not allocate message buffer for", maxmsgsz);

exit(1);

...

msgsz = ...

msgflg = ...

if (msgsnd(msqid, msgp, msgsz, msgflg) == -1)

perror("msgop: msgsnd failed");

...

msgsz = ...

msgtyp = first_on_queue;

msgflg = ...

if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == -1)

perror("msgop: msgrcv failed");

...

24.5 POSIX Messages: <mqueue.h>

The POSIX message queue functions are:
mq open() — Connects to, and optionally creates, a named message

queue.
mq close() — Ends the connection to an open message queue.
mq unlink() — Ends the connection to an open message queue and

causes the queue to be removed when the last process closes it.
mq send() — Places a message in the queue.
mq receive() — Receives (removes) the oldest, highest priority message

from the queue.
mq notify() — Notifies a process or thread that a message is available

in the queue.
mq setattr() — Set or get message queue attributes.

24.6. EXAMPLE: SENDING MESSAGES BETWEEN TWO PROCESSES209

The basic operation of these functions is as described above. For full
function prototypes and further information see the UNIX man pages

24.6 Example: Sending messages between two

processes

The following two programs should be compiled and run at the same time to
illustrate basic principle of message passing:

message send.c — Creates a message queue and sends one message to the
queue.

message rec.c — Reads the message from the queue.

24.6.1 message send.c — creating and sending to a sim-
ple message queue

The full code listing for message send.c is as follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#include <string.h>

#define MSGSZ 128

/*

* Declare the message structure.

*/

typedef struct msgbuf {

long mtype;

char mtext[MSGSZ];

} message_buf;

210 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

main()

{

int msqid;

int msgflg = IPC_CREAT | 0666;

key_t key;

message_buf sbuf;

size_t buf_length;

/*

* Get the message queue id for the

* "name" 1234, which was created by

* the server.

*/

key = 1234;

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,\

%#o)\n",

key, msgflg);

if ((msqid = msgget(key, msgflg)) < 0) {

perror("msgget");

exit(1);

}

else

(void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid)

/*

* We’ll send message type 1

*/

sbuf.mtype = 1;

(void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

(void) strcpy(sbuf.mtext, "Did you get this?");

(void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

24.6. EXAMPLE: SENDING MESSAGES BETWEEN TWO PROCESSES211

buf_length = strlen(sbuf.mtext) ;

/*

* Send a message.

*/

if (msgsnd(msqid, &sbuf, buf_length, IPC_NOWAIT) < 0) {

printf ("%d, %d, %s, %d\n", msqid, sbuf.mtype, sbuf.mtext, buf_length);

perror("msgsnd");

exit(1);

}

else

printf("Message: \"%s\" Sent\n", sbuf.mtext);

exit(0);

}

The essential points to note here are:

• The Message queue is created with a basic key and message flag msgflg

= IPC CREAT | 0666 — create queue and make it read and appendable
by all.

• A message of type (sbuf.mtype) 1 is sent to the queue with the message
“Did you get this?”

24.6.2 message rec.c — receiving the above message

The full code listing for message send.c’s companion process, message rec.c

is as follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

212 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

#define MSGSZ 128

/*

* Declare the message structure.

*/

typedef struct msgbuf {

long mtype;

char mtext[MSGSZ];

} message_buf;

main()

{

int msqid;

key_t key;

message_buf rbuf;

/*

* Get the message queue id for the

* "name" 1234, which was created by

* the server.

*/

key = 1234;

if ((msqid = msgget(key, 0666)) < 0) {

perror("msgget");

exit(1);

}

/*

* Receive an answer of message type 1.

*/

if (msgrcv(msqid, &rbuf, MSGSZ, 1, 0) < 0) {

perror("msgrcv");

24.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS213

exit(1);

}

/*

* Print the answer.

*/

printf("%s\n", rbuf.mtext);

exit(0);

}

The essential points to note here are:

• The Message queue is opened with msgget (message flag 0666) and the
same key as message send.c.

• A message of the same type 1 is received from the queue with the
message “Did you get this?” stored in rbuf.mtext.

24.7 Some further example message queue pro-

grams

The following suite of programs can be used to investigate interactively a
variety of massage passing ideas (see exercises below).

The message queue must be initialised with the msgget.c program. The
effects of controlling the queue and sending and receiving messages can be
investigated with msgctl.c and msgop.c respectively.

24.7.1 msgget.c: Simple Program to illustrate msget()

/*

* msgget.c: Illustrate the msgget() function.

* This is a simple exerciser of the msgget() function. It prompts

* for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>

214 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

extern void exit();

extern void perror();

main()

{

key_t key; /* key to be passed to msgget() */

int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);

(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

(void) fprintf(stderr, "\nExpected flags for msgflg argument

are:\n");

(void) fprintf(stderr, "\tIPC_EXCL =\t%#8.8o\n", IPC_EXCL);

(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.8o\n", IPC_CREAT);

(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);

(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);

(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);

(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);

(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);

(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);

(void) fprintf(stderr, "Enter msgflg value: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,

%#o)\n",

key, msgflg);

24.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS215

if ((msqid = msgget(key, msgflg)) == -1)

{

perror("msgget: msgget failed");

exit(1);

} else {

(void) fprintf(stderr,

"msgget: msgget succeeded: msqid = %d\n", msqid);

exit(0);

}

}

24.7.2 msgctl.cSample Program to Illustrate msgctl()

/*

* msgctl.c: Illustrate the msgctl() function.

*

* This is a simple exerciser of the msgctl() function. It allows

* you to perform one control operation on one message queue. It

* gives up immediately if any control operation fails, so be

careful

* not to set permissions to preclude read permission; you won’t

be

* able to reset the permissions with this code if you do.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <time.h>

static void do_msgctl();

extern void exit();

extern void perror();

static char warning_message[] = "If you remove read permission

for \

yourself, this program will fail frequently!";

216 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

main()

{

struct msqid_ds buf; /* queue descriptor buffer for IPC_STAT

and IP_SET commands */

int cmd, /* command to be given to msgctl() */

msqid; /* queue ID to be given to msgctl() */

(void fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqid and cmd arguments for the msgctl() call. */

(void) fprintf(stderr,

"Please enter arguments for msgctls() as requested.");

(void) fprintf(stderr, "\nEnter the msqid: ");

(void) scanf("%i", &msqid);

(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);

(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);

(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);

(void) fprintf(stderr, "\nEnter the value for the command: ");

(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_SET:

/* Modify settings in the message queue control structure.

*/

(void) fprintf(stderr, "Before IPC_SET, get current

values:");

/* fall through to IPC_STAT processing */

case IPC_STAT:

/* Get a copy of the current message queue control

* structure and show it to the user. */

do_msgctl(msqid, IPC_STAT, &buf);

(void) fprintf(stderr,]

24.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS217

"msg_perm.uid = %d\n", buf.msg_perm.uid);

(void) fprintf(stderr,

"msg_perm.gid = %d\n", buf.msg_perm.gid);

(void) fprintf(stderr,

"msg_perm.cuid = %d\n", buf.msg_perm.cuid);

(void) fprintf(stderr,

"msg_perm.cgid = %d\n", buf.msg_perm.cgid);

(void) fprintf(stderr, "msg_perm.mode = %#o, ",

buf.msg_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",

buf.msg_perm.mode & 0777);

(void) fprintf(stderr, "msg_cbytes = %d\n",

buf.msg_cbytes);

(void) fprintf(stderr, "msg_qbytes = %d\n",

buf.msg_qbytes);

(void) fprintf(stderr, "msg_qnum = %d\n", buf.msg_qnum);

(void) fprintf(stderr, "msg_lspid = %d\n",

buf.msg_lspid);

(void) fprintf(stderr, "msg_lrpid = %d\n",

buf.msg_lrpid);

(void) fprintf(stderr, "msg_stime = %s", buf.msg_stime ?

ctime(&buf.msg_stime) : "Not Set\n");

(void) fprintf(stderr, "msg_rtime = %s", buf.msg_rtime ?

ctime(&buf.msg_rtime) : "Not Set\n");

(void) fprintf(stderr, "msg_ctime = %s",

ctime(&buf.msg_ctime));

if (cmd == IPC_STAT)

break;

/* Now continue with IPC_SET. */

(void) fprintf(stderr, "Enter msg_perm.uid: ");

(void) scanf ("%hi", &buf.msg_perm.uid);

(void) fprintf(stderr, "Enter msg_perm.gid: ");

(void) scanf("%hi", &buf.msg_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);

(void) fprintf(stderr, "Enter msg_perm.mode: ");

(void) scanf("%hi", &buf.msg_perm.mode);

(void) fprintf(stderr, "Enter msg_qbytes: ");

(void) scanf("%hi", &buf.msg_qbytes);

218 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

do_msgctl(msqid, IPC_SET, &buf);

break;

case IPC_RMID:

default:

/* Remove the message queue or try an unknown command. */

do_msgctl(msqid, cmd, (struct msqid_ds *)NULL);

break;

}

exit(0);

}

/*

* Print indication of arguments being passed to msgctl(), call

* msgctl(), and report the results. If msgctl() fails, do not

* return; this example doesn’t deal with errors, it just reports

* them.

*/

static void

do_msgctl(msqid, cmd, buf)

struct msqid_ds *buf; /* pointer to queue descriptor buffer */

int cmd, /* command code */

msqid; /* queue ID */

{

register int rtrn; /* hold area for return value from msgctl()

*/

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d,

%s)\n",

msqid, cmd, buf ? "&buf" : "(struct msqid_ds *)NULL");

rtrn = msgctl(msqid, cmd, buf);

if (rtrn == -1) {

perror("msgctl: msgctl failed");

exit(1);

} else {

(void) fprintf(stderr, "msgctl: msgctl returned %d\n",

rtrn);

}

}

24.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS219

24.7.3 msgop.c: Sample Program to Illustrate msgsnd()

and msgrcv()

/*

* msgop.c: Illustrate the msgsnd() and msgrcv() functions.

*

* This is a simple exerciser of the message send and receive

* routines. It allows the user to attempt to send and receive as

many

* messages as wanted to or from one message queue.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

static int ask();

extern void exit();

extern char *malloc();

extern void perror();

char first_on_queue[] = "-> first message on queue",

full_buf[] = "Message buffer overflow. Extra message text\

discarded.";

main()

{

register int c; /* message text input */

int choice; /* user’s selected operation code */

register int i; /* loop control for mtext */

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buffer */

int msgsz; /* message size */

long msgtyp; /* desired message type */

220 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

int msqid, /* message queue ID to be used */

maxmsgsz, /* size of allocated message buffer */

rtrn; /* return value from msgrcv or msgsnd */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the message queue ID and set up the message buffer. */

(void) fprintf(stderr, "Enter msqid: ");

(void) scanf("%i", &msqid);

/*

* Note that <sys/msg.h> includes a definition of struct

msgbuf

* with the mtext field defined as:

* char mtext[1];

* therefore, this definition is only a template, not a

structure

* definition that you can use directly, unless you want only

to

* send and receive messages of 0 or 1 byte. To handle this,

* malloc an area big enough to contain the template - the size

* of the mtext template field + the size of the mtext field

* wanted. Then you can use the pointer returned by malloc as a

* struct msgbuf with an mtext field of the size you want. Note

* also that sizeof msgp->mtext is valid even though msgp

isn’t

* pointing to anything yet. Sizeof doesn’t dereference msgp,

but

* uses its type to figure out what you are asking about.

*/

(void) fprintf(stderr,

"Enter the message buffer size you want:");

(void) scanf("%i", &maxmsgsz);

if (maxmsgsz < 0) {

(void) fprintf(stderr, "msgop: %s\n",

"The message buffer size must be >= 0.");

24.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS221

exit(1);

}

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct

msgbuf)

- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",

"could not allocate message buffer for", maxmsgsz);

exit(1);

}

/* Loop through message operations until the user is ready to

quit. */

while (choice = ask()) {

switch (choice) {

case 1: /* msgsnd() requested: Get the arguments, make the

call, and report the results. */

(void) fprintf(stderr, "Valid msgsnd message %s\n",

"types are positive integers.");

(void) fprintf(stderr, "Enter msgp->mtype: ");

(void) scanf("%li", &msgp->mtype);

if (maxmsgsz) {

/* Since you’ve been using scanf, you need the loop

below to throw away the rest of the input on the

line after the entered mtype before you start

reading the mtext. */

while ((c = getchar()) != ’\n’ && c != EOF);

(void) fprintf(stderr, "Enter a %s:\n",

"one line message");

for (i = 0; ((c = getchar()) != ’\n’); i++) {

if (i >= maxmsgsz) {

(void) fprintf(stderr, "\n%s\n", full_buf);

while ((c = getchar()) != ’\n’);

break;

}

msgp->mtext[i] = c;

}

msgsz = i;

} else

222 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

msgsz = 0;

(void) fprintf(stderr,"\nMeaningful msgsnd flag is:\n");

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",

"msgop: Calling msgsnd", msqid, msgsz, msgflg);

(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);

(void) fprintf(stderr, "msgp->mtext = \"");

for (i = 0; i < msgsz; i++)

(void) fputc(msgp->mtext[i], stderr);

(void) fprintf(stderr, "\"\n");

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);

if (rtrn == -1)

perror("msgop: msgsnd failed");

else

(void) fprintf(stderr,

"msgop: msgsnd returned %d\n", rtrn);

break;

case 2: /* msgrcv() requested: Get the arguments, make the

call, and report the results. */

for (msgsz = -1; msgsz < 0 || msgsz > maxmsgsz;

(void) scanf("%i", &msgsz))

(void) fprintf(stderr, "%s (0 <= msgsz <= %d): ",

"Enter msgsz", maxmsgsz);

(void) fprintf(stderr, "msgtyp meanings:\n");

(void) fprintf(stderr, "\t 0 %s\n", first_on_queue);

(void) fprintf(stderr, "\t>0 %s of given type\n",

first_on_queue);

(void) fprintf(stderr, "\t<0 %s with type <= |msgtyp|\n",

first_on_queue);

(void) fprintf(stderr, "Enter msgtyp: ");

(void) scanf("%li", &msgtyp);

(void) fprintf(stderr,

"Meaningful msgrcv flags are:\n");

(void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",

24.7. SOME FURTHER EXAMPLE MESSAGE QUEUE PROGRAMS223

MSG_NOERROR);

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",

"msgop: Calling msgrcv", msqid, msgsz,

msgtyp, msgflg);

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if (rtrn == -1)

perror("msgop: msgrcv failed");

else {

(void) fprintf(stderr, "msgop: %s %d\n",

"msgrcv returned", rtrn);

(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);

(void) fprintf(stderr, "msgp->mtext is: \"");

for (i = 0; i < rtrn; i++)

(void) fputc(msgp->mtext[i], stderr);

(void) fprintf(stderr, "\"\n");

}

break;

default:

(void) fprintf(stderr, "msgop: operation unknown\n");

break;

}

}

exit(0);

}

/*

* Ask the user what to do next. Return the user’s choice code.

* Don’t return until the user selects a valid choice.

*/

static

ask()

{

int response; /* User’s response. */

224 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

do {

(void) fprintf(stderr, "Your options are:\n");

(void) fprintf(stderr, "\tExit =\t0 or Control-D\n");

(void) fprintf(stderr, "\tmsgsnd =\t1\n");

(void) fprintf(stderr, "\tmsgrcv =\t2\n");

(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so "^D" will be interpreted as exit. */

response = 0;

(void) scanf("%i", &response);

} while (response < 0 || response > 2);

return(response);

}

24.8 Exercises

Exercise 24.1 Write a 2 programs that will both send and messages and
construct the following dialog between them

• (Process 1) Sends the message ”Are you hearing me?”

• (Process 2) Receives the message and replies ”Loud and Clear”.

• (Process 1) Receives the reply and then says ”I can hear you too”.

Exercise 24.2 Compile the programs msgget.c, msgctl.c and msgop.c

and then

• investigate and understand fully the operations of the flags (access, cre-
ation etc. permissions) you can set interactively in the programs.

• Use the programs to:

– Send and receive messages of two different message types.

24.8. EXERCISES 225

– Place several messages on the queue and inquire about the state
of the queue with msgctl.c. Add/delete a few messages (using
msgop.c and perform the inquiry once more.

– Use msgctl.c to alter a message on the queue.

– Use msgctl.c to delete a message from the queue.

Exercise 24.3 Write a server program and two client programs so that the
server can communicate privately to each client individually via a single mes-
sage queue.

Exercise 24.4 Implement a blocked or synchronous method of message pass-
ing using signal interrupts.

226 CHAPTER 24. IPC:MESSAGE QUEUES:<SYS/MSG.H>

Chapter 25

IPC:Semaphores

Semaphores are a programming construct designed by E. W. Dijkstra in
the late 1960s. Dijkstra’s model was the operation of railroads: consider
a stretch of railroad in which there is a single track over which only one
train at a time is allowed. Guarding this track is a semaphore. A train
must wait before entering the single track until the semaphore is in a state
that permits travel. When the train enters the track, the semaphore changes
state to prevent other trains from entering the track. A train that is leaving
this section of track must again change the state of the semaphore to allow
another train to enter. In the computer version, a semaphore appears to be
a simple integer. A process (or a thread) waits for permission to proceed by
waiting for the integer to become 0. The signal if it proceeds signals that
this by performing incrementing the integer by 1. When it is finished, the
process changes the semaphore’s value by subtracting one from it.

Semaphores let processes query or alter status information. They are
often used to monitor and control the availability of system resources such
as shared memory segments.

Semaphores can be operated on as individual units or as elements in a
set. Because System V IPC semaphores can be in a large array, they are
extremely heavy weight. Much lighter weight semaphores are available in
the threads library (see man semaphore and also Chapter 30.3) and POSIX
semaphores (see below briefly). Threads library semaphores must be used
with mapped memory . A semaphore set consists of a control structure and
an array of individual semaphores. A set of semaphores can contain up to
25 elements.

In a similar fashion to message queues, the semaphore set must be ini-

227

228 CHAPTER 25. IPC:SEMAPHORES

tialized using semget(); the semaphore creator can change its ownership or
permissions using semctl(); and semaphore operations are performed via
the semop() function. These are now discussed below:

25.1 Initializing a Semaphore Set

The function semget() initializes or gains access to a semaphore. It is pro-
totyped by:

int semget(key_t key, int nsems, int semflg);

When the call succeeds, it returns the semaphore ID (semid).
The key argument is a access value associated with the semaphore ID.
The nsems argument specifies the number of elements in a semaphore

array. The call fails when nsems is greater than the number of elements in
an existing array; when the correct count is not known, supplying 0 for this
argument ensures that it will succeed.

The semflg argument specifies the initial access permissions and creation
control flags.

The following code illustrates the semget() function.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

...

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass tosemget() */

int nsems; /* nsems to pass to semget() */

int semid; /* return value from semget() */

...

key = ...

nsems = ...

semflg =

if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");

25.2. CONTROLLING SEMAPHORES 229

exit(1); }

else

...

25.2 Controlling Semaphores

semctl() changes permissions and other characteristics of a semaphore set.
It is prototyped as follows:

int semctl(int semid, int semnum, int cmd, union semun arg);

It must be called with a valid semaphore ID, semid. The semnum value
selects a semaphore within an array by its index. The cmd argument is one
of the following control flags:

GETVAL — Return the value of a single semaphore.

SETVAL — Set the value of a single semaphore. In this case, arg is taken as
arg.val, an int.

GETPID — Return the PID of the process that performed the last operation
on the semaphore or array.

GETNCNT — Return the number of processes waiting for the value of a semaphore
to increase.

GETZCNT — Return the number of processes waiting for the value of a par-
ticular semaphore to reach zero.

GETALL — Return the values for all semaphores in a set. In this case, arg
is taken as arg.array, a pointer to an array of unsigned shorts (see
below).

SETALL — Set values for all semaphores in a set. In this case, arg is taken
as arg.array, a pointer to an array of unsigned shorts.

IPC STAT — Return the status information from the control structure for
the semaphore set and place it in the data structure pointed to by
arg.buf, a pointer to a buffer of type semid ds.

230 CHAPTER 25. IPC:SEMAPHORES

IPC SET — Set the effective user and group identification and permissions.
In this case, arg is taken as arg.buf.

IPC RMID — Remove the specified semaphore set.

A process must have an effective user identification of owner, creator, or
superuser to perform an IPC SET or IPC RMID command. Read and write
permission is required as for the other control commands. The following
code illustrates semctl ().

The fourth argument union semun arg is optional, depending upon the
operation requested. If required it is of type union semun, which must be
explicitly declared by the application program as:

union semun {

int val;

struct semid_ds *buf;

ushort *array;

} arg;

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

union semun {

int val;

struct semid_ds *buf;

ushort *array;

} arg;

int i;

int semnum =;

int cmd = GETALL; /* get value */

...

i = semctl(semid, semnum, cmd, arg);

if (i == -1) {

perror("semctl: semctl failed");

25.3. SEMAPHORE OPERATIONS 231

exit(1);

}

else

...

25.3 Semaphore Operations

semop() performs operations on a semaphore set. It is prototyped by:

int semop(int semid, struct sembuf *sops, size_t nsops);

The semid argument is the semaphore ID returned by a previous semget()
call. The sops argument is a pointer to an array of structures, each contain-
ing the following information about a semaphore operation:

• The semaphore number

• The operation to be performed

• Control flags, if any.

The sembuf structure specifies a semaphore operation, as defined in <sys/sem.h>.

struct sembuf {

ushort_t sem_num; /* semaphore number */

short sem_op; /* semaphore operation */

short sem_flg; /* operation flags */

};

The nsops argument specifies the length of the array, the maximum size of
which is determined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop() call, and is set to 10 by
default. The operation to be performed is determined as follows:

• A positive integer increments the semaphore value by that amount.

• A negative integer decrements the semaphore value by that amount.
An attempt to set a semaphore to a value less than zero fails or blocks,
depending on whether IPC NOWAIT is in effect.

232 CHAPTER 25. IPC:SEMAPHORES

• A value of zero means to wait for the semaphore value to reach zero.

There are two control flags that can be used with semop():

IPC NOWAIT — Can be set for any operations in the array. Makes the func-
tion return without changing any semaphore value if any operation for
which IPC NOWAIT is set cannot be performed. The function fails if it
tries to decrement a semaphore more than its current value, or tests a
nonzero semaphore to be equal to zero.

SEM UNDO — Allows individual operations in the array to be undone when
the process exits.

This function takes a pointer, sops, to an array of semaphore operation
structures. Each structure in the array contains data about an operation to
perform on a semaphore. Any process with read permission can test whether
a semaphore has a zero value. To increment or decrement a semaphore
requires write permission. When an operation fails, none of the semaphores
is altered.

The process blocks (unless the IPC NOWAIT flag is set), and remains
blocked until:

• the semaphore operations can all finish, so the call succeeds,

• the process receives a signal, or

• the semaphore set is removed.

Only one process at a time can update a semaphore. Simultaneous re-
quests by different processes are performed in an arbitrary order. When an
array of operations is given by a semop() call, no updates are done until all
operations on the array can finish successfully.

If a process with exclusive use of a semaphore terminates abnormally and
fails to undo the operation or free the semaphore, the semaphore stays locked
in memory in the state the process left it. To prevent this, the SEM UNDO

control flag makes semop() allocate an undo structure for each semaphore
operation, which contains the operation that returns the semaphore to its pre-
vious state. If the process dies, the system applies the operations in the undo
structures. This prevents an aborted process from leaving a semaphore set in
an inconsistent state. If processes share access to a resource controlled by a

25.3. SEMAPHORE OPERATIONS 233

semaphore, operations on the semaphore should not be made with SEM UNDO

in effect. If the process that currently has control of the resource terminates
abnormally, the resource is presumed to be inconsistent. Another process
must be able to recognize this to restore the resource to a consistent state.
When performing a semaphore operation with SEM UNDO in effect, you must
also have it in effect for the call that will perform the reversing operation.
When the process runs normally, the reversing operation updates the undo
structure with a complementary value. This ensures that, unless the process
is aborted, the values applied to the undo structure are cancel to zero. When
the undo structure reaches zero, it is removed.

NOTE:Using SEM UNDO inconsistently can lead to excessive resource con-
sumption because allocated undo structures might not be freed until the
system is rebooted.

The following code illustrates the semop() function:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

...

int i;

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

struct sembuf *sops; /* ptr to operations to perform */

...

if ((semid = semop(semid, sops, nsops)) == -1)

{

perror("semop: semop failed");

exit(1);

}

else

(void) fprintf(stderr, "semop: returned %d\n", i);

...

234 CHAPTER 25. IPC:SEMAPHORES

25.4 POSIX Semaphores: <semaphore.h>

POSIX semaphores are much lighter weight than are System V semaphores.
A POSIX semaphore structure defines a single semaphore, not an array of
up to twenty five semaphores. The POSIX semaphore functions are:

sem open() — Connects to, and optionally creates, a named semaphore
sem init() — Initializes a semaphore structure (internal to the calling

program, so not a named semaphore).
sem close() — Ends the connection to an open semaphore.
sem unlink() — Ends the connection to an open semaphore and causes

the semaphore to be removed when the last process closes it.
sem destroy() — Initializes a semaphore structure (internal to the call-

ing program, so not a named semaphore).
sem getvalue() — Copies the value of the semaphore into the specified

integer.
sem wait(), sem trywait() — Blocks while the semaphore is held by

other processes or returns an error if the semaphore is held by another pro-
cess.

sem post() — Increments the count of the semaphore.
The basic operation of these functions is essence the same as described

above, except note there are more specialised functions, here. These are not
discussed further here and the reader is referred to the online man pages for
further details.

25.5 semaphore.c: Illustration of simple semaphore

passing

/* semaphore.c --- simple illustration of dijkstra’s semaphore analogy

*

* We fork() a child process so that we have two processes running:

* Each process communicates via a semaphore.

* The respective process can only do its work (not much here)

* When it notices that the semaphore track is free when it returns to 0

* Each process must modify the semaphore accordingly

*/

#include <stdio.h>

25.5. SEMAPHORE.C: ILLUSTRATION OF SIMPLE SEMAPHORE PASSING235

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

union semun {

int val;

struct semid_ds *buf;

ushort *array;

};

main()

{ int i,j;

int pid;

int semid; /* semid of semaphore set */

key_t key = 1234; /* key to pass to semget() */

int semflg = IPC_CREAT | 0666; /* semflg to pass to semget() */

int nsems = 1; /* nsems to pass to semget() */

int nsops; /* number of operations to do */

struct sembuf *sops = (struct sembuf *) malloc(2*sizeof(struct sembuf));

/* ptr to operations to perform */

/* set up semaphore */

(void) fprintf(stderr, "\nsemget: Setting up seamaphore: semget(%#lx, %\

%#o)\n",key, nsems, semflg);

if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");

exit(1);

} else

(void) fprintf(stderr, "semget: semget succeeded: semid =\

%d\n", semid);

/* get child process */

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

236 CHAPTER 25. IPC:SEMAPHORES

}

if (pid == 0)

{ /* child */

i = 0;

while (i < 3) {/* allow for 3 semaphore sets */

nsops = 2;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0; /* We only use one track */

sops[0].sem_op = 0; /* wait for semaphore flag to become zero */

sops[0].sem_flg = SEM_UNDO; /* take off semaphore asynchronous */

sops[1].sem_num = 0;

sops[1].sem_op = 1; /* increment semaphore -- take control of track

sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore */

/* Recap the call to be made. */

(void) fprintf(stderr,"\nsemop:Child Calling semop(%d, &sops, %d) w

for (j = 0; j < nsops; j++)

{

(void) fprintf(stderr, "\n\tsops[%d].sem_num = %d, ", j, sops[j].sem_num)

(void) fprintf(stderr, "sem_op = %d, ", sops[j].sem_op);

(void) fprintf(stderr, "sem_flg = %#o\n", sops[j].sem_flg);

}

/* Make the semop() call and report the results. */

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

{

25.5. SEMAPHORE.C: ILLUSTRATION OF SIMPLE SEMAPHORE PASSING237

(void) fprintf(stderr, "\tsemop: semop returned %d\n", j);

(void) fprintf(stderr, "\n\nChild Process Taking Control of Track: %d/3 times\n", i

sleep(5); /* DO Nothing for 5 seconds */

nsops = 1;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0;

sops[0].sem_op = -1; /* Give UP COntrol of track */

sops[0].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore, asynchronou

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

(void) fprintf(stderr, "Child Process Giving up Control of Track: %d/3 times\

sleep(5); /* halt process to allow parent to catch semaphor change f

}

++i;

}

}

else /* parent */

{ /* pid hold id of child */

i = 0;

while (i < 3) { /* allow for 3 semaphore sets */

nsops = 2;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0;

sops[0].sem_op = 0; /* wait for semaphore flag to become zero */

sops[0].sem_flg = SEM_UNDO; /* take off semaphore asynchronous */

238 CHAPTER 25. IPC:SEMAPHORES

sops[1].sem_num = 0;

sops[1].sem_op = 1; /* increment semaphore -- take control of track

sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore */

/* Recap the call to be made. */

(void) fprintf(stderr,"\nsemop:Parent Calling semop(%d, &sops, %d) w

for (j = 0; j < nsops; j++)

{

(void) fprintf(stderr, "\n\tsops[%d].sem_num = %d, ", j, sops[j].sem_num)

(void) fprintf(stderr, "sem_op = %d, ", sops[j].sem_op);

(void) fprintf(stderr, "sem_flg = %#o\n", sops[j].sem_flg);

}

/* Make the semop() call and report the results. */

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

{

(void) fprintf(stderr, "semop: semop returned %d\n", j);

(void) fprintf(stderr, "Parent Process Taking Control of Track: %d/3 times\

sleep(5); /* Do nothing for 5 seconds */

nsops = 1;

/* wait for semaphore to reach zero */

sops[0].sem_num = 0;

sops[0].sem_op = -1; /* Give UP COntrol of track */

sops[0].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore, asy

if ((j = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

}

else

25.5. SEMAPHORE.C: ILLUSTRATION OF SIMPLE SEMAPHORE PASSING239

(void) fprintf(stderr, "Parent Process Giving up Control of Track: %d/3 times

sleep(5); /* halt process to allow child to catch semaphor change fi

}

++i;

}

}

}

The key elements of this program are as follows:

• After a semaphore is created with as simple key 1234, two prcesses are
forked.

• Each process (parent and child) essentially performs the same opera-
tions:

– Each process accesses the same semaphore track (sops[].sem num

= 0).

– Each process waits for the track to become free and then attempts
to take control of track

This is achieved by setting appropriate sops[].sem op values in
the array.

– Once the process has control it sleeps for 5 seconds (in reality some
processing would take place in place of this simple illustration)

– The process then gives up control of the track sops[1].sem op =

-1

– an additional sleep operation is then performed to ensure that the
other process has time to access the semaphore before a subse-
quent (same process) semaphore read.

Note: There is no synchronisation here in this simple example an
we have no control over how the OS will schedule the processes.

240 CHAPTER 25. IPC:SEMAPHORES

25.6 Some further example semaphore pro-

grams

The following suite of programs can be used to investigate interactively a
variety of semaphore ideas (see exercises below).

The semaphore must be initialised with the semget.c program. The ef-
fects of controlling the semaphore queue and sending and receiving semaphore
can be investigated with semctl.c and semop.c respectively.

25.6.1 semget.c: Illustrate the semget() function

/*

* semget.c: Illustrate the semget() function.

*

* This is a simple exerciser of the semget() function. It prompts

* for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

extern void exit();

extern void perror();

main()

{

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass to semget() */

int nsems; /* nsems to pass to semget() */

int semid; /* return value from semget() */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

25.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 241

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);

(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

(void) fprintf(stderr, "Enter nsems value: ");

(void) scanf("%i", &nsems);

(void) fprintf(stderr, "\nExpected flags for semflg are:\n");

(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);

(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",

IPC_CREAT);

(void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);

(void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);

(void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);

(void) fprintf(stderr, "\tgroup alter = \t%#8.8o\n", 020);

(void) fprintf(stderr, "\tother read = \t%#8.8o\n", 04);

(void) fprintf(stderr, "\tother alter = \t%#8.8o\n", 02);

(void) fprintf(stderr, "Enter semflg value: ");

(void) scanf("%i", &semflg);

(void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %

%#o)\n",key, nsems, semflg);

if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");

exit(1);

} else {

(void) fprintf(stderr, "semget: semget succeeded: semid =

%d\n",

semid);

exit(0);

}

}

25.6.2 semctl.c: Illustrate the semctl() function

/*

* semctl.c: Illustrate the semctl() function.

242 CHAPTER 25. IPC:SEMAPHORES

*

* This is a simple exerciser of the semctl() function. It lets you

* perform one control operation on one semaphore set. It gives up

* immediately if any control operation fails, so be careful not

to

* set permissions to preclude read permission; you won’t be able

to

* reset the permissions with this code if you do.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();

static void do_stat();

extern char *malloc();

extern void exit();

extern void perror();

char warning_message[] = "If you remove read permission\

for yourself, this program will fail frequently!";

main()

{

union semun arg; /* union to pass to semctl() */

int cmd, /* command to give to semctl() */

i, /* work area */

semid, /* semid to pass to semctl() */

semnum; /* semnum to pass to semctl() */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,

25.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 243

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "Enter semid value: ");

(void) scanf("%i", &semid);

(void) fprintf(stderr, "Valid semctl cmd values are:\n");

(void) fprintf(stderr, "\tGETALL = %d\n", GETALL);

(void) fprintf(stderr, "\tGETNCNT = %d\n", GETNCNT);

(void) fprintf(stderr, "\tGETPID = %d\n", GETPID);

(void) fprintf(stderr, "\tGETVAL = %d\n", GETVAL);

(void) fprintf(stderr, "\tGETZCNT = %d\n", GETZCNT);

(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);

(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);

(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);

(void) fprintf(stderr, "\tSETALL = %d\n", SETALL);

(void) fprintf(stderr, "\tSETVAL = %d\n", SETVAL);

(void) fprintf(stderr, "\nEnter cmd: ");

(void) scanf("%i", &cmd);

/* Do some setup operations needed by multiple commands. */

switch (cmd) {

case GETVAL:

case SETVAL:

case GETNCNT:

case GETZCNT:

/* Get the semaphore number for these commands. */

(void) fprintf(stderr, "\nEnter semnum value: ");

(void) scanf("%i", &semnum);

break;

case GETALL:

case SETALL:

/* Allocate a buffer for the semaphore values. */

(void) fprintf(stderr,

"Get number of semaphores in the set.\n");

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

if (arg.array =

244 CHAPTER 25. IPC:SEMAPHORES

(ushort *)malloc((unsigned)

(semid_ds.sem_nsems * sizeof(ushort)))) {

/* Break out if you got what you needed. */

break;

}

(void) fprintf(stderr,

"semctl: unable to allocate space for %d values\n",

semid_ds.sem_nsems);

exit(2);

}

/* Get the rest of the arguments needed for the specified

command. */

switch (cmd) {

case SETVAL:

/* Set value of one semaphore. */

(void) fprintf(stderr, "\nEnter semaphore value: ");

(void) scanf("%i", &arg.val);

do_semctl(semid, semnum, SETVAL, arg);

/* Fall through to verify the result. */

(void) fprintf(stderr,

"Do semctl GETVAL command to verify results.\n");

case GETVAL:

/* Get value of one semaphore. */

arg.val = 0;

do_semctl(semid, semnum, GETVAL, arg);

break;

case GETPID:

/* Get PID of last process to successfully complete a

semctl(SETVAL), semctl(SETALL), or semop() on the

semaphore. */

arg.val = 0;

do_semctl(semid, 0, GETPID, arg);

break;

case GETNCNT:

/* Get number of processes waiting for semaphore value to

increase. */

arg.val = 0;

25.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 245

do_semctl(semid, semnum, GETNCNT, arg);

break;

case GETZCNT:

/* Get number of processes waiting for semaphore value to

become zero. */

arg.val = 0;

do_semctl(semid, semnum, GETZCNT, arg);

break;

case SETALL:

/* Set the values of all semaphores in the set. */

(void) fprintf(stderr,

"There are %d semaphores in the set.\n",

semid_ds.sem_nsems);

(void) fprintf(stderr, "Enter semaphore values:\n");

for (i = 0; i < semid_ds.sem_nsems; i++) {

(void) fprintf(stderr, "Semaphore %d: ", i);

(void) scanf("%hi", &arg.array[i]);

}

do_semctl(semid, 0, SETALL, arg);

/* Fall through to verify the results. */

(void) fprintf(stderr,

"Do semctl GETALL command to verify results.\n");

case GETALL:

/* Get and print the values of all semaphores in the

set.*/

do_semctl(semid, 0, GETALL, arg);

(void) fprintf(stderr,

"The values of the %d semaphores are:\n",

semid_ds.sem_nsems);

for (i = 0; i < semid_ds.sem_nsems; i++)

(void) fprintf(stderr, "%d ", arg.array[i]);

(void) fprintf(stderr, "\n");

break;

case IPC_SET:

/* Modify mode and/or ownership. */

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

(void) fprintf(stderr, "Status before IPC_SET:\n");

246 CHAPTER 25. IPC:SEMAPHORES

do_stat();

(void) fprintf(stderr, "Enter sem_perm.uid value: ");

(void) scanf("%hi", &semid_ds.sem_perm.uid);

(void) fprintf(stderr, "Enter sem_perm.gid value: ");

(void) scanf("%hi", &semid_ds.sem_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);

(void) fprintf(stderr, "Enter sem_perm.mode value: ");

(void) scanf("%hi", &semid_ds.sem_perm.mode);

do_semctl(semid, 0, IPC_SET, arg);

/* Fall through to verify changes. */

(void) fprintf(stderr, "Status after IPC_SET:\n");

case IPC_STAT:

/* Get and print current status. */

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

do_stat();

break;

case IPC_RMID:

/* Remove the semaphore set. */

arg.val = 0;

do_semctl(semid, 0, IPC_RMID, arg);

break;

default:

/* Pass unknown command to semctl. */

arg.val = 0;

do_semctl(semid, 0, cmd, arg);

break;

}

exit(0);

}

/*

* Print indication of arguments being passed to semctl(), call

* semctl(), and report the results. If semctl() fails, do not

* return; this example doesn’t deal with errors, it just reports

* them.

*/

static void

25.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 247

do_semctl(semid, semnum, cmd, arg)

union semun arg;

int cmd,

semid,

semnum;

{

register int i; /* work area */

void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d,

",

semid, semnum, cmd);

switch (cmd) {

case GETALL:

(void) fprintf(stderr, "arg.array = %#x)\n",

arg.array);

break;

case IPC_STAT:

case IPC_SET:

(void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);

break;

case SETALL:

(void) fprintf(stderr, "arg.array = [", arg.buf);

for (i = 0;i < semid_ds.sem_nsems;) {

(void) fprintf(stderr, "%d", arg.array[i++]);

if (i < semid_ds.sem_nsems)

(void) fprintf(stderr, ", ");

}

(void) fprintf(stderr, "])\n");

break;

case SETVAL:

default:

(void) fprintf(stderr, "arg.val = %d)\n", arg.val);

break;

}

i = semctl(semid, semnum, cmd, arg);

if (i == -1) {

perror("semctl: semctl failed");

exit(1);

248 CHAPTER 25. IPC:SEMAPHORES

}

(void) fprintf(stderr, "semctl: semctl returned %d\n", i);

return;

}

/*

* Display contents of commonly used pieces of the status

structure.

*/

static void

do_stat()

{

(void) fprintf(stderr, "sem_perm.uid = %d\n",

semid_ds.sem_perm.uid);

(void) fprintf(stderr, "sem_perm.gid = %d\n",

semid_ds.sem_perm.gid);

(void) fprintf(stderr, "sem_perm.cuid = %d\n",

semid_ds.sem_perm.cuid);

(void) fprintf(stderr, "sem_perm.cgid = %d\n",

semid_ds.sem_perm.cgid);

(void) fprintf(stderr, "sem_perm.mode = %#o, ",

semid_ds.sem_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",

semid_ds.sem_perm.mode & 0777);

(void) fprintf(stderr, "sem_nsems = %d\n",

semid_ds.sem_nsems);

(void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?

ctime(&semid_ds.sem_otime) : "Not Set\n");

(void) fprintf(stderr, "sem_ctime = %s",

ctime(&semid_ds.sem_ctime));

}

25.6.3 semop() Sample Program to Illustrate semop()

/*

* semop.c: Illustrate the semop() function.

*

* This is a simple exerciser of the semop() function. It lets you

25.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 249

* to set up arguments for semop() and make the call. It then

reports

* the results repeatedly on one semaphore set. You must have read

* permission on the semaphore set or this exerciser will fail.

(It

* needs read permission to get the number of semaphores in the set

* and to report the values before and after calls to semop().)

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

static int ask();

extern void exit();

extern void free();

extern char *malloc();

extern void perror();

static struct semid_ds semid_ds; /* status of semaphore set */

static char error_mesg1[] = "semop: Can’t allocate space for %d\

semaphore values. Giving up.\n";

static char error_mesg2[] = "semop: Can’t allocate space for %d\

sembuf structures. Giving up.\n";

main()

{

register int i; /* work area */

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

struct sembuf *sops; /* ptr to operations to perform */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

250 CHAPTER 25. IPC:SEMAPHORES

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Loop until the invoker doesn’t want to do anymore. */

while (nsops = ask(&semid, &sops)) {

/* Initialize the array of operations to be performed.*/

for (i = 0; i < nsops; i++) {

(void) fprintf(stderr,

"\nEnter values for operation %d of %d.\n",

i + 1, nsops);

(void) fprintf(stderr,

"sem_num(valid values are 0 <= sem_num < %d): ",

semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i].sem_num);

(void) fprintf(stderr, "sem_op: ");

(void) scanf("%hi", &sops[i].sem_op);

(void) fprintf(stderr,

"Expected flags in sem_flg are:\n");

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",

IPC_NOWAIT);

(void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",

SEM_UNDO);

(void) fprintf(stderr, "sem_flg: ");

(void) scanf("%hi", &sops[i].sem_flg);

}

/* Recap the call to be made. */

(void) fprintf(stderr,

"\nsemop: Calling semop(%d, &sops, %d) with:",

semid, nsops);

for (i = 0; i < nsops; i++)

{

(void) fprintf(stderr, "\nsops[%d].sem_num = %d, ", i,

sops[i].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[i].sem_op);

(void) fprintf(stderr, "sem_flg = %#o\n",

sops[i].sem_flg);

}

25.6. SOME FURTHER EXAMPLE SEMAPHORE PROGRAMS 251

/* Make the semop() call and report the results. */

if ((i = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");

} else {

(void) fprintf(stderr, "semop: semop returned %d\n", i);

}

}

}

/*

* Ask if user wants to continue.

*

* On the first call:

* Get the semid to be processed and supply it to the caller.

* On each call:

* 1. Print current semaphore values.

* 2. Ask user how many operations are to be performed on the next

* call to semop. Allocate an array of sembuf structures

* sufficient for the job and set caller-supplied pointer to

that

* array. (The array is reused on subsequent calls if it is big

* enough. If it isn’t, it is freed and a larger array is

* allocated.)

*/

static

ask(semidp, sopsp)

int *semidp; /* pointer to semid (used only the first time) */

struct sembuf **sopsp;

{

static union semun arg; /* argument to semctl */

int i; /* work area */

static int nsops = 0; /* size of currently allocated

sembuf array */

static int semid = -1; /* semid supplied by user */

static struct sembuf *sops; /* pointer to allocated array */

if (semid < 0) {

/* First call; get semid from user and the current state of

252 CHAPTER 25. IPC:SEMAPHORES

the semaphore set. */

(void) fprintf(stderr,

"Enter semid of the semaphore set you want to use: ");

(void) scanf("%i", &semid);

*semidp = semid;

arg.buf = &semid_ds;

if (semctl(semid, 0, IPC_STAT, arg) == -1) {

perror("semop: semctl(IPC_STAT) failed");

/* Note that if semctl fails, semid_ds remains filled

with zeros, so later test for number of semaphores will

be zero. */

(void) fprintf(stderr,

"Before and after values are not printed.\n");

} else {

if ((arg.array = (ushort *)malloc(

(unsigned)(sizeof(ushort) * semid_ds.sem_nsems)))

== NULL) {

(void) fprintf(stderr, error_mesg1,

semid_ds.sem_nsems);

exit(1);

}

}

}

/* Print current semaphore values. */

if (semid_ds.sem_nsems) {

(void) fprintf(stderr,

"There are %d semaphores in the set.\n",

semid_ds.sem_nsems);

if (semctl(semid, 0, GETALL, arg) == -1) {

perror("semop: semctl(GETALL) failed");

} else {

(void) fprintf(stderr, "Current semaphore values are:");

for (i = 0; i < semid_ds.sem_nsems;

(void) fprintf(stderr, " %d", arg.array[i++]));

(void) fprintf(stderr, "\n");

}

}

/* Find out how many operations are going to be done in the

25.7. EXERCISES 253

next

call and allocate enough space to do it. */

(void) fprintf(stderr,

"How many semaphore operations do you want %s\n",

"on the next call to semop()?");

(void) fprintf(stderr, "Enter 0 or control-D to quit: ");

i = 0;

if (scanf("%i", &i) == EOF || i == 0)

exit(0);

if (i > nsops) {

if (nsops)

free((char *)sops);

nsops = i;

if ((sops = (struct sembuf *)malloc((unsigned)(nsops *

sizeof(struct sembuf)))) == NULL) {

(void) fprintf(stderr, error_mesg2, nsops);

exit(2);

}

}

*sopsp = sops;

return (i);

}

25.7 Exercises

Exercise 25.1 Write 2 programs that will communicate both ways (i.e
each process can read and write) when run concurrently via semaphores.

Exercise 25.2 Modify the semaphore.c program to handle synchronous semaphore
communication semaphores.

Exercise 25.3 Write 3 programs that communicate together via semaphores
according to the following specifications:

254 CHAPTER 25. IPC:SEMAPHORES

sem server.c — a program that can communicate independently (on differ-
ent semaphore tracks) with two clients programs.

sem client1.c — a program that talks to sem server.c on one track.

sem client2.c — a program that talks to sem server.c on another track to
sem client1.c.

Exercise 25.4 Compile the programs semget.c, semctl.c and semop.c

and then

• investigate and understand fully the operations of the flags (access, cre-
ation etc. permissions) you can set interactively in the programs.

• Use the prgrams to:

– Send and receive semaphores of 3 different semaphore tracks.

– Inquire about the state of the semaphore queue with semctl.c.
Add/delete a few semaphores (using semop.c and perform the in-
quiry once more.

– Use semctl.c to alter a semaphore on the queue.

– Use semctl.c to delete a semaphore from the queue.

Chapter 26

IPC:Shared Memory

Shared Memory is an efficeint means of passing data between programs. One
program will create a memory portion which other processes (if permitted)
can access.

In the Solaris 2.x operating system, the most efficient way to implement
shared memory applications is to rely on the mmap() function and on the
system’s native virtual memory facility. Solaris 2.x also supports System
V shared memory, which is another way to let multiple processes attach
a segment of physical memory to their virtual address spaces. When write
access is allowed for more than one process, an outside protocol or mechanism
such as a semaphore can be used to prevent inconsistencies and collisions.

A process creates a shared memory segment using shmget()|. The orig-
inal owner of a shared memory segment can assign ownership to another
user with shmctl(). It can also revoke this assignment. Other processes
with proper permission can perform various control functions on the shared
memory segment using shmctl(). Once created, a shared segment can be
attached to a process address space using shmat(). It can be detached using
shmdt() (see shmop()). The attaching process must have the appropriate
permissions for shmat(). Once attached, the process can read or write to
the segment, as allowed by the permission requested in the attach operation.
A shared segment can be attached multiple times by the same process. A
shared memory segment is described by a control structure with a unique ID
that points to an area of physical memory. The identifier of the segment is
called the shmid. The structure definition for the shared memory segment
control structures and prototypews can be found in <sys/shm.h>.

255

256 CHAPTER 26. IPC:SHARED MEMORY

26.1 Accessing a Shared Memory Segment

shmget() is used to obtain access to a shared memory segment. It is prot-
typed by:

int shmget(key_t key, size_t size, int shmflg);

The key argument is a access value associated with the semaphore ID.
The size argument is the size in bytes of the requested shared memory. The
shmflg argument specifies the initial access permissions and creation control
flags.

When the call succeeds, it returns the shared memory segment ID. This
call is also used to get the ID of an existing shared segment (from a process
requesting sharing of some existing memory portion).

The following code illustrates shmget():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

...

key_t key; /* key to be passed to shmget() */

int shmflg; /* shmflg to be passed to shmget() */

int shmid; /* return value from shmget() */

int size; /* size to be passed to shmget() */

...

key = ...

size = ...

shmflg) = ...

if ((shmid = shmget (key, size, shmflg)) == -1) {

perror("shmget: shmget failed"); exit(1); } else {

(void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);

exit(0);

}

...

26.1. ACCESSING A SHARED MEMORY SEGMENT 257

26.1.1 Controlling a Shared Memory Segment

shmctl() is used to alter the permissions and other characteristics of a shared
memory segment. It is prototyped as follows:

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The process must have an effective shmid of owner, creator or superuser
to perform this command. The cmd argument is one of following control
commands:

SHM LOCK — Lock the specified shared memory segment in memory. The
process must have the effective ID of superuser to perform this com-
mand.

SHM UNLOCK — Unlock the shared memory segment. The process must have
the effective ID of superuser to perform this command.

IPC STAT — Return the status information contained in the control structure
and place it in the buffer pointed to by buf. The process must have
read permission on the segment to perform this command.

IPC SET — Set the effective user and group identification and access per-
missions. The process must have an effective ID of owner, creator or
superuser to perform this command.

IPC RMID — Remove the shared memory segment.

The buf is a sructure of type struct shmid ds which is defined in <sys/shm.h>
The following code illustrates shmctl():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

...

int cmd; /* command code for shmctl() */

int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory data structure to

258 CHAPTER 26. IPC:SHARED MEMORY

hold results */

...

shmid = ...

cmd = ...

if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == -1) {

perror("shmctl: shmctl failed");

exit(1);

}

...

26.2 Attaching and Detaching a Shared Mem-

ory Segment

shmat() and shmdt() are used to attach and detach shared memory seg-
ments. They are prototypes as follows:

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

shmat() returns a pointer, shmaddr, to the head of the shared segment
associated with a valid shmid. shmdt() detaches the shared memory segment
located at the address indicated by shmaddr

. The following code illustrates calls to shmat() and shmdt():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

static struct state { /* Internal record of attached segments. */

int shmid; /* shmid of attached segment */

char *shmaddr; /* attach point */

int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

int nap; /* Number of currently attached segments. */

...

26.2. ATTACHING AND DETACHING A SHARED MEMORY SEGMENT259

char *addr; /* address work variable */

register int i; /* work area */

register struct state *p; /* ptr to current state entry */

...

p = &ap[nap++];

p->shmid = ...

p->shmaddr = ...

p->shmflg = ...

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);

if(p->shmaddr == (char *)-1) {

perror("shmop: shmat failed");

nap--;

} else

(void) fprintf(stderr, "shmop: shmat returned %#8.8x\n",

p->shmaddr);

...

i = shmdt(addr);

if(i == -1) {

perror("shmop: shmdt failed");

} else {

(void) fprintf(stderr, "shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i--; p++)

if (p->shmaddr == addr) *p = ap[--nap];

}

...

260 CHAPTER 26. IPC:SHARED MEMORY

26.3 Example two processes comunicating via

shared memory:shm server.c, shm client.c

We develop two programs here that illustrate the passing of a simple piece
of memery (a string) between the processes if running simulatenously:

shm server.c — simply creates the string and shared memory portion.

shm client.c — attaches itself to the created shared memory portion and
uses the string (printf.

The code listings of the 2 programs no follow:

26.3.1 shm server.c

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

char c;

int shmid;

key_t key;

char *shm, *s;

/*

* We’ll name our shared memory segment

* "5678".

*/

key = 5678;

/*

* Create the segment.

*/

26.3. EXAMPLE TWO PROCESSES COMUNICATING VIA SHARED MEMORY:SHM SERVER.C,

if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0) {

perror("shmget");

exit(1);

}

/*

* Now we attach the segment to our data space.

*/

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

perror("shmat");

exit(1);

}

/*

* Now put some things into the memory for the

* other process to read.

*/

s = shm;

for (c = ’a’; c <= ’z’; c++)

*s++ = c;

*s = NULL;

/*

* Finally, we wait until the other process

* changes the first character of our memory

* to ’*’, indicating that it has read what

* we put there.

*/

while (*shm != ’*’)

sleep(1);

exit(0);

}

262 CHAPTER 26. IPC:SHARED MEMORY

26.3.2 shm client.c

/*

* shm-client - client program to demonstrate shared memory.

*/

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27

main()

{

int shmid;

key_t key;

char *shm, *s;

/*

* We need to get the segment named

* "5678", created by the server.

*/

key = 5678;

/*

* Locate the segment.

*/

if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {

perror("shmget");

exit(1);

}

/*

* Now we attach the segment to our data space.

*/

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

perror("shmat");

exit(1);

26.4. POSIX SHARED MEMORY 263

}

/*

* Now read what the server put in the memory.

*/

for (s = shm; *s != NULL; s++)

putchar(*s);

putchar(’\n’);

/*

* Finally, change the first character of the

* segment to ’*’, indicating we have read

* the segment.

*/

shm = ’’;

exit(0);

}

26.4 POSIX Shared Memory

POSIX shared memory is actually a variation of mapped memory. The major
differences are to use shm open() to open the shared memory object (instead
of calling open()) and use shm unlink() to close and delete the object (in-
stead of calling close() which does not remove the object). The options in
shm open() are substantially fewer than the number of options provided in
open().

26.5 Mapped memory

In a system with fixed memory (non-virtual), the address space of a process
occupies and is limited to a portion of the system’s main memory. In Solaris
2.x virtual memory the actual address space of a process occupies a file in
the swap partition of disk storage (the file is called the backing store). Pages
of main memory buffer the active (or recently active) portions of the process
address space to provide code for the CPU(s) to execute and data for the

264 CHAPTER 26. IPC:SHARED MEMORY

program to process.
A page of address space is loaded when an address that is not currently

in memory is accessed by a CPU, causing a page fault. Since execution
cannot continue until the page fault is resolved by reading the referenced
address segment into memory, the process sleeps until the page has been
read. The most obvious difference between the two memory systems for
the application developer is that virtual memory lets applications occupy
much larger address spaces. Less obvious advantages of virtual memory are
much simpler and more efficient file I/O and very efficient sharing of memory
between processes.

26.5.1 Address Spaces and Mapping

Since backing store files (the process address space) exist only in swap stor-
age, they are not included in the UNIX named file space. (This makes backing
store files inaccessible to other processes.) However, it is a simple extension
to allow the logical insertion of all, or part, of one, or more, named files in the
backing store and to treat the result as a single address space. This is called
mapping. With mapping, any part of any readable or writable file can be
logically included in a process’s address space. Like any other portion of the
process’s address space, no page of the file is not actually loaded into memory
until a page fault forces this action. Pages of memory are written to the file
only if their contents have been modified. So, reading from and writing to
files is completely automatic and very efficient. More than one process can
map a single named file. This provides very efficient memory sharing between
processes. All or part of other files can also be shared between processes.

Not all named file system objects can be mapped. Devices that cannot be
treated as storage, such as terminal and network device files, are examples of
objects that cannot be mapped. A process address space is defined by all of
the files (or portions of files) mapped into the address space. Each mapping is
sized and aligned to the page boundaries of the system on which the process
is executing. There is no memory associated with processes themselves.

A process page maps to only one object at a time, although an object ad-
dress may be the subject of many process mappings. The notion of a ”page”
is not a property of the mapped object. Mapping an object only provides the
potential for a process to read or write the object’s contents. Mapping makes
the object’s contents directly addressable by a process. Applications can ac-
cess the storage resources they use directly rather than indirectly through

26.5. MAPPED MEMORY 265

read and write. Potential advantages include efficiency (elimination of un-
necessary data copying) and reduced complexity (single-step updates rather
than the read, modify buffer, write cycle). The ability to access an object
and have it retain its identity over the course of the access is unique to this
access method, and facilitates the sharing of common code and data.

Because the file system name space includes any directory trees that are
connected from other systems via NFS, any networked file can also be mapped
into a process’s address space.

26.5.2 Coherence

Whether to share memory or to share data contained in the file, when mul-
tiple process map a file simultaneously there may be problems with simul-
taneous access to data elements. Such processes can cooperate through any
of the synchronization mechanisms provided in Solaris 2.x. Because they are
very light weight, the most efficient synchronization mechanisms in Solaris
2.x are the threads library ones.

26.5.3 Creating and Using Mappings

mmap() establishes a mapping of a named file system object (or part of one)
into a process address space. It is the basic memory management function
and it is very simple.

• First open() the file, then

• mmap() it with appropriate access and sharing options

• Away you go.

mmap is prototypes as follows:

#include <sys/types.h>

#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags,

int fildes, off_t off);

266 CHAPTER 26. IPC:SHARED MEMORY

The mapping established by mmap() replaces any previous mappings for
specified address range. The flags MAP SHARED and MAP PRIVATE specify the
mapping type, and one of them must be specified. MAP SHARED specifies that
writes modify the mapped object. No further operations on the object are
needed to make the change. MAP PRIVATE specifies that an initial write to
the mapped area creates a copy of the page and all writes reference the copy.
Only modified pages are copied.

A mapping type is retained across a fork(). The file descriptor used in
a mmap call need not be kept open after the mapping is established. If it
is closed, the mapping remains until the mapping is undone by munmap() or
be replacing in with a new mapping. If a mapped file is shortened by a call
to truncate, an access to the area of the file that no longer exists causes a
SIGBUS signal.

The following code fragment demonstrates a use of this to create a block
of scratch storage in a program, at an address that the system chooses.:

int fd;

caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)

return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

(void) close(fd);

26.5.4 Other Memory Control Functions

int mlock(caddr t addr, size t len) causes the pages in the specified
address range to be locked in physical memory. References to locked pages
(in this or other processes) do not result in page faults that require an I/O
operation. This operation ties up physical resources and can disrupt normal
system operation, so, use of mlock() is limited to the superuser. The system
lets only a configuration dependent limit of pages be locked in memory. The
call to mlock fails if this limit is exceeded.

int munlock(caddr t addr, size t len) releases the locks on physi-
cal pages. If multiple mlock() calls are made on an address range of a single
mapping, a single munlock call is release the locks. However, if different
mappings to the same pages are mlocked, the pages are not unlocked until
the locks on all the mappings are released. Locks are also released when a

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS267

mapping is removed, either through being replaced with an mmap opera-
tion or removed with munmap. A lock is transferred between pages on the
“copy-on-write’ event associated with a MAP PRIVATE mapping, thus locks
on an address range that includes MAP PRIVATE mappings will be retained
transparently along with the copy-on-write redirection (see mmap above for
a discussion of this redirection)

int mlockall(int flags) and int munlockall(void) are similar to
mlock() and munlock(), but they operate on entire address spaces. mlockall()
sets locks on all pages in the address space and munlockall() removes all
locks on all pages in the address space, whether established by mlock or
mlockall.

int msync(caddr t addr, size t len, int flags) causes all modi-
fied pages in the specified address range to be flushed to the objects mapped
by those addresses. It is similar to fsync() for files.

long sysconf(int name) returns the system dependent size of a mem-
ory page. For portability, applications should not embed any constants spec-
ifying the size of a page. Note that it is not unusual for page sizes to vary
even among implementations of the same instruction set.

int mprotect(caddr t addr, size t len, int prot) assigns the spec-
ified protection to all pages in the specified address range. The protection
cannot exceed the permissions allowed on the underlying object.

int brk(void *endds) and void *sbrk(int incr) are called to add
storage to the data segment of a process. A process can manipulate this
area by calling brk() and sbrk(). brk() sets the system idea of the lowest
data segment location not used by the caller to addr (rounded up to the next
multiple of the system page size). sbrk() adds incr bytes to the caller data
space and returns a pointer to the start of the new data area.

26.6 Some further example shared memory

programs

The following suite of programs can be used to investigate interactively a
variety of shared ideas (see exercises below).

The semaphore must be initialised with the shmget.c program. The
effects of controlling shared memory and accessing can be investigated with
shmctl.c and shmop.c respectively.

268 CHAPTER 26. IPC:SHARED MEMORY

26.6.1 shmget.c:Sample Program to Illustrate shmget()

/*

* shmget.c: Illustrate the shmget() function.

*

* This is a simple exerciser of the shmget() function. It

prompts

* for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

extern void exit();

extern void perror();

main()

{

key_t key; /* key to be passed to shmget() */

int shmflg; /* shmflg to be passed to shmget() */

int shmid; /* return value from shmget() */

int size; /* size to be passed to shmget() */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the key. */

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);

(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

/* Get the size of the segment. */

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS269

(void) fprintf(stderr, "Enter size: ");

(void) scanf("%i", &size);

/* Get the shmflg value. */

(void) fprintf(stderr,

"Expected flags for the shmflg argument are:\n");

(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",

IPC_CREAT);

(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);

(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);

(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);

(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);

(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);

(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);

(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);

(void) fprintf(stderr, "Enter shmflg: ");

(void) scanf("%i", &shmflg);

/* Make the call and report the results. */

(void) fprintf(stderr,

"shmget: Calling shmget(%#lx, %d, %#o)\n",

key, size, shmflg);

if ((shmid = shmget (key, size, shmflg)) == -1) {

perror("shmget: shmget failed");

exit(1);

} else {

(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);

exit(0);

}

}

270 CHAPTER 26. IPC:SHARED MEMORY

26.6.2 shmctl.c: Sample Program to Illustrate shmctl()

/*

* shmctl.c: Illustrate the shmctl() function.

*

* This is a simple exerciser of the shmctl() function. It lets you

* to perform one control operation on one shared memory segment.

* (Some operations are done for the user whether requested or

not.

* It gives up immediately if any control operation fails. Be

careful

* not to set permissions to preclude read permission; you won’t

be

*able to reset the permissions with this code if you do.)

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <time.h>

static void do_shmctl();

extern void exit();

extern void perror();

main()

{

int cmd; /* command code for shmctl() */

int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory data structure to

hold results */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS271

/* Get shmid and cmd. */

(void) fprintf(stderr,

"Enter the shmid for the desired segment: ");

(void) scanf("%i", &shmid);

(void) fprintf(stderr, "Valid shmctl cmd values are:\n");

(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);

(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);

(void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);

(void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_LOCK);

(void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);

(void) fprintf(stderr, "Enter the desired cmd value: ");

(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_STAT:

/* Get shared memory segment status. */

break;

case IPC_SET:

/* Set owner UID and GID and permissions. */

/* Get and print current values. */

do_shmctl(shmid, IPC_STAT, &shmid_ds);

/* Set UID, GID, and permissions to be loaded. */

(void) fprintf(stderr, "\nEnter shm_perm.uid: ");

(void) scanf("%hi", &shmid_ds.shm_perm.uid);

(void) fprintf(stderr, "Enter shm_perm.gid: ");

(void) scanf("%hi", &shmid_ds.shm_perm.gid);

(void) fprintf(stderr,

"Note: Keep read permission for yourself.\n");

(void) fprintf(stderr, "Enter shm_perm.mode: ");

(void) scanf("%hi", &shmid_ds.shm_perm.mode);

break;

case IPC_RMID:

/* Remove the segment when the last attach point is

detached. */

break;

case SHM_LOCK:

/* Lock the shared memory segment. */

272 CHAPTER 26. IPC:SHARED MEMORY

break;

case SHM_UNLOCK:

/* Unlock the shared memory segment. */

break;

default:

/* Unknown command will be passed to shmctl. */

break;

}

do_shmctl(shmid, cmd, &shmid_ds);

exit(0);

}

/*

* Display the arguments being passed to shmctl(), call shmctl(),

* and report the results. If shmctl() fails, do not return; this

* example doesn’t deal with errors, it just reports them.

*/

static void

do_shmctl(shmid, cmd, buf)

int shmid, /* attach point */

cmd; /* command code */

struct shmid_ds *buf; /* pointer to shared memory data structure */

{

register int rtrn; /* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d,

buf)\n",

shmid, cmd);

if (cmd == IPC_SET) {

(void) fprintf(stderr, "\tbuf->shm_perm.uid == %d\n",

buf->shm_perm.uid);

(void) fprintf(stderr, "\tbuf->shm_perm.gid == %d\n",

buf->shm_perm.gid);

(void) fprintf(stderr, "\tbuf->shm_perm.mode == %#o\n",

buf->shm_perm.mode);

}

if ((rtrn = shmctl(shmid, cmd, buf)) == -1) {

perror("shmctl: shmctl failed");

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS273

exit(1);

} else {

(void) fprintf(stderr,

"shmctl: shmctl returned %d\n", rtrn);

}

if (cmd != IPC_STAT && cmd != IPC_SET)

return;

/* Print the current status. */

(void) fprintf(stderr, "\nCurrent status:\n");

(void) fprintf(stderr, "\tshm_perm.uid = %d\n",

buf->shm_perm.uid);

(void) fprintf(stderr, "\tshm_perm.gid = %d\n",

buf->shm_perm.gid);

(void) fprintf(stderr, "\tshm_perm.cuid = %d\n",

buf->shm_perm.cuid);

(void) fprintf(stderr, "\tshm_perm.cgid = %d\n",

buf->shm_perm.cgid);

(void) fprintf(stderr, "\tshm_perm.mode = %#o\n",

buf->shm_perm.mode);

(void) fprintf(stderr, "\tshm_perm.key = %#x\n",

buf->shm_perm.key);

(void) fprintf(stderr, "\tshm_segsz = %d\n", buf->shm_segsz);

(void) fprintf(stderr, "\tshm_lpid = %d\n", buf->shm_lpid);

(void) fprintf(stderr, "\tshm_cpid = %d\n", buf->shm_cpid);

(void) fprintf(stderr, "\tshm_nattch = %d\n", buf->shm_nattch);

(void) fprintf(stderr, "\tshm_atime = %s",

buf->shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");

(void) fprintf(stderr, "\tshm_dtime = %s",

buf->shm_dtime ? ctime(&buf->shm_dtime) : "Not Set\n");

(void) fprintf(stderr, "\tshm_ctime = %s",

ctime(&buf->shm_ctime));

}

274 CHAPTER 26. IPC:SHARED MEMORY

26.6.3 shmop.c: Sample Program to Illustrate shmat()

and shmdt()

/*

* shmop.c: Illustrate the shmat() and shmdt() functions.

*

* This is a simple exerciser for the shmat() and shmdt() system

* calls. It allows you to attach and detach segments and to

* write strings into and read strings from attached segments.

*/

#include <stdio.h>

#include <setjmp.h>

#include <signal.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask();

static void catcher();

extern void exit();

static good_addr();

extern void perror();

extern char *shmat();

static struct state { /* Internal record of currently attached

segments. */

int shmid; /* shmid of attached segment */

char *shmaddr; /* attach point */

int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */

static jmp_buf segvbuf; /* Process state save area for SIGSEGV

catching. */

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS275

main()

{

register int action; /* action to be performed */

char *addr; /* address work area */

register int i; /* work area */

register struct state *p; /* ptr to current state entry */

void (*savefunc)(); /* SIGSEGV state hold area */

(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

(void) fprintf(stderr, "\totherwise, decimal.\n");

while (action = ask()) {

if (nap) {

(void) fprintf(stderr,

"\nCurrently attached segment(s):\n");

(void) fprintf(stderr, " shmid address\n");

(void) fprintf(stderr, "------ ----------\n");

p = &ap[nap];

while (p-- != ap) {

(void) fprintf(stderr, "%6d", p->shmid);

(void) fprintf(stderr, "%#11x", p->shmaddr);

(void) fprintf(stderr, " Read%s\n",

(p->shmflg & SHM_RDONLY) ?

"-Only" : "/Write");

}

} else

(void) fprintf(stderr,

"\nNo segments are currently attached.\n");

switch (action) {

case 1: /* Shmat requested. */

/* Verify that there is space for another attach. */

if (nap == MAXnap) {

(void) fprintf(stderr, "%s %d %s\n",

"This simple example will only allow",

MAXnap, "attached segments.");

break;

276 CHAPTER 26. IPC:SHARED MEMORY

}

p = &ap[nap++];

/* Get the arguments, make the call, report the

results, and update the current state array. */

(void) fprintf(stderr,

"Enter shmid of segment to attach: ");

(void) scanf("%i", &p->shmid);

(void) fprintf(stderr, "Enter shmaddr: ");

(void) scanf("%i", &p->shmaddr);

(void) fprintf(stderr,

"Meaningful shmflg values are:\n");

(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",

SHM_RDONLY);

(void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",

SHM_RND);

(void) fprintf(stderr, "Enter shmflg value: ");

(void) scanf("%i", &p->shmflg);

(void) fprintf(stderr,

"shmop: Calling shmat(%d, %#x, %#o)\n",

p->shmid, p->shmaddr, p->shmflg);

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);

if(p->shmaddr == (char *)-1) {

perror("shmop: shmat failed");

nap--;

} else {

(void) fprintf(stderr,

"shmop: shmat returned %#8.8x\n",

p->shmaddr);

}

break;

case 2: /* Shmdt requested. */

/* Get the address, make the call, report the results,

and make the internal state match. */

(void) fprintf(stderr,

"Enter detach shmaddr: ");

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS277

(void) scanf("%i", &addr);

i = shmdt(addr);

if(i == -1) {

perror("shmop: shmdt failed");

} else {

(void) fprintf(stderr,

"shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i--; p++) {

if (p->shmaddr == addr)

*p = ap[--nap];

}

}

break;

case 3: /* Read from segment requested. */

if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",

"attached segment: ");

(void) scanf("%i", &addr);

if (good_addr(addr))

(void) fprintf(stderr, "String @ %#x is ‘%s’\n",

addr, addr);

break;

case 4: /* Write to segment requested. */

if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",

"attached segment: ");

(void) scanf("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to

write into a read-only attached segment. */

savefunc = signal(SIGSEGV, catcher);

278 CHAPTER 26. IPC:SHARED MEMORY

if (setjmp(segvbuf)) {

(void) fprintf(stderr, "shmop: %s: %s\n",

"SIGSEGV signal caught",

"Write aborted.");

} else {

if (good_addr(addr)) {

(void) fflush(stdin);

(void) fprintf(stderr, "%s %s %#x:\n",

"Enter one line to be copied",

"to shared segment attached @",

addr);

(void) gets(addr);

}

}

(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */

(void) signal(SIGSEGV, savefunc);

break;

}

}

exit(0);

/*NOTREACHED*/

}

/*

** Ask for next action.

*/

static

ask()

{

int response; /* user response */

do {

(void) fprintf(stderr, "Your options are:\n");

(void) fprintf(stderr, "\t^D = exit\n");

(void) fprintf(stderr, "\t 0 = exit\n");

(void) fprintf(stderr, "\t 1 = shmat\n");

(void) fprintf(stderr, "\t 2 = shmdt\n");

26.6. SOME FURTHER EXAMPLE SHARED MEMORY PROGRAMS279

(void) fprintf(stderr, "\t 3 = read from segment\n");

(void) fprintf(stderr, "\t 4 = write to segment\n");

(void) fprintf(stderr,

"Enter the number corresponding to your choice: ");

/* Preset response so "^D" will be interpreted as exit. */

response = 0;

(void) scanf("%i", &response);

} while (response < 0 || response > 4);

return (response);

}

/*

** Catch signal caused by attempt to write into shared memory

segment

** attached with SHM_RDONLY flag set.

*/

/*ARGSUSED*/

static void

catcher(sig)

{

longjmp(segvbuf, 1);

/*NOTREACHED*/

}

/*

** Verify that given address is the address of an attached

segment.

** Return 1 if address is valid; 0 if not.

*/

static

good_addr(address)

char *address;

{

register struct state *p; /* ptr to state of attached

segment */

for (p = ap; p != &ap[nap]; p++)

if (p->shmaddr == address)

return(1);

280 CHAPTER 26. IPC:SHARED MEMORY

return(0);

}

26.7 Exercises

Exercise 26.1 Write 2 programs that will communicate via shared memory
and semaphores. Data will be exchanged via memory and semaphores will be
used to synchronise and notify each process when operations such as memory
loaded and memory read have been performed.

Exercise 26.2 Compile the programs shmget.c, shmctl.c and shmop.c

and then

• investigate and understand fully the operations of the flags (access, cre-
ation etc. permissions) you can set interactively in the programs.

• Use the prgrams to:

– Exchange data between two processe running as shmop.c.

– Inquire about the state of shared memory with shmctl.c.

– Use semctl.c to lock a shared memory segment.

– Use semctl.c to delete a shared memory segment.

Exercise 26.3 Write 2 programs that will communicate via mapped mem-
ory.

Chapter 27

IPC:Sockets

Sockets provide point-to-point, two-way communication between two pro-
cesses. Sockets are very versatile and are a basic component of interprocess
and intersystem communication. A socket is an endpoint of communication
to which a name can be bound. It has a type and one or more associated
processes.

Sockets exist in communication domains. A socket domain is an abstrac-
tion that provides an addressing structure and a set of protocols. Sockets
connect only with sockets in the same domain. Twenty three socket domains
are identified (see <sys/socket.h>), of which only the UNIX and Internet
domains are normally used Solaris 2.x Sockets can be used to communicate
between processes on a single system, like other forms of IPC.

The UNIX domain provides a socket address space on a single system.
UNIX domain sockets are named with UNIX paths. Sockets can also be used
to communicate between processes on different systems. The socket address
space between connected systems is called the Internet domain.

Internet domain communication uses the TCP/IP internet protocol suite.

Socket types define the communication properties visible to the applica-
tion. Processes communicate only between sockets of the same type. There
are five types of socket.

A stream socket — provides two-way, sequenced, reliable, and undupli-
cated flow of data with no record boundaries. A stream operates much
like a telephone conversation. The socket type is SOCK STREAM, which,
in the Internet domain, uses Transmission Control Protocol (TCP).

281

282 CHAPTER 27. IPC:SOCKETS

A datagram socket — supports a two-way flow of messages. A on a data-
gram socket may receive messages in a different order from the sequence
in which the messages were sent. Record boundaries in the data are
preserved. Datagram sockets operate much like passing letters back
and forth in the mail. The socket type is SOCK DGRAM, which, in the
Internet domain, uses User Datagram Protocol (UDP).

A sequential packet socket — provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length. The socket type
is SOCK SEQPACKET. No protocol for this type has been implemented for
any protocol family.

A raw socket provides access to the underlying communication protocols.

These sockets are usually datagram oriented, but their exact characteristics
depend on the interface provided by the protocol.

27.1 Socket Creation and Naming

int socket(int domain, int type, int protocol) is called to create a
socket in the specified domain and of the specified type. If a protocol is not
specified, the system defaults to a protocol that supports the specified socket
type. The socket handle (a descriptor) is returned. A remote process has
no way to identify a socket until an address is bound to it. Communicating
processes connect through addresses. In the UNIX domain, a connection
is usually composed of one or two path names. In the Internet domain, a
connection is composed of local and remote addresses and local and remote
ports. In most domains, connections must be unique.

int bind(int s, const struct sockaddr *name, int namelen) is called
to bind a path or internet address to a socket. There are three different ways
to call bind(), depending on the domain of the socket.

• For UNIX domain sockets with paths containing 14, or fewer characters,
you can:

#include <sys/socket.h>

...

bind (sd, (struct sockaddr *) &addr, length);

27.2. CONNECTING STREAM SOCKETS 283

• If the path of a UNIX domain socket requires more characters, use:

#include <sys/un.h>

...

bind (sd, (struct sockaddr_un *) &addr, length);

• For Internet domain sockets, use

#include <netinet/in.h>

...

bind (sd, (struct sockaddr_in *) &addr, length);

In the UNIX domain, binding a name creates a named socket in the file
system. Use unlink() or rm () to remove the socket.

27.2 Connecting Stream Sockets

Connecting sockets is usually not symmetric. One process usually acts as
a server and the other process is the client. The server binds its socket
to a previously agreed path or address. It then blocks on the socket. For
a SOCK STREAM socket, the server calls int listen(int s, int backlog)

, which specifies how many connection requests can be queued. A client
initiates a connection to the server’s socket by a call to int connect(int

s, struct sockaddr *name, int namelen) . A UNIX domain call is like
this:

struct sockaddr_un server;

...

connect (sd, (struct sockaddr_un *)&server, length);

while an Internet domain call would be:

struct sockaddr_in;

...

connect (sd, (struct sockaddr_in *)&server, length);

284 CHAPTER 27. IPC:SOCKETS

If the client’s socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. For a SOCK STREAM

socket, the server calls accept(3N) to complete the connection.
int accept(int s, struct sockaddr *addr, int *addrlen) returns

a new socket descriptor which is valid only for the particular connection. A
server can have multiple SOCK STREAM connections active at one time.

27.3 Stream Data Transfer and Closing

Several functions to send and receive data from a SOCK STREAM socket. These
are write(), read(), int send(int s, const char *msg, int len, int

flags), and int recv(int s, char *buf, int len, int flags). send()
and recv() are very similar to read() and write(), but have some addi-
tional operational flags.

The flags parameter is formed from the bitwise OR of zero or more of the
following:

MSG OOB — Send ”out-of-band” data on sockets that support this notion.
The underlying protocol must also support ”out-of-band” data. Only
SOCK STREAM sockets created in the AF INET address family support
out-of-band data.

MSG DONTROUTE — The SO DONTROUTE option is turned on for the duration
of the operation. It is used only by diagnostic or routing pro- grams.

MSG PEEK — ”Peek” at the data present on the socket; the data is returned,
but not consumed, so that a subsequent receive operation will see the
same data.

A SOCK STREAM socket is discarded by calling close().

27.4 Datagram sockets

A datagram socket does not require that a connection be established. Each
message carries the destination address. If a particular local address is
needed, a call to bind() must precede any data transfer. Data is sent through
calls to sendto() or sendmsg(). The sendto() call is like a send() call with
the destination address also specified. To receive datagram socket messages,

27.5. SOCKET OPTIONS 285

call recvfrom() or recvmsg(). While recv() requires one buffer for the ar-
riving data, recvfrom() requires two buffers, one for the incoming message
and another to receive the source address.

Datagram sockets can also use connect() to connect the socket to a
specified destination socket. When this is done, send() and recv() are used
to send and receive data.

accept() and listen() are not used with datagram sockets.

27.5 Socket Options

Sockets have a number of options that can be fetched with getsockopt()

and set with setsockopt(). These functions can be used at the native socket
level (level = SOL_SOCKET), in which case the socket option name must be
specified. To manipulate options at any other level the protocol number of
the desired protocol controlling the option of interest must be specified (see
getprotoent() in getprotobyname()).

27.6 Example Socket Programs:socket server.c,socket clie

These two programs show how you can establish a socket connection using
the above functions.

27.6.1 socket server.c

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

#define ADDRESS "mysocket" /* addr to connect */

/*

* Strings we send to the client.

*/

char *strs[NSTRS] = {

"This is the first string from the server.\n",

286 CHAPTER 27. IPC:SOCKETS

"This is the second string from the server.\n",

"This is the third string from the server.\n"

};

main()

{

char c;

FILE *fp;

int fromlen;

register int i, s, ns, len;

struct sockaddr_un saun, fsaun;

/*

* Get a socket to work with. This socket will

* be in the UNIX domain, and will be a

* stream socket.

*/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("server: socket");

exit(1);

}

/*

* Create the address we will be binding to.

*/

saun.sun_family = AF_UNIX;

strcpy(saun.sun_path, ADDRESS);

/*

* Try to bind the address to the socket. We

* unlink the name first so that the bind won’t

* fail.

*

* The third argument indicates the "length" of

* the structure, not just the length of the

* socket name.

*/

unlink(ADDRESS);

27.6. EXAMPLE SOCKET PROGRAMS:SOCKET SERVER.C,SOCKET CLIENT287

len = sizeof(saun.sun_family) + strlen(saun.sun_path);

if (bind(s, &saun, len) < 0) {

perror("server: bind");

exit(1);

}

/*

* Listen on the socket.

*/

if (listen(s, 5) < 0) {

perror("server: listen");

exit(1);

}

/*

* Accept connections. When we accept one, ns

* will be connected to the client. fsaun will

* contain the address of the client.

*/

if ((ns = accept(s, &fsaun, &fromlen)) < 0) {

perror("server: accept");

exit(1);

}

/*

* We’ll use stdio for reading the socket.

*/

fp = fdopen(ns, "r");

/*

* First we send some strings to the client.

*/

for (i = 0; i < NSTRS; i++)

send(ns, strs[i], strlen(strs[i]), 0);

/*

* Then we read some strings from the client and

288 CHAPTER 27. IPC:SOCKETS

* print them out.

*/

for (i = 0; i < NSTRS; i++) {

while ((c = fgetc(fp)) != EOF) {

putchar(c);

if (c == ’\n’)

break;

}

}

/*

* We can simply use close() to terminate the

* connection, since we’re done with both sides.

*/

close(s);

exit(0);

}

27.6.2 socket client.c

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stdio.h>

#define NSTRS 3 /* no. of strings */

#define ADDRESS "mysocket" /* addr to connect */

/*

* Strings we send to the server.

*/

char *strs[NSTRS] = {

"This is the first string from the client.\n",

"This is the second string from the client.\n",

"This is the third string from the client.\n"

27.6. EXAMPLE SOCKET PROGRAMS:SOCKET SERVER.C,SOCKET CLIENT289

};

main()

{

char c;

FILE *fp;

register int i, s, len;

struct sockaddr_un saun;

/*

* Get a socket to work with. This socket will

* be in the UNIX domain, and will be a

* stream socket.

*/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("client: socket");

exit(1);

}

/*

* Create the address we will be connecting to.

*/

saun.sun_family = AF_UNIX;

strcpy(saun.sun_path, ADDRESS);

/*

* Try to connect to the address. For this to

* succeed, the server must already have bound

* this address, and must have issued a listen()

* request.

*

* The third argument indicates the "length" of

* the structure, not just the length of the

* socket name.

*/

len = sizeof(saun.sun_family) + strlen(saun.sun_path);

if (connect(s, &saun, len) < 0) {

290 CHAPTER 27. IPC:SOCKETS

perror("client: connect");

exit(1);

}

/*

* We’ll use stdio for reading

* the socket.

*/

fp = fdopen(s, "r");

/*

* First we read some strings from the server

* and print them out.

*/

for (i = 0; i < NSTRS; i++) {

while ((c = fgetc(fp)) != EOF) {

putchar(c);

if (c == ’\n’)

break;

}

}

/*

* Now we send some strings to the server.

*/

for (i = 0; i < NSTRS; i++)

send(s, strs[i], strlen(strs[i]), 0);

/*

* We can simply use close() to terminate the

* connection, since we’re done with both sides.

*/

close(s);

exit(0);

}

27.7. EXERCISES 291

27.7 Exercises

Exercise 27.1 Configure the above socket server.c and socket client.c

programs for you system and compile and run them. You will need to set up
socket ADDRESS definition.

292 CHAPTER 27. IPC:SOCKETS

Chapter 28

Threads: Basic Theory and
Libraries

This chapter examines aspects of threads and multiprocessing (and multi-
threading). We will firts study a little theory of threads and also look at how
threading can be effectively used to make programs more efficient. The C
thread libraries will then be introduced. The following chapters will look at
further thread issues such as synchronisation and practical examples.

28.1 Processes and Threads

We can think of a thread as basically a lightweight process. In order to
understand this let us consider the two main characteristics of a process:

Unit of resource ownership — A process is allocated:

• a virtual address space to hold the process image

• control of some resources (files, I/O devices...)

Unit of dispatching - A process is an execution path through one or more
programs:

• execution may be interleaved with other processes

• the process has an execution state and a dispatching priority

If we treat these two characteristics as being independent (as does modern
OS theory):

293

294 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

• The unit of resource ownership is usually referred to as a process or
task. This Processes have:

– a virtual address space which holds the process image.

– protected access to processors, other processes, files, and I/O re-
sources.

• The unit of dispatching is usually referred to a thread or a lightweight
process. Thus a thread:

– Has an execution state (running, ready, etc.)

– Saves thread context when not running

– Has an execution stack and some per-thread static storage for
local variables

– Has access to the memory address space and resources of its pro-
cess

• all threads of a process share this when one thread alters a (non-private)
memory item, all other threads (of the process) sees that a file open
with one thread, is available to others

28.1.1 Benefits of Threads vs Processes

If implemented correctly then threads have some advantages of (multi) pro-
cesses, They take:

• Less time to create a new thread than a process, because the newly
created thread uses the current process address space.

• Less time to terminate a thread than a process.

• Less time to switch between two threads within the same process,
partly because the newly created thread uses the current process ad-
dress space.

• Less communication overheads — communicating between the threads
of one process is simple because the threads share everything: address
space, in particular. So, data produced by one thread is immediately
available to all the other threads.

28.1. PROCESSES AND THREADS 295

Figure 28.1: Threads and Processes

28.1.2 Multithreading vs. Single threading

Just a we can multiple processes running on some systems we can have mul-
tiple threads running:

Single threading — when the OS does not recognize the concept of thread

Multithreading — when the OS supports multiple threads of execution
within a single process

Figure 28.1 shows a variety of models for threads and processes.
Some example popular OSs and their thread support is:

MS-DOS — support a single user process and a single thread

UNIX — supports multiple user processes but only supports one thread per
process

Solaris — supports multiple threads

Multithreading your code can have many benefits:

• Improve application responsiveness — Any program in which many ac-
tivities are not dependent upon each other can be redesigned so that
each activity is defined as a thread. For example, the user of a multi-
threaded GUI does not have to wait for one activity to complete before
starting another.

296 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

• Use multiprocessors more efficiently — Typically, applications that ex-
press concurrency requirements with threads need not take into account
the number of available processors. The performance of the applica-
tion improves transparently with additional processors. Numerical al-
gorithms and applications with a high degree of parallelism, such as
matrix multiplications, can run much faster when implemented with
threads on a multiprocessor.

• Improve program structure — Many programs are more efficiently
structured as multiple independent or semi-independent units of ex-
ecution instead of as a single, monolithic thread. Multithreaded pro-
grams can be more adaptive to variations in user demands than single
threaded programs.

• Use fewer system resources — Programs that use two or more processes
that access common data through shared memory are applying more
than one thread of control. However, each process has a full address
space and operating systems state. The cost of creating and maintain-
ing this large amount of state information makes each process much
more expensive than a thread in both time and space. In addition,
the inherent separation between processes can require a major effort
by the programmer to communicate between the threads in different
processes, or to synchronize their actions.

Figure 28.2 illustrates different process models and thread control in a
single thread and multithreaded application.

28.1.3 Some Example applications of threads

:
Example : A file server on a LAN

• It needs to handle several file requests over a short period

• Hence more efficient to create (and destroy) a single thread for each
request

• Multiple threads can possibly be executing simultaneously on different
processors

28.2. THREAD LEVELS 297

Figure 28.2: Single and Multi- Thread Applicatiions

Example 2: Matrix Multiplication

Matrix Multilication essentially involves taking the rows of one matrix
and multiplying and adding corresponding columns in a second matrix i.e:

Note that each element of the resultant matrix can be computed inde-
pendently, that is to say by a different thread.

We will develop a C++ example program for matrix multiplication later
(see Chapter 60).

28.2 Thread Levels

There are two broad categories of thread implementation:

• User-Level Threads — Thread Libraries.

• Kernel-level Threads — System Calls.

There are merits to both, in fact some OSs allow access to both levels (e.g.
Solaris).

28.2.1 User-Level Threads (ULT)

In this level, the kernel is not aware of the existence of threads — All thread
management is done by the application by using a thread library. Thread

298 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

Figure 28.3: Matrix Multiplication (3x3 example)

switching does not require kernel mode privileges (no mode switch) and
scheduling is application specific

Kernel activity for ULTs:

• The kernel is not aware of thread activity but it is still managing process
activity

• When a thread makes a system call, the whole process will be blocked
but for the thread library that thread is still in the running state

• So thread states are independent of process states

Advantages and inconveniences of ULT
Advantages:

• Thread switching does not involve the kernel — no mode switching

• Scheduling can be application specific — choose the best algorithm.

• ULTs can run on any OS — Only needs a thread library

Disadvantages:

28.2. THREAD LEVELS 299

• Most system calls are blocking and the kernel blocks processes — So
all threads within the process will be blocked

• The kernel can only assign processes to processors — Two threads
within the same process cannot run simultaneously on two processors

28.2.2 Kernel-Level Threads (KLT)

In this level, All thread management is done by kernel No thread library
but an API (system calls) to the kernel thread facility exists. The kernel
maintains context information for the process and the threads, switching
between threads requires the kernel Scheduling is performed on a thread
basis.

Advantages and inconveniences of KLT
Advantages

• the kernel can simultaneously schedule many threads of the same pro-
cess on many processors blocking is done on a thread level

• kernel routines can be multithreaded

Disadvantages:

• thread switching within the same process involves the kernel, e.g if we
have 2 mode switches per thread switch this results in a significant slow
down.

28.2.3 Combined ULT/KLT Approaches

Idea is to combine the best of both approaches
Solaris is an example of an OS that combines both ULT and KLT (Fig-

ure 28.4:

• Thread creation done in the user space

• Bulk of scheduling and synchronization of threads done in the user
space

• The programmer may adjust the number of KLTs

300 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

Figure 28.4: Solaris Thread Implementation

• Process includes the user’s address space, stack, and process control
block

• User-level threads (threads library) invisible to the OS are the interface
for application parallelism

• Kernel threads the unit that can be dispatched on a processor

• Lightweight processes (LWP) each LWP supports one or more ULTs
and maps to exactly one KLT

28.3 Threads libraries

The interface to multithreading support is through a subroutine library,
libpthread for POSIX threads, and libthread for Solaris threads. They both
contain code for:

• creating and destroying threads

• passing messages and data between threads

• scheduling thread execution

• saving and restoring thread contexts

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>301

28.4 The POSIX Threads Library:libpthread,

<pthread.h>

28.4.1 Creating a (Default) Thread

Use the function pthread create() to add a new thread of control to the
current process. It is prototyped by:

int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,

void*(*start_routine)(void *), void *arg);

When an attribute object is not specified, it is NULL, and the default
thread is created with the following attributes:

• It is unbounded

• It is nondetached

• It has a a default stack and stack size

• It inhetits the parent’s priority

You can also create a default attribute object with pthread attr init()

function, and then use this attribute object to create a default thread. See
the Section 29.2.

An example call of default thread creation is:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

extern void *start_routine(void *arg);

void *arg;

int ret;

/* default behavior*/

ret = pthread_create(&tid, NULL, start_routine, arg);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* default behavior specified*/

ret = pthread_create(&tid, &tattr, start_routine, arg);

302 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

The pthread create() function is called with attr having the necessary
state behavior. start routine is the function with which the new thread
begins execution. When start routine returns, the thread exits with the
exit status set to the value returned by start routine.

When pthread create is successful, the ID of the thread created is stored
in the location referred to as tid.

Creating a thread using a NULL attribute argument has the same effect
as using a default attribute; both create a default thread. When tattr is
initialized, it acquires the default behavior.

pthread create() returns a zero and exits when it completes success-
fully. Any other returned value indicates that an error occurred.

28.4.2 Wait for Thread Termination

Use the pthread join function to wait for a thread to terminate. It is
prototyped by:

int pthread_join(thread_t tid, void **status);

An example use of this function is:

#include <pthread.h>

pthread_t tid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = pthread_join(tid, &status);

/* waiting to join thread "tid" without status */

ret = pthread_join(tid, NULL);

The pthread join() function blocks the calling thread until the specified
thread terminates. The specified thread must be in the current process and
must not be detached. When status is not NULL, it points to a location
that is set to the exit status of the terminated thread when pthread join()

returns successfully. Multiple threads cannot wait for the same thread to
terminate. If they try to, one thread returns successfully and the others fail
with an error of ESRCH. After pthread join() returns, any stack storage
associated with the thread can be reclaimed by the application.

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>303

The pthread join() routine takes two arguments, giving you some flex-
ibility in its use. When you want the caller to wait until a specific thread
terminates, supply that thread’s ID as the first argument. If you are in-
terested in the exit code of the defunct thread, supply the address of an
area to receive it. Remember that pthread join() works only for target
threads that are nondetached. When there is no reason to synchronize with
the termination of a particular thread, then that thread should be detached.
Think of a detached thread as being the thread you use in most instances
and reserve nondetached threads for only those situations that require them.

28.4.3 A Simple Threads Example

In this Simple Threads fragment below, one thread executes the procedure
at the top, creating a helper thread that executes the procedure fetch, which
involves a complicated database lookup and might take some time.

The main thread wants the results of the lookup but has other work to do
in the meantime. So it does those other things and then waits for its helper
to complete its job by executing pthread join(). An argument, pbe, to the
new thread is passed as a stack parameter. This can be done here because the
main thread waits for the spun-off thread to terminate. In general, though,
it is better to malloc() storage from the heap instead of passing an address
to thread stack storage, which can disappear or be reassigned if the thread
terminated.

The source for thread.c is as follows:

void mainline (...)

{

struct phonebookentry *pbe;

pthread_attr_t tattr;

pthread_t helper;

int status;

pthread_create(&helper, NULL, fetch, &pbe);

/* do something else for a while */

pthread_join(helper, &status);

/* it’s now safe to use result */

}

void fetch(struct phonebookentry *arg)

{

304 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

struct phonebookentry *npbe;

/* fetch value from a database */

npbe = search (prog_name)

if (npbe != NULL)

*arg = *npbe;

pthread_exit(0);

}

struct phonebookentry {

char name[64];

char phonenumber[32];

char flags[16];

}

28.4.4 Detaching a Thread

The function pthread detach() is an alternative to pthread join() to re-
claim storage for a thread that is created with a detachstate attribute set to
PTHREAD CREATE JOINABLE. It is prototyped by:

int pthread_detach(thread_t tid);

A simple example of calling this fucntion to detatch a thread is given by:

#include <pthread.h>

pthread_t tid;

int ret;

/* detach thread tid */

ret = pthread_detach(tid);

The pthread detach() function is used to indicate to the implementation
that storage for the thread tid can be reclaimed when the thread terminates.
If tid has not terminated, pthread detach() does not cause it to terminate.
The effect of multiple pthread detach() calls on the same target thread is
unspecified.

pthread detach() returns a zero when it completes successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions are detected, pthread detach() fails and returns the
an error value.

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>305

28.4.5 Create a Key for Thread-Specific Data

Single-threaded C programs have two basic classes of data: local data and
global data. For multithreaded C programs a third class is added:thread-
specific data (TSD). This is very much like global data, except that it is
private to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the
only way to define and refer to data that is private to a thread. Each thread-
specific data item is associated with a key that is global to all threads in
the process. Using the key, a thread can access a pointer (void *) that is
maintained per-thread.

The function pthread keycreate() is used to allocate a key that is used
to identify thread-specific data in a process. The key is global to all threads
in the process, and all threads initially have the value NULL associated with
the key when it is created.

pthread keycreate() is called once for each key before the key is used.
There is no implicit synchronization. Once a key has been created, each
thread can bind a value to the key. The values are specific to the thread
and are maintained for each thread independently. The per-thread binding is
deallocated when a thread terminates if the key was created with a destructor
function. pthread keycreate() is prototyped by:

int pthread_key_create(pthread_key_t *key, void (*destructor) (void *));

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

int ret;

/* key create without destructor */

ret = pthread_key_create(&key, NULL);

/* key create with destructor */

ret = pthread_key_create(&key, destructor);

When pthread keycreate() returns successfully, the allocated key is
stored in the location pointed to by key. The caller must ensure that the
storage and access to this key are properly synchronized. An optional de-
structor function, destructor, can be used to free stale storage. When a key
has a non-NULL destructor function and the thread has a non-NULL value

306 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

associated with that key, the destructor function is called with the current
associated value when the thread exits. The order in which the destructor
functions are called is unspecified.

pthread keycreate() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, pthread keycreate() fails and returns an error
value.

28.4.6 Delete the Thread-Specific Data Key

The function pthread keydelete() is used to destroy an existing thread-
specific data key. Any memory associated with the key can be freed because
the key has been invalidated and will return an error if ever referenced.
(There is no comparable function in Solaris threads.)

pthread keydelete() is prototyped by:

int pthread_key_delete(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

int ret;

/* key previously created */

ret = pthread_key_delete(key);

Once a key has been deleted, any reference to it with the pthread setspecific()

or pthread getspecific() call results in the EINVAL error.
It is the responsibility of the programmer to free any thread-specific re-

sources before calling the delete function. This function does not invoke any
of the destructors.

pthread keydelete() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, pthread keycreate() fails and returns the corresponding
value.

28.4.7 Set the Thread-Specific Data Key

The function pthread setspecific() is used to set the thread-specific bind-
ing to the specified thread-specific data key. It is prototyped by :

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>307

int pthread_setspecific(pthread_key_t key, const void *value);

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

void *value;

int ret;

/* key previously created */

ret = pthread_setspecific(key, value);

pthread setspecific() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the fol-
lowing conditions occur, pthread setspecific() fails and returns an error
value.

Note: pthread setspecific() does not free its storage. If a new bind-
ing is set, the existing binding must be freed; otherwise, a memory leak can
occur.

28.4.8 Get the Thread-Specific Data Key

Use pthread getspecific() to get the calling thread’s binding for key, and
store it in the location pointed to by value. This function is prototyped by:

int pthread_getspecific(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>

pthread_key_t key;

void *value;

/* key previously created */

value = pthread_getspecific(key);

308 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

28.4.9 Global and Private Thread-Specific Data Ex-
ample

Thread-Specific Data Global but Private
Consider the following code:

body() {

...

while (write(fd, buffer, size) == -1) {

if (errno != EINTR) {

fprintf(mywindow, "%s\n", strerror(errno));

exit(1);

}

}

...

}

This code may be executed by any number of threads, but it has references
to two global variables, errno and mywindow, that really should be references
to items private to each thread.

References to errno should get the system error code from the routine
called by this thread, not by some other thread. So, references to errno by
one thread refer to a different storage location than references to errno by
other threads. The mywindow variable is intended to refer to a stdio stream
connected to a window that is private to the referring thread. So, as with
errno, references to mywindow by one thread should refer to a different
storage location (and, ultimately, a different window) than references to my-
window by other threads. The only difference here is that the threads library
takes care of errno, but the programmer must somehow make this work for
mywindow. The next example shows how the references to mywindow work.
The preprocessor converts references to mywindow into invocations of the
mywindow procedure. This routine in turn invokes pthread getspecific(),
passing it the mywindow key global variable (it really is a global variable) and
an output parameter, win, that receives the identity of this thread’s window.

Turning Global References Into Private References Now consider
this code fragment:

thread_key_t mywin_key;

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>309

FILE *_mywindow(void) {

FILE *win;

pthread_getspecific(mywin_key, &win);

return(win);

}

#define mywindow _mywindow()

void routine_uses_win(FILE *win) {

...

}

void thread_start(...) {

...

make_mywin();

...

routine_uses_win(mywindow)

...

}

The mywin key variable identifies a class of variables for which each thread
has its own private copy; that is, these variables are thread-specific data.
Each thread calls make mywin to initialize its window and to arrange for its
instance of mywindow to refer to it. Once this routine is called, the thread can
safely refer to mywindow and, after mywindow, the thread gets the reference
to its private window. So, references to mywindow behave as if they were
direct references to data private to the thread.

We can now set up our initial Thread-Specific Data:

void make_mywindow(void) {

FILE **win;

static pthread_once_t mykeycreated = PTHREAD_ONCE_INIT;

pthread_once(&mykeycreated, mykeycreate);

win = malloc(sizeof(*win));

create_window(win, ...);

pthread_setspecific(mywindow_key, win);

}

void mykeycreate(void) {

pthread_keycreate(&mywindow_key, free_key);

310 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

}

void free_key(void *win) {

free(win);

}

First, get a unique value for the key, mywin key. This key is used to iden-
tify the thread-specific class of data. So, the first thread to call make mywin

eventually calls pthread keycreate(), which assigns to its first argument
a unique key. The second argument is a destructor function that is used
to deallocate a thread’s instance of this thread-specific data item once the
thread terminates.

The next step is to allocate the storage for the caller’s instance of this
thread-specific data item. Having allocated the storage, a call is made to
the create window routine, which sets up a window for the thread and
sets the storage pointed to by win to refer to it. Finally, a call is made to
pthread setspecific(), which associates the value contained in win (that
is, the location of the storage containing the reference to the window) with
the key. After this, whenever this thread calls pthread getspecific(),
passing the global key, it gets the value that was associated with this key
by this thread when it called pthread setspecific(). When a thread
terminates, calls are made to the destructor functions that were set up in
pthread key create(). Each destructor function is called only if the termi-
nating thread established a value for the key by calling pthread setspecific().

28.4.10 Getting the Thread Identifiers

The function pthread self() can be called to return the ID of the calling
thread. It is prototyped by:

pthread_t pthread_self(void);

It is use is very straightforward:

#include <pthread.h>

pthread_t tid;

tid = pthread_self();

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>311

28.4.11 Comparing Thread IDs

The function pthread equal() can be called to compare the thread identi-
fication numbers of two threads. It is prototyped by:

int pthread_equal(pthread_t tid1, pthread_t tid2);

It is use is straightforward to use, also:

#include <pthread.h>

pthread_t tid1, tid2;

int ret;

ret = pthread_equal(tid1, tid2);

As with other comparison functions, pthread equal() returns a non-
zero value when tid1 and tid2 are equal; otherwise, zero is returned. When
either tid1 or tid2 is an invalid thread identification number, the result is
unpredictable.

28.4.12 Initializing Threads

Use pthread once() to call an initialization routine the first time pthread once()

is called — Subsequent calls to have no effect. The prototype of this function
is:

int pthread_once(pthread_once_t *once_control,

void (*init_routine)(void));

28.4.13 Yield Thread Execution

The function sched yield() to cause the current thread to yield its exe-
cution in favor of another thread with the same or greater priority. It is
prototyped by:

int sched_yield(void);

It is clearly a simple function to call:

#include <sched.h>

int ret;

ret = sched_yield();

sched yield() returns zero after completing successfully. Otherwise -1
is returned and errno is set to indicate the error condition.

312 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

28.4.14 Set the Thread Priority

Use pthread setschedparam() to modify the priority of an existing thread.
This function has no effect on scheduling policy. It is prototyped as follows:

int pthread_setschedparam(pthread_t tid, int policy,

const struct sched_param *param);

and used as follows:

#include <pthread.h>

pthread_t tid;

int ret;

struct sched_param param;

int priority;

/* sched_priority will be the priority of the thread */

sched_param.sched_priority = priority;

/* only supported policy, others will result in ENOTSUP */

policy = SCHED_OTHER;

/* scheduling parameters of target thread */

ret = pthread_setschedparam(tid, policy, ¶m);

pthread setschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the fol-
lowing conditions occurs, the pthread setschedparam() function fails and
returns an error value.

28.4.15 Get the Thread Priority

int pthread getschedparam(pthread t tid, int policy, struct schedparam

*param) gets the priority of the existing thread.
An example call of this function is:

#include <pthread.h>

pthread_t tid;

sched_param param;

int priority;

28.4. THE POSIX THREADS LIBRARY:LIBPTHREAD, <PTHREAD.H>313

int policy;

int ret;

/* scheduling parameters of target thread */

ret = pthread_getschedparam (tid, &policy, ¶m);

/* sched_priority contains the priority of the thread */

priority = param.sched_priority;

pthread getschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the error value set.

28.4.16 Send a Signal to a Thread

Signal may be sent to threads is a similar fashion to those for process as
follows:

#include <pthread.h>

#include <signal.h>

int sig;

pthread_t tid;

int ret;

ret = pthread_kill(tid, sig);

pthread kill() sends the signal sig to the thread specified by tid. tid
must be a thread within the same process as the calling thread. The sig

argument must be a valid signal of the same type defined for signal() in
<signal.h> (See Chapter 23)

When sig is zero, error checking is performed but no signal is actually
sent. This can be used to check the validity of tid.

This function returns zero after completing successfully. Any other re-
turned value indicates that an error occurred. When either of the following
conditions occurs, pthread kill() fails and returns an error value.

28.4.17 Access the Signal Mask of the Calling Thread

The function pthread sigmask() may be used to change or examine the
signal mask of the calling thread. It is prototyped as follows:

314 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);

Example uses of this function include:

#include <pthread.h>

#include <signal.h>

int ret;

sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, &new, &old); /* set new mask */

ret = pthread_sigmask(SIG_BLOCK, &new, &old); /* blocking mask */

ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); /* unblocking */

how determines how the signal set is changed. It can have one of the
following values:

SIG SETMASK — Replace the current signal mask with new, where new indi-
cates the new signal mask.

SIG BLOCK — Add new to the current signal mask, where new indicates the
set of signals to block.

SIG UNBLOCK — Delete new from the current signal mask, where new indi-
cates the set of signals to unblock.

When the value of new is NULL, the value of how is not significant and
the signal mask of the thread is unchanged. So, to inquire about currently
blocked signals, assign a NULL value to the new argument. The old variable
points to the space where the previous signal mask is stored, unless it is NULL.

pthread sigmask() returns a zero when it completes successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, pthread sigmask() fails and returns an errro value.

28.4.18 Terminate a Thread

A thread can terminate its execution in the following ways:

• By returning from its first (outermost) procedure, the threads start
routine; see pthread create()

• By calling pthread exit(), supplying an exit status

28.5. SOLARIS THREADS: <THREAD.H> 315

• By termination with POSIX cancel functions; see pthread cancel()

The void pthread exit(void *status) is used terminate a thread in a
similar fashion the exit() for a process:

#include <pthread.h>

int status;

pthread_exit(&status); /* exit with status */

The pthread exit() function terminates the calling thread. All thread-
specific data bindings are released. If the calling thread is not detached, then
the thread’s ID and the exit status specified by status are retained until the
thread is waited for (blocked). Otherwise, status is ignored and the thread’s
ID can be reclaimed immediately.

The pthread cancel() function to cancel a thread is prototyped:

int pthread_cancel(pthread_t thread);

and called:

#include <pthread.h>

pthread_t thread;

int ret;

ret = pthread_cancel(thread);

How the cancellation request is treated depends on the state of the target
thread. Two functions,

pthread setcancelstate() and pthread setcanceltype() (see man pages
for further information on these functions), determine that state.

pthread cancel() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, the function fails and returns an error value.

28.5 Solaris Threads: <thread.h>

Solaris have many similarities to POSIX threads,In this sectionfocus on the
Solaris features that are not found in POSIX threads. Where functionality is
virtually the same for both Solaris threads and for pthreads, (even though the
function names or arguments might differ), only a brief example consisting of

316 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

the correct include file and the function prototype is presented. Where return
values are not given for the Solaris threads functions, see the appropriate man
pages.

The Solaris threads API and the pthreads API are two solutions to the
same problem: building parallelism into application software. Although each
API is complete in itself, you can safely mix Solaris threads functions and
pthread functions in the same program.

The two APIs do not match exactly, however. Solaris threads supports
functions that are not found in pthreads, and pthreads includes functions
that are not supported in the Solaris interface. For those functions that
do match, the associated arguments might not, although the information
content is effectively the same.

By combining the two APIs, you can use features not found in one to
enhance the other. Similarly, you can run applications using Solaris threads,
exclusively, with applications using pthreads, exclusively, on the same sys-
tem.

To use the Solaris threads functions described in this chapter, you must
link with the Solaris threads library -lthread and include the <thread.h>
in all programs.

28.5.1 Unique Solaris Threads Functions

Let us begin by looking at some functions that are unique to Solaris threads:

• Suspend Thread Execution

• Continue a Suspended Thread

• Set Thread Concurrency Level

• Get Thread Concurrency

Suspend Thread Execution

The function thr suspend() immediately suspends the execution of the
thread specified by a target thread, (tid below). It is prototyped by:

int thr_suspend(thread_t tid);

28.5. SOLARIS THREADS: <THREAD.H> 317

On successful return from thr suspend(), the suspended thread is no
longer executing. Once a thread is suspended, subsequent calls to thr suspend()

have no effect. Signals cannot awaken the suspended thread; they remain
pending until the thread resumes execution.

A simple example call is as follows:

#include <thread.h>

thread_t tid; /* tid from thr_create() */

/* pthreads equivalent of Solaris tid from thread created */

/* with pthread_create() */

pthread_t ptid;

int ret;

ret = thr_suspend(tid);

/* using pthreads ID variable with a cast */

ret = thr_suspend((thread_t) ptid);

Note: pthread t tid as defined in pthreads is the same as thread t

tid in Solaris threads. tid values can be used interchangeably either by
assignment or through the use of casts.

Continue a Suspended Thread

The function thr continue() resumes the execution of a suspended thread.
It is prototypes as follows:

int thr_continue(thread_t tid);

Once a suspended thread is continued, subsequent calls to thr continue()

have no effect.
A suspended thread will not be awakened by a signal. The signal stays

pending until the execution of the thread is resumed by thr continue().
thr continue() returns zero after completing successfully. Any other

returned value indicates that an error occurred. When the following condition
occurs, thr continue() The following code fragment illustrates the use of
the function:

thread_t tid; /* tid from thr_create()*/

/* pthreads equivalent of Solaris tid from thread created */

318 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

/* with pthread_create()*/

pthread_t ptid;

int ret;

ret = thr_continue(tid);

/* using pthreads ID variable with a cast */

ret = thr_continue((thread_t) ptid)

Set Thread Concurrency Level

By default, Solaris threads attempt to adjust the system execution resources
(LWPs) used to run unbound threads to match the real number of active
threads. While the Solaris threads package cannot make perfect decisions,
it at least ensures that the process continues to make progress. When you
have some idea of the number of unbound threads that should be simul-
taneously active (executing code or system calls), tell the library through
thr setconcurrency(int new level). To get the number of threads being
used, use the function thr getconcurrencyint(void):

thr setconcurrency() provides a hint to the system about the required
level of concurrency in the application. The system ensures that a sufficient
number of threads are active so that the process continues to make progress,
for example:

#include <thread.h>

int new_level;

int ret;

ret = thr_setconcurrency(new_level);

Unbound threads in a process might or might not be required to be si-
multaneously active. To conserve system resources, the threads system en-
sures by default that enough threads are active for the process to make
progress, and that the process will not deadlock through a lack of concur-
rency. Because this might not produce the most effective level of concurrency,
thr setconcurrency() permits the application to give the threads system
a hint, specified by new level, for the desired level of concurrency. The ac-
tual number of simultaneously active threads can be larger or smaller than
new level. Note that an application with multiple compute-bound threads
can fail to schedule all the runnable threads if thr setconcurrency() has

28.5. SOLARIS THREADS: <THREAD.H> 319

not been called to adjust the level of execution resources. You can also affect
the value for the desired concurrency level by setting the THR NEW LW flag in
thr create(). This effectively increments the current level by one.

thr setconcurrency() a zero when it completes successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions are detected, thr setconcurrency() fails and returns the corre-
sponding value to �errno.

Readers/Writer Locks

Readers/Writer locks are another unique feature of Solaris threads. They
allow simultaneous read access by many threads while restricting write access
to only one thread at a time.

When any thread holds the lock for reading, other threads can also acquire
the lock for reading but must wait to acquire the lock for writing. If one
thread holds the lock for writing, or is waiting to acquire the lock for writing,
other threads must wait to acquire the lock for either reading or writing.
Readers/writer locks are slower than mutexes, but can improve performance
when they protect data that are not frequently written but that are read by
many concurrent threads. Use readers/writer locks to synchronize threads
in this process and other processes by allocating them in memory that is
writable and shared among the cooperating processes (see mmap(2)) and by
initializing them for this behavior. By default, the acquisition order is not
defined when multiple threads are waiting for a readers/writer lock. However,
to avoid writer starvation, the Solaris threads package tends to favor writers
over readers. Readers/writer locks must be initialized before use.

Initialize a Readers/Writer Lock
The function rwlock init() initialises the readers/writer lock. it is pro-

totypes in <synch.h> or <thread.h> as follows:

int rwlock_init(rwlock_t *rwlp, int type, void * arg);

The readers/writer lock pointed to by rwlp and to set the lock state to
unlocked. type can be one of the following

USYNC PROCESS — The readers/writer lock can be used to synchronize threads
in this process and other processes.

USYNC THREAD — The readers/writer lock can be used to synchronize threads
in this process, only.

320 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

Note: that arg is currently ignored.
rwlock init() returns zero after completing successfully. Any other re-

turned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value to
errno.

Multiple threads must not initialize the same readers/writer lock simulta-
neously. Readers/writer locks can also be initialized by allocation in zeroed
memory, in which case a type of USYNC THREAD is assumed. A readers/writer
lock must not be reinitialized while other threads might be using it.

An example code fragment that initialises Readers/Writer Locks with
Intraprocess Scope is as follows:

#include <thread.h>

rwlock_t rwlp;

int ret;

/* to be used within this process only */

ret = rwlock_init(&rwlp, USYNC_THREAD, 0);

Initializing Readers/Writer Locks with Interprocess Scope

#include <thread.h>

rwlock_t rwlp;

int ret;

/* to be used among all processes */

ret = rwlock_init(&rwlp, USYNC_PROCESS, 0);

Acquire a Read Lock
To acquire a read lock on the readers/writer lock use the rw rdlock()

function:

int rw_rdlock(rwlock_t *rwlp);

The readers/writer lock pointed to by rwlp. When the readers/writer
lock is already locked for writing, the calling thread blocks until the write
lock is released. Otherwise, the read lock is acquired.

rw rdlock() returns zero after completing successfully. Any other re-
turned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value to
errno.

28.5. SOLARIS THREADS: <THREAD.H> 321

A function rw tryrdlock(rwlock t *rwlp) may also be used to attempt
to acquire a read lock on the readers/writer lock pointed to by rwlp. When
the readers/writer lock is already locked for writing, it returns an error. Oth-
erwise, the read lock is acquired. This function returns zero after completing
successfully. Any other returned value indicates that an error occurred.

Acquire a Write Lock
The function rw wrlock(rwlock t *rwlp) acquires a write lock on the

readers/writer lock pointed to by rwlp. When the readers/writer lock is
already locked for reading or writing, the calling thread blocks until all the
read locks and write locks are released. Only one thread at a time can hold
a write lock on a readers/writer lock.

rw wrlock() returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

Use rw trywrlockrwlock t *rwlp) to attempt to acquire a write lock
on the readers/writer lock pointed to by rwlp. When the readers/writer lock
is already locked for reading or writing, it returns an error.

rw trywrlock() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Unlock a Readers/Writer Lock
The function rw unlock(rwlock t *rwlp) unlocks a readers/writer lock

pointed to by rwlp. The readers/writer lock must be locked and the calling
thread must hold the lock either for reading or writing. When any other
threads are waiting for the readers/writer lock to become available, one of
them is unblocked.

rw unlock() returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

Destroy Readers/Writer Lock State
The function rwlock destroy(rwlock t *rwlp) destroys any state asso-

ciated with the readers/writer lock pointed to by rlwp. The space for storing
the readers/writer lock is not freed.

rwlock destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Readers/Writer Lock Example

The following example uses a bank account analogy to demonstrate read-
ers/writer locks. While the program could allow multiple threads to have
concurrent read-only access to the account balance, only a single writer is

322 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

allowed. Note that the get balance() function needs the lock to ensure
that the addition of the checking and saving balances occurs atomically.

rwlock_t account_lock;

float checking_balance = 100.0;

float saving_balance = 100.0;

...

rwlock_init(&account_lock, 0, NULL);

...

float

get_balance() {

float bal;

rw_rdlock(&account_lock);

bal = checking_balance + saving_balance;

rw_unlock(&account_lock);

return(bal);

}

void

transfer_checking_to_savings(float amount) {

rw_wrlock(&account_lock);

checking_balance = checking_balance - amount;

saving_balance = saving_balance + amount;

rw_unlock(&account_lock);

}

28.5.2 Similar Solaris Threads Functions

Here we simply list the similar thread functions and their prototype defini-
tions, except where the complexity of the function merits further exposition.
.

Create a Thread

The thr create() routine is one of the most elaborate of all the Solaris
threads library routines.

It is prototyped as follows:

int thr_create(void *stack_base, size_t stack_size,

28.5. SOLARIS THREADS: <THREAD.H> 323

void *(*start_routine) (void *), void *arg, long flags,

thread_t *new_thread);

Thjis function adds a new thread of control to the current process. Note
that the new thread does not inherit pending signals, but it does inherit
priority and signal masks.

stack base contains the address for the stack that the new thread uses. If
stack base is NULL then thr create() allocates a stack for the new thread
with at least stac size bytes. stack size Contains the size, in number of
bytes, for the stack that the new thread uses. If stack size is zero, a default
size is used. In most cases, a zero value works best. If stack size is not
zero, it must be greater than the value returned by thr min stack(void)

inquiry function.
There is no general need to allocate stack space for threads. The threads

library allocates one megabyte of virtual memory for each thread’s stack with
no swap space reserved.

start routine contains the function with which the new thread begins
execution. When start routine returns, the thread exits with the exit
status set to the value returned by start routine

arg can be anything that is described by void, which is typically any
4-byte value. Anything larger must be passed indirectly by having the argu-
ment point to it.

Note that you can supply only one argument. To get your procedure to
take multiple arguments, encode them as one (such as by putting them in a
structure).

flags specifies attributes for the created thread. In most cases a zero
value works best. The value in flags is constructed from the bitwise inclusive
OR of the following:

THR SUSPENDED — Suspends the new thread and does not execute start routine

until the thread is started by thr continue(). Use this to operate on
the thread (such as changing its priority) before you run it. The ter-
mination of a detached thread is ignored.

THR DETACHED — Detaches the new thread so that its thread ID and other
resources can be reused as soon as the thread terminates. Set this when
you do not want to wait for the thread to terminate. Note - When there
is no explicit synchronization to prevent it, an unsuspended, detached

324 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

thread can die and have its thread ID reassigned to another new thread
before its creator returns from thr create().

THR BOUND — Permanently binds the new thread to an LWP (the new thread
is a bound thread).

THR NEW LWP — Increases the concurrency level for unbound threads by one.
The effect is similar to incrementing concurrency by one with thr setconcurrency(),
although THR NEW LWP does not affect the level set through the thr setconcurrency()

function. Typically, THR NEW LWP adds a new LWP to the pool of LWPs
running unbound threads.

When you specify both THR BOUND and THR NEW LWP, two LWPs are
typically created — one for the bound thread and another for the pool
of LWPs running unbound threads.

THR DAEMON —- Marks the new thread as a daemon. The process exits when
all nondaemon threads exit. Daemon threads do not affect the process
exit status and are ignored when counting the number of thread exits.

A process can exit either by calling exit() or by having every thread
in the process that was not created with the THR DAEMON flag call
thr exit(). An application, or a library it calls, can create one or
more threads that should be ignored (not counted) in the decision of
whether to exit. The THR DAEMONl flag identifies threads that are not
counted in the process exit criterion.

new thread points to a location (when new thread is not NULL) where
the ID of the new thread is stored when thr create() is successful. The
caller is responsible for supplying the storage this argument points to. The
ID is valid only within the calling process. If you are not interested in this
identifier, supply a zero value to new thread.

thr create() returns a zero and exits when it completes successfully.
Any other returned value indicates that an error occurred. When any of
the following conditions are detected, thr create() fails and returns the
corresponding value to errno.

Get the Thread Identifier

The int thr self(void) to get the ID of the calling thread.

28.5. SOLARIS THREADS: <THREAD.H> 325

Yield Thread Execution

void thr yield(void) causes the current thread to yield its execution in
favor of another thread with the same or greater priority; otherwise it has no
effect. There is no guarantee that a thread calling thr yield() will do so.

Signals and Solaris Threads

The following functions exist and operate as do pthreads.

int thr kill(thread t target thread, int sig) sends a signal to a
thread.

int thr sigsetmask(int how, const sigset t *set, sigset t *oset)

to change or examine the signal mask of the calling thread.

Terminating a Thread

The void th exit(void *status) to terminates a thread.

The int thr join(thread t tid, thread t *departedid, void **status)

function to wait for a thread to terminate.

Therefore to join specific threads one would do:

#include <thread.h>

thread_t tid;

thread_t departedid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = thr_join(tid, &departedid, (void**)&status);

/* waiting to join thread "tid" without status */

ret = thr_join(tid, &departedid, NULL);

/* waiting to join thread "tid" without return id and status */

ret = thr_join(tid, NULL, NULL);

When the tid is (thread t) 0, then thread join() waits for any unde-
tached thread in the process to terminate. In other words, when no thread
identifier is specified, any undetached thread that exits causes thread join()

to return.

To join any threads:

326 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

#include <thread.h>

thread_t tid;

thread_t departedid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = thr_join(NULL, &departedid, (void **)&status);

By indicating NULL as thread id in the thr join(), a join will take
place when any non detached thread in the process exits. The departedid
will indicate the thread ID of exiting thread.

Creating a Thread-Specific Data Key

Except for the function names and arguments, thread specific data is the
same for Solaris as it is for POSIX.

int thr keycreate(thread key t *keyp, void (*destructor) (void

*value)) allocates a key that is used to identify thread-specific data in a pro-
cess.

int thr setspecific(thread key t key, void *value) binds value to
the thread-specific data key, key, for the calling thread.

int thr getspecific(thread key t key, void **valuep) stores the
current value bound to key for the calling thread into the location pointed
to by valuep.

In Solaris threads, if a thread is to be created with a priority other than
that of its parent’s, it is created in SUSPEND mode. While suspended, the
threads priority is modified using the int thr setprio(thread t tid, int

newprio) function call; then it is continued.
An unbound thread is usually scheduled only with respect to other threads

in the process using simple priority levels with no adjustments and no kernel
involvement. Its system priority is usually uniform and is inherited from the
creating process.

The function thr setprio() changes the priority of the thread, specified
by tid, within the current process to the priority specified by newprio.

By default, threads are scheduled based on fixed priorities that range
from zero, the least significant, to the largest integer. The tid will preempt
lower priority threads, and will yield to higher priority threads. For example:

28.5. SOLARIS THREADS: <THREAD.H> 327

#include <thread.h>

thread_t tid;

int ret;

int newprio = 20;

/* suspended thread creation */

ret = thr_create(NULL, NULL, func, arg, THR_SUSPEND, &tid);

/* set the new priority of suspended child thread */

ret = thr_setprio(tid, newprio);

/* suspended child thread starts executing with new priority */

ret = thr_continue(tid);

Use �int thr getprio(thread t tid, int *newprio) to get the current priority
for the thread. Each thread inherits a priority from its creator. thr getprio()

stores the current priority, tid, in the location pointed to by newprio.

Example Use of Thread Specific Data:Rethinking Global Variables

Historically, most code has been designed for single-threaded programs. This
is especially true for most of the library routines called from C programs. The
following implicit assumptions were made for single-threaded code:

• When you write into a global variable and then, a moment later, read
from it, what you read is exactly what you just wrote.

• This is also true for nonglobal, static storage.

• You do not need synchronization because there is nothing to synchro-
nize with.

The next few examples discuss some of the problems that arise in multi-
threaded programs because of these assumptions, and how you can deal with
them.

Traditional, single-threaded C and UNIX have a convention for handling
errors detected in system calls. System calls can return anything as a func-
tional value (for example, write returns the number of bytes that were trans-
ferred). However, the value -1 is reserved to indicate that something went
wrong. So, when a system call returns -1, you know that it failed.

Consider the following piece of code:

328 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

extern int errno;

...

if (write(file_desc, buffer, size) == -1)

{ /* the system call failed */

fprintf(stderr, "something went wrong, error code = %d\n", errno);

exit(1);

}

Rather than return the actual error code (which could be confused with
normal return values), the error code is placed into the global variable errno.
When the system call fails, you can look in errno to find out what went
wrong.

Now consider what happens in a multithreaded environment when two
threads fail at about the same time, but with different errors.

• Both expect to find their error codes in errno,

• but one copy of errno cannot hold both values.a

This global variable approach simply does not work for multithreaded
programs. Threads solves this problem through a conceptually new storage
class: thread-specific data.

This storage is similar to global storage in that it can be accessed from
any procedure in which a thread might be running. However, it is private
to the thread: when two threads refer to the thread-specific data location of
the same name, they are referring to two different areas of storage.

So, when using threads, each reference to errno is thread-specific because
each thread has a private copy of errno. This is achieved in this implemen-
tation by making errno a macro that expands to a function call.

28.6 Compiling a Multithreaded Application

There are many options to consider for header files, define flags, and linking.

28.6. COMPILING A MULTITHREADED APPLICATION 329

28.6.1 Preparing for Compilation

The following items are required to compile and link a multithreaded pro-
gram.

• A standard C compiler (cc, gcc etc)

• Include files:

– <thread.h> and <pthread.h>

– <errno.h¿, <limits.h>, <signal.h>, <unistd.h>

• The Solaris threads library (libthread), the POSIX threads library
(libpthread), and possibly the POSIX realtime library (libposix4)
for semaphores

• MT-safe libraries (libc, libm, libw, libintl, libnsl, libsocket,

libmalloc, libmapmalloc, and so on)

The include file <thread.h>, used with the -lthread library, compiles
code that is upward compatible with earlier releases of the Solaris system.
This library contains both interfaces: those with Solaris semantics and those
with POSIX semantics. To call thr setconcurrency() with POSIX threads,
your program needs to include <thread.h>.

The include file <pthread.h>, used with the -lpthread library, compiles
code that is conformant with the multithreading interfaces defined by the
POSIX 1003.1c standard. For complete POSIX compliance, the define flag
_POSIX_C_SOURCE should be set to a (long) value ≥ 199506, as follows:

cc [flags] file... -D_POSIX_C_SOURCE=N (where N 199506L)

You can mix Solaris threads and POSIX threads in the same application,
by including both <thread.h> and <pthread.h>, and linking with either the
-lthread or -lpthread library. In mixed use, Solaris semantics prevail when
compiling with -D_REENTRANT flag set ≥ 199506L and linking with -lthread,
whereas POSIX semantics prevail when compiling with D_POSIX_C_SOURCE

flag set ≥ 199506L and linking with -lpthread. Defining REENTRANT or
POSIX C SOURCE

Linking With libthread or libpthread

330 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

For POSIX threads behavior, load the libpthread library. For Solaris
threads behavior, load the libthread library. Some POSIX programmers
might want to link with -lthreadto preserve the Solaris distinction between
fork() and fork1(). All that -lpthread really does is to make fork()

behave the same way as the Solaris fork1() call, and change the behavior
of alarm().

To use libthread, specify -lthread last on the cc command line.

To use libpthread, specify -lpthread last on the cc command line.

Do not link a nonthreaded program with -lthread or -lpthread. Do-
ing so establishes multithreading mechanisms at link time that are initiated
at run time. These slow down a single-threaded application, waste system
resources, and produce misleading results when you debug your code.

Note: For C++ programs that use threads, use the -mt option, rather
than -lthread, to compile and link your application. The -mt option links
with libthread and ensures proper library linking order. (Using -lthread

might cause your program to crash (core dump).

Linking with -lposix4 for POSIX Semaphores

The Solaris semaphore routines (see Chapter 30.3) are contained in the
libthread library. By contrast, you link with the -lposix4 library to get
the standard POSIX semaphore routines (See Chapter 25)

28.6.2 Debugging a Multithreaded Program

The following list points out some of the more frequent oversights and errors
that can cause bugs in multithreaded programs.

• Passing a pointer to the caller’s stack as an argument to a new thread.

• Accessing global memory (shared changeable state) without the pro-
tection of a synchronization mechanism.

• Creating deadlocks caused by two threads trying to acquire rights to
the same pair of global resources in alternate order (so that one thread
controls the first resource and the other controls the second resource
and neither can proceed until the other gives up).

• Trying to reacquire a lock already held (recursive deadlock).

28.6. COMPILING A MULTITHREADED APPLICATION 331

• Creating a hidden gap in synchronization protection. This is caused
when a code segment protected by a synchronization mechanism con-
tains a call to a function that frees and then reacquires the synchro-
nization mechanism before it returns to the caller. The result is that
it appears to the caller that the global data has been protected when
it actually has not.

• Mixing UNIX signals with threads — it is better to use the sigwait()
model for handling asynchronous signals.

• Forgetting that default threads are created PTHREAD CREATE JOINABLE

and must be reclaimed with pthread join(). Note, pthread exit()

does not free up its storage space.

• Making deeply nested, recursive calls and using large automatic ar-
rays can cause problems because multithreaded programs have a more
limited stack size than single-threaded programs.

• Specifying an inadequate stack size, or using non-default stacks. And,
note that multithreaded programs (especially those containing bugs)
often behave differently in two successive runs, given identical inputs,
because of differences in the thread scheduling order.

In general, multithreading bugs are statistical instead of deterministic.
Tracing is usually a more effective method of finding order of execution prob-
lems than is breakpoint-based debugging.

332 CHAPTER 28. THREADS: BASIC THEORY AND LIBRARIES

Chapter 29

Further Threads
Programming:Thread
Attributes (POSIX)

The previous chapter covered the basics of threads creation using default
attributes. This chapter discusses setting attributes at thread creation time.

Note that only pthreads uses attributes and cancellation, so the API cov-
ered in this chapter is for POSIX threads only. Otherwise, the functionality
for Solaris threads and pthreads is largely the same.

29.1 Attributes

Attributes are a way to specify behavior that is different from the default.
When a thread is created with pthread create() or when a synchronization
variable is initialized, an attribute object can be specified. Note: however
that the default atributes are usually sufficient for most applications.

Impottant Note: Attributes are specified only at thread creation time;
they cannot be altered while the thread is being used.

Thus three functions are usually called in tandem

• Thread attibute intialisation — pthread attr init() create a default
pthread attr t tattr

• Thread attribute value change (unless defaults appropriate) — a variety
of pthread attr *() functions are available to set individual attribute

333

334CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

values for the pthread attr t tattr structure. (see below).

• Thread creation — a call to pthread create() with approriate at-
tribute values set in a pthread attr t tattr structure.

The following code fragment should make this point clearer:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

void *start_routine;

void arg

int ret;

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* call an appropriate functions to alter a default value */

ret = pthread_attr_*(&tattr,SOME_ATRIBUTE_VALUE_PARAMETER);

/* create the thread */

ret = pthread_create(&tid, &tattr, start_routine, arg);

In order to save space, code examples mainly focus on the attribute setting
functions and the intializing and creation functions are ommitted. These
must of course be present in all actual code fragtments.

An attribute object is opaque, and cannot be directly modified by assign-
ments. A set of functions is provided to initialize, configure, and destroy each
object type. Once an attribute is initialized and configured, it has process-
wide scope. The suggested method for using attributes is to configure all
required state specifications at one time in the early stages of program exe-
cution. The appropriate attribute object can then be referred to as needed.
Using attribute objects has two primary advantages:

• First, it adds to code portability. Even though supported attributes
might vary between implementations, you need not modify function
calls that create thread entities because the attribute object is hidden
from the interface. If the target port supports attributes that are not

29.2. INITIALIZING THREAD ATTRIBUTES 335

found in the current port, provision must be made to manage the new
attributes. This is an easy porting task though, because attribute
objects need only be initialized once in a well-defined location.

• Second, state specification in an application is simplified. As an exam-
ple, consider that several sets of threads might exist within a process,
each providing a separate service, and each with its own state require-
ments. At some point in the early stages of the application, a thread
attribute object can be initialized for each set. All future thread cre-
ations will then refer to the attribute object initialized for that type of
thread. The initialization phase is simple and localized, and any future
modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the object
is initialized, memory is allocated for it. This memory must be returned
to the system. The pthreads standard provides function calls to destroy
attribute objects.

29.2 Initializing Thread Attributes

The function pthread attr init() is used to initialize object attributes to
their default values. The storage is allocated by the thread system during
execution.

The function is prototyped by:

int pthread_attr_init(pthread_attr_t *tattr);

An example call to this function is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* initialize an attribute to the default value */

ret = pthread_attr_init(&tattr);

The default values for attributes (tattr) are:

336CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

Attribute Value Result
scope PTHREAD SCOPE PROCESS New thread is

unbound -
not
permanently
attached to
LWP.

detachstate PTHREAD CREATE JOINABLE Exit status
and thread are
preserved
after the
thread
terminates.

stackaddr NULL New thread
has
system-allocated stack
address.

stacksize 1 megabyte New thread
has
system-defined
stack size.
priority New thread
inherits
parent thread
priority.

inheritsched PTHREAD INHERIT SCHED New thread
inherits
parent thread
scheduling
priority.

schedpolicy SCHED OTHER New thread
uses
Solaris-defined
fixed priority
scheduling;
threads run
until
preempted by a
higher-priority
thread or
until they
block or
yield.

29.3. DESTROYING THREAD ATTRIBUTES 337

This function zero after completing successfully. Any other returned value
indicates that an error occurred. If the following condition occurs, the func-
tion fails and returns an error value (to errno).

29.3 Destroying Thread Attributes

The function pthread attr destroy() is used to remove the storage al-
located during initialization. The attribute object becomes invalid. It is
prototyped by:

int pthread_attr_destroy(pthread_attr_t *tattr);

A sample call to this functions is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* destroy an attribute */

ret = pthread_attr_destroy(&tattr);

Attribites are declared as for pthread attr init() above.
pthread attr destroy() returns zero after completing successfully. Any

other returned value indicates that an error occurred.

29.4 Thread’s Detach State

When a thread is created detached (PTHREAD CREATE DETACHED), its thread
ID and other resources can be reused as soon as the thread terminates.

If you do not want the calling thread to wait for the thread to terminate
then call the function pthread attr setdetachstate().

When a thread is created nondetached (PTHREAD CREATE JOINABLE), it is
assumed that you will be waiting for it. That is, it is assumed that you will
be executing a pthread join() on the thread. Whether a thread is created
detached or nondetached, the process does not exit until all threads have
exited.

pthread attr setdetachstate() is prototyped by:

338CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

int pthread_attr_setdetachstate(pthread_attr_t *tattr,int detachstate);

pthread attr setdetachstate() returns zero after completing success-
fully. Any other returned value indicates that an error occurred. If the
following condition occurs, the function fails and returns the corresponding
value.

An example call to detatch a thread with this function is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* set the thread detach state */

ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

Note - When there is no explicit synchronization to prevent it, a newly
created, detached thread can die and have its thread ID reassigned to an-
other new thread before its creator returns from pthread create(). For
nondetached (PTHREAD CREATE JOINABLE) threads, it is very important that
some thread join with it after it terminates — otherwise the resources of that
thread are not released for use by new threads. This commonly results in a
memory leak. So when you do not want a thread to be joined, create it as a
detached thread.

It is quite common that you will wish to create a thread which is detatched
from creation. The following code illustrates how this may be achieved with
the standard calls to initialise and set and then create a thread:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

void *start_routine;

void arg

int ret;

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

ret = pthread_create(&tid, &tattr, start_routine, arg);

29.5. THREAD’S SET SCOPE 339

The function pthread attr getdetachstate() may be used to retrieve
the thread create state, which can be either detached or joined. It is proto-
typed by:

int pthread_attr_getdetachstate(const pthread_attr_t *tattr, int *detachstate);

pthread attr getdetachstate() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

An example call to this fuction is:

#include <pthread.h>

pthread_attr_t tattr;

int detachstate;

int ret;

/* get detachstate of thread */

ret = pthread_attr_getdetachstate (&tattr, &detachstate);

29.5 Thread’s Set Scope

A thread may be bound (PTHREAD SCOPE SYSTEM) or an unbound (PTHREAD SCOPE PROCESS).
Both these types of types are accessible only within a given process.

The function pthread attr setscope() to create a bound or unbound
thread. It is prototyped by:

int pthread_attr_setscope(pthread_attr_t *tattr,int scope);

Scope takes on the value of either PTHREAD SCOP SYSTEM or PTHREAD SCOPE PROCESS.
pthread attr setscope() returns zero after completing successfully. Any

other returned value indicates that an error occurred and an appropriate
value is returned.

So to set a bound thread at thread creation on would do the following
function calls:

#include <pthread.h>

pthread_attr_t attr;

pthread_t tid;

340CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

void start_routine;

void arg;

int ret;

/* initialized with default attributes */

ret = pthread_attr_init (&tattr);

/* BOUND behavior */

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

ret = pthread_create (&tid, &tattr, start_routine, arg);

If the following conditions occur, the function fails and returns the corre-
sponding value.

The function pthread attr getscope() is used to retrieve the thread
scope, which indicates whether the thread is bound or unbound. It is proto-
typed by:

int pthread_attr_getscope(pthread_attr_t *tattr, int *scope);

An example use of this function is:

#include <pthread.h>

pthread_attr_t tattr;

int scope;

int ret;

/* get scope of thread */

ret = pthread_attr_getscope(&tattr, &scope);

If successful the approriate (PTHREAD SCOP SYSTEM or PTHREAD SCOPE PROCESS)
wil be stored in scope.

pthread att getscope() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

29.6 Thread Scheduling Policy

The POSIX draft standard specifies scheduling policy attributes of SCHED FIFO

(first-in-first-out), SCHED RR (round-robin), or SCHED OTHER (an implementation-
defined method). SCHED FIFO and SCHED RR are optional in POSIX, and only
are supported for real time bound threads.

29.6. THREAD SCHEDULING POLICY 341

Howver Note, currently, only the Solaris SCHED OTHER default value is
supported in pthreads. Attempting to set policy as SCHED FIFO or SCHED RR

will result in the error ENOSUP.

The function is used to set the scheduling policy.It is prototyped by:

int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy);

pthread attr setschedpolicy() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

To set the scheduling policy to SCHED OTHER simply do:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* set the scheduling policy to SCHED_OTHER */

ret = pthread_attr_setschedpolicy(&tattr, SCHED_OTHER);

There is a function pthread attr getschedpolicy() that retrieves the
scheduling policy. But, currently, it is not of great use as it can only return
the (Solaris-based) SCHED OTHER default value

29.6.1 Thread Inherited Scheduling Policy

The function pthread attr setinheritsched() can be used to the inher-
ited scheduling policy of a thread. It is prototyped by:

int pthread_attr_setinheritsched(pthread_attr_t *tattr, int inherit);

An inherit value of PTHREAD INHERIT SCHED (the default) means that
the scheduling policies defined in the creating thread are to be used, and any
scheduling attributes defined in the pthread create() call are to be ignored.
If PTHREAD EXPLICIT SCHED is used, the attributes from the pthread create()

call are to be used.

The function returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

An example call of this function is:

342CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* use the current scheduling policy */

ret = pthread_attr_setinheritsched(&tattr, PTHREAD_EXPLICIT_SCHED);

The function pthread attr getinheritsched(pthread attr t *tattr,

int *inherit) may be used to inquire a current threads scheduling policy.

29.6.2 Set Scheduling Parameters

Scheduling parameters are defined in the sched param structure; only pri-
ority sched param.sched priority is supported. This priority is an inte-
ger value the higher the value the higher a thread’s proiority for scehduling.
Newly created threads run with this priority. The pthread attr setschedparam()

is used to set this stucture appropiately. It is prototyped by:

int pthread_attr_setschedparam(pthread_attr_t *tattr,

const struct sched_param *param);

and returns zero after completing successfully. Any other returned value
indicates that an error occurred.

An example call to pthread attr setschedparam() is:

#include <pthread.h>

pthread_attr_t tattr;

int newprio;

sched_param param;

/* set the priority; others are unchanged */

newprio = 30;

param.sched_priority = newprio;

/* set the new scheduling param */

ret = pthread_attr_setschedparam (&tattr, ¶m);

29.7. THREAD STACK SIZE 343

The function pthread attr getschedparam(pthread attr t *tattr, const

struct sched param *param) may be used to inquire a current thread’s pri-
ority of scheduling.

29.7 Thread Stack Size

Typically, thread stacks begin on page boundaries and any specified size is
rounded up to the next page boundary. A page with no access permission
is appended to the top of the stack so that most stack overflows result in
sending a SIGSEGV signal to the offending thread. Thread stacks allocated
by the caller are used as is.

When a stack is specified, the thread should also be created PTHREAD CREATE JOINABLE.
That stack cannot be freed until the pthread join() call for that thread has
returned, because the thread’s stack cannot be freed until the thread has ter-
minated. The only reliable way to know if such a thread has terminated is
through pthread join().

Generally, you do not need to allocate stack space for threads. The
threads library allocates one megabyte of virtual memory for each thread’s
stack with no swap space reserved. (The library uses the MAP NORESERVE

option of mmap to make the allocations.)

Each thread stack created by the threads library has a red zone. The
library creates the red zone by appending a page to the top of a stack to
catch stack overflows. This page is invalid and causes a memory fault if it
is accessed. Red zones are appended to all automatically allocated stacks
whether the size is specified by the application or the default size is used.

Note: Because runtime stack requirements vary, you should be absolutely
certain that the specified stack will satisfy the runtime requirements needed
for library calls and dynamic linking.

There are very few occasions when it is appropriate to specify a stack,
its size, or both. It is difficult even for an expert to know if the right size
was specified. This is because even a program compliant with ABI standards
cannot determine its stack size statically. Its size is dependent on the needs
of the particular runtime environment in which it executes.

344CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

29.7.1 Building Your Own Thread Stack

When you specify the size of a thread stack, be sure to account for the al-
locations needed by the invoked function and by each function called. The
accounting should include calling sequence needs, local variables, and infor-
mation structures.

Occasionally you want a stack that is a bit different from the default stack.
An obvious situation is when the thread needs more than one megabyte of
stack space. A less obvious situation is when the default stack is too large.
You might be creating thousands of threads and not have enough virtual
memory to handle the gigabytes of stack space that this many default stacks
require.

The limits on the maximum size of a stack are often obvious, but what
about the limits on its minimum size? There must be enough stack space
to handle all of the stack frames that are pushed onto the stack, along with
their local variables, and so on.

You can get the absolute minimum limit on stack size by calling the macro
PTHREAD STACK MIN (defined in <pthread.h>), which returns the amount of
stack space required for a thread that executes a NULL procedure. Useful
threads need more than this, so be very careful when reducing the stack size.

The function pthread attr setstacksize() is used to set this a thread’s
stack size, it is prototyped by:

int pthread_attr_setstacksize(pthread_attr_t *tattr, int stacksize);

The stacksize attribute defines the size of the stack (in bytes) that the
system will allocate. The size should not be less than the system-defined
minimum stack size.

pthread attr setstacksize() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

An example call to set the stacksize is:

#include <pthread.h>

pthread_attr_t tattr;

int stacksize;

int ret;

29.7. THREAD STACK SIZE 345

/* setting a new size */

stacksize = (PTHREAD_STACK_MIN + 0x4000);

ret = pthread_attr_setstacksize(&tattr, stacksize);

In the example above, size contains the size, in number of bytes, for the
stack that the new thread uses. If size is zero, a default size is used. In most
cases, a zero value works best. PTHREAD STACK MIN is the amount of stack
space required to start a thread. This does not take into consideration the
threads routine requirements that are needed to execute application code.

The function pthread attr getstacksize(pthread attr t *tattr, size t

*size) may be used to inquire about a current threads stack size as follows:

#include <pthread.h>

pthread_attr_t tattr;

int stacksize;

int ret;

/* getting the stack size */

ret = pthread_attr_getstacksize(&tattr, &stacksize);

The current size of the stack is returned to the variable stacksize.
You may wish tp specify the base adress of thread’s stack. The function

pthread attr setstackaddr() does this task. It is prototyped by:

int pthread_attr_setstackaddr(pthread_attr_t *tattr,void *stackaddr);

The stackaddr parameter defines the base of the thread’s stack. If this
is set to non-null (NULL is the default) the system initializes the stack at
that address.

The function returns zero after completing successfully. Any other re-
turned value indicates that an error occurred.

This example shows how to create a thread with both a custom stack
address and a custom stack size.

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

346CHAPTER 29. FURTHER THREADS PROGRAMMING:THREAD ATTRIBUTES (P

int ret;

void *stackbase;

int size = PTHREAD_STACK_MIN + 0x4000;

stackbase = (void *) malloc(size);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* setting the size of the stack also */

ret = pthread_attr_setstacksize(&tattr, size);

/* setting the base address in the attribute */

ret = pthread_attr_setstackaddr(&tattr, stackbase);

/* address and size specified */

ret = pthread_create(&tid, &tattr, func, arg);

The function pthread attr getstackaddr(pthread attr t *tattr,void

* *stackaddr) can be used to obtain the base address for a current thread’s
stack address.

Chapter 30

Further Threads
Programming:Synchronization

When we multiple threads running they will invariably need to communicate
with each other in order synchronise their execution. This chapter describes
the synchronization types available with threads and discusses when and how
to use synchronization.

There are a few possible methods of synchronising threads:

• Mutual Exclusion (Mutex) Locks

• Condition Variables

• Semaphores

We will frequently make use of Synchronization objects: these are vari-
ables in memory that you access just like data. Threads in different processes
can communicate with each other through synchronization objects placed in
threads-controlled shared memory, even though the threads in different pro-
cesses are generally invisible to each other.

Synchronization objects can also be placed in files and can have lifetimes
beyond that of the creating process.

Here are some example situations that require or can profit from the use
of synchronization:

• When synchronization is the only way to ensure consistency of shared
data.

347

348CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

• When threads in two or more processes can use a single synchronization
object jointly. Note that the synchronization object should be initial-
ized by only one of the cooperating processes, because reinitializing a
synchronization object sets it to the unlocked state.

• When synchronization can ensure the safety of mutable data.

• When a process can map a file and have a thread in this process get
a record’s lock. Once the lock is acquired, any other thread in any
process mapping the file that tries to acquire the lock is blocked until
the lock is released.

• Even when accessing a single primitive variable, such as an integer. On
machines where the integer is not aligned to the bus data width or is
larger than the data width, a single memory load can use more than one
memory cycle. While this cannot happen on the SPARC architectures,
portable programs cannot rely on this.

30.1 Mutual Exclusion Locks

Mutual exclusion locks (mutexes) are a comon method of serializing thread
execution. Mutual exclusion locks synchronize threads, usually by ensuring
that only one thread at a time executes a critical section of code. Mutex
locks can also preserve single-threaded code.

Mutex attributes may be associated with every thread. To change the
default mutex attributes, you can declare and initialize an mutex attribute
object and then alter specific values much like we have seen in the last chapter
on more general POSIX attributes. Often, the mutex attributes are set in
one place at the beginning of the application so they can be located quickly
and modified easily.

After the attributes for a mutex are configured, you initialize the mutex
itself. Functions are available to initialize or destroy, lock or unlock, or try
to lock a mutex.

30.1.1 Initializing a Mutex Attribute Object

The function pthread mutexattr init() is used to initialize attributes as-
sociated with this object to their default values. It is prototyped by:

30.1. MUTUAL EXCLUSION LOCKS 349

int pthread_mutexattr_init(pthread_mutexattr_t *mattr);

Storage for each attribute object is allocated by the threads system dur-
ing execution. mattr is an opaque type that contains a system-allocated at-
tribute object. The possible values of mattr’s scope are PTHREAD PROCESS PRIVATE

(the default) and PTHREAD PROCESS SHARED.The default value of the pshared
attribute when this function is called is PTHREAD PROCESS PRIVATE, which
means that the initialized mutex can be used within a process.

Before a mutex attribute object can be reinitialized, it must first be de-
stroyed by pthread mutexattr destroy() (see below). The pthread mutexattr init()

call returns a pointer to an opaque object. If the object is not destroyed,
a memory leak will result. pthread mutexattr init() returns zero after
completing successfully. Any other returned value indicates that an error
occurred.

A simple example of this function call is:

#include <pthread.h>

pthread_mutexattr_t mattr;

int ret;

/* initialize an attribute to default value */

ret = pthread_mutexattr_init(&mattr);

30.1.2 Destroying a Mutex Attribute Object

The function pthread mutexattr destroy() deallocates the storage space
used to maintain the attribute object created by pthread mutexattr init().
It is prototyped by:

int pthread_mutexattr_destroy(pthread_mutexattr_t *mattr);

which returns zero after completing successfully. Any other returned value
indicates that an error occurred.

The function is called as follows:

#include <pthread.h>

350CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

pthread_mutexattr_t mattr;

int ret;

/* destroy an attribute */

ret = pthread_mutexattr_destroy(&mattr);

30.1.3 The Scope of a Mutex

The scope of a mutex variable can be either process private (intraprocess) or
system wide (interprocess). The function pthread mutexattr setpshared()

is used to set the scope of a mutex atrribute and it is prototype as follows:

int pthread_mutexattr_setpshared(pthread_mutexattr_t *mattr, int pshared);

If the mutex is created with the pshared (POSIX) attribute set to the
PTHREAD PROCESS SHARED state, and it exists in shared memory, it can be
shared among threads from more than one process. This is equivalent to
the USYNC PROCESS flag in mutex init() in Solaris threads. If the mutex
pshared attribute is set to PTHREAD PROCESS PRIVATE, only those threads
created by the same process can operate on the mutex. This is equivalent to
the USYNC THREAD flag in mutex init() in Solaris threads.

pthread mutexattr setpshared() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutexattr_t mattr;

int ret;

ret = pthread_mutexattr_init(&mattr);

/* resetting to its default value: private */

ret = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_PRIVATE);

The function pthread mutexattr getpshared(pthread mutexattr t *mattr,

int *pshared) may be used to obtain the scope of a current thread mutex
as follows:

30.1. MUTUAL EXCLUSION LOCKS 351

#include <pthread.h>

pthread_mutexattr_t mattr;

int pshared, ret;

/* get pshared of mutex */ ret =

pthread_mutexattr_getpshared(&mattr, &pshared);

30.1.4 Initializing a Mutex

The function pthread mutex init() to initialize the mutex, it is prototyped
by:

int pthread_mutex_init(pthread_mutex_t *mp, const pthread_mutexattr_t *mattr);

Here, pthread mutex init() initializes the mutex pointed at by mp to
its default value if mattr is NULL, or to specify mutex attributes that have
already been set with pthread mutexattr init().

A mutex lock must not be reinitialized or destroyed while other threads
might be using it. Program failure will result if either action is not done
correctly. If a mutex is reinitialized or destroyed, the application must be
sure the mutex is not currently in use. pthread mutex init() returns zero
after completing successfully. Any other returned value indicates that an
error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;

pthread_mutexattr_t mattr;

int ret;

/* initialize a mutex to its default value */

ret = pthread_mutex_init(&mp, NULL);

When the mutex is initialized, it is in an unlocked state. The effect of
mattr being NULL is the same as passing the address of a default mutex

352CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

attribute object, but without the memory overhead. Statically defined mu-
texes can be initialized directly to have default attributes with the macro
PTHREAD MUTEX INITIALIZER.

To initialise a mutex with non-default values do something like:

/* initialize a mutex attribute */

ret = pthread_mutexattr_init(&mattr);

/* change mattr default values with some function */

ret = pthread_mutexattr_*();

/* initialize a mutex to a non-default value */

ret = pthread_mutex_init(&mp, &mattr);

30.1.5 Locking a Mutex

The function pthread mute lock() is used to lock a mutex, it is prototyped
by:

int pthread_mutex_lock(pthread_mutex_t *mp);

pthread mute lock() locks the mutex pointed to by mp. When the mu-
tex is already locked, the calling thread blocks and the mutex waits on a
prioritized queue. When pthread mute lock() returns, the mutex is locked
and the calling thread is the owner. pthread mute lock() returns zero after
completing successfully. Any other returned value indicates that an error
occurred.

Therefor to lock a mutex mp on would do the following:

#include <pthread.h>

pthread_mutex_t mp;

int ret;

ret = pthread_mutex_lock(&mp);

To unlock a mutex use the function pthread mutex unlock() whose pro-
totype is:

30.1. MUTUAL EXCLUSION LOCKS 353

int pthread_mutex_unlock(pthread_mutex_t *mp);

Clearly, this function unlocks the mutex pointed to by mp.
The mutex must be locked and the calling thread must be the one that

last locked the mutex (i.e. the owner). When any other threads are waiting
for the mutex to become available, the thread at the head of the queue is
unblocked. pthread mutex unlock() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

A simple example call of pthread mutex unlock() is:

#include <pthread.h>

pthread_mutex_t mp;

int ret;

/* release the mutex */

ret = pthread_mutex_unlock(&mp);

Lock with a Nonblocking Mutex

The function pthread mutex trylock() to attempt to lock the mutex and
is prototyped by:

int pthread_mutex_trylock(pthread_mutex_t *mp);

This function attempts to lock the mutex pointed to by mp. pthread mutex trylock()

is a nonblocking version of pthread mutex lock(). When the mutex is al-
ready locked, this call returns with an error. Otherwise, the mutex is locked
and the calling thread is the owner. pthread mutex trylock() returns zero
after completing successfully. Any other returned value indicates that an
error occurred.

The function is called as follows:

#include <pthread.h>

pthread_mutex_t mp;

/* try to lock the mutex */

int ret; ret = pthread_ mutex_trylock(&mp);

354CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

30.1.6 Destroying a Mutex

The function pthread mutex destroy() may be used to destroy any state
associated with the mutex. It is prototyped by:

int pthread_mutex_destroy(pthread_mutex_t *mp);

and destroys a mutex pointed to by mp.
Note: that the space for storing the mutex is not freed. pthread mutex destroy()

returns zero after completing successfully. Any other returned value indicates
that an error occurred.

It is called by:

#include <pthread.h>

pthread_mutex_t mp;

int ret;

/* destroy mutex */

ret = pthread_mutex_destroy(&mp);

30.1.7 Mutex Lock Code Examples

Here are some code fragments showing mutex locking.

Mutex Lock Example

We develop two small functions that use the mutex lock for different purposes.

• The increment count function() uses the mutex lock simply to en-
sure an atomic update of the shared variable, count.

• The get count() function uses the mutex lock to guarantee that the
(long long) 64-bit quantity count is read atomically. On a 32-bit
architecture, a long long is really two 32-bit quantities.

The 2 functions are as follows:

#include <pthread.h>

pthread_mutex_t count_mutex;

long long count;

30.1. MUTUAL EXCLUSION LOCKS 355

void increment_count()

{ pthread_mutex_lock(&count_mutex);

count = count + 1;

pthread_mutex_unlock(&count_mutex);

}

long long get_count()

{ long long c;

pthread_mutex_lock(&count_mutex);

c = count;

pthread_mutex_unlock(&count_mutex);

return (c);

}

Recall that reading an integer value is an atomic operation because in-
teger is the common word size on most machines.

Using Locking Hierarchies: Avoiding Deadlock

You may occasionally want to access two resources at once. For instance,
you are using one of the resources, and then discover that the other resource
is needed as well. However, there could be a problem if two threads attempt
to claim both resources but lock the associated mutexes in different orders.

In this example, if the two threads lock mutexes 1 and 2 respectively,
then a deadlock occurs when each attempts to lock the other mutex.

Thread 1 Thread 2
/* use resource 1 */ /* use resource 2 */

pthread mutex lock(&m1); pthread mutex lock(&m2);

/* NOW use resources 2 + 1 */ /* NOW use resources 1 + 2 */

pthread mutex lock(&m2); pthread mutex lock(&m1);

pthread mutex lock(&m1); pthread mutex lock(&m2);

The best way to avoid this problem is to make sure that whenever threads
lock multiple mutexes, they do so in the same order. This technique is known

356CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

as lock hierarchies: order the mutexes by logically assigning numbers to them.
Also, honor the restriction that you cannot take a mutex that is assigned n
when you are holding any mutex assigned a number greater than n.

Note: The lock lint tool can detect the sort of deadlock problem shown
in this example.

The best way to avoid such deadlock problems is to use lock hierarchies.
When locks are always taken in a prescribed order, deadlock should not occur.
However, this technique cannot always be used :

• sometimes you must take the mutexes in an order other than prescribed.

• To prevent deadlock in such a situation, use pthread mutex trylock().
One thread must release its mutexes when it discovers that deadlock
would otherwise be inevitable.

The idea of Conditional Locking use this approach:
Thread 1:

pthread_mutex_lock(&m1);

pthread_mutex_lock(&m2);

/* no processing */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

Thread 2:

for (; ;) {

pthread_mutex_lock(&m2);

if(pthread_mutex_trylock(&m1)==0)

/* got it! */

break;

/* didn’t get it */

pthread_mutex_unlock(&m2);

}

/* get locks; no processing */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

30.1. MUTUAL EXCLUSION LOCKS 357

In the above example, thread 1 locks mutexes in the prescribed order,
but thread 2 takes them out of order. To make certain that there is no
deadlock, thread 2 has to take mutex 1 very carefully; if it were to block
waiting for the mutex to be released, it is likely to have just entered into
a deadlock with thread 1. To ensure this does not happen, thread 2 calls
pthread mutex trylock(), which takes the mutex if it is available. If it is
not, thread 2 returns immediately, reporting failure. At this point, thread
2 must release mutex 2, so that thread 1 can lock it, and then release both
mutex 1 and mutex 2.

30.1.8 Nested Locking with a Singly Linked List

We have met basic linked structues in Section 10.3, when using threads which
share a linked list structure the possibility of deadlock may arise.

By nesting mutex locks into the linked data structure and a simple am-
mendment of the link list code we can prevent deadlock by taking the locks
in a prescribed order.

The modified linked is as follows:

typedef struct node1 {

int value;

struct node1 *link;

pthread_mutex_t lock;

} node1_t;

Note: we simply ammend a standard singly-linked list structure so that
each node containing a mutex.

Assuming we have created a variable node1_t ListHead.

To remove a node from the list:

• first search the list starting at ListHead (which itself is never removed)
until the desired node is found.

• To protect this search from the effects of concurrent deletions, lock each
node before any of its contents are accessed.

Because all searches start at ListHead, there is never a deadlock because
the locks are always taken in list order.

358CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

• When the desired node is found, lock both the node and its predecessor
since the change involves both nodes.

Because the predecessor’s lock is always taken first, you are again pro-
tected from deadlock.

The C code to remove an item from a singly linked list with nested locking
is as follows:

node1_t *delete(int value)

{ node1_t *prev,

*current; prev = &ListHead;

pthread_mutex_lock(&prev->lock);

while ((current = prev->link) != NULL)

{ pthread_mutex_lock(¤t->lock);

if (current->value == value)

{ prev->link = current->link;

pthread_mutex_unlock(¤t->lock);

pthread_mutex_unlock(&prev->lock);

current->link = NULL; return(current);

}

pthread_mutex_unlock(&prev->lock);

prev = current;

}

pthread_mutex_unlock(&prev->lock);

return(NULL);

}

30.1.9 Solaris Mutex Locks

Similar mutual exclusion locks exist for in Solaris.

You should include the <synch.h> or <thread.h>libraries.

To initialize a mutex use int mutex init(mutex t *mp, int type, void

*arg)). mutex init() initializes the mutex pointed to by mp. The type can
be one of the following (note that arg is currently ignored).

30.2. CONDITION VARIABLE ATTRIBUTES 359

USYNC PROCESS — The mutex can be used to synchronize threads in this and
other processes.

USYNC THREAD — The mutex can be used to synchronize threads in this
process, only.

Mutexes can also be initialized by allocation in zeroed memory, in which
case a type of USYNC THREAD is assumed. Multiple threads must not initialize
the same mutex simultaneously. A mutex lock must not be reinitialized while
other threads might be using it.

The function int mutex destroy (mutex t *mp) destroys any state as-
sociated with the mutex pointed to by mp. Note that the space for storing
the mutex is not freed.

To acquire a mutex lock use the function mutex lock(mutex t *mp)

which locks the mutex pointed to by mp. When the mutex is already locked,
the calling thread blocks until the mutex becomes available (blocked threads
wait on a prioritized queue).

To release a mutex use mutex unlock(mutex t *mp) which unlocks the
mutex pointed to by mp. The mutex must be locked and the calling thread
must be the one that last locked the mutex (the owner).

To try to acquire a mutex use mutex trylock(mutex t *mp) to attempt
to lock the mutex pointed to by mp. This function is a nonblocking version
of mutex lock()

30.2 Condition Variable Attributes

Condition variables can be usedto atomically block threads until a particular
condition is true. Condition variables are always used in conjunction with
mutex locks:

• With a condition variable, a thread can atomically block until a condi-
tion is satisfied.

• The condition is tested under the protection of a mutual exclusion lock
(mutex).

– When the condition is false, a thread usually blocks on a condi-
tion variable and atomically releases the mutex waiting for the
condition to change.

360CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

– When another thread changes the condition, it can signal the asso-
ciated condition variable to cause one or more waiting threads to
wake up, acquire the mutex again, and reevaluate the condition.

Condition variables can be used to synchronize threads among processes
when they are allocated in memory that can be written to and is shared by
the cooperating processes.

The scheduling policy determines how blocking threads are awakened.
For the default SCHED OTHER, threads are awakened in priority order. The
attributes for condition variables must be set and initialized before the con-
dition variables can be used.

As with mutex locks, The condiotion variable attributes must be ini-
tialised and set (or set to NULL) before an actual condition variable may be
initialise (with appropriat attributes) and then used.

30.2.1 Initializing a Condition Variable Attribute

The function pthread condattr init() initializes attributes associated with
this object to their default values. It is prototyped by:

int pthread_condattr_init(pthread_condattr_t *cattr);

Storage for each attribute object, cattr, is allocated by the threads
system during execution. cattr is an opaque data type that contains a
system-allocated attribute object. The possible values of cattr’s scope are
PTHREAD PROCESS PRIVATE and PTHREAD PROCESS SHARED. The default value
of the pshared attribute when this function is called is PTHREAD PROCESS PRIVATE,
which means that the initialized condition variable can be used within a pro-
cess.

Before a condition variable attribute can be reused, it must first be reini-
tialized by pthread condattr destroy(). The pthread condattr init()

call returns a pointer to an opaque object. If the object is not destroyed, a
memory leak will result.

pthread condattr init() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the
following conditions occurs, the function fails and returns the corresponding
value.

A simple example call of this function is :

30.2. CONDITION VARIABLE ATTRIBUTES 361

#include <pthread.h>

pthread_condattr_t cattr;

int ret;

/* initialize an attribute to default value */

ret = pthread_condattr_init(&cattr);

30.2.2 Destoying a Condition Variable Attribute

The function pthread condattr destroy() removes storage and renders the
attribute object invalid, it is prototyped by:

int pthread_condattr_destroy(pthread_condattr_t *cattr);

pthread condattr destroy() returns zero after completing successfully
and destroying the condition variable pointed to by cattr. Any other re-
turned value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

30.2.3 The Scope of a Condition Variable

The scope of a condition variable can be either process private (intraprocess)
or system wide (interprocess), as with mutex locks. If the condition variable
is created with the pshared attribute set to the PTHREAD PROCESS SHARED

state, and it exists in shared memory, it can be shared among threads from
more than one process. This is equivalent to the USYNC PROCESS flag in
mutex init() in the original Solaris threads. If the mutex pshared attribute
is set to PTHREAD PROCESS PRIVATE (default value), only those threads cre-
ated by the same process can operate on the mutex. Using PTHREAD PROCESS PRIVATE

results in the same behavior as with the USYNC THREAD flag in the original
Solaris threads cond init() call, which is that of a local condition variable.
PTHREAD PROCESS SHARED is equivalent to a global condition variable.

The function pthread condattr setpshared() is used to set the scope
of a condition variable, it is prototyped by:

int pthread_condattr_setpshared(pthread_condattr_t *cattr, int pshared);

362CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

The condition variable attribute cattr must be initialised first and the
value of pshared is either PTHREAD PROCESS SHARED or PTHREAD PROCESS PRIVATE.

pthread condattr setpshared() returns zero after completing success-
fully. Any other returned value indicates that an error occurred.

A sample use of this function is as follows:

#include <pthread.h>

pthread_condattr_t cattr;

int ret;

/* Scope: all processes */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);

/* OR */

/* Scope: within a process */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_PRIVATE);

The function int pthread condattr getpshared(const pthread condattr t

*cattr, int *pshared) may be used to obtain the scope of a given condi-
tion variable.

30.2.4 Initializing a Condition Variable

The function pthread cond init() initializes the condition variable and is
prototyped as follows:

int pthread_cond_init(pthread_cond_t *cv, const pthread_condattr_t *cattr);

The condition variable which is initialized is pointed at by cv and is set
to its default value if cattr is NULL, or to specific cattr condition variable
attributes that are already set with pthread condattr init(). The effect of
cattr being NULL is the same as passing the address of a default condition
variable attribute object, but without the memory overhead.

Statically-defined condition variables can be initialized directly to have
default attributes with the macro PTHREAD COND INITIALIZER. This has the
same effect as dynamically allocating pthread cond init() with null at-
tributes. No error checking is done. Multiple threads must not simulta-
neously initialize or reinitialize the same condition variable. If a condition

30.2. CONDITION VARIABLE ATTRIBUTES 363

variable is reinitialized or destroyed, the application must be sure the condi-
tion variable is not in use.

pthread cond init() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

Sample calls of this function are:

#include <pthread.h>

pthread_cond_t cv;

pthread_condattr_t cattr;

int ret;

/* initialize a condition variable to its default value */

ret = pthread_cond_init(&cv, NULL);

/* initialize a condition variable */ ret =

pthread_cond_init(&cv, &cattr);

30.2.5 Block on a Condition Variable

The function pthread cond wait() is used to atomically release a mutex and
to cause the calling thread to block on the condition variable. It is protoyped
by:

int pthread_cond_wait(pthread_cond_t *cv,pthread_mutex_t *mutex);

The mutex that is released is pointed to by mutex and the condition
variable pointed to by cv is blocked.

pthread cond wait() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

A simple example call is:

#include <pthread.h>

pthread_cond_t cv;

pthread_mutex_t mutex;

364CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

int ret;

/* wait on condition variable */

ret = pthread_cond_wait(&cv, &mutex);

The blocked thread can be awakened by a pthread cond signal(), a
pthread cond broadcast(), or when interrupted by delivery of a signal.
Any change in the value of a condition associated with the condition variable
cannot be inferred by the return of pthread cond wait(), and any such
condition must be reevaluated. The pthread cond wait() routine always
returns with the mutex locked and owned by the calling thread, even when
returning an error. This function blocks until the condition is signaled. It
atomically releases the associated mutex lock before blocking, and atomically
acquires it again before returning. In typical use, a condition expression is
evaluated under the protection of a mutex lock. When the condition ex-
pression is false, the thread blocks on the condition variable. The condition
variable is then signaled by another thread when it changes the condition
value. This causes one or all of the threads waiting on the condition to un-
block and to try to acquire the mutex lock again. Because the condition
can change before an awakened thread returns from pthread cond wait(),
the condition that caused the wait must be retested before the mutex lock is
acquired.

The recommended test method is to write the condition check as a while
loop that calls pthread cond wait(), as follows:

pthread_mutex_lock();

while(condition_is_false)

pthread_cond_wait();

pthread_mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread
blocks on the condition variable. Note also that pthread cond wait() is a
cancellation point. If a cancel is pending and the calling thread has cancella-
tion enabled, the thread terminates and begins executing its cleanup handlers
while continuing to hold the lock.

To unblock a specific thread use pthread cond signal() which is proto-
typed by:

30.2. CONDITION VARIABLE ATTRIBUTES 365

int pthread_cond_signal(pthread_cond_t *cv);

This unblocks one thread that is blocked on the condition variable pointed
to by cv. pthread cond signal() returns zero after completing successfully.
Any other returned value indicates that an error occurred.

You should always call pthread cond signal() under the protection of
the same mutex used with the condition variable being signaled. Otherwise,
the condition variable could be signaled between the test of the associated
condition and blocking in pthread cond wait(), which can cause an in-
finite wait. The scheduling policy determines the order in which blocked
threads are awakened. For SCHED OTHER, threads are awakened in priority
order. When no threads are blocked on the condition variable, then calling
pthread cond signal()l has no effect.

The folloowing code fragment illustrates how to avoid an infinite problem
described above:

pthread_mutex_t count_lock;

pthread_cond_t count_nonzero;

unsigned count;

decrement_count()

{ pthread_mutex_lock(&count_lock);

while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);

count = count - 1;

pthread_mutex_unlock(&count_lock);

}

increment_count()

{ pthread_mutex_lock(&count_lock);

if (count == 0)

pthread_cond_signal(&count_nonzero);

count = count + 1;

pthread_mutex_unlock(&count_lock);

}

You can also block until a specified event occurs. The function pthread cond timedwait()

is used for this purpose. It is prototyped by:

366CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

int pthread_cond_timedwait(pthread_cond_t *cv,

pthread_mutex_t *mp, const struct timespec *abstime);

pthread cond timedwait() is used in a similar manner to pthread cond wait():
pthread cond timedwait() blocks until the condition is signaled or until the
time of day, specified by abstime, has passed. pthread cond timedwait()

always returns with the mutex, mp, locked and owned by the calling thread,
even when it is returning an error. pthread cond timedwait() is also a
cancellation point.

pthread cond timedwait() returns zero after completing successfully.
Any other returned value indicates that an error occurred. When either of the
following conditions occurs, the function fails and returns the corresponding
value.

An examle call of this function is:

#include <pthread.h>

#include <time.h>

pthread_timestruc_t to;

pthread_cond_t cv;

pthread_mutex_t mp;

timestruct_t abstime;

int ret;

/* wait on condition variable */

ret = pthread_cond_timedwait(&cv, &mp, &abstime);

pthread_mutex_lock(&m);

to.tv_sec = time(NULL) + TIMEOUT;

to.tv_nsec = 0;

while (cond == FALSE)

{ err = pthread_cond_timedwait(&c, &m, &to);

if (err == ETIMEDOUT)

{ /* timeout, do something */

break;

30.2. CONDITION VARIABLE ATTRIBUTES 367

}

}

pthread_mutex_unlock(&m);

All threads may be unblocked in one function: pthread cond broadcast().
This function is prototyped as follows:

int pthread_cond_broadcast(pthread_cond_t *cv);

pthread cond broadcast() unblocks all threads that are blocked on the
condition variable pointed to by cv, specified by pthread cond wait(). When
no threads are blocked on the condition variable, pthread cond broadcast()

has no effect.
pthread cond broadcast() returns zero after completing successfully.

Any other returned value indicates that an error occurred. When the follow-
ing condition occurs, the function fails and returns the corresponding value.

Since pthread cond broadcast() causes all threads blocked on the con-
dition to contend again for the mutex lock, use carefully. For example, use
pthread cond broadcast() to allow threads to contend for varying resource
amounts when resources are freed:

#include <pthread.h>

pthread_mutex_t rsrc_lock;

pthread_cond_t rsrc_add;

unsigned int resources;

get_resources(int amount)

{ pthread_mutex_lock(&rsrc_lock);

while (resources < amount)

pthread_cond_wait(&rsrc_add, &rsrc_lock);

resources -= amount;

pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount)

{ pthread_mutex_lock(&rsrc_lock);

368CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

resources += amount;

pthread_cond_broadcast(&rsrc_add);

pthread_mutex_unlock(&rsrc_lock);

}

Note: that in add resources it does not matter whether resources is
updated first or if pthread cond broadcast() is called first inside the mutex
lock. Call pthread cond broadcast() under the protection of the same
mutex that is used with the condition variable being signaled. Otherwise,
the condition variable could be signaled between the test of the associated
condition and blocking in pthread cond wait(), which can cause an infinite
wait.

30.2.6 Destroying a Condition Variable State

The function pthread cond destroy() to destroy any state associated with
the condition variable, it is prototyped by:

int pthread_cond_destroy(pthread_cond_t *cv);

The condition variable pointed to by cv will be destroyed by this call:

#include <pthread.h>

pthread_cond_t cv;

int ret;

/* Condition variable is destroyed */

ret = pthread_cond_destroy(&cv);

Note that the space for storing the condition variable is not freed.

pthread cond destroy() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

30.2. CONDITION VARIABLE ATTRIBUTES 369

30.2.7 Solaris Condition Variables

Similar condition variables exist in Solaris. The functions are prototyped in
<thread.h>.

To initialize a condition variable use int cond init(cond t *cv, int

type, int arg) which initializes the condition variable pointed to by cv.
The type can be one of USYNC PROCESS or USYNC THREAD (See Solaris mutex
(Section 30.1.9 for more details). Note that arg is currently ignored.

Condition variables can also be initialized by allocation in zeroed memory,
in which case a type of USYNC THREAD is assumed. Multiple threads must not
initialize the same condition variable simultaneously. A condition variable
must not be reinitialized while other threads might be using it.

To destroy a condition variable use int cond destroy(cond t *cv) which
destroys a state associated with the condition variable pointed to by cv. The
space for storing the condition variable is not freed.

To wait for a condition use int cond wait(cond t *cv, mutex t *mp)

which atomically releases the mutex pointed to by mp and to cause the calling
thread to block on the condition variable pointed to by cv.

The blocked thread can be awakened by cond signal(cond t *cv), cond broadcast(cond t

*cv), or when interrupted by delivery of a signal or a fork. Use cond signal()

to unblock one thread that is blocked on the condition variable pointed to
by cv. Call this function under protection of the same mutex used with
the condition variable being signaled. Otherwise, the condition could be
signaled between its test and cond wait(), causing an infinite wait. Use
cond broadcast() to unblock all threads that are blocked on the condition
variable pointed to by cv. When no threads are blocked on the condition
variable then cond broadcast() has no effect.

Finally, to wait until the condition is signaled or for an absolute time use
int cond timedwait(cond t *cv, mutex t *mp, timestruct t abstime)

Use cond timedwait() as you would use cond wait(), except that cond timedwait()

does not block past the time of day specified by abstime. cond timedwait()

always returns with the mutex locked and owned by the calling thread even
when returning an error.

370CHAPTER 30. FURTHER THREADS PROGRAMMING:SYNCHRONIZATION

30.3 Threads and Semaphores

30.3.1 POSIX Semaphores

Chapter 25 has dealt with semaphore programming for POSIX and System
V IPC semaphores.

Semaphore operations are the same in both POSIX and Solaris. The
function names are changed from sema in Solaris to sem in pthreads. Solaris
semaphore are defined in <thread.h>.

In this section we give a brief description of Solaris thread semaphores.

30.3.2 Basic Solaris Semaphore Functions

To initialize the function int sema init(sema t *sp, unsigned int count,

int type, void *arg) is used. sema. type can be one of the following):

USYNC PROCESS — The semaphore can be used to synchronize threads in
this process and other processes. Only one process should initialize the
semaphore.

USYNC THREAD — The semaphore can be used to synchronize threads in this
process.

arg is currently unused.
Multiple threads must not initialize the same semaphore simultaneously.

A semaphore must not be reinitialized while other threads may be using it.
To increment a Semaphore use the function int sema post(sema t *sp).

sema post atomically increments the semaphore pointed to by sp. When any
threads are blocked on the semaphore, one is unblocked.

To block on a Semaphore use int sema wait(sema t *sp). sema wait()

to block the calling thread until the count in the semaphore pointed to by
sp becomes greater than zero, then atomically decrement it.

To decrement a Semaphore count use int sema trywait(sema t *sp).
sema trywait() atomically decrements the count in the semaphore pointed
to by sp when the count is greater than zero. This function is a nonblocking
version of sema wait().

To destroy the Semaphore state call the function sema destroy(sema t

*sp). sema destroy() to destroy any state associated with the semaphore
pointed to by sp. The space for storing the semaphore is not freed.

Chapter 31

Thread programming examples

This chapter gives some full code examples of thread programs. These ex-
amles are taken from a variety of sources:

• The sun workshop developers web page http://www.sun.com/workshop/threads/share-
code/ on threads is an excelleny source

• The web page http://www.sun.com/workshop/threads/Berg-Lewis/examples.html
where example from the Threads Primer Book by D. Berg anD B. Lewis
are also a major resource.

31.1 Using thr create() and thr join()

This example exercises the thr create() and thr join() calls. There is not
a parent/child relationship between threads as there is for processes. This
can easily be seen in this example, because threads are created and joined by
many different threads in the process. The example also shows how threads
behave when created with different attributes and options.

Threads can be created by any thread and joined by any other.
The main thread: In this example the main thread’s sole purpose is to

create new threads. Threads A, B, and C are created by the main thread.
Notice that thread B is created suspended. After creating the new threads,
the main thread exits. Also notice that the main thread exited by calling
�thr exit(). If the main thread had used the exit() call, the whole process
would have exited. The main thread’s exit status and resources are held
until it is joined by thread C.

371

372 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

Thread A: The first thing thread A does after it is created is to create
thread D. Thread A then simulates some processing and then exits, using
thr exit(). Notice that thread A was created with the THR DETACHED flag,
so thread A’s resources will be immediately reclaimed upon its exit. There
is no way for thread A’s exit status to be collected by a thr join() call.

Thread B: Thread B was created in a suspended state, so it is not able to
run until thread D continues it by making the thr continue() call. After
thread B is continued, it simulates some processing and then exits. Thread
B’s exit status and thread resources are held until joined by thread E.

Thread C: The first thing that thread C does is to create thread F. Thread
C then joins the main thread. This action will collect the main thread’s exit
status and allow the main thread’s resources to be reused by another thread.
Thread C will block, waiting for the main thread to exit, if the main thread
has not yet called thr exit(). After joining the main thread, thread C will
simulate some processing and then exit. Again, the exit status and thread
resources are held until joined by thread E.

Thread D: Thread D immediately creates thread E. After creating thread
E, thread D continues thread B by making the thr continue() call. This
call will allow thread B to start its execution. Thread D then tries to join
thread E, blocking until thread E has exited. Thread D then simulates some
processing and exits. If all went well, thread D should be the last nondaemon
thread running. When thread D exits, it should do two things: stop the
execution of any daemon threads and stop the execution of the process.

Thread E: Thread E starts by joining two threads, threads B and C.
Thread E will block, waiting for each of these thread to exit. Thread E
will then simulate some processing and will exit. Thread E’s exit status and
thread resources are held by the operating system until joined by thread D.

Thread F: Thread F was created as a bound, daemon thread by using
the THR BOUND and THR DAEMON flags in the thr create() call. This means
that it will run on its own LWP until all the nondaemon threads have exited
the process. This type of thread can be used when you want some type of
”background” processing to always be running, except when all the ”regular”
threads have exited the process. If thread F was created as a non-daemon
thread, then it would continue to run forever, because a process will continue
while there is at least one thread still running. Thread F will exit when all
the nondaemon threads have exited. In this case, thread D should be the
last nondaemon thread running, so when thread D exits, it will also cause
thread F to exit.

31.1. USING THR CREATE() AND THR JOIN() 373

This example, however trivial, shows how threads behave differently,
based on their creation options. It also shows what happens on the exit
of a thread, again based on how it was created. If you understand this ex-
ample and how it flows, you should have a good understanding of how to use
thr create() and thr join() in your own programs. Hopefully you can
also see how easy it is to create and join threads.

The source to multi thr.c:

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/* Function prototypes for thread routines */

void *sub_a(void *);

void *sub_b(void *);

void *sub_c(void *);

void *sub_d(void *);

void *sub_e(void *);

void *sub_f(void *);

thread_t thr_a, thr_b, thr_c;

void main()

{

thread_t main_thr;

main_thr = thr_self();

printf("Main thread = %d\n", main_thr);

if (thr_create(NULL, 0, sub_b, NULL, THR_SUSPENDED|THR_NEW_LWP, &thr_b))

fprintf(stderr,"Can’t create thr_b\n"), exit(1);

if (thr_create(NULL, 0, sub_a, (void *)thr_b, THR_NEW_LWP, &thr_a))

fprintf(stderr,"Can’t create thr_a\n"), exit(1);

if (thr_create(NULL, 0, sub_c, (void *)main_thr, THR_NEW_LWP, &thr_c))

fprintf(stderr,"Can’t create thr_c\n"), exit(1);

374 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

printf("Main Created threads A:%d B:%d C:%d\n", thr_a, thr_b, thr_c);

printf("Main Thread exiting...\n");

thr_exit((void *)main_thr);

}

void *sub_a(void *arg)

{

thread_t thr_b = (thread_t) arg;

thread_t thr_d;

int i;

printf("A: In thread A...\n");

if (thr_create(NULL, 0, sub_d, (void *)thr_b, THR_NEW_LWP, &thr_d))

fprintf(stderr, "Can’t create thr_d\n"), exit(1);

printf("A: Created thread D:%d\n", thr_d);

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("A: Thread exiting...\n");

thr_exit((void *)77);

}

void * sub_b(void *arg)

{

int i;

printf("B: In thread B...\n");

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("B: Thread exiting...\n");

thr_exit((void *)66);

}

31.1. USING THR CREATE() AND THR JOIN() 375

void * sub_c(void *arg)

{

void *status;

int i;

thread_t main_thr, ret_thr;

main_thr = (thread_t)arg;

printf("C: In thread C...\n");

if (thr_create(NULL, 0, sub_f, (void *)0, THR_BOUND|THR_DAEMON, NULL))

fprintf(stderr, "Can’t create thr_f\n"), exit(1);

printf("C: Join main thread\n");

if (thr_join(main_thr,(thread_t *)&ret_thr, &status))

fprintf(stderr, "thr_join Error\n"), exit(1);

printf("C: Main thread (%d) returned thread (%d) w/status %d\n", main_thr, ret_thr

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("C: Thread exiting...\n");

thr_exit((void *)88);

}

void * sub_d(void *arg)

{

thread_t thr_b = (thread_t) arg;

int i;

thread_t thr_e, ret_thr;

void *status;

printf("D: In thread D...\n");

376 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

if (thr_create(NULL, 0, sub_e, NULL, THR_NEW_LWP, &thr_e))

fprintf(stderr,"Can’t create thr_e\n"), exit(1);

printf("D: Created thread E:%d\n", thr_e);

printf("D: Continue B thread = %d\n", thr_b);

thr_continue(thr_b);

printf("D: Join E thread\n");

if(thr_join(thr_e,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("D: E thread (%d) returned thread (%d) w/status %d\n", thr_e,

ret_thr, (int) status);

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);

printf("D: Thread exiting...\n");

thr_exit((void *)55);

}

void * sub_e(void *arg)

{

int i;

thread_t ret_thr;

void *status;

printf("E: In thread E...\n");

printf("E: Join A thread\n");

if(thr_join(thr_a,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: A thread (%d) returned thread (%d) w/status %d\n", ret_thr, ret_

31.2. ARRAYS 377

printf("E: Join B thread\n");

if(thr_join(thr_b,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: B thread (%d) returned thread (%d) w/status %d\n", thr_b, ret_thr, (int)

printf("E: Join C thread\n");

if(thr_join(thr_c,(thread_t *)&ret_thr, &status))

fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: C thread (%d) returned thread (%d) w/status %d\n", thr_c, ret_thr, (int)

for (i=0;i<1000000*(int)thr_self();i++);

printf("E: Thread exiting...\n");

thr_exit((void *)44);

}

void *sub_f(void *arg)

{

int i;

printf("F: In thread F...\n");

while (1) {

for (i=0;i<10000000;i++);

printf("F: Thread F is still running...\n");

}

}

31.2 Arrays

This example uses a data structure that contains multiple arrays of data.
Multiple threads will concurrently vie for access to the arrays. To control
this access, a mutex variable is used within the data structure to lock the

378 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

entire array and serialize the access to the data.
The main thread first initializes the data structure and the mutex vari-

able. It then sets a level of concurrency and creates the worker threads. The
main thread then blocks by joining all the threads. When all the threads
have exited, the main thread prints the results.

The worker threads modify the shared data structure from within a loop.
Each time the threads need to modify the shared data, they lock the mutex
variable associated with the shared data. After modifying the data, the
threads unlock the mutex, allowing another thread access to the data.

This example may look quite simple, but it shows how important it is to
control access to a simple, shared data structure. The results can be quite
different if the mutex variable is not used.

The source to array.c:

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/* sample array data structure */

struct {

mutex_t data_lock[5];

int int_val[5];

float float_val[5];

} Data;

/* thread function */

void *Add_to_Value();

main()

{

int i;

/* initialize the mutexes and data */

for (i=0; i<5; i++) {

mutex_init(&Data.data_lock[i], USYNC_THREAD, 0);

Data.int_val[i] = 0;

Data.float_val[i] = 0;

}

31.2. ARRAYS 379

/* set concurrency and create the threads */

thr_setconcurrency(4);

for (i=0; i<5; i++)

thr_create(NULL, 0, Add_to_Value, (void *)(2*i), 0, NULL);

/* wait till all threads have finished */

for (i=0; i<5; i++)

thr_join(0,0,0);

/* print the results */

printf("Final Values.....\n");

for (i=0; i<5; i++) {

printf("integer value[%d] =\t%d\n", i, Data.int_val[i]);

printf("float value[%d] =\t%.0f\n\n", i, Data.float_val[i]);

}

return(0);

}

/* Threaded routine */

void *Add_to_Value(void *arg)

{

int inval = (int) arg;

int i;

for (i=0;i<10000;i++){

mutex_lock(&Data.data_lock[i%5]);

Data.int_val[i%5] += inval;

Data.float_val[i%5] += (float) 1.5 * inval;

mutex_unlock(&Data.data_lock[i%5]);

}

return((void *)0);

}

380 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

31.3 Deadlock

This example demonstrates how a deadlock can occur in multithreaded pro-
grams that use synchronization variables. In this example a thread is created
that continually adds a value to a global variable. The thread uses a mutex
lock to protect the global data.

The main thread creates the counter thread and then loops, waiting for
user input. When the user presses the Return key, the main thread suspends
the counter thread and then prints the value of the global variable. The main
thread prints the value of the global variable under the protection of a mutex
lock.

The problem arises in this example when the main thread suspends the
counter thread while the counter thread is holding the mutex lock. After the
main thread suspends the counter thread, it tries to lock the mutex variable.
Since the mutex variable is already held by the counter thread, which is
suspended, the main thread deadlocks.

This example may run fine for a while, as long as the counter thread
just happens to be suspended when it is not holding the mutex lock. The
example demonstrates how tricky some programming issues can be when you
deal with threads.

The source to susp lock.c

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

/* Prototype for thread subroutine */

void *counter(void *);

int count;

mutex_t count_lock;

main()

{

char str[80];

thread_t ctid;

/* create the thread counter subroutine */

31.3. DEADLOCK 381

thr_create(NULL, 0, counter, 0, THR_NEW_LWP|THR_DETACHED, &ctid);

while(1) {

gets(str);

thr_suspend(ctid);

mutex_lock(&count_lock);

printf("\n\nCOUNT = %d\n\n", count);

mutex_unlock(&count_lock);

thr_continue(ctid);

}

return(0);

}

void *counter(void *arg)

{

int i;

while (1) {

printf("."); fflush(stdout);

mutex_lock(&count_lock);

count++;

for (i=0;i<50000;i++);

mutex_unlock(&count_lock);

for (i=0;i<50000;i++);

}

return((void *)0);

}

382 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

31.4 Signal Handler

This example shows how easy it is to handle signals in multithreaded pro-
grams. In most programs, a different signal handler would be needed to
service each type of signal that you wanted to catch. Writing each of the
signal handlers can be time consuming and can be a real pain to debug.

This example shows how you can implement a signal handler thread that
will service all asynchronous signals that are sent to your process. This is an
easy way to deal with signals, because only one thread is needed to handle
all the signals. It also makes it easy when you create new threads within the
process, because you need not worry about signals in any of the threads.

First, in the main thread, mask out all signals and then create a signal
handling thread. Since threads inherit the signal mask from their creator,
any new threads created after the new signal mask will also mask all signals.
This idea is key, because the only thread that will receive signals is the one
thread that does not block all the signals.

The signal handler thread waits for all incoming signals with the sigwait()
call. This call unmasks the signals given to it and then blocks until a signal
arrives. When a signal arrives, sigwait() masks the signals again and then
returns with the signal ID of the incoming signal.

You can extend this example for use in your application code to handle
all your signals. Notice also that this signal concept could be added in your
existing nonthreaded code as a simpler way to deal with signals.

The source to thr sig.c

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <signal.h>

#include <sys/types.h>

void *signal_hand(void *);

main()

{

sigset_t set;

/* block all signals in main thread. Any other threads that are

31.4. SIGNAL HANDLER 383

created after this will also block all signals */

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, NULL);

/* create a signal handler thread. This thread will catch all

signals and decide what to do with them. This will only

catch nondirected signals. (I.e., if a thread causes a SIGFPE

then that thread will get that signal. */

thr_create(NULL, 0, signal_hand, 0, THR_NEW_LWP|THR_DAEMON|THR_DETACHED, NULL);

while (1) {

/*

Do your normal processing here....

*/

} /* end of while */

return(0);

}

void *signal_hand(void *arg)

{

sigset_t set;

int sig;

sigfillset(&set); /* catch all signals */

while (1) {

/* wait for a signal to arrive */

switch (sig=sigwait(&set)) {

/* here you would add whatever signal you needed to catch */

case SIGINT : {

printf("Interrupted with signal %d, exiting...\n", sig);

exit(0);

384 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

}

default : printf("GOT A SIGNAL = %d\n", sig);

} /* end of switch */

} /* end of while */

return((void *)0);

} /* end of signal_hand */

Another example of a signal handler, sig kill.c:

/*

* Multithreaded Demo Source

*

* Copyright (C) 1995 by Sun Microsystems, Inc.

* All rights reserved.

*

* This file is a product of SunSoft, Inc. and is provided for

* unrestricted use provided that this legend is included on all

* media and as a part of the software program in whole or part.

* Users may copy, modify or distribute this file at will.

*

* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING

* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR

* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

*

* This file is provided with no support and without any obligation on the

* part of SunSoft, Inc. to assist in its use, correction, modification or

* enhancement.

*

* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT

* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS

* FILE OR ANY PART THEREOF.

*

* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY

* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL

* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

31.4. SIGNAL HANDLER 385

* DAMAGES.

*

* SunSoft, Inc.

* 2550 Garcia Avenue

* Mountain View, California 94043

*/

/*

* Rich Schiavi writes: Sept 11, 1994

*

* I believe the recommended way to kill certain threads is

* using a signal handler which then will exit that particular

* thread properly. I’m not sure the exact reason (I can’t remember), but

* if you take out the signal_handler routine in my example, you will see what

* you describe, as the main process dies even if you send the

* thr_kill to the specific thread.

* I whipped up a real quick simple example which shows this using

* some sleep()s to get a good simulation.

*/

#include <stdio.h>

#include <thread.h>

#include <signal.h>

static thread_t one_tid, two_tid, main_thread;

static void *first_thread();

static void *second_thread();

void ExitHandler(int);

static mutex_t first_mutex, second_mutex;

int first_active = 1 ;

int second_active = 1;

main()

{

int i;

386 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

struct sigaction act;

act.sa_handler = ExitHandler;

(void) sigemptyset(&act.sa_mask);

(void) sigaction(SIGTERM, &act, NULL);

mutex_init(&first_mutex, 0 , 0);

mutex_init(&second_mutex, 0 , 0);

main_thread = thr_self();

thr_create(NULL,0,first_thread,0,THR_NEW_LWP,&one_tid);

thr_create(NULL,0,second_thread,0,THR_NEW_LWP,&two_tid);

for (i = 0; i < 10; i++){

fprintf(stderr, "main loop: %d\n", i);

if (i == 5) {

thr_kill(one_tid, SIGTERM);

}

sleep(3);

}

thr_kill(two_tid, SIGTERM);

sleep(5);

fprintf(stderr, "main exit\n");

}

static void *first_thread()

{

int i = 0;

fprintf(stderr, "first_thread id: %d\n", thr_self());

while (first_active){

fprintf(stderr, "first_thread: %d\n", i++);

sleep(2);

}

fprintf(stderr, "first_thread exit\n");

}

static void *second_thread()

31.5. INTERPROCESS SYNCHRONIZATION 387

{

int i = 0;

fprintf(stderr, "second_thread id: %d\n", thr_self());

while (second_active){

fprintf(stderr, "second_thread: %d\n", i++);

sleep(3);

}

fprintf(stderr, "second_thread exit\n");

}

void ExitHandler(int sig)

{

thread_t id;

id = thr_self();

fprintf(stderr, "ExitHandler thread id: %d\n", id);

thr_exit(0);

}

31.5 Interprocess Synchronization

This example uses some of the synchronization variables available in the
threads library to synchronize access to a resource shared between two pro-
cesses. The synchronization variables used in the threads library are an
advantage over standard IPC synchronization mechanisms because of their
speed. The synchronization variables in the threads libraries have been tuned
to be very lightweight and very fast. This speed can be an advantage when
your application is spending time synchronizing between processes.

This example shows how semaphores from the threads library can be used
between processes. Note that this program does not use threads; it is just
using the lightweight semaphores available from the threads library.

When using synchronization variables between processes, it is important

388 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

to make sure that only one process initializes the variable. If both processes
try to initialize the synchronization variable, then one of the processes will
overwrite the state of the variable set by the other process.

The source to ipc.c

#include <stdio.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <synch.h>

#include <sys/types.h>

#include <unistd.h>

/* a structure that will be used between processes */

typedef struct {

sema_t mysema;

int num;

} buf_t;

main()

{

int i, j, fd;

buf_t *buf;

/* open a file to use in a memory mapping */

fd = open("/dev/zero", O_RDWR);

/* create a shared memory map with the open file for the data

structure that will be shared between processes */

buf=(buf_t *)mmap(NULL, sizeof(buf_t), PROT_READ|PROT_WRITE, MAP_SHARED, fd

/* initialize the semaphore -- note the USYNC_PROCESS flag; this makes

the semaphore visible from a process level */

sema_init(&buf->mysema, 0, USYNC_PROCESS, 0);

/* fork a new process */

if (fork() == 0) {

/* The child will run this section of code */

for (j=0;j<5;j++)

31.5. INTERPROCESS SYNCHRONIZATION 389

{

/* have the child "wait" for the semaphore */

printf("Child PID(%d): waiting...\n", getpid());

sema_wait(&buf->mysema);

/* the child decremented the semaphore */

printf("Child PID(%d): decrement semaphore.\n", getpid());

}

/* exit the child process */

printf("Child PID(%d): exiting...\n", getpid());

exit(0);

}

/* The parent will run this section of code */

/* give the child a chance to start running */

sleep(2);

for (i=0;i<5;i++)

{

/* increment (post) the semaphore */

printf("Parent PID(%d): posting semaphore.\n", getpid());

sema_post(&buf->mysema);

/* wait a second */

sleep(1);

}

/* exit the parent process */

printf("Parent PID(%d): exiting...\n", getpid());

return(0);

}

390 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

31.6 The Producer / Consumer Problem

This example will show how condition variables can be used to control access
of reads and writes to a buffer. This example can also be thought as a
producer/consumer problem, where the producer adds items to the buffer
and the consumer removes items from the buffer.

Two condition variables control access to the buffer. One condition vari-
able is used to tell if the buffer is full, and the other is used to tell if the buffer
is empty. When the producer wants to add an item to the buffer, it checks
to see if the buffer is full; if it is full the producer blocks on the cond wait()

call, waiting for an item to be removed from the buffer. When the consumer
removes an item from the buffer, the buffer is no longer full, so the producer
is awakened from the cond wait() call. The producer is then allowed to add
another item to the buffer.

The consumer works, in many ways, the same as the producer. The
consumer uses the other condition variable to determine if the buffer is empty.
When the consumer wants to remove an item from the buffer, it checks to
see if it is empty. If the buffer is empty, the consumer then blocks on the
cond wait() call, waiting for an item to be added to the buffer. When the
producer adds an item to the buffer, the consumer’s condition is satisfied, so
it can then remove an item from the buffer.

The example copies a file by reading data into a shared buffer (producer)
and then writing data out to the new file (consumer). The Buf data structure
is used to hold both the buffered data and the condition variables that control
the flow of the data.

The main thread opens both files, initializes the Buf data structure, cre-
ates the consumer thread, and then assumes the role of the producer. The
producer reads data from the input file, then places the data into an open
buffer position. If no buffer positions are available, then the producer waits
via the cond wait() call. After the producer has read all the data from the
input file, it closes the file and waits for (joins) the consumer thread.

The consumer thread reads from a shared buffer and then writes the data
to the output file. If no buffers positions are available, then the consumer
waits for the producer to fill a buffer position. After the consumer has read
all the data, it closes the output file and exits.

If the input file and the output file were residing on different physical
disks, then this example could execute the reads and writes in parallel.
This parallelism would significantly increase the throughput of the exam-

31.6. THE PRODUCER / CONSUMER PROBLEM 391

ple through the use of threads.
The source to prod cons.c:

#define _REEENTRANT

#include <stdio.h>

#include <thread.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/uio.h>

#define BUFSIZE 512

#define BUFCNT 4

/* this is the data structure that is used between the producer

and consumer threads */

struct {

char buffer[BUFCNT][BUFSIZE];

int byteinbuf[BUFCNT];

mutex_t buflock;

mutex_t donelock;

cond_t adddata;

cond_t remdata;

int nextadd, nextrem, occ, done;

} Buf;

/* function prototype */

void *consumer(void *);

main(int argc, char **argv)

{

int ifd, ofd;

thread_t cons_thr;

/* check the command line arguments */

if (argc != 3)

392 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

printf("Usage: %s <infile> <outfile>\n", argv[0]), exit(0);

/* open the input file for the producer to use */

if ((ifd = open(argv[1], O_RDONLY)) == -1)

{

fprintf(stderr, "Can’t open file %s\n", argv[1]);

exit(1);

}

/* open the output file for the consumer to use */

if ((ofd = open(argv[2], O_WRONLY|O_CREAT, 0666)) == -1)

{

fprintf(stderr, "Can’t open file %s\n", argv[2]);

exit(1);

}

/* zero the counters */

Buf.nextadd = Buf.nextrem = Buf.occ = Buf.done = 0;

/* set the thread concurrency to 2 so the producer and consumer can

run concurrently */

thr_setconcurrency(2);

/* create the consumer thread */

thr_create(NULL, 0, consumer, (void *)ofd, NULL, &cons_thr);

/* the producer ! */

while (1) {

/* lock the mutex */

mutex_lock(&Buf.buflock);

/* check to see if any buffers are empty */

/* If not then wait for that condition to become true */

while (Buf.occ == BUFCNT)

cond_wait(&Buf.remdata, &Buf.buflock);

31.6. THE PRODUCER / CONSUMER PROBLEM 393

/* read from the file and put data into a buffer */

Buf.byteinbuf[Buf.nextadd] = read(ifd,Buf.buffer[Buf.nextadd],BUFSIZE);

/* check to see if done reading */

if (Buf.byteinbuf[Buf.nextadd] == 0) {

/* lock the done lock */

mutex_lock(&Buf.donelock);

/* set the done flag and release the mutex lock */

Buf.done = 1;

mutex_unlock(&Buf.donelock);

/* signal the consumer to start consuming */

cond_signal(&Buf.adddata);

/* release the buffer mutex */

mutex_unlock(&Buf.buflock);

/* leave the while looop */

break;

}

/* set the next buffer to fill */

Buf.nextadd = ++Buf.nextadd % BUFCNT;

/* increment the number of buffers that are filled */

Buf.occ++;

/* signal the consumer to start consuming */

cond_signal(&Buf.adddata);

/* release the mutex */

mutex_unlock(&Buf.buflock);

}

394 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

close(ifd);

/* wait for the consumer to finish */

thr_join(cons_thr, 0, NULL);

/* exit the program */

return(0);

}

/* The consumer thread */

void *consumer(void *arg)

{

int fd = (int) arg;

/* check to see if any buffers are filled or if the done flag is set */

while (1) {

/* lock the mutex */

mutex_lock(&Buf.buflock);

if (!Buf.occ && Buf.done) {

mutex_unlock(&Buf.buflock);

break;

}

/* check to see if any buffers are filled */

/* if not then wait for the condition to become true */

while (Buf.occ == 0 && !Buf.done)

cond_wait(&Buf.adddata, &Buf.buflock);

/* write the data from the buffer to the file */

write(fd, Buf.buffer[Buf.nextrem], Buf.byteinbuf[Buf.nextrem]);

/* set the next buffer to write from */

Buf.nextrem = ++Buf.nextrem % BUFCNT;

31.7. A SOCKET SERVER 395

/* decrement the number of buffers that are full */

Buf.occ--;

/* signal the producer that a buffer is empty */

cond_signal(&Buf.remdata);

/* release the mutex */

mutex_unlock(&Buf.buflock);

}

/* exit the thread */

thr_exit((void *)0);

}

31.7 A Socket Server

The socket server example uses threads to implement a ”standard” socket
port server. The example shows how easy it is to use thr create() calls in
the place of fork() calls in existing programs.

A standard socket server should listen on a socket port and, when a
message arrives, fork a process to service the request. Since a fork() system
call would be used in a nonthreaded program, any communication between
the parent and child would have to be done through some sort of interprocess
communication.

We can replace the fork() call with a thr create() call. Doing so of-
fers a few advantages: thr create() can create a thread much faster then
a fork() could create a new process, and any communication between the
server and the new thread can be done with common variables. This tech-
nique makes the implementation of the socket server much easier to under-
stand and should also make it respond much faster to incoming requests.

The server program first sets up all the needed socket information. This
is the basic setup for most socket servers. The server then enters an endless
loop, waiting to service a socket port. When a message is sent to the socket
port, the server wakes up and creates a new thread to handle the request.
Notice that the server creates the new thread as a detached thread and also
passes the socket descriptor as an argument to the new thread.

The newly created thread can then read or write, in any fashion it wants,

396 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

to the socket descriptor that was passed to it. At this point the server could
be creating a new thread or waiting for the next message to arrive. The key
is that the server thread does not care what happens to the new thread after
it creates it.

In our example, the created thread reads from the socket descriptor and
then increments a global variable. This global variable keeps track of the
number of requests that were made to the server. Notice that a mutex lock
is used to protect access to the shared global variable. The lock is needed
because many threads might try to increment the same variable at the same
time. The mutex lock provides serial access to the shared variable. See how
easy it is to share information among the new threads! If each of the threads
were a process, then a significant effort would have to be made to share this
information among the processes.

The client piece of the example sends a given number of messages to the
server. This client code could also be run from different machines by multiple
users, thus increasing the need for concurrency in the server process.

The source code to soc server.c:

#define _REENTRANT

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <sys/uio.h>

#include <unistd.h>

#include <thread.h>

/* the TCP port that is used for this example */

#define TCP_PORT 6500

/* function prototypes and global variables */

void *do_chld(void *);

mutex_t lock;

int service_count;

main()

{

31.7. A SOCKET SERVER 397

int sockfd, newsockfd, clilen;

struct sockaddr_in cli_addr, serv_addr;

thread_t chld_thr;

if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

fprintf(stderr,"server: can’t open stream socket\n"), exit(0);

memset((char *) &serv_addr, 0, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_addr.sin_port = htons(TCP_PORT);

if(bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) <

0)

fprintf(stderr,"server: can’t bind local address\n"), exit(0);

/* set the level of thread concurrency we desire */

thr_setconcurrency(5);

listen(sockfd, 5);

for(;;){

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,

&clilen);

if(newsockfd < 0)

fprintf(stderr,"server: accept error\n"), exit(0);

/* create a new thread to process the incomming request */

thr_create(NULL, 0, do_chld, (void *) newsockfd, THR_DETACHED,

&chld_thr);

/* the server is now free to accept another socket request */

}

return(0);

}

398 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

/*

This is the routine that is executed from a new thread

*/

void *do_chld(void *arg)

{

int mysocfd = (int) arg;

char data[100];

int i;

printf("Child thread [%d]: Socket number = %d\n", thr_self(), mysocfd);

/* read from the given socket */

read(mysocfd, data, 40);

printf("Child thread [%d]: My data = %s\n", thr_self(), data);

/* simulate some processing */

for (i=0;i<1000000*thr_self();i++);

printf("Child [%d]: Done Processing...\n", thr_self());

/* use a mutex to update the global service counter */

mutex_lock(&lock);

service_count++;

mutex_unlock(&lock);

printf("Child thread [%d]: The total sockets served = %d\n", thr_self(), se

/* close the socket and exit this thread */

close(mysocfd);

thr_exit((void *)0);

}

31.8. USING MANY THREADS 399

31.8 Using Many Threads

This example that shows how easy it is to create many threads of execution in
Solaris. Because of the lightweight nature of threads, it is possible to create
literally thousands of threads. Most applications may not need a very large
number of threads, but this example shows just how lightweight the threads
can be.

We have said before that anything you can do with threads, you can do
without them. This may be a case where it would be very hard to do without
threads. If you have some spare time (and lots of memory), try implementing
this program by using processes, instead of threads. If you try this, you will
see why threads can have an advantage over processes.

This program takes as an argument the number of threads to create. No-
tice that all the threads are created with a user-defined stack size, which
limits the amount of memory that the threads will need for execution. The
stack size for a given thread can be hard to calculate, so some testing usu-
ally needs to be done to see if the chosen stack size will work. You may
want to change the stack size in this program and see how much you can
lower it before things stop working. The Solaris threads library provides the
thr min stack() call, which returns the minimum allowed stack size. Take
care when adjusting the size of a threads stack. A stack overflow can happen
quite easily to a thread with a small stack.

After each thread is created, it blocks, waiting on a mutex variable. This
mutex variable was locked before any of the threads were created, which
prevents the threads from proceeding in their execution. When all of the
threads have been created and the user presses Return, the mutex variable
is unlocked, allowing all the threads to proceed.

After the main thread has created all the threads, it waits for user input
and then tries to join all the threads. Notice that the thr join() call does
not care what thread it joins; it is just counting the number of joins it makes.

This example is rather trivial and does not serve any real purpose except
to show that it is possible to create a lot of threads in one process. However,
there are situations when many threads are needed in an application. An
example might be a network port server, where a thread is created each time
an incoming or outgoing request is made.

The source to many thr.c:

#define _REENTRANT

400 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

#include <stdio.h>

#include <stdlib.h>

#include <thread.h>

/* function prototypes and global varaibles */

void *thr_sub(void *);

mutex_t lock;

main(int argc, char **argv)

{

int i, thr_count = 100;

char buf;

/* check to see if user passed an argument

-- if so, set the number of threads to the value

passed to the program */

if (argc == 2) thr_count = atoi(argv[1]);

printf("Creating %d threads...\n", thr_count);

/* lock the mutex variable -- this mutex is being used to

keep all the other threads created from proceeding */

mutex_lock(&lock);

/* create all the threads -- Note that a specific stack size is

given. Since the created threads will not use all of the

default stack size, we can save memory by reducing the threads’

stack size */

for (i=0;i<thr_count;i++) {

thr_create(NULL,2048,thr_sub,0,0,NULL);

}

printf("%d threads have been created and are running!\n", i);

printf("Press <return> to join all the threads...\n", i);

31.8. USING MANY THREADS 401

/* wait till user presses return, then join all the threads */

gets(&buf);

printf("Joining %d threads...\n", thr_count);

/* now unlock the mutex variable, to let all the threads proceed */

mutex_unlock(&lock);

/* join the threads */

for (i=0;i<thr_count;i++)

thr_join(0,0,0);

printf("All %d threads have been joined, exiting...\n", thr_count);

return(0);

}

/* The routine that is executed by the created threads */

void *thr_sub(void *arg)

{

/* try to lock the mutex variable -- since the main thread has

locked the mutex before the threads were created, this thread

will block until the main thread unlock the mutex */

mutex_lock(&lock);

printf("Thread %d is exiting...\n", thr_self());

/* unlock the mutex to allow another thread to proceed */

mutex_unlock(&lock);

/* exit the thread */

return((void *)0);

}

402 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

31.9 Real-time Thread Example

This example uses the Solaris real-time extensions to make a single bound
thread within a process run in the real-time scheduling class. Using a thread
in the real-time class is more desirable than running a whole process in the
real-time class, because of the many problems that can arise with a process
in a real-time state. For example, it would not be desirable for a process
to perform any I/O or large memory operations while in realtime, because
a real-time process has priority over system-related processes; if a real-time
process requests a page fault, it can starve, waiting for the system to fault
in a new page. We can limit this exposure by using threads to execute only
the instructions that need to run in realtime.

Since this book does not cover the concerns that arise with real-time
programming, we have included this code only as an example of how to
promote a thread into the real-time class. You must be very careful when
you use real-time threads in your applications. For more information on
real-time programming, see the Solaris documentation.

This example should be safe from the pitfalls of real-time programs be-
cause of its simplicity. However, changing this code in any way could have
adverse affects on your system.

The example creates a new thread from the main thread. This new thread
is then promoted to the real-time class by looking up the real-time class ID
and then setting a real-time priority for the thread. After the thread is
running in realtime, it simulates some processing. Since a thread in the real-
time class can have an infinite time quantum, the process is allowed to stay
on a CPU as long as it likes. The time quantum is the amount of time a
thread is allowed to stay running on a CPU. For the timesharing class, the
time quantum (time-slice) is 1/100th of a second by default.

In this example, we set the time quantum for the real-time thread to in-
finity. That is, it can stay running as long as it likes; it will not be preempted
or scheduled off the CPU. If you run this example on a UP machine, it will
have the effect of stopping your system for a few seconds while the thread
simulates its processing. The system does not actually stop, it is just working
in the real-time thread. When the real-time thread finishes its processing, it
exits and the system returns to normal.

Using real-time threads can be quite useful when you need an extremely
high priority and response time but can also cause big problems if it not
used properly. Also note that this example must be run as root or have root

31.9. REAL-TIME THREAD EXAMPLE 403

execute permissions.
The source to rt thr.c:

#define _REENTRANT

#include <stdio.h>

#include <thread.h>

#include <string.h>

#include <sys/priocntl.h>

#include <sys/rtpriocntl.h>

/* thread prototype */

void *rt_thread(void *);

main()

{

/* create the thread that will run in realtime */

thr_create(NULL, 0, rt_thread, 0, THR_DETACHED, 0);

/* loop here forever, this thread is the TS scheduling class */

while (1) {

printf("MAIN: In time share class... running\n");

sleep(1);

}

return(0);

}

/*

This is the routine that is called by the created thread

*/

void *rt_thread(void *arg)

{

pcinfo_t pcinfo;

pcparms_t pcparms;

int i;

404 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

/* let the main thread run for a bit */

sleep(4);

/* get the class ID for the real-time class */

strcpy(pcinfo.pc_clname, "RT");

if (priocntl(0, 0, PC_GETCID, (caddr_t)&pcinfo) == -1)

fprintf(stderr, "getting RT class id\n"), exit(1);

/* set up the real-time parameters */

pcparms.pc_cid = pcinfo.pc_cid;

((rtparms_t *)pcparms.pc_clparms)->rt_pri = 10;

((rtparms_t *)pcparms.pc_clparms)->rt_tqnsecs = 0;

/* set an infinite time quantum */

((rtparms_t *)pcparms.pc_clparms)->rt_tqsecs = RT_TQINF;

/* move this thread to the real-time scheduling class */

if (priocntl(P_LWPID, P_MYID, PC_SETPARMS, (caddr_t)&pcparms) == -1)

fprintf(stderr, "Setting RT mode\n"), exit(1);

/* simulate some processing */

for (i=0;i<100000000;i++);

printf("RT_THREAD: NOW EXITING...\n");

thr_exit((void *)0);

}

31.10 POSIX Cancellation

This example uses the POSIX thread cancellation capability to kill a thread
that is no longer needed. Random termination of a thread can cause prob-
lems in threaded applications, because a thread may be holding a critical
lock when it is terminated. Since the lock was help before the thread was
terminated, another thread may deadlock, waiting for that same lock. The
thread cancellation capability enables you to control when a thread can be

31.10. POSIX CANCELLATION 405

terminated. The example also demonstrates the capabilities of the POSIX
thread library in implementing a program that performs a multithreaded
search.

This example simulates a multithreaded search for a given number by
taking random guesses at a target number. The intent here is to simulate
the same type of search that a database might execute. For example, a
database might create threads to start searching for a data item; after some
amount of time, one or more threads might return with the target data item.

If a thread guesses the number correctly, there is no need for the other
threads to continue their search. This is where thread cancellation can help.
The thread that finds the number first should cancel the other threads that
are still searching for the item and then return the results of the search.

The threads involved in the search can call a cleanup function that can
clean up the threads resources before it exits. In this case, the cleanup
function prints the progress of the thread when it was cancelled.

The source to posix cancel.c:

#define _REENTRANT

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <pthread.h>

/* defines the number of searching threads */

#define NUM_THREADS 25

/* function prototypes */

void *search(void *);

void print_it(void *);

/* global variables */

pthread_t threads[NUM_THREADS];

pthread_mutex_t lock;

int tries;

main()

{

406 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

int i;

int pid;

/* create a number to search for */

pid = getpid();

/* initialize the mutex lock */

pthread_mutex_init(&lock, NULL);

printf("Searching for the number = %d...\n", pid);

/* create the searching threads */

for (i=0;i<NUM_THREADS;i++)

pthread_create(&threads[i], NULL, search, (void *)pid);

/* wait for (join) all the searching threads */

for (i=0;i<NUM_THREADS;i++)

pthread_join(threads[i], NULL);

printf("It took %d tries to find the number.\n", tries);

/* exit this thread */

pthread_exit((void *)0);

}

/*

This is the cleanup function that is called when

the threads are cancelled

*/

void print_it(void *arg)

{

int *try = (int *) arg;

pthread_t tid;

/* get the calling thread’s ID */

tid = pthread_self();

/* print where the thread was in its search when it was cancelled */

31.10. POSIX CANCELLATION 407

printf("Thread %d was canceled on its %d try.\n", tid, *try);

}

/*

This is the search routine that is executed in each thread

*/

void *search(void *arg)

{

int num = (int) arg;

int i=0, j;

pthread_t tid;

/* get the calling thread ID */

tid = pthread_self();

/* use the thread ID to set the seed for the random number generator */

srand(tid);

/* set the cancellation parameters --

- Enable thread cancellation

- Defer the action of the cancellation

*/

pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

/* push the cleanup routine (print_it) onto the thread

cleanup stack. This routine will be called when the

thread is cancelled. Also note that the pthread_cleanup_push

call must have a matching pthread_cleanup_pop call. The

push and pop calls MUST be at the same lexical level

within the code */

/* pass address of ‘i’ since the current value of ‘i’ is not

the one we want to use in the cleanup function */

pthread_cleanup_push(print_it, (void *)&i);

408 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

/* loop forever */

while (1) {

i++;

/* does the random number match the target number? */

if (num == rand()) {

/* try to lock the mutex lock --

if locked, check to see if the thread has been cancelled

if not locked then continue */

while (pthread_mutex_trylock(&lock) == EBUSY)

pthread_testcancel();

/* set the global variable for the number of tries */

tries = i;

printf("thread %d found the number!\n", tid);

/* cancel all the other threads */

for (j=0;j<NUM_THREADS;j++)

if (threads[j] != tid) pthread_cancel(threads[j]);

/* break out of the while loop */

break;

}

/* every 100 tries check to see if the thread has been cancelled

if the thread has not been cancelled then yield the thread’s

LWP to another thread that may be able to run */

if (i%100 == 0) {

pthread_testcancel();

sched_yield();

}

}

31.11. SOFTWARE RACE CONDITION 409

/* The only way we can get here is when the thread breaks out

of the while loop. In this case the thread that makes it here

has found the number we are looking for and does not need to run

the thread cleanup function. This is why the pthread_cleanup_pop

function is called with a 0 argument; this will pop the cleanup

function off the stack without executing it */

pthread_cleanup_pop(0);

return((void *)0);

}

31.11 Software Race Condition

This example shows a trivial software race condition. A software race con-
dition occurs when the execution of a program is affected by the order and
timing of a threads execution. Most software race conditions can be allevi-
ated by using synchronization variables to control the threads’ timing and
access of shared resources. If a program depends on order of execution, then
threading that program may not be a good solution, because the order in
which threads execute is nondeterministic.

In the example, thr continue() and thr suspend() calls continue and
suspend a given thread, respectively. Although both of these calls are valid,
use caution when implementing them. It is very hard to determine where
a thread is in its execution. Because of this, you may not be able to tell
where the thread will suspend when the call to thr suspend() is made.
This behavior can cause problems in threaded code if not used properly.

The following example uses thr continue() and thr suspend() to try
to control when a thread starts and stops. The example looks trivial, but,
as you will see, can cause a big problem.

Do you see the problem? If you guessed that the program would even-
tually suspend itself, you were correct! The example attempts to flip-flop
between the main thread and a subroutine thread. Each thread continues
the other thread and then suspends itself.

Thread A continues thread B and then suspends thread A; now the con-
tinued thread B can continue thread A and then suspend itself. This should

410 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

continue back and forth all day long, right? Wrong! We can’t guarantee
that each thread will continue the other thread and then suspend itself in
one atomic action, so a software race condition could be created. Calling
thr continue() on a running thread and calling thr suspend() on a sus-
pended thread has no effect, so we don’t know if a thread is already running
or suspended.

If thread A continues thread B and if between the time thread A sus-
pends itself, thread B continues thread A, then both of the threads will call
thr suspend(). This is the race condition in this program that will cause
the whole process to become suspended.

It is very hard to use these calls, because you never really know the state
of a thread. If you don’t know exactly where a thread is in its execution,
then you don’t know what locks it holds and where it will stop when you
suspend it.

The source to sw race.c

31.12 Tgrep: Threadeds version of UNIX grep

Tgrep is a multi-threaded version of grep. Tgrep supports all but the -w
(word search) options of the normal grep command, and a few options that
are only avaliable to Tgrep. The real change from grep, is that Tgrep will
recurse down through sub-directories and search all files for the target string.
Tgrep searches files like the following command:

find <start path> -name "<file/directory pattern>" -exec \ (Line wrapped)

grep <options> <target> /dev/null {} \;

An example of this would be (run from this Tgrep directory)

% find . -exec grep thr_create /dev/null {} \;

./Solaris/main.c: if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {

./Solaris/main.c: err = thr_create(NULL,0,cascade,(void *)work,

./Solaris/main.c: err = thr_create(NULL,0,search_thr,(void *)work

%

Running the same command with timex:

real 4.26

user 0.64

sys 2.81

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 411

The same search run with Tgrep would be

% {\tt Tgrep} thr_create

./Solaris/main.c: if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {

./Solaris/main.c: err = thr_create(NULL,0,cascade,(void *)work,

./Solaris/main.c: err = thr_create(NULL,0,search_thr,(void *)work,

%

Running the same command with timex:

real 0.79

user 0.62

sys 1.50

Tgrep gets the results almost four times faster. The numbers above where
gathered on a SS20 running 5.5 (build 18) with 4 50MHz CPUs.

You can also filter the files that you want Tgrep to search like you can
with find. The next two commands do the same thing, just Tgrep gets it
done faster.

find . -name "*.c" -exec grep thr_create /dev/null {} \;

and

{\tt Tgrep} -p ’.*\.c$’ thr_create

The -p option will allow Tgrep to search only files that match the ”regular
expression” file pattern string. This option does NOT use shell expression,
so to stop Tgrep from seeing a file named foobar.cỹou must add the ”$” meta
character to the pattern and escape the real “.” character.

Some of the other Tgrep only options are -r, -C, -P, -e, -B, -S and -Z.
The -r option stops Tgrep from searching any sub-directories, in other words,
search only the local directory, but -l was taken. The -C option will search
for and print ”continued” lines like you find in Makefile. Note the differences
in the results of grep and Tgrep run in the current directory.

The Tgrep output prints the continued lines that ended with the ”c̈haracter.
In the case of grep I would not have seen the three values assigned to SUB-
DIRS, but Tgrep shows them to me (Common, Solaris, Posix).

The -P option I use when I am sending the output of a long search to a
file and want to see the ”progress” of the search. The -P option will print a
”.” (dot) on stderr for every file (or groups of files depending on the value of
the -P argument) Tgrep searches.

412 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

The -e option will change the way Tgrep uses the target string. Tgrep

uses two different patter matching systems. The first (with out the -e option)
is a literal string match call Boyer-Moore. If the -e option is used, then a
MT-Safe PD version of regular expression is used to search for the target
string as a regexp with meta characters in it. The regular expression method
is slower, but Tgrep needed the functionality. The -Z option will print help
on the meta characters Tgrep uses.

The -B option tells Tgrep to use the value of the environment variable
called TGLIMIT to limit the number of threads it will use during a search.
This option has no affect if TGLIMIT is not set. Tgrep can ”eat” a system
alive, so the -B option was a way to run Tgrep on a system with out having
other users scream at you.

The last new option is -S. If you want to see how things went while Tgrep
was searching, you can use this option to print statistic about the number of
files, lines, bytes, matches, threads created, etc.

Here is an example of the -S options output. (again run in the current
directory)

% {\tt Tgrep} -S zimzap

----------------- {\tt Tgrep} Stats. --------------------

Number of directories searched: 7

Number of files searched: 37

Number of lines searched: 9504

Number of matching lines to target: 0

Number of cascade threads created: 7

Number of search threads created: 20

Number of search threads from pool: 17

Search thread pool hit rate: 45.95%

Search pool overall size: 20

Search pool size limit: 58

Number of search threads destroyed: 0

Max # of threads running concurrenly: 20

Total run time, in seconds. 1

Work stopped due to no FD’s: (058) 0 Times, 0.00%

Work stopped due to no work on Q: 19 Times, 43.18%

Work stopped due to TGLIMITS: (Unlimited) 0 Times, 0.00%

--

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 413

%

For more information on the usage and options, see the man page Tgrep

The Tgrep.c source code is:

/* Copyright (c) 1993, 1994 Ron Winacott */

/* This program may be used, copied, modified, and redistributed freely */

/* for ANY purpose, so long as this notice remains intact. */

#define _REENTRANT

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <assert.h>

#include <errno.h>

#include <signal.h>

#include <ctype.h>

#include <sys/types.h>

#include <time.h>

#include <sys/stat.h>

#ifdef __sparc

#include <note.h> /* warlock/locklint */

#else

#define NOTE(s)

#endif

#include <dirent.h>

#include <fcntl.h>

#include <sys/uio.h>

#include <thread.h>

#include <synch.h>

#include "version.h"

#include "pmatch.h"

#include "debug.h"

414 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

#define PATH_MAX 1024 /* max # of characters in a path name */

#define HOLD_FDS 6 /* stdin,out,err and a buffer */

#define UNLIMITED 99999 /* The default tglimit */

#define MAXREGEXP 10 /* max number of -e options */

#define FB_BLOCK 0x00001

#define FC_COUNT 0x00002

#define FH_HOLDNAME 0x00004

#define FI_IGNCASE 0x00008

#define FL_NAMEONLY 0x00010

#define FN_NUMBER 0x00020

#define FS_NOERROR 0x00040

#define FV_REVERSE 0x00080

#define FW_WORD 0x00100

#define FR_RECUR 0x00200

#define FU_UNSORT 0x00400

#define FX_STDIN 0x00800

#define TG_BATCH 0x01000

#define TG_FILEPAT 0x02000

#define FE_REGEXP 0x04000

#define FS_STATS 0x08000

#define FC_LINE 0x10000

#define TG_PROGRESS 0x20000

#define FILET 1

#define DIRT 2

#define ALPHASIZ 128

/*

* New data types

*/

typedef struct work_st {

char *path;

int tp;

struct work_st *next;

} work_t;

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 415

typedef struct out_st {

char *line;

int line_count;

long byte_count;

struct out_st *next;

} out_t;

typedef struct bm_pattern { /* Boyer - Moore pattern */

short p_m; /* length of pattern string */

short p_r[ALPHASIZ]; /* "r" vector */

short *p_R; /* "R" vector */

char *p_pat; /* pattern string */

} BM_PATTERN;

/*

* Prototypes

*/

/* bmpmatch.c */

extern BM_PATTERN *bm_makepat(char *);

extern char *bm_pmatch(BM_PATTERN *, register char *);

extern void bm_freepat(BM_PATTERN *);

/* pmatch.c */

extern char *pmatch(register PATTERN *, register char *, int *);

extern PATTERN *makepat(char *string, char *);

extern void freepat(register PATTERN *);

extern void printpat(PATTERN *);

#include "proto.h" /* function prototypes of main.c */

void *SigThread(void *arg);

void sig_print_stats(void);

/*

* Global data

*/

416 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

BM_PATTERN *bm_pat; /* the global target read only after main */

NOTE(READ_ONLY_DATA(bm_pat))

PATTERN *pm_pat[MAXREGEXP]; /* global targets read only for pmatch

NOTE(READ_ONLY_DATA(pm_pat))

mutex_t global_count_lk;

int global_count = 0;

NOTE(MUTEX_PROTECTS_DATA(global_count_lk, global_count))

NOTE(DATA_READABLE_WITHOUT_LOCK(global_count)) /* see prnt_stats() */

work_t *work_q = NULL;

cond_t work_q_cv;

mutex_t work_q_lk;

int all_done = 0;

int work_cnt = 0;

int current_open_files = 0;

int tglimit = UNLIMITED; /* if -B limit the number of threads */

NOTE(MUTEX_PROTECTS_DATA(work_q_lk, work_q all_done work_cnt \

current_open_files tglimit))

work_t *search_q = NULL;

mutex_t search_q_lk;

cond_t search_q_cv;

int search_pool_cnt = 0; /* the count in the pool now */

int search_thr_limit = 0; /* the max in the pool */

NOTE(MUTEX_PROTECTS_DATA(search_q_lk, search_q search_pool_cnt))

NOTE(DATA_READABLE_WITHOUT_LOCK(search_pool_cnt)) /* see prnt_stats() */

NOTE(READ_ONLY_DATA(search_thr_limit))

work_t *cascade_q = NULL;

mutex_t cascade_q_lk;

cond_t cascade_q_cv;

int cascade_pool_cnt = 0;

int cascade_thr_limit = 0;

NOTE(MUTEX_PROTECTS_DATA(cascade_q_lk, cascade_q cascade_pool_cnt))

NOTE(DATA_READABLE_WITHOUT_LOCK(cascade_pool_cnt)) /* see prnt_stats() */

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 417

NOTE(READ_ONLY_DATA(cascade_thr_limit))

int running = 0;

mutex_t running_lk;

NOTE(MUTEX_PROTECTS_DATA(running_lk, running))

sigset_t set, oldset;

NOTE(READ_ONLY_DATA(set oldset))

mutex_t stat_lk;

time_t st_start = 0;

int st_dir_search = 0;

int st_file_search = 0;

int st_line_search = 0;

int st_cascade = 0;

int st_cascade_pool = 0;

int st_cascade_destroy = 0;

int st_search = 0;

int st_pool = 0;

int st_maxrun = 0;

int st_worknull = 0;

int st_workfds = 0;

int st_worklimit = 0;

int st_destroy = 0;

NOTE(MUTEX_PROTECTS_DATA(stat_lk, st_start st_dir_search st_file_search \

st_line_search st_cascade st_cascade_pool \

st_cascade_destroy st_search st_pool st_maxrun \

st_worknull st_workfds st_worklimit st_destroy))

int progress_offset = 1;

NOTE(READ_ONLY_DATA(progress_offset))

mutex_t output_print_lk;

/* output_print_lk used to print multi-line output only */

int progress = 0;

NOTE(MUTEX_PROTECTS_DATA(output_print_lk, progress))

unsigned int flags = 0;

418 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

int regexp_cnt = 0;

char *string[MAXREGEXP];

int debug = 0;

int use_pmatch = 0;

char file_pat[255]; /* file patten match */

PATTERN *pm_file_pat; /* compiled file target string (pmatch()) */

NOTE(READ_ONLY_DATA(flags regexp_cnt string debug use_pmatch \

file_pat pm_file_pat))

/*

* Locking ording.

*/

NOTE(LOCK_ORDER(output_print_lk stat_lk))

/*

* Main: This is where the fun starts

*/

int

main(int argc, char **argv)

{

int c,out_thr_flags;

long max_open_files = 0l, ncpus = 0l;

extern int optind;

extern char *optarg;

NOTE(READ_ONLY_DATA(optind optarg))

int prio = 0;

struct stat sbuf;

thread_t tid,dtid;

void *status;

char *e = NULL, *d = NULL; /* for debug flags */

int debug_file = 0;

int err = 0, i = 0, pm_file_len = 0;

work_t *work;

int restart_cnt = 10;

flags = FR_RECUR; /* the default */

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 419

thr_setprio(thr_self(),127); /* set me up HIGH */

while ((c = getopt(argc, argv, "d:e:bchilnsvwruf:p:BCSZzHP:")) != EOF) {

switch (c) {

#ifdef DEBUG

case ’d’:

debug = atoi(optarg);

if (debug == 0)

debug_usage();

d = optarg;

fprintf(stderr,"tgrep: Debug on at level(s) ");

while (*d) {

for (i=0; i<9; i++)

if (debug_set[i].level == *d) {

debug_levels |= debug_set[i].flag;

fprintf(stderr,"%c ",debug_set[i].level);

break;

}

d++;

}

fprintf(stderr,"\n");

break;

case ’f’:

debug_file = atoi(optarg);

break;

#endif /* DEBUG */

case ’B’:

flags |= TG_BATCH;

if ((e = getenv("TGLIMIT"))) {

tglimit = atoi(e);

}

else {

if (!(flags & FS_NOERROR)) /* order dependent! */

fprintf(stderr,"env TGLIMIT not set, overriding -B\n");

flags &= ~TG_BATCH;

}

break;

420 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

case ’p’:

flags |= TG_FILEPAT;

strcpy(file_pat,optarg);

pm_file_pat = makepat(file_pat,NULL);

break;

case ’P’:

flags |= TG_PROGRESS;

progress_offset = atoi(optarg);

break;

case ’S’: flags |= FS_STATS; break;

case ’b’: flags |= FB_BLOCK; break;

case ’c’: flags |= FC_COUNT; break;

case ’h’: flags |= FH_HOLDNAME; break;

case ’i’: flags |= FI_IGNCASE; break;

case ’l’: flags |= FL_NAMEONLY; break;

case ’n’: flags |= FN_NUMBER; break;

case ’s’: flags |= FS_NOERROR; break;

case ’v’: flags |= FV_REVERSE; break;

case ’w’: flags |= FW_WORD; break;

case ’r’: flags &= ~FR_RECUR; break;

case ’C’: flags |= FC_LINE; break;

case ’e’:

if (regexp_cnt == MAXREGEXP) {

fprintf(stderr,"Max number of regexp’s (%d) exceeded!\n",

MAXREGEXP);

exit(1);

}

flags |= FE_REGEXP;

if ((string[regexp_cnt] =(char *)malloc(strlen(optarg)+1))==NUL

fprintf(stderr,"tgrep: No space for search string(s)\n");

exit(1);

}

memset(string[regexp_cnt],0,strlen(optarg)+1);

strcpy(string[regexp_cnt],optarg);

regexp_cnt++;

break;

case ’z’:

case ’Z’: regexp_usage();

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 421

break;

case ’H’:

case ’?’:

default : usage();

}

}

if (!(flags & FE_REGEXP)) {

if (argc - optind < 1) {

fprintf(stderr,"tgrep: Must supply a search string(s) "

"and file list or directory\n");

usage();

}

if ((string[0]=(char *)malloc(strlen(argv[optind])+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");

exit(1);

}

memset(string[0],0,strlen(argv[optind])+1);

strcpy(string[0],argv[optind]);

regexp_cnt=1;

optind++;

}

if (flags & FI_IGNCASE)

for (i=0; i<regexp_cnt; i++)

uncase(string[i]);

#ifdef __lock_lint

/*

** This is NOT somthing you really want to do. This

** function calls are here ONLY for warlock/locklint !!!

*/

pm_pat[i] = makepat(string[i],NULL);

bm_pat = bm_makepat(string[0]);

bm_freepat(bm_pat); /* stop it from becomming a root */

#else

if (flags & FE_REGEXP) {

for (i=0; i<regexp_cnt; i++)

422 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

pm_pat[i] = makepat(string[i],NULL);

use_pmatch = 1;

}

else {

bm_pat = bm_makepat(string[0]); /* only one allowed */

}

#endif

flags |= FX_STDIN;

max_open_files = sysconf(_SC_OPEN_MAX);

ncpus = sysconf(_SC_NPROCESSORS_ONLN);

if ((max_open_files - HOLD_FDS - debug_file) < 1) {

fprintf(stderr,"tgrep: You MUST have at lest ONE fd "

"that can be used, check limit (>10)\n");

exit(1);

}

search_thr_limit = max_open_files - HOLD_FDS - debug_file;

cascade_thr_limit = search_thr_limit / 2;

/* the number of files that can by open */

current_open_files = search_thr_limit;

mutex_init(&stat_lk,USYNC_THREAD,"stat");

mutex_init(&global_count_lk,USYNC_THREAD,"global_cnt");

mutex_init(&output_print_lk,USYNC_THREAD,"output_print");

mutex_init(&work_q_lk,USYNC_THREAD,"work_q");

mutex_init(&running_lk,USYNC_THREAD,"running");

cond_init(&work_q_cv,USYNC_THREAD,"work_q");

mutex_init(&search_q_lk,USYNC_THREAD,"search_q");

cond_init(&search_q_cv,USYNC_THREAD,"search_q");

mutex_init(&cascade_q_lk,USYNC_THREAD,"cascade_q");

cond_init(&cascade_q_cv,USYNC_THREAD,"cascade_q");

if ((argc == optind) && ((flags & TG_FILEPAT) || (flags & FR_RECUR))) {

add_work(".",DIRT);

flags = (flags & ~FX_STDIN);

}

for (; optind < argc; optind++) {

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 423

restart_cnt = 10;

flags = (flags & ~FX_STDIN);

STAT_AGAIN:

if (stat(argv[optind], &sbuf)) {

if (errno == EINTR) { /* try again !, restart */

if (--restart_cnt)

goto STAT_AGAIN;

}

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s\n",

argv[optind], strerror(errno));

continue;

}

switch (sbuf.st_mode & S_IFMT) {

case S_IFREG :

if (flags & TG_FILEPAT) {

if (pmatch(pm_file_pat, argv[optind], &pm_file_len))

add_work(argv[optind],FILET);

}

else {

add_work(argv[optind],FILET);

}

break;

case S_IFDIR :

if (flags & FR_RECUR) {

add_work(argv[optind],DIRT);

}

else {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t search directory %s, "

"-r option is on. Directory ignored.\n",

argv[optind]);

}

break;

}

}

NOTE(COMPETING_THREADS_NOW) /* we are goinf threaded */

424 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_start = time(NULL);

mutex_unlock(&stat_lk);

#ifdef SIGNAL_HAND

/*

** setup the signal thread so the first call to SIGINT will

** only print stats, the second will interupt.

*/

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, &oldset);

if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {

thr_sigsetmask(SIG_SETMASK,&oldset,NULL);

fprintf(stderr,"SIGINT for stats NOT setup\n");

}

thr_yield(); /* give the other thread time */

#endif /* SIGNAL_HAND */

}

thr_setconcurrency(3);

if (flags & FX_STDIN) {

fprintf(stderr,"tgrep: stdin option is not coded at this time\n");

exit(0); /* XXX Need to fix this SOON */

search_thr(NULL); /* NULL is not understood in search_thr() */

if (flags & FC_COUNT) {

mutex_lock(&global_count_lk);

printf("%d\n",global_count);

mutex_unlock(&global_count_lk);

}

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

prnt_stats();

mutex_unlock(&stat_lk);

}

exit(0);

}

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 425

mutex_lock(&work_q_lk);

if (!work_q) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: No files to search.\n");

exit(0);

}

mutex_unlock(&work_q_lk);

DP(DLEVEL1,("Starting to loop through the work_q for work\n"));

/* OTHER THREADS ARE RUNNING */

while (1) {

mutex_lock(&work_q_lk);

while ((work_q == NULL || current_open_files == 0 || tglimit <= 0) &&

all_done == 0) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

if (work_q == NULL)

st_worknull++;

if (current_open_files == 0)

st_workfds++;

if (tglimit <= 0)

st_worklimit++;

mutex_unlock(&stat_lk);

}

cond_wait(&work_q_cv,&work_q_lk);

}

if (all_done != 0) {

mutex_unlock(&work_q_lk);

DP(DLEVEL1,("All_done was set to TRUE\n"));

goto OUT;

}

work = work_q;

work_q = work->next; /* maybe NULL */

work->next = NULL;

current_open_files--;

mutex_unlock(&work_q_lk);

426 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

tid = 0;

switch (work->tp) {

case DIRT:

mutex_lock(&cascade_q_lk);

if (cascade_pool_cnt) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_cascade_pool++;

mutex_unlock(&stat_lk);

}

work->next = cascade_q;

cascade_q = work;

cond_signal(&cascade_q_cv);

mutex_unlock(&cascade_q_lk);

DP(DLEVEL2,("Sent work to cascade pool thread\n"));

}

else {

mutex_unlock(&cascade_q_lk);

err = thr_create(NULL,0,cascade,(void *)work,

THR_DETACHED|THR_DAEMON|THR_NEW_LWP

,&tid);

DP(DLEVEL2,("Sent work to new cascade thread\n"));

thr_setprio(tid,64); /* set cascade to middle */

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_cascade++;

mutex_unlock(&stat_lk);

}

}

break;

case FILET:

mutex_lock(&search_q_lk);

if (search_pool_cnt) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_pool++;

mutex_unlock(&stat_lk);

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 427

}

work->next = search_q; /* could be null */

search_q = work;

cond_signal(&search_q_cv);

mutex_unlock(&search_q_lk);

DP(DLEVEL2,("Sent work to search pool thread\n"));

}

else {

mutex_unlock(&search_q_lk);

err = thr_create(NULL,0,search_thr,(void *)work,

THR_DETACHED|THR_DAEMON|THR_NEW_LWP

,&tid);

thr_setprio(tid,0); /* set search to low */

DP(DLEVEL2,("Sent work to new search thread\n"));

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_search++;

mutex_unlock(&stat_lk);

}

}

break;

default:

fprintf(stderr,"tgrep: Internal error, work_t->tp no valid\n");

exit(1);

}

if (err) { /* NEED TO FIX THIS CODE. Exiting is just wrong */

fprintf(stderr,"Cound not create new thread!\n");

exit(1);

}

}

OUT:

if (flags & TG_PROGRESS) {

if (progress)

fprintf(stderr,".\n");

else

fprintf(stderr,"\n");

}

428 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

/* we are done, print the stuff. All other threads ar parked */

if (flags & FC_COUNT) {

mutex_lock(&global_count_lk);

printf("%d\n",global_count);

mutex_unlock(&global_count_lk);

}

if (flags & FS_STATS)

prnt_stats();

return(0); /* should have a return from main */

}

/*

* Add_Work: Called from the main thread, and cascade threads to add file

* and directory names to the work Q.

*/

int

add_work(char *path,int tp)

{

work_t *wt,*ww,*wp;

if ((wt = (work_t *)malloc(sizeof(work_t))) == NULL)

goto ERROR;

if ((wt->path = (char *)malloc(strlen(path)+1)) == NULL)

goto ERROR;

strcpy(wt->path,path);

wt->tp = tp;

wt->next = NULL;

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

if (wt->tp == DIRT)

st_dir_search++;

else

st_file_search++;

mutex_unlock(&stat_lk);

}

mutex_lock(&work_q_lk);

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 429

work_cnt++;

wt->next = work_q;

work_q = wt;

cond_signal(&work_q_cv);

mutex_unlock(&work_q_lk);

return(0);

ERROR:

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Could not add %s to work queue. Ignored\n",

path);

return(-1);

}

/*

* Search thread: Started by the main thread when a file name is found

* on the work Q to be serached. If all the needed resources are ready

* a new search thread will be created.

*/

void *

search_thr(void *arg) /* work_t *arg */

{

FILE *fin;

char fin_buf[(BUFSIZ*4)]; /* 4 Kbytes */

work_t *wt,std;

int line_count;

char rline[128];

char cline[128];

char *line;

register char *p,*pp;

int pm_len;

int len = 0;

long byte_count;

long next_line;

int show_line; /* for the -v option */

register int slen,plen,i;

out_t *out = NULL; /* this threads output list */

thr_setprio(thr_self(),0); /* set search to low */

430 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

thr_yield();

wt = (work_t *)arg; /* first pass, wt is passed to use. */

/* len = strlen(string);*/ /* only set on first pass */

while (1) { /* reuse the search threads */

/* init all back to zero */

line_count = 0;

byte_count = 0l;

next_line = 0l;

show_line = 0;

mutex_lock(&running_lk);

running++;

mutex_unlock(&running_lk);

mutex_lock(&work_q_lk);

tglimit--;

mutex_unlock(&work_q_lk);

DP(DLEVEL5,("searching file (STDIO) %s\n",wt->path));

if ((fin = fopen(wt->path,"r")) == NULL) {

if (!(flags & FS_NOERROR)) {

fprintf(stderr,"tgrep: %s. File \"%s\" not searched.\n",

strerror(errno),wt->path);

}

goto ERROR;

}

setvbuf(fin,fin_buf,_IOFBF,(BUFSIZ*4)); /* XXX */

DP(DLEVEL5,("Search thread has opened file %s\n",wt->path));

while ((fgets(rline,127,fin)) != NULL) {

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_line_search++;

mutex_unlock(&stat_lk);

}

slen = strlen(rline);

next_line += slen;

line_count++;

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 431

if (rline[slen-1] == ’\n’)

rline[slen-1] = ’\0’;

/*

** If the uncase flag is set, copy the read in line (rline)

** To the uncase line (cline) Set the line pointer to point at

** cline.

** If the case flag is NOT set, then point line at rline.

** line is what is compared, rline is waht is printed on a

** match.

*/

if (flags & FI_IGNCASE) {

strcpy(cline,rline);

uncase(cline);

line = cline;

}

else {

line = rline;

}

show_line = 1; /* assume no match, if -v set */

/* The old code removed */

if (use_pmatch) {

for (i=0; i<regexp_cnt; i++) {

if (pmatch(pm_pat[i], line, &pm_len)) {

if (!(flags & FV_REVERSE)) {

add_output_local(&out,wt,line_count,

byte_count,rline);

continue_line(rline,fin,out,wt,

&line_count,&byte_count);

}

else {

show_line = 0;

} /* end of if -v flag if / else block */

/*

** if we get here on ANY of the regexp targets

** jump out of the loop, we found a single

** match so, do not keep looking!

** If name only, do not keep searcthing the same

** file, we found a single match, so close the file,

432 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

** print the file name and move on to the next file.

*/

if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;

else

goto OUT_AND_DONE;

} /* end found a match if block */

} /* end of the for pat[s] loop */

}

else {

if (bm_pmatch(bm_pat, line)) {

if (!(flags & FV_REVERSE)) {

add_output_local(&out,wt,line_count,byte_count,rlin

continue_line(rline,fin,out,wt,

&line_count,&byte_count);

}

else {

show_line = 0;

}

if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;

}

}

OUT_AND_DONE:

if ((flags & FV_REVERSE) && show_line) {

add_output_local(&out,wt,line_count,byte_count,rline);

show_line = 0;

}

byte_count = next_line;

}

OUT_OF_LOOP:

fclose(fin);

/*

** The search part is done, but before we give back the FD,

** and park this thread in the search thread pool, print the

** local output we have gathered.

*/

print_local_output(out,wt); /* this also frees out nodes */

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 433

out = NULL; /* for the next time around, if there is one */

ERROR:

DP(DLEVEL5,("Search done for %s\n",wt->path));

free(wt->path);

free(wt);

notrun();

mutex_lock(&search_q_lk);

if (search_pool_cnt > search_thr_limit) {

mutex_unlock(&search_q_lk);

DP(DLEVEL5,("Search thread exiting\n"));

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_destroy++;

mutex_unlock(&stat_lk);

}

return(0);

}

else {

search_pool_cnt++;

while (!search_q)

cond_wait(&search_q_cv,&search_q_lk);

search_pool_cnt--;

wt = search_q; /* we have work to do! */

if (search_q->next)

search_q = search_q->next;

else

search_q = NULL;

mutex_unlock(&search_q_lk);

}

}

/*NOTREACHED*/

}

/*

* Continue line: Speacial case search with the -C flag set. If you are

* searching files like Makefiles, some lines may have escape char’s to

* contine the line on the next line. So the target string can be found, but

434 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

* no data is displayed. This function continues to print the escaped line

* until there are no more "\" chars found.

*/

int

continue_line(char *rline, FILE *fin, out_t *out, work_t *wt,

int *lc, long *bc)

{

int len;

int cnt = 0;

char *line;

char nline[128];

if (!(flags & FC_LINE))

return(0);

line = rline;

AGAIN:

len = strlen(line);

if (line[len-1] == ’\\’) {

if ((fgets(nline,127,fin)) == NULL) {

return(cnt);

}

line = nline;

len = strlen(line);

if (line[len-1] == ’\n’)

line[len-1] = ’\0’;

*bc = *bc + len;

*lc++;

add_output_local(&out,wt,*lc,*bc,line);

cnt++;

goto AGAIN;

}

return(cnt);

}

/*

* cascade: This thread is started by the main thread when directory names

* are found on the work Q. The thread reads all the new file, and director

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 435

* names from the directory it was started when and adds the names to the

* work Q. (it finds more work!)

*/

void *

cascade(void *arg) /* work_t *arg */

{

char fullpath[1025];

int restart_cnt = 10;

DIR *dp;

char dir_buf[sizeof(struct dirent) + PATH_MAX];

struct dirent *dent = (struct dirent *)dir_buf;

struct stat sbuf;

char *fpath;

work_t *wt;

int fl = 0, dl = 0;

int pm_file_len = 0;

thr_setprio(thr_self(),64); /* set search to middle */

thr_yield(); /* try toi give control back to main thread */

wt = (work_t *)arg;

while(1) {

fl = 0;

dl = 0;

restart_cnt = 10;

pm_file_len = 0;

mutex_lock(&running_lk);

running++;

mutex_unlock(&running_lk);

mutex_lock(&work_q_lk);

tglimit--;

mutex_unlock(&work_q_lk);

if (!wt) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Bad work node passed to cascade\n");

436 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

goto DONE;

}

fpath = (char *)wt->path;

if (!fpath) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Bad path name passed to cascade\n");

goto DONE;

}

DP(DLEVEL3,("Cascading on %s\n",fpath));

if ((dp = opendir(fpath)) == NULL) {

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t open dir %s, %s. Ignored.\n",

fpath,strerror(errno));

goto DONE;

}

while ((readdir_r(dp,dent)) != NULL) {

restart_cnt = 10; /* only try to restart the interupted 10 X */

if (dent->d_name[0] == ’.’) {

if (dent->d_name[1] == ’.’ && dent->d_name[2] == ’\0’)

continue;

if (dent->d_name[1] == ’\0’)

continue;

}

fl = strlen(fpath);

dl = strlen(dent->d_name);

if ((fl + 1 + dl) > 1024) {

fprintf(stderr,"tgrep: Path %s/%s is too long. "

"MaxPath = 1024\n",

fpath, dent->d_name);

continue; /* try the next name in this directory */

}

strcpy(fullpath,fpath);

strcat(fullpath,"/");

strcat(fullpath,dent->d_name);

RESTART_STAT:

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 437

if (stat(fullpath,&sbuf)) {

if (errno == EINTR) {

if (--restart_cnt)

goto RESTART_STAT;

}

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s. "

"Ignored.\n",

fullpath,strerror(errno));

goto ERROR;

}

switch (sbuf.st_mode & S_IFMT) {

case S_IFREG :

if (flags & TG_FILEPAT) {

if (pmatch(pm_file_pat, dent->d_name, &pm_file_len)) {

DP(DLEVEL3,("file pat match (cascade) %s\n",

dent->d_name));

add_work(fullpath,FILET);

}

}

else {

add_work(fullpath,FILET);

DP(DLEVEL3,("cascade added file (MATCH) %s to Work Q\n",

fullpath));

}

break;

case S_IFDIR :

DP(DLEVEL3,("cascade added dir %s to Work Q\n",fullpath));

add_work(fullpath,DIRT);

break;

}

}

ERROR:

closedir(dp);

DONE:

free(wt->path);

438 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

free(wt);

notrun();

mutex_lock(&cascade_q_lk);

if (cascade_pool_cnt > cascade_thr_limit) {

mutex_unlock(&cascade_q_lk);

DP(DLEVEL5,("Cascade thread exiting\n"));

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

st_cascade_destroy++;

mutex_unlock(&stat_lk);

}

return(0); /* thr_exit */

}

else {

DP(DLEVEL5,("Cascade thread waiting in pool\n"));

cascade_pool_cnt++;

while (!cascade_q)

cond_wait(&cascade_q_cv,&cascade_q_lk);

cascade_pool_cnt--;

wt = cascade_q; /* we have work to do! */

if (cascade_q->next)

cascade_q = cascade_q->next;

else

cascade_q = NULL;

mutex_unlock(&cascade_q_lk);

}

}

/*NOTREACHED*/

}

/*

* Print Local Output: Called by the search thread after it is done searchi

* a single file. If any oputput was saved (matching lines), the lines are

* displayed as a group on stdout.

*/

int

print_local_output(out_t *out, work_t *wt)

{

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 439

out_t *pp, *op;

int out_count = 0;

int printed = 0;

int print_name = 1;

pp = out;

mutex_lock(&output_print_lk);

if (pp && (flags & TG_PROGRESS)) {

progress++;

if (progress >= progress_offset) {

progress = 0;

fprintf(stderr,".");

}

}

while (pp) {

out_count++;

if (!(flags & FC_COUNT)) {

if (flags & FL_NAMEONLY) { /* Pint name ONLY ! */

if (!printed) {

printed = 1;

printf("%s\n",wt->path);

}

}

else { /* We are printing more then just the name */

if (!(flags & FH_HOLDNAME)) /* do not print name ? */

printf("%s :",wt->path);

if (flags & FB_BLOCK)

printf("%ld:",pp->byte_count/512+1);

if (flags & FN_NUMBER)

printf("%d:",pp->line_count);

printf("%s\n",pp->line);

}

}

op = pp;

pp = pp->next;

/* free the nodes as we go down the list */

free(op->line);

free(op);

440 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

}

mutex_unlock(&output_print_lk);

mutex_lock(&global_count_lk);

global_count += out_count;

mutex_unlock(&global_count_lk);

return(0);

}

/*

* add output local: is called by a search thread as it finds matching line

* the matching line, it’s byte offset, line count, etc are stored until th

* search thread is done searching the file, then the lines are printed as

* a group. This way the lines from more then a single file are not mixed

* together.

*/

int

add_output_local(out_t **out, work_t *wt,int lc, long bc, char *line)

{

out_t *ot,*oo, *op;

if ((ot = (out_t *)malloc(sizeof(out_t))) == NULL)

goto ERROR;

if ((ot->line = (char *)malloc(strlen(line)+1)) == NULL)

goto ERROR;

strcpy(ot->line,line);

ot->line_count = lc;

ot->byte_count = bc;

if (!*out) {

*out = ot;

ot->next = NULL;

return(0);

}

/* append to the END of the list, keep things sorted! */

op = oo = *out;

while(oo) {

op = oo;

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 441

oo = oo->next;

}

op->next = ot;

ot->next = NULL;

return(0);

ERROR:

if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Output lost. No space. "

"[%s: line %d byte %d match : %s\n",

wt->path,lc,bc,line);

return(1);

}

/*

* print stats: If the -S flag is set, after ALL files have been searched,

* main thread calls this function to print the stats it keeps on how the

* search went.

*/

void

prnt_stats(void)

{

float a,b,c;

float t = 0.0;

time_t st_end = 0;

char tl[80];

st_end = time(NULL); /* stop the clock */

fprintf(stderr,"\n----------------- Tgrep Stats. --------------------\n");

fprintf(stderr,"Number of directories searched: %d\n",

st_dir_search);

fprintf(stderr,"Number of files searched: %d\n",

st_file_search);

c = (float)(st_dir_search + st_file_search) / (float)(st_end - st_start);

fprintf(stderr,"Dir/files per second: %3.2f\n",

c);

fprintf(stderr,"Number of lines searched: %d\n",

st_line_search);

fprintf(stderr,"Number of matching lines to target: %d\n",

442 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

global_count);

fprintf(stderr,"Number of cascade threads created: %d\n",

st_cascade);

fprintf(stderr,"Number of cascade threads from pool: %d\n",

st_cascade_pool);

a = st_cascade_pool; b = st_dir_search;

fprintf(stderr,"Cascade thread pool hit rate: %3.2f%%\n",

((a/b)*100));

fprintf(stderr,"Cascade pool overall size: %d\n",

cascade_pool_cnt);

fprintf(stderr,"Cascade pool size limit: %d\n",

cascade_thr_limit);

fprintf(stderr,"Number of cascade threads destroyed: %d\n",

st_cascade_destroy);

fprintf(stderr,"Number of search threads created: %d\n",

st_search);

fprintf(stderr,"Number of search threads from pool: %d\n",

st_pool);

a = st_pool; b = st_file_search;

fprintf(stderr,"Search thread pool hit rate: %3.2f%%\n",

((a/b)*100));

fprintf(stderr,"Search pool overall size: %d\n",

search_pool_cnt);

fprintf(stderr,"Search pool size limit: %d\n",

search_thr_limit);

fprintf(stderr,"Number of search threads destroyed: %d\n",

st_destroy);

fprintf(stderr,"Max # of threads running concurrenly: %d\n",

st_maxrun);

fprintf(stderr,"Total run time, in seconds. %d\n",

(st_end - st_start));

/* Why did we wait ? */

a = st_workfds; b = st_dir_search+st_file_search;

c = (a/b)*100; t += c;

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 443

fprintf(stderr,"Work stopped due to no FD’s: (%.3d) %d Times, %3.2f%%\n"

search_thr_limit,st_workfds,c);

a = st_worknull; b = st_dir_search+st_file_search;

c = (a/b)*100; t += c;

fprintf(stderr,"Work stopped due to no work on Q: %d Times, %3.2f%%\n"

st_worknull,c);

#ifndef __lock_lint /* it is OK to read HERE with out the lock ! */

if (tglimit == UNLIMITED)

strcpy(tl,"Unlimited");

else

sprintf(tl," %.3d ",tglimit);

#endif

a = st_worklimit; b = st_dir_search+st_file_search;

c = (a/b)*100; t += c;

fprintf(stderr,"Work stopped due to TGLIMIT: (%.9s) %d Times, %3.2f%%\n",

tl,st_worklimit,c);

fprintf(stderr,"Work continued to be handed out: %3.2f%%\n",

100.00-t);

fprintf(stderr,"--\n");

}

/*

* not running: A glue function to track if any search threads or cascade

* threads are running. When the count is zero, and the work Q is NULL,

* we can safly say, WE ARE DONE.

*/

void

notrun (void)

{

mutex_lock(&work_q_lk);

work_cnt--;

tglimit++;

current_open_files++;

mutex_lock(&running_lk);

if (flags & FS_STATS) {

mutex_lock(&stat_lk);

if (running > st_maxrun) {

st_maxrun = running;

444 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

DP(DLEVEL6,("Max Running has increased to %d\n",st_maxrun));

}

mutex_unlock(&stat_lk);

}

running--;

if (work_cnt == 0 && running == 0) {

all_done = 1;

DP(DLEVEL6,("Setting ALL_DONE flag to TRUE.\n"));

}

mutex_unlock(&running_lk);

cond_signal(&work_q_cv);

mutex_unlock(&work_q_lk);

}

/*

* uncase: A glue function. If the -i (case insensitive) flag is set, the

* target strng and the read in line is converted to lower case before

* comparing them.

*/

void

uncase(char *s)

{

char *p;

for (p = s; *p != NULL; p++)

*p = (char)tolower(*p);

}

/*

* SigThread: if the -S option is set, the first ^C set to tgrep will

* print the stats on the fly, the second will kill the process.

*/

void *

SigThread(void *arg)

{

int sig;

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 445

int stats_printed = 0;

while (1) {

sig = sigwait(&set);

DP(DLEVEL7,("Signal %d caught\n",sig));

switch (sig) {

case -1:

fprintf(stderr,"Signal error\n");

break;

case SIGINT:

if (stats_printed)

exit(1);

stats_printed = 1;

sig_print_stats();

break;

case SIGHUP:

sig_print_stats();

break;

default:

DP(DLEVEL7,("Default action taken (exit) for signal %d\n",sig));

exit(1); /* default action */

}

}

}

void

sig_print_stats(void)

{

/*

** Get the output lock first

** Then get the stat lock.

*/

mutex_lock(&output_print_lk);

mutex_lock(&stat_lk);

prnt_stats();

mutex_unlock(&stat_lk);

mutex_unlock(&output_print_lk);

return;

446 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

}

/*

* usage: Have to have one of these.

*/

void

usage(void)

{

fprintf(stderr,"usage: tgrep <options> pattern <{file,dir}>...\n");

fprintf(stderr,"\n");

fprintf(stderr,"Where:\n");

#ifdef DEBUG

fprintf(stderr,"Debug -d = debug level -d <levels> (-d0 for usage)\

fprintf(stderr,"Debug -f = block fd’s from use (-f #)\n");

#endif

fprintf(stderr," -b = show block count (512 byte block)\n");

fprintf(stderr," -c = print only a line count\n");

fprintf(stderr," -h = do not print file names\n");

fprintf(stderr," -i = case insensitive\n");

fprintf(stderr," -l = print file name only\n");

fprintf(stderr," -n = print the line number with the line\n");

fprintf(stderr," -s = Suppress error messages\n");

fprintf(stderr," -v = print all but matching lines\n");

#ifdef NOT_IMP

fprintf(stderr," -w = search for a \"word\"\n");

#endif

fprintf(stderr," -r = Do not search for files in all "

"sub-directories\n");

fprintf(stderr," -C = show continued lines (\"\\\")\n");

fprintf(stderr," -p = File name regexp pattern. (Quote it)\n")

fprintf(stderr," -P = show progress. -P 1 prints a DOT on stde

" for each file it finds, -P 10 prints a D

" on stderr for each 10 files it finds, et

fprintf(stderr," -e = expression search.(regexp) More then one

fprintf(stderr," -B = limit the number of threads to TGLIMIT\n

fprintf(stderr," -S = Print thread stats when done.\n");

fprintf(stderr," -Z = Print help on the regexp used.\n");

fprintf(stderr,"\n");

31.12. TGREP: THREADEDS VERSION OF UNIX GREP 447

fprintf(stderr,"Notes:\n");

fprintf(stderr," If you start tgrep with only a directory name\n");

fprintf(stderr," and no file names, you must not have the -r option\n");

fprintf(stderr," set or you will get no output.\n");

fprintf(stderr," To search stdin (piped input), you must set -r\n");

fprintf(stderr," Tgrep will search ALL files in ALL \n");

fprintf(stderr," sub-directories. (like */* */*/* */*/*/* etc..)\n");

fprintf(stderr," if you supply a directory name.\n");

fprintf(stderr," If you do not supply a file, or directory name,\n");

fprintf(stderr," and the -r option is not set, the current \n");

fprintf(stderr," directory \".\" will be used.\n");

fprintf(stderr," All the other options should work \"like\" grep\n");

fprintf(stderr," The -p patten is regexp, tgrep will search only\n");

fprintf(stderr," the file names that match the patten\n");

fprintf(stderr,"\n");

fprintf(stderr," Tgrep Version %s\n",Tgrep_Version);

fprintf(stderr,"\n");

fprintf(stderr," Copy Right By Ron Winacott, 1993-1995.\n");

fprintf(stderr,"\n");

exit(0);

}

/*

* regexp usage: Tell the world about tgrep custom (THREAD SAFE) regexp!

*/

int

regexp_usage (void)

{

fprintf(stderr,"usage: tgrep <options> -e \"pattern\" <-e ...> "

"<{file,dir}>...\n");

fprintf(stderr,"\n");

fprintf(stderr,"metachars:\n");

fprintf(stderr," . - match any character\n");

fprintf(stderr," * - match 0 or more occurrences of pervious char\n");

fprintf(stderr," + - match 1 or more occurrences of pervious char.\n");

fprintf(stderr," ^ - match at begining of string\n");

fprintf(stderr," $ - match end of string\n");

fprintf(stderr," [- start of character class\n");

448 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

fprintf(stderr,"] - end of character class\n");

fprintf(stderr," (- start of a new pattern\n");

fprintf(stderr,") - end of a new pattern\n");

fprintf(stderr," @(n)c - match <c> at column <n>\n");

fprintf(stderr," | - match either pattern\n");

fprintf(stderr," \\ - escape any special characters\n");

fprintf(stderr," \\c - escape any special characters\n");

fprintf(stderr," \\o - turn on any special characters\n");

fprintf(stderr,"\n");

fprintf(stderr,"To match two diffrerent patterns in the same command\n"

fprintf(stderr,"Use the or function. \n"

"ie: tgrep -e \"(pat1)|(pat2)\" file\n"

"This will match any line with \"pat1\" or \"pat2\" in it.\n");

fprintf(stderr,"You can also use up to %d -e expresions\n",MAXREGEXP);

fprintf(stderr,"RegExp Pattern matching brought to you by Marc Staveley

exit(0);

}

/*

* debug usage: If compiled with -DDEBUG, turn it on, and tell the world

* how to get tgrep to print debug info on different threads.

*/

#ifdef DEBUG

void

debug_usage(void)

{

int i = 0;

fprintf(stderr,"DEBUG usage and levels:\n");

fprintf(stderr,"--\n");

fprintf(stderr,"Level code\n");

fprintf(stderr,"--\n");

fprintf(stderr,"0 This message.\n");

for (i=0; i<9; i++) {

fprintf(stderr,"%d %s\n",i+1,debug_set[i].name);

}

fprintf(stderr,"--\n");

fprintf(stderr,"You can or the levels together like -d134 for levels\n"

31.13. MULTITHREADED QUICKSORT 449

fprintf(stderr,"1 and 3 and 4.\n");

fprintf(stderr,"\n");

exit(0);

}

#endif

31.13 Multithreaded Quicksort

The following example tquick.cimplements the quicksort algorithm using
threads.

/*

* Multithreaded Demo Source

*

* Copyright (C) 1995 by Sun Microsystems, Inc.

* All rights reserved.

*

* This file is a product of SunSoft, Inc. and is provided for

* unrestricted use provided that this legend is included on all

* media and as a part of the software program in whole or part.

* Users may copy, modify or distribute this file at will.

*

* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING

* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR

* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

*

* This file is provided with no support and without any obligation on the

* part of SunSoft, Inc. to assist in its use, correction, modification or

* enhancement.

*

* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT

* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS

* FILE OR ANY PART THEREOF.

450 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

*

* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY

* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL

* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

* DAMAGES.

*

* SunSoft, Inc.

* 2550 Garcia Avenue

* Mountain View, California 94043

*/

/*

* multiple-thread quick-sort. See man page for qsort(3c) for info.

* Works fine on uniprocessor machines as well.

*

* Written by: Richard Pettit (Richard.Pettit@West.Sun.COM)

*/

#include <unistd.h>

#include <stdlib.h>

#include <thread.h>

/* don’t create more threads for less than this */

#define SLICE_THRESH 4096

/* how many threads per lwp */

#define THR_PER_LWP 4

/* cast the void to a one byte quanitity and compute the offset */

#define SUB(a, n) ((void *) (((unsigned char *) (a)) + ((n) * width)))

typedef struct {

void *sa_base;

int sa_nel;

size_t sa_width;

int (*sa_compar)(const void *, const void *);

} sort_args_t;

31.13. MULTITHREADED QUICKSORT 451

/* for all instances of quicksort */

static int threads_avail;

#define SWAP(a, i, j, width) \

{ \

int n; \

unsigned char uc; \

unsigned short us; \

unsigned long ul; \

unsigned long long ull; \

\

if (SUB(a, i) == pivot) \

pivot = SUB(a, j); \

else if (SUB(a, j) == pivot) \

pivot = SUB(a, i); \

\

/* one of the more convoluted swaps I’ve done */ \

switch(width) { \

case 1: \

uc = *((unsigned char *) SUB(a, i)); \

*((unsigned char *) SUB(a, i)) = *((unsigned char *) SUB(a, j)); \

*((unsigned char *) SUB(a, j)) = uc; \

break; \

case 2: \

us = *((unsigned short *) SUB(a, i)); \

*((unsigned short *) SUB(a, i)) = *((unsigned short *) SUB(a, j)); \

*((unsigned short *) SUB(a, j)) = us; \

break; \

case 4: \

ul = *((unsigned long *) SUB(a, i)); \

*((unsigned long *) SUB(a, i)) = *((unsigned long *) SUB(a, j)); \

*((unsigned long *) SUB(a, j)) = ul; \

break; \

case 8: \

ull = *((unsigned long long *) SUB(a, i)); \

*((unsigned long long *) SUB(a,i)) = *((unsigned long long *) SUB(a,j)); \

*((unsigned long long *) SUB(a, j)) = ull; \

break; \

452 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

default: \

for(n=0; n<width; n++) { \

uc = ((unsigned char *) SUB(a, i))[n]; \

((unsigned char *) SUB(a, i))[n] = ((unsigned char *) SUB(a, j))[n];

((unsigned char *) SUB(a, j))[n] = uc; \

} \

break; \

} \

}

static void *

_quicksort(void *arg)

{

sort_args_t *sargs = (sort_args_t *) arg;

register void *a = sargs->sa_base;

int n = sargs->sa_nel;

int width = sargs->sa_width;

int (*compar)(const void *, const void *) = sargs->sa_compar;

register int i;

register int j;

int z;

int thread_count = 0;

void *t;

void *b[3];

void *pivot = 0;

sort_args_t sort_args[2];

thread_t tid;

/* find the pivot point */

switch(n) {

case 0:

case 1:

return 0;

case 2:

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

return 0;

31.13. MULTITHREADED QUICKSORT 453

case 3:

/* three sort */

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

/* the first two are now ordered, now order the second two */

if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {

SWAP(a, 2, 1, width);

}

/* should the second be moved to the first? */

if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {

SWAP(a, 1, 0, width);

}

return 0;

default:

if (n > 3) {

b[0] = SUB(a, 0);

b[1] = SUB(a, n / 2);

b[2] = SUB(a, n - 1);

/* three sort */

if ((*compar)(b[0], b[1]) > 0) {

t = b[0];

b[0] = b[1];

b[1] = t;

}

/* the first two are now ordered, now order the second two */

if ((*compar)(b[2], b[1]) < 0) {

t = b[1];

b[1] = b[2];

b[2] = t;

}

/* should the second be moved to the first? */

if ((*compar)(b[1], b[0]) < 0) {

t = b[0];

b[0] = b[1];

b[1] = t;

}

if ((*compar)(b[0], b[2]) != 0)

454 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

if ((*compar)(b[0], b[1]) < 0)

pivot = b[1];

else

pivot = b[2];

}

break;

}

if (pivot == 0)

for(i=1; i<n; i++) {

if (z = (*compar)(SUB(a, 0), SUB(a, i))) {

pivot = (z > 0) ? SUB(a, 0) : SUB(a, i);

break;

}

}

if (pivot == 0)

return;

/* sort */

i = 0;

j = n - 1;

while(i <= j) {

while((*compar)(SUB(a, i), pivot) < 0)

++i;

while((*compar)(SUB(a, j), pivot) >= 0)

--j;

if (i < j) {

SWAP(a, i, j, width);

++i;

--j;

}

}

/* sort the sides judiciously */

switch(i) {

case 0:

case 1:

break;

case 2:

31.13. MULTITHREADED QUICKSORT 455

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

break;

case 3:

/* three sort */

if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {

SWAP(a, 0, 1, width);

}

/* the first two are now ordered, now order the second two */

if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {

SWAP(a, 2, 1, width);

}

/* should the second be moved to the first? */

if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {

SWAP(a, 1, 0, width);

}

break;

default:

sort_args[0].sa_base = a;

sort_args[0].sa_nel = i;

sort_args[0].sa_width = width;

sort_args[0].sa_compar = compar;

if ((threads_avail > 0) && (i > SLICE_THRESH)) {

threads_avail--;

thr_create(0, 0, _quicksort, &sort_args[0], 0, &tid);

thread_count = 1;

} else

_quicksort(&sort_args[0]);

break;

}

j = n - i;

switch(j) {

case 1:

break;

case 2:

if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {

SWAP(a, i, i + 1, width);

456 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

}

break;

case 3:

/* three sort */

if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {

SWAP(a, i, i + 1, width);

}

/* the first two are now ordered, now order the second two */

if ((*compar)(SUB(a, i + 2), SUB(a, i + 1)) < 0) {

SWAP(a, i + 2, i + 1, width);

}

/* should the second be moved to the first? */

if ((*compar)(SUB(a, i + 1), SUB(a, i)) < 0) {

SWAP(a, i + 1, i, width);

}

break;

default:

sort_args[1].sa_base = SUB(a, i);

sort_args[1].sa_nel = j;

sort_args[1].sa_width = width;

sort_args[1].sa_compar = compar;

if ((thread_count == 0) && (threads_avail > 0) && (i > SLICE_THRESH)) {

threads_avail--;

thr_create(0, 0, _quicksort, &sort_args[1], 0, &tid);

thread_count = 1;

} else

_quicksort(&sort_args[1]);

break;

}

if (thread_count) {

thr_join(tid, 0, 0);

threads_avail++;

}

return 0;

}

void

quicksort(void *a, size_t n, size_t width,

31.13. MULTITHREADED QUICKSORT 457

int (*compar)(const void *, const void *))

{

static int ncpus = -1;

sort_args_t sort_args;

if (ncpus == -1) {

ncpus = sysconf(_SC_NPROCESSORS_ONLN);

/* lwp for each cpu */

if ((ncpus > 1) && (thr_getconcurrency() < ncpus))

thr_setconcurrency(ncpus);

/* thread count not to exceed THR_PER_LWP per lwp */

threads_avail = (ncpus == 1) ? 0 : (ncpus * THR_PER_LWP);

}

sort_args.sa_base = a;

sort_args.sa_nel = n;

sort_args.sa_width = width;

sort_args.sa_compar = compar;

(void) _quicksort(&sort_args);

}

458 CHAPTER 31. THREAD PROGRAMMING EXAMPLES

Chapter 32

Remote Procedure Calls (RPC)

This chapter provides an overview of Remote Procedure Calls (RPC) RPC.

32.1 What Is RPC

RPC is a powerful technique for constructing distributed, client-server based
applications. It is based on extending the notion of conventional, or local
procedure calling, so that the called procedure need not exist in the same
address space as the calling procedure. The two processes may be on the
same system, or they may be on different systems with a network connecting
them. By using RPC, programmers of distributed applications avoid the
details of the interface with the network. The transport independence of
RPC isolates the application from the physical and logical elements of the
data communications mechanism and allows the application to use a variety
of transports.

RPC makes the client/server model of computing more powerful and eas-
ier to program. When combined with the ONC RPCGEN protocol compiler
(Chapter 33) clients transparently make remote calls through a local proce-
dure interface.

32.2 How RPC Works

An RPC is analogous to a function call. Like a function call, when an RPC is
made, the calling arguments are passed to the remote procedure and the caller
waits for a response to be returned from the remote procedure. Figure 32.1

459

460 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

shows the flow of activity that takes place during an RPC call between two
networked systems. The client makes a procedure call that sends a request
to the server and waits. The thread is blocked from processing until either a
reply is received, or it times out. When the request arrives, the server calls
a dispatch routine that performs the requested service, and sends the reply
to the client. After the RPC call is completed, the client program continues.
RPC specifically supports network applications.

Figure 32.1: Remote Procedure Calling Mechanism

A remote procedure is uniquely identified by the triple: (program num-
ber, version number, procedure number) The program number identifies a

32.3. RPC APPLICATION DEVELOPMENT 461

group of related remote procedures, each of which has a unique procedure
number. A program may consist of one or more versions. Each version con-
sists of a collection of procedures which are available to be called remotely.
Version numbers enable multiple versions of an RPC protocol to be available
simultaneously. Each version contains a a number of procedures that can be
called remotely. Each procedure has a procedure number.

32.3 RPC Application Development

Consider an example:
A client/server lookup in a personal database on a remote machine. As-

suming that we cannot access the database from the local machine (via NFS).
We use UNIX to run a remote shell and execute the command this way.

There are some problems with this method:

• the command may be slow to execute.

• You require an login account on the remote machine.

The RPC alternative is to

• establish an server on the remote machine that can repond to queries.

• Retrieve information by calling a query which will be quicker than
previous approach.

To develop an RPC application the following steps are needed:

• Specify the protocol for client server communication

• Develop the client program

• Develop the server program

The programs will be compiled seperately. The communication protocol
is achieved by generated stubs and these stubs and rpc (and other libraries)
will need to be linked in.

462 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

32.3.1 Defining the Protocol

The easiest way to define and generate the protocol is to use a protocol
complier such as rpcgen which we discuss is Chapter 33.

For the protocol you must identify the name of the service procedures,
and data types of parameters and return arguments.

The protocol compiler reads a definitio and automatically generates client
and server stubs.

rpcgen uses its own language (RPC language or RPCL) which looks very
similar to preprocessor directives.

rpcgen exists as a standalone executable compiler that reads special files
denoted by a .x prefix.

So to compile a RPCL file you simply do
rpcgen rpcprog.x

This will generate possibly four files:

• rpcprog clnt.c — the client stub

• rpcprog svc.c — the server stub

• rpcprog xdr.c — If necessary XDR (external data representation) fil-
ters

• rpcprog.h — the header file needed for any XDR filters.

The external data representation (XDR) is an data abstraction needed
for machine independent communication. The client and server need not be
machines of the same type.

32.3.2 Defining Client and Server Application Code

We must now write the the client and application code. They must commu-
nicate via procedures and data types specified in the Protocol.

The service side will have to register the procedures that may be called
by the client and receive and return any data required for processing.

The client application call the remote procedure pass any required data
and will receive the retruned data.

There are several levels of application interfaces that may be used to de-
velop RPC applications. We will briefly disuss these below before exapnading
thhe most common of these in later chapters.

32.3. RPC APPLICATION DEVELOPMENT 463

32.3.3 Compliling and running the application

Let us consider the full compilation model required to run a RPC application.
Makefiles are useful for easing the burden of compiling RPC applications but
it is necessary to understand the complete model before one can assemble a
convenient makefile.

Assume the the client program is called rpcprog.c, the service program
is rpcsvc.c and that the protocol has been defined in rpcprog.x and that
rpcgen has been used to produce the stub and filter files: rpcprog clnt.c,

rpcprog svc.c, rpcprog xdr.c, rpcprog.h.
The client and server program must include (#include "rpcprog.h"

You must then:

• compile the client code:

cc -c rpcprog.c

• compile the client stub:

cc -c rpcprog_clnt.c

• compile the XDR filter:

cc -c rpcprog_xdr.c

• build the client executable:

cc -o rpcprog rpcprog.o rpcprog_clnt.o rpcprog_xdr.c

• compile the service procedures:

cc -c rpcsvc.c

• compile the server stub:

cc -c rpcprog_svc.c

• build the server executable:

cc -o rpcsvc rpcsvc.o rpcprog_svc.o rpcprog_xdr.c

Now simply run the programs rpcprog and rpcsvc on the client and
server respectively. The server procedures must be registered before the
client can call them.

464 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

32.4 Overview of Interface Routines

RPC has multiple levels of application interface to its services. These levels
provide different degrees of control balanced with different amounts of inter-
face code to implement. In order of increasing control and complexity. This
section gives a summary of the routines available at each level. Simplified
Interface Routines

The simplified interfaces are used to make remote procedure calls to rou-
tines on other machines, and specify only the type of transport to use. The
routines at this level are used for most applications. Descriptions and code
samples can be found in the section, Simplified Interface @ 3-2.

32.4.1 Simplified Level Routine Function

rpc reg() — Registers a procedure as an RPC program on all transports of
the specified type.

rpc call() — Remote calls the specified procedure on the specified re-
mote host.

rpc broadcast() — Broadcasts a call message across all transports of the
specified type. Standard Interface Routines The standard interfaces are di-
vided into top level, intermediate level, expert level, and bottom level. These
interfaces give a developer much greater control over communication param-
eters such as the transport being used, how long to wait beforeresponding to
errors and retransmitting requests, and so on.

32.4.2 Top Level Routines

At the top level, the interface is still simple, but the program has to create a
client handle before making a call or create a server handle before receiving
calls. If you want the application to run on all transports, use this interface.
Use of these routines and code samples can be found in Top Level Interface

clnt create() — Generic client creation. The program tells clnt create()

where the server is located and the type of transport to use.
clnt create timed() Similar to clnt create() but lets the programmer

specify the maximum time allowed for each type of transport tried during
the creation attempt.

svc create() — Creates server handles for all transports of the specified
type. The program tells svc create() which dispatch function to use.

32.5. INTERMEDIATE LEVEL ROUTINES 465

clnt call() — Client calls a procedure to send a request to the server.

32.5 Intermediate Level Routines

The intermediate level interface of RPC lets you control details. Programs
written at these lower levels are more complicated but run more efficiently.
The intermediate level enables you to specify the transport to use.

clnt tp create() — Creates a client handle for the specified transport.

clnt tp create timed() — Similar to clnt tp create() but lets the
programmer specify the maximum time allowed. svc tp create() Creates
a server handle for the specified transport.

clnt call() — Client calls a procedure to send a request to the server.

32.5.1 Expert Level Routines

The expert level contains a larger set of routines with which to specify
transport-related parameters. Use of these routines

clnt tli create() — Creates a client handle for the specified transport.

svc tli create() — Creates a server handle for the specified transport.

rpcb set() — Calls rpcbind to set a map between an RPC service and
a network address.

rpcb unset() — Deletes a mapping set by rpcb set().

rpcb getaddr() — Calls rpcbind to get the transport addresses of spec-
ified RPC services.

svc reg() — Associates the specified program and version number pair
with the specified dispatch routine.

svc unreg() —- Deletes an association set by svc reg().

clnt call() — Client calls a procedure to send a request to the server.

32.5.2 Bottom Level Routines

The bottom level contains routines used for full control of transport options.

clnt dg create() — Creates an RPC client handle for the specified re-
mote program, using a connectionless transport.

svc dg create() — Creates an RPC server handle, using a connection-
less transport.

466 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

clnt vc create() — Creates an RPC client handle for the specified re-
mote program, using a connection-oriented transport.

svc vc create() — Creates an RPC server handle, using a connection-
oriented transport.

clnt call() — Client calls a procedure to send a request to the server.

32.6 The Programmer’s Interface to RPC

This section addresses the C interface to RPC and describes how to write
network applications using RPC. For a complete specification of the routines
in the RPC library, see the rpc and related man pages.

32.6.1 Simplified Interface

The simplified interface is the easiest level to use because it does not require
the use of any other RPC routines. It also limits control of the underly-
ing communications mechanisms. Program development at this level can be
rapid, and is directly supported by the rpcgen compiler. For most appli-
cations, rpcgen and its facilities are sufficient. Some RPC services are not
available as C functions, but they are available as RPC programs. The sim-
plified interface library routines provide direct access to the RPC facilities
for programs that do not require fine levels of control.

Routines such as rusers are in the RPC services library librpcsvc.
rusers.c, below, is a program that displays the number of users on a remote
host. It calls the RPC library routine, rusers.

The program.c program listing:

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

#include <stdio.h>

/*

* a program that calls the

* rusers() service

*/

main(int argc,char **argv)

32.6. THE PROGRAMMER’S INTERFACE TO RPC 467

{

int num;

if (argc != 2) {

fprintf(stderr, "usage: %s hostname\n",

argv[0]);

exit(1);

}

if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rusers\n");

exit(1);

}

fprintf(stderr, "%d users on %s\n", num, argv[1]);

exit(0);

}

Compile the program with:

cc program.c -lrpcsvc -lnsl

The Client Side
There is just one function on the client side of the simplified interface

rpc call().
It has nine parameters:

int

rpc_call (char *host /* Name of server host */,

u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

xdrproc_t inproc /* XDR filter to encode arg */,

char *in /* Pointer to argument */,

xdr_proc_t outproc /* Filter to decode result */,

char *out /* Address to store result */,

char *nettype /* For transport selection */);

This function calls the procedure specified by prognum, versum, and
procnum on the host. The argument to be passed to the remote procedure is

468 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

pointed to by the in parameter, and inproc is the XDR filter to encode this
argument. The out parameter is an address where the result from the remote
procedure is to be placed. outproc is an XDR filter which will decode the
result and place it at this address.

The client blocks on rpc call() until it receives a reply from the server.
If the server accepts, it returns RPC SUCCESS with the value of zero. It will
return a non-zero value if the call was unsuccessful. This value can be cast
to the type clnt stat, an enumerated type defined in the RPC include files
(<rpc/rpc.h>) and interpreted by the clnt sperrno() function. This func-
tion returns a pointer to a standard RPC error message corresponding to the
error code. In the example, all ”visible” transports listed in /etc/netconfig

are tried. Adjusting the number of retries requires use of the lower levels of
the RPC library. Multiple arguments and results are handled by collecting
them in structures.

The example changed to use the simplified interface, looks like

#include <stdio.h>

#include <utmp.h>

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

/* a program that calls the RUSERSPROG

* RPC program

*/

main(int argc, char **argv)

{

unsigned long nusers;

enum clnt_stat cs;

if (argc != 2) {

fprintf(stderr, "usage: rusers hostname\n");

exit(1);

}

if(cs = rpc_call(argv[1], RUSERSPROG,

RUSERSVERS, RUSERSPROC_NUM, xdr_void,

(char *)0, xdr_u_long, (char *)&nusers,

32.6. THE PROGRAMMER’S INTERFACE TO RPC 469

"visible") != RPC_SUCCESS) {

clnt_perrno(cs);

exit(1);

}

fprintf(stderr, "%d users on %s\n", nusers, argv[1]);

exit(0);

}

Since data types may be represented differently on different machines,
rpc call() needs both the type of, and a pointer to, the RPC argument
(similarly for the result). For RUSERSPROC NUM, the return value is an un-
signed long, so the first return parameter of rpc call() is xdr u long (which
is for an unsigned long) and the second is &nusers (which points to unsigned
long storage). Because RUSERSPROC NUM has no argument, the XDR encoding
function of rpc call() is xdr void() and its argument is NULL.

The Server Side
The server program using the simplified interface is very straightforward.

It simply calls rpc reg() to register the procedure to be called, and then it
calls svc run(), the RPC library’s remote procedure dispatcher, to wait for
requests to come in.

rpc reg() has the following prototype:

rpc_reg(u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

u_long procnum /* server procedure number */,

char *procname /* Name of remote function */,

xdrproc_t inproc /* Filter to encode arg */,

xdrproc_t outproc /* Filter to decode result */,

char *nettype /* For transport selection */);

svc run() invokes service procedures in response to RPC call messages.
The dispatcher in rpc reg() takes care of decoding remote procedure argu-
ments and encoding results, using the XDR filters specified when the remote
procedure was registered. Some notes about the server program:

• Most RPC applications follow the naming convention of appending a
1 to the function name. The sequence n is added to the procedure
names to indicate the version number n of the service.

470 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

• The argument and result are passed as addresses. This is true for all
functions that are called remotely. If you pass NULL as a result of a
function, then no reply is sent to the client. It is assumed that there is
no reply to send.

• The result must exist in static data space because its value is accessed
after the actual procedure has exited. The RPC library function that
builds the RPC reply message accesses the result and sends the value
back to the client.

• Only a single argument is allowed. If there are multiple elements of
data, they should be wrapped inside a structure which can then be
passed as a single entity.

• The procedure is registered for each transport of the specified type. If
the type parameter is (char *)NULL, the procedure is registered for all
transports specified in NETPATH.

You can sometimes implement faster or more compact code than can
rpcgen. rpcgen handles the generic code-generation cases. The following
program is an example of a hand-coded registration routine. It registers a
single procedure and enters svc run() to service requests.

#include <stdio.h>

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

void *rusers();

main()

{

if(rpc_reg(RUSERSPROG, RUSERSVERS,

RUSERSPROC_NUM, rusers,

xdr_void, xdr_u_long,

"visible") == -1) {

fprintf(stderr, "Couldn’t Register\n");

exit(1);

}

svc_run(); /* Never returns */

32.6. THE PROGRAMMER’S INTERFACE TO RPC 471

fprintf(stderr, "Error: svc_run returned!\n");

exit(1);

}

rpc reg() can be called as many times as is needed to register different
programs, versions, and procedures.

32.6.2 Passing Arbitrary Data Types

Data types passed to and received from remote procedures can be any of
a set of predefined types, or can be programmer-defined types. RPC han-
dles arbitrary data structures, regardless of different machines’ byte orders or
structure layout conventions, by always converting them to a standard trans-
fer format called external data representation (XDR) before sending them
over the transport. The conversion from a machine representation to XDR is
called serializing, and the reverse process is called deserializing. The transla-
tor arguments of rpc call() and rpc reg() can specify an XDR primitive
procedure, like xdr u long(), or a programmer-supplied routine that pro-
cesses a complete argument structure. Argument processing routines must
take only two arguments: a pointer to the result and a pointer to the XDR
handle.

The following XDR Primitive Routines are available:

xdr_int() xdr_netobj() xdr_u_long() xdr_enum()

xdr_long() xdr_float() xdr_u_int() xdr_bool()

xdr_short() xdr_double() xdr_u_short() xdr_wrapstring()

xdr_char() xdr_quadruple() xdr_u_char() xdr_void()

The nonprimitive xdr string(), which takes more than two parameters,
is called from xdr wrapstring().

For an example of a programmer-supplied routine, the structure:

struct simple {

int a;

short b;

} simple;

contains the calling arguments of a procedure. The XDR routine xdr simple()

translates the argument structure as shown below:

472 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

#include <rpc/rpc.h>

#include "simple.h"

bool_t xdr_simple(XDR *xdrsp, struct simple *simplep)

{

if (!xdr_int(xdrsp, &simplep->a))

return (FALSE);

if (!xdr_short(xdrsp, &simplep->b))

return (FALSE);

return (TRUE);

}

An equivalent routine can be generated automatically by rpcgen (See
Chapter 33).

An XDR routine returns nonzero (a C TRUE) if it completes successfully,
and zero otherwise.

For more complex data structures use the XDR prefabricated routines:

xdr_array() xdr_bytes() xdr_reference()

xdr_vector() xdr_union() xdr_pointer()

xdr_string() xdr_opaque()

For example, to send a variable-sized array of integers, it is packaged in
a structure containing the array and its length:

struct varintarr {

int *data;

int arrlnth;

} arr;

Translate the array with xdr array(), as shown below:

bool_t xdr_varintarr(XDR *xdrsp, struct varintarr *arrp)

{

return(xdr_array(xdrsp, (caddr_t)&arrp->data,

(u_int *)&arrp->arrlnth, MAXLEN, sizeof(int), xdr_int));

}

32.6. THE PROGRAMMER’S INTERFACE TO RPC 473

\end{vebatim}

The arguments of {\tt xdr_array()} are the XDR handle, a pointer to the array,

a pointer to

the size of the array, the maximum array size, the size of each array element, and

pointer to the XDR routine to translate each array element.

If the size of the array is

known in advance, use {\tt xdr_vector()} instread as is more efficient:

\begin{verbatim}

int intarr[SIZE];

bool_t xdr_intarr(XDR *xdrsp, int intarr[])

{

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), xdr_int));

}

XDR converts quantities to 4-byte multiples when serializing. For arrays
of characters, each character occupies 32 bits. xdr bytes() packs characters.
It has four parameters similar to the first four parameters of xdr array().

Null-terminated strings are translated by xdr string(). It is like xdr bytes()

with no length parameter. On serializing it gets the string length from
strlen(), and on deserializing it creates a null-terminated string.

xdr reference() calls the built-in functions �xdr string() and xdr reference(),
which translates pointers to pass a string, and struct simple from the previous
examples. An example use of xdr reference() is as follows:

struct finalexample {

char *string;

struct simple *simplep;

} finalexample;

bool_t xdr_finalexample(XDR *xdrsp, struct finalexample *finalp)

{ if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (FALSE);

474 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

if (!xdr_reference(xdrsp, &finalp->simplep, sizeof(struct simple), xdr_

return (FALSE);

return (TRUE);

}

Note thatxdr simple() could have been called here instead of xdr reference()

.

32.6.3 Developing High Level RPC Applications

Let us now introduce some further functions and see how we develop an
application using high level RPC routines. We will do this by studying an
example.

We will develop a remote directory reading utility.
Let us first consider how we would write a local directory reader. We

have seem how to do this already in Chapter 19.
Consider the program to consist of two files:

• lls.c — the main program which calls a routine in a local module
read dir.c

/*

* ls.c: local directory listing main - before RPC

*/

#include <stdio.h>

#include <strings.h>

#include "rls.h"

main (int argc, char **argv)

{

char dir[DIR_SIZE];

/* call the local procedure */

strcpy(dir, argv[1]); /* char dir[DIR_SIZE] is coming and going

read_dir(dir);

32.6. THE PROGRAMMER’S INTERFACE TO RPC 475

/* spew-out the results and bail out of here! */

printf("%s\n", dir);

exit(0);

}

• read dir.c — the file containing the local routine read dir().

/* note - RPC compliant procedure calls take one input and

return one output. Everything is passed by pointer. Return

values should point to static data, as it might have to

survive some while. */

#include <stdio.h>

#include <sys/types.h>

#include <sys/dir.h> /* use <xpg2include/sys/dirent.h> (SunOS4.1) or

<sys/dirent.h> for X/Open Portability Guide, issue 2 conformance */

#include "rls.h"

read_dir(char *dir)

/* char dir[DIR_SIZE] */

{

DIR * dirp;

struct direct *d;

printf("beginning ");

/* open directory */

dirp = opendir(dir);

if (dirp == NULL)

return(NULL);

/* stuff filenames into dir buffer */

dir[0] = NULL;

while (d = readdir(dirp))

sprintf(dir, "%s%s\n", dir, d->d_name);

/* return the result */

printf("returning ");

476 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

closedir(dirp);

return((int)dir); /* this is the only new line from Example 4-

}

• the header file rls.h contains only the following (for now at least)

#define DIR_SIZE 8192

Clearly we need to share the size between the files. Later when we
develop RPC versions more information will need to be added to this
file.

This local program would be compiled as follows:

cc lls.c read_dir.c -o lls

Now we want to modify this program to work over a network: Allowing
us to inspect directories of a remote server accross a network.

The following steps will be required:

• We will have to convert the read dir.c, to run on the server.

– We will have to register the server and the routine read dir() on
the server/.

• The client lls.c will have to call the routine as a remote procedure.

• We will have to define the protocol for communication between the
client and the server programs.

Defining the protocol

We can can use simple NULL-terminated strings for passing and receivong
the directory name and directory contents. Furthermore, we can embed the
passing of these parameters directly in the client and server code.

We therefore need to specify the program, procedure and version numbers
for client and servers. This can be done automatically using rpcgen or relying

32.6. THE PROGRAMMER’S INTERFACE TO RPC 477

on prdefined macros in the simlified interface. Here we will specify them
manually.

The server and client must agree ahead of time what logical adresses
thney will use (The physical addresses do not matter they are hidden from
the application developer)

Program numbers are defined in a standard way:

• 0x00000000 – 0x1FFFFFFF : Defined by Sun

• 0x20000000 – 0x3FFFFFFF : User Defined

• 0x40000000 – 0x5FFFFFFF : Transient

• 0x60000000 – 0xFFFFFFFF : Reserved

We will simply choose a user deifnined value for our program number.
The version and procedure numbers are set according to standard practice.

We still have the DIR SIZE definition required from the local version as the
size of the directory buffer is rewquired by bith client and server programs.

Our new rls.h file contains:

#define DIR_SIZE 8192

#define DIRPROG ((u_long) 0x20000001) /* server program (suite) number */

#define DIRVERS ((u_long) 1) /* program version number */

#define READDIR ((u_long) 1) /* procedure number for look-up */

32.6.4 Sharing the data

We have mentioned previously that we can pass the data a simple strings.
We need to define an XDR filter routine xdr dir() that shares the data.
Recall that only one encoding and decoding argument can be handled. This
is easy and defined via the standard xdr string() routine.

The XDR file, rls xrd.c, is as follows:

#include <rpc/rpc.h>

#include "rls.h"

bool_t xdr_dir(XDR *xdrs, char *objp)

{ return (xdr_string(xdrs, &objp, DIR_SIZE)); }

478 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

The Server Side

We can use the original read dir.c file. All we need to do is register the
procedure and start the server.

The procedure is registered with registerrpc() function. This is proto-
types by:

registerrpc(u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

u_long procnum /* server procedure number */,

char *procname /* Name of remote function */,

xdrproc_t inproc /* Filter to encode arg */,

xdrproc_t outproc /* Filter to decode result */);

The parameters a similarly defined as in the rpc reg simplified interface
function. We have already discussed the setting of the parametere with the
protocol rls.h header files and the rls xrd.c XDR filter file.

The svc run() routine has also been discussed previously.
The full rls svc.c code is as follows:

#include <rpc/rpc.h>

#include "rls.h"

main()

{

extern bool_t xdr_dir();

extern char * read_dir();

registerrpc(DIRPROG, DIRVERS, READDIR,

read_dir, xdr_dir, xdr_dir);

svc_run();

}

The Client Side

At the client side we simply need to call the remote procedure. The function
callrpc() does this. It is prototyped as follows:

32.6. THE PROGRAMMER’S INTERFACE TO RPC 479

callrpc(char *host /* Name of server host */,

u_long prognum /* Server program number */,

u_long versnum /* Server version number */,

char *in /* Pointer to argument */,

xdrproc_t inproc /* XDR filter to encode arg */,

char *out /* Address to store result */

xdr_proc_t outproc /* Filter to decode result */);

We call a local function read dir() which uses callrpc() to call the
remote procedure that has been registered READDIR at the server.

The full rls.c program is as follows:

/*

* rls.c: remote directory listing client

*/

#include <stdio.h>

#include <strings.h>

#include <rpc/rpc.h>

#include "rls.h"

main (argc, argv)

int argc; char *argv[];

{

char dir[DIR_SIZE];

/* call the remote procedure if registered */

strcpy(dir, argv[2]);

read_dir(argv[1], dir); /* read_dir(host, directory) */

/* spew-out the results and bail out of here! */

printf("%s\n", dir);

exit(0);

}

read_dir(host, dir)

char *dir, *host;

{

480 CHAPTER 32. REMOTE PROCEDURE CALLS (RPC)

extern bool_t xdr_dir();

enum clnt_stat clnt_stat;

clnt_stat = callrpc (host, DIRPROG, DIRVERS, READDIR,

xdr_dir, dir, xdr_dir, dir);

if (clnt_stat != 0) clnt_perrno (clnt_stat);

}

32.7 Exercise

Exercise 32.1 Compile and run the remote directory example rls.c etc.
Run both the client and server locally and if possible over a network.

Chapter 33

Protocol Compiling and Lower
Level RPC Programming

This chapter introduces the rpcgen tool and provides a tutorial with code
examples and usage of the available compile-time flags. We also introduce
some further RPC programming routines.

33.1 What is rpcgen

The rpcgen tool generates remote program interface modules. It compiles
source code written in the RPC Language. RPC Language is similar in
syntax and structure to C. rpcgen produces one or more C language source
modules, which are then compiled by a C compiler.

The default output of rpcgen is:

• A header file of definitions common to the server and the client

• A set of XDR routines that translate each data type defined in the
header file

• A stub program for the server

• A stub program for the client

rpcgen can optionally generate (although we do not consider these issues
here — see man pages or receommended reading):

481

482CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

• Various transports

• A time-out for servers

• Server stubs that are MT safe

• Server stubs that are not main programs

• C-style arguments passing ANSI C-compliant code

• An RPC dispatch table that checks authorizations and invokes service
routines

rpcgen significantly reduces the development time that would otherwise
be spent developing low-level routines. Handwritten routines link easily with
the rpcgen output.

33.2 An rpcgen Tutorial

rpcgen provides programmers a simple and direct way to write distributed
applications. Server procedures may be written in any language that ob-
serves procedure-calling conventions. They are linked with the server stub
produced by rpcgen to form an executable server program. Client proce-
dures are written and linked in the same way. This section presents some
basic rpcgen programming examples. Refer also to the man rpcgen online
manual page.

33.2.1 Converting Local Procedures to Remote Proce-
dures

Assume that an application runs on a single computer and you want to
convert it to run in a ”distributed” manner on a network. This example
shows the stepwise conversion of this program that writes a message to the
system console.

Single Process Version of printmesg.c:

/* printmsg.c: print a message on the console */

#include <stdio.h>

main(int argc, char *argv[])

33.2. AN RPCGEN TUTORIAL 483

{

char *message;

if (argc != 2) {

fprintf(stderr, "usage: %s <message>\n",argv[0]);

exit(1);

}

message = argv[1];

if (!printmessage(message)) {

fprintf(stderr,"%s: couldnt print your message\n",argv[0]);

exit(1);

}

printf("Message Delivered!\n");

exit(0);

}

/* Print a message to the console.

* Return a boolean indicating whether

* the message was actually printed. */

printmessage(char *msg)

{

FILE *f;

f = fopen("/dev/console", "w");

if (f == (FILE *)NULL) {

return (0);

}

fprintf(f, "%s\n", msg);

fclose(f);

return(1);

}

For local use on a single machine, this program could be compiled and
executed as follows:

$ cc printmsg.c -o printmsg

484CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

$ printmsg "Hello, there."

Message delivered!

$

If the printmessage() function is turned into a remote procedure, it can
be called from anywhere in the network. rpcgen makes it easy to do this:

First, determine the data types of all procedure-calling arguments and the
result argument. The calling argument of printmessage() is a string, and
the result is an integer. We can write a protocol specification in RPC lan-
guage that describes the remote version of printmessage. The RPC language
source code for such a specification is:

/* msg.x: Remote msg printing protocol */

program MESSAGEPROG {

version PRINTMESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 0x20000001;

Remote procedures are always declared as part of remote programs. The
code above declares an entire remote program that contains the single pro-
cedure PRINTMESSAGE.

In this example,

• PRINTMESSAGE procedure is declared to be:

– the procedure 1,

– in version 1 of the remote program

• MESSAGEPROG, with the program number 0x20000001.

Version numbers are incremented when functionality is changed in the
remote program. Existing procedures can be changed or new ones can be
added. More than one version of a remote program can be defined and a
version can have more than one procedure defined.

Note: that the program and procedure names are declared with all cap-
ital letters. This is not required, but is a good convention to follow. Note
also that the argument type is string and not char * as it would be in C.
This is because a char * in C is ambiguous. char usually means an array

33.2. AN RPCGEN TUTORIAL 485

of characters, but it could also represent a pointer to a single character. In
RPC language, a null-terminated array of char is called a string.

There are just two more programs to write:

• The remote procedure itself

Th RPC Version of printmsg.c:

/*

* msg_proc.c: implementation of the

* remote procedure "printmessage"

*/

#include <stdio.h>

#include "msg.h" /* msg.h generated by rpcgen */

int * printmessage_1(char **msg, struct svc_req *req)

{

static int result; /* must be static! */

FILE *f;

f = fopen("/dev/console", "w");

if (f == (FILE *)NULL) {

result = 0;

return (&result);

}

fprintf(f, "%s\n", *msg);

fclose(f);

result = 1;

return (&result);

}

Note that the declaration of the remote procedure printmessage 1

differs from that of the local procedure printmessage in four ways:

– It takes a pointer to the character array instead of the pointer
itself. This is true of all remote procedures when the ’-’ N op-
tion is not used: They always take pointers to their arguments

486CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

rather than the arguments themselves. Without the ’-’ N op-
tion, remote procedures are always called with a single argument.
If more than one argument is required the arguments must be
passed in a struct.

– It is called with two arguments. The second argument contains in-
formation on the context of an invocation: the program, version,
and procedure numbers, raw and canonical credentials, and an
SVCXPRT structure pointer (the SVCXPRT structure contains trans-
port information). This information is made available in case the
invoked procedure requires it to perform the request.

– It returns a pointer to an integer instead of the integer itself. This
is also true of remote procedures when the ’-’ N option is not
used: They return pointers to the result. The result should be
declared static unless the ’-’ M (multithread) or ’-’ A (Auto
mode) options are used. Ordinarily, if the result is declared local
to the remote procedure, references to it by the server stub are
invalid after the remote procedure returns. In the case of ’-’ M

and ’-’ A options, a pointer to the result is passed as a third
argument to the procedure, so the result is not declared in the
procedure.

– An 1 is appended to its name. In general, all remote procedures
calls generated by rpcgen are named as follows: the procedure
name in the program definition (here PRINTMESSAGE) is converted
to all lowercase letters, an underbar () is appended to it, and the
version number (here 1) is appended. This naming scheme allows
multiple versions of the same procedure.

• The main client program that calls it:

/*

* rprintmsg.c: remote version

* of "printmsg.c"

*/

#include <stdio.h>

#include "msg.h" /* msg.h generated by rpcgen */

33.2. AN RPCGEN TUTORIAL 487

main(int argc, char **argv)

{

CLIENT *clnt;

int *result;

char *server;

char *message;

if (argc != 3) {

fprintf(stderr, "usage: %s host

message\n", argv[0]);

exit(1);

}

server = argv[1];

message = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.

*/

clnt = clnt_create(server, MESSAGEPROG, PRINTMESSAGEVERS, "visible");

if (clnt == (CLIENT *)NULL) {

/*

* Couldn’t establish connection

* with server.

* Print error message and die.

*/

clnt_pcreateerror(server);

exit(1);

}

/*

488CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

* Call the remote procedure

* "printmessage" on the server

*/

result = printmessage_1(&message, clnt);

if (result == (int *)NULL) {

/*

* An error occurred while calling

* the server.

* Print error message and die.

*/

clnt_perror(clnt, server);

exit(1);

}

/* Okay, we successfully called

* the remote procedure.

*/

if (*result == 0) {

/*

* Server was unable to print

* our message.

* Print error message and die.

*/

fprintf(stderr, "%s: could not print your message\n",argv[0]);

exit(1);

}

/* The message got printed on the

* server’s console

*/

printf("Message delivered to %s\n", server);

clnt_destroy(clnt);

33.2. AN RPCGEN TUTORIAL 489

exit(0);

}

Note the following about Client Program to Call printmsg.c:

– First, a client handle is created by the RPC library routine clnt create().
This client handle is passed to the stub routine that calls the re-
mote procedure. If no more calls are to be made using the client
handle, destroy it with a call to clnt destroy() to conserve sys-
tem resources.

– The last parameter to clnt create() is visible, which specifies
that any transport noted as visible in /etc/netconfig can be
used.

– The remote procedure printmessage 1 is called exactly the same
way as it is declared in msg proc.c, except for the inserted client
handle as the second argument. It also returns a pointer to the
result instead of the result.

– The remote procedure call can fail in two ways. The RPC mech-
anism can fail or there can be an error in the execution of the
remote procedure. In the former case, the remote procedure

printmessage 1 returns a NULL. In the latter case, the error re-
porting is application dependent. Here, the error is returned
through *result.

To compile the remote rprintmsg example:

• compile the protocol defined in msg.x: rpcgen msg.x.

This generates the header files (msg.h), client stub (msg clnt.c), and
server stub (msg svc.c).

• compile the client executable:

cc rprintmsg.c msg_clnt.c -o rprintmsg -lnsl

• compile the server executable:

cc msg_proc.c msg_svc.c -o msg_server -lnsl

490CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

The C object files must be linked with the library libnsl, which contains
all of the networking functions, including those for RPC and XDR.

In this example, no XDR routines were generated because the application
uses only the basic types that are included in libnsl . Let us consider further
what rpcgen did with the input file msg.x:

• It created a header file called msg.h that contained #define state-
ments for MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGE for use in
the other modules. This filemust be included by both the client and
server modules.

• It created the client stub routines in the msg clnt.c file. Here there
is only one, the printmessage 1 routine, that was called from the
rprintmsg client program. If the name of an rpcgen input file is
prog.x, the client stub’s output file is called prog clnt.c.

• It created the server program in msg svc.c that calls printmessage 1

from msg proc.c. The rule for naming the server output file is similar
to that of the client: for an input file called prog.x, the output server
file is named prog svc.c.

Once created, the server program is installed on a remote machine and
run. (If the machines are homogeneous, the server binary can just be copied.
If they are not, the server source files must be copied to and compiled on the
remote machine.)

33.3 Passing Complex Data Structures

rpcgen can also be used to generate XDR routines — the routines that
convert local data structures into XDR format and vice versa.

let us consider dir.x a remote directory listing service, built using rpcgen
both to generate stub routines and to generate the XDR routines.

The RPC Protocol Description File: dir.x is as follows:

/*

* dir.x: Remote directory listing protocol

*

* This example demonstrates the functions of rpcgen.

33.3. PASSING COMPLEX DATA STRUCTURES 491

*/

const MAXNAMELEN = 255; /* max length of directory entry */

typedef string nametype<MAXNAMELEN>; /* director entry */

typedef struct namenode *namelist; /* link in the listing */

/* A node in the directory listing */

struct namenode {

nametype name; /* name of directory entry */

namelist next; /* next entry */

};

/*

* The result of a READDIR operation

*

* a truly portable application would use

* an agreed upon list of error codes

* rather than (as this sample program

* does) rely upon passing UNIX errno’s

* back.

*

* In this example: The union is used

* here to discriminate between successful

* and unsuccessful remote calls.

*/

union readdir_res switch (int errno) {

case 0:

namelist list; /* no error: return directory listing */

default:

void; /* error occurred: nothing else to return */

};

/* The directory program definition */

492CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

program DIRPROG {

version DIRVERS {

readdir_res

READDIR(nametype) = 1;

} = 1;

} = 0x20000076;

You can redefine types (like readdir res in the example above) using
the struct, union, and enum RPC language keywords. These keywords are
not used in later declarations of variables of those types. For example, if you
define a union, my un, you declare using only my un, and not union my un.
rpcgen compiles RPC unions into C structures. Do not declare C unions
using the union keyword.

Running rpcgen on dir.x generates four output files:

• the header file, dir.h,

• the client stub, dir clnt.c,

• the server skeleton, dir svc.c ,and

• the XDR routines in the file dir xdr.c.

This last file contains the XDR routines to convert declared data types
from the host platform representation into XDR format, and vice versa.
For each RPCL data type used in the .x file, rpcgen assumes that libnsl

contains a routine whose name is the name of the data type, prepended by
the XDR routine header xdr (for example, xdr int). If a data type is
defined in the .x file, rpcgen generates the required xdr routine. If there
is no data type definition in the .x source file (for example, msg.x, above),
then no xdr.c file is generated. You can write a .x source file that uses a
data type not supported by libnsl, and deliberately omit defining the type
(in the .x file). In doing so, you must provide the xdr routine. This is a
way to provide your own customized xdr routines.

The server-side of the READDIR procedure, dir proc.c is shown below:

/*

33.3. PASSING COMPLEX DATA STRUCTURES 493

* dir_proc.c: remote readdir

* implementation

*/

#include <dirent.h>

#include "dir.h" /* Created by rpcgen */

extern int errno;

extern char *malloc();

extern char *strdup();

readdir_res *

readdir_1(nametype *dirname, struct svc_req *req)

{

DIR *dirp;

struct dirent *d;

namelist nl;

namelist *nlp;

static readdir_res res; /* must be static! */

/* Open directory */

dirp = opendir(*dirname);

if (dirp == (DIR *)NULL) {

res.errno = errno;

return (&res);

}

/* Free previous result */

xdr_free(xdr_readdir_res, &res);

/*

* Collect directory entries.

* Memory allocated here is free by

* xdr_free the next time readdir_1

494CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

* is called

*/

nlp = &res.readdir_res_u.list;

while (d = readdir(dirp)) {

nl = *nlp = (namenode *)

malloc(sizeof(namenode));

if (nl == (namenode *) NULL) {

res.errno = EAGAIN;

closedir(dirp);

return(&res);

}

nl->name = strdup(d->d_name);

nlp = &nl->next;

}

*nlp = (namelist)NULL;

/* Return the result */

res.errno = 0;

closedir(dirp);

return (&res);

}

The Client-side Implementation of implementation of the READDIR pro-
cedure, rls.c is given below:

/*

* rls.c: Remote directory listing client

*/

#include <stdio.h>

#include "dir.h" /* generated by rpcgen */

extern int errno;

main(int argc, char *argv[])

33.3. PASSING COMPLEX DATA STRUCTURES 495

{

CLIENT *clnt;

char *server;

char *dir;

readdir_res *result;

namelist nl;

if (argc != 3) {

fprintf(stderr, "usage: %s host

directory\n",argv[0]);

exit(1);

}

server = argv[1];

dir = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.

*/

cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");

if (clnt == (CLIENT *)NULL) {

clnt_pcreateerror(server);

exit(1);

}

result = readdir_1(&dir, clnt);

if (result == (readdir_res *)NULL) {

clnt_perror(clnt, server);

exit(1);

}

496CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

/* Okay, we successfully called

* the remote procedure.

*/

if (result->errno != 0) {

/* Remote system error. Print

* error message and die.

*/

errno = result->errno;

perror(dir);

exit(1);

}

/* Successfully got a directory listing.

* Print it.

*/

for (nl = result->readdir_res_u.list;

nl != NULL;

nl = nl->next) {

printf("%s\n", nl->name);

}

xdr_free(xdr_readdir_res, result);

clnt_destroy(cl);

exit(0);

}

As in other examples, execution is on systems named local and remote.
The files are compiled and run as follows:

remote$ rpcgen dir.x

remote$ cc -c dir_xdr.c

remote$ cc rls.c dir_clnt.c dir_xdr.o -o rls -lnsl

remote$ cc dir_svc.c dir_proc.c dir_xdr.o -o dir_svc -lnsl

remote$ dir_svc

When you install rls on system local, you can list the contents of /usr/share/lib
on system remote as follows:

33.4. PREPROCESSING DIRECTIVES 497

local$ rls remote /usr/share/lib

ascii

eqnchar

greek

kbd

marg8

tabclr

tabs

tabs4

local$

rpcgen generated client code does not release the memory allocated for
the results of the RPC call. Call xdr free() to release the memory when
you are finished with it. It is similar to calling the free() routine, except
that you pass the XDR routine for the result. In this example, after printing
the list, xdr free(xdr readdir res, result); was called.

Note - Use xdr free() to release memory allocated by malloc(). Failure
to use xdr free to() release memory results in memory leaks.

33.4 Preprocessing Directives

rpcgen supports C and other preprocessing features. C preprocessing is
performed on rpcgen input files before they are compiled. All standard C
preprocessing directives are allowed in the .x source files. Depending on
the type of output file being generated, five symbols are defined by rpcgen.
rpcgen provides an additional preprocessing feature: any line that begins
with a percent sign (%) is passed directly to the output file, with no action
on the line’s content. Caution is required because rpcgen does not always
place the lines where you intend. Check the output source file and, if needed,
edit it.

The following symbols may be used to process file specific output:

RPC HDR — Header file output

RPC XDR — XDR routine output

RPC SVC — Server stub output

RPC CLNT — Client stub output

498CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

RPC TB — Index table output

The following example illustrates tthe use of rpcgens pre-processing fea-
tures.

/*

* time.x: Remote time protocol

*/

program TIMEPROG {

version TIMEVERS {

unsigned int TIMEGET() = 1;

} = 1;

} = 0x20000044;

#ifdef RPC_SVC

%int *

%timeget_1()

%{

% static int thetime;

%

% thetime = time(0);

% return (&thetime);

%}

#endif

33.4.1 cpp Directives

rpcgen supports C preprocessing features. rpcgen defaults to use /usr/ccs/lib/cpp
as the C preprocessor. If that fails, rpcgen tries to use /lib/cpp. You may
specify a library containing a different cpp to rpcgen with the ’-’ Y flag.

For example, if /usr/local/bin/cpp exists, you can specify it to rpcgen as
follows:

rpcgen -Y /usr/local/bin test.x

33.4. PREPROCESSING DIRECTIVES 499

33.4.2 Compile-Time Flags

This section describes the rpcgen options available at compile time. The
following table summarizes the options which are discussed in this section.

Option Flag Comments
C-style ’-’ N Also called Newstyle mode
ANSI C ’-’ C Often used with the -N option
MT-Safe code ’-’ M For use in multithreaded environments
MT Auto mode ’-’ A -A also turns on -M option
TS-RPC library ’ -’ b TI-RPC library is default
xdr inline count ’-’ i Uses 5 packed elements as default,

but other number may be specified

33.4.3 Client and Server Templates

rpcgen generates sample code for the client and server sides. Use these
options to generate the desired templates.

Flag Function
’-’ a Generate all template files
’-’ Sc Generate client-side template
’-’ Ss Generate server-side template
’-’ Sm Generate makefile template

The files can be used as guides or by filling in the missing parts. These
files are in addition to the stubs generated.

33.4.4 Example rpcgen compile options/templates

A C-style mode server template is generated from the add.x source by the
command:

rpcgen -N -Ss -o add_server_template.c add.x

The result is stored in the file add_server_template.c.

A C-style mode, client template for the same add.x source is generated
with the command line:

rpcgen -N -Sc -o add_client_template.c add.x

500CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

The result is stored in the file add_client_template.c.
A make file template for the same add.x source is generated with the

command line:

rpcgen -N -Sm -o mkfile_template add.x

The result is stored in the file mkfile template. It can be used to compile
the client and the server. If the ’-’ a flag is used as follows:

rpcgen -N -a add.x

rpcgen generates all three template files. The client template goes into
add client.c, the server template to add server.c, and the makefile tem-
plate to �makefile.a. If any of these files already exists, rpcgen displays an
error message and exits.

Note - When you generate template files, give them new names to avoid
the files being overwritten the next time rpcgen is executed.

33.5 Recommended Reading

The book Power Programming with RPC by John Bloomer, O’Reilly and
Associates, 1992, is the most comprehensive on the topic and is essential
reading for further RPC programming.

33.6 Exercises

Exercise 33.1 Use rpcgen the generate and compile the rprintmsg listing
example given in this chapter.

Exercise 33.2 Use rpcgen the generate and compile the dir listing example
given in this chapter.

Exercise 33.3 Develop a Remote Procedure Call suite of programs that en-
ables a user to search for specific files or filtererd files in a remote directory.
That is to say you can search for a named file e.g. file.c or all files named
*.c or even *.x.

Exercise 33.4 Develop a Remote Procedure Call suite of programs that en-
ables a user to grep files remotely. You may use code developed previously
or unix system calls to implement grep.

33.6. EXERCISES 501

Exercise 33.5 Develop a Remote Procedure Call suite of programs that en-
ables a user to list the contents of a named remote files.

502CHAPTER 33. PROTOCOL COMPILING AND LOWER LEVEL RPC PROGRAMM

Chapter 34

Writing Larger Programs

This Chapter deals with theoretical and practical aspects that need to be
considered when writing larger programs.

When writing large programs we should divide programs up into modules.
These would be separate source files. main() would be in one file, main.c
say, the others will contain functions.

We can create our own library of functions by writing a suite of sub-
routines in one (or more) modules. In fact modules can be shared amongst
many programs by simply including the modules at compilation as we will
see shortly..

There are many advantages to this approach:

• the modules will naturally divide into common groups of functions.

• we can compile each module separately and link in compiled modules
(more on this later).

• UNIX utilities such as make help us maintain large systems (see later).

34.1 Header files

If we adopt a modular approach then we will naturally want to keep variable
definitions, function prototypes etc. with each module. However what if
several modules need to share such definitions?

503

504 CHAPTER 34. WRITING LARGER PROGRAMS

It is best to centralise the definitions in one file and share this file amongst
the modules. Such a file is usually called a header file.

Convention states that these files have a .h suffix.
We have met standard library header files already e.g:

#include <stdio.h>

We can define our own header files and include then our programs via:

#include ‘‘my head.h’’

NOTE: Header files usually ONLY contain definitions of data types,
function prototypes and C preprocessor commands.

Consider the following simple example of a large program (Fig. 34.1) .
The full listings main.c, WriteMyString.c and header.h as as follows:
main.c:

/*

* main.c

*/

#include "header.h"

#include <stdio.h>

char *AnotherString = "Hello Everyone";

main()

{

printf("Running...\n");

/*

* Call WriteMyString() - defined in another file

*/

WriteMyString(MY_STRING);

printf("Finished.\n");

}

WriteMyString.c:

34.1. HEADER FILES 505

Figure 34.1: Modular structure of a C program

506 CHAPTER 34. WRITING LARGER PROGRAMS

/*

* WriteMyString.c

*/

extern char *AnotherString;

void WriteMyString(ThisString)

char *ThisString;

{

printf("%s\n", ThisString);

printf("Global Variable = %s\n", AnotherString);

}

header.h:

/*

* header.h

*/

#define MY_STRING "Hello World"

void WriteMyString();

We would usually compile each module separately (more later).

Some modules have a #include ‘‘header.h’’ that share common defi-
nitions.

Some, like main.c, also include standard header files also.

main calls the function WriteMyString() which is in WriteMyString.c
module.

The function prototype void for WriteMyString is defined in Header.h

NOTE that in general we must resolve a tradeoff between having a desire
for each .c module to have access to the information it needs solely for its
job and the practical reality of maintaining lots of header files.

Up to some moderate program size it is probably best to one or two
header files that share more than one modules definitions.

For larger programs get UNIX to help you (see later).

34.2. EXTERNAL VARIABLES AND FUNCTIONS 507

One problem left with module approach:

SHARING VARIABLES

If we have global variables declared and instantiated in one module how
can pass knowledge of this to other modules.

We could pass values as parameters to functions, BUT:

• this can be laborious if we pass the same parameters to many functions
and / or if there are long argument lists involved.

• very large arrays and structures are difficult to store locally — memory
problems with stack.

34.2 External variables and functions

“Internal” implies arguments and functions are defined inside functions —
Local

“External” variables are defined outside of
functions — they are potentially available to the whole program (Global)
but NOT necessarily.

External variables are always permanent.

NOTE: That in C, all function definitions are external. We CANNOT
have embedded function declarations like in PASCAL.

34.2.1 Scope of externals

An external variable (or function) is not always totally global.

C applies the following rule:

The scope of an external variable (or function) begins at its point of dec-
laration and lasts to the end of the file (module) it is declared in.

Consider the following:

main()

{ }

508 CHAPTER 34. WRITING LARGER PROGRAMS

int what scope;

float end of scope[10]

void what global()

{ }

char alone;

float fn()

{ }

main cannot see what scope or end of scope but the functions what global

and fn can. ONLY fn can see alone.

This is also the one of the reasons why we should prototype functions
before the body of code etc. is given.

So here main will not know anything about the functions what global and
fn. what global does not know about fn but fn knows about what global

since it is declared above.

NOTE: The other reason we prototype functions is that some checking
can be done the parameters passed to functions.

If we need to refer to an external variable before it is declared or if it is
defined in another module we must declare it as an extern variable. e.g.

extern int what global

So returning to the modular example. We have a global string AnotherString
declared in main.c and shared with WriteMyString.c where it is declared
extern.

BEWARE the extern prefix is a declaration NOT a definition. i.e NO
STORAGE is set aside in memory for an extern variable — it is just an
announcement of the property of a variable.

The actual variable must only be defined once in the whole program —
you can have as many extern declarations as needed.

Array sizes must obviously be given with
declarations but are not needed with extern declarations. e.g.:

34.3. ADVANTAGES OF USING SEVERAL FILES 509

main.c: int arr[100]:

file.c: extern int arr[];

34.3 Advantages of Using Several Files

The main advantages of spreading a program across several files are:

• Teams of programmers can work on programs. Each programmer works
on a different file.

• An object oriented style can be used. Each file defines a particular type
of object as a datatype and operations on that object as functions. The
implementation of the object can be kept private from the rest of the
program. This makes for well structured programs which are easy to
maintain.

• Files can contain all functions from a related group. For Example all
matrix operations. These can then be accessed like a function library.

• Well implemented objects or function definitions can be re-used in other
programs, reducing development time.

• In very large programs each major function can occupy a file to itself.
Any lower level functions used to implement them can be kept in the
same file. Then programmers who call the major function need not be
distracted by all the lower level work.

• When changes are made to a file, only that file need be re-compiled
to rebuild the program. The UNIX make facility is very useful for
rebuilding multi-file programs in this way.

34.4 How to Divide a Program between Sev-

eral Files

Where a function is spread over several files, each file will contain one or more
functions. One file will include main while the others will contain functions
which are called by others. These other files can be treated as a library of
functions.

510 CHAPTER 34. WRITING LARGER PROGRAMS

Programmers usually start designing a program by dividing the problem
into easily managed sections. Each of these sections might be implemented
as one or more functions. All functions from each section will usually live in
a single file.

Where objects are implemented as data structures, it is usual to to keep
all functions which access that object in the same file. The advantages of
this are:

• The object can easily be re-used in other programs.

• All related functions are stored together.

• Later changes to the object require only one file to be modified.

Where the file contains the definition of an object, or functions which
return values, there is a further restriction on calling these functions from
another file. Unless functions in another file are told about the object or
function definitions, they will be unable to compile them correctly.

The best solution to this problem is to write a header file for each of the
C files. This will have the same name as the C file, but ending in .h. The
header file contains definitions of all the functions used in the C file.

Whenever a function in another file calls a function from our C file, it
can define the function by making a #include of the appropriate .h file.

34.5 Organisation of Data in each File

Any file must have its data organised in a certain order. This will typically
be:

• A preamble consisting of #defined constants, #included header files
and typedefs of important datatypes.

• Declaration of global and external variables. Global variables may also
be initialised here.

• One or more functions.

The order of items is important, since every object must be defined before
it can be used. Functions which return values must be defined before they
are called. This definition might be one of the following:

34.6. THE MAKE UTILITY 511

• Where the function is defined and called in the same file, a full decla-
ration of the function can be placed ahead of any call to the function.

• If the function is called from a file where it is not defined, a prototype
should appear before the call to the function.

A function defined as

float find_max(float a, float b, float c)

{ /* etc */

would have a prototype of

float find_max(float a, float b, float c);

The prototype may occur among the global variables at the start of the
source file. Alternatively it may be declared in a header file which is read in
using a #include.

It is important to remember that all C objects should be declared before
use.

34.6 The Make Utility

The make utility is an intelligent program manager that maintains integrity
of a collection of program modules, a collection of programs or a complete
system — does not have be programs in practice can be any system of files
(e.g. chapters of text in book being typeset).

Its main use has been in assisting the development of software systems.

Make was originally developed on UNIX but it is now available on most
systems.

NOTE: Make is a programmers utility not part of C language or any
language for that matter.

Consider the problem of maintaining a large collection of source files:

main.c f1.c fn.c

We would normally compile our system via:

cc -o main main.c f1.c fn.c

512 CHAPTER 34. WRITING LARGER PROGRAMS

However, if we know that some files have been compiled previously and
their sources have not changed since then we could try and save overall
compilation time by linking in the object code from those files say:

cc -o main main.c f1.c ... fi.o .. fj.o ... fn.c

We can use the C compiler option (Appendix A) -c to create a .o for a
given module. For example:

cc -c main.c

will create a main.o file. We do not need to supply any library links here
as these are resolved at the linking stage of compilation.

We have a problem in compiling the whole program in this long hand way
however:

• It is time consuming to compile a .c module — if the module has been
compiled before and not been altered there is no need to recompiled it. We
can just link the object files in. However, it will not be easy to remember
which files are in fact up to date. If we link in an old object file our final
executable program will be wrong.

• It is error prone and laborious to type a long compile sequence on the
command line. There may be many of our own files to link as well as many
system library files. It may be very hard to remember the correct sequence.
Also if we make a slight change to our system editing command line can be
error prone.

If we use the make utility all this control is taken care by make. In
general only modules that have older object files than source files will be
recompiled.

34.7 Make Programming

Make programming is fairly straightforward. Basically, we write a sequence
of commands which describes how our program (or system of programs) can
be constructed from source files.

The construction sequence is described in
makefiles which contain dependency rules and construction rules.

A dependency rule has two parts - a left and right side separated by a :

left side : right side

34.8. CREATING A MAKEFILE 513

The left side gives the names of a target(s) (the names of the program
or system files) to be built, whilst the right side gives names of files on
which the target depends (eg. source files, header files, data files)

If the target is out of date with respect to the constituent parts, con-
struction rules following the dependency rules are obeyed.

So for a typical C program, when a make file is run the following tasks
are performed:

1. The makefile is read. Makefile says which object and library files need
to be linked and which header files and sources have to be compiled to
create each object file.

2. Time and date of each object file are checked against source and header
files it depends on. If any source, header file later than object file then
files have been altered since last compilation THEREFORE recompile
object file(s).

3. Once all object files have been checked the time and date of all object
files are checked against executable files. If any later object files will
be recompiled.

NOTE: Make files can obey any commands we type from command line.
Therefore we can use makefiles to do more than just compile a system source
module. For example, we could make backups of files, run programs if data
files have been changed or clean up directories.

34.8 Creating a makefile

This is fairly simple: just create a text file using any text editor. The makefile
just contains a list of file dependencies and commands needed to satisfy them.

Lets look at an example makefile:

prog: prog.o f1.o f2.o
c89 prog.o f1.o f2.o -lm etc.

prog.o: header.h prog.c
c89 -c prog.c

514 CHAPTER 34. WRITING LARGER PROGRAMS

f1.o: header.h f1.c
c89 -c f1.c

f2.o: —–
——–

Make would interpret the file as follows:

1. prog depends on 3 files: prog.o, f1.o and f2.o. If any of the object
files have been changed since last compilation the files must be relinked.

2. prog.o depends on 2 files. If these have been changed prog.o must be
recompiled. Similarly for f1.o and f2.o.

The last 3 commands in the makefile are called explicit rules — since the
files in commands are listed by name.

We can use implicit rules in our makefile which let us generalise our rules
and save typing.

We can take

f1.o: f1.c

cc -c f1.c

f2.o: f2.c

cc -c f2.c

and generalise to this:
.c.o: cc -c $<
We read this as .source extension.target extension: command
$< is shorthand for file name with .c extension.
We can put comments in a makefile by using the # symbol. All characters

following # on line are ignored.
Make has many built in commands similar to or actual UNIX commands.

Here are a few:

34.9. MAKE MACROS 515

break date mkdir

type chdir mv (move or rename)
cd rm (remove) ls

cp (copy) path

There are many more see manual pages for make (online and printed
reference)

34.9 Make macros

We can define macros in make — they are typically used to store source file
names, object file names, compiler options and library links.

They are simple to define, e.g.:

SOURCES = main.c f1.c f2.c

CFLAGS = -g -C

LIBS = -lm

PROGRAM = main

OBJECTS = (SOURCES: .c = .o)

where (SOURCES: .c = .o) makes .c extensions of SOURCES .o exten-
sions.

To reference or invoke a macro in make do $(macro name).e.g.:

$(PROGRAM) : $(OBJECTS)

$(LINK.C) -o $@ $(OBJECTS) $(LIBS)

NOTE:

• $(PROGRAM) : $(OBJECTS) – makes a list of
dependencies and targets.

• The use of an internal macros i.e. $@.

516 CHAPTER 34. WRITING LARGER PROGRAMS

There are many internal macros (see manual pages) here a few common
ones:

$* — file name part of current dependent (minus .suffix).

$@ — full target name of current target.

$< — .c file of target.

An example makefile for the WriteMyString modular program discussed
in the above is as follows:

#

Makefile

#

SOURCES.c= main.c WriteMyString.c

INCLUDES=

CFLAGS=

SLIBS=

PROGRAM= main

OBJECTS= $(SOURCES.c:.c=.o)

.KEEP_STATE:

debug := CFLAGS= -g

all debug: $(PROGRAM)

$(PROGRAM): $(INCLUDES) $(OBJECTS)

$(LINK.c) -o $@ $(OBJECTS) $(SLIBS)

clean:

rm -f $(PROGRAM) $(OBJECTS)

34.10 Running Make

Simply type make from command line.

34.10. RUNNING MAKE 517

UNIX automatically looks for a file called Makefile (note: capital M rest
lower case letters).

So if we have a file called Makefile and we type make from command
line. The Makefile in our current directory will get executed.

We can override this search for a file by typing make -f make filename

e.g. make -f my make

There are a few more -options for makefiles — see manual pages.

518 CHAPTER 34. WRITING LARGER PROGRAMS

Chapter 35

Introduction to X/Motif
Programming

This book introduces the fundamentals of Motif programming and addreses
wider issues concerning the X Window system. The aim of this book is to
provide a practical introduction to writing Motif programs. The key princi-
ples of Motif programming are always supported by example programs.

The X Window system is very large and this book does not attempt to
detail every aspect of either X or Motif. This book is not intended to be a
complete reference on the subject.

The book is organised into logical parts, it begins by introducing the X
Window system and Motif and goes on to study individual components in
detail in specific Chapters. In the remainder of this Chapter we concentrate
on why Motif and related areas are important and give a brief history of the
development of Motif.

35.1 Why Learn X Window and Motif?

There are many reasons and advantages to programming in X/Motif. A few
of these are listed below:

• Motif provides an introduction to graphic user interface (GUI) pro-
gramming — all computers now employ some form of a GUI to their
operating systems and other key applications. Most GUIs adhere to
similar design principles. Motif can be as regarded a high level GUI
toolkit that adopts and enforces common GUI design principles.

519

520 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

• X Window provides a consistent means of graphical user interaction for
UNIX workstations.

• Motif provides a high level toolkit, that already has many fully fea-
tured GUI objects. For example cut and paste, multi-line text editors,
file browsers, drag and drop mechanisms. Simple yet usable Motif ap-
plications can be assembled by bolting such objects together. Motif
speeds up GUI program development.

• The X Window system is device independent — it can run on most
common computer platforms. If there is a need for different platforms
to interact together over a network, X Window might be a good way
to achieve this.

• You may have been using the X Window system and want to under-
stand how the system works.

• Professional X Window programmers are still not that numerous even
though they are in great demand. You may be reading this book be-
cause you need to learn Motif for this reason. A quick scan through any
Computer Vacancies Column in major Computer magazines, journals
or employment agencies should highlight this need.

35.2 How to use this book

35.2.1 About this book

The X Window system, or simply X, is very large. It has been through many
different versions since its conception although things are now becoming fairly
standardised and established.

This book does not attempt to cover all of the X system. We will only
look at important parts of the system. Indeed we only study important parts
of Motif which is itself a component (albeit a large and significant one) of
X. We will where necessary introduce components of X that are not part of
Motif. These other components will always be treated as if they are to be
used with Motif.

Other important concepts relating to more general Graphical User Inter-
face (GUI) design and programming will be studied. In most cases this is
directly in relation to the Motif programming model. However, Motif was

35.3. GRAPHICAL USER INTERFACES (GUIS) 521

designed to adhere to standard GUI design approaches and has guidelines
defined in the Motif Style Guide (Chapter 52).

35.2.2 Conventions used

X provides functionality via a vast set of subroutine libraries. These may be
called from a variety of high level languages.

They are most readily called from C programs as this is the language in
which most of X is actually implemented in. We will only give C program
examples in the main body of text.

Readers should not be too worried about programming in C. We will not
need to get heavily involved in C. Basically we will just be calling X/Motif
functions and setting variables and data structures from our C programs.
The ANSI C programming conventions are assumed in all examples.

In order to distinguish between program code and other text in this book
the following fonts are used:

• All program code, fragments of code are highlighted in a typewriter

type style.

• Motif and other X data types, structures, variables are also highlighted
in a typewriter type style.

• Important definitions or concepts are highlighted in italic type.

We have already used the notation of X/Motif. For convenience through-
out this book, a reference to X is taken to mean the X Window System. We
refer to Motif whilst strictly speaking the full title is OSF/Motif where OSF
stands for the Open Software Foundation the original developers of Motif.

35.3 Graphical User Interfaces (GUIs)

Before we study Motif in detail it is worth considering why we need GUIs
and how they can be effectively designed and used.

522 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

35.3.1 Why Use GUIs?

GUIs provide an easy means of data entry and modification. They should
provide an attractive and easy to use interface between human and machine.
So easy in fact that a non-computer literate person could use the system.

GUI’s provide a better means of communication than cumbersome text-
based interfaces. Typically, GUIs provide such facilities by means of:

• Extensive use of visual control items — Buttons, menus, icons, scroll
bars etc.

• Intuitive on screen manipulation of data.

• If a standard GUI is adopted then consistency of use across platforms
and applications is afforded. Nearly all MS Windows (or Apple Mac-
intosh) have the same look and feel so the learning time for a new
application is reduced.

• Multiple applications can be run simultaneously on most machines
these days. GUIs provide better screen management of such processes
— we can assign one window (or more) to each application.

Although GUIs provide some very powerful advantages, there are a couple
drawbacks to the GUI approach:

Efficiency — As we will shortly see even the most basic windowing program
can be quite large. This is because we will have to write or call upon
many functions to control the windowing system — e.g. create, move,
resize etc. windows; handle input via mouse and keyboard actions;
control graphics. Motif was designed as an attempt to reduce such
problems by packaging common GUI entities together as widgets.

Programming — A different approach to programming is needed from the
traditional command-line approach. You have probably been used to
the top down structured programming approach adhered to by lan-
guages such as Pascal and C. We will have to adopt a different strategy
known as event-driven programming – where the actions in our pro-
gram will be triggered by mouse and keyboard actions.

35.4. HISTORY OF X/MOTIF 523

35.3.2 Designing GUIs

The subject of Graphical User Interface design is large. Indeed it is a major
topic in Computer Science in its own right. Consequently, we could devote
the rest of the book to this topic. However many standard GUI design rules
are prescribed by Motif. Many of these rules are prescribed automatically,
whilst others are strongly suggested in the Motif Style Guide (Chapter 52). In
general it is the low level appearance and operation of specific objects (But-
tons, Menus etc.) that are automatically facilitated by Motif. The higher
level organisation of these objects is left to the control of the application de-
veloper. Some perhaps are fairly obvious, though not always strictly adhered
to, rules of thumb for GUI design include:

• Keep the interface as simple as possible — Do not over clutter a single
interface.

• Keep interfaces as consistent as possible — Adhere to standard GUI
principles.

• Keep in mind the application user — Provide easy access to common
application interactions and do not over complicate common means of
interaction.

• Allow the user some control of the interface — This allows some cus-
tomisation for user preferences.

• Communicate the application actions to the user — Maintain a dia-
logue with the user. For example, do not allow the user believe that
the system or application has “hung up” whilst performing intensive
computations — display a message or flash an icon to indicate some
progress.

The Motif Style Guide (Chapter 52) is a valuable source of information
in relation to GUI design.

35.4 History of X/Motif

This Section briefy surveys the important stages in the development of GUIs
leading the X/Motif approach to GUI design and programming. Once X

524 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

began to establish itself as one of the prime systems for window programming
some issues still remained unresolved until recently, these are also briefly
addressed.

35.4.1 Communication before X

Computers first became commercially available in the 1950s. However, they
were very large and expensive. They were also hard to program with very
little thought was given to human computer interaction. By the 1960s very
basic inroads into ease of computer use were being made with the develop-
ment of more reliable operating systems. This was made possible as comput-
ers became smaller in size and more powerful in terms of processing ability.
The first seeds of user interaction appeared in the form of early text editors
during this period.

The start of the development of GUIs can be traced back to the early
1970’s to Alan Kay’s research group at Xerox’s Palo Alto Research Centre.
Two important projects were undertaken there:

• Dynabook (Early 1970s) — where the goal was to produce a book sized
personal computer with high resolution colour display and a radio link
to a worldwide computer network. Mailbox, library, telephone and
secretarial functions were also to be incorporated.

• Star (Late 1970s) where the goal was to produce a desk-sized personal
workstation used by a single person. A high resolution display capable
of fast high quality graphics was included. Graphical user interaction
was provided by means of a mouse allowing options to be selected from
a displayed menu . Later versions of Star introduced icons on the screen
to represent objects and functions. The idea of traits — a characteristic
of an object that can be expressed by a set of methods or data and can
be applied to, or carried by, the object holding that trait — was also
introduced. Traits were later to resurface in last release of Motif (2.0).

The first commercial exploitation of the Xerox work was realised in the
early 1980s by Apple, firstly with Lisa and then the Macintosh series of
computers. The Apple GUI proved very successful and popular and by the
late 1980s many operating systems had adopted the GUI approach. UNIX
vendors such as Sun (with SunView) and Dec (with DEC Windows) and
Microsoft with Windows for the PC are examples.

35.4. HISTORY OF X/MOTIF 525

There was one problem with the above developments. Every manufac-
turer had its own proprietary windowing system. These were all entirely dif-
ferent and different systems could not easily communicate with each other.
It had been common to have networks of the same computers for some time
and it was relatively easy to get machines of the same type in a network
configuration to talk to each other.

The X Window system arose out of this very real need. The X system
was designed to be platform independent and network-based. With X the
programmer can write a single application in a single language and run this
program on different machines with little or no modification. Moreover,
applications can actually run programs on one computer and have the results
displayed on another (or several) computer’s terminal. The computer can be
a similar model or an entirely different one altogether. The possibilities are
endless.

35.4.2 The Motif/Open Look War

Following the creation of the X Window system, two primary high level X
interface toolkits came to prominence:

Motif — a product of the Open Software Foundation (OSF), an organization
that originally included DEC, IBM and Hewlett-Packard.

Open Look/OpenWindows — a product of Sun and AT&T.

Open Look was designed to support the X Window platform yet still
maintain compliance with Sun’s older native SunView Window system. Open
Look had a slightly different design philosophy to Motif. Indeed for many
years Sun claimed that Open Look was superior to Motif. At the time Sun
were the substantial market leader vendor of UNIX platforms and therefore
had a large influence on such matters. However, recently Sun decided to
cease support of Open Look and adopt Motif.

Motif was based on IBM’s Common User Access (CUA) guidelines as were
both Microsoft Windows and OS/2. Consequently, the visual appearance and
mode of operation, the so called look and feel, of Motif is similar to that of
Microsoft Windows and OS/2. This was a deliberate strategy since there is
sound business sense in profiting from an open system. More importantly,
however, the predominance of Microsoft Windows in the PC market means

526 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

that an interface that appears to the user to behave in a similar fashion to
Microsoft Windows would be a logical choice in migrating (PC) applications
to UNIX. It is probably a mixture of these factors that has led to Sun’s
decision to stop the development of Open Look and adopt Motif for Sun
Workstations.

Following Sun’s decision to support Motif, the Common Open Software
Environment (COSE) united the major UNIX producers including Sun, DEC,
IBM, Hewlett-Packard and UNIX System Laboratories. This has had a sig-
nificant impact on the endorsement of Motif since it is now the standard
choice for UNIX and general cross-platform GUI development. COSE has
also prescribed choices of other X libraries concerned with 3D graphics (PEX)
and Image extension (XIE) which are closely coupled to Motif.

35.4.3 Versions of Motif

Motif has undergone four major revisions since its conception. Motif 1.0 is
now quite old and should probably be avoided as there has been significant
upgrades to Motif and the underlying X system in later Motif versions. Motif
1.1 was the next major release but this releases does not support some useful
later features, such as drag and drop. However, many applications can still
run under Motif 1.1. Motif 1.2 has been available since 1993 and is based on
Release 5 of the Xlib and Xt specifications (X11R5). This version of Motif
should be in common circulation now.

The latest version of Motif is version 2.0 and it was released in late 1994
as was the latest release of X11 (X11R6). Motif 2.0 provides some significant
enhancements and many bug fixes. However, Motif 2.0 is not yet being
shipped by the major UNIX vendors. The main reason is that most UNIX
vendors made a decision to support a new Common Desktop Envirnoment
(see Section 35.5.2 below) system, CDE 1.0, which uses Motif 1.2 and is not
binary compatible with Motif 2.0. It is likely that these companies will not
now deliver Motif 2.0 but wait to support the convergence of both products
with the newer releases of Motif (2.1) and CDE (1.1). It is expected that
both these will become available sometime in 1997.

Even though there have been four major revisions to Motif there have
been several minor revisions to Motif. These were mainly fix bugs (sometimes
a few hundred at a time !!). However different vendors do not always keep
to consistent minor version release numbers.

The subset of Motif addressed in this book has remained more or less

35.5. CULTURE 527

untouched by the developments in Motif 2.0. Where there are differences
these are highlighted in the text. The major differences that concern us here
are the support of additional widgets (Chapter 39 and C++ binding.

The new features of Motif 2.0 are generally concerned with advanced uses
of Motif, and are not within the defined scope of this text. All examples in
this book have been tested extensively on Motif 1.2 and X11R5. There should
be no problem in running these examples under Motif 2.0 or X11R6.

35.5 Culture

In using and writing Motif programs you will inevitably be exposed to key
parts of your computer. You will have to write Motif programs in a particlar
computer language — usually C or C++. In writing and running Motif ap-
plications you will need to interact with the host operating system. You may
also need to suitably equip your operating to run or display Motif applica-
tions. In conjuction with the operating system, there will be a windowing
environment that controls how windows are displayed and managed in gen-
eral. This section introduces these issues and explains how you configure
your system to run Motif applications.

35.5.1 Operating Systems

X Window is designed to be platform independent. Provided that machines
which are connected to a network and are suitably equipped with software to
run X Window, running applications across any kind of network is possible.

For Unix systems X/Motif is now the only practical window system avail-
able. Unix machines will usually be already configured to run some version of
X. For users of PCs and Macintosh computers, the standard window environ-
ment is Microsoft Windows or the Macintosh Window Interface respectively.
For users of these machines there are two options to set up X Window:

X Window/Unix Systems — These basically convert you PC/Macintosh
into a X Window/Unix operating system. Many allow the native
PC/Mac operating or window system to coexist with the installed Unix
system. Many commercial and freeware packages exist for running Unix
and the basic X system. Motif libraries have to be purchased to run on
top of the basic X system. Probably the most popular system is the
freely available Linux system.

528 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

Linux is available for both PC and Macintosh (Power PC Macs only).
Linux basically converts the host machine into a Unix environment.
X/Motif libraries are available for Linux at a small additional cost. For
further details on Linux consult the following URLs:

http://www.linux.org/ — Main Linux site home page.

http://www.linux.co.uk/ — U.K. Linux Site.

http://www.rahul.net/kenton/xsites.html — General X Window
and Linux information with many links to related sites

http://www.mklinux.apple.com/ — Linux on the Macintosh.

There are a few other commercial packages available that run Unix/X
Window environments on a PC and Macintosh.

X Window Display/Server Software — Some commercial packages are
available that allow the host machine to act as an X server and/or an X
display. Some packages act as an X display meaning that X application
must be run on a machine that supports an X server but the (X) output
of the application can be redirected to X display.

Packages for the PC that allow this include SunSoft Inc.’s SolarNet
PC-X 1.1, Hummingbird Communications Ltd. eXceed 5 for Windows,
Network Computing Devices Inc.’s PC-Xware 3.0 and Walker Richer
and Quinn Inc.’s Reflection Suite for Windows 5.0.

Package available to allow a Macintosh to become an X Server in-
clude Apple’s MacX, Intercon’s Planet X, Netmanage/AGE’s Xoft-
Ware, Tenon XTen and White Pine’s eXodus.

A free X server for PCs and Macintosh exists called MI/X.

The WWW site URL:http://www.rahul.net/kenton/xsites.html con-
tains links to almost all the above systems.

Note that minimum configurations of many computers in terms of proces-
sor speed and/or memory are unlikely to be adequate to support X Window.

35.5.2 The Common Desktop Environment (CDE)

Built on top of the operating system is the windowing environment. This
environment controls how windows are displayed and how events invoked by

35.5. CULTURE 529

mouse selection, keystrokes etc. are processed. The general term for the
housekeeping of windows is window management and further details on this
will be discussed in Section 36.2. X window toolkits, such as Motif and Open
Look, generally provide two key components: the window manager and the
toolkit libraries.

The window manager basically defines the look and feel of a particular
toolkit. However, with ever increasing windowing needs, the basic window
manager and related system and common application needs have grown into
a desktop environment providing a whole suite of tools including a window
manager. The unification of the Unix and X Window providers with COSE
has led to the vendors developing a unified desktop for Unix systems — the
Common Desktop Environment (CDE). The CDE is built on top of Motif.

The CDE was designed to provide end users with a consistent graphical
user interface across workstations and PCs, and software developers with a
single set of programming interfaces for platforms that support the X Window
System and Motif.

The CDE is intended to:

• Reduce learning time by providing the same appearance and behaviour
across multiple operating systems.

• Increase productivity by helping system administrators and end users
customize the desktop environment to fit individual work styles and
preferences.

• Make learning easier by providing a consistent, rich, and easily ac-
cessible context-sensitive on-line help system for help whenever and
wherever the user needs it.

• Provide a common set of desktop and application development tools.

• Ease the porting of many existing X Window applications to a new en-
virronment. Applications should be easy to run accross many different
platforms thus reducing the costs of moving to a new environment and
helping to protect investments in software.

The CDE core components include:

A login manager — A graphical login screen and manages user access to
the system.

530 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

A file manager — An on screen graphical file representation where users
can directly manipulate icons associated with files to organise the file
system and launch applications.

An application manager — The application manager is similar to the file
manager except that it is intended to be a user specific list of files.

A session manager — Users can easily customize their environment.

The CDE window manager — The control mechanism for the visual user
interface, or desktop, of a session. The CDE window manager includes
a FrontPanel and a workspace manager. A user can manage all aspects
of a session (except the initial login) through objects on the FrontPanel.

An inter-application messaging system — This aims to provide facili-
tates for the seamless interaction between applications.

A desktop tool set — A comprehensive set of productivity tools including
multimedia-enabled mail, text editor, calendar, clock and icon editor,
are provided with the CDE.

Application development tools — A comprehensive set of development
tools including debuggers, application manager, application (Motif GUI)
builder are provided with the CDE.

Application integration components — Aplications written on any X
Window system or toolkit should be easy to integrate with the CDE
tools provided.

Section 1 addresses the CDE from a user’s perspective.

35.5.3 C/C++ programming

This books assumes a knowledge of ANSI/ISO C. All program examples
are written in C. C++ is also a popular language for writing X Window
programs. C++ actually supports ANSI/ISO C, so some minor modifications
are all that is required to convert the C examples provided in this text to
C++ (see Chapter 59). Motif 2.0 actually provides C++ support built in.

In order to be most productive in writing Motif it is advisable that you
should have at your disposal standard C program developments tools (such

35.6. RELIGION 531

as good compilers, editors, debugging tools etc). Section 38.5 discusses com-
pilation issues further.

35.6 Religion

Throughout the development of X/Motif some key companies and consortia
have been repsonsible for key aspects of the system. We briefly summarise
these contibutions in this Section. Another key aspect to the development
of Motif is the prescribed uniformity of Motif applications. The Motif Style
Guide is the main reference to Motif application development.

35.6.1 OSF, X Consortium, Open Group

The Open Software Foundation consortium provides many services and is
not solely concerned with X Window related matters. The OSF licenses
Motif, offers training courses, testing and certification of software intended
for commercial use.

The X Consortium distributes the X System and manuals at a minimal
cost (basically the cost of distribution media and shipping). Motif is built
on top of the X System.

The Open Group was formed in February, 1996 by the consolidation of
the two leading open systems consortia, X/Open Company Ltd. and the
Open Software Foundation (OSF). Under the Open Group umbrella, OSF
and X/Open work together to deliver technology innovations and wide-scale
adoption of open systems specifications. From the beginning of 1997 the
Open Group will have responsibility for the X Window System transferred
from the X Consortium.

For further information, the OSF, X Consortium and the Open Group
can be contacted at the following addresses:

Open Software Foundation, 11 Cambridge Center Cambridge
MA 02142. Tel (USA): 617/621-8700. Email: info@osf.org
WWW:
http://www.osf.org/

X Consortium Inc., One Memorial Drive PO BOX 546 Cam-
bridge MA 02142-0004. Tel (USA):617/374-1000. WWW:
http://www.x.org/

532 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

Open Group, 11 Cambridge Center, Cambridge, MA 02142:
Tel (USA): 617/621-7300. Email: info@opengroup.org WWW:
http://www.opengroup.org/

35.6.2 Motif and COSE

The Common Open Software Environment (COSE) was formed when the ma-
jor UNIX producers, including Sun, DEC, IBM, Hewlett-Packard and UNIX
system Laboratories, decided to unite and attempt to standardise UNIX im-
plementations worldwide in 1993. The remit of COSE is to define standard
cross-platform UNIX systems incorporating application program interfaces,
windows interfacing, desktop environments, graphics, multimedia, system
management, support for distributed computing and large scale data man-
agement. The standardisation of a Common Desktop Environment (CDE)
for UNIX resulted in the adoption of Motif for this purpose.

As such, the OSF, Open Group, and COSE can be regraded as the elders
of Motif and future releases of Motif will be determined by them.

In late 1995, The OSF announced the formal signing of the Joint Develop-
ment agreement for the further enhancement and evolution of the Common
Desktop Environment and OSF/Motif under the OSF Prestructured Tech-
nology (PST) development process.

35.6.3 Motif Style Guide

The Motif Style Guide can be regarded as the Bible for Motif Application
developers. Along with a Motif Reference Manual and a programming text
book, the Motif Style Guide provides an invaluable source of information.

The Motif Style Guide provides a set of guidelines that provides a frame-
work for the behaviour of Motif application developers, GUI developers, wid-
get developers and window managers. The basic idea is that all Motif ap-
plications that adhere to the prescribed style will maintain a high level of
consistency. Also, since Motif follows CUA guidelines, Motif applications
will be similar to Microsoft Windows applications in terms of appearance
and user operation. For developers of commercial applications, the adoption
of Motif style is critical.

Many standard GUI issues are integrated into a Motif Widget default
behaviour. Therefore, these defaults should only be modified with great care

35.6. RELIGION 533

and consideration for such implications. Other aspects of style are left to the
developer. The Motif Style Guide only suggests certain standard operations.

As has been mentioned, the Motif Style Guide has a greater scope than
just the Motif application developer (the intended audience of this text).
Chapter 52 summarises many important issues relating to the application
developer. Where appropriate, specific style considerations are mentioned
elsewhere in this text.

534 CHAPTER 35. INTRODUCTION TO X/MOTIF PROGRAMMING

Chapter 36

The X Window System
Environment

36.1 What is the X Window system?

The X Window system provides a way of writing device independent graph-
ical and windowing software that can be easily ported from machine to ma-
chine. X is a network-based system and supports cross-platform communi-
cation — we can get different machines to talk to each other.

At the highest level of X there are two basic features: The window man-
ager and the toolkit. The window manager (wm) controls GUI aspects such
as appearance of windows and interaction with the user. The toolkits are C
subroutine libraries where we describe how to contsruct the GUI and how
to attach the GUI to the remainder of the application. Motif is one such
toolkit. Motif is built on other toolkits in the X System: Xt Intrinsics, an
intermediate level toolkit, and the low level X Library (Xlib). The relevance
of these will be made apparent in due course.

36.1.1 X Window Principles

All forms of displaying of information in X are bit-mapped which means that
every pixel on the screen is individually controllable. Therefore we can draw
pictures and use text. The requirement for bit-mapped graphics means that
high quality monitors are necessary. However, most computer systems pro-
vide monitors of this type.

535

536 CHAPTER 36. THE X WINDOW SYSTEM ENVIRONMENT

X, like most other windowing systems, divides the screen into various
parts that control input and output. Each part is called a window. A window
can have many uses. A window can display graphics, receive input from a
mouse, act as a standard terminal (e.g. an Xterm — a standard text based
terminal emulation window) etc..

Not all applications need to consist of a single window. We can have many
windows associated with different parts of one application. Each subwindow
is called a child and it usually remains under the control of it’s parent window.

There is one special window, the background or root window. All other
windows are children of the root.

36.2 The Window Manager

The window manager is responsible for manipulating windows on the screen.
The window manager performs the following operations:

• Placement and movement of windows.

• Resizing of windows.

• Iconification of windows — how the window appears when the window
is minimised.

• Starting and manipulation of windows.

• Control of input to windows.

Controlling the window environment is not easy and has many facets. For
instance, there may be multiple applications running simultaneously and a
conflict may arise for input:

Does a keyboard input go in a window where the mouse currently points
or must a window be explicitly chosen?

The window manager is also predominantly responsible for the appear-
ance and user interaction (the look and feel) of the interface. Since the
development of X, there have been a few different window managers. The
look and feel varies a lot between each window manager. The Motif window
manager (mwm) is probably the window manager you are most familiar with
as this comes with the Motif system. Other window managers include Sun’s

36.2. THE WINDOW MANAGER 537

Open Look window manager (olwm) and the Tab or Tom’s window manager
(twm).

Most major Unix vendors now supply the CDE which by default runs the
desktop window manager, dtwm. The development of the common desktop
will probably result in dtwm superseding mwm. The CDE default window
manager can easily be altered to run the above altenative window managers
if desired. Since the CDE is built on top of motif there are many similarities
between dtwm and mwm (see Section 1.8 below).

The Motif look and feel, as defined by the Motif Style Guide, is basically
enforced by mwm or dtwm. Consequently, interaction between applications
and these window managers are eased if the applications obey standard Mo-
tif/CDE guidelines.

538 CHAPTER 36. THE X WINDOW SYSTEM ENVIRONMENT

Chapter 37

The X Window Programming
Model

This Chapter introduces the basic concepts and principles that are of concern
to the Motif programmer. We define basic system concepts, describe the
three basic levels of the X programming model and describe basic Motif
components.

37.1 X System Concepts and Definitions

X requires a system that consists of workstations capable of bit-mapped
graphics. These can be colour or monochrome.

A display is defined as a workstation consisting of a keyboard, a pointing
device (usually a mouse although it could be a track ball or graphics tablet,
for instance) and one or more screens.

37.1.1 Clients and Servers

X is network oriented and applications need not be running on the same
system as the one supporting the display. This can sometimes be quite
complicated for a system such as X to manage and so the concept of clients
and servers was introduced.

You need not worry too much about the practicality of this, as normally
X makes this transparent to the user — especially if we run programs on a

539

540 CHAPTER 37. THE X WINDOW PROGRAMMING MODEL

single workstation. However, in order to fully understand the workings of X,
some notion of these concepts is required.

The program that controls each display is known as the server. This ter-
minology may seem a little odd as we may be used to the server as something
across the network such as a file server. Here, the server is a local program
that controls our display. Also our display may be available to other systems
across the network. In this case our system does act as a true display server.

The server acts as a go-between between user programs, called clients or
applications and the resources of the local system. These run on either local
or remote systems.

Tasks the server performs include:

• allowing access by multiple clients,

• interpreting network messages from clients,

• two-dimensional graphics display,

• maintain local resources such as windows, cursors, fonts and graphics.

37.2 The X Programming Model

The client and server are connected by a communication path called (sur-
prise, surprise) the connector. This is performed by a low-level C language
interface known as Xlib. Xlib is the lowest level of the X system software
hierarchy or architecture (Fig 37.1). Many applications can be written us-
ing Xlib alone. However, in general, it will be difficult and time consuming
to write complex GUI programs only in Xlib. Many higher level subroutine
libraries, called toolkits, have been developed to remedy this problem.

Note: X is not restricted to a single language, operating system or user
interface. It is relatively straightforward to link calls to X from most pro-
gramming languages. An X application must only be able to generate and
receive messages in a special form, called X protocol messages. However, the
protocol messages are easily accessible as C libraries in Xlib (and others).

There are usually two levels of toolkits above Xlib

• X Toolkit (Xt) Intrinsics are parts of the toolkit that allow pro-
grammers to build new widgets.

Application

Non X
Related
Libraries

Motif Toolkit

Xt Intrinsics

Xlib

Graphical User Interface

37.2. THE X PROGRAMMING MODEL 541

• Third Party Toolkits — such a Motif.

An application program in X will usually consist of two parts. The graph-
ical user interface written in one or more of Xlib, Xt or Motif and the algorith-
mic or functional part of the application where the input from the interface
and other processing tasks are defined. Fig. 37.1 illustrates the relationships
between the application program and the various parts of the X System.

Figure 37.1: The X Programming Model

The main concern of this text is to introduce concepts in building the
graphical user interface in X and Motif in particular. We now briefly de-
scribe the main tasks of the three levels of the X programming model before
embarking on writing Motif programs.

37.2.1 Xlib

The main task of Xlib is to translate C data structures and procedures into
the special form of X protocol messages which are then sent off. Obviously
the converse of receiving messages and converting them to C structures is
performed as well. Xlib handles the interface between client (application)
and the network.

542 CHAPTER 37. THE X WINDOW PROGRAMMING MODEL

37.2.2 Xt Intrinsics

Toolkits implement a set of user interface features or application environ-
ments such as menus, buttons or scroll bars (referred to as widgets).

They allow applications to manipulate these features using object-oriented
techniques.

X Toolkit Intrinsics or Xt Intrinsics are a toolkit that allow programmers
to create and use new widgets.

If we use widgets properly, it will simplify the X programming process
and also help preserve the look and feel of the application which should make
it easier to use.

We will have to call some Xt functions when writing Motif programs since
Motif is built upon Xt and thus needs to use Xt. However, we do notneed
to fully understand the workings of Xt as Motif takes care of most things for
us.

37.2.3 The Motif Toolkit

X allows extensions to the Xt Intrinsics toolkit. Many software houses have
developed custom features that make the GUI’s appearance attractive, easy
to use and easy to develop. Motif is one such toolkit.

The third party toolkits usually supply a special client called the window
manager

37.3 Currency

The basic unit of currency of Motif is the widget. The widget is the basic
building block for the GUI. It is common and beneficial for most GUIs assem-
bled in Motif to look and behave in a similar fashion. Motif enforces many
of these features by providing default actions for each widget. Motif also
prescribes certain other actions that should, whenever possible, be adhered
to. Information regarding Motif GUI design is provided in the Motif Style
Guide. We now briefly address general issues relating to Motif widgets and
style.

37.3. CURRENCY 543

37.3.1 Widget Classes and Hierarchies

A widget, in Motif, may be regarded as a general abstraction for user-interface
components. Motif provides widgets for almost every common GUI compo-
nent, including buttons, menus and scroll bars. Motif also provides widgets
whose only function is to control the layout of other widgets — thus enabling
fairly advanced GUIs to be easily designed and assembled.

A widget is designed to operate independently of the application except
through well defined interactions, called callback functions. This takes a
lot of mundane GUI control and maintenance away from the application
programmer. Widgets know how to redraw and highlight themselves, how to
respond to certain events such as a mouse click etc. Some widgets go further
than this, for example the Text widget is a fully functional text editor that
has built in cut and paste as well as other common text editing facilities.

The general behaviour of each widget is defined as part of the Motif
(Xm) library. In fact Xt defines certain base classes of widgets which form
a common foundation for nearly all Xt based widget sets. Motif provides a
widget set, the Xm library, which defines a complete set of widget classes for
most GUI requirements on top of Xt (Fig 37.1).

The Motif Reference Manual provides definitions on all aspects of widget
behaviour and interaction. Basically, each widget is defined as a C data
structure whose elements define a widget’s data attributes, or resources and
pointers to functions, such as callbacks.

Each widget is defined to be of a certain class. All widgets of that class
inherit the same set of resources and callback functions. Motif also defines a
whole hierarchy of widget classes. There are two broad Motif widget classes
that concern us. The Primitive widget class contains actual GUI components,
such as buttons and text widgets. The Manager widget class defines widgets
that hold other widgets.

Chapter 38 introduces basic Motif widget programming concepts and in-
troduces how resources and callback functions are set up. Chapter 39 then
goes on to fully define each widget class and the Motif widget class hierarchy.
Following Chapters then address each widget class in detail.

37.3.2 Motif Style — GUI Design

The Motif Style Guide should be read by every Motif Application developer.
The Style Guide is not intended to be a Motif programming manual. This

544 CHAPTER 37. THE X WINDOW PROGRAMMING MODEL

book is not intended to be a complete guide to Motif style. The books should
be regarded as essential companions along with a good Motif reference source.

The Motif Style Guide provides a set of guidelines that specify a frame-
work for the behaviour of Motif application developers, GUI developers, wid-
get developers and window managers. Many standard GUI design and be-
haviour issues are integrated into a Motif widget’s default settings. Therefore
these defaults should only be modified with great care and consideration.
Other aspects of style are left to the developer. The Motif Style Guide only
suggests certain standard operations, but where appropriate these should be
adopted.

The Motif Style Guide prescribes many common forms of interaction and
interface design. For example, it defines how menus should be constructed,
used and organised. Chapter 52 summarises all the common style concerns
for the Motif programmer. Where appropriate specific reference is made in
individual Sections to Motif style for a particular widget.

Chapter 38

A First Motif Program

In this Chapter we will develop our first Motif program. The main purpose
of the program is to illustrate and explain many of the fundamental steps of
nearly every Motif program.

38.1 What will our program do?

Our program, push.c, will create a window with a single push button in it.
The button contains the string, “Push Me”. When the button is pressed
(with the left mouse button) a string is printed to standard output. We are
not yet in a position to write back to any window that we have created. Later
Chapters will explore this possibility. However, this program does illustrate
a simple interface between Motif GUI and the application code.

The program also runs forever. This is a key feature of event driven
processing. For now we will have to quit our programs by either:

• Using the Operating System to terminate the program (process) —
there are many ways in which this could be done. The easiest way is
to use ctrl-c to quit from the command line.

• Use the Window Menu quit option (Section 1.8) — depress right mouse
down around the top perimeter of the window and choose the quit op-
tion from menu. The OSF/Motif Style Guide(Chapter 52), in common
with standard GUI practice, also prescribes that hot keys, or keyboard
shortcuts, or mnemonics should be facilitated so that common actions

545

546 CHAPTER 38. A FIRST MOTIF PROGRAM

can be performed from the keyboard. It is standard convention that
the Meta-F4 is used to close an application.

In forthcoming Chapters (see also Exercise 38.1) we will see how to quit
the program from within our programs.

The display of push.c on screen will look like this:

Figure 38.1: Push.c display

38.2 What will we learn from this program?

As was previously stated, the main purpose of studying the program is to
gain a fundamental understanding of Motif programming. Specifically the
lessons that should be clear before embarking on further Motif programs are:

• How to write and compile a Motif Program.

• The relationship between Xlib, Xt Intrinsics and Motif.

• How to create simple widgets and manage its resources.

• How widgets handle events.

• How to call functions from events — the Interface between the Motif
GUI and the application code.

We now list the complete program code and then go on to study the code
in detail in the remainder of this Chapter.

38.3. THE PUSH.C PROGRAM 547

38.3 The push.c program

The complete program listing for the push.c program is as follows:

#include <Xm/Xm.h>

#include <Xm/PushB.h>

/* Prototype Callback function */

void pushed_fn(Widget , XtPointer ,

XmPushButtonCallbackStruct *);

main(int argc, char **argv)

{ Widget top_wid, button;

XtAppContext app;

top_wid = XtVaAppInitialize(&app, "Push", NULL, 0,

&argc, argv, NULL, NULL);

button = XmCreatePushButton(top_wid, "Push_me", NULL, 0);

/* tell Xt to manage button */
XtManageChild(button);

/* attach fn to widget */
XtAddCallback(button, XmNactivateCallback, pushed_fn, NULL);

XtRealizeWidget(top_wid); /* display widget hierarchy */
XtAppMainLoop(app); /* enter processing loop */

}

void pushed_fn(Widget w, XtPointer client_data,
XmPushButtonCallbackStruct *cbs)

{
printf("Don’t Push Me!!\n");

}

548 CHAPTER 38. A FIRST MOTIF PROGRAM

38.4 Calling Motif, Xt and Xlib functions

When writing a Motif program you will invariably call upon both Motif
and Xt functions and data structures explicitly. You will not always call Xlib
functions or structures explicitly (but recall that Motif and Xt are built upon
Xlib and they may call Xlib function from their own function calls).

In order to distinguish between the various toolkits, X adopts the follow-
ing convention:

• Motif function and data structure names begin with Xm. So in push.c:

XmStringCreateSimple() and XmStringFree() belong to Motif toolkit.

• Xt Intrinsics functions and most data structures begin with Xt. e.g.
XtVappInitialize() and XtVaCreateManagedWidget(). The Widget
data structure is an exception to this rule.

• Xlib functions and most data structures begin with X. There are no
Xlib functions used in push.c. An example of an Xlib function call is
XDrawString().

38.4.1 Header Files

In order to be able to use various Motif, Xt Intrinsics or Xlib data structures
we must include header files that contain their definitions.

The X system is very large and there are many header files. Motif header
files are found in #include<Xm/...> subdirectories, the Xt and Xlib header
files in #include<X11/...> subdirectories (E.g. the Xt Intrinsic definitions
are in #include<X11/Intrinsics.h>).

Every Motif widget has its own header file, so we have to include the
<Xm/PushB.h> file for the push button widget in push.c.

We do not have to explicitly include the Xt header file as <Xm/Xm.h>

does this automatically. Every Motif program will include <Xm/Xm.h> — the
general header for the motif library.

38.5 Compiling Motif Programs

To compile a Motif program we have to link in the Motif, Xt and Xlib
libraries. To do this use: -lXm -lXt -lX11 from the compiler command
line. NOTE: The order of these is important.

38.6. BASIC MOTIF PROGRAMMING PRINCIPLES 549

So to compile our push.c program we should do:

cc push.c -o push -lXm -lXt -lX11

The exact compilation of your Motif programs may require other compiler
directives that depend on the operating system and compiler you use. You
should always check your local system documentation or check with your sys-
tem manager as to the exact compilation directives. You should also check
your C compiler documentation. For example you may need to specify the
exact path to a nonstandard location of include (-I flag) or library (-L
flag) files. Also our push.c program is written with ANSI style function
calls and some compilers may require this knowledge explicitly. Some imple-
mentations of X/Motif do not strictly adhere to the ANSI C standard. In
this case you may need to turn ANSI C function prototyping etc. off.

Having successfully complied you Motif program the command:

push

should successfully run the program and display the PushButton on the
screen.

38.6 Basic Motif Programming Principles

Let us now analyse the push.c in detail. There are six basic steps that nearly
all Motif programs have to follow. These are:

1. Initializing the toolkit

2. Widget creation

3. Managing widgets

4. Setting up events and callback functions

5. Displaying the widget hierarchy

6. Enter the main event handling loop

We will now look at each of these steps in detail.

550 CHAPTER 38. A FIRST MOTIF PROGRAM

38.6.1 Initialising the toolkit

The initialisation of the Xt Intrinsics toolkit must be the first stage of any
basic Motif program.

There are several ways to initialise the toolkit. XtVaAppInitialize() is
one common method. For most of our programs this is the only one that
need concern us.

When the XtVaAppInitialize() function is called, the following tasks
are performed:

• The application is connected to the X display.

• The application is parsed for the standard X command-line arguments.

• Resources are set up.

• A top level window is created — this is returned by the function call
to the Widget data structure top wid in push.c.

XtVaAppInitialize() has several arguments:

Application context (address of) — This is a structure that Xt requires
for operation. For the Motif programs that we will be considering we
do not need to know anything about this, except the need to set it in
our program.

Application class name — A string that is used to reference and set re-
sources common to the application of even a collection of applications.
Chapter 40 deals with many resource setting mechanisms that uses
this class name. In these coming examples note that the class name
has been set to the string, “Push”.

Command line arguments — The third and fourth arguments specify a
list of objects of the special X command line arguments that can be
specified to an X program. The third argument is the list, the fourth
the number in the list. This is advanced X use and is not considered
further in this text. Just set the third argument to NULL and the
fourth to 0. The fifth and sixth arguments &argc and argv contain the
values of any command line argument given. These arguments may
be used to receive command line input of data in standard C fashion

38.6. BASIC MOTIF PROGRAMMING PRINCIPLES 551

(e.g. filenames for the program to read). Note that the command line
may be used (Section 40.4) to set certain resources in X. However these
will have been removed from the argv list if they have been correctly
parsed and acted upon before being passed on to the remainder of the
program.

Fallback Resources — Fallback resources provide security against errors
in other setting mechanisms. Fallback resources are ignored, if re-
sources are set by any other means. Chapter 40 deals with many re-
source setting mechanisms and Section 40.7 gives examples of setting
fallback resources. A fallback resource is a NULL terminated list of
Strings. For now we will simply set it to NULL as no fallback resources
have been specified.

Additional Parameters — a NULL terminated list. These are also used
only for advanced applications, so we will set them to NULL.

38.6.2 Widget Creation

There are several ways to create a widget in Motif:

• There is a specific function for creating each widget.

• There are several convenience functions for generic widget creation and
even creating and managing widgets with a single function call.

We will introduce the convenience functions shortly but for now we will
continue with the simpler first method of widget creation.

In general we create a widget using the function:

XmCreate<widget name>().

So, to create a push button widget we use XmCreatePushButton()

Most XmCreate<widget name>() functions take 4 arguments:

• The parent widget — top wid in push.c.

• The name of the created widget — a string – "Push_Me" – in push.c.

• Command line / Resource list — NULL in push.c.

552 CHAPTER 38. A FIRST MOTIF PROGRAM

• The number of arguments in the list.

The argument list can be used to set widget resources (height, width etc.)
at creation. The name of the widget may also be important when setting a
widget’s resources. The actual resources set depend on the class of the widget
created. The individual Chapters and reference pages on specific widgets list
widget resources. Chapter 40 deals with general issues of setting resources
and explores the methods described here further.

38.7 Managing Widgets

Once a widget has been created it will usually want to be managed.
XtManageChild() is a function that performs this task.

When this happens all aspects of the widget are placed under the control
of its parent. The most important aspect of this is that if a widget is left
unmanaged, then it will remain invisible even when the parent is displayed.
This provides a mechanism with which we can control the on screen visibility
of a widget — we will look at this in more detail in Chapter 43. Note that
if a parent widget is not managed, then a child widget will remain invisible
even if the child is managed.

Let us leave this topic by noting that we can actually create and manage
a widget in one function called XtVaCreateManagedWidget(). This function
can be used to create any widget. We will meet this function later in the
Chapter 40.

38.8 Events and Callback Functions

38.8.1 Principles of Event Handling

When a widget is created it will automatically respond to certain internal
events such as a window manager request to change size or colour and how
to change appearance when pressed. This is because Xt and Motif frees the
application program from the burden of having to intercept and process most
of these events. However, in order to be useful to the application programmer,
a widget must be able to be easily attached to application functions.

Widgets have special callback functions to take care of this.

38.8. EVENTS AND CALLBACK FUNCTIONS 553

An event is defined to be any mouse or keyboard (or any input device)
action. The effect of an event is numerous including window resizes, window
repositioning and the invoking functions available from the GUI.

X handles events asynchronously, that is, events can occur in any order.
X basically takes a continuous stream of events and then dispatches them
according to the appropriate applications which then take appropriate actions
(remember X can run more than one program at a time).

If you write programs in Xlib then there are many low level functions for
handling events. Xt, however, simplifies the event handling task since widgets
are capable of handling many events for us (e.g. widgets are automatically
redrawn and automatically respond to mouse presses). How widgets respond
to certain actions is predefined as part of the widget’s resources. Chapter 50
gives a practical example of changing a widget’s default response to events.

38.8.2 Translation tables

Every widget has a translation table that defines how a widget will respond to
particular events. These events can enable one or more actions. Full details
of each widgets response can be found in the Motif Reference material and
manuals.

An example of part of the translation table for the push button is:

BSelect Press: Arm()

BSelect Click: Activate(), Disarm()

BSelect Press corresponds to a left mouse pressed down and the action
is the Arm() function being called which cause the display of the button to
appear as it was depressed. If the mouse is clicked (pressed and released),
then the Activate() and Disarm() functions are called, which will cause
the button to be reactivated.

Keyboard events can be listed in the table as well to provide facilities
such as hot keys, function/numeric select keys and help facilities. These can
provide short cuts to point and click selections.

Examples include: KActivate — typically the return key, KHelp — the
HELP or F1 key.

554 CHAPTER 38. A FIRST MOTIF PROGRAM

38.8.3 Adding callbacks

The function Arm(), Disarm() and Activate() are examples of predefined
callback functions.

For any application program, Motif will only provide the GUI. The Main
body of the application will be attached to the GUI and functions called from
various events within the GUI.

To do this in Motif we have to add our own callback functions.
In push.c we have a function pushed fn() which prints to standard

output.
The function XtAddCallback() is the most commonly used function to

attach a function to a widget.
It has four arguments:

• The widget in which the callback is to be installed, button in our
example.

• The name of the callback resource. In our example we set
XmNactivateCallback.

• The pointer to the function to be called.

• Client data that may get passed to the callback function. Here we do
not pass any data and it is therefore set to NULL.

In addition to performing a job like highlighting the widget, each event
action can also call a program function. So, we can also hang functions off the
arm, disarm etc. actions as well. We use XmNarmCallback, XmNdisarmCallback

names to do this.
So, if we wanted to attach a function quit() to a disarm for the button

widget, we would write:

XtAddCallback(button, XmNdisarmCallback, quit, NULL);

38.8.4 Declaring callback functions

Let us now look at the declaration of the application defined callback func-
tion. All callback functions have this form.

void pushed_fn(Widget w,

XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

38.9. FINISHING OFF — DISPLAYING WIDGETS AND EVENT LOOPS555

The first parameter of the function is the widget associated with the
function (button in our case).

The second parameter is used to pass client data to the function. We will
see how to attach client data to a callback later. We do not use it in this
example so just leave it defined as above for now.

The third parameter is a pointer to a structure that contains data specific
to the particular widget that called the function and also information about
the event that triggered the call.

The structure we have used is a XmPushButtonCallbackStruct. A Call-
back Structure has the following general form:

typedef struct {

int reason;

XEvent *event;

.... widget specifics ... } Xm<widget>CallbackStruct;

The reason element contains information about the callback such as
whether arm or disarm invoked the call and the event element is a pointer
to an (Xlib) XEvent structure that contains information about the event.

38.9 Finishing off — displaying widgets and

event loops

We have nearly finished our first program. We have two final stages to
perform which every Motif program has to perform. That is to tell X to:

• Display or realize the widgets. This is achieved via the XtRealizeWidget()
function. In push.c we pass the top level widget top wid to the func-
tion so that all child widgets are displayed.

• Enter the main event handling loop. The function XtAppMainLoop(app)

does this. After this call, Xt has control over the program and it is this
that dispatches events that invoke callbacks etc. Note: The applica-
tion code will be idle until a user activates an event.

556 CHAPTER 38. A FIRST MOTIF PROGRAM

38.10 Exercises

Exercise 38.1 Write a Motif program that displays a button labelled “Quit”
which terminates the program when the button is depressed with the left mouse
button.

Chapter 39

Widget Basics

In the last Chapter we introduced some basic Motif programming concepts
and introduced one specific widget, the PushButton, used in the example
program developed. There are many other classes of widgets defined in Motif.
Motif widgets are provided to perform a wide variety of common GUI tasks.
This Chapter overviews the classes of Motif widgets. Following Chapters go
on to study individual widgets in detail.

39.1 Widget Classes

The organisation of a large system of GUI components in Motif can be quite
complex. In order to aid the design and understanding of Motif various
widget classes have been constructed. Each class can be categorised by a
broad functionality, at a variety of levels. Motif defines a hierarchy of widget
classes (Fig 39.1) and a widget will inherit properties from a higher class
in the widget hierarchy (Section 39.5). Some levels of the hierarchy have
strong relationships with Xt Intrinsics since widgets are actually created in
this toolkit.

The levels of the hierarchy and a broad functionality of each level are:

Core — The top of the hierarchy comes from Xt intrinsics. This superclass
defines background, size and position properties that are common to
all widgets.

XmPrimitive — The superclass of all primitive widgets. Primitive widgets
are the basic building blocks of any Motif GUI (See Section 39.1.3

557

Core

Composite XmPrimitive

Shell Constraint

XmManager

Primitive Widgets

Manager Widgets

558 CHAPTER 39. WIDGET BASICS

Figure 39.1: Widget Hierarchy

below).

Composite — The superclass of containers for widgets. Two sub-classes of
the Composite class are defined:

Shell widgets control the interfacing of Motif with the window man-
ager.

Constraint widgets are concerned with the organisation (positioning,
alignment, etc.) of widgets contained within them. XmManager
is a subclass of the constraint widget class. Manager widgets are
discussed further in Section 39.1.3 below.

39.1.1 Shell Widgets

All widgets are contained in a shell widget. This is usually the top level
widget. The primary function of a shell widget is as an interface to the
window manager.

The application shell is normally the top level for an application and is
created by XtVaAppInitialze() or related functions.

There are two other shells:

39.1. WIDGET CLASSES 559

• The Override shell is used for pop-up menus that must be at the top-
level. To achieve this, the window manager must usually be bypassed.
Consequently, the override shell is not often used by Motif programs.

• The Transient shell is used for dialogs. However Motif repackages this
shell so that dialogs become a subclass widget.

39.1.2 Constraint Widgets

Constraint widgets are concerned with the positioning and alignment of wid-
gets contained within them. XmManager is a (Motif) subclass of the con-
straint widget specifying general manager facilities concerned with,for exam-
ple, callbacks and highlight colour.

39.1.3 Construction widgets

Motif defines two basic classes of widgets that provide the basic building
blocks of any GUI: primitive and manager. The majority of the remainder
of this text is devoted to these widget classes.

Within each of these basic classes, several different sub-classes of widget
are defined.

The broad function of each class is as follows:

Primitive widgets are designed to work as a single entity. They provide the
building blocks with which we assemble our GUI. The PushButton is
an example of a primitive widget class.

Manager widgets are designed to be containers and may have primitive
and manager widgets placed under their control. The main function
of manager widgets is to help control the design of a GUI. Manager
widgets control how we organise a GUI by prescribing standard, or
uniform, layouts (such as the MainWindow widget, Chapter 42) or
providing widgets that let us place widgets in an ordered fashion (e.g.
RowColumn or Form widgets, Chapter 41).

Following Chapters will give details and examples of all types of widgets.
For the remainder of this chapter we will give a brief introduction to these
widgets.

560 CHAPTER 39. WIDGET BASICS

39.2 Primitive Widgets

The following primitive widgets are defined in Motif:

ArrowButton — A button with an orientatable arrow (Fig. 39.2). This
button is defined and used in a similar fashion to the PushButton
widget. An example of the ArrowButton can be seen in the arrows.c

program in Chapter 41.

Figure 39.2: The Four Orientations of the ArrowButton Widget

Label — A widget which has text or an image (Pixmap) associated with it
(Fig 39.3). The basic Label widget, as its name implies, does not do
anything interactively. Its sole purpose is to help facilitate visual aids
within the GUI. The Label widget does, however, have four (interac-
tive) sub-classes of button:

Figure 39.3: A Label Widget

PushButton — A button that can be labelled with a String (Fig 38.1).
We have already met this widget in our first program, push.c

(Chapter 38).

DrawnButton — A button with which an icon (Pixmap) can be as-
sociated (Fig. 39.4).

39.2. PRIMITIVE WIDGETS 561

Figure 39.4: A DrawnButton Widget

CascadeButton — A button usually associated with a PullDown
menu (Fig. 42.2). This widget is described in association with
PullDown menu widgets in Chapter 42.

ToggleButton — A button that displays text or graphics together
with a graphic indicator of the state of the ToggleButton. The
ToggleButton has two states: either on or off. Toggle buttons
may be grouped together to provide a variety of configurations.
RadioBox are groups of ToggleButtons, where only one button can
be selected at a time. A CheckBox, on the other hand, allows any
number of buttons to be selected at a given time (Fig. 39.6). Ex-
amples of both configurations of ToggleButton are given in Chap-
ter 48.

Scrollbar — A widget that allows the contents of a window to be displayed
in a reduced area where the user can scroll the window to view hidden
parts of the window. This widget can be defined and used explicitly
in Motif programs (Chapter 47). Frequently, scrolling control will be
defined when the ScrollBar (Fig. 39.7) is compounded with another
widget. Chapters 44 and 50 discuss examples of the Scrollbar used in
conjunction with Text (Fig. 39.10) and DrawingArea widgets respec-
tively.

Separator — A widget used to separate items in a GUI to aid visual display.
Fig. 39.8 illustrates the use of the Separator widget to delineate items
(Load and Quit) in a single pulldown menu.

List — A widget that allows selection from a list of text items (Fig. 39.9).
This widget is described in Chapter 45.

562 CHAPTER 39. WIDGET BASICS

Figure 39.5: A CascadeButton Widget and Associated PullDown Menu

Figure 39.6: A RadioBox and CheckBox ToggleButton Widget Configuration

39.2. PRIMITIVE WIDGETS 563

Figure 39.7: A Scrollbar Widget

Figure 39.8: A Separator Widget Between Two Menu Items

564 CHAPTER 39. WIDGET BASICS

Figure 39.9: A List Widget

Text — A complete text editor widget (Fig. 39.10). This widget provides
default callback resources for text selection, editing, cutting and past-
ing of text as well the editing style of the widget. Additional callback
resources can easily be attached to extend and customise the text wid-
get for many text editing applications. Chapter 44 addresses all such
issues.

TextField — A single-line text editor. This is basically a Text widget which
is limited to a single-line of text entry. The TextField widget has many
uses in GUI design where simple input is required. For example, when a
file name needs to specified as input in a GUI or a key word is required
for some search.

Motif 2.0 also prescribes another form of text widget, CSText. This
widget provides the same facilities a the Text widget but uses an alternative
(compound) text string representation, XmString (Section 39.6), which is
capable of supporting multiple fonts .

39.3 Gadgets

There may be occasions in Motif programming when we want to have the
properties of a primitive widget but do not wish to worry about the man-
agement of the window properties of the widget. Motif has to manage each
created widget’s window and associated resources. If we have several widgets
within our interface this could cause complications for our application.

To attempt to alleviate many of these problems Motif provides Gad-
gets. Gadgets are basically windowless widgets and, therefore, require less

39.3. GADGETS 565

Figure 39.10: A Text Widget

Figure 39.11: A TextField Widget

566 CHAPTER 39. WIDGET BASICS

resources than a widget. Control of the gadget is the responsibility of the
parent of the gadget.

Not all widgets have corresponding gadgets. The following gadgets are
available: ArrowButton, Label and Separator. They behave in a similar
manner to their corresponding widgets.

We will not consider gadgets further in this book since our programs are
relatively simple and the relevance of their use cannot be effectively illus-
trated. The primary use of gadgets is when there is a real need to save
memory on the X server or within the application. Gadgets may actually
increase computer processor load since X finds some events more difficult to
track within them. Gadgets are basically an artefact from earlier versions
of Motif that were developed when window construction and management
was more critical. Later versions of X have optimised the X server and cou-
pled with the fact that computer power has increased and memory is less
expensive, the use of gadgets is not as important as it once used to be.

39.4 Manager Widgets

Manager widgets are the basic Motif widgets for constructing and organising
our interfaces in Motif. The following manager widget classes are available:

Frame — A widget that provides an embossed effect to the child widget it
contains (Fig 39.4). This is the simplest manager widget. An example
of this widget is given in frame.c (see Exercise 39.1).

Figure 39.12: A Frame Widget

ScrolledWindow — A widget that allows scrolling of its child widget.
Fig. 39.10 illustrates a common example of this: a ScrolledText widget

39.4. MANAGER WIDGETS 567

that has a Text widget capable of being scrolled in a horizontal and
vertical direction.

One common subclass of the ScrolledWindow widget is the MainWin-
dow widget:

MainWindow — A typical top level container widget for an applica-
tion. This widget provides a common, uniform look and feel for any
GUI (similar to MS Windows look and feel (Section 36.1)). The
MainWindow widget has well defined mechanisms for the provi-
sion of Menubars, Scrollbars and command and message windows
(Fig. 39.13). Chapter 42 describes the major aspects of MainWin-
dow programming.

DrawingArea — A widget where graphics can be displayed (Fig. 39.14).
Note: Motif does not provide any graphics functions, Xlib provides
all the graphic drawing and manipulation routines. Graphic program-
ming and the interface with Xlib is one of the more difficult aspects
of Motif to understand. Chapters 49—51 discuss these more advanced
issues of programming and show how the DrawingArea widget is used
in practice.

PanedWindow — Allows vertical tiling of child widgets. The use of this
widget is not as common as other widgets and we will not address its
use on this particular journey through Motif.

Scale — This widget provides a slider object that can be used for user input
(Fig. 39.4). Chapter 46 describes the Scale widget.

RowColumn — A widely used widget that can lay out widgets in an orderly
2D fashion. Chapter 41 describes this widget.

BulletinBoard — There are two sub-classes of this widget:

Form — A widget similar in use to RowColumn but allows greater
control of the placement and sizing of widgets. Chapter 41 com-
pares and contrasts the Form and RowColumn widgets.

Dialog — There are two forms of dialog:

• a MessageBox which simply gives information to the user
(Fig. 39.16) and

568 CHAPTER 39. WIDGET BASICS

Figure 39.13: A MainWindow Widget

39.4. MANAGER WIDGETS 569

Figure 39.14: A DrawingArea Widget

Figure 39.15: A Scale Widget

570 CHAPTER 39. WIDGET BASICS

• a SelectionBox which allows interaction with the user. Motif
provides two sub-classes of the SelectionBox widget: a Com-
mand widget for command line type input and a FileSelec-
tionBox for directory/file selection (Fig. 39.17).

Figure 39.16: A MessageBox (ErrorDialog) Widget

Dialog widgets, as the name implies, provide the direct line of
communication between the user and the application. In the case
of the MessageBox widgets this could simply be the program in-
forming the user of some event or action. There are several pre-
scribed classes of MessageBox widgets that are associated with a
special event. For example there are WarningDialog, Information-
Dialog and ErrorDialog widgets (Fig. 39.16). Also some form of
prescribed user interaction is provided by the Command and File-
SelectionBox widgets. Motif also provides base MessageBox and
SelectionBox widgets so that the programmer can assemble cus-
tomised Dialogs. However, Motif programming style (Chapter 52)
suggests that wherever appropriate the prescribed Dialog widgets
should be used to provide uniformity across applications. Chap-
ter 43 deals with many aspects of Dialog widget programming and
usage.

39.4.1 Motif 2.0 Widgets

Motif 2.0 defines a few new Manager widgets:

ComboBox — A widget that combines the capabilities of a single line
TextField and an XList.

39.4. MANAGER WIDGETS 571

Figure 39.17: A FileSelectionBox Widget

572 CHAPTER 39. WIDGET BASICS

IconGadget — A widget that can be used to display Icons.

Container — A widget that manages IconGadget children.

Notebook — A widget that organizes children into pages, tabs, status area
and page scroller.

Scale (thermometer) — A modified version of the Scale widget with new
resources added for thermometer behavior (see Chapter 46).

SpinBox — A widget that manages multiple traversable children.

The use of many of these new widgets is fairly advanced and, except where
indicated, these widgets are not dealt with further in this introductory text.

39.5 Widget Resources

Each widget has a number of resources. These control many features of the
widget such as the foreground and background colours, size etc.. A particular
widget will have specialised resources such as callback resources which define
how the widget responds to an event etc..

Every widget is documented in the Motif Reference Manual which gives
a complete list of the resources that a particular widget employs. When
discussing individual widgets we will only consider the important resources
that define the main characteristics of the widget concerned. The following
Chapter addresses how widget resources can be set and altered for a given
application.

There is a hierarchy of widgets (Fig 39.1) and a widget will inherit re-
sources from a higher resource class in the widget hierarchy.

The levels of the hierarchy and related widget resources are:

Core — This superclass gives background, size and position resources that
are common to all widgets.

XmPrimitive — The superclass of all primitive widgets defines resources
related areas such as foreground and highlight colour.

Composite — The superclass of containers for widgets has two sub-classes:

39.6. STRINGS IN MOTIF 573

Shell widgets have resources related to interfacing with the window
manager.

Constraint widgets have resources that are concerned with the posi-
tioning and alignment of widgets contained within.

XmManager is a subclass of constraint and specifies general man-
ager widget resources such as callbacks and highlight colour.

Widget level — Resources particular to a specific widget.

39.6 Strings in Motif

Motif programs (in C/C++) will typically need to use both types of string
available:

• A data type String — A “normal” C string (an array of characters).
However, for convenience Motif has defined String as a standard Motif
Data Type. Clearly, as Motif programs are usually written in C, this
data type will be the main means of communication between a program
and the standard input and output mechanisms.

• A data type XmString — Motif internal string data structure. When
Motif needs to draw strings on the display, to achieve this more infor-
mation is needed than simply the array of characters. Consequently,
Motif defines an XmString with a more complicated structure. Most
widgets can have a label resource associated with them, which is usu-
ally an XmString data type. It is rarely that the Motif programmer
will need to know the internal structure of an XmString.

Motif provides a number of functions to convert a String into an XmString

or vice versa:

XmStringCreateLocalized(),XmStringCreateLtoR(), XmStringGetLtoR(),

XmStringCompare(), XmStringConcat(), XmStringCopy(), etc. are com-
mon examples. Many behave in a similar manner to their C standard library
string handling function counterparts.

Their use is fairly straightforward — the reference manuals should be
consulted for more details.

574 CHAPTER 39. WIDGET BASICS

39.7 Exercises

Exercise 39.1 Run the following program (frame.c) and note the differ-
ence in appearance and interaction of the widget with the push.c program
(Chapter 38). Note the effect of the XmNshadowType resource. What other
settings are available for this resource and what effect do they have?

/* frame.c --

mount pushbutton of push.c in a frame widget

*/

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Frame.h> /* header file for frame stuff */

/* Prototype callback */

void pushed_fn(Widget , XtPointer ,

XmPushButtonCallbackStruct *);

main(int argc, char **argv)

{

Widget top_wid, button, frame;

XtAppContext app;

top_wid = XtVaAppInitialize(&app, "Push", NULL, 0,

&argc, argv, NULL, NULL);

frame = XtVaCreateManagedWidget("frame",

xmFrameWidgetClass, top_wid,

XmNshadowType, XmSHADOW_IN,

NULL);

button = XmCreatePushButton(frame, "Push_me",

NULL, 0);

39.7. EXERCISES 575

XtManageChild(button);

XtAddCallback(button, XmNactivateCallback, pushed_fn, NULL);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void

pushed_fn(Widget w, XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

{

printf("Don’t Push Me!!\n");

}

Exercise 39.2 Rewrite the frame.c program (Exercise 39.1) so that it dis-
plays a button labelled “Quit Frame” which terminates the program when the
button is depressed with the left mouse button.

Exercise 39.3 Write a program that inputs the string “X Convert Me!!” as
a standard String data type and converts the string to an XmString data
type. The program should also extract the substring ”Convert Me!!” from the
XmString and store it as a String.

576 CHAPTER 39. WIDGET BASICS

Chapter 40

Widget Resources

Every Motif widget has a number of resources that control or modify its be-
haviour and appearance. Depending on the widget’s class, resources control
aspects such as the size of the widget, the colour of the widget, whether scroll
bars should be displayed and many other properties.

When a widget is created it inherits resources from a higher widget class
and also creates its own (Section 39.5). All these resources have default
values. It would be tedious to specify 30 plus resource values each time we
create a widget.

However the application programmer or user may want to customise one
or two resources in order to control a widget’s size in a GUI or its dimensions
on the screen, for example.

Throughout this Chapter we will use the PushButton program, push.c,
developed in Chapter 38 as a case study and we shall see how we alter the
size (width and height) of the button. The resource variables XmNwidth and
XmNheight hold these values.

There are a few ways in which we can alter a particular resource’s value.

40.1 Overriding Resource Defaults

Broadly, there are two methods of altering resources in Motif:

• External resource files — resource values are set and stored in particular
files.

577

578 CHAPTER 40. WIDGET RESOURCES

• Hard Coding in the program — resource values are set in the program
code.

The advantage of using external files is that it allows the user to customise
Motif applications without having to recompile the program. The user may
never need to access the source code. Applications may also be customised
each time they are run. Due to the wide variety of possible systems running
X and a vast range of user needs this can be a useful feature. For example,
screen resolutions vary a great deal from device to device and what may be a
visually adequate size for a widget on one display may be totally inadequate
on another. Also certain resources, particularly colour displays, may vary
substantially across different platforms.

There are four basic ways to externally customise an application:

User resource file — a file placed in the users home directory called .Xdefaults.

Class resource file — a single application can have a special file reserved
for its particular resource setting commands.

Command line parameters — a widget’s resources can be specified when
the program is actually run.

RESOURCE MANAGER/ SCREEN RESOURCES properties —
A standard X Window program, xrdb, can be used to set certain ap-
plication resources.

One problem with the external setting of resource values occurs if it has
already been hard-coded, since hard-coded resource values have a higher
precedence than all externally set resources.

There are some advantages to hard-coding resource values:

• It may be essential to prevent a user changing particular resource val-
ues. For example, changing certain widget sizes may totally disorganise
the GUI design and display.

• Resource files require specific names and locations that may be hard
to install and maintain correctly. File and directory permissions may
occasionally be set so as to make the files unreadable. Files and direc-
tories sometimes get deleted or moved.

40.2. USER RESOURCE (.XDEFAULTS) FILE 579

• Unix environment variables sometimes cause conflicts with external
resource value settings.

A trade-off is sometimes required between applying hard-coding and al-
lowing user freedom.

There is one other internal coding method for changing resources, by
using what are called fallback resources. As their name implies fallback re-
sources are set only if a resource has not been set by any of the above means.
Fallbacks are therefore useful for setting alternatives to the default Motif
resource settings.

The remaining sections in this Chapter detail how each individual re-
source setting method may be used.

40.2 User Resource (.Xdefaults) File

When Motif initialises the application it looks for the .Xdefaults file in your
HOME directory. The .Xdefaults file is a standard text file, where each line
may contain a resource value setting, a blank line or a comment denoted
by an exclamation mark (!). This file contains directives that can reset any
resource for any application, using the following method:

• The resources relating to widgets created within a particular applica-
tion will be referred to by the application class name set when the
XtVaAppInitialize() is called (Section 38.6.1). The application class
name was set to “Push” in our example. Application names can also be
used to refer to resources, but this is not as common as the class name.
The application name is the name of the compiled program, push in
this example.

• The resource name for a particular widget will have been specified
in the program via the name argument of the widget creation func-
tion (Section 38.6.2). The name of the PushButton in our example is
“Push me”. Note: this is not the variable name but the name argument
in the create widget function.

• The resource value is then accessed via:

application class name.widget name.resource name.

580 CHAPTER 40. WIDGET RESOURCES

Note that when referring to resource names outside a program, the XmN
part of the resource is dropped from the resource name. So, the width
and height of the PushButton widget in the push.c application are
referred to by:

Push.Push me.width or Push.Push me.height

• The directive in the file to set the width and height of the PushButton
widget of push.c is of the form:

! Comment: Set push application, PushButton dimensions

Push.Push_me.width: 200

Push.Push_me.height: 300

where 200 and 300 are the widget’s new dimensions. Note that there
is a colon separating the resource name and its new value.

Wild card (∗) settings are also allowed. Therefore to set all widgets
called “Push me” width and height you could write:

! Comment: wildcard setting of widget Push_me dimensions

*Push_me.width: 200

*Push_me.height: 300

Motif widget class names may also be used. This will set all widgets of a
given class and application to the same values so care should be taken. An
alternative method to set the width and height of the PushButton of push.c
is to use the Motif XmPushButton class name to set its resources via:

! Comment: Set push application,

! XmPushButton widget class dimensions

Push*XmPushButton.width: 200

Push*XmPushButton.height: 300

40.3. CLASS RESOURCE FILE 581

40.3 Class Resource File

The class resource file relates to a particular application, or class of appli-
cations. The application class name created with XtVaAppInitialize() is
used to associate a class resource file with an application. Thus, the push.c

program has an application class “Push” and therefore the application would
have a class file named Push. The class resource files are normally stored in
the user’s home directory.

It is possible, and quite practical, to associate several applications with
a single class name (by setting the appropriate XtVaAppInitialize() argu-
ment) and therefore with a single class resource file. This would allow for one
class file to control the resource setting for many usually similar applications.
Individual applications can again be referred to by their (compiled) program
name, but this is not common.

The setting of individual resource values is as described for the .Xdefaults
file, except that the wild card matching may not have such far reaching con-
sequences. Therefore, to set the dimension of the PushButton in push.c we
could write:

! Class Resource File for push.c called "Push"

! Store in HOME directory

*Push_me.width: 200

*Push_me.height: 300

40.4 Command Line Parameters

Resource values can be set with X window command line parameters. Some
common resources can be easily referred to and a general command exists
to set any resource value. The advantage of using the command line is
that resource values can be altered each time the program is run. This is
ideal if you only change a resource infrequently, or you are experimenting
to find suitable resource values. However, setting resource values in this
fashion regularly involves a lot of typing, so alternative methods should be
considered.

582 CHAPTER 40. WIDGET RESOURCES

Common resource values have special abbreviations for command line
operation. These are listed in Table. 40.1

Option Data Passed Use
-bg background colour Sets background colour
-fg foreground colour Sets foreground colour
-geometry WidthxHeight+ Sets window dimensions

Xorigin+Yorigin and location
iconic Starts application as

an icon
-name Application name Sets instance name

not class
-title Application title Sets window title bar name
-display Display name Sets X server connection
-xnllanguage language Sets internationalisation

locale
-xrm X resource manager string Set any other resources

Table 40.1: Command Line Resource Options

The foreground and background colours are referred to by the com-
mon colour name database which is detailed in the reference manuals (Sec-
tion 51.4). So to set the background to red for the push.c program. We
would run the program from the command line as follows:

push -bg red

The -geometry option sets the windows dimension and position. It has
4 parameters:

WidthxHeight+Xorigin+Yorigin

where Width, Height, Xorigin and Yorigin are integer values sepa-
rated by x or +.

Therefore to set the window size to 300 by 300 with the origin at top left
corner run the program from the command line with the following arguments:

push -geometry 300x300+0+0

40.5. THE RESOURCE MANAGER DATABASE 583

You can omit either the size, WidthxHeight, or position, +Xorigin+Yorigin
parameters in order to either size or position a window.

Therefore to set the window size to 500 by 500 and to allow the window
manager to place it somewhere type:

push -geometry 500x500

and to explicitly position a window and use the default dimension type:

push -geometry +100+100

The -xrm option allows the user to set resources that are not otherwise
facilitated from the command line. Following the -xrm option you supply a
string that contains a resource setting similar to a single line resource value
setting in a user or class resource file (including wildcards).

Therefore to change the highlight colour of the PushButton in push.c we
could type:

push -xrm "Push*highlightColor: red"

where Push is the application class name and (XmN)highlightColor is
the resource being set to red.

Multiple settings of resource values require -xrm calls for each resource
value setting. Therefore to set the highlight and foreground colours for the
above PushButton we could type:

push -xrm "Push*highlightColor: red" \

-xrm "Push*foreground: blue"

40.5 The Resource Manager Database

The X system provides a program, xrdb, that allow you to set up and edit
resources stored on the root window of a display. The data is stored in
RESOURCE MANAGER property and, also, in SCREEN RESOURCES property if mul-
tiple screens are supported. For the sake of simplicity we will assume that we
are only working with a single screen and therefore do not need to consider
the SCREEN RESOURCES property further.

When xrdb is run it reads a .Xresources file from which it creates the
RESOURCE MANAGER property. The .Xresources file is usually stored in the
users home directory. The .Xresources file can contain similar resource

584 CHAPTER 40. WIDGET RESOURCES

value settings as described for the .Xdefaults file and class resource file.
However, xrdb can actually run the .Xresources or an other input file through
the C preprocessor, so C preprocessor syntax is allowed in the .Xresources
file. Several macros are defined so that constructs like #ifdef and #include

may be used. One common example of their use is to set separate colour
and monochrome resources for different screen settings. The macro COLOR

is defined if a colour screen is present for a given display. Therefore, an
.Xresources file could look for this and take appropriate actions:

#ifdef COLOR

! Colour screen detected set colour resources

Push*foreground: RoyalBlue

Push*background: LightSalmon

#else

! must be a monochrome screen

Push*foreground: black

Push*background: white

#endif

For further information on xrdb readers should consult the X Window
system user reference manuals, or online manual documentation.

One advantage of this method of setting resources is that it allows for
dynamic changing of defaults without editing files. In fact, the setting of
resources via files may not work on X terminals with limited computing
power, or when programs are run on multiple machines (since other machines
may not have the appropriate .Xdefaults or class resource files). Having all
the resource information in the server means that the information is available
to all clients.

40.6. HARD-CODING RESOURCES WITHIN A PROGRAM 585

40.6 Hard-coding Resources Within a Pro-

gram

There are two basic methods for setting resource values from within a C pro-
gram. The first method described below is dynamic, meaning that resources
can be set and altered at any occasion from within the program. Another
method allows resources to be set when a widget is created. Both these
methods would override other methods of resource setting.

40.6.1 Dynamic control of resources

Using this method we can change the values of a resource at any time from
within a program. Typically two functions are employed to do this:

• We use XtSetArg() to place resource values in an Argument list.

• XtSetValues() then sets these values in the list for a given widget. We
need to specify the widget whose resources we wish to set, the arg list
and the number of arguments in the list as parameters to this function.

Therefore, to set the size of the button resources in push.c we would use
XtSetArg() to set width and height values in the arg list and then set the
arg values for the button widget as follows:

Arg args[2]; /* Arg array */

int n = 0; /* number arguments */

XtSetArg(args[n], XmNwidth, 500);

n++;

XtSetArg(args[n], XmNwidth, 750);

n++;

XtSetValues(button, args, n);

A related function XtGetValues() exists to find out resource values
(Chapters 45 and 47 contain some examples of XtGetValues() in use).

A convenience function XtVaSetValues() actually combines the above
two operations and make programming a little less tedious. XtVaSetValues
sets the resource value pair for a given widget using a NULL terminated list
much like XtVaCreateManagedWidget() (see below).

586 CHAPTER 40. WIDGET RESOURCES

Therefore, we can achieve the same result as above for setting the button
in push.c via:

XtSetValues(button, XmNwidth, 500, XmNwidth, 750, NULL);

40.6.2 Setting resources at creation

We can set resource values at creation. This is common if we wish to per-
manently override a default resource value. There are a couple of methods
we can adopt to achieve this.

We can set an Arg argument list using XtSetArg() as in the previous
section and then specify the arg list and the number of arguments in the
XmCreate...() function. Therefore, we could amend the push.c program
to set the resources at initialisation of the button widget by inserting the
following code:

Arg args[2]; /* Arg array */

int n = 0; /* number arguments */

......

XtSetArg(args[n], XmNwidth, 400);

n++;

XtSetArg(args[n], XmNwidth, 600);

n++;

button = XmCreatePushButton(top_wid, "Push_me", args, n);

There is an alternative method which lets us set resource values and create
a managed widget in one function call. The function is XtVaCreateManagedWidget()
and is a convenient way to program such tasks. Note that this is a general
function that can create many different classes of widget. This function is
preferred for the creation of widgets due to its uniformity of syntax/structure
and its brevity in performing more than one task. Where appropriate all wid-
gets will subsequently be created using this function.

Let us look a the syntax of this function:

40.7. FALLBACK RESOURCES 587

Widget XtVaCreateManagedWidget(String name,

WidgetClass widget_class, Widget parent,

... resource name/value pairs ...,

NULL)

where:

• name specifies the name for the created widget.

• widget class specifies the class of the widget.

• parent is the parent widget.

• There then follows a NULL terminated list of pairs of resource name and
values.

The function returns a widget of the class specified.
Therefore, to create a managed PushButton widget with dimensions 400

by 300 we would type:

button = XtVaCreateManagedWidget("Push_me",

XmPushButtonWidgetClass, top_wid,

XmNwidth, 400,

XmNheight, 200,

NULL);

Here, XmPushButtonWidgetClass is the class identifier of a PushButton.
Other widget types should be fairly obvious.

40.7 Fallback Resources

Fallback resources are used as a mechanism where the specified resource value
settings only take effect if all other resource setting methods have failed.
Fallback resources are passed as arguments to the XtVaAppInitialize()

function (Section 38.6.1). The fallback resources are passed as a NULL ter-
minated list of Strings to this function. Each String specifies a resource
value setting similar to those developed for the user and class resource files.
Therefore, to set fallback resources for the push.c program we could include
the following code:

588 CHAPTER 40. WIDGET RESOURCES

#include <Xm/Xm.h>

#include <Xm/PushB.h>

/* Define fallback_resources */

static String fallback_resources[] = {

"*width: 300",

"*heigth: 400",

NULL /* NULL termination}

};

main(int argc, char **argv)

{

Widget top_wid, button;

XtAppContext app;

top_wid = XtVaAppInitialize(&app,

"Push", /* class name */

NULL, 0, /* NO command line options table */

&argc, argv, /* command line arguments */

fallback_resources, /* fallback_resources list */

NULL);

.........

Chapter 41

Combining Widgets

The programs we have studied so far have used a top level (application) shell
widget and a single child widget (e.g. PushButton).

Most Motif programs will need to employ a combination of many widgets,
in order to produce an effective GUI. For example, a text editor application
usually requires a combination of buttons, menus, text areas etc.

In this Chapter we will look at how we arrange widgets and furthermore
explicitly position widgets within a GUI.

41.1 Arranging and Positioning Widgets

We should now be familiar with the concept of a tree of widgets which is
formed by creating widgets with other widgets as parents. When we combine
widgets, we simply carry this principle further. Our major concern when
combing widgets is to place them in some order and some relative position,
with respect to other widgets. Usually we do not want widgets to obscure
each other. Care must also be taken with the organisation and positioning
of widgets when the window containing the widgets is resized. In particular:

• Is it practical for the particular widget to be resized?

• Can the relative positioning between widgets be preserved as a result
of the resize?

As we shall discover shortly, Motif provides a great deal of flexibility in the
behaviour of widgets in such circumstances. The GUI programmer should

589

590 CHAPTER 41. COMBINING WIDGETS

carefully consider the means of interaction most suitable for the particular
application and then select the most appropriate Motif widget and means of
organisation to achieve this.

The management of widget geometry is taken care of by certain manager
widgets. The RowColumn and Form widgets are the most common widgets
used for arranging widgets.

Consider a simple multiple widget program output (Fig 41.1).

Figure 41.1: Simple Multiple Widget Layout

This layout is usually specified by the widget tree structure illustrated in
Figure 41.2.

The application shell is still be the top level, below this there would be
a RowColumn or Form widget which would contain some primitive widgets
(e.g. PushButtons) and define exactly how they are to be positioned relative
to each other. Several possible arrangements are available and the format
of each depends on the context of the application (e.g. how the widgets are
displayed if the window size is increased or decreased).

We will now consider how we can arrange widgets by considering the
RowColumn and Form widgets.

41.2 The RowColumn Widget

This the simplest widget in terms of how it manages the positioning of its
child widgets. Widgets are positioned as follows:

Application Shell

RowColumn/Form

Button Button Button Button

41.2. THE ROWCOLUMN WIDGET 591

Figure 41.2: Multiple Widget Tree

• Consecutively created child widgets are layed out in a horizontal or
vertical order depending on how the XmNorientation resource is set.
XmVERTICAL is the default value, XmHORIZONTAL is the alternative value.

• To specify the number of rows/columns, set the XmNnumcolumns re-
source. This sets the number of columns if the XmNorientation is
XmVERTICAL, otherwise it specifies the number of rows.

• Widgets must be the same size, otherwise the RowColumn widget will
force widgets to be the same size. The resizing of widgets is controlled
by the XmNpacking resource:

– If the packing is set to PACK TIGHT (default), then columns (rows if
XmHORIZONTAL orientation) are forced to have the same width.

– PACK COLUMN makes all children the same size.

– PACK NONE disables any attempt to make the children regular in
size.

Let us now look at two programs that illustrate the above principles
by studying how we achieve the outputs illustrated in Fig. 41.1 (rowcol1.c
program) and Fig. 41.3 (rowcol2.c program). As can be seen in these figures,
rowcol1.c lays 4 PushButtons vertically (default) whereas rowcol2.c sets
the XmNorientation resource for a horizontal layout of the same 4 buttons.
The output of the programs are illustrated in Fig 41.3.

The rowcol1.c program is as follows:

#include <Xm/PushB.h>

#include <Xm/RowColumn.h>

592 CHAPTER 41. COMBINING WIDGETS

Figure 41.3: The rowcol2.c program output

main(int argc, char **argv)

{

Widget top_widget, rowcol;

XtAppContext app;

top_widget = XtVaAppInitialize(&app, "rowcol", NULL, 0,

&argc, argv, NULL, NULL);

rowcol = XtVaCreateManagedWidget("rowcolumn",

xmRowColumnWidgetClass, top_widget, NULL);

(void) XtVaCreateManagedWidget("button 1",

xmPushButtonWidgetClass, rowcol, NULL);

(void) XtVaCreateManagedWidget("button 2",

xmPushButtonWidgetClass, rowcol, NULL);

(void) XtVaCreateManagedWidget("button 3",

xmPushButtonWidgetClass, rowcol, NULL);

(void) XtVaCreateManagedWidget("button 4",

xmPushButtonWidgetClass, rowcol, NULL);

XtRealizeWidget(top_widget);

XtAppMainLoop(app);

}

41.3. FORMS 593

The rowcol1.c program does not really do much. It provides no callback
functions to perform any tasks. It simply creates a RowColumn widget,
rowcol, and creates 4 child buttons with this. Note that rowcol is a child
of app — the application shell widget. The <Xm/RowColumn.h> header file
must also be included.

The rowcol2.c program is identical to rowcol1.c, except that the
XmNorientation resource is set at the rowcol widget creation with:

rowcol = XtVaCreateManagedWidget("rowcolumn",

xmRowColumnWidgetClass, top_widget,

XmNorientation, XmHORIZONTAL,

NULL);

41.3 Forms

Forms are the other primary geometry manager widget. They allow more
complex handling of positioning of child widgets and can handle widgets of
different sizes.

There is more than one way to arrange widgets within a form. We will
look at three programs form1.c, form2.c and form3.c that achieve similar
results but illustrate different approaches to attaching widgets to forms. All
three programs produce initial output illustrated in Fig. 41.4 however if the
window is resized, the different attachment policies have a different effect
(Figs 41.5, 41.6 and 41.7).

Figure 41.4: form1.c initial output

41.3.1 Simple Attachment —form1.c

Widgets are placed in a form by specifying the attachment of widgets to edges
of other widgets. The edges of widgets can either be on the form widget itself,

594 CHAPTER 41. COMBINING WIDGETS

or on other child widgets. Edges are referred to by top, bottom, left and right
attachments. A widget has resources, such as XmNtopattachment to attach
a widget, to an appropriate edge:

• To attach a widget to the parent form, set the resource value XmATTACH FORM.

• To attach a widget to another widget, set the resource value XmATTACH WIDGET.

• The widget that an attachment is made to must also be specified, by
setting the resource XmNtopWidget to the appropriate widget.

Let us look at how all this works in the form1.c program:

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Form.h>

main (int argc, char **argv)

{ XtAppContext app;

Widget top_wid, form,

button1, button2,

button3, button4;

int n=0;

top_wid = XtVaAppInitialize(&app, "Form1",

NULL, 0, &argc, argv, NULL, NULL);

/* create form and child buttons */

form = XtVaCreateManagedWidget("form",

xmFormWidgetClass, top_wid, NULL);

button1 = XtVaCreateManagedWidget("Button 1",

xmPushButtonWidgetClass, form,

/* attach to top, left of form */

XmNtopAttachment, XmATTACH_FORM,

41.3. FORMS 595

XmNleftAttachment, XmATTACH_FORM,

NULL);

button2 = XtVaCreateManagedWidget("Button 2",

xmPushButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, button1, /* top to button 1 */

XmNleftAttachment, XmATTACH_FORM, /* left, bottom to form */

XmNbottomAttachment, XmATTACH_FORM,

NULL);

button3 = XtVaCreateManagedWidget("Button 3",

xmPushButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_FORM, /* top, right to form */

XmNrightAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_WIDGET, /* left to button 1 */

XmNleftWidget, button1,

NULL);

button4 = XtVaCreateManagedWidget("Button 4",

xmPushButtonWidgetClass, form,

XmNbottomAttachment, XmATTACH_FORM, /* bottom right to form */

XmNrightAttachment, XmATTACH_FORM,

XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, button3, /* top to button 3 */

XmNleftAttachment, XmATTACH_WIDGET,

XmNleftWidget, button2, /* left to button 2 */

NULL);

XtRealizeWidget (top_wid);

XtAppMainLoop (app);

}

In the above program, the form widget is created as a child of app and 4
buttons are the children of form. The inclusion of <Xm/Form.h> header file
is always required.

The attachment of the button widgets is as follows:

• button1 is simply attached to the top left of the form.

596 CHAPTER 41. COMBINING WIDGETS

• button2 is attached to bottom left of the form and its top side is
attached to button1.

• button3 is attached to the top right of the form and its right side is
attached to button1.

• button4 is attached to the bottom right of the form and its top and left
sides are attached to button3 and button2 respectively.

It is advisable to control the attachment as much as possible, so that any
resizing of the form will still preserve the desired order. Fig 41.5 shows the
effect of an enlargement of the window produce by the form1.c program.
Notice that the relative sizes of individual buttons is not preserved.

Figure 41.5: form1.c resized window output

41.3.2 Attach positions — form2.c

We can position the side of a widget to a position in a form. Motif assumes
that a form has been partitioned into a number of segments. The position
specified is the number of segments from the top left corner.

By default there is assumed to be 100 divisions along the top, bottom,
left and right sides. This can be changed by setting the form resource
XmNfractionBase

The position of a particular side of a widget is set by the widget resource
XmNtopAttachment etc. to XmATTACH POSITION and then setting another
resource XmNtopPosition etc. to the appropriate integer value.

The form2.c program specifies the top left of button1 to the edges of
the form. The right and bottom edges are attached half way (50 out of a

41.3. FORMS 597

100 units) along the respective bottom and right edges of the form. The
button2, button3 and button4 widgets are positioned similarly.

The complete form2.c program listing is:

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Form.h>

main (int argc, char **argv)

{ XtAppContext app;

Widget top_wid, form,

button1, button2,

button3, button4;

int n=0;

top_wid = XtVaAppInitialize(&app, "Form2",

NULL, 0, &argc, argv, NULL, NULL);

/* create form and child buttons */

form = XtVaCreateManagedWidget("form", xmFormWidgetClass,

top_wid, NULL);

button1 = XtVaCreateManagedWidget("Button 1",

xmPushButtonWidgetClass, form,

/* attach to top, left of form */

XmNtopAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 50,

XmNbottomAttachment, XmATTACH_POSITION,

XmNbottomPosition, 50,

NULL);

598 CHAPTER 41. COMBINING WIDGETS

button2 = XtVaCreateManagedWidget("Button 2",

xmPushButtonWidgetClass, form,

XmNbottomAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 50,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 50,

NULL);

button3 = XtVaCreateManagedWidget("Button 3",

xmPushButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 50,

XmNbottomAttachment, XmATTACH_POSITION,

XmNbottomPosition, 50,

NULL);

button4 = XtVaCreateManagedWidget("Button 4",

xmPushButtonWidgetClass, form,

XmNbottomAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 50,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 50,

NULL);

XtRealizeWidget (top_wid);

XtAppMainLoop (app);

}

One effect of this type of widget attachment is that the relative size of
component widgets is preserved when the window containing these widgets

41.3. FORMS 599

is resized (Fig 41.6).

Figure 41.6: form2.c output (resized)

41.3.3 Opposite attachment — form3.c

Yet another way to attach widgets is to place an edge opposite edges of
another widget. This is achieved by setting the XmNtopAttachment etc. re-
sources to XmATTACH OPPOSITE WIDGET. Just as with XmATTACH WIDGET, a
widget has to be associated with the XmNwidget resource.

600 CHAPTER 41. COMBINING WIDGETS

With the opposite form of attachment “similar” edges are attached. In
the form3.c program we attach the right edge of button2 to the right edge
of button1, the left edge of button3 with the left of button1 and so on.

The complete form3.c program listing is:

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Form.h>

main (int argc, char **argv)

{ XtAppContext app;

Widget top_wid, form,

button1, button2,

button3, button4;

int n=0;

top_wid = XtVaAppInitialize(&app, "Form3",

NULL, 0, &argc, argv, NULL, NULL);

/* create form and child buttons */

form = XtVaCreateManagedWidget("form", xmFormWidgetClass,

top_wid, NULL);

button1 = XtVaCreateManagedWidget("Button 1",

xmPushButtonWidgetClass, form,

/* attach to top, left of form */

XmNtopAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_FORM,

NULL);

button2 = XtVaCreateManagedWidget("Button 2",

xmPushButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_WIDGET,

41.3. FORMS 601

XmNtopWidget, button1,

XmNleftAttachment, XmATTACH_FORM,

XmNbottomAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_OPPOSITE_WIDGET,

XmNrightWidget, button1,

NULL);

button3 = XtVaCreateManagedWidget("Button 3",

xmPushButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_WIDGET,

XmNleftWidget, button1,

NULL);

button4 = XtVaCreateManagedWidget("Button 4",

xmPushButtonWidgetClass, form,

XmNbottomAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM,

XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, button3,

XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,

XmNleftWidget, button3,

NULL);

XtRealizeWidget (top_wid);

XtAppMainLoop (app);

}

The relative sizing of widgets within the window is not guaranteed to
be preserved, as in form1.c (Fig 41.7). However this method of layout is
sometimes a natural way to express the configuration of the widgets.

602 CHAPTER 41. COMBINING WIDGETS

Figure 41.7: form3.c output (resized)

41.3. FORMS 603

41.3.4 A more complete form program — arrows.c

Let us finish off this section by building a Form widget that contains two
different types of widget. It will also use callback functions thus making a
more complete application program example.

The program is called arrows.c. It creates 4 ArrowButton widgets ar-
ranged in a north, south, east and west type arrangement. In the middle
of the 4 ArrowButtons is a PushButton, labelled “Quit”. The output of
arrows.c is shown in Fig. 41.8.

Figure 41.8: arrows.c output

The program listing is:

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/ArrowB.h>

#include <Xm/Form.h>

/* Prototype callback fns */

void north(Widget , XtPointer ,

XmPushButtonCallbackStruct *),

south(Widget , XtPointer ,

XmPushButtonCallbackStruct *),

east(Widget , XtPointer ,

XmPushButtonCallbackStruct *),

west(Widget , XtPointer ,

XmPushButtonCallbackStruct *),

quitb(Widget , XtPointer ,

604 CHAPTER 41. COMBINING WIDGETS

XmPushButtonCallbackStruct *);

main(int argc, char **argv)

{

XtAppContext app;

Widget top_wid, form,

arrow1, arrow2,

arrow3, arrow4,

quit;

top_wid = XtVaAppInitialize(&app, "Multi Widgets",

NULL, 0, &argc, argv, NULL, NULL);

form = XtVaCreateWidget("form", xmFormWidgetClass, top_wid,

XmNfractionBase, 3,

NULL);

arrow1 = XtVaCreateManagedWidget("arrow1",

xmArrowButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 0,

XmNbottomAttachment, XmATTACH_POSITION,

XmNbottomPosition, 1,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 1,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 2,

XmNarrowDirection, XmARROW_UP,

NULL);

arrow2 = XtVaCreateManagedWidget("arrow2",

xmArrowButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 1,

XmNbottomAttachment, XmATTACH_POSITION,

41.3. FORMS 605

XmNbottomPosition, 2,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 0,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 1,

XmNarrowDirection, XmARROW_LEFT,

NULL);

arrow3 = XtVaCreateManagedWidget("arrow3",

xmArrowButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 1,

XmNbottomAttachment, XmATTACH_POSITION,

XmNbottomPosition, 2,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 2,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 3,

XmNarrowDirection, XmARROW_RIGHT,

NULL);

arrow4 = XtVaCreateManagedWidget("arrow4",

xmArrowButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 2,

XmNbottomAttachment, XmATTACH_POSITION,

XmNbottomPosition, 3,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 1,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 2,

XmNarrowDirection, XmARROW_DOWN,

NULL);

quit =XtVaCreateManagedWidget("Quit",

xmPushButtonWidgetClass, form,

XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 1,

606 CHAPTER 41. COMBINING WIDGETS

XmNbottomAttachment, XmATTACH_POSITION,

XmNbottomPosition, 2,

XmNleftAttachment, XmATTACH_POSITION,

XmNleftPosition, 1,

XmNrightAttachment, XmATTACH_POSITION,

XmNrightPosition, 2,

NULL);

/* add callback functions */

XtAddCallback(arrow1, XmNactivateCallback, north, NULL);

XtAddCallback(arrow2, XmNactivateCallback, west, NULL);

XtAddCallback(arrow3, XmNactivateCallback, east, NULL);

XtAddCallback(arrow4, XmNactivateCallback, south, NULL);

XtAddCallback(quit, XmNactivateCallback, quitb, NULL);

XtManageChild(form);

XtRealizeWidget(top_wid);

XtAppMainLoop(app); }

/* CALLBACKS */

void north(Widget w, XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

{ printf("Going North\n");

}

void west(Widget w, XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

{ printf("Going West\n");

}

void east(Widget w, XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

41.3. FORMS 607

{ printf("Going East\n");

}

\begin{verbatim}

void south(Widget w, XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

{ printf("Going South\n");

}

void quitb(Widget w, XtPointer client_data,

XmPushButtonCallbackStruct *cbs)

{ printf("quit button pressed\n");

exit(0);

}

The arrows.c program uses the fraction base positioning method of plac-
ing widgets within a form:

• The XmNfractionBase is reset to 3 thus creating a 3 by 3 grid for
attaching widget edges.

• Each top, bottom, left and right edge of the 4 ArrowButtons and the
“Quit” PushButton are attached to the appropriate position within the
grid.

• Callback functions for each widget are added in the usual way. The 4
arrow widget callback functions simply print out their direction. The
quit callback function exits the program.

608 CHAPTER 41. COMBINING WIDGETS

Chapter 42

The MainWindow Widget and
Menus

When designing a GUI, care must be taken in the presentation of the appli-
cation’s primary window. This window is important as it is likely to be the
major focus of the application — the most visible and most used window
in the application. In order to facilitate consistency amongst many different
applications, Motif provides a general framework: the MainWindow Widget,
for an application developer to work with. The Motif Style Guide (Chap-
ter 52) recommends that, whenever applicable, the MainWindow window
should be used. It should be noted, however, that the general framework
of the MainWindow is not always applicable to every application front end
GUI. A text editor application front end is an example that might easily
map into the MainWindow framework, a simple calculator application most
certainly would not fit the prescribed framework.

A MainWindow widget can manage up to five specialised child widgets
(Fig 42.1):

• The menu bar — to which a number of pull down menus can be at-
tached.

• The work area — the primary widget is placed here to perform the
applications main functions.

• Vertical and Horizontal scroll bars — for the work area.

• The command area — where single-line commands can be entered by
the user.

609

menu bar

work area

scroll bars

command area

message area

610 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

Figure 42.1: The MainWindow Widget with its Specialised Child Widgets

42.1. THE MAINWINDOW WIDGET 611

• The message area — where the application can report back to the user.

The MainWindow basically provides an efficient method of managing wid-
gets as recommended by the Motif Style Guide(Chapter 52). In particular,
the provision of a menu bar and work area is a convenient mechanism with
which to drive many applications. It should be noted that the work area can
be any widget (or composite hierarchy of widgets). The scrollbars, command
and message area are optional.

In this Chapter, we will mainly concentrate our study on the relationship
between the MainWindow and certain types of menus. We will also see how to
put widgets in the work area MainWindow. We will see further applications
of the MainWindow widget in the remainder of the book. The MainWindow
will be used as a container widget in many example programs throughout
the book.

42.1 The MainWindow widget

As we have previously stated, the MainWindow is typically used as the top
level container for an application’s child widgets. The simplest functional
MainWindow may consist of a menu bar along the top of the application and
some work area below, this is illustrated in Fig. 42.2. We omit the scroll bars
and command and message areas for the time being.

Menu bar items are placed within the menu bar. You can use menu bar
items to perform selections directly. However, more usually a PullDown menu
is attached to a menu bar item allowing greater selection opportunities.

The function of the work area is to perform the main application’s func-
tions. The work area can be any widget class. We will look at aspects of this
in later sections when we have studied more widget classes.

Initially, we will concentrate on how to create menus in a MainWindow.

42.2 The MenuBar

The creation of a fully functional pulldown MenuBar typical of most Main-
Window based applications is fairly complex. We will, therefore, break it
down into two stages.

1. We will we create a simple MenuBar that lets us select actions directly
from the bar (MenuBar items).

612 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

Figure 42.2: menu cascade.c output

2. Having created simple MenuBar items we will attach pulldown menus
to them.

42.2.1 A simple MenuBar

A MenuBar widget is really a RowColumn widget under another name. The
way we create a MenuBar is to use one of the (several) XmCreate. . . or
XtVaCreate. . . Menu options. For most of our applications, we will use the
XmCreateMenuBar() function.

Having created a MenuBar we create MenuBar items by attaching widgets
to the MenuBar in exactly the same fashion as described for the RowColumn
widget (Chapter 41). The widgets we usually attach are CascadeButton
widgets since we can hang pull down menus off these widgets.

Fig. 42.2 shows the output of the menu cascade.c program that simply
creates a simple MenuBar widget and attaches two CascadeButton widgets
– help and quit. Minimal callback functions are associated with each Cas-
cadeButton.

The full program listing of menu cascade.c is:

#include <Xm/Xm.h>

42.2. THE MENUBAR 613

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

/* Prototype callbacks */

void quit_call(void), help_call(void);

main(int argc, char **argv)

{

Widget top_wid, main_w, menu_bar, quit, help;

XtAppContext app;

Arg arg[1];

/* create application, main and menubar widgets */

top_wid = XtVaAppInitialize(&app, "menu_cascade",

NULL, 0, &argc, argv, NULL, NULL);

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

NULL);

menu_bar = XmCreateMenuBar(main_w, "main_list",

NULL, 0);

XtManageChild(menu_bar);

/* create quit widget + callback */

quit = XtVaCreateManagedWidget("Quit",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’Q’,

NULL);

XtAddCallback(quit, XmNactivateCallback, quit_call, NULL);

/* create help widget + callback */

614 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

help = XtVaCreateManagedWidget("Help",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’H’,

NULL);

XtAddCallback(help, XmNactivateCallback, help_call, NULL);

/* Tell the menubar which button is the help menu */

XtSetArg(arg[0],XmNmenuHelpWidget,help);

XtSetValues(menu_bar,arg,1);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void quit_call()

{ printf("Quitting program\n");

exit(0);

}

void help_call()

{ printf("Sorry, I’m Not Much Help\n");

}

The first steps of the main function should now be familiar — we initialise
the application and create the top wid top level widget.

A MainWindow widget, main win, is then created as is a MenuBar,
menu bar. The menu bar widget is a child of main win. Finally, we at-
tach two CascadeButton widgets, quit and help, as children of menu bar.
Note there is no work area created in this program.

A CascadeButton widget is usually used to attach a pulldown menu to the

42.2. THE MENUBAR 615

MenuBar. This CascadeButton widget is similar to the PushButton widget
and can have callback functions attached to its activateCallback function
— illustrated in the menu cascade.c program. However, it should be noted,
that the main use of CascadeButton is to link a menu bar with a menu.

The program above simply attaches callback functions to the Cascade-
Buttons. The callback functions do not do much except quit the program
and print to standard output.

You can also associate a mnemonic to a particular menu selection. This
means that you can use “hot keys” on the keyboard as a short cut to selection.
You need to press Meta key plus the key in question.

In this program, we allow Meta-Q and Meta-H for the selection of Quit
and Help. Note that Motif displays the appropriate Meta key by underlining
the letter concerned on the menu bar (or menu item). The XmNmnemonic

resource is used to select the appropriate keyboard short cut.
Apart from prescribing the use of the Meta key for the selection of menu

items, the Motif Style Guide also insists that the Help MenuBar widget should
always be placed on the right most side of the MenuBar (Fig. 42.2). This
makes for easy location and selection of the help facility, should it exist.

The MenuBar resource, XmNmenuHelpWidget, is used to store the ID of
the the appropriate widget (help in the above program).

42.2.2 PullDown Menus

Let us now develop things a little further by adding pulldown menus to our
MenuBar. A pulldown menu looks like this:

In order to see how we create and use pulldown menu items we will develop
a program, menu pull.c that will create two pulldown menus:

• Quit which will contain a single item that lets us terminate our pro-
gram.

• Menu which has 5 options that change the XmNlabelString of a label
widget attached to the MainWindow as the work area.

We also attach the Help Cascade button as in the previous menu cascade.c

program.
We should now be familiar with the first few steps of this program: We

create the top level widget hierarchy as usual, with the MainWindow wid-

616 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

Figure 42.3: menu pull.c output

42.2. THE MENUBAR 617

get being a child of the application and a MenuBar widget a child of the
MainWindow.

The complete listing of menu pull.c is as follows:

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <Xm/Label.h>

/* prototype functions */

void quit_call(Widget , int),

menu_call(Widget , int),

help_call(void);

Widget label;

String food[] = { "Chicken", "Beef", "Pork", "Lamb", "Cheese"};

main(int argc, char **argv)

{ Widget top_wid, main_w, help;

Widget menubar, menu, widget;

XtAppContext app;

XColor back, fore, spare;

XmString quit, menu_str, help_str, chicken, beef, pork,

lamb, cheese, label_str;

int n = 0;

Arg args[2];

/* Initialize toolkit */

top_wid = XtVaAppInitialize(&app, "Demos",

NULL, 0, &argc, argv, NULL, NULL);

618 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

/* main window will contain a MenuBar and a Label */

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

XmNwidth, 300,

XmNheight, 300,

NULL);

/* Create a simple MenuBar that contains three menus */

quit = XmStringCreateLocalized("Quit");

menu_str = XmStringCreateLocalized("Menu");

help_str = XmStringCreateLocalized("Help");

menubar = XmVaCreateSimpleMenuBar(main_w, "menubar",

XmVaCASCADEBUTTON, quit, ’Q’,

XmVaCASCADEBUTTON, menu_str, ’M’,

XmVaCASCADEBUTTON, help_str, ’H’,

NULL);

XmStringFree(menu_str); /* finished with this so free */

XmStringFree(help_str);

/* First menu is the quit menu -- callback is quit_call() */

XmVaCreateSimplePulldownMenu(menubar, "quit_menu", 0, quit_call,

XmVaPUSHBUTTON, quit, ’Q’, NULL, NULL,

NULL);

XmStringFree(quit);

/* Second menu is the food menu -- callback is menu_call() */

chicken = XmStringCreateLocalized(food[0]);

beef = XmStringCreateLocalized(food[1]);

pork = XmStringCreateLocalized(food[2]);

lamb = XmStringCreateLocalized(food[3]);

cheese = XmStringCreateLocalized(food[4]);

42.2. THE MENUBAR 619

menu = XmVaCreateSimplePulldownMenu(menubar, "edit_menu", 1,

menu_call,

XmVaRADIOBUTTON, chicken, ’C’, NULL, NULL,

XmVaRADIOBUTTON, beef, ’B’, NULL, NULL,

XmVaRADIOBUTTON, pork, ’P’, NULL, NULL,

XmVaRADIOBUTTON, lamb, ’L’, NULL, NULL,

XmVaRADIOBUTTON, cheese, ’h’, NULL, NULL,

/* RowColumn resources to enforce */

XmNradioBehavior, True,

/* select radio behavior in Menu */

XmNradioAlwaysOne, True,

NULL);

XmStringFree(chicken);

XmStringFree(beef);

XmStringFree(pork);

XmStringFree(lamb);

XmStringFree(cheese);

/* Initialize menu so that "chicken" is selected. */

if (widget = XtNameToWidget(menu, "button_1"))

{ XtSetArg(args[n],XmNset, True);

n++;

XtSetValues(widget, args, n);

}

n=0; /* reset n */

/* get help widget ID to add callback */

help = XtVaCreateManagedWidget("Help",

xmCascadeButtonWidgetClass, menubar,

XmNmnemonic, ’H’,

NULL);

XtAddCallback(help, XmNactivateCallback, help_call, NULL);

620 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

/* Tell the menubar which button is the help menu */

XtSetArg(args[n],XmNmenuHelpWidget,help);

n++;

XtSetValues(menubar,args,n);

n=0; /* reset n */

XtManageChild(menubar);

/* create a label text widget that will be "work area"

selections from "Menu" menu change label

default label is item 0 */

label_str = XmStringCreateLocalized(food[0]);

label = XtVaCreateManagedWidget("main_window",

xmLabelWidgetClass, main_w,

XmNlabelString, label_str,

NULL);

XmStringFree(label_str);

/* set the label as the "work area" of the main window */

XtVaSetValues(main_w,

XmNmenuBar, menubar,

XmNworkWindow, label,

NULL);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

/* Any item the user selects from the File menu calls this function.

It will "Quit" (item_no == 0). */

42.2. THE MENUBAR 621

void

quit_call(Widget w, int item_no)

/* w = menu item that was selected

item_no = the index into the menu */

{

if (item_no == 0) /* the "quit" item */

exit(0);

}

/* Called from any of the food "Menu" items.

Change the XmNlabelString of the label widget.

Note: we have to use dynamic setting with setargs().

*/

void menu_call(Widget w, int item_no)

{

int n =0;

Arg args[1];

XmString label_str;

label_str = XmStringCreateLocalized(food[item_no]);

XtSetArg(args[n],XmNlabelString, label_str);

++n;

XtSetValues(label, args, n);

}

622 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

void help_call()

{ printf("Sorry, I’m Not Much Help\n");

}

In this program we create the MenuBar widget with the convenience
function XmVaCreateSimpleMenuBar():

• The first two arguments of this function specify the parent widget (The
MainWindow, main w, in this case) and the name of the widget, re-
spectively.

• The following arguments are a NULL terminated variable length list of
resource name/value pairs.

In menu pull.c, we set up two CascadeButtons1 by setting the
XmVACASCADEBUTTON resource. Two arguments are associated with this
resource:

– A label specified by an XmString.

– The mnemonic or Meta key associated with the CascadeButton.

Note: we convert a String to an XmString with the
XmStringCreateLocalized() function.

It is good practice to free an XmString as soon as you have finished us-
ing it with the XmStringFree() command. Several “open” XmStrings
can occupy a significant amount of application memory.

The creation of a pulldown menu is now relatively straightforward:

• We create a PullDownMenu widget

1XmVACASCADEBUTTON actually specifies CascadeButtonGadgets as children of
the MenuBar, but you need not worry about the implications of this for now (see Sec-
tion 39.3).

42.2. THE MENUBAR 623

• Attach the PullDownMenu widget to a MenuBar item by simply mak-
ing the PullDownMenu Widget a child of the MenuBar’s CascadeBut-
ton.

Let us now look at how we create the Quit menu:

quit_w = XmVaCreateSimplePulldownMenu(menubar, "quit_menu",

0, quit_call,

XmVaPUSHBUTTON, quit, ’Q’, NULL, NULL,

NULL);

We have used the Motif convenience function XmVaCreateSimplePulldownMenu()

to return a PulldownMenu widget. This function has several arguments:

• The first argument is the parent widget (MenuBar in this example).

• The second is the name given to the widget for resource lookup.

• The third argument is the integer ID that specifies which CascadeBut-
ton (from the MenuBar) the PulldownMenu is attached to.

Thus, in this program an integer ID of 0 is attached to the Quit button
and an ID of 1 would be attached to the Menu button.

• The fourth argument specifies the callback function associated with a
menu choice.

Note: We do not specify a callback with an XtAddCallback() call in
this instance.

• A NULL terminated resource name/value list. The list specifies the type
and values of PulldownMenu items. Many possible classes area allowed,
including further CascadeButtons, RadioButtons, CheckButtons. This
program creates PushButton Menu items:

To specify a PushButton menu item, set a XmVaPUSHBUTTON resource
list item and corresponding XmString label and Meta key accordingly
for the list entry. XmVaPUSHBUTTON actually takes four arguments, the
last two are only needed for advanced Motif use, so are not considered
here — they are just set to NULL.

The Menu menu is created in a similar way except that we have 5 menu
items.

624 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

We may have one, minor, problem when assigning Meta keys. This is
illustrated for the Menu items since we cannot have the same Meta key
for two menu selections. So Meta-B is chosen for Beef and Meta-L for
Lamb, etc. However, Chicken and Cheese must be assigned different
Meta keys, so we allocate Meta-C for Chicken and Meta-h for cheese
selections.

The last thing we need to look at is how we find out which selection has
been made in our program.

Each PulldownMenu has an associated callback function. The callback
function of a pulldown has two parameters, which we must define.

• The widget that called the function.

• An index to the menu item selected (starts at 0).

So, in the Quit callback, quit call(), we only have one possible selection
(item no must equal zero).

In the Menu callback, menu call(), the index corresponds to a food item
setting of Chicken, Beef, . . . etc..

Chapter 52 discusses aspects of the Motif Style guidelines for menus which
also incorporate some general menu design issues.

42.2.3 Tear-off menus

Tear-off menus allow the user to remove (or tear) a menu off the MenuBar and
keep it displayed in a small dialog window on the screen until the user closes
it from the window menu. The Motif Style Guide (Chapter 52) prescribes
this for menus that are frequently used in order to ease menu selection In
order to make a menu a tear-off variety the XmNtearOffModel resource for
a PullDownMenu widget needs to set to XmTEAR OFF ENABLED. If a menu
is XmTEAR OFF ENABLED then its appearance is modified to include a small
perforated line at the top of the menu.

42.3 Other MainWindow children

So far in this Chapter we have concentrated on the MenuBar and work area
parts of the MainWindow. In this section we will develop a simple program,

42.3. OTHER MAINWINDOW CHILDREN 625

test for echo.c, which creates and uses the command and message areas
of the MainWindow. We create a minimal MenuBar that simply allows you
to quit the program. The work area created is a Label widget that does not
perform any useful task in this example. The command and message areas
created are both TextField widgets (see Chapter 44 for a complete description
of the TextField widget). The command area receives (String) input and
echoes it to the message area (Fig 42.4). The message area is not usually
allowed to receive any user input. In this example we set the XmNeditable

resource for the message area to be False

TextField, Label or Command widgets are typically employed as the com-
mand and message areas.

The test for echo.c program achieves this by:

• Creating a Menubar, Label and 2 TextField widgets and assigning
their IDs to the MainWindow resources XmNmenuBar, XmNworkWindow,
XmNcommandWindow and XmNmessageWindow respectively to form the
complete Mainwindow widget (Fig 42.4).

• A callback, cmd cbk, is attached to the XmNactivateCallback event
for the command area widget.

• The cmd cbk callback parses the input command area widget, cmd widget,
for the input string and replaces the message area widget, msg wid, with
this string.

• Section 42.3 in the following Chapter explains the text handling part
of this program further.

The complete program listing for test for echo.c is as follows:

#include <Xm/MainW.h>

#include <Xm/Label.h>

#include <Xm/Command.h>

#include <Xm/TextF.h>

#include <stdio.h>

#include <string.h> /* For String Handling */

#define MAX_STR_LEN 30 /* Max Char length of Text Field */

626 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

Figure 42.4: The test for echo.c program output

42.3. OTHER MAINWINDOW CHILDREN 627

/* Callback function prototypes */

void cmd_cbk(), quit_cbk();

Widget msg_wid;

char *cmd_label = "Command Area: ";

char *msg_label = "Message Area: ";

int cmd_label_length;

int msg_label_length;

main(int argc, char **argv)

{

Widget top_wid, main_win, menubar, menu,

label, cmd_wid;

XtAppContext app;

XmString label_str, quit;

cmd_label_length = strlen(cmd_label);

msg_label_length = strlen(msg_label);

/* initialize toolkit and create top_widlevel shell */

top_wid = XtVaAppInitialize(&app, "Main Window",

NULL, 0, &argc, argv, NULL, NULL);

/* Create MainWindow */

main_win = XtVaCreateWidget("main_w",

xmMainWindowWidgetClass, top_wid,

XmNcommandWindowLocation, XmCOMMAND_BELOW_WORKSPACE,

NULL);

/* Create a simple MenuBar that contains one menu */

628 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

quit = XmStringCreateLocalized("Quit");

menubar = XmVaCreateSimpleMenuBar(main_win, "menubar",

XmVaCASCADEBUTTON, quit, ’Q’,

NULL);

menu = XmVaCreateSimplePulldownMenu(menubar, "file_menu", 0,

quit_cbk,

XmVaPUSHBUTTON, quit, ’Q’, NULL, NULL,

NULL);

XmStringFree(quit);

/* Manage Menubar */

XtManageChild(menubar);

/* create a label text widget that wil be work area */

label_str = XmStringCreateLocalized("Work Area");

label = XtVaCreateManagedWidget("main_window",

xmLabelWidgetClass, main_win,

XmNlabelString, label_str,

XmNwidth, 1000,

XmNheight, 800,

NULL);

XmStringFree(label_str);

/* Create the command area */

cmd_wid = XtVaCreateWidget("Command",

xmTextFieldWidgetClass, main_win,

XmNmaxLength, MAX_STR_LEN,

NULL);

42.3. OTHER MAINWINDOW CHILDREN 629

XmTextSetString(cmd_wid,cmd_label);

XmTextSetInsertionPosition(cmd_wid, cmd_label_length);

XtAddCallback(cmd_wid, XmNactivateCallback, cmd_cbk);

XtManageChild(cmd_wid);

/* Create the message area */

msg_wid= XtVaCreateWidget("Message:",

xmTextFieldWidgetClass, main_win,

XmNeditable, False,

XmNmaxLength, MAX_STR_LEN,

NULL);

XmTextSetString(msg_wid,msg_label);

XtManageChild(msg_wid);

/* set the label as the work, command and message areas

of the main window */

XtVaSetValues(main_win,

XmNmenuBar, menubar,

XmNworkWindow, label,

XmNcommandWindow, cmd_wid,

XmNmessageWindow,msg_wid,

NULL);

XtManageChild(main_win);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

/* execute the command and redirect message area */

630 CHAPTER 42. THE MAINWINDOW WIDGET AND MENUS

void cmd_cbk(Widget cmd_widget, XtPointer *client_data,

XmAnyCallbackStruct *cbs)

{

char cmd[MAX_STR_LEN],msg[MAX_STR_LEN];

XmTextGetSubstring(cmd_widget,cmd_label_length,

MAX_STR_LEN - cmd_label_length, MAX_STR_LEN ,cmd);

/* Append input message to Message area */

XmTextReplace(msg_wid,msg_label_length, MAX_STR_LEN,cmd);

/* Reset Command Area label and insertion point*/

XmTextSetString(cmd_widget, cmd_label);

XmTextSetInsertionPosition(cmd_widget, cmd_label_length);

}

void quit_cbk(Widget w, int item_no)

{ if (item_no == 0) /* the "quit" item */

exit(0);

}

Chapter 43

Dialog Widgets

Any application needs to interact with the user. At the simplest level an
application may need to inform, alert or warn the user about its current
state. More advanced interaction may require the user to select or input
data. Selecting files from a directory/file selection window is typical of an
advanced example. Clearly, the provision of such interaction is the concern of
the GUI. Motif provides a variety of Dialog widgets or Dialogs that facilitate
most common user interaction requirements.

43.1 What are Dialogs?

Motif Dialog widgets usually comprise of the following components:

• A dialog box — Dialogs put up a box with a message in and may also
prompt the user for some input.

• Three buttons may also be provided:

– Ok and Cancel, used, perhaps, to acknowledge the message and
remove the Dialog box. The Dialog usually remains on the screen
until either the Ok or Cancel button has been pressed. The
Return key can also be used to acknowledge the Dialog.

– Help, some additional information may be provided by pressing
this button.

• You have probably seen this in action with a text editor putting up a
message of the form “Cannot open file”

631

632 CHAPTER 43. DIALOG WIDGETS

More advanced Dialogs (e.g. selection dialogs) may significantly enhance
this model.

Dialogs have many distinct uses, indeed the Motif Style Guide (Chap-
ter 52) is specific in the use of each Dialog. The following Dialogs are pro-
vided by Motif:

WarningDialog — Warns User about a program mishap.

ErrorDialog — Alerts User to errors in the program.

InformationDialog — Program Information supplied.

PromptDialog — Allows user to supply data to program.

QuestionDialog — Yes/No type queries.

WorkingDialog — Notifies user if program is busy.

SelectionDialog — Selection from a list of options.

FileSelectionDialog — Specialised Selection Dialog to select directories
and files.

BulletinBoardDialog — Allows customised Dialogs to be created.

43.2 Basic Dialog Management

To create a Dialog use one of the XmCreate.....Dialog() functions.
Dialogs do not usually appear immediately on screen after creation or

when the the initial application GUI is realized. Indeed, if an application runs
successfully certain Dialog widgets (Error or Warning Dialogs, in particular)
may never be required. However, prudent applications should consider all
practical avenues that an application would be expected to take and provide
suitable information (via Dialogs) to the user.

It is advisable to create all Dialogs when the application is initialised and
the overall GUI is setup. However, Dialogs will not be managed initially.
Recall Section 38.7) when a widget is unmanaged by its parent it will always
be invisible.

Therefore, Dialogs are usually created unmanaged and displayed when
required in the program as described below:

43.3. THE WARNINGDIALOG 633

• To make a Dialog appear in your program you must manage the widget,
explicitly. XtManageChild() is the function typically employed.

• To make one disappear you must unmanage it, explicitly. XtUnmanageChild()
is the function typically employed.

This method has the advantage that we only need to create a Dialog once
and can then manage or unmanage it when necessary.

Most Motif Dialogs have default callback resources attached to the com-
mon Ok and Cancel. One consequence of these default callbacks is that
they will unmanage the widgets from which they were called. However, if
the application provides alternative callback (or other) functions then re-
sponsibility for correctly managing and unmanaging them is given over to
the programmer.

The use of many dialogs is very similar. We will study a few specific
Dialogs in detail.

43.3 The WarningDialog

This dialog is used to inform the user of a possible mistake in the program
or in interaction with the program.

A typical example might be when you select the quit button (or menu
item) to terminate the program — if this was selected mistakenly, and there
is no warning prompt, you have problems.

The dialog1.c (Section 43.5) program attaches a pop-up WarningDialog
when the quit menu option is selected (Fig 43.1). If you now select OK the
program terminates, Cancel returns back to the program.

To Create a WarningDialog:

The function create dialogs() in dialog1.c creates the WarningDialog
in the following typical manner:

• All the warning Dialog contains is an XmString, which is the prompt
to the user.

• For the Quit button we ask: “Are you sure you want to quit?”.

• So, we set the xm string variable accordingly.

634 CHAPTER 43. DIALOG WIDGETS

Figure 43.1: WarningDialog and InformationDialog Widgets

43.4. THE INFORMATIONDIALOG WIDGET 635

• Set the XmNmessageString resource to the xm string value.

• Create the WarningDialog widget with the XmCreateWarningDialog()
function.

• Add callback functions to Ok, Cancel or Help buttons of Dialog.

• In this case, we only need to attach an application specific callback
to the Ok button. The resource XmNokCallback therefore needs a
function attached. Other button presses will use default callbacks.
NOTE: The Help button does not do anything useful yet.

The callback function quit pop up() simply needs to XtManageChild()
the given Dialog widget so that it is displayed as required by the ap-
plication.

43.4 The InformationDialog Widget

The InformationDialog Widget is essentially the same as the WarningDialog,
except that InformationDialogs are intended to supply program information
or help. In terms of Motif creation and management the widgets are identical
except that the XmCreateInformationDialog() is used to create this class
of Dialog. The main difference between the widgets to the user is visual.
Motif employs different icons to distinguish between the two (Fig 43.1).

The program dialog1.c illustrates the creation and use of an Informa-
tionDialog Widget.

43.5 The dialog1.c program

This program uses Warning and Information Dialogs. These Dialogs are
based on the MessageBox widget and so we must include <Xm/MessageB.h>

header file.

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

636 CHAPTER 43. DIALOG WIDGETS

/* Prototype functions */

void create_dialogs(void);

/* callback for the pushbuttons. pops up dialog */

void info_pop_up(Widget , char *, XmPushButtonCallbackStruct *),

quit_pop_up(Widget , char *, XmPushButtonCallbackStruct *);

void info_activate(Widget),

quit_activate(Widget);

/* Global reference for dialog widgets */

Widget info, quit;

Widget info_dialog, quit_dialog;

main(int argc, char *argv[])

{

XtAppContext app;

Widget top_wid, main_w, menu_bar;

top_wid = XtVaAppInitialize(&app, "Demos", NULL, 0,

&argc, argv, NULL, NULL);

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

XmNheight, 300,

XmNwidth,300,

NULL);

menu_bar = (Widget) XmCreateMenuBar(main_w, "main_list", NULL, 0);

XtManageChild(menu_bar);

/* create quit widget + callback */

43.5. THE DIALOG1.C PROGRAM 637

quit = XtVaCreateManagedWidget("Quit",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’Q’,

NULL);

/* Callback has data passed to */

XtAddCallback(quit, XmNactivateCallback, quit_pop_up, NULL);

/* create help widget + callback */

info = XtVaCreateManagedWidget("Info",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’I’,

NULL);

XtAddCallback(info, XmNactivateCallback, info_pop_up, NULL);

/* Create but do not show (manage) dialogs */

create_dialogs();

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void create_dialogs()

{ /* Create but do not manage dialog widgets */

XmString xm_string;

Arg args[1];

638 CHAPTER 43. DIALOG WIDGETS

/* Create InformationDialog */

/* Label the dialog */

xm_string = XmStringCreateLocalized("Dialog widgets added to \

give info and check quit choice");

XtSetArg(args[0], XmNmessageString, xm_string);

/* Create the InformationDialog */

info_dialog = XmCreateInformationDialog(info, "info", args, 1);

XmStringFree(xm_string);

XtAddCallback(info_dialog, XmNokCallback, info_activate, NULL);

/* Create Warning DIalog */

/* label the dialog */

xm_string =

XmStringCreateLocalized("Are you sure you want to quit?");

XtSetArg(args[0], XmNmessageString, xm_string);

/* Create the WarningDialog */

quit_dialog = XmCreateWarningDialog(quit, "quit", args, 1);

XmStringFree(xm_string);

XtAddCallback(quit_dialog, XmNokCallback, quit_activate, NULL);

}

void info_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{

43.6. ERROR, WORKING AND QUESTION DIALOGS 639

XtManageChild(info_dialog);

}

void quit_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{

XtManageChild(quit_dialog);

}

/* callback routines for dialogs */

void info_activate(Widget dialog)

{

printf("Info Ok was pressed.\n");

}

void quit_activate(Widget dialog)

{

printf("Quit Ok was pressed.\n");

exit(0);

}

43.6 Error, Working and Question Dialogs

These 3 Dialogs are similar to both the Information and Warning Dialogs.
They are created and used in similar fashions. The main difference again
being the icon used to depict the Dialog class as illustrated in Figs. 43.2
— 43.4.

43.7 Unwanted Dialog Buttons

When you create a Dialog, Motif will create 3 buttons by default — Ok,
Cancel and Help. There are many occasions when it is not natural to require
the use of three buttons within an application. For instance in dialog1.c

we only really need the user to acknowledge the InformationDialog and no

640 CHAPTER 43. DIALOG WIDGETS

Figure 43.2: ErrorDialog Widget

Figure 43.3: WorkingDialog Widget

Figure 43.4: QuestionDialog Widget

43.8. THE PROMPTDIALOG WIDGET 641

user should need any help to choose whether to quit our program.
Motif provides a mechanism to disable unwanted buttons in a Dialog.

To remove a button:

• Use XmMessageBoxGetChild() (or similar function) to get the button
widget’s ID for the given dialog widget and button type.

• XmDIALOG OK BUTTON, XmDIALOG CANCEL BUTTON or XmDIALOG HELP BUTTON

specify the type of the button.

• Unmanage the button widget.

An example where we disable the Cancel and Help buttons on the Infor-
mationDialog and the Help button on the WarningDialog from the Dialogs
created in program dialog1.c is shown in Fig. 43.5. The code that performs
the task of deleting the Help from a widget, dialog is as follows:

Widget remove;

remove = XmMessageBoxGetChild(dialog, XmDIALOG_HELP_BUTTON);

XtUnmanageChild(remove);

43.8 The PromptDialog Widget

The PromptDialog widget is slightly more advanced than the classes of Di-
alog widgets encountered so far. This widget allows the user to enter text
(Fig. 43.6).

The function XmCreatePromptDialog() instantiates the Dialog. Typi-
cally two resources of a PromptDialog widget are required to be set. These
resources are

XmNselectionLabelString — the prompt message, an XmString data type.

XmNtextString — the default response XmString which may be empty.

Note: A Prompt Dialog is based on the SelectionBox widget and so we
must include <Xm/SelectioB.h> header file.

642 CHAPTER 43. DIALOG WIDGETS

Figure 43.5: Removed Dialog Button

43.8. THE PROMPTDIALOG WIDGET 643

43.8.1 The prompt.c program

This program, an extension of dialog1.c, creates a PromptDialog into which
the user can enter text. The PromptDialog first displayed by this program
is shown in Fig. 43.6. The text is echoed in an InformationDialog which is
created in a Prompt callback function, prompt activate().

Figure 43.6: PromptDialog Widget

A PromptDialog Callback has the following structure

void prompt_callback(Widget widget, XtPointer client_data,

XmSelectionBoxCallbackStruct *selection)

Normally, we will only be interested in obtaining the string entered to the

644 CHAPTER 43. DIALOG WIDGETS

PromptDialog. An element of the XmSelectionBoxCallbackStruct, value
holds the (XmString data type) value.

In prompt.c, the callback for the prompt dialog (activated with Ok but-
ton) — prompt activate().

This function uses the selection->value XmString to set up the Infor-
mationDialog message String.

Note, that since a PromptDialog is a SelectionBox widget type we must
use XmSelectionBoxGetChild() to find any buttons we may wish to remove
from the PromptDialog. In prompt.c we remove the Help button in this
way.

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

#include <Xm/SelectioB.h>

/* Callback and other function prototypes */

void ScrubDial(Widget, int);

void info_pop_up(Widget , char *, XmPushButtonCallbackStruct *),

quit_pop_up(Widget , char *, XmPushButtonCallbackStruct *),

prompt_pop_up(Widget , char *, XmPushButtonCallbackStruct *);

void prompt_activate(Widget , caddr_t,

XmSelectionBoxCallbackStruct *);

void quit_activate(Widget);

Widget top_wid;

main(int argc, char *argv[])

{

XtAppContext app;

Widget main_w, menu_bar, info, prompt, quit;

top_wid = XtVaAppInitialize(&app, "Demos", NULL, 0,

43.8. THE PROMPTDIALOG WIDGET 645

&argc, argv, NULL, NULL);

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

XmNheight, 300,

XmNwidth,300,

NULL);

menu_bar = XmCreateMenuBar(main_w, "main_list",

NULL, 0);

XtManageChild(menu_bar);

/* create prompt widget + callback */

prompt = XtVaCreateManagedWidget("Prompt",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’P’,

NULL);

/* Callback has data passed to */

XtAddCallback(prompt, XmNactivateCallback,

prompt_pop_up, NULL);

/* create quit widget + callback */

quit = XtVaCreateManagedWidget("Quit",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’Q’,

NULL);

/* Callback has data passed to */

XtAddCallback(quit, XmNactivateCallback, quit_pop_up,

"Are you sure you want to quit?");

646 CHAPTER 43. DIALOG WIDGETS

/* create help widget + callback */

info = XtVaCreateManagedWidget("Info",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’I’,

NULL);

XtAddCallback(info, XmNactivateCallback, info_pop_up,

"Select Prompt Option To Get Program Going.");

XtRealizeWidget(top_wid);

XtAppMainLoop(app); }

void prompt_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{ Widget dialog, remove;

XmString xm_string1, xm_string2;

Arg args[3];

/* label the dialog */

xm_string1 = XmStringCreateLocalized("Enter Text Here:");

XtSetArg(args[0], XmNselectionLabelString, xm_string1);

/* default text string */

xm_string2 = XmStringCreateLocalized("Default String");

XtSetArg(args[1], XmNtextString, xm_string2);

/* set up default button for cancel callback */

XtSetArg(args[2], XmNdefaultButtonType,

XmDIALOG_CANCEL_BUTTON);

/* Create the WarningDialog */

dialog = XmCreatePromptDialog(cascade_button, "prompt",

args, 3);

XmStringFree(xm_string1);

XmStringFree(xm_string2);

43.8. THE PROMPTDIALOG WIDGET 647

XtAddCallback(dialog, XmNokCallback, prompt_activate,

NULL);

/* Scrub Prompt Help Button */

remove = XmSelectionBoxGetChild(dialog,

XmDIALOG_HELP_BUTTON);

XtUnmanageChild(remove); /* scrub HELP button */

XtManageChild(dialog);

XtPopup(XtParent(dialog), XtGrabNone); }

void info_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{ Widget dialog;

XmString xm_string;

extern void info_activate();

Arg args[2];

/* label the dialog */

xm_string = XmStringCreateLocalized(text);

XtSetArg(args[0], XmNmessageString, xm_string);

/* set up default button for OK callback */

XtSetArg(args[1], XmNdefaultButtonType,

XmDIALOG_OK_BUTTON);

/* Create the InformationDialog as child of

cascade_button passed in */

dialog = XmCreateInformationDialog(cascade_button,

"info", args, 2);

ScrubDial(dialog, XmDIALOG_CANCEL_BUTTON);

ScrubDial(dialog, XmDIALOG_HELP_BUTTON);

XmStringFree(xm_string);

XtManageChild(dialog);

648 CHAPTER 43. DIALOG WIDGETS

XtPopup(XtParent(dialog), XtGrabNone);

}

void quit_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{ Widget dialog;

XmString xm_string;

Arg args[1];

/* label the dialog */

xm_string = XmStringCreateLocalized(text);

XtSetArg(args[0], XmNmessageString, xm_string);

/* set up default button for cancel callback */

XtSetArg(args[1], XmNdefaultButtonType,

XmDIALOG_CANCEL_BUTTON);

/* Create the WarningDialog */

dialog = XmCreateWarningDialog(cascade_button, "quit",

args, 1);

ScrubDial(dialog, XmDIALOG_HELP_BUTTON);

XmStringFree(xm_string);

XtAddCallback(dialog, XmNokCallback, quit_activate,

NULL);

XtManageChild(dialog);

XtPopup(XtParent(dialog), XtGrabNone);

}

/* routine to remove a DialButton from a Dialog */

void ScrubDial(Widget wid, int dial)

{ Widget remove;

43.8. THE PROMPTDIALOG WIDGET 649

remove = XmMessageBoxGetChild(wid, dial);

XtUnmanageChild(remove);

}

/* callback function for Prompt activate */

void prompt_activate(Widget widget, XtPointer client_data,

XmSelectionBoxCallbackStruct *selection)

{ Widget dialog;

Arg args[2];

XmString xm_string;

/* compose InformationDialog output string */

/* selection->value holds XmString entered to prompt */

xm_string = XmStringCreateLocalized("You typed: ");

xm_string = XmStringConcat(xm_string,selection->value);

XtSetArg(args[0], XmNmessageString, xm_string);

/* set up default button for OK callback */

XtSetArg(args[1], XmNdefaultButtonType,

XmDIALOG_OK_BUTTON);

/* Create the InformationDialog to echo

string grabbed from prompt */

dialog = XmCreateInformationDialog(top_wid,

"prompt_message", args, 2);

ScrubDial(dialog, XmDIALOG_CANCEL_BUTTON);

ScrubDial(dialog, XmDIALOG_HELP_BUTTON);

XtManageChild(dialog);

XtPopup(XtParent(dialog), XtGrabNone);

}

650 CHAPTER 43. DIALOG WIDGETS

/* callback routines for quit ok dialog */

void quit_activate(Widget dialog) {

printf("Quit Ok was pressed.\n");

exit(0);

}

43.9 Selection and FileSelection Dialogs

The purpose of both these widgets is to allow the user to select from a
list (or in set of lists) displayed within the Dialog. The creation and use
of Selection and FileSelection Dialogs is similar. The FileSelectionDialog
(Fig. 43.7) allows the selection of files from a directory which has use in
many applications (text editors, graphics programs etc.) The FileSelection
Dialog provides a means for merely browsing directories and selecting file
names. It is up to the application to read/write the file, or to use the file
name appropriately. The SelectionDialog allows for more general selection.
We will study the FileSelectionDialog as it is more complex and it is also
more commonly used.

To create a FileSelectionDialog, the XmCreateFileSelectionDialog()

function is commonly used. You must include the <Xm/FileSB.h> header
file.

A FileSelectionDialog has many resources you can set to control the search
of files: (All resources are XmString data types except where indicated.)

XmNdirectory — The directory from where files are (initially) listed. The
default directory is the current working directory.

XmNdirListLabelString — The label displayed above the directory list-
ing in Dialog.

XmNdirMask — The mask used to filter out certain files. E.g. in file select.c

this mask is set to *.c so as only to list C source files in the dialog.

XmNdirSpec — the name of the file (to be) chosen.

XmNfileListLabelString — The label displayed above the file list.

43.9. SELECTION AND FILESELECTION DIALOGS 651

Figure 43.7: The FileSelectionDialog Widget

652 CHAPTER 43. DIALOG WIDGETS

XmNfileTypeMask — The type of file to be listed (char type). XmFILE REGULAR,

XmFILE DIRECTORY, XmFILE TYPE ANY are conveniently predefined macros
in <Xm/FileSB.h>.

XmNfilterLabelString — The label displayed above the filter list.

The search directory, directory mask and others can be altered from
within the Dialog window.

The FileSelectionDialog has many child widgets under its control. It is
sometimes useful to take control of these child widget in order to have greater
control of their resources or callback or even to remove (XtUnmanageChild())
one. The function XmFileSelectionBoxGetChild() is used to return the ID
of a specified child widget. The function takes two arguments:

Widget — the parent widget.

Child — an unsigned char. Possible values for this argument are defined in
<Xm/FileSB.h> and include:

XmDIALOG APPLY BUTTON, XmDIALOG LIST,

XmDIALOG CANCEL BUTTON, XmDIALOG LIST LABEL,

XmDIALOG DEFAULT BUTTON, ˙XmDIALOG OK BUTTON,

XmDIALOG DIR LIST, XmDIALOG SELECTION LABEL,

XmDIALOG DIR LIST LABEL, XmDIALOG SEPARATOR,

XmDIALOG FILTER LABEL, XmDIALOG TEXT,

XmDIALOG FILTER TEXT, XmDIALOG WORK AREA,

XmDIALOG HELP BUTTON.

43.9.1 The file select.c program

The program file select.c simply looks for C source files in a directory —
the XmNdirMask resource is set to filter out only *.c files. If a file is selected
it’s listing is printed to standard output.

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

43.9. SELECTION AND FILESELECTION DIALOGS 653

#include <Xm/MessageB.h>

#include <Xm/PushB.h>

#include <Xm/FileSB.h>

/* prototype callbacks and other functions */

void quit_pop_up(Widget , char *,

XmPushButtonCallbackStruct *),

void select_pop_up(Widget , char *,

XmPushButtonCallbackStruct *);

void ScrubDial(Widget, int);

void select_activate(Widget , XtPointer ,

XmFileSelectionBoxCallbackStruct *)

void quit_activate(Widget)

void cancel(Widget , XtPointer ,

XmFileSelectionBoxCallbackStruct *);

void error(char *, char *);

File *fopen();

Widget top_wid;

main(int argc, char *argv[])

{

XtAppContext app;

Widget main_w, menu_bar, file_select, quit;

top_wid = XtVaAppInitialize(&app, "Demos", NULL, 0,

&argc, argv, NULL, NULL);

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

XmNheight, 300,

XmNwidth,300,

NULL);

654 CHAPTER 43. DIALOG WIDGETS

menu_bar = XmCreateMenuBar(main_w, "main_list",

NULL, 0);

XtManageChild(menu_bar);

/* create prompt widget + callback */

file_select = XtVaCreateManagedWidget("Select",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’S’,

NULL);

/* Callback has data passed to */

XtAddCallback(file_select, XmNactivateCallback,

select_pop_up, NULL);

/* create quit widget + callback */

quit = XtVaCreateManagedWidget("Quit",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’Q’,

NULL);

/* Callback has data passed to */

XtAddCallback(quit, XmNactivateCallback, quit_pop_up,

"Are you sure you want to quit?");

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void select_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{ Widget dialog, remove;

XmString mask;

Arg args[1];

/* Create the FileSelectionDialog */

43.9. SELECTION AND FILESELECTION DIALOGS 655

mask = XmStringCreateLocalized("*.c");

XtSetArg(args[0], XmNdirMask, mask);

dialog = XmCreateFileSelectionDialog(cascade_button,

"select", args, 1);

XtAddCallback(dialog, XmNokCallback, select_activate,

NULL);

XtAddCallback(dialog, XmNcancelCallback, cancel, NULL);

remove = XmSelectionBoxGetChild(dialog,

XmDIALOG_HELP_BUTTON);

XtUnmanageChild(remove); /* delete HELP BUTTON */

XtManageChild(dialog);

XtPopup(XtParent(dialog), XtGrabNone);

}

void quit_pop_up(Widget cascade_button, char *text,

XmPushButtonCallbackStruct *cbs)

{ Widget dialog;

XmString xm_string;

Arg args[2];

/* label the dialog */

xm_string = XmStringCreateLocalized(text);

XtSetArg(args[0], XmNmessageString, xm_string);

/* set up default button for cancel callback */

XtSetArg(args[1], XmNdefaultButtonType,

XmDIALOG_CANCEL_BUTTON);

/* Create the WarningDialog */

dialog = XmCreateWarningDialog(cascade_button, "quit",

args, 2);

ScrubDial(dialog, XmDIALOG_HELP_BUTTON);

656 CHAPTER 43. DIALOG WIDGETS

XmStringFree(xm_string);

XtAddCallback(dialog, XmNokCallback, quit_activate,

NULL);

XtManageChild(dialog);

XtPopup(XtParent(dialog), XtGrabNone);

}

/* routine to remove a DialButton from a Dialog */

void ScrubDial(Widget wid, int dial)

{ Widget remove;

remove = XmMessageBoxGetChild(wid, dial);

XtUnmanageChild(remove);

}

/* callback function for Prompt activate */

void select_activate(Widget widget, XtPointer client_data,

XmFileSelectionBoxCallbackStruct *selection)

{ /* function opens file (text) and prints to stdout */

FILE *fp;

char *filename, line[200];

XmStringGetLtoR(selection->value,

XmSTRING_DEFAULT_CHARSET, &filename);

if ((fp = fopen(filename,"r")) == NULL)

error("CANNOT OPEN FILE", filename);

else

43.9. SELECTION AND FILESELECTION DIALOGS 657

{ while (!feof(fp))

{ fgets(line,200,fp);

printf("%s\n",line);

}

fclose(fp);

}

}

void cancel(Widget widget, XtPointer client_data,

XmFileSelectionBoxCallbackStruct *selection)

{ XtUnmanageChild(widget); /* undisplay widget */

}

void error(char *s1, char *s2)

{ /* prints error to stdout */

printf("%s: %s\n", s1, s2);

exit(-1);

}

/* callback routines for quit ok dialog */

void quit_activate(Widget dialog)

{

printf("Quit Ok was pressed.\n");

exit(0);

}

658 CHAPTER 43. DIALOG WIDGETS

43.10 User Defined Dialogs

Motif allows the programmer to create new customised Dialogs. Bullet-
inBoardDialogs and FormDialogs let you place widgets within them in a
similar fashion to their corresponding BulletinBoard and Form widgets. We
will, therefore, not deal with these further in this text.

43.11 Exercises

Exercise 43.1 Rewrite the error() function of the file select.c program
so that errors trapped by this program are displayed in an ErrorDialog widget
and not simply printed to standard output.

Chapter 44

Text Widgets

Text editing is a key task in many applications. For example, Single-line
editors are a convenient and flexible means of string data entry for many
applications. Indeed, the FileSelectionDialog widget (Chapter 43) and other
composite widgets have a single text widget as constituent components. More
complete multi-line text entry may also be required for many applications.

Motif, conveniently provides a fully functional text widget. This saves
the application programmer a lot of work, since tasks such as cut and paste
editing, text search and insertion are provided within the widget class.

Note: Coupled with other advanced facilities such as FileSelection wid-
gets etc., we could easily assemble our own fully working text editor appli-
cation program from component widget classes and little other code.

Motif 1.2 provides two classes of text widgets:

Text widget — A fully functional multiline windows based text editor.

TextField — A single line text editor.

Both the above widgets use the (standard C) String data type as the
base structure for all text operations. This is different from most other Motif
widgets. Motif 2.0 provides an additional text widget, CSText, which is
basically similar to the Text widget except that the XmString data type is
used in text processing.

We will study the Text widget in detail in this Chapter. The TextField
is, essentially, a simpler version of this and will therefore only be addressed
when appropriate. In fact, we can actually make the Text widget a single
line type by setting the resource XmNeditMode to XmSINGLE LINE EDIT.

659

660 CHAPTER 44. TEXT WIDGETS

44.1 Text Widget Creation

There are a variety of ways to create a Text widget:

• We can use the usual XmCreateText() or XtVaCreateManagedWidget()
methods.

• Usually we will need to use a scrolled window since the text we are
editing may exceed the window size (Fig 44.1).

– To create a ScrolledText widget use XmCreateScrolledText().

• We must include the <Xm/Text.h> header file for all Text widget appli-
cations. There are corresponding <Xm/TextF.h> and <Xm/CSText.h>

header files for the TextField amd CSText widgets respectively.

There are various resources that can be usefully set for a Text widget:

XmNrows — The visible number of rows.

XmNcolumns — The visible number of columns.

XmNeditable — True or False: determines whether editing of displayed
text is allowed.

XmNscrollHorizontal — True or False: Turn scrolling On/Off in this
direction.

XmNscrollVertical — True or False: Turn scrolling On/Off in this direc-
tion.

44.2 Putting text into a Text Widget

The Text widget is a dynamic structure and text may be inserted into the
widget at any time. There are many text editing and insertion functions
that will be introduced shortly. The simplest operation is actually setting
the text that will be used by the Text widget.

The function XmTextSetString() puts a specified ordinary (C type) string
into a specified widget. It has two arguments:

Widget — the Text widget,

String — The text being placed in the widget.

44.3. EXAMPLE TEXT PROGRAM - TEXT.C 661

44.3 Example Text Program - text.c

This program is a fairly simple example of the Text widget in use.

• It creates a ScrolledText widget and places the source code of the
text.c program in the Text widget (Fig. 44.1).

• No editing is allowed.

#include <Xm/Xm.h>

#include <Xm/Text.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

/* Prototype Callback and other functions */

void quit_call(),

help_call(),

read_file(Widget);

main(int argc, char *argv[])

{ Widget top_wid, main_w, menu_bar,

menu, quit, help, text_wid;

XtAppContext app;

Arg args[4];

/* initialize */

top_wid = XtVaAppInitialize(&app, "Text",

NULL, 0, &argc, argv, NULL, NULL);

main_w = XtVaCreateManagedWidget("main_w",

xmMainWindowWidgetClass, top_wid,

662 CHAPTER 44. TEXT WIDGETS

Figure 44.1: ScrolledText Widget

44.3. EXAMPLE TEXT PROGRAM - TEXT.C 663

/* XmNscrollingPolicy, XmVARIABLE, */

NULL);

menu_bar = XmCreateMenuBar(main_w, "main_list",

NULL, 0);

XtManageChild(menu_bar);

/* create quit widget + callback */

quit = XtVaCreateManagedWidget("Quit",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’Q’,

NULL);

XtAddCallback(quit, XmNactivateCallback,

quit_call, NULL);

/* Create ScrolledText -- this is work area for the

MainWindow */

XtSetArg(args[0], XmNrows, 30);

XtSetArg(args[1], XmNcolumns, 80);

XtSetArg(args[2], XmNeditable, False);

XtSetArg(args[3], XmNeditMode, XmMULTI_LINE_EDIT);

text_wid = XmCreateScrolledText(main_w, "text_wid",

args, 4);

XtManageChild(text_wid);

/* read file and put data in text widget */

read_file(text_wid);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void read_file(Widget text_wid)

{

664 CHAPTER 44. TEXT WIDGETS

static char *filename = "text.c";

char *text;

struct stat statb;

FILE *fp;

/* check file is a regular text file and open it */

if ((stat(filename, &statb) == -1)

|| !(fp = fopen(filename, "r")))

{ fprintf(stderr, "Cannot open file: %s\n", filename);

XtFree(filename);

return;

}

/* Map file text in the TextWidget */

if (!(text = XtMalloc((unsigned)(statb.st_size+1))))

{ fprintf(stderr, "Can’t alloc enough space for %s",

filename);

XtFree(filename);

fclose(fp);

return;

}

if (!fread(text, sizeof(char), statb.st_size+1, fp))

fprintf(stderr, "File read error\n");

text[statb.st_size] = 0; /* be sure to NULL-terminate */

/* insert file contents in TextWidget */

XmTextSetString(text_wid, text);

/* free memory

*/

XtFree(text);

XtFree(filename);

fclose(fp);

}

44.4. EDITING TEXT 665

void quit_call()

{ printf("Quitting program\n");

exit(0);

}

44.4 Editing Text

Motif provides many functions that allow the editing of the text (String)
stored in the widget. Text can be searched, inserted and replaced.

To replace all or parts of the text in a Text widget use the XmTextReplace()
function. It has four arguments:

Widget — The Text widget.

Start Position (XmTextPosition type) — A long int measured in bytes.
Specifies where to begin inserting text.

End Position (XmTextPosition type) — The end insertion point.

New text — The String that will replace existing text.

No matter how long the specified replacement text string is, text is only
replaced (character-by-character) between the 2 positions. However, if the
start and end positions are equal then text is inserted after the given position.

An alternative method to insert text, is to use the XmTextInsert() func-
tion. This takes 3 arguments:

Widget — the Text Widget,

Insert Position — the XmTextPosition for the insertion,

Insertion Text — the text String.

To Search for a string in the Text widget, use the XmTextFindString()

function with the following arguments:

Text Widget — to be searched,

Start Position — as before,

666 CHAPTER 44. TEXT WIDGETS

Search String,

Search Direction — either XmTEXT FORWARD or XmTEXT BACKWARD,

Position — a XmTextPosition pointer that returns the position found.

XmTextFindString() returns a Boolean value which is False if no string
was found.

To obtain text (in full) from a Text widget use the XmTextGetString()

function to return a String for a specified widget. An example use of this
function is to save text stored in the Text widget to a file. This can be simply
achieved by:

• XmTextGetString() from the widget.

• Write the string (e.g. fprintf()) to a file.

The function XmTextGetSubstring() can be used to get a portion of text
from a widget. It takes 5 arguments:

Text Widget — from where the substring is to be obtained.

Start Position — the XmTextPostition of the first character in the sub-
string to be returned.

Number of Characters — to be copied from the substring.

Buffer Size — the number of characters in the String buffer where the
substring is copied to.

String — a pointer to a String buffer which will hold the substring value
when this function is returned.

Similar functions exist for both the TextField and the CSText widgets.
An example of these functions in use with the TextField widget is given is
Section 44.7.

44.5. SCROLLING CONTROL 667

44.5 Scrolling Control

Motif provides a variety of functions to control the scrolling of the text within
a Text widget. Thus, the application programmer has control over which
portions of text can be displayed at a given time. The following options are
available:

• To show a piece of text in a given position, use XmTextShowPostion().

• To set a line to be at the top of scrolled widget, specify the position to
XmTextSetTopCharacter().

• To position the cursor to a position where text may be inserted, use
XmTextSetInsertionPosition().

Similar functions exist for both the TextField and the CSText widgets.
An example of these functions in use with the TextField widget is given is
Section 44.7.

44.6 Text Callbacks

Behind almost all of the Text widget functions, described above, lie default
callback resources. These control the basic text editing facilities: cut and
paste, searching etc. However, there may be occasions when the application
may need greater control over things. Several callback resources are provided
for this purpose. Briefly theses are:

XmNactivateCallback — Called on Enter key press (only single-line Text
widgets).

XmNverifyCallback — Used to verify a change to text before it is made.

XmNvalueChangedCallback — Called after a change to text has been
made.

XmNmotionCallback — Called when the user has altered the cursor po-
sition, or made a text selection with mouse .

XmNfocusCallback — Called when the user wants to begin input.

668 CHAPTER 44. TEXT WIDGETS

XmNlosingfocusCallback — Called when the widget is losing keyboard
focus.

We can use verifyCallbacks for checking user inputs — for example for
password verification.

44.7 Editing and Scrolling in Practice

The test for echo.c program (Section 42.3) illustrates the use of some of
the editing and scrolling functions described. The program basically operates
as follows:

• Two TextField widgets are created that are then made the command
and message areas of a MainWindow widget (Fig. 42.4).

• The command area Textfield is allowed to receive input but the message
area is not. The XmNeditable resource is set to False for the message
area widget, msg wid in test for echo.c.

• After the widgets are instantiated the command and message area
prompts are put into the respective widgets using the XmTextFieldSetString()
function. The text insertion point is set for the command area so that
input can be received after the command area prompt.

• When the command area receives a XmNactivateCallback event, a
callback cmd cbk, is called that parses the command area for a substring
(excluding the command area prompt) using the XmTextFieldGetSubstring()
function.

• The substring is then appended to the message area after the message
area prompt using the XmTextFieldReplace(), with the start point
set appropriately.

• The command area prompt is then reset by simply setting (using the
XmTextFieldSetString() function) it to the original prompt value.

• The insertion point for the command area is also reset (using the
XmTextFieldSetInsertionPosition() function) for subsequent data
input.

44.8. EXERCISES 669

44.8 Exercises

Exercise 44.1 Modify the text.c (Section 44.3) so that it employs a File-
Selection widget to allow the user to select a file, which it then reads and
displays in a ScrolledText Widget .

670 CHAPTER 44. TEXT WIDGETS

Chapter 45

List Widgets

The List widget allows selection from a variety of specified items. The List
widget is actually one of the component widgets in the FileSelectionBox
widget(Chapter 43).

The use of a List is similar to that of a Menu, but is a little more flexible:

• We can add and delete items from the list.

• Lists can be scrolled.

• A number of Selection modes are available.

An example of a List Widget is shown in Fig. 45.1.

Figure 45.1: Output of list.c

671

672 CHAPTER 45. LIST WIDGETS

45.1 List basics

To create a simple list use: XtVaCreateManagedWidget(), and specify
xmListWidgetClass as the widget type (or use XmCreateList(). The header
file <Xm/List.h> must be included. We will usually want to create a ScrolledList.
To do this use: XmCreateScrolledList().

There are a number of useful resources:

XmNitemCount — The number of items in the list.

XmNitems — The item list. The item list is a XmStringTable data type.
This is basically a 1D array of XmStrings.

XmNselectionPolicy — Controls how items are chosen (see Section 45.1.1
below).

XmNvisibleItemCount — The number of items shown in the list. This
determines height of widget.

XmNscrollBarDisplayPolicy — Either XmAS NEEDED or XmSTATIC. XmSTATIC
will always show (vertical) scroll even if all items are visible.

XmNlistSizePolicy — XmCONSTANT, XmRESIZE IF POSSIBLE or XmVARIABLE.
Controls horizontal scrolling.

XmNselectedItemCount — The number of selected items.

XmNselectedItems — The selected items from the list. These can be set
at list initialisation to enable a default choice to be specified.

45.1.1 List selection modes

One primary distinction between a list and menu is in the methods of se-
lection available. Four types of selection are available. The List resource
XmNselectionPolicy must be set accordingly:

Single — XmSINGLE SELECT (defined in <Xm/List.h>). Only one item may
be selected.

Browse — XmBROWSE SELECT. Similar to Single selection, except a default
selection can be provided and user interaction may vary.

45.1. LIST BASICS 673

Multiple — XmMULTIPLE SELECT. More than one item may be selected. A
mouse click on a item will select it. If you click on an already selected
item it will be deselected.

Extended — XmEXTENDED SELECT. Like Multiple selection. Here you can
drag the mouse over a number of items to select them.

45.1.2 Adding and removing list items

As the name of this widget implies, the List is a dynamic structure that can
grow or shrink as items are added or deleted.

To add an item to a list, use the function XmListAddItem(), which takes
3 arguments:

The List Widget — The widget we add items to,

Item — An (XmString) list item we wish to add,

Position — The (int) position. Note: List indexing Starts at index 1
(Die hard C programmers take note). Position 0 in the list is used to
specify the last position in the list. If you specify a 0 position items
will get appended to the end of the List.

Another function XmListAddItemUnselected() has exactly the same syn-
tax as XmListAddItem(), above. This function will guarantee that an item
is not selected when it is added. This is not always the case with the
XmListAddItem(), since selection will be dependent on the currently selected
list index.

To remove a single named (XmString) item, str, from a List widget, use
the
XmListDeleteItem(Widget List, XmString str) function.

To remove a number of named (XmString) items, use the
XmListDeleteItems(Widget List, XmString *del items) function where
the second argument, del items, is an array of XmStrings that contain the
names of items being deleted.

If you know the position of item(s) in a List, as opposed to their names,
you can use the following functions:

XmListDeletePos(Widget wid, int pos) where the second pos argument
specifies the deletion position.

674 CHAPTER 45. LIST WIDGETS

XmListDeleteItemsPos(Widget wid, int num, int pos) where num items
are deleted starting from position pos.

To delete all items form a list, use XmListDeleteAllItems(Widget wid).

45.2 Selecting and Deselecting items

Two functions XmListSelectItem(Widget, XmString, Boolean) and
XmListSelectPos(Widget, int, Boolean) may be used to select an item
from within a program.

The Boolean value, if set to True, will call the callback function associated
with the particular List.

To deselect items use XmListDeselectItem(Widget, XmString),
XmListDeselectPos(Widget, int) or XmListDeselectAllItems(Widget).
The operation of which is similar to corresponding delete functions.

45.2.1 List Enquiry

Since the List is dynamic we may need to know how long the list is, and
which items are currently selected etc.. Some of these values can be obtained
from the callback structure of a list (see Section45.3 below). However, if
no callback has been invoked the programmer may sometimes still need to
access this information.

The List resources are updated automatically (by default callback re-
sources) so all we need to do is to XtGetValues() (or something similar) for
the resource we want. For example:

• To find the length of a list:

Obtain the value of the resource XmNitemCount.

Arg args[1]; /* Arg array */

int n = 1; /* number arguments */

int list_size; /* value to store XtGetValue() request */

......

XtSetArg(args[0], XmNitemCount, &list_size);

45.3. LIST CALLBACKS 675

XtGetValues(list_wid, args, n);

printf("The Size of the list = %d\n", list_size);

where list wid is the List widget we request this information from.

Note: We pass the address of list size to XtSetArg() since we need
to specify a pointer to physical (program) memory in which to store the
result. The value of list size is available after the XtGetValues()

call and is only accurate until the next user (or application) list addi-
tion/subtractions.

• To find the number of items currently selected:

Obtain the value of the resource XmNselectedItemCount:

Arg args[1]; /* Arg array */

int n = 1; /* number arguments */

int select_count; /* value to store

XtGetValue() request */

......

XtSetArg(args[0], XmNselectedItemCount, &select_count);

XtGetValues(list_wid, args, n);

printf("The Numver of selected list items = %d\n",

select_count);

Recall that the use of XtGetValue() is similar to that of XtSetValue()
(Chapter40).

45.3 List Callbacks

Default List callback functions facilitate common interaction with a List
such as selection of an item (or multiple items) and addition or deletion
of items. More importantly, related resource information is automatically
updated (e.g. the current List size, XmNitemCount). There is a List callback

676 CHAPTER 45. LIST WIDGETS

resource for each of the selection types (e.g. XmNsingleSelectionCallback)
and also a XmNdefaultActionCallback. The application programmer is free
to add his own callback functions in the usual manner. In this case, the
selection policy callback will be called first and then the default.

The Callback function has the usual form:

list_cbk(Widget w, XtPointer data, XmListCallbackStruct *cbk)

Elements of the XmListCallbackStruct include:

item — the XmString of the selection.

item position — position in the List.

selected items — the List of XmStrings in multiple selections.

selected item count — number of multiple selections.

selected item positions — positions in the List.

An example of the use of a List callback is given in the following list.c

example program.

45.4 The list.c program

An example of a List in action is given in list.c.
We create a simple list that shows a selection of colours. Selection of

these colours changes the background colour1 of the List widget.

#include <Xm/Xm.h>

#include <Xm/List.h>

/* Prototype Callback */

1In order to illustrate the list example with a non-trivial and vaguely interesting ap-
plication we actually use some Xlib colour routines. These have not yet been formally
addressed (see Chapter 51). However, the use of colour routines here are not too difficult
to comprehend and basically resort to the list callback list cbk() setting an appropriate
XmNbackground resource value. The reader is urged to concentrate on the List creation
and usage matters in this example.

45.4. THE LIST.C PROGRAM 677

void list_cbk(Widget , XtPointer ,

XmListCallbackStruct *);

String colours[] = { "Black", "Red", "Green",

"Blue", "Grey"};

Display *display; /* xlib id of display */

Colormap cmap;

main(int argc, char *argv[])

{

Widget top_wid, list;

XtAppContext app;

int i, n = XtNumber(colours);

XColor back, fore, spare;

XmStringTable str_list;

Arg args[4];

top_wid = XtVaAppInitialize(&app, "List_top", NULL, 0,

&argc, argv, NULL, NULL);

str_list =

(XmStringTable) XtMalloc(n * sizeof (XmString *));

for (i = 0; i < n; i++)

str_list[i] = XmStringCreateSimple(colours[i]);

list = XtVaCreateManagedWidget("List",

xmListWidgetClass, top_wid,

XmNvisibleItemCount, n,

XmNitemCount, n,

XmNitems, str_list,

XmNwidth, 300,

XmNheight, 300,

NULL);

678 CHAPTER 45. LIST WIDGETS

for (i = 0; i < n; i++)

XmStringFree(str_list[i]);

XtFree(str_list);

/* background pixel to black foreground to white */

cmap = DefaultColormapOfScreen(XtScreen(list));

display = XtDisplay(list);

XAllocNamedColor(display, cmap, colours[0], &back,

&spare);

XAllocNamedColor(display, cmap, "white", &fore, &spare);

n = 0;

XtSetArg(args[n],XmNbackground, back.pixel);

++n;

XtSetArg(args[n],XmNforeground, fore.pixel);

++n;

XtSetValues(list, args, n);

XtAddCallback(list, XmNdefaultActionCallback, list_cbk,

NULL);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

/* called from any of the "Colour" list items.

Change the color of the list widget.

Note: we have to use dynamic setting with XtSetValues()..

*/

void list_cbk(Widget w, XtPointer data,

XmListCallbackStruct *list_cbs)

{ int n =0;

Arg args[1];

String selection;

45.4. THE LIST.C PROGRAM 679

XColor xcolour, spare; /* xlib color struct */

/* list->cbs holds XmString of selected list item */

/* map this to "ordinary" string */

XmStringGetLtoR(list_cbs->item, XmSTRING_DEFAULT_CHARSET,

&selection);

if (XAllocNamedColor(display, cmap, selection,

&xcolour, &spare) == 0)

return;

XtSetArg(args[n],XmNbackground, xcolour.pixel);

++n;

/* w id of list widget passed in */

XtSetValues(w, args, n);

}

680 CHAPTER 45. LIST WIDGETS

Chapter 46

The Scale Widget

The Scale widget allows the user to input numeric values into a program. An
example of the Scale widget is shown in Fig. 46.1.

Figure 46.1: Output of scale.c

46.1 Scale basics

To create a Scale Widget use XtVaCreateManagedWidget(), with a
xmScaleWidgetClass class pointer or use XmCreateScale(). Once again a
header file, <Xm/Scale.h>, needs to be included in all programs using Scale
widgets.

The following Scale Widget Resources are typically used:

XmNmaximum — The largest value of scale.

XmNminimum — The scale’s smallest value. The default value is 0.

681

682 CHAPTER 46. THE SCALE WIDGET

XmNorientation — XmHORIZONTAL or XmVERTICAL, resource values define
how the Scale is displayed.

XmNtitleString — The XmString label of the scale.

XmNdecimalPoints — A scale value is always returned as an integer
(default 0). This resource can be set to give the user the impres-
sion of floating point input, e.g. if we have a range 0 – 1000 on the
Scale but XmNdecimalPoints set to 2. The displayed range would be
0.00 – 10.00.

The application programmer must take care of the input value to the
program. In the above a value will still get returned in the integer
range and somewhere in the application there must be a division by
100.

XmNshowValue — True or False. This resource decides whether or not
to display the value of the scale as it moves.

XmNvalue — The current value (int) of the Scale.

XmNprocessingDirection — Either XmMAX ON TOP, XmMAX ON BOTTOM,

XmMAX ON LEFT or XmMAX ON RIGHT. This resource sets the end of the
scale, where the maximum and minimum values are placed. This de-
pends on the orientation of the Scale.

46.2 Scale Callbacks

The Scale callback can be called for two types of events:

XmNvalueChangedCallback — If the value is changed.

XmNdragCallback — If the Scale value is moved at all, “continuous” val-
ues can be input. Note: This may affect X performance as it involves
instantaneously updating the display of the scale.

The Scale callback function is standard:

void scale_cbk(Widget w, XtPointer data,

XmScaleCallbackStruct *struct)

46.3. THE SCALE.C PROGRAM 683

The structure element value holds the current Scale integer value, and
is the only structure element that is really of interest. The scale.c program
illustrates this usage.

46.3 The scale.c program

The program simply brings up a virtual volume Scale (in the context of a
virtual amplifier controller). The user changes the value which is caught by
a XmNvalueChangedCallback and the current value is interrogated to print
a message to standard output.

#include <Xm/Xm.h>

#include <Xm/Scale.h>

/* Prototype callback */

void scale_cbk(Widget , int ,

XmScaleCallbackStruct *);

main(int argc, char **argv)

{ Widget top_wid, scale;

XmString title;

XtAppContext app;

top_wid = XtVaAppInitialize(&app, "Scale_eg", NULL, 0,

&argc, argv, NULL, NULL);

title = XmStringCreateLocalized("Volume");

scale = XtVaCreateManagedWidget("scale",

xmScaleWidgetClass, top_wid,

XmNtitleString, title,

XmNorientation, XmHORIZONTAL,

XmNmaximum, 11,

XmNdecimalPoints, 0,

684 CHAPTER 46. THE SCALE WIDGET

XmNshowValue, True,

XmNwidth, 200,

XmNheight, 100,

NULL);

XtAddCallback(scale,XmNvalueChangedCallback, scale_cbk,

NULL);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void scale_cbk(Widget widget, int data,

XmScaleCallbackStruct *scale_struct)

{ if (scale_struct->value < 4)

printf("Volume too quiet (%d)\n");

else if (scale_struct->value < 7)

printf("Volume Ok (%d)\n");

else

if (scale_struct->value < 10)

printf("Volume too loud (%d)\n");

else /* Volume == 11 */

printf("Volume VERY Loud (%d)\n");

}

46.4 Scale Style

46.4.1 Motif 1.2 Style

The Motif Style Guide(Chapter 52) suggests that some sort of markers should
be used to gauge distance along a Scale. However, no provision is made for
this within the Scale widget class in Motif 1.2. Instead, the programmer
must assemble this manually. An assortment of labels and tics can be used
to provide some sort of visual ruler (Fig. 46.2).

46.4. SCALE STYLE 685

Figure 46.2: Better Style Scale Output

The Motif program code that achieves this, by placing vertical Separa-
torGadgets (“|”) at equally spaced intervals, is as follows:

Widget ...,tics[1];

.......

.......

/* label scale axis */

for (i=0; i < 11; ++i)

{ XtSetArg(args[0], XmNseparatorType, XmSINGLE_LINE);

XtSetArg(args[1], XmNorientation, XmVERTICAL);

XtSetArg(args[2], XmNwidth, 10);

XtSetArg(args[3], XmNheight, 5);

tics[i] = XmCreateSeparatorGadget(scale, "|",

args, 4);

}

XtManageChildren(tics, 11);

...........

...........

46.4.2 The Motif 2.0 Style

Motif 2.O provides a new convenience function XmScaleSetTicks() to allow
for an easier configuration of ticks along the Scale widget. The configuration
allows for three different sized ticks to be placed at specified regular intervals

686 CHAPTER 46. THE SCALE WIDGET

along the Scale. Each tick mark is actually a SeparatorGadget oriented
perpendicular to the Scale’s orientation. The function XmScaleSetTicks()

takes seven arguments:

Widget — The scale widget being assigned the ticks.

int large every — The number of Scale values between large ticks.

int num medium — The number of medium ticks between large ticks.

int num small — The number of small ticks between medium ticks.

Dimension size large — The size (width or height) of the big ticks.

Dimension size medium — The size (width or height) of the medium ticks.

Dimension size small — The size (width or height) of the small ticks.

If you specify tick marks for a Scale and then change the Scale’s orienta-
tion then you must remove all the tick marks and then recreate new ones in
the correct orientation. This may be achieved by the following method:

• To remove ticks marks you must destroy all SeparatorGadget tick mark
children:

– The first two children of a Scale are its title and scroll bar.

– All additional children are the tick marks.

– The function XtDestroyChildren() can be used to remove spec-
ified tick marks.

• Call XmScaleSetTicks() with appropriate arguments.

Chapter 47

ScrolledWindow and ScrollBar
Widgets

We have already seen scrollbars in action with Text (Chapter 44) and List
widgets (Chapter 45). More generally, Motif provides a ScrolledWindow
widget that allows scrolling of any widget contained within it. This means
that we can place a large view area inside a smaller one and then view
portions of the view area.

As we have seen, Motif actually provides convenience functions to produce
ready made ScrolledText and ScrolledList widgets. These are, in fact, Text
or List widgets contained inside a ScrolledWindow widget.

ScrollBars are the basic components of scrolling. A ScrolledWindow
widget may contain either, or both of, horizontal and vertical ScrollBars.
Many application will typically use ScrollBars. In the majority of instances,
ScrollBar widgets will be created automatically by higher level widgets (e.g.
ScrolledWindow, ScrolledText or ScrolledList). Occasionally, greater control
over the default settings of the ScrollBar will be required. Sometimes, these
resources can be set as resources of the higher level widget, other times the
resources will need to be set explicitly. In this chapter, we will highlight
important ScrollBar resources and illustrate how they can be set in both of
the above scenarios.

687

688CHAPTER 47. SCROLLEDWINDOW AND SCROLLBAR WIDGETS

47.1 ScrolledWindow Widgets

ScrolledWindow widgets can be created manually with XtVaCreateManagedWidget(),
with the xmScrolledWindowWidgetClass pointer or with XmCreateScrolledWindow()

function.
Associated definitions for this widget class etc. are included in the <Xm/ScrolledW.h>

header file.
Useful resources include:

XmNhorizontal, XmNvertical — The identifiers (IDs) of component Scroll-
Bar widgets of the ScrolledWindow. One or both may be present.

XmNscrollingPolicy — Either defined as XmAUTOMATIC or XmAPPLICATION DEFINED.
If the scrolling policy is XmAUTOMATIC then scrolling is taken care of oth-
erwise the application must create and control XmScrollBar widgets
itself.

XmNscrolBarDisplayPolicy — Either defined as XmAS NEEDED or XmSTATIC,
as with List Scrolling.

XmNvisualPolicy — Either defined as XmCONSTANT or XmVARIABLE. If con-
stant then scrolled window cannot resize itself.

XmNworkWindow — The widget to be scrolled.

47.2 ScrollBar Widgets

You may have to create ScrollBars yourself, especially if the scrolling policy
is defined as XmAPPLICATION DEFINED. Alternatively, you may get the ID of
a ScrollBar from a ScrolledWindow (e.g. XmNhorizontal resource).

To create a ScrollBar, use XtVaCreateManagedWidget() with
xmScrollBarWidgetClass or use XmCreateScrollBar().

To obtain a horizontal ScrollBar ID from a ScrolledWindow:

Arg args[1]; /* Arg array */

int n = 1; /* number arguments */

Widget scrollwin,scrollbar;

47.2. SCROLLBAR WIDGETS 689

scrollwin = XmCreateScrolledWindow(.....)

......

XtSetArg(args[0], XmNhorizontal, &scrollbar);

XtGetValues(scrollwin, args, n);

Typical ScrollBar resources include:

XmNsliderSize — A slider may be divided up into unit lengths. This
resource sets its size.

XmNmaximum — The largest size (measured in unit lengths) a ScrollBar
can have.

XmNminimum — The smallest ScrollBar size.

XmNincrement — The number of unit lengths the Scale will change when
moved with mouse.

XmNorientation — XmVERTICAL (Default) or XmHORIZONTAL layout of the
widget.

XmNvalue — The current position of the Scale.

XmNpageIncrement — Controls how much the underlying work window
moves relative to a ScrollBar movement.

The Callback resources for a ScrollBar are:

XmNvalueChangedCallback — Called if the ScrollBar value changes.

XmNdecrementCallback, XmNincrementCallBack — Called if the Scroll-
Bar value changes up or down.

XmNdragCallback — Called on continuous Scale value updates.

XmNpageDecrementCallback, XmNpageIncrementCallback — Called
on movement of work window.

XmNtoTopCallback, XmNtoBottomCallback — Called if ScrollBar is
moved to minimum or maximum values.

690CHAPTER 47. SCROLLEDWINDOW AND SCROLLBAR WIDGETS

Chapter 48

Toggle Widgets

A Toggle Widget basically provides a simple switch type of selection. The
Toggle is either a square or circle shape indicator which if pressed can be
turned on and if pressed again turned off. Text and pictorial items (pixmaps)
can be used to label a Toggle.

Several Toggle widgets can be grouped together to allow greater control
of selection. Motif provides two methods of grouping Toggles together.

RadioBox Widget — Only one of the group can be on at any given time.
Toggles are diamond (Motif 1.2) or circular (CDE 1.0 and Motif 2.0)
in this widget (Fig 48.1).

CheckBox Widget — More than one Toggle can be on at any time. Tog-
gles are square. (Fig. 48.2).

48.1 Toggle Basics

To create a single Toggle use XtVaCreateManagedWidget() with a
xmToggleButtonWidgetClass pointer or use XmCreateToggleButton().

The header file <Xm/ToggleB.h> holds definitions etc for this widget.
Several Toggle Resources are relevant to the programmer:

XmNindicatorType — Defines the mode of operation of the Toggle. Set
this resource to XmN OF MANY for a CheckBox or XmONE OF MANY for a
RadioBox.

691

692 CHAPTER 48. TOGGLE WIDGETS

Figure 48.1: A RadioBox set of Toggle Widgets

Figure 48.2: A CheckBox set of Toggle Widgets

48.2. TOGGLE CALLBACKS 693

XmNindicatorOn — Set this resource to True to turn indicator on. The
default is False (off).

XmNindicatorSize — Changes indicator size. Size is specified in Pixel
unit size.

XmNlabelType — Either set to XmSTRING or XmPIXMAP. Defines the type
of label associated with the Toggle.

XmNlabelString — The XmString label of Toggle.

XmNlabelPixmap — The Pixmap of an unselected Toggle.

XmNselectPixmap — The Pixmap of a selected Toggle.

XmNselectColour — The colour of a selected Toggle. (Pixel data type).

The Pixmap is a standard X data type. You can use XmGetPixmap() to
load in a Pixmap from a file. (See Chapter 49 on Graphics and Xlib for
further details.)

48.2 Toggle Callbacks

Toggle Callbacks have the usual callback function format and are prototyped
by:

void toggle_cbk(Widget, XtPointer,

XmToggleCallbackStruct *).

Toggle Callbacks are activated upon an XmNvalueChangedCallback. The
XmToggleCallbackStruct has a boolean element set that is True if the
Toggle is on. The toggle.c (Section 48.3 below) illustrates the use of Toggle
callbacks.

48.3 The toggle.c program

This program creates two CheckBox Toggles in a RowColumn Widget. When
their Callbacks are activated, the state of the Toggle is interrogated and a
message is printed to standard output.

694 CHAPTER 48. TOGGLE WIDGETS

#include <Xm/Xm.h>

#include <Xm/ToggleB.h>

#include <Xm/RowColumn.h>

/* Prototype callback */

void toggle1_cbk(Widget , XtPointer ,

XmToggleButtonCallbackStruct *),

void toggle2_cbk(Widget , XtPointer ,

XmToggleButtonCallbackStruct *);

main(int argc, char **argv)

{

Widget toplevel, rowcol, toggle1, toggle2;

XtAppContext app;

toplevel = XtVaAppInitialize(&app, "Toggle", NULL, 0,

&argc, argv, NULL, NULL);

rowcol = XtVaCreateWidget("rowcol",

xmRowColumnWidgetClass, toplevel,

XmNwidth, 300,

XmNheight, 200,

NULL);

toggle1 = XtVaCreateManagedWidget("Dolby ON/OFF",

xmToggleButtonWidgetClass, rowcol, NULL);

XtAddCallback(toggle1, XmNvalueChangedCallback,

toggle1_cbk, NULL);

toggle2 = XtVaCreateManagedWidget("Dolby B/C",

xmToggleButtonWidgetClass, rowcol, NULL);

XtAddCallback(toggle2, XmNvalueChangedCallback,

toggle2_cbk, NULL);

XtManageChild(rowcol);

48.4. GROUPING TOGGLES 695

XtRealizeWidget(toplevel);

XtAppMainLoop(app);

}

void toggle1_cbk(Widget widget, XtPointer client_data,

XmToggleButtonCallbackStruct *state)

{ printf("%s: %s\n", XtName(widget),

state->set? "on" : "off");

}

void

toggle2_cbk(Widget widget, XtPointer client_data,

XmToggleButtonCallbackStruct *state)

{ printf("%s: %s\n", XtName(widget), state->set ? "B" : "C");

}

48.4 Grouping Toggles

You can, if you wish, group RadioBoxes or CheckBox Toggles in RowColumn,
or Forms yourself (as has been done in the above toggle.c program).

However, Motif provides a few convenience functions, XmCreateSimpleRadioBox()
and XmCreateSimpleCheckBox() are common examples.

Basically, these are RowColumn Widgets with Toggle children created
automatically. Appropriate resources can be set, e.g. XmNindicatorType or
XmNradioBehaviour (in this enhanced RowColumn Widget) .

696 CHAPTER 48. TOGGLE WIDGETS

Chapter 49

Xlib and Motif

This Chapter will deal specifically with the introduction of Xlib – the low
level X library. Recall that Xlib provides the means of communication be-
tween the application and the X system. The Xlib library of (C) subroutines
is large and of a comparable size to Motif. Many of Xlib’s routines deal
with the creation, maintenance and interaction between windows and appli-
cations. Xlib does not have any concept of widgets and thus does not provide
provide any (high level) means of interaction. In general, writing complete
application solely in Xlib is not a good idea. Motif provides many useful,
complete GUI building blocks that should always be used if available. For
example, do you really want to write a complete text editing library in Xlib,
when Motif provides one for free?

If you use Motif then there should never be any need to resort to Xlib for
window creation. Motif is far more powerful and flexible. Consequently, in
this and forthcoming Chapters, we will only deal with issues that affect the
interfacing of Xlib with Motif and the Xt toolkit.

However, for certain tasks we will have to resort to Xlib. The sort of
tasks that we will be concerned with in this text are:

Graphics — The responsibility of actually drawing items to a window is the
domain of Xlib. Whilst Motif does provide a canvas where graphics
can be drawn, Motif has to rely on Xlib functions to actually draw
something. Xlib only facilitates simple 2D graphics.

Pixmaps — A Pixmap is an off-screen drawable area where graphics may
be placed. Pixmaps are clearly related to usage with Xlib graphics.

697

698 CHAPTER 49. XLIB AND MOTIF

However, Pixmaps are also used with Images and also to label graphics
based widgets e.g. DrawnButton and Toggle Widgets.

Colour — Handling colour is a fundamental element for a windowing sys-
tem. Colour plays an important part in any GUI for providing a user
friendly GUI layout, indicating key features and alerting the user to cer-
tain actions. However, in the X system colour can be quite complex as
a variety of devices are required to be supported by the X network and
each device may have a completely different interpretation of colour.
Because of this requirement, colour needs to be handled at the Xlib
level. Chapter 51 deals with the major issues of colour and X.

Text — Just like colour handling of Text can vary across devices. The font,
typeface (e.g. italic, bold) and size may need to be controlled by Xlib.

Events — Whilst Motif handles events in a robust and efficient manner,
the Motif method of event handling is sometimes a little restrictive. In
this case responsibility for event handling is sometimes handed over to
Xlib.

49.1 Xlib Basics

In Chapter 36 we described the X Window system and explained the rele-
vance of each system component. We briefly mentioned that Xlib provides
the interface between the X Protocol and the application program. Xlib
therefore has to deal with many low level tasks. In short, Xlib concerns itself
with:

• Display and Server Communication,

• Event and Error handling,

• Window Management — communication with the window manager,

• Text — fonts, size style etc.,

• Graphics — 2D graphics routines,

• Colour.

49.1. XLIB BASICS 699

Xlib deals with much lower level objects than widgets. When you write
or draw in Xlib reference, may be made to the following:

Display — This structure is used by nearly all Xlib functions. It contains
details about the server and its screens.

Drawable — this is an identifier to a structure that can contain graphics
(i.e. it can be drawn to). There are two common types:

Window — A part of the screen.

Pixmap — An off-screen store of graphical data.

Screen — Information about a single screen of a display.

Graphics Context (GC) — When we draw we need to specify things like
line width, line style (e.g solid or dashed), colour, shading or filling
patterns etc.. In Xlib we pass such information to a drawing routine
via a GC structure. This must be created (and values set) before the
routine uses the GC. More than one GC can be used.

Depth — the number of bits per pixel used to display data.

Visual — This structure determines how a display handles screen output
such as colour and depends on the number of bits per pixel.

If we are programming in Xlib alone, we would have to create windows
and open displays ourselves. However, if we are using a higher level toolkit
such a Motif and require to call on Xlib routines then we need to obtain the
above information from an appropriate widget in order pass on appropriate
parameter values in the Xlib function calls.

Functions are available to obtain this information readily from a Widget.
For example XtDisplay(), XtWindow(), XtScreen() etc. can be used to
obtain the ID of a given Xlib Display, Window, or Screen structure respec-
tively from a given widget. Default Values of these structures are also typ-
ically used. Functions DefaultDepthofScreen(), RootWindowofScreen()

are examples.
Sometimes, in a Motif program, you may have to create an Xlib structure

from scratch. The GC is the most frequently created structure that concerns
us. The Function XCreateGC() creates a new GC data structure.

700 CHAPTER 49. XLIB AND MOTIF

We will look at the mechanics of assembling Xlib graphics within a Motif
program when we study DrawingAreas in Chapter 50. For the remainder of
this Chapter we will continue to introduce basic Xlib concepts. In the coming
Sections, reference is made to programs that are described in Chapter 50.

49.2 Graphics Contexts

As mentioned in the previous Section, the GC is responsible for setting the
properties of lines and basic (2D) shapes. GCs are therefore used with every
Xlib drawing function. The draw.c (Section 50.3.1) program illustrates the
setting of a variety of GC elements.

To create a GC use the (Xlib) function XCreateGC(). It has 4 parameters:

• the Display ID (pointer),

• the Drawable ID,

• mask (unsigned long) — this controls how members of the following
XGCValues structure may be set.

• a pointer to a XGCValues structure. This structure contains elements
that can be set to change the values of an existing GC.

The XGCValues structure contains elements like foreground, background,

line width, line style, etc. that we can set for obvious results. The mask
has predefined values such as GCForeground, GCBackground, and GCLineStyle.

In draw.c we create a GC structure, gc, and set the foreground.
Xlib provides two macros BlackPixel() and WhitePixel() which will

find the default black and white pixel values for a given Display and Screen

if the default colourmaps are installed. Note that the reference to BlackPixel()
and WhitePixel() can be a little confusing since the pixel colours returned
may not necessarily be Black or White. BlackPixel() actually refers to the
foreground colour and WhitePixel() refers to the background colour.

Therefore, to create a GC that only sets foreground colour to the default
for a given display and screen:

gcv.foreground = BlackPixel(display, screen);

gc = XCreateGC(display, screen, GCForeground, &gcv);

49.3. TWO DIMENSIONAL GRAPHICS 701

where gcv is a XCGValues structure and gc a GC structure and GCForeground

sets the mask to only allow alteration of the foreground.
To set both background and foreground:

gcv.foreground = BlackPixel(display, screen);

gcv.background = WhitePixel(display, screen);

gc = XCreateGC(display, screen,

GCForeground | GCBackground, &gcv);

where we use the | (OR) in the mask parameter that allows both the
values to be set in the XGCValues structure.

An alternative way to change GC elements is to use Xlib convenience
functions to set appropriate GC values. Example functions include :

XSetForeground(), XSetBackground(), XSetLineAttributes().
These set GC values for a given display and gc, for example:

XSetBackground(display, gc, WhitePixel(display, screen));

Further examples of their use are shown in the draw.c program (Sec-
tion 50.3.1).

49.3 Two Dimensional Graphics

Xlib provides a whole range of 2D Graphics functions. See draw.c for ex-
amples in use. Most of these functions are fairly easy to understand and
use. The functions basically draw a specific graphical primitive (point, line,
polygon, arc, circle etc.) to a display according to a specific GC.

The simplest function is XDrawPoint(Display *d, Drawable dr, GC gc,

int x, int y) which draws a point at position (x, y) to a given Drawable

on a Display. This effectively colours a single pixel on the Display.
The function XDrawPoints(Display *d, Drawable dr, GC gc, XPoint

*pts, int n, int mode) is similar except that an n element array of XPoints
is drawn. The mode may be defined as being either CoordModeOrigin or
CoordModePrevious. The former mode draws all points relative to the ori-
gin whilst the latter mode draws relative to the last point.

Other Xlib common drawing functions include:

XDrawLine(Display *d, Drawable dr, GC gc, int x1, int y1, int x2,

int y2) draws a line between (x1, y1) and (x2, y2).

702 CHAPTER 49. XLIB AND MOTIF

XDrawLines(Display *d, Drawable dr, GC gc, XPoint *pts, int n, int

mode) draws a series of connected lines — taking pairs of coordinates
in the list. The mode is defined as for the XDrawPoints() function.

XDrawRectangle(Display *d, Drawable dr, GC gc, int x, int y, int

width, height) draws a rectangle with top left hand corner coordinate
(x, y) and of width and height.

XFillRectangle(Display *d, Drawable dr, GC gc, int x, int y, int

width, int height) fills (shades interior) a rectangle. The fill style

controls what shading takes place.

XFillPolygon(Display *d, Drawable dr, GC gc, XPoint *pts, int n,

int mode, int mode) fills a polygon whose outline is defined by the
*pts array.

This function behaves much like XDrawLines().

The shape parameter is either Complex, Nonconvex or Convex and
controls how the server may configure the shading operation.

XDrawArc(Display *d, Drawable dr, GC gc, int x, int y, int width,

int height, int angle1, int angle2) draws an arc.

XFillArc(Display *d, Drawable dr, GC gc, int x, int y, int width,

int height, int angle1, int angle2) draws an arc and fills it.

The x, y, width and height define a bounding box for the arc. The
arc is drawn(Fig. 49.1) from the centre of the box. The angle1 and
angle2 define the start and end points of the arc. The angles specify
1/64th degree steps measured anticlockwise. The angle1 is relative to
the 3 o’clock position and angle2 is relative to angle1.

Thus to draw a whole circle set the width and height equal to the
diameter of the circle and angle1 = 0, angle2 = 360*64 = 23040.

49.4 Pixmaps

If a window has been obscured then we will have to redraw the window when
it gets re-exposed. This is the responsibility of the application and not the
X window manager or system. In order to redraw a window we may have to

(x,y)

width

height
angle1

angle2

Arc

49.4. PIXMAPS 703

Figure 49.1: Drawing an Arc

704 CHAPTER 49. XLIB AND MOTIF

go through all the drawing function calls that have previously been used to
render our window’s display. However, re-rendering a display in this manner
will be cumbersome and may involve some complicated storage methods —
there maybe be many drawing functions involved and the order in which
items are drawn may also be important

Fortunately, X provides a mechanism that overcomes these (and other
less serious) problems. The use of Xlib Pixmaps is the best approach.

A Pixmap is an off-screen Drawable area.
We can draw to a Pixmap in the same way as we can draw to a Win-

dow. We use the standard Xlib graphics drawing functions (Section 49.3)
but instead of specifying a Window ID as the Drawable we provide a Pixmap

ID. Note, however, that no immediate visual display effect will occur when
drawing to a Pixmap. In order to see any effect we must copy the Pixmap to
a Window.

The program draw input2.c (Section 50.3.3) draws to pixmaps instead
of to the window.

To create a Pixmap the XCreatePixmap() function should be used. This
function takes 5 arguments and returns a Pixmap structure:

Display* — A pointer to the Display associated with Pixmap.

Drawable — The screen on which to place Pixmap.

Width, Height — The dimensions of the Pixmap.

Depth — The number of bits of each pixel. Usually 8 by default. A Pixmap
of depth 1 is usually called a bitmap and are used for icons and special
bitmap files.

When you have finished using a Pixmap it is a good idea to free the
memory in which it has been stored by calling:

XFreePixmap(Display*, Pixmap).

If you want to clear a Pixmap (not done automatically) use XFillRectangle()
to draw a background coloured rectangle that is the dimension of the whole
Pixmap or use XClearArea(), XClearWindow() or similar functions.

To copy a Pixmap onto another Pixmap or a Window use:

XCopyArea(Display *display, Drawable source,

Drawable destination, GC gc,

49.5. FONTS 705

int src_x, src_y,

int width, int height,

int dest_x, int dest_y);

where (src x, src y) specify the coordinates in the source pixmap where
copy starts, width and height specify the dimensions of the copied area and
(dest x, dest y) are the start coordinates in the destination where pixels
are placed.

49.5 Fonts

Fonts are necessary in Motif as all XmString are drawn to the screen using
fonts residing in the X system. A font is a complete set of characters (upper-
case and lower-case letters, punctuation marks and numerals) of one size
and one typeface. In order for a Motif program to gain access to different
typefaces, fonts must be loaded onto the X server. All X fonts are bitmapped.

Not all X servers support all fonts. Therefore it is best to check if a
specific font has been loaded correctly within your Motif program. There is
a standard X application program, xlsfonts, that lists the fonts available on
a particular workstation.

Each font or character set name is referred to by a String name. Fonts
are loaded into to an Xlib Font structure using the XLoadFont() function
with a given Display ID and font name argument. The function returns a
Font structure.

Another similar function is XLoadQueryFont() which takes the same ar-
guments as above but returns an XFontStruct which contains the Font struc-
ture plus information describing the font.

An example function, load font() which loads a font named ‘‘fixed’’,
which should be available on most systems but is still checked for is given
below:

void load_font(XFontStruct **font_info)

{ Display *display;

char *fontname = "fixed";

XFontStruct *font_info;

display = XtDisplay(some_widget);

706 CHAPTER 49. XLIB AND MOTIF

/* load and get font info structure */

if ((*font_info = XLoadQueryFont(display, fontname)) == NULL)

{ /* error - quit early */

printf("Cannot load %s font\n", fontname);

exit(1);

}

}

Motif actually possesses its own font loading and setting functions. These
include XmFontListCreate(), XmFontListEntryCreate(), XmFontListEntryLoad()
and XmFontListAdd(). These are used in a similar fashion to the Xlib func-
tions above except that they return an XmFontList structure. However,
in this book, we will be only using fonts at the Xlib level and these Motif
functions will not be considered further.

49.6 XEvents

We should now be familiar with the basic notion of events in X and Motif.
Mouse button presses, mouse motion and keyboard presses can be used to
action menu, buttons etc.. These are all instances of events. Usually we are
happy to let Motif take care of event scheduling with the XtAppMainLoop()

function, and the setting of appropriate callback resources for widgets (Chap-
ter 38).

Sometimes we may need to gain more control of events in X. To do this
we will need to resort to Xlib. A specific example of this will be met in
the Chapter 50 (the draw input1.c program), where the default interac-
tion, provided via callbacks in Motif, is inadequate for our required form of
interaction.

49.6.1 XEvent Types

There are many types of events in Xlib. A special XEvent structure is defined
to take care of this.

XEvents exist for all kinds of events, including: mouse button presses,
mouse motions, key presses and events concerned with the window manage-

49.6. XEVENTS 707

ment. Most of the mouse/keyboard events are self explanatory and we have
already studied them a little. Let us look at some window events further:

XConfigureNotify — If a window changes size then this event is generated.

XCirculateNotify — The event generated if the stacking order of windows
has changed.

XColormapNotify — The event generated if colormap changes are made.

XCreateNotify, XDestroyNotify — The events generated when a win-
dow is created or deleted respectively.

XExpose, XNoExpose — Windows can be stacked, moved around etc.
If part of a window that has been previously obscured becomes visible
again then it will need to be redrawn. An XExpose event is sent for this
purpose. An XExpose event is also sent when a window first becomes
visible.

Note: There is no guarantee that what has previously been drawn
to the window will become immediately visible. In fact, it is totally
up to the programmer to make sure that this happens by picking
up an XExpose event (See Sections 49.4 and 50.3.3 on Pixmaps and
DrawingAreas).

49.6.2 Writing Your Own Event Handler

Most Motif applications will not need to do this since they can happily run
within the standard application main loop event handling model. If you do
need to resort to creating your own (Xlib) event handling routines, be warned:
it can quickly become complex, involving a lot of Xlib programming.

Since, for the level of Motif programming described in this text, we will
not need to resort to writing elaborate event handlers ourselves we will only
study the basics of Motif/Xlib event handling and interaction.

The first step along this path is attaching a callback to an XEvent rather
than a Widget callback action. From Motif (or Xt) you attach a callback to
a particular event with the function XtAddEventHandler(), which takes 5
parameters:

Widget — the ID of the widget concerned.

708 CHAPTER 49. XLIB AND MOTIF

EventMask — This can be used to allow the widget to be receptive to
specific events. A complete list of event masks is given in the online
support reference material. Multiple events can be assigned by ORing
(|) masks together.

Nonmaskable — A Boolean almost always set to False. If it is set to True

then it can be activated on nomaskable events such as ClientMessage,
Graphics Expose, Mapping Notify, NoExpose, SelectionClear,

SelectionNotify or SelectionRequest.

Callback — the callback function.

Client Data — Additional data to be passed to the event handler.

As an example we could set an expose callbck() to be called by an
Expose event by the following function call:

XtAddEventHandler(widget, ExposureMask, False,

expose_callbck, NULL);

To set a callback, motion callbk(), that responds to left or middle mouse
motion — an event triggered when the mouse is moved whilst an appropriate
mouse butten is depresses — we would write:

XtAddEventHandler(widget, Button1MotionMask | Button2MotionMask,

False, motion_callbk, NULL);

There are two other steps that need to be done when writing our own
event handler. These are:

• Intercepting Events, and

• Dispatching Events.

These two steps are basically what the XtAppMainLoop() takes care of in
normal operation.

Two Xt functions are typically used in this context:

XtAppNextEvent(XtAppContext, XEvent*) gets the next event off the event
queue for a given XtAppContext application.

49.6. XEVENTS 709

XtDispatchEvent(XEvent*) dispatches the event so that callbacks can be
invoked.

In between the retrieving of the next event and dispatching this event
you may want to write some code that intercepts certain events.

Let us look at how the XtAppMainLoop() function is coded. Note the
comments show where we may place custom application intercept code.

void XtAppMainLoop(XtAppContext app)

{ XEvent event;

for (;;) /* forever */

{ XtAppNextEvent(app, &event);

/* Xevent read off queue */

/* inspect structure and intercept perhaps? */

/* intercept code would go here */

XtDispatchEvent(&event);

}

}

710 CHAPTER 49. XLIB AND MOTIF

Chapter 50

The DrawingArea Widget

In this section we will look at how we create and use Motif’s DrawingArea
Widget which is concerned with the display of graphics. We will also put into
practice the Xlib drawing and event scheduling routines met in Chapter 49.

50.1 Creating a DrawingArea Widget

To create a DrawingArea Widget, use XtVaCreateManagedWidget() with
xmDrawingAreaWidgetClass or use XmCreateDrawingArea(). Remember
to include the <Xm/DrawingA.h> header file.

There is also a DrawnButton Widget which is a combination of a
DrawingArea and a PushButton. There is a xmDrawnButtonWidgetClass

and definitions are in the <Xm/DrawnB.h> header file.

50.2 DrawingArea Resources and Callbacks

A DrawingArea will usually be placed inside a container widget —e.g. a
Frame or a MainWindow — and it is frequently scrolled. As such, it usually
inherits size and other resources from its parent widget. You can, however,
set resources like XmNwidth and XmNheight for the DrawingArea directly.
The XmNresizePolicy resource may also need to be set to allow changes in
dimension of the DrawingArea in a program. Possible values are:

XmRESIZE ANY — Allow any size of DrawingArea,

711

712 CHAPTER 50. THE DRAWINGAREA WIDGET

XmRESIZE GROW — Allow the DrawingArea to expand only from its initial
size,

XmRESIZE NONE — No change in size is allowed.

Three callbacks are associated with this widget:

XmNexposeCallback — This callback occurs when part of the window
needs to be redrawn.

XmNresizeCallback — If the dimensions of the window get changed this
is called.

XmNinputCallback — If input in the form of a mouse button or key
press/release occurs this callback is invoked.

50.3 Using DrawingAreas in Practice

We are now in a position to draw 2D graphics in Motif. Recall that all
graphics drawing is performed at the Xlib level and so we have to attach the
higher level motif widgets to the lower level Xlib structures (Chapter 49).

In order to draw anything in a DrawingArea Widget we basically need to
do the following:

• Create a DrawingArea widget perhaps contained in other widgets.

• Obtain the Xlib Display, Window, etc. ID’s of the DrawingArea wid-
get (Section 49.1).

• Draw, shade, etc. using Xlib graphics routines (Section 49.3).

50.3.1 Basic Drawing — draw.c

The draw.c program illustrates basic Motif/Xlib drawing principles:

• It creates a DrawingArea, draw, contained within a MainWindow.

• We obtain Xlib Display and Screen IDs with XtDisplay(draw) and
XtScreen(draw).

50.3. USING DRAWINGAREAS IN PRACTICE 713

• We create a Graphics Context with the foreground pixel set to the
default BlackPixel of the Screen.

• We pass the Graphics Context value by making it the user data of
the draw widget. To do this:

1. Attach the appropriate data to the XmNuserData resource.

Note: this method can be used to pass any type of data not just
graphics as illustrated here.

2. To retrieve the date use XtGetValues().

3. The Xlib graphics routines are used to draw lines, rectangles, arcs
and text to the DrawingArea (via the Display and Screen IDs.

• The font for the text labels for each drawing primitive is loaded and set
in the function load font(). The font height is computed and used
to determine where to place the text labels when drawn by XDrawString().

The full program listing is:

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <Xm/DrawingA.h>

/* Prototype functions */

void quit_call(void);

void draw_cbk(Widget , XtPointer ,

XmDrawingAreaCallbackStruct *);

void load_font(XFontStruct **);

/* XLIB Data */

Display *display;

Screen *screen_ptr;

main(int argc, char *argv[])

714 CHAPTER 50. THE DRAWINGAREA WIDGET

Figure 50.1: Output of draw.c

50.3. USING DRAWINGAREAS IN PRACTICE 715

{ Widget top_wid, main_w, menu_bar, draw, quit;

XtAppContext app;

XGCValues gcv;

GC gc;

top_wid = XtVaAppInitialize(&app, "Draw", NULL, 0,

&argc, argv, NULL,

XmNwidth, 500,

XmNheight, 500,

NULL);

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

NULL);

menu_bar = XmCreateMenuBar(main_w, "main_list",

NULL, 0);

XtManageChild(menu_bar);

/* create quit widget + callback */

quit = XtVaCreateManagedWidget("Quit",

xmCascadeButtonWidgetClass, menu_bar,

XmNmnemonic, ’Q’,

NULL);

XtAddCallback(quit, XmNactivateCallback, quit_call,

NULL);

/* Create a DrawingArea widget. */

draw = XtVaCreateWidget("draw",

xmDrawingAreaWidgetClass, main_w,

NULL);

/* get XLib Display Screen and Window ID’s for draw */

716 CHAPTER 50. THE DRAWINGAREA WIDGET

display = XtDisplay(draw);

screen_ptr = XtScreen(draw);

/* set the DrawingArea as the "work area" of main window */

XtVaSetValues(main_w,

XmNmenuBar, menu_bar,

XmNworkWindow, draw,

NULL);

/* add callback for exposure event */

XtAddCallback(draw, XmNexposeCallback, draw_cbk, NULL);

/* Create a GC. Attach GC to the DrawingArea’s

XmNuserData.

NOTE : This is a useful method to pass data */

gcv.foreground = BlackPixelOfScreen(screen_ptr);

gc = XCreateGC(display,

RootWindowOfScreen(screen_ptr), GCForeground, &gcv);

XtVaSetValues(draw, XmNuserData, gc, NULL);

XtManageChild(draw);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

/* CALL BACKS */

void quit_call()

{ printf("Quitting program\n");

exit(0);

}

/* DrawingArea Callback. NOTE: cbk->reason says type of

callback event */

50.3. USING DRAWINGAREAS IN PRACTICE 717

void

draw_cbk(Widget w, XtPointer data,

XmDrawingAreaCallbackStruct *cbk)

{ char str1[25];

int len1, width1, font_height;

unsigned int width, height;

int x, y, angle1, angle2, x_end, y_end;

unsigned int line_width = 1;

int line_style = LineSolid;

int cap_style = CapRound;

int join_style = JoinRound;

XFontStruct *font_info;

XEvent *event = cbk->event;

GC gc;

Window win = XtWindow(w);

if (cbk->reason != XmCR_EXPOSE)

{ /* Should NEVER HAPPEN for this program */

printf("X is screwed up!!\n");

exit(0);

}

/* get font info */

load_font(&font_info);

font_height = font_info->ascent + font_info->descent;

/* get gc from Drawing Area user data */

XtVaGetValues(w, XmNuserData, &gc, NULL);

/* DRAW A RECTANGLE */

x = y = 10;

width = 100;

718 CHAPTER 50. THE DRAWINGAREA WIDGET

height = 50;

XDrawRectangle(display, win, gc, x, y, width, height);

strcpy(str1,"RECTANGLE");

len1 = strlen(str1);

y += height + font_height + 1;

if ((x = (x + width/2) - len1/2) < 0) x = 10;

XDrawString(display, win, gc, x, y, str1, len1);

/* Draw a filled rectangle */

x = 10; y = 150;

width = 80;

height = 70;

XFillRectangle(display, win, gc, x, y, width, height);

strcpy(str1,"FILLED RECTANGLE");

len1 = strlen(str1);

y += height + font_height + 1;

if ((x = (x + width/2) - len1/2) < 0) x = 10;

XDrawString(display, win, gc, x, y, str1, len1);

/* draw an arc */

x = 200; y = 10;

width = 80;

height = 70;

angle1 = 180 * 64; /* 180 degrees */

angle2 = 90 * 64; /* 90 degrees */

XDrawArc(display, win, gc, x, y, width, height,

angle1, angle2);

50.3. USING DRAWINGAREAS IN PRACTICE 719

strcpy(str1,"ARC");

len1 = strlen(str1);

y += height + font_height + 1;

if ((x = (x + width/2) - len1/2) < 0) x = 200;

XDrawString(display, win, gc, x, y, str1, len1);

/* draw a filled arc */

x = 200; y = 200;

width = 100;

height = 50;

angle1 = 270 * 64; /* 270 degrees */

angle2 = 180 * 64; /* 180 degrees */

XFillArc(display, win, gc, x, y, width, height,

angle1, angle2);

strcpy(str1,"FILLED ARC");

len1 = strlen(str1);

y += height + font_height + 1;

if ((x = (x + width/2) - len1/2) < 0) x = 200;

XDrawString(display, win, gc, x, y, str1, len1);

/* SOLID LINE */

x = 10; y = 300;

/* start and end points of line */

x_end = 200; y_end = y - 30;

XDrawLine(display, win, gc, x, y, x_end, y_end);

strcpy(str1,"SOLID LINE");

len1 = strlen(str1);

y += font_height + 1;

if ((x = (x + x_end)/2 - len1/2) < 0) x = 10;

XDrawString(display, win, gc, x, y, str1, len1);

720 CHAPTER 50. THE DRAWINGAREA WIDGET

/* DASHED LINE */

line_style = LineOnOffDash;

line_width = 2;

/* set line attributes */

XSetLineAttributes(display, gc, line_width, line_style,

cap_style, join_style);

x = 10; y = 350;

/* start and end points of line */

x_end = 200; y_end = y - 30;

XDrawLine(display, win, gc, x, y, x_end, y_end);

strcpy(str1,"DASHED LINE");

len1 = strlen(str1);

y += font_height + 1;

if ((x = (x + x_end)/2 - len1/2) < 0) x = 10;

XDrawString(display, win, gc, x, y, str1, len1);

}

void load_font(XFontStruct **font_info)

{ char *fontname = "fixed";

XFontStruct *XLoadQueryFont();

/* load and get font info structure */

if ((*font_info = XLoadQueryFont(display, fontname))

== NULL)

{ /* error - quit early */

printf("%s: Cannot load %s font\n", "draw.c",

fontname);

exit(-1);

50.3. USING DRAWINGAREAS IN PRACTICE 721

}

}

50.3.2 draw input1.c — Input to a DrawingArea

The previous program only illustrated one aspect of the DrawingArea wid-
get, i.e. displaying graphics. Another important aspect of this widget is how
the widget accepts input. In this Section we will develop a program that
illustrate how input is processed in the DrawingArea. We will write a pro-
gram, draw input1.c, that highlights some deficiencies in the default event
handling capabilities within a practical application.

The draw input1.c program accepts mouse input in the DrawingArea.
It allows the user to select a colour (as we have seen previously) and then
draw a variable size rectangle that is shaded with the chosen colour. A clear

DrawingArea facility is also provided.
In order to achieve a practical and intuitive manner of user interaction

we will need to detect 3 different mouse events (all events described below
refer to the left mouse button):

• The mouse button down indicates that input is about to start and the
coordinates selected here are the top left corner of the rectangle.

• The mouse button up indicates the end of input and a rectangle is
drawn using the coordinates selected here — bottom right corner.

• It is useful to provide visual feedback as to the size and location of
the rectangle as the user is moving the mouse. We can do this by
detecting a mouse motion and drawing a silhouette of the rectangle as
the mouse moves. (See Fig. 50.3). Note: This is common practice in
many applications where selection of several items, as well a drawing,
requires such outlines to be drawn.

To detect mouse clicks up and down we can use the XmNinputCallback

resource. However, the default setting of callback resources in a DrawingArea
Widget does not allow for mouse motion to be detected as we would like. We
therefore have to override the default callback options.

Every Widget has a Translation Table (Section 38.8.2) that contains a
list of events that it can receive and actions that it is to take upon receipt of

722 CHAPTER 50. THE DRAWINGAREA WIDGET

Figure 50.2: Output of draw input1.c

50.3. USING DRAWINGAREAS IN PRACTICE 723

Figure 50.3: Silhouette outline of rectangle during input (draw input1.c)

724 CHAPTER 50. THE DRAWINGAREA WIDGET

an event. We basically have to create a new translation table to achieve our
desired interaction described above.

We have already defined the translation table format in Section 38.8.2.
A translation table consists of events like the below excerpt of the default
DrawingArea translation:

..............

<Btn1Down>: DrawingAreaInput() ManagerGadgetArm()

<Btn1Up>: DrawingAreaInput() ManagerGadgetActivate()

<Btn1Motion>: ManagerGadgetButtonMotion()

..............

Our particular problem is that button motion does not get passed to the
DrawingAreaInput() function that notifies the program of an input event.

To create a new translation table, for our purpose, we simply include the
functions and events we need. In this case:

<Btn1Down>: draw_cbk(down) ManagerGadgetArm()

<Btn1Up>: draw_cbk(up) ManagerGadgetActivate()

<Btn1Motion>: draw_cbk(motion) ManagerGadgetButtonMotion()

where draw cbk() is our callback that performs the drawing. We use the
same callback to detect each mouse button down, up or motion action. This
is achieved by sending a message to the callback that identifies each action.
The arm, activate and motion gadget manager functions control the (default)
display of an event action.

In a motif program, we set up our translation table in a String structure
and use the XtParseTranslationTable(String*) to attach a translation
table to the XmNtranslations resource. We must also register the call-
back with the actions associated with the translation events. We use the
XtAppAddActions() function to do this.

For the above example we create the String as follows:

String translations =

"<Btn1Motion>: draw_cbk(motion)

ManagerGadgetButtonMotion() \n\

<Btn1Down>: draw_cbk(down) ManagerGadgetArm() \n\

<Btn1Up>: draw_cbk(up) ManagerGadgetActivate()";

50.3. USING DRAWINGAREAS IN PRACTICE 725

and register the callback and create a DrawingArea widget with the cor-
rect actions with the following code:

actions.string = "draw_cbk";

actions.proc = draw_cbk;

XtAppAddActions(app, &actions, 1);

draw = XtVaCreateWidget("draw",

xmDrawingAreaWidgetClass, main_w,

XmNtranslations, XtParseTranslationTable(translations),

XmNbackground, WhitePixelOfScreen(XtScreen(main_w)),

NULL);

The Callback function would be prototyped by:

draw cbk(Widget w, XButtonEvent *event, String *args, int *num args).

On calling the function, we simply inspect the args[0] String to see if
an up, down or motion event has occurred and take the approptriate actions
described below:

Mouse Down — Simply remember the (x, y) coordinates of the mouse.
These are found in the x,y elements of the event structure.

Mouse Motion — Draw a dashed line silhouette of the box whose current
size is determined by mouse down (x, y) and current mouse position.

Note: We set the Graphics Context Logical Function to GXinvert

which means that pixels simply get inverted. We must invert them
once more to get them back to their original state before we redraw
again at another mouse position.

Mouse Up — We finally draw our rectangle with the desired colour.

The complete program listing of draw input1.c is :

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <Xm/DrawingA.h>

726 CHAPTER 50. THE DRAWINGAREA WIDGET

/* Prototype callbacks */

void quit_call(void);

void clear_call(void);

void colour_call(Widget , int);

void draw_cbk(Widget , XButtonEvent *,

String *, int *);

GC gc;

XGCValues gcv;

Widget draw;

String colours[] = { "Black", "Red", "Green", "Blue",

"Grey", "White"};

long int fill_pixel = 1; /* stores current colour

of fill - black default */

Display *display; /* xlib id of display */

Colormap cmap;

main(int argc, char *argv[])

{ Widget top_wid, main_w, menu_bar, quit, clear, colour;

XtAppContext app;

XmString quits, clears, colourss, red, green,

blue, black, grey, white;

XtActionsRec actions;

String translations =

"<Btn1Motion>: draw_cbk(motion)

ManagerGadgetButtonMotion() \n\

<Btn1Down>: draw_cbk(down) ManagerGadgetArm() \n\

<Btn1Up>: draw_cbk(up) ManagerGadgetActivate()";

top_wid = XtVaAppInitialize(&app, "Draw", NULL, 0,

&argc, argv, NULL,

XmNwidth, 500,

XmNheight, 500,

NULL);

50.3. USING DRAWINGAREAS IN PRACTICE 727

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

XmNwidth, 500,

XmNheight, 500,

NULL);

/* Create a simple MenuBar that contains three menus */

quits = XmStringCreateLocalized("Quit");

clears = XmStringCreateLocalized("Clear");

colourss = XmStringCreateLocalized("Colour");

menu_bar = XmVaCreateSimpleMenuBar(main_w, "main_list",

XmVaCASCADEBUTTON, quits, ’Q’,

XmVaCASCADEBUTTON, clears, ’C’,

XmVaCASCADEBUTTON, colourss, ’o’,

NULL);

XtManageChild(menu_bar);

/* First menu is quit menu -- callback is quit_call() */

XmVaCreateSimplePulldownMenu(menu_bar, "quit_menu", 0,

quit_call, XmVaPUSHBUTTON, quits, ’Q’, NULL, NULL,

NULL);

XmStringFree(quits);

/* Second menu is clear menu -- callback is clear_call() */

XmVaCreateSimplePulldownMenu(menu_bar, "clear_menu", 1,

clear_call, XmVaPUSHBUTTON, clears, ’C’, NULL, NULL,

NULL);

XmStringFree(clears);

/* create colour pull down menu */

black = XmStringCreateLocalized(colours[0]);

728 CHAPTER 50. THE DRAWINGAREA WIDGET

red = XmStringCreateLocalized(colours[1]);

green = XmStringCreateLocalized(colours[2]);

blue = XmStringCreateLocalized(colours[3]);

grey = XmStringCreateLocalized(colours[4]);

white = XmStringCreateLocalized(colours[5]);

colour = XmVaCreateSimplePulldownMenu(menu_bar,

"edit_menu", 2, colour_call,

XmVaRADIOBUTTON, black, ’k’, NULL, NULL,

XmVaRADIOBUTTON, red, ’R’, NULL, NULL,

XmVaRADIOBUTTON, green, ’G’, NULL, NULL,

XmVaRADIOBUTTON, blue, ’B’, NULL, NULL,

XmVaRADIOBUTTON, grey, ’e’, NULL, NULL,

XmVaRADIOBUTTON, white, ’W’, NULL, NULL,

XmNradioBehavior, True,

/* RowColumn resources to enforce */

XmNradioAlwaysOne, True,

/* radio behavior in Menu */

NULL);

XmStringFree(black);

XmStringFree(red);

XmStringFree(green);

XmStringFree(blue);

XmStringFree(grey);

XmStringFree(white);

/* Create a DrawingArea widget. */

/* make new actions */

actions.string = "draw_cbk";

actions.proc = draw_cbk;

XtAppAddActions(app, &actions, 1);

draw = XtVaCreateWidget("draw",

xmDrawingAreaWidgetClass, main_w,

XmNtranslations, XtParseTranslationTable(translations),

50.3. USING DRAWINGAREAS IN PRACTICE 729

XmNbackground, WhitePixelOfScreen(XtScreen(main_w)),

NULL);

cmap = DefaultColormapOfScreen(XtScreen(draw));

display = XtDisplay(draw);

/* set the DrawingArea as the "work area" of main window */

XtVaSetValues(main_w,

XmNmenuBar, menu_bar,

XmNworkWindow, draw,

NULL);

/* Create a GC. Attach GC to DrawingArea’s XmNuserData. */

gcv.foreground = BlackPixelOfScreen(XtScreen(draw));

gc = XCreateGC(XtDisplay(draw),

RootWindowOfScreen(XtScreen(draw)),

GCForeground, &gcv);

XtManageChild(draw);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

/* CALL BACKS */

void quit_call()

{ printf("Quitting program\n");

exit(0);

}

void clear_call() /* clear work area */

{ XClearWindow(display, XtWindow(draw));

}

730 CHAPTER 50. THE DRAWINGAREA WIDGET

/* called from any of the "Colour" menu items.

Change the colour of the label widget.

Note: we have to use dynamic setting with setargs()..

*/

void

colour_call(Widget w, int item_no)

/* w -- menu item that was selected */

/* item_no --- the index into the menu */

{

int n =0;

Arg args[1];

XColor xcolour, spare; /* xlib colour struct */

if (XAllocNamedColor(display, cmap, colours[item_no],

&xcolour, &spare) == 0)

return;

/* remember new colour */

fill_pixel = xcolour.pixel;

}

/* DrawingArea Callback.*/

void draw_cbk(Widget w, XButtonEvent *event,

String *args, int *num_args)

{ static Position x, y, last_x, last_y;

Position width, height;

int line_style;

unsigned int line_width = 1;

int cap_style = CapRound;

int join_style = JoinRound;

50.3. USING DRAWINGAREAS IN PRACTICE 731

if (strcmp(args[0], "down") == 0)

{ /* anchor initial point (save its value) */

x = event->x;

y = event->y;

}

else

if (strcmp(args[0], "motion") == 0)

{ /* draw "ghost" box to show where it could go */

/* undraw last box */

line_style = LineOnOffDash;

/* set line attributes */

XSetLineAttributes(event->display, gc,

line_width, line_style, cap_style, join_style);

gcv.foreground

= WhitePixelOfScreen(XtScreen(w));

XSetForeground(event->display, gc,

gcv.foreground);

XSetFunction(event->display, gc, GXinvert);

XDrawLine(event->display, event->window, gc,

x, y, last_x, y);

XDrawLine(event->display, event->window, gc,

last_x, y, last_x, last_y);

XDrawLine(event->display, event->window, gc,

last_x, last_y, x, last_y);

XDrawLine(event->display, event->window, gc,

x, last_y, x, y);

/* Draw New Box */

gcv.foreground

= BlackPixelOfScreen(XtScreen(w));

732 CHAPTER 50. THE DRAWINGAREA WIDGET

XSetForeground(event->display, gc,

gcv.foreground);

XDrawLine(event->display, event->window, gc,

x, y, event->x, y);

XDrawLine(event->display, event->window, gc,

event->x, y, event->x, event->y);

XDrawLine(event->display, event->window, gc,

event->x, event->y, x, event->y);

XDrawLine(event->display, event->window, gc,

x, event->y, x, y);

}

else

if (strcmp(args[0], "up") == 0)

{ /* draw full line */

XSetFunction(event->display, gc, GXcopy);

line_style = LineSolid;

/* set line attributes */

XSetLineAttributes(event->display, gc,

line_width, line_style, cap_style, join_style);

XSetForeground(event->display, gc, fill_pixel);

XDrawLine(event->display, event->window, gc,

x, y, event->x, y);

XDrawLine(event->display, event->window, gc,

event->x, y, event->x, event->y);

XDrawLine(event->display, event->window, gc,

event->x, event->y, x, event->y);

XDrawLine(event->display, event->window, gc,

x, event->y, x, y);

width = event->x - x;

50.3. USING DRAWINGAREAS IN PRACTICE 733

height = event->y - y;

XFillRectangle(event->display, event->window,

gc, x, y, width, height);

}

last_x = event->x;

last_y = event->y;

}

50.3.3 Drawing to a pixmap — draw input2.c

One problem the draw input1.c program has is that if the window was
covered and then exposed the picture would not redraw itself (Section 49.6).
To see this for yourself run the draw input1.c obscure the MainWindow
with another window and then click on the draw input1.c frame to bring it
to the foreground and note the appearance of the window.

Indeed, the best method to store the picture we draw is via a Pixmap.
Since the drawing in this application is an interactive process it would be
very difficult to redraw the picture unless we used Pixmaps. There is no
way that we could predict how the user would use the application and storing
each drawing stroke would become complex. The best approach is to store
the drawing data in a Pixmap by writing directly to a Pixmap. Obtaining an
immediate visual feedback is also important (the user needs to see what he
has drawn) so we also draw directly to the display when data is being input.
When an expose event is detected all we need to do is remap the pixmap to
the window.

The draw input2.c program does exactly the same task as draw input1.c

but draws to a pixmap which can be remapped to the window upon an ex-
posure.

The major differences between the programs are:

• A Pixmap is created with the XCreatePixmap() function. The Pixmap

is made the same size as the DrawingArea and is assigned to default
Screen and DepthOfScreen values.

• We still draw some things to the DrawingArea only. The dashed boxes
which only serve to indicate the current rectangle size do not need
to be permanently stored and are unlikely to be drawn, covered and
re-exposed in between another mouse motion or the mouse up event.

734 CHAPTER 50. THE DRAWINGAREA WIDGET

• We draw the filled colour rectangle to both DrawingArea and Pixmap
so that we get an immediate effect of drawing and we have the Pixmap
backup store.

• Upon an expose event we use XCopyArea() to copy the Pixmap to the
DrawingArea window.

The draw input2.c program listing is as follows:

#include <Xm/Xm.h>

#include <Xm/MainW.h>

#include <Xm/CascadeB.h>

#include <Xm/DrawingA.h>

/* Prototype callbacks */

void quit_call(void);

void clear_call(void);

void colour_call(Widget , int);

void draw_cbk(Widget , XButtonEvent *, String *, int *);

void expose(Widget , XtPointer ,

XmDrawingAreaCallbackStruct *);

GC gc;

XGCValues gcv;

Widget draw;

Display *display; /* xlib id of display */

Screen *screen;

Colormap cmap;

Pixmap pix;

Dimension width, height; /* store size of pixmap */

String colours[] = { "Black", "Red", "Green", "Blue",

"Grey", "White"};

long int fill_pixel = 1; /* stores current colour of fill

- black default */

main(int argc, char *argv[])

{ Widget top_wid, main_w, menu_bar, quit, clear, colour;

50.3. USING DRAWINGAREAS IN PRACTICE 735

XtAppContext app;

XmString quits, clears, colourss, red, green, blue,

black, grey, white;

XtActionsRec actions;

String translations =

"<Btn1Motion>: draw_cbk(motion) ManagerGadgetButtonMotion() \n\

<Btn1Down>: draw_cbk(down) ManagerGadgetArm() \n\

<Btn1Up>: draw_cbk(up) ManagerGadgetActivate()";

top_wid = XtVaAppInitialize(&app, "Draw", NULL, 0,

&argc, argv, NULL,

NULL);

main_w = XtVaCreateManagedWidget("main_window",

xmMainWindowWidgetClass, top_wid,

NULL);

/* Create a simple MenuBar that contains three menus */

quits = XmStringCreateLocalized("Quit");

clears = XmStringCreateLocalized("Clear");

colourss = XmStringCreateLocalized("Colour");

menu_bar = XmVaCreateSimpleMenuBar(main_w, "main_list",

XmVaCASCADEBUTTON, quits, ’Q’,

XmVaCASCADEBUTTON, clears, ’C’,

XmVaCASCADEBUTTON, colourss, ’o’,

NULL);

XtManageChild(menu_bar);

/* First menu is the quit menu

-- callback is quit_call() */

XmVaCreateSimplePulldownMenu(menu_bar, "quit_menu", 0,

quit_call,

736 CHAPTER 50. THE DRAWINGAREA WIDGET

XmVaPUSHBUTTON, quits, ’Q’, NULL, NULL,

NULL);

XmStringFree(quits);

/* Second menu is the clear menu

-- callback is clear_call() */

XmVaCreateSimplePulldownMenu(menu_bar, "clear_menu", 1,

clear_call,

XmVaPUSHBUTTON, clears, ’C’, NULL, NULL,

NULL);

XmStringFree(clears);

/* create colour pull down menu */

black = XmStringCreateLocalized(colours[0]);

red = XmStringCreateLocalized(colours[1]);

green = XmStringCreateLocalized(colours[2]);

blue = XmStringCreateLocalized(colours[3]);

grey = XmStringCreateLocalized(colours[4]);

white = XmStringCreateLocalized(colours[5]);

colour = XmVaCreateSimplePulldownMenu(menu_bar, "edit_menu", 2,

colour_call,

XmVaRADIOBUTTON, black, ’k’, NULL, NULL,

XmVaRADIOBUTTON, red, ’R’, NULL, NULL,

XmVaRADIOBUTTON, green, ’G’, NULL, NULL,

XmVaRADIOBUTTON, blue, ’B’, NULL, NULL,

XmVaRADIOBUTTON, grey, ’e’, NULL, NULL,

XmVaRADIOBUTTON, white, ’W’, NULL, NULL,

XmNradioBehavior, True, /* RowColumn resources set */

XmNradioAlwaysOne, True, /* radio behavior in Menu */

NULL);

XmStringFree(black);

XmStringFree(red);

XmStringFree(green);

XmStringFree(blue);

50.3. USING DRAWINGAREAS IN PRACTICE 737

XmStringFree(grey);

XmStringFree(white);

/* Create a DrawingArea widget. */

/* make new actions */

actions.string = "draw_cbk";

actions.proc = draw_cbk;

XtAppAddActions(app, &actions, 1);

draw = XtVaCreateWidget("draw",

xmDrawingAreaWidgetClass, main_w,

XmNtranslations, XtParseTranslationTable(translations),

XmNbackground, WhitePixelOfScreen(XtScreen(main_w)),

XmNwidth, 500,

XmNheight, 500,

NULL);

cmap = DefaultColormapOfScreen(XtScreen(draw));

display = XtDisplay(draw);

screen = XtScreen(draw);

/* Create a GC. Attach GC to the DrawingArea’s XmNuserData. */

gcv.foreground = BlackPixelOfScreen(XtScreen(draw));

gc = XCreateGC(XtDisplay(draw),

RootWindowOfScreen(XtScreen(draw)), GCForeground, &gcv);

/* get pixmap of DrawingArea */

XtVaGetValues(draw, XmNwidth, &width, XmNheight, &height, NULL);

pix = XCreatePixmap(display, RootWindowOfScreen(screen),

width, height, DefaultDepthOfScreen(screen));

/* initial white pixmap */

XSetForeground(XtDisplay(draw), gc,

WhitePixelOfScreen(XtScreen(draw)));

738 CHAPTER 50. THE DRAWINGAREA WIDGET

XFillRectangle(display, pix, gc, 0, 0, width, height);

/* reset gc with current colour */

XSetForeground(display, gc, fill_pixel);

/* set the DrawingArea as the "work area" of the main window */

XtVaSetValues(main_w,

XmNmenuBar, menu_bar,

XmNworkWindow, draw,

NULL);

/* add callback for exposure event */

XtAddCallback(draw, XmNexposeCallback, expose, NULL);

XtManageChild(draw);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

/* CALL BACKS */

void quit_call()

{ printf("Quitting program\n");

exit(0);

}

void clear_call(Widget w, int item_no) /* clear work area */

{ /* clear pixmap with white */

XSetForeground(XtDisplay(draw), gc,

WhitePixelOfScreen(XtScreen(draw)));

XFillRectangle(display, pix, gc, 0, 0, width, height);

/* reset gc with current colour */

XSetForeground(display, gc, fill_pixel);

50.3. USING DRAWINGAREAS IN PRACTICE 739

/* copy pixmap to window of drawing area */

XCopyArea(display, pix, XtWindow(draw), gc,

0, 0, width, height, 0, 0);

}

/* expose is called whenever all or portions of the drawing area is

exposed.

*/

void

expose(Widget draw, XtPointer client_data,

XmDrawingAreaCallbackStruct *cbk)

{ XCopyArea(cbk->event->xexpose.display, pix, cbk->window, gc,

0, 0, width, height, 0, 0);

}

/* called from any of the "Colour" menu items.

Change the colour of the label widget.

Note: we have to use dynamic setting with setargs().

*/

void

colour_call(Widget w, int item_no)

/* w = menu item that was selected

item_no = the index into the menu

*/

{

int n =0;

Arg args[1];

XColor xcolour, spare; /* xlib color struct */

740 CHAPTER 50. THE DRAWINGAREA WIDGET

if (XAllocNamedColor(display, cmap, colours[item_no],

&xcolour, &spare) == 0)

return;

/* remember new colour */

fill_pixel = xcolour.pixel;

}

/* DrawingArea Callback */

void draw_cbk(Widget w, XButtonEvent *event,

String *args, int *num_args)

{

static Position x, y, last_x, last_y;

Position width, height;

int line_style;

unsigned int line_width = 1;

int cap_style = CapRound;

int join_style = JoinRound;

if (strcmp(args[0], "down") == 0)

{ /* anchor initial point (i.e., save its value) */

x = event->x;

y = event->y;

}

else

if (strcmp(args[0], "motion") == 0)

{ /* draw "ghost" box to show where it could go */

/* undraw last box */

50.3. USING DRAWINGAREAS IN PRACTICE 741

line_style = LineOnOffDash;

/* set line attributes */

XSetLineAttributes(event->display, gc, line_width,

line_style, cap_style, join_style);

gcv.foreground = WhitePixelOfScreen(XtScreen(w));

XSetForeground(event->display, gc, gcv.foreground);

XSetFunction(event->display, gc, GXinvert);

XDrawLine(event->display, event->window, gc,

x, y, last_x, y);

XDrawLine(event->display, event->window, gc,

last_x, y, last_x, last_y);

XDrawLine(event->display, event->window, gc,

last_x, last_y, x, last_y);

XDrawLine(event->display, event->window, gc,

x, last_y, x, y);

/* Draw New Box */

gcv.foreground = BlackPixelOfScreen(XtScreen(w));

XSetForeground(event->display, gc, gcv.foreground);

XDrawLine(event->display, event->window, gc,

x, y, event->x, y);

XDrawLine(event->display, event->window, gc,

event->x, y, event->x, event->y);

XDrawLine(event->display, event->window, gc,

event->x, event->y, x, event->y);

XDrawLine(event->display, event->window, gc,

x, event->y, x, y);

}

742 CHAPTER 50. THE DRAWINGAREA WIDGET

else

if (strcmp(args[0], "up") == 0)

{ /* draw full line; get GC and use in XDrawLine() */

XSetFunction(event->display, gc, GXcopy);

line_style = LineSolid;

/* set line attributes */

XSetLineAttributes(event->display, gc,

line_width, line_style, cap_style, join_style);

XSetForeground(event->display, gc, fill_pixel);

XDrawLine(event->display, event->window, gc,

x, y, event->x, y);

XDrawLine(event->display, event->window, gc,

event->x, y, event->x, event->y);

XDrawLine(event->display, event->window, gc,

event->x, event->y, x, event->y);

XDrawLine(event->display, event->window, gc,

x, event->y, x, y);

width = event->x - x;

height = event->y - y;

XFillRectangle(event->display, event->window, gc,

x, y, width, height);

/* only need to draw final selection to pixmap */

XDrawLine(event->display, pix, gc,

x, y, event->x, y);

XDrawLine(event->display, pix, gc,

event->x, y, event->x, event->y);

XDrawLine(event->display, pix, gc,

event->x, event->y, x, event->y);

XDrawLine(event->display, pix, gc,

50.4. EXERCISES 743

x, event->y, x, y);

XFillRectangle(event->display, pix, gc,

x, y, width, height);

}

last_x = event->x;

last_y = event->y;

}

50.4 Exercises

NEED SOME EXERCISE — RUN

744 CHAPTER 50. THE DRAWINGAREA WIDGET

Chapter 51

Colour

Dealing with colour is one of the most difficult concepts to grasp in X/Motif.
In this Chapter we will look at a couple of the basic methods for dealing with
colour in Motif. We have already seen some colour examples in action (The
list.c in Section 45.4 for example).

Readers should note:

• There is a lot more to colour that we briefly address here.

• The main purpose here is to introduce key concepts and illustrate a
few sample uses of colour.

51.1 Why is colour so complex?

The X Window system was designed to run on many different computer
systems over a network in a device independent manner. However, each
system may implement colour in a different way. Some graphics workstations
may include specialised graphics hardware, whilst others may have minimal
colour support. X tries to deal with this in a generic way, in fact it can (in
theory, at least) support devices that range from black/white, monochrome
(grey scale) through to full 24-bit colour. Note that the quality of the intended
GUI display cannot be guaranteed on minimal configurations, but at least a
close resemblance to the GUI will be rendered by X.

745

746 CHAPTER 51. COLOUR

51.2 Colour Basics

Colour in X is based on the RGB Model: where the colour is determined by
red, green and blue values. This is just like a TV set or computer monitor
where an individual dot on the screen(a picture element or pixel) has its
colour controlled by RGB intensities:

• Absence of all RGB intensities gives black.

• Full RGB intensities give white.

• Red is absence of any blue and green with different shades given by
the red value.

• Shades of grey are equal RGB intensities.

• Purple shades are mixtures of red/blue and no green etc.

51.3 Displaying Colour

We have already remarked that colour displays, available to X, can vary quite
a lot although they generally fall into a few classes:

Black/White — where 1 bit per pixel is used. The bits are sometimes
called planes.

8-bit displays — True colour displays tend to be expensive as they need a
lot of memory and involve more complex programming to handle the
large amounts of data present. 8-bit displays are the most common.
These are capable of only supporting 256 colours at any one time.
However, the 256 colours can be chosen from the whole palette of the
true colour range. Colourmaps or colour look up tables are used to
enable this (see Below).

True Colour or Full Colour — 24 bits per pixel (8 bits each for RGB
band) are used to display around 16.5 million possible colours at the
same time.

R G B

Colourmap

Display

0 0 0

256 256 256

0 256 0

0 0 256

256 0 0

0

1

2

3

255

......

......

......
......

............
......

......

3

Pixel Value

51.4. COLOUR IN X/MOTIF 747

Figure 51.1: Colourmaps and pixels

51.3.1 Colourmaps

A colourmap consists of cells each of which contains 8 bit red, green and
blue values. The maximum length of a colourmap is usually 256 entries that
correspond to a complete 8-bit colour display.

A pixel value in an image or on the screen basically provides an index to
the colourmap which says how to render the appropriate colour. Figure 51.1
shows an example where a pixel value of 3 corresponds to a green entry in
the colourmap at index 3.

51.4 Colour in X/Motif

In order to be able to support the various means of displaying colour, X
allows the setting of colour in a variety of ways. Recall that the Xlib part of
X performs all colour operation.

At the heart of all colour operations is the XColor structure, which uses
3 basic elements:

pixel — the colour index to the colourmap. It is an unsigned long data
type.

red, green, blue — Direct coding of RGB values. The values of theses
can range from 0 (off) - 65535 (full) as they are defined as unsigned

shorts.

748 CHAPTER 51. COLOUR

flag — allow specification of which RGB values are used. Or together
DoRed, DoGreen, DoBlue as required.

There are 2 basic methods that can be used to allocate colour in X.

51.4.1 Colour Database

X provides a database of colours. We simply refer to these by name and
X will find the appropriate RGB values stored in the database for the given
entry. We have in fact been using this style of colour programming in previous
examples (Section 45.4).

The colours stored in the database are comprehensive ranging form red,

green, grey, black to more exotic colours like light salmon and
tomato.

The function we typically use to perform this is:

XAllocNamedColor(display, cmap, colour_name, &xcolour, &spare);

This assigns the appropriate pixel value in the xcolour (XColour data
type) structure for a given colour name (String) naming a colour stored in
a specified Colourmap, cmap.

We would normally use the default colormap which is obtained for a given
widget, w, via:

cmap = DefaultColormapOfScreen(w);

51.4.2 Explicit Colour Coding

If we wish to have greater control over colour, then we may decide to program
the RGB values directly. Basically we do this by setting the RGB values of
a given XColour structure directly, and then set this as an entry in the
colourmap.

The function:

XAllocColor(Display, Colormap, XColour);

will set the Colormap RGB entries for a given index from the pixel,

red, green and blue values encoded in the XColor structure.
It is good practice to free the colormap entry before assigning new values.

The following Xlib function is typically used:

51.4. COLOUR IN X/MOTIF 749

XFreeColors(Display, Colormap, unsigned long pixel_index,

int num_pixels, unsigned long planes_to_be_freed);

51.4.3 The Colour.c program

Let us look at an example program colour.c that illustrates the points raised
in the previous sections.

The colour.c performs the following tasks:

• It creates a Label widget.

– The Label can have its colour changed.

• 3 Scale widgets (one for each RGB) change the colour.

• A Form widget contains the Label and a RowColumn widget.

– The RowColumn widget contains the 3 Scale widgets (Fig. 51.2).

• Only one colourmap value (index 1) is altered as this is the colourmap
index assigned to the Label.

• The same callback function is used for the 3 Scales. The client data
DoRed etc. being used to distinguish which Scale called the function.
The Scale callbacks are activated on a drag or ValueChanged event.

– The value of the callback structure is then used to set the new
RGB value.

– The functions XAllocColor() and XFreeColors() set up the col-
ormap values for a DefaultColorMapOfScreen() colormap, cmap.

– Finally we reset the background colour pixel of the Label widget
with XtVaSetValues().

The colour.c program listing is as follows:

750 CHAPTER 51. COLOUR

Figure 51.2: Output of colour.c

51.4. COLOUR IN X/MOTIF 751

#include <Xm/Xm.h>

#include <Xm/Form.h>

#include <Xm/RowColumn.h>

#include <Xm/Scale.h>

#include <Xm/Label.h>

/* prototype colour_change function */

void change_colour(Widget , int ,

XmScaleCallbackStruct *);

/* Globals */

Widget label; /* this widget gets coloured by

slider values for RGB */

XColor color; /* the current colour of the label */

main(int argc, char *argv[])

{

Widget top_wid, form, rowcol, scale;

XtAppContext app;

XmString label_str, red, blue, green;

top_wid = XtVaAppInitialize(&app, "Colour", NULL, 0,

&argc, argv, NULL, NULL);

if (DefaultDepthOfScreen(XtScreen(top_wid)) < 2) {

puts("You must be using a color screen.");

exit(1);

}

/* Set colour flags field for full RGB display */

color.flags = DoRed|DoGreen|DoBlue;

/* initialize first colour */

752 CHAPTER 51. COLOUR

XAllocColor(XtDisplay(top_wid),

DefaultColormapOfScreen(XtScreen(top_wid)), &color);

/* build form to contain label and rowcolumn */

form = XtVaCreateManagedWidget("form",

xmFormWidgetClass, top_wid,

NULL);

label_str = XmStringCreateLocalized("Colour Me");

label = XtVaCreateManagedWidget("Label",

xmLabelWidgetClass, form,

XmNlabelString, label_str,

XmNheight, 300,

XmNwidth, 300,

XmNbackground, color.pixel,

/* Form Attachment resources */

XmNtopAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM,

NULL);

XmStringFree(label_str);

/* Build rowcolumn to contain 3 scales for RGB input */

rowcol = XtVaCreateWidget("rowcol",

xmRowColumnWidgetClass, form,

XmNorientation, XmVERTICAL,

/* Form Attachment resources */

XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, label,

XmNbottomAttachment, XmATTACH_FORM,

XmNleftAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM,

NULL);

51.4. COLOUR IN X/MOTIF 753

red = XmStringCreateLocalized("Red");

/* reuses scale widget variable */

scale = XtVaCreateManagedWidget("Red",

xmScaleWidgetClass, rowcol,

XmNshowValue, True,

XmNorientation, XmHORIZONTAL,

XmNmaximum, 255,

XmNtitleString, red,

NULL);

XmStringFree(red);

/* Trap scale valuechange and drags for callbacks */

XtAddCallback(scale, XmNdragCallback,

change_colour, DoRed);

XtAddCallback(scale, XmNvalueChangedCallback,

change_colour, DoRed);

green = XmStringCreateLocalized("Green");

scale = XtVaCreateManagedWidget("Green",

xmScaleWidgetClass, rowcol,

XmNshowValue, True,

XmNorientation, XmHORIZONTAL,

XmNmaximum, 255,

XmNtitleString, green,

NULL);

XmStringFree(green);

XtAddCallback(scale, XmNdragCallback,

change_colour, DoGreen);

XtAddCallback(scale, XmNvalueChangedCallback,

754 CHAPTER 51. COLOUR

change_colour, DoGreen);

blue = XmStringCreateLocalized("Blue");

scale = XtVaCreateManagedWidget("Blue",

xmScaleWidgetClass, rowcol,

XmNshowValue, True,

XmNorientation, XmHORIZONTAL,

XmNmaximum, 255,

XmNtitleString, blue,

NULL);

XmStringFree(blue);

XtAddCallback(scale, XmNdragCallback,

change_colour, DoBlue);

XtAddCallback(scale, XmNvalueChangedCallback,

change_colour, DoBlue);

XtManageChild(rowcol);

XtRealizeWidget(top_wid);

XtAppMainLoop(app);

}

void

change_colour(Widget scale_w, int rgb,

XmScaleCallbackStruct *cbs)

{

Colormap cmap = DefaultColormapOfScreen(XtScreen(scale_w));

/* rgb variable tells us which RGB scale was selected */

switch (rgb) {

case DoRed :

51.4. COLOUR IN X/MOTIF 755

color.red = (cbs->value << 8);

break;

case DoGreen :

color.green = (cbs->value << 8);

break;

case DoBlue :

color.blue = (cbs->value << 8);

}

/* reuse the same color index 1 */

XFreeColors(XtDisplay(scale_w), cmap, &color.pixel, 1, 0);

if (!XAllocColor(XtDisplay(scale_w), cmap, &color))

puts("Couldn’t XallocColor!"), exit(1);

XtVaSetValues(label, XmNbackground, color.pixel, NULL);

}

756 CHAPTER 51. COLOUR

Chapter 52

Motif Style

We have mentioned many times in this book that Motif attempts to enforce
a standard style in the look and feel of its applications through the window
manager and default widget actions. One of the goals of Motif is to provide
the user with a consistent and easy to use set of applications. Therefore
no application should deviate too far from the prescribed Motif norm. In
some instances it may be necessary for the programmer to break certain
Motif practices in order to achieve a desired form of user interaction. We
illustrated this point when we described input to the DrawingArea widget in
Chapter 50.

Motif’s basic style is based on the (IBM) CUA guidelines. Motif provides
many default actions for widgets that adhere to standard GUI practices as
layed down by these guidelines. However, when creating widgets the pro-
grammer still has some freedom in how the GUI is constructed. For exam-
ple, menus, menu bars, mouse actions and dialog can take on many different
forms. In order to maintain consistency across applications Motif provides
a set of guidelines that provide a framework for application development,
widget designers, user interface designers and window manager designers.
These guidelines are published in the Motif Style Guide. This Chapter sum-
marises the important features in the Motif Style Guide that are relevant to
the application developer.

757

758 CHAPTER 52. MOTIF STYLE

52.1 The Motif Style Guide

As we have just mentioned the Motif Style Guide is a document that is aimed
at four specific audiences: application development, widget designers, user in-
terface designers and window manager designers. A such the guide is divided
up into a number of sections. Not all sections are especially relevant for each
audience. Clearly the widget designers and user interface designers will need
to be familiar with a majority of the guide, however, application designers
need only be familiar with three major aspects of the guide: User Interface
Design Principles, Application Design Principles and Internationalisation.

Throughout this text we have already addressed many issues related to
the Motif Style Guide. We now concentrate on important aspects of style
related to specific widgets and general user interaction.

52.2 Menu Style

The Motif Style Guide provides many guidelines on the usage of menus in
Motif. Menus are usually organised (Chapter 42) in a MenuBar of a Main-
Window widget. Motif style insists that:

• The MenuBar must be placed horizontally at the top of edge of the
application just below the title area of the MainWindow window frame.

• The MenuBar must contain only CascadeButtons with PullDownMenus
connected to them. Other classes of button inhibit menu browsing.

• Each menu in the MenuBar should have a single letter mnemonic
(Section 1.8) attached for easy keyboard selection and each mnemonic
should be indicated by underlining.

Many applications have a general functionality, in which case the following
general MenuBar menus should be provided with the given mnemonics (in
brackets):

File (Meta-F) — This menu should contain selections for performing file
handling actions such as creating, opening, saving, closing and printing.
It should also contain actions for handling the documents as a whole,
such as quitting. The following items and mnemonics are common:

52.2. MENU STYLE 759

New (Meta-N) — Create a new file.

Open. . . (Meta-O) — Open a file. A FileSelectionDialog usually ap-
pears to allow the user to choose a file.

Save (Meta-S) — Save the current file to its current name.

Save As. . . (Meta-A) — Save the current file to a different name

Print. . . (Meta-P) — Print the current file.

Close (Meta-C) — Close the window. This option must only be sup-
plied in applications that have multiple independent primary win-
dows. The action must only close the current primary window
and associated child windows.

Exit (Meta-x) — Quit the application.

Selected (Meta-S) — This menu should contain selections for objects cur-
rently selected by the application. Many items are common with the
File menu options but are specific to the selected item. Options cov-
ered by the Edit menu (below) should not be included in this menu.
The Selected menu is not that commonly used.

Edit (Meta-E) — This menu should contain options for performing actions
on the current data of the application. This menu uses Motif’s key-
board accelerators for selection of some items. Keyboard accelerators
are much like mnemonics except that they are arbitrary key combi-
nations. The control (Ctrl), Shift and Alt keys in combination with
other keys are typically used and the particular key assignment model
may vary depending on local computer keyboard configurations or host
computer compatibility requirements. For example, Apple Macintosh
computers have a different cut, paste, copy and undo accelerator model
that adheres to standard Macintosh practice for these actions.

In order to set the keyboard accelerator for an appropriate menu item
the resources XmNaccelerator (String) and XmNacceleratorText (XmString)
to set the key combination and menu item label respectively. For exam-
ple Ctrl<key>/ is the string used to set the XmNaccelerator resource
for the Ctrl-/ key selection combination.

Common actions, with applicable keyboard accelerators or mnemonics
denoted in brackets, include:

760 CHAPTER 52. MOTIF STYLE

Undo (Alt-Backspace) — Undo the last user operation.

Cut (Shift-Del) — Remove the selected portion of data and store it
in the clipboard. The clipboard is a Motif resource which provides
a localised area of memory that allows easy transfer of data within
and between applications via cut and paste actions.

Copy (Ctrl-Ins) — Copy the selected portion of data and store it in
the clipboard.

Paste (Shift-Ins) — Copy the current contents of the clipboard to
the current location.

Clear (Meta-e) — Remove the selected data without copying it to
the clipboard. The remaining data is not compressed to the space
left by this operation.

Delete (Meta-D) — Remove the selected data without copying it to
the clipboard, moving following data to fill the space left by this
operation.

Select All (Ctrl-/) — Select all elements in current work area.

Deselect All (Ctrl-\) — Deselect selected items.

View (Meta-V) — This menu should contain options allowing the user to
change the display of data. The exact makeup of this menu will depend
on the application but can include options to control the order of the
displayed data, the amount of data displayed or the appearance of the
data. For example, in the CDE desktop file manager you can list files
by icon or by text and files may be listed in alphabetical order or by
date.

Options (Meta-O) — This menu should contain options allowing the user
to customise the application. Once more this menu is very application
dependent. One common example is providing facilities that allow the
user to change the colours used by the application.

Help (Meta-H) — This menu should contain items that provide the user
with facilities that guide and inform the user to effectively use the
application. DialogBox widgets are usually used to convey the Help
information. The Help menu must be placed on the far right of the
MenuBar (Chapter 42).

52.3. DIALOG WIDGETS 761

Motif Style prescribes two acceptable models for the Help menu. One
is based on providing help on various components of the application
such as how to use windows, function mnemonic and accelerator keys.
Tutorial information may also be specified. The other model is similar
to a user manual approach providing an overview, index and tutorial
information.

In addition to prescribing the organisation and formatting of menus the
style guide also provides some general guidelines on menu design. Briefly
these are:

• Keep menu structures simple.

• Group similar menu elements together.

• List menu items by frequency of use.

• List menu items by order use (which may be more important than
frequency ordering).

• Separate destructive actions from frequently chosen items to avoid ac-
cidental selection.

• Provide keyboard mnemonics and accelerators for frequently chosen
items.

• Provide tear-off menus for in frequently used menus (Chapter 42).

52.3 Dialog Widgets

Applications use Dialog widgets to interact with the user. They may simply
supply information to the user or may actually canvas for some input (e.g.
file selection). Applications should only display Dialog boxes when they
are required. Motif provides specific Dialog widgets for specific occasions.
Examples include ErrorDialog, WarningDialog, CommandDialog, Prompt-
Dialog and FileSelectionDialog widgets. The specific usage of Dialog widgets
has already been addressed in Chapter 43

762 CHAPTER 52. MOTIF STYLE

52.4 Drag and Drop

Motif provides a variety of guidelines for using its drag and drop facilities.
Most of these a provided by default Motif drag and drop actions. Briefly the
guidelines are:

• The middle mouse button must be used for drag and drop.

• A drag source can support multiple operations. The user should be able
to select the operation that is used. A key selection in combination with
the mouse button is typically used:

Shift — selects a move operation.

Ctrl — selects a copy operation.

Ctrl-Shift — selects a link operation.

Esc — cancels a drag at any time.

F1/Help — should provide help information.

• Drag icons should be provided to indicate the three states of the drag
operation:

– A source indicator — to indicate the primary data type for the
draggable element.

– An operation indicator — to indicate whether a move, copy or
link operation is occurring . A different icon should represent
each type of operation.

– A state indicator — to indicate whether the a drop is valid.

52.5 Interaction

Motif also provides guidelines on creating applications with consistent inter-
action. If interaction is more or less uniform across applications then the
user can complete basic tasks more quickly. The Motif style guidelines on
user interaction are summarised as follows:

Clearly Indicate Actions — Interactions should be made as simple as
possible. Providing intuitive visual cues is a good way to achieve this.
The following principles should be adopted:

52.5. INTERACTION 763

• Use common components — Motif provides a standard appearance
for every widget. Every widget also has a standard action. These
should never be fundamentally altered by the program. Motif
users can then associate a particular component appearance with
a particular action or task.

• Use intuitive labels — Most widget can be labelled with a piece of
text or graphic. These labels should concisely convey the action
of a particular task for the widget it has been assigned to.

• Use graphics to convey action — Graphics can be used to indicate
the action of a particular component. For example CascadeBut-
tons use an arrow to point to the direction in which the menu will
appear.

• Show default actions — default values should be used for common
settings or obvious selections. These values should be set by the
application at start up. For example, a RadioButton selection
should be set so that the default choice is highlighted when the
RadioBox is initially displayed.

• Components should have single modes of operation — the func-
tionality of a component should not change over time in the ap-
plication.

• Show unavailable components — As the state of the applica-
tion changes then certain components may become inappropriate.
For example certain menu selections. In this case certain selec-
tions should be made unavailable by graying the label component
(Fig. 52.1). The item should not be removed from the display
however. The function XtSetSensitive(Widget, Boolean) can
be used to set a given Widget to be able to receive keyboard or
mouse input and to be displayed appropriately. If the Boolean

value is True then the Widget can receive input whilst if the value
is False then no input can be received and the widget will appear
greyed on the display.

Figure 52.1: A Disabled Menu Element

Provide Feedback — The user should always be informed of the current
state of the application. Labels and graphics as described above pro-

764 CHAPTER 52. MOTIF STYLE

vide a good means of conveying this information. Typical feedback
mechanisms include:

• Showing progress — if an actions takes some time to complete
then a WorkingDialog should be displayed. If the application can
monitor the progress of the action then it should update the Work-
ingDialog periodically.

• Providing warnings — Certain actions can cause destructive ac-
tions. For example closing an application before saving changes
in a current file. The user should be informed of such events via
a WarningDialog.

• Providing help — Help facilities should be provided for all aspects
interaction no matter how intuitive this may appear.

Allow User Flexibility — The user should be allowed flexibility to ad-
just elements in the application. Elements that may require adjusting
are widget colour, fonts, default values, application parameters, key
bindings, labels, messages and even help facilities. Motif resources
(Chapter 40) have been especially designed to allow customisation of
applications.

52.6 International Markets

As we have already mentioned in Chapter ?? the Internationalisation of
Motif has received ever increasing attention. In general many of the issues
governing internationalisation are local to a particular system configuration.
As we have seen the process of internationalisation can be a difficult process
and any tools available to aid this process should be used. Motif provides a
broad set of guidelines for the internationalisation of an application. However
most of the guidelines will be dependent on the available tools and system
configuration. Briefly the Motif style guidelines are as follows:

Text Input — Ideally international text input should be form a keyboard
that can provide all the characters of the local language. In some cases
a pre-edit step is needed where characters are initially typed in an then
converted to another set of characters. The system and application
programmers should take steps to make sure that this process is well

52.6. INTERNATIONAL MARKETS 765

supported and well behaved. Where some conflict or confusion arises
over a specific conversion DialogBox should be used to convey the prob-
lem and list possible choices in an appropriate menu.

Country Specific Data Formats — Various forms of data need to sup-
ported by an application. Examples of data that varies in format across
countries include numeric (thousands, millions) and decimal point sep-
arators, positive and negative values, currency, date and time formats,
telephone numbers, and names and addresses.

Icons, Symbols and Pointers — Graphical symbols cross borders more
easily than text labels. However, care may still be needed to make the
graphic symbols as cross-cultural as possible.

Scanning Direction — Readers of western languages scan from left to
right and from top to bottom. In other languages (e.g. Hebrew) read-
ers scan from right to left. This has major implication in the location
of components in menus and Dialog widgets. For example, should the
help menu be placed to the far right of the MenuBar.

Modularise the Software — If the application software can be partitioned
so that the text, input/output modules and other parts of the code are
separate then the application should be easier to internationalise as
individual modules can be substituted more easily.

Clear Screen Text — Well written screen text is far easier to understand.
Screen text should be simple and brief.

766 CHAPTER 52. MOTIF STYLE

Chapter 53

On to C++

In this chapter we provide a stepping stone from C to C++. C++ supports
all the features of C, with a few twists and a lot more features thrown in. This
chapter starts with a comparison of C and C++, focusing on changes you’ll
need to make to compile your ANSI C code with an ANSI C++ compiler. It
then moves on to some features unique to C++.

Think of C++ as a superset of C. For the most part, every single feature
you’ve come to know and love in C is available in C++ (albeit with a few
changes). As in C, C++ programs start with a main() function. All of C’s
keywords and functions work just fine in C++. Even ommand-line arguments
argc and argv, are still supported in C++. In fact, with only a few tweaks
here and there, your C programs should run quite well in the C++ world.

53.1 Function Prototypes Are Required

In C, function prototypes are optional, or at least C assumes that they defer
to type int if they are not declared. As long as there’s no type conflict
between a function call and the same function’s declaration, your program
will compile.

In C++, a function prototype is required for each of your program’s func-
tions. Your C++ program will not compile unless each and every function
prototype is in place. As in C, you can declare a function without a return
type. If no return type is present, the function is assumed to have a return
type of int.

767

768 CHAPTER 53. ON TO C++

53.2 Getting C Code to Run under C++

53.2.1 Automatic Type Conversion

C++ uses the same rules as C for automatic type conversion, but with a
slight twist.

Although a void pointer can be assigned the value of another pointer
type without explicit typecasting, the reverse is not true.

For example, although the following code compiles properly in C, it will
not compile in C++:

void *voidPtr;

short *shortPtr;

voidPtr = shortPtr; /* This line is just fine... */

shortPtr = voidPtr; /* This line is fine in C,

but WILL NOT compile in C++ */

shortPtr = (short *)voidPtr; /* This works in C++ */

53.2.2 Scope Issues

There are several subtle differences between C and C++ involving scope. A
variable’s scope defines the availability of the variable throughout the rest of
a program. For example, a global variable is available throughout a program,
while a local variable is limited to the block in which it is declared. Though
C++ follows the same scope rules as C, there are a few subtleties you should
be aware of. For example, take a look at the following code. Try to guess
the value of size at the bottom of main():

char dummy[32];

int main()

{

long size;

struct dummy

{

char myArray[64];

53.2. GETTING C CODE TO RUN UNDER C++ 769

};

size = sizeof(dummy);

return 0;

}

In C, size ends up with a value of 32; the reference to dummy in the
sizeof() statement matches the global variable declared at the top of the
program.

In C++, however, size ends up with a value of 64; the reference to dummy

matches the struct tag inside main().
In C++, a structure name declared in an inner scope can hide a name

in an outer scope. This same rule holds true for an enumeration:
enum colour red, green, blue ;

In C++, this enum creates a type named colour that can be used to
declare other enums and would obscure a global with the same name.

Here’s another example:

int main()

{

struct s

{

enum { good, bad, ugly } clint;

};

short good;

return 0;

}

An ANSI C compiler will not compile this code, complaining that the
identifier good was declared twice. The problem here is with the scope of the
enumeration constant good. In C, an enumeration constant is granted the
same scope as a local variable, even if it is embedded in a struct definition.
When the compiler hits the short declaration, it complains that it already
has a good identi-fier declared at that level.

In C++, this code compiles cleanly. Why? C++ enumeration constants
embedded in a struct definition have the same scope as that struct’s fields.
Thus, the enumeration constant good is hidden from the short declaration
at the bottom of main(). A third example involves multiple declarations of
the same variable within the same scope. Consider the following code:

770 CHAPTER 53. ON TO C++

short gMyGlobal;

short gMyGlobal; /* Cool in C, error in C++ */

The C compiler will resolve these two variable declarations to a single
declaration. The C++ compiler, on the other hand, will report an error if it
hits two variable declarations with the same name.

It’s useful to be aware of the difference between a declaration and a defi-
nition. A declaration specifies the types of all elements of an identifier. For
example, a function prototype is a declaration. Here are some more declara-
tions:

char name[20];

typedef int myType;

const short kMaxNameLength = 20;

extern char aLetter;

short MyFunc(short myParam);

As you can see, a declaration can do more than tie a type to an identifier.
A declaration can also be a defini-tion. A definition instantiates an identifier,
allocating the appropriate amount of memory. In this declaration:

const short kMaxNameLength = 20;

the constant kMaxNameLength is also defined and initialized.

53.3 New Features of C++

The remainder of this chapter will take you beyond C into the heart of C++.
While we won’t explore object programming in this chapter, we will cover
just about every other C++ concept.

53.3.1 Comment block markers

C’s comment block markers, /* and */, perform the same func-tion in C++.
In addition, C++ supports a single-line comment marker. When a C++
compiler encounters the characters //, it ignores the remainder of that line
of code. Here’s an example:

53.3. NEW FEATURES OF C++ 771

int main()

{

short numGuppies; // May increase suddenly!!

return 0;

}

As you’d expect, the characters // are ignored inside a comment block.
In the following example, // is included as part of the comment block:

int main()

{

/* Just a comment... // */

return 0;

}

Conversely, the comment characters /* and */ have no special meaning
inside a single-line comment. The start of the comment block in the following
example is swallowed up by the single-line comment:

int main()

{

// Don’t start a /* comment block

inside a single-line comment...

This code WILL NOT compile!!! */

return 0;

}

The compiler will definitely complain about this example!

53.3.2 The iostream

In a standard C program, input and output are usually handled by Stan-
dard Library routines such as scanf() and printf(). While you can call
scanf() and printf() from within your C++ program, there is an ele-
gant alternative. The iostream facility allows you to send a sequence of
variables and constants to an output stream, just as printf() does. Also,

772 CHAPTER 53. ON TO C++

iostream makes it easy to convert data from an input stream into a sequence
of variables, just as scanf() does.

Though the iostream features presented in this section may seem sim-
plistic, don’t be fooled. iostream is actually quite sophisticated. In fact,
iostream is far more powerful than C’s standard I/O facility. The material
given here will allow you to perform the input and output you’ll need to get
through the next few chapters. Later, we’ll explore iostream in more depth.

The iostream predefines three streams for input and output. cin is
used for input, cout for normal output, and cerr for error output. The
<< operator is used to send data to a stream. The >> operator is used
to retrieve data from a stream. The << operator is known as the insertion
operator because it allows you to insert data into a stream. The >> operator
is known as the extraction operator be-cause it allows you to extract data
from a stream.

Here’s an example of the << operator:

#include <iostream.h>

int main()

{

cout << "Hello, world!";

return 0;

}

This program sends the text string Hello, world! to the console, just
as if you’d used printf().

The include file <iostream.h> contains all of the definitions needed to
use iostream. Since << is a binary operator, it requires two operands. In
this case, the operands are cout and the string Hello, world! .

The destination stream always appears on the left side of the << operator.
Just like the & and * operators, >> and << have more than one meaning
(>> and << are also used as the right and left shift operators). Don’t worry
about confusion, however. The C++ compiler uses the operator’s context to
determine which meaning is appropriate.

As with any other operator, you can use more than one << on a single
line. Here’s another example:

#include <iostream.h>

int main()

53.3. NEW FEATURES OF C++ 773

{

short i = 20;

cout << "The value of i is " << i;

return 0;

}

This program produces the following output:

The value of i is 20

iostream knows all about C++’s built-in data types. This means that
text strings are printed as text strings, shorts as shorts, and floats as floats,
complete with decimal point. No special formatting is necessary.

An iostream Output Example

#include <iostream.h>

int main()

{

char *name = "Dr. Marshall";

cout << "char: " << name[0] << ’\n’

<< "short: " << (short)(name[0]) << ’\n’

<< "string: " << name << ’\n’

<< "address: " << (unsigned long)name;

return 0;

}

The cout Source Code The program starts by initializing the char pointer
name, point-ing it to the text string ”Dr. Marshall”. Next comes one giant
statement featuring eleven different occurrences of the << opera-tor. This
statement produces four lines of output.

The following line of code

cout << "char: " << name[0] << ’\n’

produces this line of output:

char: D

As you’d expect, printing name[0] produces the first character in name,
an uppercase D.

The next line of code is

774 CHAPTER 53. ON TO C++

<< "short: " << (short)(name[0]) << ’\n’

The output associated with this line of code is as follows:

short: 68

This result was achieved by casting the character ’D’ to a short. In
general, iostream displays integral types (such as short and int) as an integer.
As you’d expect, a float is displayed in floating-point format.

The next line of code

<< "string: " << name << ’\n’

produces this line of output:

string: Dr. Marshall

When the << operator encounters a char pointer, it assumes you want
to print a zero-terminated string.

The final chunk of code in our example shows another way to display the
contents of a pointer:

<< "address: " << (unsigned long)name;

Again, name is printed, but this time is cast as an unsigned long. Here’s
the result:

address: 2150000

As you can see, cout does what it thinks makes sense for each type it
prints. Later in Chapter 57, we will see how to customize cout by using it
to print data in a specified format or teaching it how to print your own data
types.

Let us now consider an iostream input example

#include <iostream.h>

const short kMaxNameLength = 40;

int main()

{

char name[kMaxNameLength];

53.3. NEW FEATURES OF C++ 775

short myShort;

long myLong;

float myFloat;

cout << "Type in your first name: ";

cin >> name;

cout << "Short, long, float: ";

cin >> myShort >> myLong >> myFloat;

cout << "\nYour name is: " << name;

cout << "\nmyShort: " << myShort;

cout << "\nmyLong: " << myLong;

cout << "\nmyFloat: " << myFloat;

return 0;

}

As is always the case when you use iostream, the program starts by
including the file <iostream.h>. Next, the constant kMaxNameLength is
defined, providing a length for the char array name.

When a variable is defined using the const qualifier, an initial value must
be provided in the definition, and that value cannot be changed for the
duration of the program. Although some C programmers tend to use #define
instead of const, C++ programmers prefer const to #define.

cin uses cout and << to prompt for a text string, a short, a long, and a
float. cin and >> are used to read the values into the four variables name,
myShort, myLong, and myFloat.

The next line uses ¡¡ to send a text string to the console:

cout << "Type in your first name: ";

Next, ¿¿ is used to read in a text string:

cin >> name;

When the ¿¿ operator reads a text string, it reads a character at a time
until a white space character (like a space or a tab) is encountered.

Next, three more pieces of data are read using a single statement. First,
display the prompt:

776 CHAPTER 53. ON TO C++

cout << "Short, long, float: ";

Then, read in the data, separating the three receiving variables by con-
secutive >> operators:

cin >> myShort >> myLong >> myFloat;

Be sure to separate each of the three numbers by a space (or some white
space character). Also, make sure the numbers match the type of the corre-
sponding variable. For example, it’s probably not a good idea to enter 3.52
or 125000 as a short, although an integer like 47 works fine as a float.

Finally, display each of the variables we worked so hard to fill with cout

calls.

53.3.3 iostream and Objects

So far, iostream might seem primitive compared to the routines in C’s Stan-
dard Library. After all, routines like scanf() and printf() give you precise
control over your input and output. Routines like getchar() and putchar()

allow you to process one character at a time, letting you decide how to handle
white space.

The iostream is very powerful. However, to unleash iostream’s true
power, you must first come up to speed on object oriented programming.
The iostream concepts presented here are the bare minimum you’ll need to
get through the sample programs in the next few chapters. For now, basic
input and output are all we need.

53.3.4 Default Argument Initializers

C++ allows you to assign default values (known as default argument ini-
tializers) to a function’s arguments. For example, here’s a simple default
routine:

void Deffun(short default = 40)

{

// A default of 440 is assigned if no other value passed in

}

53.3. NEW FEATURES OF C++ 777

If you call this function with a parameter, the value you pass in is used.
For example, the call Deffun(30);

will assign a value of 30 to default,
If you call the function without specifying a value, the default value is

used.
The call Deffun();
will assign a value of 40 to default,
This technique works with multiple parameters as well, although the rules

get a bit more complicated. You can specify a default value for a parameter
only if you also specify a default for all the parameters that follow it. For
example, this declaration is cool:

void GotSomeDefaults(short manny, short moe=2,

char jack=’x’);

Since the second parameter has a default, the third parameter must have
a default.

The next declaration won’t compile, however, because the first parameter
specifies a default and the parameter that follows does not:

void WillNotCompile(long time=100L, short stack);

Default parameter values are specified in the function prototype rather
than in the function’s implementation. For example, here’s a function pro-
totype, followed by the function itself:

void MyFunc(short param1 = 27);

void MyFunc(short param1)

{

// Body of the function...

}

53.3.5 Reference Variables

In C, all parameters are passed by value as opposed to being passed by
reference. When you pass a parameter to a C function, the value of the
parameter is passed on to the function. Any changes you make to this value
are not carried back to the calling function.

Here’s an example:

778 CHAPTER 53. ON TO C++

void DoubleMyValue(short valueParam)

{

valueParam *= 2;

}

int main()

{

short number = 10;

DoubleMyValue(number);

return 0;

}

main() sets number to 10, then passes it to the function DoubleMyValue().
Since number is passed by value, the call to DoubleMyValue() has no effect
on number. When DoubleMyValue() returns, number still has a value of 10.

Here’s an updated version of the program:

void DoubleMyValue(short *numberPtr)

{

*numberPtr *= 2;

}

int main()

{

short number = 10;

DoubleMyValue(&number);

return 0;

}

In this version, number’s address is passed to DoubleMyValue(). By
dereferencing this pointer,DoubleMyValue() can reach out and change the
value of number. When DoubleMyValue() returns, number will have a value
of 20.

In C++ Reference variables, howvere, allow you to pass a parameter by
reference, without using pointers. Here’s another version of the program,
this time implemented with a reference variable:

53.3. NEW FEATURES OF C++ 779

void DoubleMyValue(short &referenceParam)

{

referenceParam *= 2;

}

int main()

{

short number = 10;

DoubleMyValue(number);

return 0;

}

Notice that this code looks just like the first version, with one small
exception: DoubleMyValue()’s parameter is defined using the & operator:

short &referenceParam

\begin{verbatim}

The {\tt \&} marks {\tt referenceParam} as a reference variable and tells

the compiler that {\tt referenceParam} and its corresponding input

parameter, number, are one and the same. Since both names refer

to the same location in memory, changing the value of

{\tt referenceParam} is exactly the same as changing number.

Here is an example call by reference program:

\begin{verbatim}

#include <iostream.h>

void CallByValue(short valueParam);

void CallByReference(short &refParam);

int main()

{

short number = 12;

long longNumber = 12L;

780 CHAPTER 53. ON TO C++

cout << "&number: " <<

(unsigned long)&number << "\n";

cout << "&longNumber: " <<

(unsigned long)&longNumber << "\n\n";

CallByValue(number);

cout << "After ByValue: " << number << "\n\n";

CallByReference(number);

cout << "After ByRef(short): " << number << "\n\n";

CallByReference(longNumber);

cout << "After ByRef(long): " << longNumber << "\n";

return 0;

}

void CallByValue(short valueParam)

{

cout << "&valueParam: " <<

(unsigned long)&valueParam << "\n";

valueParam *= 2;

}

void CallByReference(short &refParam)

{

cout << "&refParam: " <<

(unsigned long)&refParam << "\n";

refParam *= 2;

}

Reference variables are frequently used as call-by-reference parameters.
However, they can also be used to establish a link between two variables in
the same scope. Here’s an example:

short romulus;

short &remus = romulus;

53.3. NEW FEATURES OF C++ 781

The first line of code defines a short with the name romulus. The second
line of code declares a reference variable with the name remus, linking it to
the variable romulus. Just as before, the & marks remus as a reference
variable.

Now that remus and romulus are linked, they share the same location
in memory. Changing the value of one is exactly the same as changing the
value of the other.

It’s important to note that a reference variable must be initialized with
a variable as soon as it is declared.

The following code will not compile:

short romulus;

short &remus; // Will not compile!!!

remus = romulus;

The reference variable must also be of the same type as the variable it
references. The following code won’t work:

short romulus;

long &remus = romulus; // Type mismatch!!!

In addition, once established, the link between a reference and a regular
variable cannot be changed as long as the reference remains in scope. In
other words, once remus is linked to romulus, it cannot be set to reference a
different variable.

53.3.6 Function Name Overloading

Function name overloading, allows you to write several functions that share
the same name. Suppose you needed a function that would print the value
of one of your variables, be it long, short, or a text string. You could write
one function that takes four parameters:

Display(short whichType,

long longParam,

short shortParam,

char *textParam);

782 CHAPTER 53. ON TO C++

The first parameter might act like a switch, determining which of the
three types you were passing in for printing. The main code of the function
might look like this:

if (whichType == kIsLong)

cout << "The long is: " << longParam << "\n";

else if (whichType == kIsShort)

cout << "The short is: " << shortParam << "\n";

else if (whichType == kIsText)

cout << "The text is: " << text << "\n";

Another solution is to write three separate functions, one for printing
shorts, one for longs, and one for text strings:

void DisplayLong(long longParam);

void DisplayShort(short shortParam);

void DisplayText(char *text);

Each of these solutions has an advantage. The first solution groups all
printing under a single umbrella, making the code somewhat easier to main-
tain. On the other hand, the second solution is more modular than the first.
If you want to change the method you use to display longs, you modify only
the routine that works with longs; you don’t have to deal with the logic that
displays other types.

As you might expect, there is a third solution that combines the benefits
of the first two. Here’s how it works.

As mentioned earlier, C++ allows several functions to share the same
name by way of function name overloading. When an overloaded function is
called, the compiler compares the parameters in the call with the parameter
lists in each of the candidate functions. The candidate with the most closely
matching parameter list is the one that gets called.

A function’s parameter list is also known as its signature. A function’s
name and signature combine to distinguish it from all other functions. Note
that a function’s return type is not part of its signature.

Here’s the third solution that takes advantage of function name overload-
ing:

#include <iostream.h>

53.3. NEW FEATURES OF C++ 783

void Display(short shortParam);

void Display(long longParam);

void Display(char *text);

int main()

{

short myShort = 3;

long myLong = 12345678L;

char *text = "Make it so...";

Display(myShort);

Display(myLong);

Display(text);

return 0;

}

void Display(short shortParam)

{

cout << "The short is: " << shortParam << "\n";

}

void Display(long longParam)

{

cout << "The long is: " << longParam << "\n";

}

void Display(char *text)

{

cout << "The text is: " << text << "\n";

}

The output of this program is:

The short is: 3

The long is: 12345678

The text is: Make it so...

784 CHAPTER 53. ON TO C++

The program starts with three function prototypes, each of which shares
the name Display() Notice that each version of Display() has a unique
signature. This is important. You are not allowed to define two functions
with the same name and the same signature.

main() starts by defining three variables: myShort, myLong and a text

string.
Next, Display() is called three times.

• First, a myShort is passed as a parameter. Since this call exactly
matches one of the Display() routines, the compiler doesn’t have a
problem deciding which function to call.

• Similarly, the calls passing myLong and a text string to Display()

match perfectly with the Display()functions having long and text

string signatures, repectively.

Matching Rules for Overloaded Functions

The above example was fairly straightforward. The compiler had no difficulty
deciding which version of Display() to call because each of the calls matched
perfectly with one of the Display() functions.

But what do you think would happen if you passed a float to Display()?

Display(1.0);

When the compiler can’t find an exact match for an over-loaded function
call, it turns to a set of rules that determine the best match for this call.
After applying each of the rules, unless one and only one match is found, the
compiler reports an error.

As you’ve already seen, the compiler starts the matching process by look-
ing for an exact match between the name and signature of the function call
and a declared function. If a match is not found, the compiler starts pro-
moting the type of any integral parameters in the function call, following the
rules for automatic type conversion similar to C. For example, a char or a
short would be promoted to an int and a float would be promoted to a
double.

If a match is still not found, the compiler starts promoting non-integral
types. Finally, the ellipsis operator in a called function is taken into account,
matching against zero or more parameters. In answer to our earlier question,

53.3. NEW FEATURES OF C++ 785

passing a float to Display() would result in an error, listing the function
call as ambiguous. If we had written a version of Display() with a float

or a double in its signature, the compiler would find the match.

53.3.7 The new and delete Operators

In C, memory allocation typically involves a call to malloc() paired with
a call to free() when the memory is no longer needed. In C++, the same
functionality is provided by the operators new and delete.

Call new when you want to allocate a block of memory.
For example, the following code allocates a block of 1024 chars:

char *buffer;

buffer = new char[1024];

new takes a type as an operand, allocates a block of memory the same
size as the type, and returns a pointer to the block.

To return the memory to the heap, use the delete operator. The next
code frees up the memory just allocated:

delete [] buffer;

The brackets ([]) in the preceding line of code indicate that the item to
be deleted is a pointer to an array. If you are deleting something other than
a pointer to an array, leave the brackets out, for example:

int myIntPtr;

myIntPtr = new int;

delete myIntPtr;

new can be used with any legal C++ type, including those you create
yourself.

Every program that allocates memory runs the risk that its request for
memory will fail, most likely because there’s no more memory left to allocate.
If your program uses new to allocate memory, it had better detect, and
handle, any failure on new’s part.

Since new returns a value of 0 when it fails, the simplest approach just
checks this return value, taking the appropriate action when new fails:

786 CHAPTER 53. ON TO C++

char *bufPtr;

bufPtr = new char[1024];

if (bufPtr == 0)

cout << "Not enough memory!!!";

else

DoSomething(bufPtr);

This code uses new to allocate a 1024-byte buffer. If new fails, an error
message is printed; otherwise, the program goes on its merry way.

This approach requires that you check the return value every time you
call new. If your program performs a lot of memory allocation, this memory-
checking code can really add up. As your programs get larger and more
sophisticated, you might want to consider a second strategy.

C++ allows you to specify a single routine, known as a new handler, that
gets called if and when new fails. Design your new handler for the general
case so that it can respond to any failed attempt to allocate memory.

Whether or not you designate a new handler, new will still return 0 if it
fails. This means you can design a two-tiered memory management strategy
combining a new handler and code that runs if new returns 0.

To specify a new handler, pass the handler’s name to the function set new handler().
To use set new handler(), be sure to include the file <new.h>:

#include <new.h>

void NewFailed(void);

int main()

{

set_new_handler(NewFailed);

.

.

.

}

One possible memory allocation strategy is to allocate a block of memory
at the beginning of your program, storing a pointer to the block in a global
variable. Then, when new fails, your program can free up the spare memory

53.3. NEW FEATURES OF C++ 787

block, ensuring that it will have enough memory to perform any housekeeping
chores that it requires in a memory emergency. A new Example Our next
sample program repeatedly calls new until the program runs out of memory,
keeps track of the number of memory re-quests, and then reports on the
amount of memory allocated before failure. This program uses the spare
memory scheme just described.

The code listing is as follows:

#include <iostream.h>

#include <new.h>

void NewFailed();

char gDone = false;

char *gSpareBlockPtr = 0;

int main()

{

char *myPtr;

long numBlocks = 0;

cout << "Installing NewHandler...\n";

set_new_handler(NewFailed);

gSpareBlockPtr = new char[20480];

while (gDone == false)

{

myPtr = new char[1024];

numBlocks++;

}

cout << "Number of blocks allocated: " << numBlocks;

return 0;

}

void NewFailed()

788 CHAPTER 53. ON TO C++

{

if (gSpareBlockPtr != 0)

{

delete gSpareBlockPtr;

gSpareBlockPtr = 0;

}

gDone = true;

}

The number of blocks you can allocate before you run out of memory
depends on the amount of memory you make available to your program.

NewFailed() is the function we want called if new fails in its attempt to
allocate memory:

53.3.8 The Scope Resolution Operator, ::

C++’s scope resolution operator is denoted by ::. The scope resolution
operator precedes a variable, telling the compiler to look outside the current
block for a variable of the same name.

Suppose you declare a global variable and a local variable with the same
name:

short number;

int main()

{

short number;

number = 5; // local reference

::number = 10; // global reference

return 0;

}

Inside main(), the first assignment statement refers to the local definition
of number. The second assignment statement uses the scope operator to refer
to the global definition of number. This code leaves the local number with a
value of 5 and the global number with a value of 10.

53.3. NEW FEATURES OF C++ 789

Many programmers start all their global variables with a lowercase g to
differentiate them from local variables. If you use this convention, you’ll
never be in the situation where a local variable is obscuring a global variable.
This doesn’t mean you should ignore the scope resolution operator As we
get into object programming, we’ll find that the scope resolution operator is
invaluable.

A Scope Resolution Operator Example

Our next sample program offers a quick demonstration of the scope resolution
operator.

#include <iostream.h>

short myValue = 5;

int main()

{

short yourValue = myValue;

cout << "yourValue: " << yourValue << "\n";

short myValue = 10;

yourValue = myValue;

cout << "yourValue: " << yourValue << "\n";

yourValue = ::myValue;

cout << "yourValue: " << yourValue << "\n";

return 0;

}

The output of this program is:

yourValue: 5

yourValue: 10

yourValue: 5

790 CHAPTER 53. ON TO C++

First we define a global variable with the name myValue, initializing it to
a value of 5: The we define a local variable named yourValue and assigns it
the value in myValue.

Then, yourValue is printed out, showing it with a value of 5, the same as
the global myValue:

Next, a local with the name myValue is defined and initialized with a
value of 10. When myValue is copied to yourValue which variable is copied,
the local or the global?

As you can see from the output, the reference to myValue matches with
the local declaration, showing yourValue with a value of 10:

Then, the scope resolution operator is used to copy myValue to yourValue.
When yourValue is printed again, it has a value of 5, showing that ::myValue
refers to the global declaration of

The scope resolution operator can be applied only when a match is avail-
able. Applying the scope resolution operator to a local variable without a
corresponding global will generate a compile error.

53.3.9 Inline Functions

Traditionally, when a function is called, the CPU executes a set of instruc-
tions that move control from the calling function to the called function. Tiny
as these instructions may be, they still take time. C++, however, provides
inline functions, which allow you to bypass these instructions and save a bit
of execution time.

When you declare a function using the inline keyword, the compiler copies
the body of the function into the calling function, making the copied instruc-
tions a part of the calling function as if it were written that way originally.
The benefit to you is a slight improvement in performance. The cost is in
memory usage:

• If you call an inline function twenty times from within your program,
twenty copies of the function will be grafted into your object code.

An Inline Function Example

In order to understabd inline function consider the following example pro-
gram. The program features a single inline function that returns the value
achieved when its first argument is raised to its second argument’s power.

The listing for inline.cpp is as follows:

53.3. NEW FEATURES OF C++ 791

#include <iostream.h>

inline long power(short base, short exponent);

int main()

{

cout << "power(2, 3): " <<

power(2, 3) << "\n";

cout << "power(3, 6): " <<

power(3, 6) << "\n";

cout << "power(5, 0): " <<

power(2, 0) << "\n";

cout << "power(-3, 4): " <<

power(-3, 4) << "\n";

return 0;

}

inline long power(short base, short exponent)

{

long product = 1;

short i;

if (exponent < 0)

return(0);

for (i=1; i<=exponent; i++)

product *= base;

return product;

}

The output is as foillows:

power(2, 3): 8

792 CHAPTER 53. ON TO C++

power(3, 6): 729

power(5, 0): 1

power(-3, 4): 81

inline.cpp starts with the standard include file, followed by a function
prototype that features the keyword inline: inline long power(short

base, short exponent).
main() calls power() four times and prints the result of each call.
By preceding power()’s declaration by the inline keyword, we’ve asked

the compiler to replace each of the four function calls in main() with the
code in power(). Note that this replacement effects the object code and has
no impact on the source code:

There are two clear benefits that arise from using inline code instead of
a #define macro

• type-safety

• side-effects protection

Consider this #define macro:

#define square(a) ((a) * (a))

Compare that macro to this inline function:

inline int square(int a)

{

return(a * a);

}

The inline version restricts its parameter to an integral value while the
#define performs a simple-minded text substitution.

Now suppose you call square() with a prefix operator:

xSquared = square(++x);

The #define version expands this as follows:

xSquared = ((++x) * (++x));

which has the unwanted side-effect of incrementing x twice. The inline

version doesn’t do this. The upshot here is that both #defines and inlines

offer an inline performance advantage, but the inline does its job a little
more carefully.

Chapter 54

Object Oriented Programming

This chapter introduces concepts of object oriented programming and de-
tails how C++ implements objects we see how C++ may be used to create,
destroy, and manipulate objects in very powerful ways.

First let’s discuss the concept of an object.

54.1 Objects

There is nothing mysterious about the concept of an object. In C++, an
object is any instance of a data type. For example, this line of code:

int myInt;

declares an int object.
The first real object we’ll take a look at is the struct structure: One of

the most valuable features shared by C and C++ is the structure. Without
the structure, you’d have no way to group data that belonged together.
For example, suppose you wanted to implement an employee data base that
tracked an employee’s name, employee ID, and salary. You might design a
structure that looks like this:

const short kMaxNameSize = 20;

struct Employee

{

char name[kMaxNameSize];

793

794 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

long id;

float salary;

};

The great advantage of this structure is that it lets you bundle several
pieces of information together under a single name. This concept is known
as encapsulation.

For example, if you wrote a routine to print an employee’s data, you could
write:

Employee newHire;

......

PrintEmployee(newHire.name, newHire.id, newHire.salary);

Did you notice anything unusual about the declaration of newHire in the
preceding code sample?

• In C, this code would not have compiled. Instead, the declaration
would have looked like this:

struct Employee newHire; /* The C version */

• When the C++ compiler sees a structure declaration, it uses the struc-
ture name to create a new data type, making it available for future
structure declarations.

On the other hand, it would be so much more convenient to pass the data
in its encapsulated form:

PrintEmployee(&newHire);

Encapsulation allows you to represent complex information in a more
natural, easily accessible form. In the C language, the struct is the most
sophisticated encapsulation mechanism available.

C++ takes encapsulation to a even higher level: Whilst C structures are
limited strictly to data, C++ supports structures composed of both data and
functions.

Here’s an example of a C++ structure declaration:

54.1. OBJECTS 795

const short kMaxNameSize = 20;

struct Employee

{

// Data members...

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

void PrintEmployee();

};

This example declares a new type named Employee. You can use the
Employee type to declare individual Employee objects:

• Each Employee object is said to be a member of the Employee class.

• The Employee class consists of three data fields as well as a function
named PrintEmployee().

– In C++, a class’s data fields are known as data members and its
functions are known as member functions.

• Each Employee object you create gets its own copy of the Employee

class data members.

• All Employee objects share a single set of Employee member functions.

You can also create classes, using the exact same syntax, substituting
the keyword class for struct.It is more commom to declare the stucture as a
class, to keep Object Oriented principles in tact:

const short kMaxNameSize = 20;

class Employee

{

// Data members...

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

796 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

// Member functions...

void PrintEmployee();

};

The class definition is slightly different in how data members and mem-
ber functions can be accessed which we will address later (See Access Privi-
lege, Section 54.6).

The only difference is, the members of a struct are all public by default
and the members of a class are all private by default.

Why use class instead of struct?
If you start with a struct, you give the world complete access to your class

members unless you intentionally limit access using the appropriate access
specifiers. If you start with a class, access to your class members is limited
right from the start. You have to intentionally allow access by using the
appropriate access specifiers.

We will soon be using the class for the remainder of this course, only
in the next few examples will we use struct we’ll use the class keyword to
declare our classes.

54.2 Encapsulating Data and Functions

Later in this chapter, we’ll see how to access an object’s data members and
member functions. For now, let’s take a look at the mechanisms C++ pro-
vides to create and destroy objects.

There are two ways to create a new object. The simplest method is to
define the object directly, just as you would a local variable:

Employee employee1;

This definition creates an Employee object whose name is employee1.
employee1 consists of a block of memory large enough to accommodate each
of the three Employee data members. When you create an object by defining
it directly, as we did above, memory for the object is allocated when the
definition moves into scope. That same memory is freed up when the object
drops out of scope.

For example, you might define an object at the beginning of a function:

54.3. CREATING AN OBJECT 797

void CreateEmployee()

{

Employee employee1;

....

}

When the function is called, memory for the object is allocated, right
along with the function’s other local objects. When the function exits, the
object’s memory is deallocated. When the memory for an object is deallo-
cated, the object is said to be destroyed.

54.3 Creating an Object

If you want a little more control over when your object is destroyed, use new

operator:

• First, define an object pointer,

• then call new to allocate the memory for your object. new returns a
pointer to the newly created object.

An example that creates an tt Employee object this way follows:

Employee *employeePtr;

employeePtr = new Employee;

The first line of code defines a pointer designed to point to an Employee

object. The second line uses new to create an Employee object. new returns
a pointer to the newly created Employee.

Once you’ve created an object, you can modify its data members and call
its member functions.

• If you’ve defined the object directly, you’ll refer to its data members
using the . operator:

Employee employee1;

employee1.employeeSalary = 200.0;

798 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

• If you’re referencing the object through a pointer, use the − > operator:

Employee *employeePtr;

employeePtr = new Employee;

employeePtr->employeeSalary = 200.0;

• To call a member function, use the same technique. If the object was
defined directly, you’ll use the . operator:

Employee employee1;

employee1.PrintEmployee();

• If you’re referencing the object through a pointer, you’ll use the − >
operator:

Employee *employeePtr;

employeePtr = new Employee;

employeePtr->PrintEmployee();

54.3.1 The Current Object

In the above examples, each reference to a data member or member function
started with an object or object pointer. Inside a member function, however,
the object or object pointer isn’t necessary to refer to the object for which
the member function is executing.

For example, inside the PrintEmployee() function, you can refer to the
data member employeeSalary directly, without referring to an object or
object pointer:

if (employeeSalary <= 200)

cout << "Give this person a raise!!!";

This code is kind of puzzling. What object does employeeSalary belong
to? After all, you’re used to writing:

myObject->employeeSalary

instead of just:

54.3. CREATING AN OBJECT 799

employeeSalary

The key to this puzzle lies in knowing which object spawned the call of
PrintEmployee() in the first place. Although this may not be obvious, a
call to a nonstatic member function must originate with a single object.

As we’ll see later, class members may be declared as static. A static

data member holds a value that is global to a class and not specific to a
single object of that class. A static memberfunction is usually designed to
work with a class’s static data members.

Suppose you called PrintEmployee() from a non-Employee function (such
as main()). You must precede this call with a reference to an object:

employeePtr->PrintEmployee();

Whenever a member function is called, C++ keeps track of the object
used to call the function. This object is known as the current object.

In the call of PrintEmployee() above, the object pointed to by employeePtr

is the current object. Whenever this call of PrintEmployee() refers to an
Employee data member or function without using an object reference, the
current object (in this case, the object pointed to by employeePtr) is as-
sumed.

Suppose PrintEmployee() then called another Employee function. The
object pointed to by employeePtr is still considered the current object. A
reference to employeeSalary would still refer to the current object’s copy of
employeeSalary. The point to remember is, a nonstatic member function
always starts up with a single object in mind.

54.3.2 The This Object Pointer

C++ provides a generic object pointer, available inside any mem-ber func-
tion, that points to the current object. The generic pointer has the name
this. For example, inside every Employee function, the line:

this->employeeSalary = 400;

is equivalent to this line:

employeeSalary = 400;

800 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

this is useful when a member function wants to return a pointer to the
current object, pass the address of the current object on to another function,
or just store the address somewhere. This line of code:

return this;

returns the address of the current object.

54.4 Destroying an Object

When you create an object using new, you’ve got to take responsibility for
destroying the object at the appropriate time. Just as a C programmer bal-
ances a call to malloc() with a call to free(), a C++ programmer balances
each use of the new operator with an eventual use of the delete operator.

Here’s the syntax:

Employee *employeePtr;

employeePtr = new Employee;

delete employeePtr;

As you’d expect, delete destroys the specified object, freeing up any
memory allocated for the object. Note that this freed up memory only in-
cludes memory for the actual object and does not include any extra memory
you may have allocated.

For example, suppose the object is a structure and one of its data members
is a pointer to another structure. When you delete the first structure, the
second structure is not deleted. If delete is used with a pointer having a
value of 0, delete does nothing. If the pointer has any other value delete will
try to destroy the specified object.

54.5 Member Functions

Once your structure is declared, you’re ready to write your member functions.
Member functions behave in much the same way as ordinary functions, with
a few small differences. One difference, pointed out earlier, is that a member
function has access to the data members and member functions of the object
used to call it. Another difference lies in the function implementation’s title
line. Here’s a sample:

54.5. MEMBER FUNCTIONS 801

void Employee::PrintEmployee()

{

cout << "Employee Name: " << employeeName << "\n";

}

Notice that the function name is preceded by the class name and two
colons (Employee::)

This notation is mandatory and tells the compiler that this function is
a member of the specified class.

54.5.1 The Constructor Function

Typically, when you create an object, you’ll want to perform some sort of
initialization on the object. For instance, you might want to provide initial
values for your object’s data members.

The constructor function is C++’s built-in initialization mechanism. The
constructor function (or just plain constructor) is a member function that
has the same name as the object’s class. For example, the constructor for
the Employee class is named Employee().

When an object is created, the constructor for that class gets called.
Consider this code:

Employee *employeePtr;

employeePtr = new Employee;

In the second line, the new operator allocates a new Employee object,
then immediately calls the object’s constructor. Once the constructor re-
turns, the address of the new object is assigned to employeePtr.

This same scenario holds true in this declaration:

Employee employee1;

As soon as the object is created, its constructor is called. Here’s our
Employee struct declaration with the constructor declaration added in:

const short kMaxNameSize = 20;

struct Employee

802 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

{

// Data members...

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

Employee();

void PrintEmployee();

};

Notice that the constructor is declared without a return value. Construc-
tors never return a value.

Here’s a sample constructor:

Employee::Employee()

{

employeeSalary = 200.0;

}

Constructors are optional. If you don’t have any initialization to perform,
there is no need to define one.

You can add parameters to your constructor function. Constructor pa-
rameters are typically used to provide initial values for the object’s data
members. Here’s a new version of the Employee() constructor:

Employee::Employee(char *name, long id, float salary)

{

strncpy(employeeName, name, kMaxNameSize);

employeeName[kMaxNameSize - 1] = ’\0’;

employeeID = id;

employeeSalary = salary;

}

The constructor copies the three parameter values into the corresponding
data members.

Notice that strncpy() was used, ensuring that the copy will work, even
if the source string was not prop-erly terminated. A NULL terminator is
provided at the end of the string for just such an emergency.

54.5. MEMBER FUNCTIONS 803

The object that was just created is always the constructor’s current ob-
ject. In other words, when the constructor refers to an Employee data
member, such as employeeName or employeeSalary, it is referring to the
copy of that data member in the newly created object.

This line of code supplies the new operator with a set of parameters to
pass on to the constructor:

employeePtr = new Employee("David Marshall", 1000, 200.0);

This line of code does the same thing without using new:

Employee employee1("David Marshall", 1000, 200.0);

As you’d expect, this code creates an object named employee1 by calling
the Employee constructor, passing it the three specified parameters.

Just for completeness, here’s the class declaration again, showing the new
constructor:

struct Employee

{

// Data members...

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

Employee(char *name, long id, float salary);

void PrintEmployee();

};

54.5.2 The Destructor Function

The destructor function is called automatically when you delete an object
or it goes out of scope.

Use the destructor to clean up after your object before it goes away. For
instance, you might use the destructor to deallocate any additional memory
your object may have allocated.

The destructor function is named by a tilde character (∼) followed by the
class name. The destructor for the Employee class is named ∼Employee().
The destructor has no return value and no parameters.

Here’s a sample destructor:

804 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

Employee::~Employee()

{

cout << "Deleting employee #" << employeeID << "\n";

}

If you created your object using new, the destructor is called when you
use delete:

Employee *employeePtr;

employeePtr = new Employee;

delete employeePtr;

If your object was defined directly, the destructor is called just before the
object is destroyed. For example, if the object was declared at the beginning
of a function, the destructor is called when the function exits.

If your object was declared as a global or static variable, its constructor
will be called at the beginning of the program and its destructor will be called
just before the program exits. Yes, global objects have scope, just as local
objects do.

Here’s an updated Employee class declaration showing the constructor
and destructor:

struct Employee

{

// Data members...

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

When you declare a class, you need to decide which data members and
functions you’d like to make available to the rest of your program. C++

54.6. ACCESS PRIVELEGES 805

gives you the power to hide a class’s functions and data from all the other
functions in your program, or allow access to a select few.

For example, consider the Employee class we’ve been working with through-
out this chapter. In the current model, an Employee’s name is stored in a
single array of chars. Suppose you wrote some code that created a new
Employee, specifying the name, id, and salary, then later in your program
you decided to modify the Employee’s name, perhaps adding a middle name
provided while your program was running.

With the current design, you could access and modify the Employee’s
employeeName data member from anywhere in your program. As time passes
and your program becomes more complex, you might find yourself accessing
employeeName from several places in your code.

Now imagine what happens when you decide to change the implementa-
tion of employeeName. For example, you might decide to break the single
employeeName into three separate data members, one each for the first, mid-
dle, and last names. Imagine the hassle of having to pore through your code
finding and modifying every single reference to employeeName, making sure
you adhere to the brand new model.

C++ allows you to hide the implementation details of a class (the spe-
cific type of each data member, for example), funneling all access to the
implementation through a specific set of interface routines. By hiding the
implementation details, the rest of your program is forced to go through the
interface routines your class provides. That way, when you change the im-
plementation, all you have to do is make whatever changes are necessary to
the class’s interface, without having to modify the rest of your program.

54.6 Access Priveleges

The mechanism C++ provides to control access to your class’s implementa-
tion is called the access specifier.

C++ allows you to assign an access specifier to any of a class’s data
members and member functions. The access specifier defines which of your
program’s functions have access to the specified data member or function.
The access specifier must be public, privat, or protected:

• If a data member or function is marked as private, access to it is
limited to member functions of the same class (or, as you’ll see later in

806 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

the chapter, to classes or member functions marked as a friend of the
class).

• The public specifier gives complete access to the member function or
data member, limited only by scope.

• The third C++ access code is protected. The protected access code
offers the same protection as private, with one exception. A protected

data member or function can also be accessed by a class derived from
the current class. Since we won’t get to derived classes till later in the
book, we’ll put off discussion of the protected access code till then.

By default, the data members and member functions of a class declared
using the struct keyword are all public. By adding the private keyword
to our class declaration, we can limit access to the Employee data members,
forcing the outside world to go through the provided member functions:

struct Employee

{

// Data members...

private:

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

public:

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

Once the compiler encounters an access specifier, all data members and
functions that follow are marked with that code, at least until another code is
encountered. In this example, the three data members are marked as private
and the three member functions are marked as public.

Note the : after the access specifier. Without it, your code won’t compile!
Here’s the new version of the Employee class:

54.7. EMPLOYEE.CPP, SOURCE CODE 807

class Employee // Data members... private: char employeeName[kMax-
NameSize]; long employeeID; float employeeSalary;

// Member functions... public: Employee(char *name, long id, float
salary); Employee(); void PrintEmployee(); ;

Notice that the private access specifier is still in place. Since the members
of a class-based class are private by default, the private access specifier is not
needed here, but it does make the code a little easier to read. The public
access specifier is necessary, however, to give the rest of the program access
to the Employee member functions.

54.7 employee.cpp, source code

We now give a complete code listing to bring togther all the facets we have
met in this chapter so far.

#include <iostream.h>

#include <string.h>

const short kMaxNameSize = 20;

class Employee

{

// Data members...

private:

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

public:

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

Employee::Employee(char *name, long id, float salary)

808 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

{

strncpy(employeeName, name, kMaxNameSize);

employeeName[kMaxNameSize - 1] = ’\0’;

employeeID = id;

employeeSalary = salary;

cout << "Creating employee #" << employeeID << "\n";

}

Employee::~Employee()

{

cout << "Destroying employee #" << employeeID << "\n";

}

void Employee::PrintEmployee()

{

cout << "-----\n";

cout << "Name: " << employeeName << "\n";

cout << "ID: " << employeeID << "\n";

cout << "Salary: " << employeeSalary << "\n";

cout << "-----\n";

}

int main()

{

Employee employee1("Dave Mark", 1, 200.0);

Employee *employee2;

employee2 = new Employee("Steve Baker", 2, 300.0);

employee1.PrintEmployee();

employee2->PrintEmployee();

delete employee2;

return 0;

54.8. FRIENDS 809

}

54.8 Friends

In our last program, the Employee class marked its data members as private
and its member functions as public. As we discussed earlier, the idea behind
this strategy is to hide the implementation details of a class from the rest of
the program, funneling all access to the class’s data members through a set
of interface routines.

For example, suppose we wanted to provide access to the Employee class’s
employeeSalary data member. Since employeeSalary is marked as pri-
vate, there’s no way to access this data member outside the Employee class.
If we wanted to, we could provide a pair of public member functions a user
of the Employee class could use to retrieve (GetEmployeeSalary()) and
modify (ChangeEmployeeSalary()) the value of employeeSalary.

Sometimes this strategy just doesn’t work well: For example, suppose you
created a Payroll class to generate paychecks for your Employees. Clearly,
the Payroll class is going to need access to an Employee ’s salary.

But if you create a public GetEmployeeSalary() member function (or
mark employeeSalary as public) you’ll make employeeSalary available to
the entire program, something you might not want to do.

The solution to this problem is provided by C++’s friend mechanism.
C++ allows you to designate a class or a single member function as a friend
to a specific class. In the previous example, we could designate the Payroll
class as a friend to the Employee class:

//--------------------------------------- Payroll

class Payroll

{

// Data members...

private:

// Member functions...

public:

Payroll();

~Payroll();

810 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

void PrintCheck(Employee *payee);

};

//--------------------------------------- Employee

class Employee

{

friend class Payroll;

// Data members...

private:

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

public:

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

The friend statement, in the first line of the Employee class declaration,
is always placed in the class whose data members and functions are being
shared. In this case, the Employee class is willing to share its private data
members and functions with its new friend, the Payroll class. Once the
Payroll class has friend access to the Employee class, it can access private
data members and functions like employeeSalary.

54.8.1 Three Types of Friends

There are three ways to designate a friend.

• (As we’ve already seen) You can designate an entire class as a friend
to a second class.

• You can also designate a specific class function as a friend to a class.
For example, the Payroll class we just declared contains a function

54.8. FRIENDS 811

named PrintCheck(). We might want to designate the PrintCheck()

function as a friend of the Employee class, rather than the entire Payroll
class.

class Employee

{

friend void Payroll::PrintCheck(Employee *payee);;

// Data members...

private:

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

public:

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

This time, the friend definition specified the Payroll mem-ber function
Payroll::PrintCheck() instead of the entire Payroll class. Since the
friend statement referred to a member function of another class, the
full name of the function (including the class name and the two colons)
was included.

• You can also designate a nonmember function as a friend. For example,
you could designate main() as a friend to the Employee class:

class Employee

{

friend int main();

// Data members...

private:

char employeeName[kMaxNameSize];

long employeeID;

812 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

float employeeSalary;

// Member functions...

public:

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

This arrangement gives main() access to all Employee data members
and functions, even those marked as private. Just because main() is a
friend doesn’t give any special priveleges to any other functions, how-
ever. Choose your friends carefully!

54.8.2 A Friendly Example

Our next example combines the Employee class created earlier with the Pay-
roll class described in this section.

The friends.cpp source code follows:

#include <iostream.h>

#include <string.h>

const short kMaxNameSize = 20;

class Employee;

//--------------------------------------- Payroll

class Payroll

{

// Data members...

private:

// Member functions...

public:

Payroll();

54.8. FRIENDS 813

~Payroll();

void PrintCheck(Employee *payee);

};

//--------------------------------------- Employee

class Employee

{

friend void Payroll::PrintCheck(Employee *payee);

// Data members...

private:

char employeeName[kMaxNameSize];

long employeeID;

float employeeSalary;

// Member functions...

public:

Employee(char *name, long id, float salary);

~Employee();

void PrintEmployee();

};

//------------------- Payroll Member Functions

Payroll::Payroll()

{

cout << "Creating payroll object\n";

}

Payroll::~Payroll()

{

cout << "Destroying payroll object\n";

}

void Payroll::PrintCheck(Employee *payee)

{

814 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

cout << "Pay $" << payee->employeeSalary

<< " to the order of "

<< payee->employeeName << "...\n\n";

}

//------------------- Employee Member Functions

Employee::Employee(char *name, long id, float salary)

{

strncpy(employeeName, name, kMaxNameSize);

employeeName[kMaxNameSize - 1] = ’\0’;

employeeID = id;

employeeSalary = salary;

cout << "Creating employee #" << employeeID << "\n";

}

Employee::~Employee()

{

cout << "Destroying employee #" << employeeID << "\n";

}

void Employee::PrintEmployee()

{

cout << "-----\n";

cout << "Name: " << employeeName << "\n";

cout << "ID: " << employeeID << "\n";

cout << "Salary: " << employeeSalary << "\n";

cout << "-----\n";

}

//--------------------------------------- main

int main()

54.8. FRIENDS 815

{

Employee *employee1Ptr;

Payroll *payroll1Ptr;

payroll1Ptr = new Payroll;

employee1Ptr = new Employee("Carlos Derr", 1000, 500.0);

employee1Ptr->PrintEmployee();

payroll1Ptr->PrintCheck(employee1Ptr);

delete employee1Ptr;

delete payroll1Ptr;

return 0;

}

The Output looks like this:

Creating payroll object

Creating employee #1000

Name: Carlos Derr

ID: 1000

Salary: 500

Pay $500 to the order of Carlos Derr...

Destroying employee #1000

Destroying payroll object

friends.cpp starts out just like employee.cp, with the same two #includes
and the same const definition:

Since the Payroll class declaration refers to the Employee class (check out
the parameter to PrintCheck()) and its declaration comes first, we’ll need
a forward declaration of the Employee

Next comes the declaration of the Payroll class. To keep this example
as simple as possible, we’ve stripped Payroll down to its bones: no data

816 CHAPTER 54. OBJECT ORIENTED PROGRAMMING

members, a constructor, a destructor, and a PrintCheck() function. Fur-
ther down in the source, the Employee class will mark the PrintCheck()

function as a friend. Next comes the Employee class declaration. You may
have noticed that we didn’t list the Payroll member functions right after the
Payroll class declaration. This was because Payroll::PrintCheck() refers
to the Employee data mem-ber employeeSalary, which hasn’t been declared
yet.

Take a look at the friend declaration inside the Employee class declara-
tion. Notice that we’ve opted to make Payroll::PrintCheck() a friend of
the Employee class. Now, PrintCheck() is the only Payroll function with
access to the private Employee data members.

Interestingly, if you leave PrintCheck()’s parameter out of the friend
statement, the code won’t compile. Since you can have more than one func-
tion with the same name (Recall overloaded functions), if the parameter is
left out, the compiler tries to match the friend statement with a version of
PrintCheck() with no parameters. When it doesn’t find one, the compiler
reports an error.

Next come the Payroll member functions. The constructor and destruc-
tor print messages letting you know they were called, while PrintCheck()

prints up a simulated check using the private Employee data members em-
ployeeSalary and employeeName.

The Employee member functions are the same as they were in declared
next.

Once again, main() is where the action is. We start off by defining a
couple of pointers, one to an Employee object and one to a Payroll object.

The two constructors are called and then PrintEmployee() is called.
Next, PrintCheck() is called. PrintCheck() takes a pointer to the Em-

ployee object as a parameter. A check is printed to the specified Employee
using employeeName and employeeSalary:

Finally, both objects are deleted: The two destructors functions calles
which print their respective messages.

Chapter 55

Inheritance, Derived Functions,
Virtual Functions

C++ allow you to use one class dclaration, known as a base class, as the
basis for the declaration of a second class, known as a derived class.

For example, you might declare an Employee class that describes your
company’s employees. Next, you might declare a Sales class, based on the
Employee class, that describes employees in the sales department.

This chapter is emphasize the advantages of classes derived from other
classes and gives several examples.

55.1 Inheritance

One of the most important features of class derivation is inheritance. A
derived class inherits all of the data members and member functions from its
base class.

As an example, consider the following class declaration:

class Base

{

public:

short baseMember;

void SetBaseMember(short baseValue);

};

817

818CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

This class, Base, has two members, a data member named baseMember

and a member function named SetBaseMember().
Both of these members will be inherited by any classes derived from this

class.
Here’s another class declaration:

class Derived : Base

{

public:

short derivedMember;

void SetDerivedMember(short derivedValue);

}

This class is a derived class named, appropriately enough, Derived. The
: Base at the end of the title tells you that this object is derived from the
class named Base.

As you’d expect, this object has its own copy of the data member derived-
Member as well as access to the member function SetDerivedMember().

What you might not have expected are the members inherited by this
object, that is, the Base class data member baseMember as well the Base
class member function SetBaseMember().

Here’s some code that allocates a Derived object, then accesses various
data members and functions:

Derived *derivedPtr;

derivedPtr = new Derived;

derivedPtr->SetDerivedMember(20);

cout << "derivedMember = " << derivedPtr->derivedMember;

derivedPtr->SetBaseMember(20);

cout << "\nbaseMember = " << derivedPtr->baseMember;

Notice that the object pointer derivedPtr is used to access its own data
members and functions as well as its inherited data members and functions.
Notice also that the example does not create a Base object. This is important.
When an object inherits data members and functions from its base class, the
compiler allocates the extra memory needed for all inherited members right
along with memory for the object’s own members. class is derived from the
class named Base. As you’d expect, this object has its own copy of the data
member derivedMember as well as access to the member function

55.2. ACCESS AND INHERITANCE 819

55.2 Access and Inheritance

Although a derived class inherits all of the data members and member func-
tions from its base class, it doesn’t necessarily retain access to each member.

Here’s how this works. When you declare a derived class, you declare its
base class as either public or private. One way to do this is to include
either public or private in the title line of the declared class.

For example, in the declaration below, the class Base is marked as public:

class Derived : public Base

{

public:

short derivedMember;

void SetDerivedMember(short derivedValue);

}

In the next declaration, Base is marked as private:

class Derived : private {\tt Base}

{

public:

short derivedMember;

void SetDerivedMember(short derivedValue);

}

You can also mark a base class as public or private by leaving off the
access specifier. If you use the class keyword to declare the derived class,
the base class defaults to private. If you use the struct keyword to declare
the derived class, the base class defaults to public.

Once you know whether the base class is public or private, you can de-
termine the access of each of its inherited members by following these three
rules:

• The derived class does not have access to private members inherited
from the base class. This is true regardless of whether the base class is
public or private.

• If the base class is public, the members inherited from the base class
retain their access level (providing the inherited member is not private,
of course). This means that an inherited public member remains public
and an inherited protected member remains protected.

820CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

• If the base class is private, the members inherited from the base class
are marked as private in the derived class.

Previously, we adopted the strategy of declaring our data members as
private and our member functions as public. This approach works well if the
class will never be used as a base class for later derivation. If you ever plan
on using a class as the basis for other classes, declare your data members as
protected and your member functions as public.

A protected member can be accessed only by members of its class or by
members of any classes derived from its class. In a base class, protected is
just like private. The advantage of protected is that it allows a derived class
to access the member, while protecting it from the outside world. We’ll get
back to this strategy in a bit. For now, let’s take a look at an example of
class derivation.

55.3 A Class Derivation Example

So far in this chapter, we’ve learned how to derive one class from another and
you’ve been introduced to the protected access specifier. Our first sample
program brings these lessons to life.

#include <iostream.h>

//--------------------------------------- Base

class Base

{

// Data members...

private:

short baseMember;

// Member functions...

protected:

void SetBaseMember(short baseValue);

short GetBaseMember();

};

55.3. A CLASS DERIVATION EXAMPLE 821

void Base::SetBaseMember(short baseValue)

{

baseMember = baseValue;

}

short Base::GetBaseMember()

{

return baseMember;

}

//--------------------------------------- Base:Derived

class Derived : public Base

{

// Data members...

private:

short derivedMember;

// Member functions...

public:

void SetMembers(short baseValue,

short derivedValue);

void PrintDataMembers();

};

void Derived::SetMembers(short baseValue,

short derivedValue)

{

derivedMember = derivedValue;

SetBaseMember(baseValue);

}

void Derived::PrintDataMembers()

{

cout << "baseMember was set to "

<< GetBaseMember() << ’\n’;

822CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

cout << "derivedMember was set to "

<< derivedMember << ’\n’;

}

//--------------------------------------- main()

int main()

{

Derived *derivedPtr;

derivedPtr = new Derived;

derivedPtr->SetMembers(10, 20);

derivedPtr->PrintDataMembers();

return 0;

}

The ouput of this program is:

baseMember was set to 10

derivedMember was set to 20

Let’s take a look at the source code.
As usual, derived.cpp starts by including <iostream.h>:
Next, we declare a class named Base, which we’ll use later as the basis

for a second class named Derived. Base has a single data member, a short
named baseMember, which is marked as private.

Base also includes two member functions, each marked as protected.
SetBaseMember() sets baseMember to the specified value while GetBaseMember()
returns the current value of baseMember.

Since baseMember is private, it cannot be accessed by any function
outside the Base class. Since SetBaseMember() and GetBaseMember() are
protected, they can only be accessed by Base member functions and from
within any classes derived from Base. Note that main() cannot access either
of these functions.

55.3. A CLASS DERIVATION EXAMPLE 823

Our second class, Derived, is derived from Base:
The public keyword following the colon in the class title line marks Base

as a public base class. As mentioned earlier, if a base class is declared as
public, all inherited public members remain public and inherited protected

members remain protected. Inherited private members are not accessible
by the derived class.

If you marked Base as private instead of public all inherited members
would be marked as private and would not be accessible by any classes
derived from Derived. The point here is this:

• If you mark the base class as private you effectively end the inheri-
tance chain.

As a general rule,you should declare your derived classes using public

inheritance:
It’s rare that you’d want to reduce the amount of information inherited

by a derived class. Most of the time, a derived class is created to extend the
reach of the base class by adding new data members and functions.

Derived has a single data member, a short named derivedMember, which
is declared as private. derivedMember can only be accessed by a Derived

member function. Derived contains two member functions, SetMembers()
and PrintDataMembers().

SetMembers() takes two shorts, assigns the first to derivedMember, and
passes the second to SetBaseMember(). SetBaseMember() was used because
Derived does not have direct access to baseMember.

PrintDataMembers() prints the values of baseMember and derivedMember.
Since Derived doesn’t have direct access to baseMemeber, GetBaseMember()
is called to retrieve the value.

main() starts by declaring a Derived pointer and then using new to create
a new Derived object (since we didn’t include a constructor for either of
our classes, nothing exciting has hap-pened yet):

It’s important to understand that when the Derived object is created,
it receives its own copy of baseMember, even though it doesn’t have access to
baseMember. If the Derived object wants to modify its copy of baseMember,
it will have to do so via a call to Base::SetBaseMember(), which it also
inherited. Now things start to get interesting. main() uses the pointer to
the Derived object to call SetMembers(), setting its copy of baseMember to
10 and derivedMember to 20.

824CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

Next, we call the Derived member function PrintDataMembers()

The values of the two data members are successfully set when the program
is ran:

baseMember was set to 10;

derivedMember was set to 20,

Just as the Derived object pointer is able to take advantage of inher-
itance to call SetBaseMember(), PrintDataMembers() is able to print the
value of the inherited data member baseMember by calling GetBaseMember().

55.4 Derivation, Constructors and Destruc-

tors

When an object is created, its constructor is called to initialize the object’s
data members. When the object is deleted, its destructor is called to perform
any necessary cleanup.

Suppose the object belongs to a derived class, and suppose it inherits a
few data members from its base class.

How do these inherited data members get initialized?

When the object is deleted, who does the cleanup for the inherited data
members?

As it turns out, C++ solves this tricky issue for you. Before the compiler
calls an object’s constructor, it first checks to see whether the object belongs
to a derived class. If so, the constructor belonging to the base class is called
and then the object’s own constructor is called. The base class constructor
initializes the object’s inherited members, while the object’s own constructor
initializes the members belonging to the object’s class .

The reverse holds true for the destructor. When an object of a derived
class is deleted, the derived class’s destructor is called and then the base
class’s destructor is called.

55.4.1 The Derivation Chain

There will frequently be times when you derive a class from a base class that
is, itself, derived from some other class. Each of these classes acts like a
link in a derivation chain. The constructor/ destructor calling sequence just
described still holds, no matter how long the derivation chain.

55.4. DERIVATION, CONSTRUCTORS AND DESTRUCTORS 825

Suppose you declare three classes, A, B, and C, where class B is derived
from A and C is derived from B.

When you create an object of class B, it will inherit the mem-bers from
class A. When you create an object of class C, it will inherit the members
from class B, which includes the previously inherited members from class A.

When an object from class C is created, the compiler follows the deriva-
tion chain from C to B to A and discovers that A is the ultimate base class
in this chain. The compiler calls the class A constructor, then the class B
constructor, and finally the class C constructor.

When the object is deleted, the class C destructor is called first, followed
by the class B destructor and, finally, by the class A destructor.

55.4.2 A Derivation Chain Example

Our second sample program demonstrates the order of constructor and de-
structor calls in a three-class derivation chain. Close the current project by
selecting from the menu.

The source code listing is:

#include <iostream.h>

//--------------------------------------- Gramps

class Gramps

{

// Data members...

// Member functions...

public:

Gramps();

~Gramps();

};

Gramps::Gramps()

{

cout << "Gramps’ constructor was called!\n";

}

826CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

Gramps::~Gramps()

{

cout << "Gramps’ destructor was called!\n";

}

//---------------------------------- Pops:Gramps

class Pops : public Gramps

{

// Data members...

// Member functions...

public:

Pops();

~Pops();

};

Pops::Pops()

{

cout << "Pops’ constructor was called!\n";

}

Pops::~Pops()

{

cout << "Pops’ destructor was called!\n";

}

//---------------------------------- Junior:Pops

class Junior : public Pops

{

// Data members...

// Member functions...

public:

55.4. DERIVATION, CONSTRUCTORS AND DESTRUCTORS 827

Junior();

~Junior();

};

Junior::Junior()

{

cout << "Junior’s constructor was called!\n";

}

Junior::~Junior()

{

cout << "Junior’s destructor was called!\n";

}

//--------------------------------------- main

int main()

{

Junior *juniorPtr;

juniorPtr = new Junior;

cout << "----\n";

delete juniorPtr;

return 0;

}

The output of the program is as follows:

Gramps’ constructor was called!

Pops’ constructor was called!

Junior’s constructor was called!

Junior’s destructor was called!

Pops’ destructor was called!

Gramps’ destructor was called!

828CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

As you can see by the output, each class constructor was called once, then
each class destructor was called once in reverse order.

Notice that none of the classes in this program have any data members.
For the moment, we’re interested only in the order of constructor and de-
structor calls. Both the constructor and the destructor are declared public.
The Gramps constructor and destructor are pretty simple; each prints an
appropriate message to the console:

Our next class, pops, is derived from the Gramps class. Notice that we use
the public keyword in the class title line. This ensures that the constructor
and the destructor inherited from Gramps are marked as public inside the
Pops class. Once again, this class has no data members. Both the constructor
and the destructor are marked as public. They’ll be inherited by any class
derived from Pops.

Just like those of Gramps, the Pops constructor and destructor are simple
and to the point; each sends an appropriate message to the console.

Junior is to �Pops what Pops is to Gramps. Junior inherits not only the
Pops members but the Gramps members as well (as you’ll see in a minute,
when you create and then delete a Junior object, both the Gramps and the
Pops constructor and destructor will be called)

The Junior constructor and destructor are just like those of Gramps and
Pops; each sends an appropriate message to the console.

main()’s job is to create and delete a single Junior object. When the
Junior object is created, the derivation chain is followed backward until the
ultimate base class, Gramps, is reached. The Gramps constructor is called,
giving the Gramps class a chance to initialize its data members. Next, the
Pops constructor is called, and the Junior constructor is called.

Next, the Junior object is deleted, and, this time, the derivation chain is
followed in the reverse order. The Junior destructor is called, then the Pops
destructor, and, finally, the Gramps destructor is called.

Now consider this examle further:

Notice in the source code listing above that each of the three classes
marked their constructor and destructor as public. What would happen if
you changed the Gramps constructor to private?

Your code wouild not compile because Junior no longer has access to the
Gramps constructor. Now if we change the Gramps constructor from private

to protected the program will compile.

Why?

55.5. BASE CLASSES AND CONSTRUCTORS WITH PARAMETERS829

This time, when Junior inherited the Gramps constructor it had ac-
cess to the Gramps constructor. Recall that when a derived class inherits
a protected member from a public base class, the inherited member is
marked as protected.

Now what happens if we change the Junior constructor from public to
protected and recompile?

This time the compiler complains that the Junior constructor was not
accessible. Since the Junior constructor was declared protected it is ac-
cessible by classes derived from Junior, but not by outside functions like
main().

When main() creates a new Junior object, it must have access to the
Junior constructor. On the other hand, you’ve seen that main() does not
need access to the Gramps or Pops constructors to create a Junior object.
When you changed the Gramps constructor to protected, Junior had access
to the Gramps constructor and main() didn’t yet the program still compiles.

55.5 Base Classes and Constructors with Pa-

rameters

Our first program in this chapter, derived, declared two classes, Base and

Derived. Neither of these classes included a constructor. Our second pro-
gram, gramps, featured three classes. Though all three classes declared a
constructor, none of the constructors declared any parameters.

Our next example enters uncharted waters by declaring classes whose
constructors contain parameters.

When are constructor parameters important?

In a world without class derivation, not much. When you start working
with derived classes, however, things get a bit more complex.

Consider a base class whose constructor has only a single parameter:

class Base

{

public:

Base(short baseParam);

};

830CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

Now, add a derived class based on this base class:

class Derived : public Base

{

public:

Derived();

};

Notice that the derived class constructor is declared without a parameter.
When a Derived object is created, the Base constructor is called. What
parameter is passed to this constructor?

The secret lies in the definition of the derived class constructor. When
a base class constructor has parameters, you have to provide some extra
information in the derived class constructor’s title line. This information
tells the compiler how to map data from the derived class constructor to the
base class constructor’s parameter list.

For example, we might define the derived class constructor this way:

Derived::Derived() : Base(20)

{

cout << "Inside the Derived constructor";

}

Notice the : Base(20) at the end of the title line. This code tells the
compiler to pass the number 20 as a parameter when the Base constructor
is called.

This technique is really useful when your derived class constructor also
has parameters. Check out the following piece of code:

Derived::Derived(short derivedParam) : Base(derivedParam)

{

}

This constructor takes a single parameter, derivedParam, and maps it to
the single parameter in its base class constructor. When a Derived object is
created, as follows,

Derived *derivedPtr;

derivedPtr = new Derived(20);

55.5. BASE CLASSES AND CONSTRUCTORS WITH PARAMETERS831

the parameter is passed to the Base constructor. Once the Base con-
structor returns, the same parameter is passed to the Derived constructor.

In the preceding example, the Derived constructor does nothing but pass
along a parameter to the Base constructor. Though it may take some getting
used to, this technique is quite legitimate. It is perfectly fine to define an
empty function whose sole purpose is to map a parameter to a base class
constructor.

Class Derivation Example

Our next example program combines the class derivation techniques from
our first two programs with the constructor parameter-mapping mechanism
described in the previous section.

The code listing, square.cpp is as follows:

#include <iostream.h>

//--------------------------------------- Rectangle

class Rectangle

{

// Data members...

protected:

short height;

short width;

// Member functions...

public:

Rectangle(short heightParam, short widthParam);

void DisplayArea();

};

Rectangle::Rectangle(short heightParam, short widthParam)

{

height = heightParam;

width = widthParam;

832CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

}

void Rectangle::DisplayArea()

{

cout << "Area is: " <<

height * width << ’\n’;

}

//--------------------------------------- Rectangle:Square

class Square : public Rectangle

{

// Data members...

// Member functions...

public:

Square(short side);

};

Square::Square(short side) : Rectangle(side, side)

{

}

//--------------------------------------- main()

int main()

{

Square *mySquare;

Rectangle *myRectangle;

mySquare = new Square(10);

mySquare->DisplayArea();

myRectangle = new Rectangle(10, 15);

myRectangle->DisplayArea();

55.5. BASE CLASSES AND CONSTRUCTORS WITH PARAMETERS833

return 0;

}

The output of the program is:

Area is: 100

Area is: 150

square.cp starts in the usual way, by including <iostream.h>:
Next, the first of two classes is declared. Rectangle will act as a base

class The data members of our base class are declared as protected; the
member functions, public. height and width hold the height and width
of a Rectangle object:

The Rectangle() constructor takes two parameters, heightParam and
widthParam, that are used to initialize the Rectangle data members.

The member function DisplayArea() displays the area of the current
object:

The Square class is derived from the Rectangle class. Just as (geo-
metrically speaking) a square is a specialized form of rectangle (a rectangle
whose sides are all equal), a Square object is a specialized Rectangle object.

The Square class has no data members, just a single member function,
the Square() constructorw hich has one purpose in life — It maps the single
Square() parameter to the two parameters required by the Rectangle()

constructor. A square whose side has a length of side is equivalent to a
rectangle with a height of side and a width of side:

This is expressed by:

Square::Square(short side) : Rectangle(side, side)

{

}

main() starts by declaring a Square pointer and a Rectangle pointer. The
Square pointer is used to create a new Square object with a side of 10:

As specified by the Square() constructor’s title line, the compiler calls
Rectangle(), passing 10 as both heightParam and widthParam. The
Rectangle() constructor initializes the Square object’s inherited data mem-
bers height and width to 10, just as if you’d created a Rectangle with a
height of 10 and a width of 10.

834CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

Next, the Square object’s inherited member function, DisplayArea(),
is called and this uses the inherited data members height and width to
calculate the area of the Square (100 in this case.

As far as DisplayArea() is concerned, the object whose area it just cal-
culated was a Rectangle. It had no idea it was working with data members
inherited from a Rectangle. This illustrates part of the power of object
programming.

Finally, the Rectangle pointer is used to create a new Rectangle object
with a height of 10 and a width of 15: When we call DisplayArea() this
time, it displays the appropriate area of 150.

This program demonstrates a very important point.

• With just a few lines of code, we can add a new dimension to an existing
class without modifying the existing class.

The Square class takes advantage of what’s already in place, building
on the data members and member functions of its base class. Essentially,
Square added a shortcut to the Rectangle class — a quicker way to create
a Rectangle when the height and width are the same.

This may not seem like a significant gain to you, but there’s an important
lesson behind this example. C++ makes it easy to build upon existing mod-
els, to add functionality to your software by deriving from existing classes.

As you gain experience in object programming, you’ll build up a library
of classes that you’ll use again and again. Sometimes, you’ll use the classes
as it is. At other times, you’ll extend an existing class by deriving a new
class from it. By deriving new classes from existing classes, you get the
best of both worlds. Code that depends on the base classes will continue
to work quite well without modification. Code that takes advantage of the
new, derived classes will work just as well, allowing these classes to live in
harmony with their base classes.

This examle serves to illustrate is what object programming is all about.

55.6 Overriding Member Function

In the preceding example, the derived class, Square, inherited the member
function, DisplayArea(), from its base class, Rectangle. Sometimes, it
is useful to override a member function from the base class with a more
appropriate function in the derived class.

55.6. OVERRIDING MEMBER FUNCTION 835

For example, you could have provided Square with its own version of
DisplayArea() that based its area calculation on the fact that the height
and width of a square are equal.

Let us consider another example: Suppose you create a base class named
Shape and a series of derived classes such as Rectangle, Circle, and Triangle.
You can create a DisplayArea() function for the Shape class, then override
DisplayArea() in each of the derived classes.

Suppose you want to create a linked list of Shapes. To simplify mat-
ters for the software that manages the linked list, you can treat the derived
objects as Shapes, no matter what their actual type. Then, when you call
the Shape’s DisplayArea() function, their true identity will emerge. A
Triangle will override the Shape DisplayArea() function with a Triangle

DisplayArea() function. The Rectangle and Circle will have their own
versions as well.

The trick is to get C++ to call the proper overriding function, if one exists.

55.6.1 Creating a Virtual Function

The Shape linked list example we are developing has presented us with a
slight problem:

Suppose the linked list contains a pointer to a Shape which is actually
one of Rectangle, Triangle, or Circle. Now suppose that Shape pointer
is used to call the member function DisplayArea() like:

myShapePtr->DisplayArea();

As expressed currently, this code will call the function Shape::DisplayArea()

even if the Shape pointed to by myShapePtr is a Rectangle, Triangle, or
Circle.

The solution to this problem:
Declare Shape::DisplayArea() as a virtual function.
To do this simply prefix the member function with the virtual keyword,

in this example:

class Shape

{

// Data members...

836CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

// Member functions...

public:

virtual void WhatAmI();

};

By declaring a base member function as virtual, we are asking the com-
piler to call the overriding function instead of the base function, even if the
object used to call the function belongs to the base class.

55.6.2 A Virtual Function Example

Let us now complete this Shape example of virtual function overriding. We
will be using a base class named Shape and two derived classes, Rectangle
and Triangle.

The complete listing for shape.cpp is as follows:

#include <iostream.h>

//--------------------------------------- Shape

class Shape

{

// Data members...

// Member functions...

public:

virtual void WhatAmI();

};

void Shape::WhatAmI()

{

cout << "I don’t know what kind of shape I am!\n";

}

//--------------------------------------- Shape:Rectangle

55.6. OVERRIDING MEMBER FUNCTION 837

class Rectangle : public Shape

{

// Data members...

// Member functions...

public:

void WhatAmI();

};

void Rectangle::WhatAmI()

{

cout << "I’m a rectangle!\n";

}

//--------------------------------------- Shape:Triangle

class Triangle : public Shape

{

// Data members...

// Member functions...

public:

void WhatAmI();

};

void Triangle::WhatAmI()

{

cout << "I’m a triangle!\n";

}

//--------------------------------------- main()

int main()

{

Shape *s1, *s2, *s3;

838CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

s1 = new Rectangle;

s2 = new Triangle;

s3 = new Shape;

s1->WhatAmI();

s2->WhatAmI();

s3->WhatAmI();

return 0;

}

The output is relatively obvious:

I’m a rectangle!

I’m a triangle!

I don’t know what kind of shape I am!

Initially, the base class Shape is declared. Shape contains a single member
function, WhatAmI(). When it is called, WhatAmI() tells you what kind of
shape it belongs to. Notice that it is declared using the virtual keyword,
which tells the compiler that you’d like any overriding function to be called,
if one exists.

Notice in the actual definition of Shape::WhatAmI() that the virtual key-
word isn’t used here. The virtual keyword is only allowed in the function
declaration inside the class declaration.

Our next class, Rectangle, is derived from the Shape class and also
has a single member function named WhatAmI(): Rectangle’s version of
WhatAmI() is called when the object doing the calling is a Rectangle and
simply outputs “I’m a rectangle!”

The final class, Triangle, is also derived from Shape, and, once again,
Triangle has its own version of WhatAmI()

main() declares three Shape point-ers, s1, s2, and s3:
Each of these pointers is used to create a new object, a Rectangle, a

Triangle, and a Shape, respectively:

s1 = new Rectangle;

s2 = new Triangle;

s3 = new Shape;

55.6. OVERRIDING MEMBER FUNCTION 839

You may be wondering why the three pointers are all declared as Shape

while the objects assigned to the pointers are of three different types. This
is intentional and normal.

If you’re building a linked list of shapes, you can store a pointer to each
object in the list as a Shape pointer rather than as a Rectangle pointer or
Triangle pointer. In this way, your list management software doesn’t have
to know what type of shape it is dealing with and is much easier to deal with:

If you want to call WhatAmI() (or some other, more useful function) for
each object in the list, you just step through the list, one object at a time,
treating each object as if it were a Shape. If the object belongs to a derived
class that overrides the function, C++ will make sure the correct function is
called.

Once our three objects are created, we try using each object to call
WhatAmI():

s1->WhatAmI();

s2->WhatAmI();

s3->WhatAmI();

\end

{verbatim}

When the {\tt Rectangle} object ({\tt s1}) is used to call {\tt

WhatAmI()}, we get this result:

\begin{verbatim}

I’m a rectangle!

When the Triangle object (s12) is used to call WhatAmI(), we get this
result:

I’m a triangle!

Finally, when the Shape object (s3) is used to call WhatAmI(), we get
this result:

I don’t know what kind of shape I am!

In this example, the Shapeclass exists just so that we can create useful,
derived classes from it. Creating a Shape object is not particularly useful.

840CHAPTER 55. INHERITANCE, DERIVED FUNCTIONS, VIRTUAL FUNCTIONS

55.7 Exercises

Exercise 55.1 Modify the shape.cpp prgram to be a true linked list imple-
mentation of Shapes.

Exercise 55.2 Modify the shape.cpp prgram to include a Circle derived
class.

Chapter 56

Operator Overloading

Operator overloading is another extremely powerful and useful feature of
Object Oriented programming

56.1 Overiding Built-in Operators

In C++, you can even overload any of the built-in operators, such as + or *
to suit paricular applications.

To see why this might be useful consider the following example:

Imagine that you’re running a restaurant and you want to write a program
to handle your billing, print your menus, and so on. Your program might
create a MenuItem class that looks something like this:

class MenuItem

{

private:

float price;

char name[40];

public:

MenuItem::MenuItem(float itemPrice, char *itemName);

float MenuItem::GetPrice(void);

};

841

842 CHAPTER 56. OPERATOR OVERLOADING

Your program could define a MenuItem object for each item on the menu.
When someone orders, you’d calculate the bill by adding together the price
of each MenuItem like this:

MenuItem chicken(8.99, "Chicken Jalfrezi");

MenuItem wine(2.99, "Rioja");

float total;

total = chicken->GetPrice() + wine->GetPrice();

This particular diner had the chicken and a glass of wine. The total is
calculated using the member function GetPrice(). Nothing new here, yet.

Operator overloading provides an alternative way of totalling up the bill.
If we program things properly, the compiler will interpret the statement

total = chicken + wine;

by adding the price of chicken to the price of wine.
Note: Currently, the compiler would complain if you tried to use a non-

integral type with the + operator.
In C++, You can “reprogram” this operation by giving the + operator

a new meaning. To do this, we need to create a function to overload the +
operator:

float operator+(MenuItem item1, MenuItem item2)

{

return(item1.GetPrice() + item2.GetPrice());

}

Notice the name of this new function. Any function whose name follows
the form:

operator<C++ operator>

is said to overload the specified operator. When you overload an oper-
ator, you’re asking the compiler to call your function instead of interpreting
the operator as it normally would.

56.1. OVERIDING BUILT-IN OPERATORS 843

56.1.1 Calling an Operator Overloading Function

When the compiler calls an overloading function, it maps the operator’s
operands to the function’s parameters. For example, suppose the function

float operator+(MenuItem item1, MenuItem item2)

{

return(item1.GetPrice() + item2.GetPrice());

}

is used to overload the + operator. When the compiler encounters the
expression chicken + wine it calls operator+(), passing chicken as the
first parameter and wine as the second parameter. operator+()’s return

value is used as the result of the expression.
It is important to note that:

• The number of operands taken by an operator determines the number
of parameters passed to its overloading function.

For example, a function designed to overload a unary operator takes a
single parameter; a function designed to overload a binary operator takes
two parameters.

56.1.2 Operator Overloading Using a Member Func-
tion

You can also use a member function to overload an operator. For example,
the function

float MenuItem::operator+(MenuItem item)

{

return(GetPrice() + item.GetPrice());

}

overloads the + operator and performs pretty much the same function as
the previous example. The difference lies in the way a member function is
called by the compiler.

When the compiler calls an overloading member function, it uses the first
operand to call the function and passes the remainder of the operands as

844 CHAPTER 56. OPERATOR OVERLOADING

parameters. So with the function just given in place, the compiler handles
the expression

chicken + wine

by calling chicken.operator+(), passing wine as a parameter, as if you
had made the following call:

chicken.operator+(wine)

Again, the value returned by the function is used as the result of the
expression.

56.1.3 Multiple Overloading Functions

The previous example brings up an interesting point. What will the compiler
do when it encounters several functions that overload the same operator?

For example, both of the following functions overload the + operator:

float operator+(MenuItem item1, MenuItem item2)

float MenuItem::operator+(MenuItem item)

If both are present, which one is called?

The answer to this question is, neither:

• The compiler will not allow you to create an ambiguous overloading
situation.

– You cannot overload an operator with similar type operands.

• You can create several functions that overload the same operator, how-
ever:

– You might create one version of operator+() that handles Menu-
Items and another that allows you to add two arrays together.

– The compiler chooses the proper overloading function based on
the types of the operands.

56.1. OVERIDING BUILT-IN OPERATORS 845

56.1.4 An Operator Overloading Example

Here’s an example that illustartes manu of the above concepts.

We will override the + and *= operators so that can deal with time
arithmetic: we’ll declare a Timeclass and use it to store a length of time
specified in hours, minutes, and seconds. Then, we’ll overload the + and *=
operators and use them to add two times together and to multiply a time by
a specified value.

The code listing for time.cpp now follows:

#include <iostream.h>

//--------------------------------------- Time

class Time

{

// Data members...

private:

short hours;

short minutes;

short seconds;

// Member functions...

void NormalizeTime();

public:

Time();

Time(short h, short m, short s);

void Display();

Time operator+(Time &aTime);

void operator*=(short num);

};

Time::Time()

{

seconds = 0;

minutes = 0;

hours = 0;

846 CHAPTER 56. OPERATOR OVERLOADING

}

Time::Time(short h, short m, short s)

{

seconds = s;

minutes = m;

hours = h;

NormalizeTime();

}

void Time::NormalizeTime()

{

hours += ((minutes + (seconds/60)) / 60);

minutes = (minutes + (seconds/60)) % 60;

seconds %= 60;

}

void Time::Display()

{

cout << "(" << hours << ":" << minutes

<< ":" << seconds << ")\n";

}

Time Time::operator+(Time &aTime)

{

short h;

short m;

short s;

h = hours + aTime.hours;

m = minutes + aTime.minutes;

s = seconds + aTime.seconds;

Time tempTime(h, m, s);

56.1. OVERIDING BUILT-IN OPERATORS 847

return tempTime;

}

void Time::operator*=(short num)

{

hours *= num;

minutes *= num;

seconds *= num;

NormalizeTime();

}

//--------------------------------------- main

int main()

{

Time firstTime(1, 10, 50);

Time secondTime(2, 24, 20);

Time sumTime;

firstTime.Display();

secondTime.Display();

cout << "---------\n";

sumTime = firstTime + secondTime;

sumTime.Display();

cout << "* 2\n";

cout << "---------\n";

sumTime *= 2;

sumTime.Display();

return 0;

}

848 CHAPTER 56. OPERATOR OVERLOADING

The output of the program is:

:

(1:10:50)

(2:24:20)

(3:35:10)

* 2

(7:10:20)

First, we declare the Time class, which is used to store time in hours,

minutes, and seconds. We also declare the member functions, The first,
NormalizeTime(), is declared as private whilst the rest of the member
functions are declared to be public.

• The function, NormalizeTime(), converts any overflow in the seconds
and minutes data members; for example, 70 seconds is converted to
1 minute and 10 seconds. NormalizeTime() will only be used from
within the Time class. Since we’re not planning on deriving any classes
from Time, we’ve left it as private.

• The two constructors: Time(), Time(short h, short m, short s

). The first takes no parameters and is used to create a Time object with
all three data members set to 0 (You’ll see why later on in the code).
The second Time constructor uses its three parameters to initialize the
three Time data members and then calls NormalizeTime() to resolve
any overflow.

• The Display() displays the time stored in the current object, operator+()
overloads the + operator, and operator*=() overloads the *= operator.

• The overload operator operator+() is called when the + operator is
used to add two Time objects together. The first operand is used as the
current object, and the second operand corresponds to the parameter
aTime. Notice that aTime is declared as a reference parameter.This
code would also work if aTime were declared without the &. Without
the &, the compiler would create a copy of the parameter to pass in
to operator+(). Since C++ passes its parameters on the stack, this

56.1. OVERIDING BUILT-IN OPERATORS 849

could cause a problem if the parameter was big enough. With the &,
aTime is a reference to the object passed in as a parameter.

The function then takes the hours, minutes, and seconds data members
of the two objects and adds the together (stored in the local variables
h, m, and s

A new Time object tempTime is created using h, m, and s. Finally, we
return the newly created object. Since we are not using a reference,
the compiler will make a copy of tempTime, then return the copy. The
compiler is responsible for destroying this copy, so you don’t have to
worry about it.

• The other overload operator operator*=() is called when the *= op-
erator is used to multiply a Time object by a constant. Notice that
operator*=() does not return a value because the multiplication is
performed inside the Time object that appears as the first operand.
Each of the Time object’s data members is multiplied by the specified
short num

Since we are not creating a new Time object, NormalizeTime() is called
to fix any overflow problems that may have just been caused:

In general, your overloading functions return a value if it makes sense
for the operator being overloaded. If the operator includes an =, chances
are you’ll make your changes in place and won’t return a value, as we did
with operator*=(). If the operator doesn’t include an =, you’ll most likely
return a value, as we did with operator+().

Before you make the decision, build a few expressions using the operator
under consideration. Do the expressions resolve to a single value? If so, then
you want your overloading function to return a value.

The main() function starts by defining two Time objects (the values in
parentheses represent the hours, minutes, and seconds, respectively). A third
Time object, sumTime, is created, this time via a call to the Time constructor
that doesn’t take any parameters.

Display() is called to display the data members of the two Time objects,
and then a line is drawn under the two Times bfore the results of the + and
*= operators are displayed

850 CHAPTER 56. OPERATOR OVERLOADING

56.2 A Few Overload Restrictions

Therw ae a few restrictions. First, you can only overload C++’s built-in
operators with some restrictions (see below) This means that you can’t create
any new operators. You can’t suddenly assign a new meaning to the letter
z, for example.

You can overload these operators.

+ - * / %

^ & | ~ !

, = < > <= >=

== != && ||

++ -- += -= *= /=

%= ^= "&= |=

<<= >>=

[] () -> ->*

new delete

\end{vebatim}

However, you {\bf cannot} overload

these operators.

\begin{verbatim}

. .* :: ?: sizeof()

Note that you can’t change the way an operator works with a predefined
type. For example, you can’t write your own operator() function to add
two ints together.

The following rule of thumb for is worth remembering.
If you want the compiler to even consider calling your overloading func-

tion, either

• make the function a class member function, or else

• make one of its parameters an object.

56.2. A FEW OVERLOAD RESTRICTIONS 851

Remember, the compiler will complain if you write an operator() func-
tion designed to work solely with C++’s built-in types.

Also note: when you overload the ++ and -- operators, you’ll have to
provide two versions of the operator function,

• one to support prefix notation, and

• one to support postfix notation.

The compiler distinguishes between the two by checking for a dummy
int parameter. Prefix version of your operator function shouldn’t have any
parameters, while the postfix version takes a single int.

Here’s an example of a prefix and postfix ++ overloading operator for the
Time class from our last program.

First, the prefix operator function:

Time operator++()

{

*this = *this +1;

return *this;

}

Now here’s a version of the postfix operator function:

Time operator++(int)

{

Time aTime = *this;

*this = *this + 1;

return aTime;

}

Notice the unused int parameter in the postfix operator++() function.
That’s how the compiler identifies this function as postfix.

You also cannot change an operator’s precedence by overloading it. If
you want to force an expression to be evaluated in a specific order, you must
use parentheses.

Overloading functions cannot specify default parameters. This restriction
makes sense since a function with default parameters can be called with a
variable number of arguments.

For example, you could call the function

852 CHAPTER 56. OPERATOR OVERLOADING

MyFunc(short a=0, short b=0, short c=0)

using anywhere from zero to three arguments. If an operator() function
allowed default parameters, you’d be able to use an operator without any
operands! If you did that, how would the compiler know which overloading
function to call.

You cannot change the number of operands handled by an operator.
For example, you couldn’t make a binary operator unary.

56.3 Mutiple Overloaded Operations

Earlier in the chapter, we looked at a function that overloaded the + operator
and was designed to add the price of two MenuItems together:

float operator+(MenuItem item1, MenuItem item2)

{

return(item1.GetPrice() + item2.GetPrice());

}

When the compiler encountered an expression like

chicken + wine

where both chicken and wine were declared as MenuItems, it called
operator+(), which passed the two operands as parameters. The float

produced by adding both prices together was returned as the result of the
expression.

What happens when the compiler evaluates an expression like

chicken + wine + dessert

This expression seems innocent enough, but look at it from the compiler’s
viewpoint. First, the subexpression

chicken + wine

is evaluated, resolving to a float. Next, this float is combined with
dessert in the expression:

56.3. MUTIPLE OVERLOADED OPERATIONS 853

<float> + dessert

What does the compiler do with this expression?
We designed an overloading function that handles the + operator when

its operands are both MenuItems, but we don’t have one that handles a float

as the first operand and a MenuItem as the second operand.
Now take a look at the following expression:

chicken + (wine + dessert)

\begin{verbatim}

First, the compiler evaluates the subexpression:

\begin{verbatim}

(wine + dessert)

resolving it to a float. That leaves us with the expression

chicken + <float>

Once again, we designed an operator+() function that handles + and
two MenuItems, but we don’t have one that handles a MenuItem as the first
operand and a float as the second operand.

56.3.1 Overloading an Overloading Function

As you can see, you frequently need more than one version of the same
operator() function. To accomplish this task, you use a technique intro-
duced previously, function overloading.

Just as with any other function, you can overload an operator() function
by providing more than one version, each with its own unique signature.

Remember, a function’s signature is based on its para-meter list and not
on its return value.

How Many Versions Are Needed?
Figuring out how many versions of an operator() function to provide

is actually pretty straightforward. Start by making a list of the number of
possible types you want to allow for each of the operator’s operands. Don’t
forget to include the type returned by your operator() function.

854 CHAPTER 56. OPERATOR OVERLOADING

In the previous example, we wanted operator+() to handle a float or a
MenuItem as either operand, which yields the possibilities shown below:

float + float

float + MenuItem

MenuItem + float

MenuItem + MenuItem

As pointed out earlier, you can’t create an operator() function based
solely on built-in types. Fortunately, the compiler does a perfectly fine job
of adding two floats together.

With this first case taken care of by the compiler, we’re left to construct
the remaining three operator+() functions.

Our next example program, menu.cpp, uses function overloading to do
just that.

56.3.2 menu.cpp:An Overloader Overloading Example

The code listing for menu.cpp is as follows:

#include <iostream.h>

#include <string.h>

const short kMaxNameLength = 40;

//--------------------------------------- MenuItem

class MenuItem

{

private:

float price;

char name[kMaxNameLength];

public:

MenuItem(float itemPrice, char *itemName);

float GetPrice();

float operator+(MenuItem item);

56.3. MUTIPLE OVERLOADED OPERATIONS 855

float operator+(float subtotal);

};

MenuItem::MenuItem(float itemPrice, char *itemName)

{

price = itemPrice;

strcpy(name, itemName);

}

float MenuItem::GetPrice()

{

return(price);

}

float MenuItem::operator+(MenuItem item)

{

cout << "MenuItem::operator+(MenuItem item)\n";

return(GetPrice() + item.GetPrice());

}

float MenuItem::operator+(float subtotal)

{

cout << "MenuItem::operator+(float subtotal)\n";

return(GetPrice() + subtotal);

}

float operator+(float subtotal, MenuItem item);

// I added the previous line, cause CodeWarrior reports (correctly)

// that there was no prototype for float operator+().

// Now there IS a prototype! Comment out the line

// if you want to see the warning message -- Dave Mark, 10/20/95

//--------------------------------------- operator+()

856 CHAPTER 56. OPERATOR OVERLOADING

float operator+(float subtotal, MenuItem item)

{

cout << "operator+(float subtotal, MenuItem item)\n";

return(subtotal + item.GetPrice());

}

//--------------------------------------- main()

int main()

{

MenuItem chicken(8.99, "Chicken Jalfrezi");

MenuItem wine(2.99, "Rioja by the Glass");

MenuItem dessert(3.99, "Fresh Mangoes");

float total;

total = chicken + wine + dessert;

cout << "\nTotal: " << total

<< "\n\n";

total = chicken + (wine + dessert);

cout << "\nTotal: " << total;

return 0;

}

The output of this program is:

MenuItem::operator+(MenuItem item)

operator+(float subtotal, MenuItem item)

Total: 15.969999

MenuItem::operator+(MenuItem item)

MenuItem::operator+(float subtotal)

Total: 15.969999

56.3. MUTIPLE OVERLOADED OPERATIONS 857

menu.cpp starts with two include files (<iostream.h¿ and <string.h>)and
a single constant, const short kMaxNameLength = 40.

Next, the MenuItem class is declared. The MenuItem class contains two
data members.price lists the price of the item while name contains the item’s
name as it might appear on a menu. Notice that both data members are
marked as private, which shouldn’t be a problem since we won’t be deriving
any new classes from MenuItem.

The MenuItem class features four member functions. The constructor,
MenuItem(), initializes the MenuItem data members; the GetPrice() func-
tion returns the value of the price data member.

The two operator+() functions handle the cases where a MenuItem object
appears as the first operand to the + operator. If the second operand is also
a MenuItem, the first of the two functions is called; if the second operand is
a float, the second function is called:

The MenuItem() constructor copies its first parameter into the price

data member, and then it uses strcpy() to copy the second parameter into
the name data member.

Note that we have to write three versions of operator+() even though
only two are declared in the class:

• The first version of operator+() handles expressions of the form

<MenuItem> + <MenuItem>

• The second version of operator+() handles expressions of the form

<MenuItem> + <float>

• The third version of operator+() is, by necessity, not a member func-
tion of any class. To understand why this is so, take a look at the
expressions this version of operator+() is designed to handle:

<float> + <MenuItem>

As mentioned earlier, the compiler uses the first operand to determine
how the overloading operator() function is called. If the first param-
eter is an object, that object is used to call the operator() function

858 CHAPTER 56. OPERATOR OVERLOADING

and all other operands are passed to the function as parameters. If
the first parameter is not an object, the compiler’s list of candidate
overloading functions is reduced to the program’s nonclass operator()
functions. Once a matching function is located, the compiler calls it,
passing all of the operands as parameters.

main() declares three MenuItem objects, initializing each with a price and
a name. main() also declares a float total used to hold the result of our
Menu addition. Next, the three MenuItems are added together, the result
stored in total = chicken + wine + dessert, and the printed.

When the compiler encounters the expression

chicken + wine + dessert

it first processes the sub-expression

chicken + wine

Since we’re adding two MenuItems together, the compiler calls the first
of our three operator+() functions, as shown by the first line of output
(MenuItem::operator+(MenuItem item)).

Next, this subtotal is used to process the remainder of the expression:

<subtotal> + dessert

Since we’re now adding a float to a MenuItem, the compiler calls the third
operator+() function, as shown by the next line of output (operator+(
float subtotal, MenuItem item))

Once the calculations are complete, the total is printed
Then, the three MenuItems are added together again, this time with the

addition of parentheses wrapped around the last two operands:

total = chicken + (wine + dessert);

These parentheses force the compiler to start by evaluating the sub-
expression

(wine + dessert)

56.4. SOME SPECIAL CASES 859

Once again, we’re adding two MenuItems together, as shown by the next
line of output (MenuItem::operator+(MenuItem item)).

Next, this subtotal is used to process the remainder of the expression:

chicken + <subtotal>

Since we’re now adding a MenuItem to a float, the compiler calls the
second operator+() function, as shown by the following line of output
(MenuItem::operator+(float subtotal))

Finally, the total is printed a second time

56.4 Some Special Cases

The remainder of this chapter is dedicated to a few special cases. Specifically,
we’ll focus on writing operator() functions that overload the new, delete, (), [], ->,
and = operators.

One characteristic shared by each of these operators is that they can only
be overloaded by a nonstatic class member function. Basically, this means
that you won’t be using the non-class operator() function strategy from
our previous example for any of the operators in this section.

56.4.1 Overloading new and delete

There are two ways you can overload new and delete.

• You can create two member functions named operator new() and op-
erator delete() as part of your class design. You might do this if
you wanted to implement your own memory management scheme for a
specific class.

• You can overload the global new and delete operators by providing
operator new() and operator delete() functions that are not members
of a class. You might do this if you wanted new and delete to always
initialize newly allocated memory.

Whatever your reasons for overloading new and delete, proceed with
caution. No matter how you do it, once you overload new and delete, you
are taking on a big responsibility, one that can get you in deep trouble if you
don’t handle things properly.

860 CHAPTER 56. OPERATOR OVERLOADING

An operator new Example

Here’s a small example you can use as the basis for your own new and delete

operator() functions.

#include <iostream.h>

//--------------------------------------- Blob

class Blob

{

public:

void *operator new(size_t blobSize);

void operator delete(void *blobPtr, size_t blobSize);

};

void *Blob::operator new(size_t blobSize)

{

cout << "new: " << blobSize << " byte(s).\n";

return new char[blobSize];

}

void Blob::operator delete(void *blobPtr, size_t blobSize)

{

cout << "delete: " << blobSize << " byte(s).\n";

delete [] blobPtr;

}

//--------------------------------------- main()

int main()

{

Blob *blobPtr;

blobPtr = new Blob;

56.4. SOME SPECIAL CASES 861

delete blobPtr;

return 0;

}

The output of this program is:

new: 2 byte(s).

delete: 2 byte(s).

new.cpp defines a class named Blob, which doesn’t do much, but it does
contain overloading functions for new and delete.

There are lots of details worth noting in the new and delete operator()

functions.

• Notice the space between the words operator and new and between
operator and delete. Without the space, the compiler might think
you were creating a function called operatornew() —a perfectly legal
C++ function name.

• The operator new() returns a void *. This is required. In general,
your version of new will return a pointer to the newly allocated object
or block of memory. If your memory management scheme calls for
relocatable blocks, you might want to return a handle (pointer to a
pointer) instead. The choice is yours.

• The operator new function must take at least one parameter of type
size t. The value for this parameter is provided automatically by
the compiler and specifies the size of the object to be allocated. Any
parameters passed to new will follow the size t in the parameter list.

• The operator delete function never returns a value and must be de-
clared to return a void. delete always takes at least one parameter,
a pointer to the block to be deleted. The second parameter, a size t,
is optional. If you provide it, it will be filled with the size, in bytes, of
the block pointed to by the first parameter.

Sometimes the size passed as the second parameter to operator delete()
isn’t quite what you expected. If the pointer being deleted is a pointer

862 CHAPTER 56. OPERATOR OVERLOADING

to a base class yet the object pointed to belongs to a class derived from
the base class, the second parameter to operator delete() will be the
size of the base class.

There is an exception to this rule. If the base class’s destructor is
virtual, the size parameter will hold the proper value, the size of the
object actually being deleted.

main() creates a new Blob and then deletes it. When the Blob is cre-
ated, the overriding new is called. When the object is deleted, the overloaded
version of delete is called.

56.4.2 Overloading ()

The next special case is the function that overloads the () operator, also
known as the function call operator. One reason to overload the function
call operator is to provide a shorthand notation for accessing an object’s
critical data members. As mentioned earlier, () can only be overloaded by
a nonstatic class member function.

Consider the following an example, call.cpp:

#include <iostream.h>

//--------------------------------------- Item

class Item

{

private:

float price;

public:

Item(float itemPrice);

// Note that the default value for taxRate has been removed. The book

// uses a default value of 0. As it turns out, section 13,5 of

// the ANSI C++ draft states that an operator function cannot have

// default arguments.

//

// In this version, I just removed the default value for taxRate

56.4. SOME SPECIAL CASES 863

// and changed the call stimpyDoll() to stimpyDoll(0) to

// achieve the same result. Thanks to Khurram Quereshi for figuring

// this one out!! -- Dave Mark, 10/26/95

float operator()(float taxRate);

};

Item::Item(float itemPrice)

{

price = itemPrice;

}

float Item::operator()(float taxRate)

{

return(((taxRate * .01) + 1) * price);

}

//--------------------------------------- main()

int main()

{

Item stimpyDoll(36.99);

cout << "Price of Stimpy doll: $" << stimpyDoll(0);

cout << "\nPrice with 4.5% tax: $" << stimpyDoll(4.5);

return 0;

}

The output is as follow:

Price of Stimpy doll: $36.990002

Price with 4.5% tax: $38.654552

call.cpp starts by defining an Item class. An Item object represents an
item for sale at Uncle Ren’s Toy-o-rama.

864 CHAPTER 56. OPERATOR OVERLOADING

Item features a single data member, price, and two member functions,
the Item() constructor and a function designed to overload the () call op-
erator

The operator()() function may look odd, but the syntax using two pairs
of parentheses is correct:

float Item::operator()(float taxRate)

The first pair of parentheses designates the operator being overloaded;
the second pair surrounds any parameters being passed to the function. In
this case, one parameter, taxRate, is specified. Notice that taxRate has a
default value of 0. You’ll see why in a minute.

The operator()() function takes the specified taxRate and applies it
to the Item’s price, returning the Item’s total (((taxRate * .01) + 1) *

price))
Since the function call operator can only be overloaded by a class member

function, the previous reference to price refers to the data member of the
object used in combination with the call operator.

main() starts by creating an Item object. Here’s where the call overload
comes into play:

cout << "Price of Stimpy doll: $" << stimpyDoll();

By taking advantage of the default parameter, the function call

stimpyDoll()

returns stimpyDoll’s price. We could have accomplished the same thing
by coding

stimpyDoll.price

or

stimpyDoll(0)

Next, we use the same function to calculate the cost of the doll with 4.5%
tax included:

cout << "\nPrice with 4.5% tax: $"

<< stimpyDoll(4.5);

56.4. SOME SPECIAL CASES 865

Once again, we take advantage of the overloaded function call operator.
This time, we provide a parameter. Notice that the same overloading function
is used for two different (though closely related) purposes.

The key to properly overloading the function call operator is to use it to
provide access to a key data member. If your object represents a character
string, you might overload () to provide access to a substring, using a pair
of parameters to provide the starting position and length of the substring.

Another strategy uses () as an iterator function for accessing data kept
in a sequence or list. Each call to () bumps a master pointer to the next
element in the list and returns the new data element. No question about it,
the function call operator is a useful operator to overload.

56.4.3 Overloading []

Another useful operator to overload is [], also known as the subscript oper-
ator. Although it can be used for other things, [] is frequently overloaded
to provide range checking for arrays. You’ll see how to do this in a moment.

The subscript overloading syntax is similar to that of the function call
operator. In the statement

myChar = myObject[10];

the [] overloading function belonging to the same class as myObject is
called with a single parameter, 10. The value returned by the function is
assigned to the variable myChar.

On the flip side of the coin, the �[] overloading function must support a []

expression on the left side of the assignment state-ment, like so:

myObject[10] = myChar;

The next example program, subscript.cpp, shows you how to properly
overload []:

#include <iostream.h>

#include <string.h>

const short kMaxNameLength = 40;

866 CHAPTER 56. OPERATOR OVERLOADING

//--------------------------------------- Name

class Name

{

private:

char nameString[kMaxNameLength];

short nameLength;

public:

Name(char *name);

void operator()();

char &operator[](short index);

};

Name::Name(char *name)

{

strcpy(nameString, name);

nameLength = strlen(name);

}

void Name::operator()()

{

cout << nameString << "\n";

}

char& Name::operator[](short index)

{

if ((index < 0) || (index >= nameLength))

{

cout << "index out of bounds!!!\n";

return(nameString[0]);

}

else

return(nameString[index]);

}

//--------------------------------------- main()

56.4. SOME SPECIAL CASES 867

int main()

{

Name pres("B. J. Clinton");

pres[3] = ’X’;

pres();

pres[25] = ’Z’;

pres();

return 0;

}

The output is:

B. X. Clinton

index out of bounds!!!

Z. X. Clinton

subscript.cpp starts by defining a Name class. The Name class is fairly
simple. It is designed to hold a NULL-terminated string containing a person’s
name as well as a short containing the length of the string. The member
functions include a constructor as well as two operator overloading functions.
One function overloads [] the other overloads ():

The constructor copies the provided string to the nameString data mem-
ber and places the length of the string in the nameLength data member.

The () operator overloading function simply prints the character string
in nameString:

The [] operator overloading function takes a single parameter, an index
into the character string. Notice the unusual return type. By specifying a
char reference as a return type, the function ensures that the [] operator can
appear on either side of an assignment statement. Essentially, an expression
such as

myObject[0]

is turned into a char variable containing the character returned by the
[] overloading function:

868 CHAPTER 56. OPERATOR OVERLOADING

char& Name::operator[](short index)

Here’s the real advantage to overloading the [] operator. Before you
access the specified character, you can first do some bounds checking, making
sure the character is actually in the character string! If the specified index
is out-of-bounds, we print a message and point to the first character in the
string.

main() first, creates a Name object. Next, the fourth character in the
string is replaced by the character X. When pres() is called, the modified
string is displayed: B. X. Clinton

Then, the character Z is placed well out-of-bounds and the string is dis-
played again.

The [] overloading function lets you know that the specified index is
out-of-bounds and the assignment is performed on the first character of the
string instead:

index out of bounds!!!

Z. X. Clinton

56.4.4 Overloading − >

Next on the special cases list is the -> operator, also known as the member
access operator. Like the other operators presented in this section, overload-
ing -> provides a shorthand notation that can save you code and add an
elegant twist to your program.

When the compiler encounters the -> operator, it checks the type of the
left-hand operand. If the operand is a pointer, -> is evaluated normally.
If the operand is an object or object reference, the compiler checks to see
whether the object’s class provides an -> overloading function.

If no -> overloading function is provided, the compiler reports an error,
since the -> operator requires a pointer, not an object. If the -¿ overloading
function is present, the left operand is used to call the overloading function.
When the overloading function returns, its return value is substituted for the
original left operand, and the evaluation process is repeated. When used this
way, the -> operator is known as a smart pointer.

If these rules sound confusing, hold on. The next example, smartPtr.cpp,
should explain things:

56.4. SOME SPECIAL CASES 869

#include <iostream.h>

#include <string.h>

const short kMaxNameLength = 40;

//--------------------------------------- Name

class Name

{

private:

char first[kMaxNameLength];

char last[kMaxNameLength];

public:

Name(char *lastName, char *firstName);

void DisplayName();

};

Name::Name(char *lastName, char *firstName)

{

strcpy(last, lastName);

strcpy(first, firstName);

}

void Name::DisplayName()

{

cout << "Name: " << first << " " << last;

}

//--------------------------------------- Politician

class Politician

{

private:

Name *namePtr;

short age;

870 CHAPTER 56. OPERATOR OVERLOADING

public:

Politician(Name *namePtr, short age);

Name *operator->();

};

Politician::Politician(Name *namePtr, short age)

{

this->namePtr = namePtr;

this->age = age;

}

Name *Politician::operator->()

{

return(namePtr);

}

//--------------------------------------- main()

int main()

{

Name myName("Clinton", "Bill");

Politician billClinton(&myName, 46);

billClinton->DisplayName();

return 0;

}

The output is, simply:

Name: Bill Clinton

smartPtr.cpp defines two classes. The Name class which holds two zero-
terminated strings containing a person’s first and last names. and the Politician
class which represents a politician. To keep things simple, the info is lim-
ited to the politician’s age and a pointer to a Name object containing the

56.4. SOME SPECIAL CASES 871

politician’s name. The Politician class also contains a member function
designed to overload the -> operator. The function returns a pointer to the
politician’s Name object (the fact that it returns a pointer is key):

main() embeds a last and first name into a Name object and then uses
that object to create a new Politician object (so far, no big deal)

There are several problems here. First, billClinton is an object and not
a pointer, yet it is used with the -> operator. Second, the member function
DisplayName() is not a member of the Politician class. How can it be
called directly from a Politician object?

Basically, the -> overloading function is doing its thing as a smart pointer
by bridging the gap between a Politician object and a Name member func-
tion. When the compiler encounters the -> operator, it checks the type of
the left operand. Since billClinton is not a pointer, the compiler checks
for an -> overloading function in the Politician class.

When the overloading function is found, it is called, using billClinton

as the current object. The function returns a pointer to a Name object. The
compiler substitutes this return value for the original, yielding

namePtr->DisplayName()

The compiler again checks the type of the left operand. This time, the
operand is a pointer and the -> operator is evaluated normally. The namePtr
is used to call the Name function DisplayName(), resulting in the output of
Name: Bill Clinton

As you can see, overloading the -> operator provides a shortcut that
allows you to run a direct line between two different classes. You can take
this model one step further by supposing that the -> overloading function
returns a Name object rather than a pointer to a Name object. The compiler
then substitutes the Name object in the original expression and reevaluates:

myName->DisplayName();

Once again, since the left operand is an object and not a pointer, the
left operand’s class is examined in search of another -> overloading function.
This substitution and call of -> overloading functions is repeated until a
pointer is returned (the end of the chain is reached). Only then is the ->

operator evaluated in its traditional form. You can use this technique to
walk along a chain of objects. Each -> overloading function evaluates some

872 CHAPTER 56. OPERATOR OVERLOADING

criteria, returning an object if the search should con-tinue or a pointer if the
end condition has been met.

This is pretty Mind Blowing stuff.

56.4.5 Overloading =

The last of the special cases is the operator=() function.
Why overload the = operator?
To best understand why, take a look at what happens when you assign

one object to another.
Suppose you define a String class, like this:

class String

{

private:

char *s;

short stringLength;

public:

String(char *theString);

};

The data member s points to a NULL-terminated string. The data member
stringLength contains the length of the string. The constructor String()

initializes both data members. Notice that no memory has been allocated
for s. This is done inside the constructor.

Now suppose you create a pair of Strings, like this:

String source("from");

String destination("to");

And then, you assign one of the String objects to the other, like this:

destination = source;

56.4. SOME SPECIAL CASES 873

What happens?
As it turns out, the = operator copies one object to another by a process

called memberwise assignment. Basically, this means that each data member
within one object is copied, one at a time, to the corresponding data member
in the receiving object.

The trouble with memberwise assignment is in the way it deals with
allocated memory, such as you’d find with a null-terminated character string.
When one (char *) is copied to another, the address stored in the (char

*) is copied, not the data pointed to by the address. Once the statement

destination = source;

executes, both Strings point to the same NULL-terminated string in mem-
ory. The default = operator isn’t smart enough to allocate the appropriate
amount of new memory and then use strcpy() to make a copy of the string.
That’s where operator=() comes in.

If you want the ability to assign the contents of one object to another,
and the objects contain allocated memory, you’ll have to write a smart =
overloading function that knows how to do it right.

He is an operator=() example, equals.cpp;

#include <iostream.h>

#include <string.h>

//--------------------------------------- String

class String

{

private:

char *s;

short stringLength;

public:

String(char *theString);

~String();

void DisplayAddress();

String &operator=(const String &fromString);

874 CHAPTER 56. OPERATOR OVERLOADING

};

String::String(char *theString)

{

stringLength = strlen(theString);

s = new char[stringLength + 1];

strcpy(s, theString);

}

String::~String()

{

delete [] s;

}

void String::DisplayAddress()

{

// I added an extra line to the DisplayAddress function

// because both sets of address in the program were

// turning out to be the same. I now print out the string

// along with the string address. Now when you run the program,

// you can see that the first time you print captain and doctor,

// they contain different strings, but the second time, they

// contain the same string, even though their addresses

// didn’t change.

// Sorry for any confusion -- Dave Mark 10/31//95

cout << "String address: " << (unsigned long)s << "\n";

cout << " content: " << s << "\n\n";

}

String &String::operator=(const String &fromString)

{

delete [] s;

stringLength = fromString.stringLength;

s = new char[stringLength + 1];

56.4. SOME SPECIAL CASES 875

strcpy(s, fromString.s);

return(*this);

}

//--------------------------------------- main()

int main()

{

String captain("Picard");

String doctor("Crusher");

captain.DisplayAddress();

doctor.DisplayAddress();

cout << "-----\n";

doctor = captain;

captain.DisplayAddress();

doctor.DisplayAddress();

return 0;

}

The output of this program is:

String address: 3259462

String address: 3259472

String address: 3259462

String address: 3261024

equals.cpp starts by defining the String class described earlier, with a
few additions. The constructor still allocates the memory for the specified
string, but now several new functions are added:

876 CHAPTER 56. OPERATOR OVERLOADING

public:

String(char *theString);

~String();

void DisplayAddress();

String &operator=(const String &fromString);

The constructor starts by calculating the length of the specified string,
storing the result in stringLength. Next, new is used to allocate the proper
amount of memory (the extra byte is for the NULL terminator at the end of
the string). Finally, strcpy() is called to copy the source string to the data
member s.

If s is declared as an array of fixed size, instead of as a dynamic string
pointer, memberwise initialization works just fine since the memory for the
array is part of the object itself. Since s points to a block of memory outside
the object, memberwise initialization passes it by.

The String destructor (String()) uses delete to destroy the array of
chars pointed to by s by calling delete [] s

The member function DisplayAddress() provides a shorthand way of
displaying the address of the first byte of a string:

cout << "String address: " << (unsigned long)s <<

The = overloading function, just like operator[](), this function must
return an l-value. In this case, we return a reference to a String object.
We also take a String reference as a parameter. Since you can only assign
an object to another object of the same class, the type of the return value
will always agree with the type of the parameter. const in the parameter
declaration just marks the parameter as read only. operator=() starts by
freeing up the memory occupied by the old string. Next, the new value for
the data member stringLength is copied from the source String. After that,
new is used to allocate a block for the new string, and strcpy() is used to
copy the source string into s.

Since this is a pointer to the current object, *thisis the object itself. We
return *this to satisfy our need to return an l-value.

main() puts everthing to the test. First, two String objects are created
and initialized. Next, the address of each String’s string is displayed, using
the overloaded () operator. Then, the object captain is assigned to the
object doctor, and the addresses of the two text strings are again displayed

56.4. SOME SPECIAL CASES 877

If the = operator is not overloaded, the address of the captain string
simply copies into the doctor object’s s data member and both addresses
are the same.

To that all this work is necessary: If you comment out the operator=()

function (every single line, not just the insides) as well as its declaration
inside the String class declara tion, and run the program again. Without the
operator=() function, the String destructor would try to delete the same
block of memory twice!

878 CHAPTER 56. OPERATOR OVERLOADING

Chapter 57

The iostream

The iostream’s insertion operator (<<) has been used for all of our output
and iostream’s extraction operator (>>) has been used for all of our input.
While these operators serve us well, there’s much more to iostream than
has been demonstrated so far.

There are 4 include files <iostream.h>, <fstream.h>, <iomanip.h¿, and
<strstrea.h> associated with the complete C++ iostream. So far we have
only used the basic <iostream.h> header.

The iostream is a powerful extension of the C++ language. As we will see
shortly, we can easily customize iostream so that the >> and << operators
recognize your own personally designed data structures and classes. The
iostream can also be used to write to and read from files or even character
arrays. .

57.1 The Character-Based Interface

The iostream’s basic unit of currency is the character. Before a number
is written to a file, it is converted to a series of chars. When a number is
read from the console, it is read as a series of chars and then, if necessary,
converted to the appropriate numerical form and stored in a variable.

The iostream was designed to support a character-based user interface.
As characters are typed on the user’s keyboard, they appear on the console.
When your program has something to say to the user, it uses iostream to
send a stream of characters to the console. If you plan to write programs
for environments such as a graphical version of Unix (Motif, X-window), the

879

880 CHAPTER 57. THE IOSTREAM

Macintosh or MS Windows, you’ll probably do all your user-interface devel-
opment using class libraries that come with your development environment.
The iostream doesn’t know a thing about pull-down menus, windows, or
even a mouse, but as you’ll see, it’s more than a library of user-interface
routines.

57.1.1 The iostream Classes

Even if your user interface isn’t character-based, the iostream still has a
lot to offer. You can use the same mechanisms you’d use to manage your
console I/O to manage your program’s file I/O. The same methods you’d
use to write a stream of characters to a file can be used to write those same
characters to an array in memory. What links these disparate techniques is
their common ancestry. The iostream library is built upon a set of powerful
classes. The iostream base class is named ios. While you might not work
directly with an ios object, you’ll definitely work with ios’ members as well
as with classes derived from ios.

You’ve already started to work with two classes derived from ios. The
istream class is designed to handle input from the keyboard. cin is an
istream object that C++ automatically creates for you. The ostream class
is designed to handle output to the console. cout, tt cerr, and clog are
ostream objects that are also automatically created for you. As you’ve al-
ready seen, cout is used for standard output. cerr and clog are used in the
same way as cout. They provide a mechanism for directing error messages.

Usually cerr is tied to the console, although some operating systems
(e.g Unix) allow you to redirect cerr, perhaps sending the error output to
a file or to another console. cerr is unbuffered which means that output
sent to cerr appears immediately on the cerr device. clog is a buffered
version of cerr and is not supported by all C++ development environments.
To decide which error output vehicle to use (clog or cerr), consult your
operating system manual.

57.1.2 The istream and ostream classes

Up to this point, your experience with iostream has centered on the extraction
(>>) and insertion (<<) operators. For example, the following code reads
in a number, stores it in a variable, and then prints out the value of the
number:

57.1. THE CHARACTER-BASED INTERFACE 881

short myNum;

cout << "Type a number: ";

cin >> myNum;

cout << "Your number was: " << myNum;

There are a couple of things worth noting in this example.

• iostream input and output are buffered. Just as in C, all input and
all output are accumulated in buffers until either the buffers are filled
or the buffers are flushed. On the input side, the buffer is traditionally
flushed when a carriage return is entered. On the output side, the
buffer is usually flushed either when input is requested or when the
program ends. Later in the chapter, you’ll learn how to flush your own
buffers (how exciting!).

• >> eats up white space — >> ignores spaces and tabs in the input
stream.

If you’re reading in a series of numbers, this works out pretty well. But
if you’re trying to read in a stream of text, you might want to pre-
serve the white space interspersed throughout your input. Fortunately,
istream offers some member functions that read white-space.

get()

The istream member function get() reads a single character from the input
stream. get() comes in three different flavors.

• The first version of get() takes a char reference as a parameter and
returns a reference to an istream object:

istream &get(char &destination);

Since get() is an istream member function, you can use cin to call it
(after all, cin is just an istream object):

char c;

cin.get(c);

882 CHAPTER 57. THE IOSTREAM

This version of get() reads a single character from the input stream,
writes the char into its char parameter (c), and then returns the
input stream reference (cin). Since get() returns the input stream, it
can be used in a sequence, as in the following example:

char c;

short myShort;

cout << "Type a char and a short: ";

cin.get(c) >> myShort;

This code grabs the first character from the input stream and stores it
in c. Next, the input stream is parsed for a short, and the short is
placed in myShort.

• The second version of get() is declared as follows:

istream &get(char *buffer, int length, char

delimiter = ’\n’);

This version of get() extracts up to length - 1 characters and stores
them in the memory pointed to by buffer. If the char delimiter is
encountered in the input stream, the char is pushed back into the
stream and the extraction stops. For example, the code:

char buffer[10];

cin.get(buffer, 10, ’*’);

starts to read characters from the input stream. If a * is encoun tered,
the extraction stops, the * is pushed back into the stream, and a NULL

terminator is placed at the end of the string just read into buffer.

If no * is encountered, nine characters are read into buffer, and, again,
buffer is NULL-terminated. Notice that get() reads only]
tt n - 1 characters, where n is specified as the second parameter; get()
is smart enough to save one byte for the NULL terminator. If the third
parameter is left out, this version of get() uses ’\n’ as the termi-
nating character. This allows you to use get() to extract a full line
of characters without overflowing your input buffer. For example, the
code:

57.1. THE CHARACTER-BASED INTERFACE 883

char buffer[50];

cin.get(buffer, 50);

reads up to 49 characters or one line from the input stream, whichever is
shorter. Either way, the string stored in buffer gets NULL-terminated.

• The third version of get() is declared as follows:

int get();

This version of get() reads a single character from the input stream
and returns the character, cast as an int, as in the follow-ing example:

int c;

while ((c = cin.get()) != ’q’)

cout << (char) c;

This code reads the input stream, one character at a time, until a q is
read. Each character is echoed to the console as it is read. The third
version of get() returns an int and not a char to allow it to return the
end-of-file character. Typically, EOF has a value of -1. By returning
an int, get() allows for 256 possible char values as well as for the
end-of-file character.

Although EOF isn’t particularly useful when reading from the console,
we’ll use this version of get() later to read the contents of a file.

getline()

Another istream member function that you might find useful is getline(),
which is prototypes by:

istream &getline(char *buffer, int length, char delimiter = ’\n’);

getline() behaves just like the second version of get(), but it returns
the delimiter character instead of pushing it back into the input stream.

884 CHAPTER 57. THE IOSTREAM

ignore()

ignore() is used to discard characters from the input stream:

istream &ignore(int length = 1, int delimiter = EOF);

ignore() follows the same basic approach as getline(). It reads up to
length characters from the input stream and discards them. This extraction
stops if the specified delimiter is encountered. Notice that each of these
parameters has a default value, which allows you to call ignore() without
parameters. Here’s an example:

char buffer[100];

cin.ignore(3).getline(buffer, 100);

cout << buffer;

This code drops the first three characters from the input stream and then
reads the remainder of the first line of input into buffer. Next, the string
stored in buffer is sent to the console. Notice that the value returned by
ignore() is used to call getline(). This is equivalent to the following
sequence of code (but shorter):

cin.ignore(3);

cin.getline(buffer, 100);

peek()

peek() allows you to sneak a peek at the next character in the input stream
without removing the character from the stream. It is prototyped by:

int peek();

Just like the third version of get(), peek() returns an int rather than a
char. This allows peek() to return the end-of-file character, if appropriate,
which makes peek() perfect for peeking at the next byte in a file.

57.1. THE CHARACTER-BASED INTERFACE 885

put()

The ostream member function put() provides an alternative to the <<
operator for writing data to the output stream:

ostream &put(char c);

put() writes the specified character to the output stream. It then returns
a reference to the stream, so put() can be used in a sequence. Here’s an
example:

cout.put(’H’).put(’i’).put(’!’);

As you might have guessed, the preceding line of code produces a Hi!

message:

putback()

putback() puts the specified char back into the input stream, making it the
next character to be returned by the next input operation:

istream &putback(char c);

Note that c must be the last character extracted from the stream.
Since putback() returns an istream reference, it can be used in a se-

quence, similar to the example combining ignore() and getline() shown
earlier.

seekg() and seekp()

The istream member function seekg() gives you random access to an input
stream:

istream &seekg(streampos p);

Call seekg() to position a stream’s get pointer exactly where you want
it.

A second version of seekg() allows you to position the get pointer relative
to the beginning or end of a stream or relative to the current get position,
this is defined by:

886 CHAPTER 57. THE IOSTREAM

istream &seekg(streamoff offset, relative_to direction);

In this second version of seekg(), the second parameter is one of ios::beg,
ios::cur, or ios::end.

The ostream member function seekp() gives you random access to an
output stream:

ostream &seekp(streampos p);

Just like seekg(), seekp() allows you to position a stream’s put pointer
exactly where you want it. seekp() also comes in a second flavor:

ostream &seekp(streamoff offset, relative_to direction);

57.2 Some Useful Utilities

To aid you with your stream input and output operations, C++ provides
a set of standard utilities that you may find useful (plain old ANSI C also
provides these routines). To use any of the utilities described in this section,
you must include the header file <ctype.h>.

Each of the thirteen functions takes an int as a parameter. The int repre-
sents an ASCII character. Two of the functions, tolower() and toupper(),
map this character either to its lowercase or its uppercase ASCII equivalent.
For example,

The remaining eleven functions return either 1 or 0, depend ing on the
nature of the character passed in. The function

isalpha() returns 1 if its argument is a character in the range ’a’ through
’z’ or in the range ’A’ through ’Z’.

The function isdigit() returns 1 if its argument is a character in the
range ’0’ through ’9’.

The function isalnum() returns 1 if its argu-ment causes either isalpha()
or isdigit() to return 1.

The function ispunct() returns 1 if the character is a punc-tuation char-
acter. The punctuation characters are ASCII charac-ters in the ranges 33-47,
58-64, 91-96, and 123-126 (consult your nearest ASCII chart).

The function isgraph() returns 1 if its argument causes isalpha(),

isdigit(), or ispunct() to return 1.
islower() returns 1 if the character is in the range ’a’ through ’z’.

57.3. READING DATA FROM A FILE 887

isupper() returns 1 if the character is in the range ’A’ through ’Z’.
isprint() returns 1 if the character is a printable ASCII character.
iscntrl() returns 1 if the character is a control character.
isspace() returns 1 if the character has an ASCII value in the range 9-13

or if it has a value of 32 (space). Finally, isxdigit() returns 1 if the character
is a legal hex digit (0-9, a-f, or A-F).

57.3 Reading Data from a File

The ifstream constructor comes in several varieties. The most widely used
of these takes two parameters:

ifstream(const char* name, int mode=ios::in);

The first parameter is a NULL-terminated string containing the name of a
file to be opened. The second describes the mode used to open the file. The
legal modes are described in the table below:

Mode Description
ios::in Input allowed
ios::out Output allowed
ios::ate Seek to EOF at open
ios::app Output allowed, append only
ios::trunc Output allowed, discard existing contents
ios::nocreate Open fails if file doesn’t exist
ios::noreplace Open fails if file does exist

They are declared as part of the ios class (defined in <iostream.h>).
The default mode is ios::in, which opens the file for reading.

UNIX (and some other operating systems) support a third, optional pa-
rameter for ifstream (and for ofstream as well). The third parameter
specifies the protection level used to open the file.

Since you’ll most likely want to use the default mode of ios::in when
you open a file for reading, you can leave off the last parameter when you
create an ifstream object:

ifstream readMe("My_File");

This definition creates an ifstream object named readMe. Next, it opens
a file named My File for reading, attaching the open file to readMe.

888 CHAPTER 57. THE IOSTREAM

ifstream objects have data members that track whether a file is attached
to the stream and, if so, whether the file is open for reading. If a file is
attached and open for reading, a get pointer is maintained that marks how
far you’ve read into the file. Normally, the get pointer starts life at the very
beginning of the file.

Once your file is opened for reading, you can use all of the iostream

input functions described earlier to read data from the file. For example, the
following code opens a file and then reads a single character from it:

char c;

ifstream readMe("My File");

readMe.get(c);

57.3.1 The iostream State Bits

Every stream, whether an istream or an ostream, has a series of four state
bits associated with it:

enum io_state

{

goodbit=0,

eofbit=1,

failbit=2,

badbit=4

};

iostream uses these bits to indicate the relative health of their associ-
ated stream. You can poke and prod these bits yourself, but there are four
functions that reflect each bit’s setting:

• the function int good(); returns nonzero if the stream used to call it
is ready for I/O. Basically, if good() returns 1, you can assume that
all is right with your stream and expect that your next I/O operation
will succeed.

• The function int eof(); returns 1 if the last I/O operation puts you
at end-of-file.

57.3. READING DATA FROM A FILE 889

• The function dint fail(); returns 1 if the last operation fails for
some reason. As an ex-ample, an input operation might fail if you try
to read a short but encounter a text string instead.

• The function int bad(); returns 1 if the last operation fails and the
stream appears to be corrupted. When bad() returns 1, you’re in
TROUBLE.

There is also the function void clear(int newState=0); which is
used to reset the state bits to the state specified as a parameter. In general,
you should call clear() without specifying a param-eter. clear()’s default
parameter sets the state bits back to the pristine, good setting. If you don’t
clear the state bits after a failure, you won’t be able to continue reading data
from the stream.

For the most part, you should focus on the value returned by good(). As
long as good() returns 1, there’s no need to check any of the other functions.
Once good() returns 0, you can find out why by querying the other three
state functions.

The usual way to repeatedly read data is to usw a while loop and an
iostream function as its conditional expression, for example:

ifstream readMe("My_File");

...

while (readMe.get(c))

cout << c;

What causes this while loop to exit?
readMe.get(c) returns a reference to readMe, correct?
Actually, this is where the C++ compiler displays a little sleight of hand.

When the compiler detects an iostream I/O function used where an int

is expected, it uses the current value of good() as the return value for the
function. The previous while loop exits when readMe.get(c) either fails
or hits an end-of-file.

We can do better by using good()

The sample program, stateBits.cpp, demonstrates the basics of working
with the iostream state bits and state bit functions. Close the current
project by selecting from the menu.

The full listing for stateBits.cpp is a follows:

890 CHAPTER 57. THE IOSTREAM

#include <iostream.h>

int main()

{

char done = false;

char c;

short number;

while (! done)

{

cout << "Type a number: ";

cin >> number;

if (cin.good())

{

if (number == 0)

{

cout << "Goodbye...";

done = true;

}

else

cout << "Your number is: " << number << "\n\n";

}

else if (cin.fail())

{

cin.clear();

cin.get(c);

cout << c << " is not a number...";

cout << "Type 0 to exit\n\n";

}

else if (cin.bad())

{

cout << "\nYikes!!! Gotta go...";

done = true;

}

}

57.3. READING DATA FROM A FILE 891

return 0;

}

The sample output is as follows:

Type a number:

Type a number small enough to fit inside a short, like 256:

Type a number: 256

stateBits.cp starts with the usual #include <iostream.h> #include

(since we won’t be doing any file I/O, there’s no need to include < fstream.h>):
stateBits creates a loop that reads in a number and then prints the

number in the console window. If the number entered is 0, the program
exits. Things start to get interesting when a letter is entered instead of a
number.

Note that done acts as a Boolean logic operator. When it is set to true,
the loop exits. c and number are used to hold data read from the console.

We enter the main loop, are prompted for a number and then use >> to
read the number from the console.

If a number appropriate for a short is typed at the prompt, cin.good()
returns true:

If the number typed is 0, we say goodbye and drop out of the loop;
otherwise, we display the number and start all over again

If the input is of the wrong type (e.g. a letter or a float), or is a number
that is too large (99999) or too small (-72999), the input operation fails and
cin.fail() returns 1:

If a fail is detected, the first thing we must do is call clear() to reset
the state bits — if we don’t clear the state bits back to their healthy state
and we won’t be able to continue reading data from the stream. Once the
state bits are reset, we read the character that caused the the stream to
choke. Since we’re not trying to interpret this character as a number, this
read won’t fail. Having read in the offending character, we display it, along
with an appropriate message on the console

This example implements a pretty simple-minded recovery algorithm. If
you typed in something like xxzzy, the loop would fail five times since you
knock out only a single character with each recovery. You might want to try
your hand at a more sophisticated approach. For example, you might use

892 CHAPTER 57. THE IOSTREAM

cin.ignore() to suck in all the characters up to and including a carriage
return. Better yet, you might use cin.get() to read in the remainder of the
offending characters and then pack-age them in an appropriate error message.

The final possibility lies with a call to bad(). Since the bad bit will likely
never be set, you’ll probably never see this message.

57.4 Writing Data to a File

Earlier, the ifstream constructor was used to open a file for reading:

ifstream readMe("My_File");

In the same way, the ofstream constructor can be used to open a file for
writing:

ofstream writeMe("My_File");

The ofstream constructor takes two parameters, with ios::out used as
the default mode parameter. Note that you can pass more than one mode
flag at a time. To open a file for writing if the file doesn’t already exist, try
something like this:

ofstream writeMe("My_File", ios::out | ios::nocreate);

The rest of the mode flags as the same as for Reading a file above.
There is a way to open a file for both reading and writing. Use the

fstream class and pass both the ios::in and ios::out mode flags, like
this:

fstream inAndOut("My_File", ios::in | ios::out);

The fstream class is set up with two file position indicators, one for
reading and one for writing. Prottypes and definitions are found in the
include file <fstream.h>.

Once your file is open, you can close it by calling the close() member
function, for example:

writeMe.close();

57.5. READ(), WRITE(), AND OTHERS 893

In general, this call isn’t really necessary since the ifstream and ofstream

destructors automatically close the file attached to their associated stream.
You can also create an ifstream or ofstream without associating it with

a file.
Why would you want to do this?
If you planned on opening a series of files, one at a time, you might want

to do this by using a single stream, not by declaring one stream for each file.
Using a single stream is more economical. Here’s an example:

ifstream readMe;

readMe.open("File_1");

// Read contents - be sure to include error checking!

readMe.close();

readMe.open("File_2");

// Read contents - be sure to include error checking!

readMe.close();

// Repeat this as necessary...

57.5 read(), write(), and Others

There are some istream member functions that are particularly useful when
dealing with files. The member function read() reads a block of size bytes
and stores the bytes in the buffer pointed to by data:

istream &read(void *data, int size);

As you’d expect, if an end-of-file is reached before the requested bytes are
read, the fail bit is set.

The member function size t istream::gcount() returns the number
of bytes successfully.

The member function write() inserts a block of size bytes from the buffer
pointed to by data:

ostream &write(const void *data, size_t size);

The member function size t ostream::pcount() returns the number
of bytes inserted by the preceding write() call.

894 CHAPTER 57. THE IOSTREAM

57.6 Customizing the iostream

There are times when the standard operators and member functions of iostream
are not adequate. For example, remember the MenuItem class we declared:

class MenuItem

{

private:

float price;

char name[40];

public:

MenuItem::MenuItem(float itemPrice,char *itemName);

float MenuItem::GetPrice();

};

Now suppose you want to display the contents of a MenuItem using
iostream. You can write a DisplayMenuItem() member function that takes
advantage of iostream, but that is somewhat awkward. If you want to dis-
play a MenuItem in the middle of a cout sequence, you have to break the
sequence up, sandwiching a call to DisplayMenuItem() in the middle:

cout << "Today’s special is: ";

myItem.DisplayMenuItem();

cout << "...\n";

Wouldn’t it be nice if iostream knew about MenuItems so that you could
do something more convenient, like this:

cout << "Today’s special is: " << myItem << "...\n";

Well there is a way to do this: Using the techniques we have learned
from operator overloading, you create an operator<<() function that knows
exactly how you want your MenuItem displayed.

What’s more, you can overload the >> operator, providing an operator>>()

function that knows how to read in a MenuItem. The only restriction on both
of these cases is that your >> and << overloading functions must return the
appropriate stream reference so that you can use the >> and << operators
in a sequence.

57.6. CUSTOMIZING THE IOSTREAM 895

57.6.1 An >> and << Overloading Example

Our next sample program, overload.cpp, extends the ostream and istream

classes by adding functions that overload both >> and <<.
The full code listing is:

#include <iostream.h>

#include <fstream.h>

#include <string.h>

const short kMaxNameLength = 40;

//--------------------------------------- MenuItem

class MenuItem

{

private:

float price;

char name[kMaxNameLength];

public:

void SetName(char *itemName);

char *GetName();

void SetPrice(float itemPrice);

float GetPrice();

};

// I added these two prototypes. They should have been here

// in the first place... -- Dave Mark 10/20/95

istream &operator>>(istream &is, MenuItem &item);

ostream &operator<<(ostream &os, MenuItem &item);

void MenuItem::SetName(char *itemName)

{

strcpy(name, itemName);

}

896 CHAPTER 57. THE IOSTREAM

char *MenuItem::GetName()

{

return(name);

}

void MenuItem::SetPrice(float itemPrice)

{

price = itemPrice;

}

float MenuItem::GetPrice()

{

return(price);

}

//-------------------------- iostream operators

istream &operator>>(istream &is, MenuItem &item)

{

float itemPrice;

char itemName[kMaxNameLength];

is.getline(itemName, kMaxNameLength);

item.SetName(itemName);

is >> itemPrice;

item.SetPrice(itemPrice);

is.ignore(1, ’\n’);

return(is);

}

ostream &operator<<(ostream &os, MenuItem &item)

{

57.6. CUSTOMIZING THE IOSTREAM 897

os << item.GetName() << " ($"

<< item.GetPrice() << ") ";

return(os);

}

//--------------------------------------- main()

int main()

{

ifstream readMe("Menu Items");

MenuItem item;

while (readMe >> item)

cout << item << "\n";

return 0;

}

The output of this program is:

Spring Rolls ($2.99)

Hot and Sour Soup ($3.99)

Hunan Chicken ($8.99)

General Tso’s Shrimp ($9.99)

Spring Surprise ($15.99)

overload.cpp starts with some familiar #includes and a const defini-
tion (const short kMaxNameLength = 40.

The MenuItem class is a slightly modified version of the one in previous
examples. For one thing, the constructor is left out. Instead of initializing
the data members when a MenuItem is created, iostream is used to read in
a series of MenuItems from a file and initialize each data member using the
newly added SetName() and SetPrice() member functions:

SetName() is used to set the value of the name data member. SetPrice()
is used to set the value of the price data member

898 CHAPTER 57. THE IOSTREAM

GetName() returns a pointer to the name data member. By giving the
caller of this public function direct access to name, we’re sort of defeating the
purpose of marking name as private. A more appropriate approach might be
to have GetName() return a copy of name.

GetPrice() returns the value of the price data member.
The operator>>() function is called by the compiler whenever the >>

operator is encountered having an istream as its left operand and a Menu-
Item as its right operand. Since all >> sequences are resolved to istream

references, the left operand is always an istream object. To make this a
little clearer, imagine an >> sequence with several objects in it:

cin >> a >> b;

iostream starts by evaluating this expression from the left, as if it were
written like this:

(cin >> a) >> b;

Since the >> operator resolves to an istream object, the expression cin

>> a resolves to cin, leaving this:

cin >> b;

The same logic holds true for the << operator:

cout << a << b;

As the compiler evaluates this expression from left to right, the left
operand of the << operator is always an ostream object. The point is,
whether istream or ostream, all an operator() function needs to do to
support sequences is to return the stream reference passed in as the first
parameter.

operator>>() reads a single MenuItem object from the specified input
stream. First, getline() is used to read the item’s name. Notice that the
second parameter to getline() is used to limit the number of characters
read in, ensuring that itemName doesn’t exceed its bounds. SetName() is
used to copy the entered name into the name data member.

Then, >> is used to read the item’s price into itemPrice, and SetPrice()

is used to copy itemPrice into the price data member.

57.6. CUSTOMIZING THE IOSTREAM 899

When the extraction operator reads the price from the input stream, it
leaves the carriage return following the number unread.

ignore() is used to grab the carriage return, leaving the stream set up
to read the next MenuItem.

Finally, the stream passed in to the operator>>() function is returned,
preserving the integrity of the sequence

operator<<() is somewhat simpler. It uses << to write the name and
price data members.

Once again, the stream passed in as the first parameter is returned.
main() declares an ifstream object and ties it to the file named Menu

Items. This file contains a list of MenuItems with the name and price of each
item appearing on its own line.

main() also declares a MenuItem object named item. Notice that no
parameters are passed because there’s no constructor to do anything with
the parameters.

Next, a while loop is used to read in all the MenuItems that can be read
from the input stream (which is, in this case, a file named Menu Items). The
overloaded version of >> is used to read in a MenuItem, and the overloaded
version of << is used to display the MenuItem in the console window.

It’s important to note that operator>>() and operator<<() are de-
signed to work with any input and output stream. In this case, the MenuItems
are read from a file and displayed in the console window. By making a few
changes to main() — and not changing the two operator() functions — you
can easily change the program to read from standard input (you’d probably
want to add in a prompt or two) and send the output to a file. This is easy
with the iostream.

57.6.2 Formatting Your Output

In the preceding program, we overloaded the << operator so that we could
display a MenuItem precisely the way we wanted it to appear. Unfortunately,
there’s no way to overload the << operator to customize the appearance of
built-in data types such as short or float.

Fortunately, iostream provides several mechanisms that allow you to cus-
tomize your I/O operations.

In general, iostream follows some fairly simple rules when it comes to
formatting output. If you insert a single char in a stream, exactly one
character position is used. When some form of integral data is inserted, the

900 CHAPTER 57. THE IOSTREAM

insertion is exactly as wide as the number inserted, including space for a sign,
if applicable. No padding characters are used.

When a float is inserted, room is made for up to six places of precision
to the right of the decimal place. Trailing zeros are dropped. If the number
is either very large or very small (how big or how small depends on the
implementation), exponential notation is used. Again, room is made for a
sign, if applicable. For example, the number 1.234000 takes up five character
positions in the stream since the trailing zeros are dropped: 1.234

When a string is inserted, each character, not including any NULL termi-
nator, takes up one character position.

The Formatting Flags

The ios class maintains a set of flags that control various formatting features.
You can use the ios member functions setf() and unsetf() to turn these
formatting features on and off.

Each feature corresponds to a bit in a bit field maintained by the ios class.

Some features are independent, while others are grouped together. For
example, the flag ios::skipws determines whether white space is skipped
during extraction operations. This feature is not linked to any other features,
so it may be turned on and off without impacting any of the other formatting
flags.

To turn an independent flag on and off, you use the setf() and unsetf()

member functions as follows:

cin.setf(ios::skipws); // Skip whitespace on input

cin.unsetf(ios::skipws); // Don’t skip whitespace

// on input

Alternatively, you can use the flag() member function to retrieve the
current flag settings as a group, OR the new flag into the group, and then
use flag() again to reset the flag settings with the newly modified bit field:

int myFlags;

myFlags = cout.flag(); // returns flag bitfield

myFlags |= ios::skipws; // ORs in skipws flag

cout.flag(myFlags); // resets flags

57.6. CUSTOMIZING THE IOSTREAM 901

Unless you really need to work at this level, you’re better off sticking with
setf() and unsetf().

Turning independent flags on and off individually is no problem, but
things get interesting when flags are grouped. For example, the radix flags
determine the default base used to represent numbers in output.

The radix flags are dec, oct, and hex, repre senting decimal, octal, and
hexadecimal formats, respectively. The problem here is that only one of these
flags should be turned on at a time. If you use setf(), you could easily turn
all three flags on, producing unpredictable results.

To handle grouped flags, setf() makes use of a second, optional param-
eter that indicates which group a flag belongs to.

For example, the radix flags dec, oct, and hex belong to the group
basefield. To set the hex flag, you make the following call:

cout.setf(ios::hex, ios::basefield);

This call ensures that when the specified flag is set, the remainder of the
fields in the group get unset.

The grouped flags left, right, and internal are part of the adjustfield
group. They are used in combination with the width() member function.

width() determines the minimum number of characters used in the next
(and only next) numeric or string output operation. If the left flag is set, the
next numeric or string output operation appears left-justified in the currently
specified width(). The output is padded with the currently specified fill()

character. You can use fill() to change this padding character.

57.6.3 A Formatting Example,formatter.cpp

Let us study a simple formatting example in order to illustrate many of above
points.

The full code listing for formatter.cpp is as follows:

#include <iostream.h>

//--------------------------------------- main()

int main()

902 CHAPTER 57. THE IOSTREAM

{

cout << 202 << ’\n’;

cout.width(5);

cout.fill(’x’);

cout.setf(ios::left, ios::adjustfield);

cout << 202 << ’\n’;

cout.width(10);

cout.fill(’=’);

cout.setf(ios::internal, ios::adjustfield);

cout << -101 << ’\n’;

cout.width(10);

cout.fill(’*’);

cout.setf(ios::right, ios::adjustfield);

cout << "Hello";

return 0;

}

The output of this program is:

202

202xx

-======101

*****Hello

formatter.cp starts with the standard include file.
main() starts by displaying the number 202 in the console in standard

fashion

cout << 202 << ’\n’;

As you’d expect, this code produces the following line of output: 202.

57.6. CUSTOMIZING THE IOSTREAM 903

Next, width() is used to set the current width to 5, and fill() is used
to make x the padding character:

Remember, width() applies only to the very next string or numeric out-
put operation, even if it is part of a sequence. The padding character lasts
until the next call of fill() or until the program exits.

If your output operation produces more characters than the current width
setting, don’t worry. All your characters will be printed.

Now, the left flag is set, asking iostream to left-justify the output in the
field specified by width():

cout.setf(ios::left, ios::adjustfield);

cout << 202 << ’\n’;

When the number 202 is printed again, it appears like this:

202xx

Then, width() is altered to 10, fill() is changed to =, and the internal
flag is set. The internal flag asks iostream to place padding in between a
number and its sign, if appropriate, so that it fills the width() field:

cout.width(10);

cout.fill(’=’);

cout.setf(ios::internal, ios::adjustfield);

cout << -101 << ’\n’;

Printing the number -101 produces the following line of output:

-======101

Finally, width() is reset to 10 (otherwise, it would have dropped to its
default of 0), fill() is set to *, and the right flag is set to right-justify the
output:

904 CHAPTER 57. THE IOSTREAM

cout.width(10);

cout.fill(’*’);

cout.setf(ios::right, ios::adjustfield);

cout << "Hello";

When the string ”Hello” is printed, this line of output appears:

*****Hello

57.6.4 More Flags and Methods

The showbase flag is independent. If it is set, octal numbers are displayed
with a leading zero and hex output appears with the two leading characters
0x. The showpoint, uppercase, and showpos flags are also independent.
If showpoint is set, trailing zeros in floating-point output are displayed. If
uppercase is set, E rather than e is used in scientific notation and X rather
than x is used in displaying hex numbers. If showpos is set, positive numbers
appear with a leading +.

The scientific and fixed flags belong to the floatfield group. If
scientific is set, scientific notation is used to display floating-point output.
If fixed is set, standard notation is used. If neither bit is set, the compiler
uses its judgment and prints very large or very small numbers using scientific
notation and all other numbers using standard notation. To turn off both
bits, you pass a zero instead of fixed or scientific:

cout.setf(0, ios::floatfield);

Both the fixed and scientific flags are tied to the precision() mem-
ber function. precision() determines the number of digits displayed after
the decimal point in floating-point output:

cout.precision(6); // The default for precision...

Finally, the unitbuf and stdio flags are related but not grouped. If
unitbuf is set, the output buffer is flushed after each output operation.
stdio, which is only for using C I/O, flushes stdout and stderr after every
insertion.

57.7. MANIPULATORS 905

57.7 Manipulators

The iostream provides a set of special functions known as manipulators that
allow you to perform specific I/O operations while you’re in the middle of an
insertion or an extraction. For example, consider this line of code:

cout << "Enter a number: " << flush;

This code makes use of the flush manipulator. When its turn comes
along in the output sequence, the flush manipulator flushes the buffer asso-
ciated with cout, forcing the output to appear immediately as opposed to
waiting for the buffer to get flushed naturally.

Just as an I/O sequence can appear in different forms, a manipulator
can be called in several different ways. Here are two more examples, each of
which calls the flush manipulator:

cout.flush(); // Call as a stream member function

flush(cout); // Call with the stream as a parameter

Use whichever form fits in with the I/O sequence you are currently build-
ing. If you plan on calling any manipulators that take parameters, be sure
to include the file ¡iomanip.h¿. In addition, some iostream implementations
require you to link with the math library to use certain manipulators. Check
your develop-ment environment manual to be sure.

The Manipulators:
dec(), oct(), and hex() turn on the appropriate format flags, thus turn-

ing off the rest of the flags in the basefield group.
endl() places a carriage return (’\n’) in its output stream and then

flushes the stream.
ends() places a null character in its output stream and then flushes the

stream.
ws() eats up all the white space in its input stream until it hits either an

end-of-file or the first non-white-space character.
None of the above manipulators take any parameters.
The six remaining to be discussed all take a single parameter and require

the included file <iomanip.h>.

906 CHAPTER 57. THE IOSTREAM

setbase(int b) sets the current radix to either 8, 10, or 16.
setfill(int f) is a manipulator version of the fill() member function.
setprecision(int p) is the manipulator version of precision().
setw(int w) is the manipulator version of width().
setiosflags(long f) is the manipulator version of setf().
resetiosflags(long f) is the manipulator version of unsetf().
Here are two manipulator examples. The line

cout << setbase(16) << 256 << endl;

produces this line of output:

100

And, the line

cout << setprecision(5) << 102.12345;

produces this line of output:

102.12

57.8 The istrstream and ostrstream

We have met the C stdio function sprintf(), there is a similar feature in
C++.

Recall sprintf() allows you to perform all the standard I/O functions
normally associated with printf() and fprintf() on an array of characters.

The istrstream and ostrstream classes offer all the power of their an-
cestor classes (istream and ostream and, ultimately, ios) and allow you
to write formatted data to a buffer that you create in memory. Here’s an
example program, strstream.cpp:

57.8. THE ISTRSTREAM AND OSTRSTREAM 907

#include <iostream.h>

#include <sstream.h>

const short kNumberOfLetters = 26;

//--------------------------------------- main()

int main()

{

ostringstream ostr;

short i;

for (i = 0; i < kNumberOfLetters; i++)

ostr << (char)(’a’ + i);

cout << "Number of characters written: "

<< i << ’\n’;

cout << "Buffer contents: " << ostr.str();

return 0;

}

The output of this program is:

Number of characters written: 10

Buffer contents: abcdefghi

strstream.cp starts with two #includes, the standard <iostream.h> and
the file required for the istrstream and ostrstream classes, <strstrea.h>.

The constant kBufferSize is used to define the size of the buffer that
makes up the ostrstream object:

�main() creates a buffer to hold the stream’s characters. The ostrstream

constructor takes two parameters, a pointer to the buffer and the size of the
buffer. The variable i is used to keep track of the number of characters
written to the ostrstream

908 CHAPTER 57. THE IOSTREAM

Next, a while loop uses ostr just as it would use cout, writing characters
to the stream until an end-of-file causes the loop to terminate. iostream gen-
erates the end-of-file when the put() pointer points beyond the last character
in the stream’s buffer (just like its ifstream counterpart).

When the loop exits, ten characters, from a to j, have been written to
the stream’s buffer. The number of characters written to the stream is then
displayed.

Next, a NULL terminator is written on the last byte of the stream’s buffer,
creating a NULL-terminated string in buffer.

Finally, the contents of the stream are printed.
Just as an ostrstream object mirrors the behavior of cout, you can create

a similar example, using an istrstream object, that mirrors the behavior
of cin. The istrstream constructor takes the same two parameters as the
ostrstream constructor.

Together, istrstream and ostrstream give you a powerful set of tools to
use when you work with strings in memory.

57.9. TEMPLATES 909

57.9 Templates

57.9.1 The Need for Templates

When you design a class, you’re forced to make some decisions about the
data types that make up that class.

For example, if your class contains an array, the class declaration specifies
the array’s data type. In the following class declaration, an array of shorts
is implemented:

class Array
{ private:

short arraySize;
// Number of array elements
short *arrayPtr;
// Pointer to the array

public:
Array(short size);
// Allocate an array
// of size shorts
~Array();
// Delete the array

};

In this class,

• the constructor allocates an array of arraySize elements, each element
of type short.

• The destructor deletes the array.

• The data member arrayPtr points to the beginning of the array.

• To make the class truly useful, you’d probably want to add a member
function that gives access to the elements of the array.

This Array class works just fine as long as an array of shorts meets your
needs.

What happens when you decide that an Array of shorts is not what you
need?

Perhaps you need to implement an array of longs or, even better, an
array of your own data types.

910 CHAPTER 57. THE IOSTREAM

One approach you can use is to make a copy of the Array class (mem-
ber functions and all) and change it slightly to implement an array of the
appropriate type.

For example, here’s a version of the Array class designed to work with
an array of longs:

class LongArray
{ private:

short arraySize;
long *arrayPtr;

public:
LongArray(short size);

~LongArray(void);
};

There are definitely problems with this approach.

• You are creating a maintenance nightmare by duplicating the source
code of one class to act as the basis for a second class.

• Suppose you add a new feature to your Array class.

• Are you going to make the same change to the LongArray class?

57.9.2 Defining Templates

C++ templates allow you to parameterize the data types used by a class or
function.

Instead of embedding a specific type in a class declaration, you provide a
template that defines the type used by that class.

An example should make this a little clearer.
Here’s a templated version of the Array class presented earlier:

template <class T>

class Array

{

private:

short arraySize;

T *arrayPtr;

57.9. TEMPLATES 911

public:

Array(short size);

~Array(void);

};

• The keyword template tells the compiler that what follows is not your
usual, run-of-the-mill class declaration.

• Following the keyword template is a pair of angle brackets (<>) that
surround the template’s template argument list.

• This list consists of a series of comma-separated arguments

• one argument is the minimum

Once your class template is declared, you can use it to create an object.
When you declare an object using a class template, you have to specify a
template argument list along with the class name.

Here’s an example:

Array<long> longArray(20);

The compiler uses the single parameter, long, to convert the Array tem-
plate into an actual class declaration.

This declaration is known as a template instantiation.
The instantiation is then used to create the longArray object.

A Template Argument List Containing More Than One Type

A template’s argument list may contain more than one type.
The class keyword must precede each argument, and an argument name

can not be repeated.
Here’s an example:

template <class Able, class Baker>

class MyClass
{

public:
MyClass(Able param);

912 CHAPTER 57. THE IOSTREAM

~MyClass(void);
Baker MemberFunction(

Baker param);
};

Here’s a sample definition of a MyClass object:

MyClass<long, char *> myObject(250L);

Take a look at the template arguments.
The first, long, will be substituted for Able.
The second, char *, will be substituted for Baker.

57.9.3 Function Templates

The template technique can also be applied to functions.
Here’s an example of a function template declaration:

template <class T, class U>

T MyFunc(T param1,
U param2)

{
T var1;
U var2;

......

}

The types defined in the template argument list are then used freely
throughout the remainder of the function declaration.

If you use a template to define a function, you must also include the
same template information in the function’s prototype. Here’s a prototype
for MyFunc():

template <class T, class U>

T MyFunc(T param1,

U param2);

57.9. TEMPLATES 913

Function Template Instantiation

When you call a function that has been templated, the compiler uses the
parameters passed to the function to determine the types of the template
arguments.

Here’s a simple example:

template <class T>

void MyFunc(T param1);

Suppose this function template were called as follows:

char *s;

MyFunc(s);

The compiler would match the type of the calling parameter (char *)

with the type of the receiving parameter (T).
In this case, an instantiation of the function is created, and the type char

* is substituted for T everywhere it occurs.
Consider this template:

template <class T>

void MyFunc(T param1,

T param2);

This call of MyFunc() won’t compile:

short i;

int j;

MyFunc(i, j);

First, the compiler matches the first parameter and determines that T is
a short.

When the compiler moves on to the second parameter, it finds that T

should be an int.
Even though an int and a short are close, but since they are not an

exact match.

914 CHAPTER 57. THE IOSTREAM

Chapter 58

Multiple Inheritance

58.1 What is Multiple Inheritance?

Our next topic is a variation on an earlier theme, class derivation. In the
examples presented in earlier, each derived class was based on a]em single
base class. That doesn’t have to be the case, however.

C++ allows you to derive a class from more than one base class, a tech-
nique known as multiple inheritance. As its name implies, multiple inheri-
tance means that a class derived from more than one base class inherits the
data members and member functions from each of its base classes.

Why would you want to inherit members from more than one class?
Check out the derivation chain in Figure 58.1. The ultimate base class,
known as the root base class, in this chain is Computer. The two classes
ColourComputer and LaptopComputer are special types of Computers, each
inheriting the nonprivate members from Computer and adding members of
their own as well.

Now we can bring multiple inheritance comes into play. The class ColourLaptop
is derived from both ColourComputer and LaptopComputer and inherits
members from each class.

Multiple inheritance allows you to take advantage of two different classes
that work well together. If you want a program that models a colour, laptop
computer and you already have a ColourComputer class that manages colour
information and a LaptopComputer class that manages information about
laptops, there is no point reinvent the wheels.Think of the ColourLaptop

class as the best of both worlds — the union of two already designed classes.

915

916 CHAPTER 58. MULTIPLE INHERITANCE

Figure 58.1: Mutliple Inheritance Example

58.2. A MULTIPLE INHERITANCE EXAMPLE, MULTINHERIT.CPP 917

Just as with single inheritance, there are times when multiple inheritance
makes sense and times when it is inappropriate. Use the is a rule to guide
your design. If the derived class is a subset of the base class, derivation is
appropriate.

In our preceding example, a ColourComputer is a Computer and a LaptopComputer
is a Computer. At the same time, a ColourLaptop is both a ColourComputer

and a LaptopComputer. This model works just fine.
Let’s look at another example.
Imagine a Date class and a Time class. The Date class holds a date,

like 07/27/94, while the Time class holds a time of day, like 10:24 am. Now
suppose you wanted to create a TimeStamp class, derived from both the Date
and Time classes.

Would this make sense?
The answer is NO: A TimeStamp is not a Date and it is not a Time.

Instead, a TimeStamp has a Date and has a Time. When your derivation fits
the has a model rather than the is a model you should rethink your design.

In this case, the TimeStamp class should include Date and Time objects
as data members, rather than using multiple inheritance.

The simple rule is:

• is a indicates inheritance.

• has a describes the relationship between your derived and base classes,
and you should rethink your design.

58.2 A Multiple Inheritance Example, multInherit.cpp

Let us now look a complete code eample which demonstrates multiple in-
heritance as well as a few additional C++ features that you should find
interesting.

The full code listing for multInherit.cpp is:

#include <iostream.h>

#include <string.h>

const short kMaxStringLength = 40;

918 CHAPTER 58. MULTIPLE INHERITANCE

//--------------------------------------- Predator

class Predator

{

private:

char favoritePrey[kMaxStringLength];

public:

Predator(char *prey);

~Predator();

};

Predator::Predator(char *prey)

{

strcpy(favoritePrey, prey);

cout << "Favorite prey: "

<< prey << "\n";

}

Predator::~Predator()

{

cout << "Predator destructor was called!\n\n";

}

//--------------------------------------- Pet

class Pet

{

private:

char favoriteToy[kMaxStringLength];

public:

Pet(char *toy);

~Pet();

};

58.2. A MULTIPLE INHERITANCE EXAMPLE, MULTINHERIT.CPP 919

Pet::Pet(char *toy)

{

strcpy(favoriteToy, toy);

cout << "Favorite toy: "

<< toy << "\n";

}

Pet::~Pet()

{

cout << "Pet destructor was called!\n";

}

//-------------------------- Cat:Predator,Pet

class Cat : public Predator, public Pet

{

private:

short catID;

static short lastCatID;

public:

Cat(char *prey, char *toy);

~Cat();

};

Cat::Cat(char *prey, char *toy) :

Predator(prey), Pet(toy)

{

catID = ++lastCatID;

cout << "catID: " << catID

<< "\n---------\n";

}

Cat::~Cat()

{

920 CHAPTER 58. MULTIPLE INHERITANCE

cout << "Cat destructor called: catID = "

<< catID << "...\n";

}

short Cat::lastCatID = 0;

//--------------------------------------- main()

int main()

{

Cat TC("Mice", "Ball of yarn");

Cat Benny("Crickets", "Bottle cap");

Cat Meow("Moths", "Spool of thread");

return 0;

}

The output is as follows:

Favorite prey: Mice

Favorite toy: Ball of yarn

catID: 1

---------Favorite

prey: Crickets

Favorite toy: Bottle cap

catID: 2

---------Favorite

prey: Moths

Favorite toy: Spool of thread

catID: 3

---------Cat

destructor called: catID = 3...

Pet destructor was called!

Predator destructor was called!

Cat destructor called: catID = 2...

Pet destructor was called!

58.2. A MULTIPLE INHERITANCE EXAMPLE, MULTINHERIT.CPP 921

Predator destructor was called!

Cat destructor called: catID = 1...

Pet destructor was called!

Predator destructor was called!

multInherit.cpp starts off with a few #includes and a familiar const

short kMaxStringLength = 40.

Next, three classes are defined.

• The Predator class represents a predatory animal

• The Pet class represents a housepet.

• The Cat class is derived from both the Predator class and the Pet

class – After all, a cat is a predator and a cat is a pet.

The Predator class is pretty simple. It features a single data mem-
ber, a string containing the predator’s favorite prey The Predator class also
features a constructor and a destructor: The constructor initializes the fa-
voritePrey data member and then prints its value; whilst The destructor
prints an appropriate message, just to let you know it was called.

The Pet class is almost identical to the Predator class, with a favorite
toy substituted for a favorite prey.

The Cat class is derived from both the Predator and Pet classes. Notice
that the keyword public precedes each of the base class names and that the
list of base classes is separated by commas:

class Cat : public Predator, public Pet

Cat contains two data members. The first, catID, contains a unique ID
for each Cat. While numbering your cats might not be that useful, if we
were talking about Employees or Computers, a unique employee ID or serial
number can be an important part of your class design.

Notice that the second data member, lastCatID, is declared using the
static keyword.

When you declare a data member or member function as static, the com-
piler creates a single version of the member that is shared by all objects in
that class.

Why do this?

922 CHAPTER 58. MULTIPLE INHERITANCE

static members can be very useful. Since a static data member is shared
by all objects, you can use it to share information between all objects in a
class.

One way to think of a static member is as a global variable whose scope
is limited to the class in which it is declared. This is especially true if the
static member is declared as private or protected.

In this case, lastCatID is incremented every time a Cat object is created.
Since lastCatID is not tied to a specific object, it always holds a unique serial
number (which also happens to be the number of Cats created).

The declaration of a static data member is just that, a declaration.
When you declare a static within a class declaration you need to follow it up
with a definition in the same scope.

Typically, you’ll follow your class declaration immediately with a defini-
tion of the static data member, like this:

short Object::lastObjectID;

If you like, you can use this definition to initialize the static member.
static data member scope is limited to the file it is declared in.

You’ll typically stick your class declaration (along with the class’s static
member declarations) in a .h file.

This is not the case for your static member definition. The definition
should appear in the .cpp file where it will be used.

Along with your static data members, you can also declare a static
member function. Again, the function is not bound to a particular object
and is shared with the entire class.

If the class MyClass included a static member function named MyFunc(),
you could call the function using this syntax:

MyClass::MyFunc();

Since there is no current object when MyFunc() is called, you don’t have
the advantages of this and any references to other data members or member
functions must be done through an object.

static member functions are usually written for the sole purpose of pro-
viding access to an associated static data member. To enhance your design,
you might declare your static data member as private and provide an asso-
ciated static member function marked as public or protected.

58.3. RESOLVING AMBIGUITIES 923

Back to the program.
The Cat class has a constructor and a destructor: The Cat constructor

maps its input parameters to the Predator and Prey constructors as follows:

Cat::Cat(char *prey, char *toy) :

Predator(prey), Pet(toy)

The list that follows the constructor’s parameter list is called the member
initialization list. As you can see, a colon always precedes a constructor’s
member initialization list.

The Cat destructor also prints a message containing the catID, just to
make the program a little easier to follow

Next, the static member lastCatID is defined. Without this definition,
the program wouldn’t compile. Notice also that we take advantage of this
definition to initialize lastCatID.

static data members, just like C++ globals, are automatically initialized
to 0. To make the code a little more obvious, we kept the initialization in
there, even though it is redundant.

Finally, main() creates three Cat objects. Compare the three Cat dec-
larations with the program’s output. Notice the order of constructor and
destructor calls. Note, the destructors are called in the reverse order of the
constructors.

58.3 Resolving Ambiguities

Deriving a class from more than one base class brings up an interesting
problem. Suppose the two base classes from our previous example, Predator
and Pet, each have a data member with the same name (which is perfectly
legal, by the way).

Let’s call this data member clone. Now suppose that a Cat object is
created, derived from both Predator and Pet. When this Cat refers to
clone, which clone does it refer to, the one inherited from Predator or the
one from Pet?

As it turns out, the compiler would complain if the Cat class referred to
just plain clone because it can’t resolve this ambiguity. To get around this
problem, you can access each of the two clones by referring to

Predator::clone

924 CHAPTER 58. MULTIPLE INHERITANCE

or

Pet::clone

58.4 Multiple Roots

Here’s another interesting problem brought on by multiple inheritance. Take
a look at the derivation chain in Figure 58.2.

Figure 58.2: Mutliple Root Problem

Notice that the Derived class has two paths of inheritance back to its
ultimate base class, Root. Since Derived is derived from both Base1 and
Base2, when a Derived object is created, Base1 and Base2 objects are created
as well. When the Base1 object is created, a Root object is created. When
the Base2 object is created, a second Root object is created.

Why is this a problem?
Suppose Root contains a data member destined to be inherited by De-

rived. When Derived refers to the Root data member, which of the two
Root objects contains the data member Derived is referring to? Sounds like
another ambiguity to me.

58.4.1 A Multiple-Root Example, nonVirtual.cpp

Before we resolve this latest ambiguity, here’s an example that shows what
happens when a derived class has two paths back to its root class.

58.4. MULTIPLE ROOTS 925

Th code listing for the nonVirtual.cpp program is:

#include <iostream.h>

//--------------------------------------- Root

class Root

{

public:

Root();

};

Root::Root()

{

cout << "Root constructor called\n";

}

//--------------------------------------- Base1

class Base1 : public Root

{

public:

Base1();

};

Base1::Base1()

{

cout << "Base1 constructor called\n";

}

//--------------------------------------- Base2

class Base2 : public Root

{

public:

926 CHAPTER 58. MULTIPLE INHERITANCE

Base2();

};

Base2::Base2()

{

cout << "Base2 constructor called\n";

}

//--------------------------------------- Derived

class Derived : public Base1, public Base2

{

public:

Derived();

};

Derived::Derived()

{

cout << "Derived constructor called\n";

}

//--------------------------------------- main()

int main()

{

Derived myDerived;

return 0;

}

The output is as follows:

Root constructor called

Base1 constructor called

Root constructor called

58.4. MULTIPLE ROOTS 927

Base2 constructor called

Derived constructor called

nonVirtual.cpp starts by including <iostream.h>:
Four classes are then defined asshown in Figure 58.2.
Root consists of a constructor that prints a message letting you know it

was called.
Base1 is derived from Root. Its constructor also prints a useful message.
Base2 is also derived from Root. Its constructor also prints a message in

the console window.
Derived is derived from both Base1 and Base2. Just like all the other

classes, Derived has its constructor print a message in the console window
just to let you know it was called.

main() starts the constructor roller coaster by creating a Derived object.
Since Base1 is listed first in the Derived derivation list, a Base1 object is
created first. Since Base1 is derived from Root, it causes a Root object to
be created. The Root constructor is called and then the Base1 constructor
is called, resulting in the follow ing two lines of output:

Root constructor called

Base1 constructor called

Next, this process is repeated as a Base2 object is created. Since Base2

is also derived from Root, it causes a second Root object to be created. Once
the Root constructor is called, control returns to Base2 and its constructor
is called:

Root constructor called

Base2 constructor called

Once the Base2 object is created, control returns to the Derived class
and the Derived constructor is called: Derived constructor called

58.4.2 The Virtual Base Class Alternative

Once again, think about the problem raised by this last example.
If the Root class contained a data member, how would the Derived object

access the data member?

928 CHAPTER 58. MULTIPLE INHERITANCE

Which of the two Root objects would contain the real copy of the data
member?

The answer to this problem lies in the use of virtual base classes. We
have already declared a member function as virtual to allow a derived class
to override the function. Basically, when a virtual function is called by
dereferencing a pointer or reference to the base class, the compiler follows
the derivation chain down from the root class to the most derived class and
looks at each level for a function matching the virtual function. The lowest-
level matching function is the one that is called.

Virtual functions are extremely useful. Here’s why. Suppose you’re writ-
ing a program that implements a window-based user interface. Let’s say that
your standard window is broken into several areas (we’ll call them panes) and
that each pane is broken into subpanes. When the time comes to draw the
contents of your window, your Window class’s Draw() member function is
called. If your Pane class also has a Draw() member function and if the Win-
dow version of Draw() is declared as virtual, the Pane’s Draw() is called
instead.

This same logic applies to your SubPane class and its Draw() function. If
it is derived from Pane, the SubPane’s Draw() is called instead of the Pane’s
Draw(). This strategy allows you to derive from an existing class using a
new class whose actions are more appropriate or more efficient.

A similar technique can be used to remove the ambiguity brought up when
a derived class has two different paths back to one of its ancestor classes. In
our earlier example, Root was the root class, and Base1 and Base2 were
derived from Root.

Finally, Derived was derived from both Base1 and Base2. When we
created a Derived object, we ended up creating two Root objects. Thus the
ambiguity.

By declaring Root as a virtual base class, we’re asking the compiler to
merge the two Root object creation requests into a single Root object (you’ll
see how to mark a class as virtual in a moment). The compiler gathers every
reference to the virtual base class from the different constructor member
initialization lists and picks the one that’s tied to the deepest constructor.
That reference is used, and all the others are discarded. This will become
clearer as you walk through the next sample program.

To create a virtual base class, you must insert the virtual keyword in the
member initialization lists between the virtual base class and the potentially
ambiguous derived class. You don’t need to mark every class between Root

58.4. MULTIPLE ROOTS 929

and Derived as long as the compiler has no path between Root and Derived

that doesn’t contain at least one virtual reference. The general strategy is
to mark all direct descendants of the virtual base class. In this case, we’d
need to place the virtual keyword in both the Base1 and Base2 member
initialization lists.

Here’s an example:

class Base1 : public virtual Root

{

public:

Base1();

};

The virtual keyword can appear either before or after the public key-
word.

Once the virtual keywords are in place, the compiler ignores all member
initialization list references to the Root class constructor except the deepest
one. This sample Derived constructor includes a reference to the Root con-
structor:

Derived::Derived(short param) : Root(param)

{

cout << "Derived constructor called\n";

}

Even if the Base1 and Base2 constructors map parameters to the Root

constructor, their mappings are superseded by the deeper, Derived construc-
tor. By overriding the constructor mappings, the compiler makes sure that
only a single object of the virtual base class (in this case, Root) is created.

58.4.3 A Virtual Base Class Example, virtual.cpp

This next example brings these techniques to life.
The code listing for virtual.cpp is as follows:

#include <iostream.h>

//--------------------------------------- Root

930 CHAPTER 58. MULTIPLE INHERITANCE

class Root

{

protected:

short num;

public:

Root(short numParam);

};

Root::Root(short numParam)

{

num = numParam;

cout << "Root constructor called\n";

}

//--------------------------------------- Base1

class Base1 : public virtual Root

{

public:

Base1();

};

Base1::Base1() : Root(1)

{

cout << "Base1 constructor called\n";

}

//--------------------------------------- Base2

class Base2 : public virtual Root

{

public:

Base2();

58.4. MULTIPLE ROOTS 931

};

Base2::Base2() : Root(2)

{

cout << "Base2 constructor called\n";

}

//--------------------------------------- Derived

class Derived : public Base1, public Base2

{

public:

Derived();

short GetNum();

};

Derived::Derived() : Root(3)

{

cout << "Derived constructor called\n";

}

short Derived::GetNum()

{

return(num);

}

//--------------------------------------- main()

int main()

{

Derived myDerived;

cout << "-------\n"

<< "num = " << myDerived.GetNum();

return 0;

932 CHAPTER 58. MULTIPLE INHERITANCE

}

The output of this program is:

Root constructor called

Base1 constructor called

Base2 constructor called

Derived constructor called

num = 3

As usual, virtual.cpp starts by including <iostream.h>:
This version of the Root class includes a data member named num. The

Root() constructor takes a single parameter and uses it to initialize num

(as you read through the code, try to figure out where the value for this
parameter comes from).

Base1 is derived from Root, but it treats Root as a
virtual base class. Notice that the Base1() constructor asks the com-

piler to call the Root() constructor and passes it a value of 1. Will this call
take place?

Base2 also declares Root as a virtual base class. Now there’s no path
down from Root that’s not marked as virtual. The Base2() constructor
asks the compiler to pass a value of 2 to the Root() constructor. Is this the
value that is passed on to the Root() constructor?

The Derived class doesn’t need the virtual keyword (although it wouldn’t
matter if virtual were used here). The Derived() constructor also asks the
compiler to pass a value on to the Root() constructor. Since Derived is the
deepest class, this is the constructor mapping that takes precedence. The
Root data member num should be initialized with a value of 3. This function
makes the value of num available to main(). Why can’t main() reference
num directly?

Derived inherits num and main() doesn’t.
main() creates a Derived object, causing a sequence of constructor calls:

Notice that the Root constructor is called only once. Finally, the value of
num is printed.

As you’ve already seen, num has a value of 3, showing that the Base1

and Base2 constructor initializations are overridden by the deeper, Derived
constructor initialization.

Chapter 59

Wrappers

This chapter examines a C++ class that is used as a software layer, or wrapper
around a utility library written in C.

C++ has many featrure that make it a safer language than C — fewer
tedious issues to address.

A C++ wrapper should improve the interface to a library. However, you
should take care to ensure that this goal is met.

59.1 Wrapping Up a C libraray

Consider the C stabdard library for intergogating system directories on UNIX.
There a five finctions we may wish to use in our C++. We would include
them like this:

extern "C" {

DIR *opendir(char *);

dirent * readdir(DIR *);

long telldir(DIR *);

void seekdir(DIR *, long);

void closedir(DIR *);

};

We have already seen these functions and structures in use with C. Here
we focus on the C++ wrapping issues.

The extern "C" qualifying the function prototypes is a linkage specifica-
tion — indicating that the functions are compiled by a C compiler.

933

934 CHAPTER 59. WRAPPERS

A C++ wrapper class helps to manage the housekeeping by encapsulating
pointers to C structures (such as DIR and using destructors to ensure that
closedir() is called for example. However you must make sure you do this
yourself.

Having declared the extern "C" functions we can now build our Direc-
tory wrapper class:

class Directory {

Dir *dir;

public:

Directory(char *);

~Directory();

const char *name();

long tell();

void seek();

};

Directory::Directory(char *path)

{

dir = opendir(path);

}

Directory::~Directory()

{

closedir(dir);

}

const char *Directory::name()

{ dirent *d = readdir(dir);

return d ? d->d_name : NULL;

}

long Directory::tell()

{

59.2. STANDARD C HEADER FILES 935

return telldir(dir);

}

void Directory::seek(long loc)

{

seekdir(dir, loc);

}

Note that we simply call thye C functions as they are called in C.

59.2 Standard C Header Files

If you look at many of the standard library header files you will see that they
are already code up to deal with C++ compilation they have:

#ifdef __cplusplus

extern "C" {

#endif

declared near the beginning of the file and

#ifdef __cplusplus

}

#endif

at the end of the file.
If a C++ compiler is being used then the cplusplus macro will be set.
C++ prgrams can therefore safely #include standard C header files and

have the data in the files safely linked for C++.

936 CHAPTER 59. WRAPPERS

Chapter 60

Threads and C++

As we will see in this final example, writing threaded applications is no
different in C++ than C.

In fact the best way is to study an example. Earlier when discussing
threads (in C) we mentioned an example of multiplying matrices as a good
application fro threads. Let’s see how we can do this in C++.

60.1 Matrix Multiplication

The matrix multiplication example was written in C++ to show how an
object-oriented program might be written to use threads. The concepts and
ideas discussed thus far also apply to the C++ language. All the examples
in this book could have just as well been written in C++ as in C.

This example simply performs a matrix multiplication, the multiplication
of two simple NxN matrices. Essentially, the matrix multiplication performs
many mathematical calculations that can be executed independently. This
example executes the multiplication of the matrices in parallel by using mul-
tiple threads in the processes. The user is allowed to change the size of the
matrix objects and the number of threads on which to execute the multipli-
cation.

The example also places all the threaded code into a shared library. This
way, all the threaded routines are hidden from the main program. Using
this library concept also shows how programs can be changed to use threads
without affecting all of the code. In this case, the main program could use a
nonthreaded library as well as a threaded one.

937

938 CHAPTER 60. THREADS AND C++

This example is rather long, but it demonstrates many of the concepts
that have been covered in previous chapters. The program falls into two
main parts. The first part is the main thread that creates the matrix objects
and starts the matrix multiplication. The second part is the library code,
which performs the multiplication on the matrix objects.

The main thread creates the matrix objects, based on user-supplied ar-
guments. The main thread then calls the MatMult() routine, which starts
the multiplication. A global data structure (thread control block) is used in
the library by all the threads in the program. The data structure contains
the synchronization variables and other data needed to control the worker
threads. This data structure is filled before any threads are created, because
the threads use this data during their execution.

The worker threads are created as bound daemon threads. They are
bound threads because of the compute nature of the work they do. For all
the worker threads to execute in parallel, the level of concurrency would
have to be increased, or the threads could be created as bound threads.
The threads are also daemon threads because the worker threads should
die when the main thread has finished executing. Because this example is
compute intensive, the worker threads are created only once; there is no
need to recreate the threads for each matrix multiply. The worker threads
will always wait for more work to do. If there is no work to be done, then
they go to sleep, waiting on a condition variable.

Once there is work to be done, signaled from the main thread, the worker
threads wake up and perform the matrix operations on the data specified in
the control data structure. At the same time, the main thread waits for all
the worker threads to signal that they have finished the work. When the
worker threads have finished and have signaled the main thread, they start
over again, waiting for more work to do.

The source to Matrix.cpp is:

#define _REENTRANT

#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

#include <thread.h>

#include "Matrix.h"

60.1. MATRIX MULTIPLICATION 939

// Main program

main(int argc, char **argv)

{

int size;

int num_threads;

hrtime_t start, stop;

if (argc != 3) {

cout << "Usage: " << argv[0] << " Matrix-size Threads" << endl;

exit(0);

}

// set the size of the matrix and total threads for this run

size = atoi(argv[1]);

num_threads = atoi(argv[2]);

SetMaxThreads(num_threads);

if (size < num_threads) {

cerr << "The size of the matrix MUST be greater then number of threads."

<< endl;

exit(1);

}

cout << "Matrix size: [" << size << "x" << size << "]" << endl;

cout << "Number of worker threads: " << num_threads << endl;

// Create the Matrix

Matrix a(‘A’, size), b(‘B’, size), c(‘C’, size);

// fill A & B with data and clear C

a.fill(); b.fill(); c.clear();

// Start the timer

start = gethrtime();

// Do the matrix multiply

MatMult(a, b, c);

940 CHAPTER 60. THREADS AND C++

// Stop the timer

stop = gethrtime();

// Print the results -- Only if matrix size is small enough

cout << a << b << c;

// Print the run time

cout << "Matrix multiplication time = "

<< (double)(stop-start)/(double)1000000000

<< " seconds = " << stop-start << " nanoseconds" << endl;

}

The source to MatLib.cpp:

#define _REENTRANT

#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

#include <thread.h>

#include "Matrix.h"

const true = 1;

const false = 0;

// Thread control block - used by all threads as global data

struct thr_cntl_block {

mutex_t start_mutex;

cond_t start_cond;

mutex_t stop_mutex;

cond_t stop_cond;

Matrix *a, *b, *c;

int work2do;

int thrs_running;

int total_threads;

int queue;

} TCB;

//

60.1. MATRIX MULTIPLICATION 941

// Matrix Class Member Functions

//

// Matrix constructor

Matrix::Matrix(char id, int size)

{

matid = id;

matsize = size;

data = new double[matsize*matsize];

}

// Matrix destructor

Matrix::~Matrix()

{

matsize = 0;

matid = 0;

delete[] data;

}

// Fills a matrix object with random data

void Matrix::fill()

{

int i;

for (i=0;i<matsize*matsize;i++)

data[i] = double(rand()/1000);

srand(rand());

}

// Sets all elements of the matrix to 0.0

void Matrix::clear()

{

int i;

for (i=0;i<matsize*matsize;i++)

data[i] = .0;

}

942 CHAPTER 60. THREADS AND C++

// Prints a Matrix object (if it is small enough)

void Matrix::print(ostream &s) const

{

int i;

if (matsize < 9) {

s << "Matrix: " << matid << endl;

for (i=0;i<matsize*matsize;i++)

{

s << setiosflags(ios::fixed) << setprecision(1)

<< setw(8) << data[i] << " ";

if ((i%matsize) == matsize-1) s << endl;

}

s << endl << endl;

}

}

// Overloaded << operator - for ease of printing

ostream &operator<<(ostream &s, const Matrix &mat)

{

mat.print(s);

return(s);

}

// Sets the maximum number of threads to use

void SetMaxThreads(int num)

{

TCB.total_threads = num;

}

// The matrix multiply subroutine

MatMult(Matrix &a, Matrix &b, Matrix &c)

{

int static running = false;

int i;

60.1. MATRIX MULTIPLICATION 943

// Only run this code once, if MatMult is called multiple times

// then there is no need to recreate the threads

if (!running)

{

// Initialize the synch stuff.

mutex_init(&TCB.start_mutex, USYNC_THREAD, 0);

mutex_init(&TCB.stop_mutex, USYNC_THREAD, 0);

cond_init(&TCB.start_cond, USYNC_THREAD, 0);

cond_init(&TCB.stop_cond, USYNC_THREAD, 0);

// set global variables

TCB.work2do = 0;

TCB.thrs_running = 0;

TCB.queue = 0;

if (!TCB.total_threads) TCB.total_threads = 1;

// Create the threads - Bound daemon threads

for (i = 0; i < TCB.total_threads; i++)

thr_create(NULL,0, MultWorker, NULL, THR_BOUND|THR_DAEMON, NULL);

// set the running flag to true so we don’t execute this again

running = true;

}

// Assign global pointers to the Matrix objects

TCB.a = &a;

TCB.b = &b;

TCB.c = &c;

mutex_lock(&TCB.start_mutex);

// Assign the number of threads and the amount of work to do

TCB.work2do = TCB.total_threads;

TCB.thrs_running = TCB.total_threads;

TCB.queue = 0;

// tell all the threads to wake up!

944 CHAPTER 60. THREADS AND C++

cond_broadcast(&TCB.start_cond);

mutex_unlock(&TCB.start_mutex);

// yield this LWP

thr_yield();

// Wait for all the threads to finish

mutex_lock(&TCB.stop_mutex);

while (TCB.thrs_running)

cond_wait(&TCB.stop_cond, &TCB.stop_mutex);

mutex_unlock(&TCB.stop_mutex);

return(0);

}

// Thread routine called from thr_create() as a Bound Daemon Thread

void *MultWorker(void *arg)

{

int row, col, j, start, stop, id, size;

// Do this loop forever - or until all the Non-Daemon threads have exited

while(true)

{

// Wait for some work to do

mutex_lock(&TCB.start_mutex);

while (!TCB.work2do)

cond_wait(&TCB.start_cond, &TCB.start_mutex);

// decrement the work to be done

TCB.work2do--;

// get a unique id for work to be done

id = TCB.queue++;

60.1. MATRIX MULTIPLICATION 945

mutex_unlock(&TCB.start_mutex);

// set up the boundary for matrix operation - based on the unique id

size = TCB.a->getsize();

start = id * (int)(size/TCB.total_threads);

stop = start + (int)(size/TCB.total_threads) - 1;

if (id == TCB.total_threads - 1) stop = size - 1;

// print what this thread will work on

//cout << "Thread " << thr_self() << ": Start Row = " << start

// << ", Stop Row = " << stop << endl << flush;

// Do the matrix multiply - within the bounds set above

for (row=start; row<=stop; row++)

for (col = 0; col < size; col++)

for (j = 0; j < size; j++)

TCB.c->getdata()[row*size+col] +=

TCB.a->getdata()[row*size+j] *

TCB.b->getdata()[j*size+col];

// signal the main thread that this thread is done with the work

mutex_lock(&TCB.stop_mutex);

TCB.thrs_running--;

cond_signal(&TCB.stop_cond);

mutex_unlock(&TCB.stop_mutex);

}

return 0;

}

The source to Matrix.h:

#ifndef _matrix_h_

#define _matrix_h_

class Matrix

{

int matsize;

char matid;

946 CHAPTER 60. THREADS AND C++

double *data;

public:

Matrix(char id, int size);

virtual ~Matrix();

int getsize() {return(matsize);}

double *getdata() {return(data);}

void fill();

void clear();

void print(ostream &s) const;

};

// Function Prototypes

MatMult(Matrix &a, Matrix &b, Matrix &c); // Matrix Multiply

void *MultWorker(void *arg); // Matrix Thread Function

ostream &operator<<(ostream &s, const Matrix &mat); // Overloaded output

void SetMaxThreads(int num); // Sets the number of threads to use

#endif _matrix_h_

This example may look complicated at first, but spend some time here and
make sure you understand how this program works. Also, you may want to
try running this program with different size matrices and a different number
of threads. Here is an example of some test runs, run on a SPARCstation 10
with four 50 MHz superSPARC CPUs:

> Matrix 400 1

Matrix size: [400x400]

Number of worker threads: 1

Matrix multiplication time = 44.3368 seconds = 44336817000 nanoseconds

(This defines the baseline for efficiency.)

> Matrix 400 2

Matrix size: [400x400]

Number of worker threads: 2

Matrix multiplication time = 22.1987 seconds = 22198718000 nanoseconds

(99.9% efficiency)

60.1. MATRIX MULTIPLICATION 947

> Matrix 400 3

Matrix size: [400x400]

Number of worker threads: 3

Matrix multiplication time = 14.8932 seconds = 14893245000 nanoseconds

(99% efficiency)

> Matrix 400 4

Matrix size: [400x400]

Number of worker threads: 4

Matrix multiplication time = 11.6228 seconds = 11622836000 nanoseconds

(99% efficiency)

> Matrix 400 6

Matrix size: [400x400]

Number of worker threads: 6

Matrix multiplication time = 13.1921 seconds = 13192145000 nanoseconds

(75% efficiency)

Going from one thread to four threads reduced the time needed to perform
the matrix multiplication. Also note that running with six threads did not cut
the runtime down any more than four threads did, because the workstation
had only four CPUs and the extra threads created a scheduling overhead.

Because the multiply routine uses a single global structure, it is not reen-
trant itself. For CPU-intensive problems such as this, that is not a major
problem. Doing one multiply will completely saturate the machine, so there
is nothing to be gained from running multiple versions of the multiply routine
concurrently.

948 CHAPTER 60. THREADS AND C++

Chapter 61

Further Reading, Information
and References

This chapter gives references to text books used in writing this course and
provide further reading on all subjects covered. Information sources on the
Internet are also cited where appropriate.

61.1 C References

61.1.1 Basic C and UNIX

The two most appropriate books for the C and standard library aspects of
the course are:

Pointers on C, Kenneth Reek, Addison Wesley, 1998.
C Programming in a UNIX Environment, Judy Kay and Bob Kummer-

field, Addison Wesley, 1997.
Othere books that are useful:

• Brian W Kernighan and Dennis M Ritchie, The C Programming Lan-
guage 2nd Ed, Prentice-Hall, 1988.

• A Book on C (4th Ed.), Kelley and Pohl, Addison Wesley, 1998.

• Kenneth E. Martin, C Through UNIX, WCB Group, 1992.

• Keith Tizzard, C for Professional Programmers, Ellis Horwood, 1986.

949

950CHAPTER 61. FURTHER READING, INFORMATION AND REFERENCES

• Chris Carter, Structured Programming into ANSI C, Pittman, 1991.

• C. Charlton, P. Leng and Janet Little, A Course on C, McGraw Hill,
1992.

• G. Bronson and S. Menconi, A First Book on C: Fundamentals of C
Programming (2nd ed.), West Publishing, 1991.

61.1.2 Threads and Remote Procedure Calls

The following books are good resources on Threads:

Pthreads Programming:A POSIX Standard for Better Multiprocessing By
Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell, (1st Edi-
tion),O’Reilly, 1996

Multithreaded Programming With Pthreads by Bil Lewis, Daniel J. Berg,
Prentice Hall Computer Books, 1996

Threads Primer : A Guide to Solaris Multithreaded Programming by Bil
Lewis, Daniel J. Berg (Contributor), Bil Bewis, Prentice Hall, 1995.

The following book is a good source of information on Remote Procedure
Calls:

Power Programming with RPC, John Bloomer, O’Reilly, 1992.

61.1.3 Internet Resources on C

The web site for this course is

http://www.cm.cf.ac.uk/Dave/C/CE.html

Some good general UNIX/C Web sites can found at

• http://www.connect.org.uk/techwatch/c/ — Technology Watch : C Archive¡

• http://www.eecs.nwu.edu/unix.html — UNIX Reference Desk

• http://www.bsn.usf.edu:80/ scottb/links/unixprog.html — Unix Program-
ming Reference.

The Sun Websites has some good information about Threads:

http://www.sun.com/workshop/threads/

61.2. MOTIF/X WINDOW PROGRAMMING 951

61.2 Motif/X Window Programming

61.2.1 Motif/CDE/X Books

There are a number of books that deal with many aspects of the CDE:

• Common Desktop Environment Advanced User’s and System Adminis-
trator’s Guide, Addison-Wesley Developers Press, 1994.

• Common Desktop Environment Application Builder User’s Guide, Addison-
Wesley Developers Press, 1994.

• Common Desktop Environment Help System Author’s and Program-
mer’s Guide, Addison-Wesley Developers Press, 1994.

• Common Desktop Environment Help System Author’s and Program-
mer’s Guide, Addison-Wesley Developers Press, 1994.

• Common Desktop Environment Programmer’s Guide, Addison-Wesley
Developers Press, 1994.

• Common Desktop Environment Programmer’s Overview, Addison-Wesley
Developers Press, 1994.

• Common Desktop Environment User’s Guide, Addison-Wesley Devel-
opers Press, 1994.

There are a number of good general texts on Motif/X Window program-
ming:

• E. Cutler, Gilly D., and T. O’Reilly, The X Window System in a Nut-
shell. O’Reilly & Associates, Sebastopol, CA, USA, 2 edition, 1992.

• F. Culwin, An X/Motif Programmers Primer. Prentice Hall, London,
UK, 1994.

• Volume Five: X Toolkit Intrinsics Reference Manual, O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 1992.

• D. Heller. Volume Six A: Motif 1.2 Programming Manual, O’Reilly &
Associates, Sebastopol, CA, USA, 1994.

952CHAPTER 61. FURTHER READING, INFORMATION AND REFERENCES

• D. Heller. Volume Six B: Motif 1.2 Reference Manual. O’Reilly &
Associates, Sebastopol, CA, USA, 1994.

• E.F. Johnson and Reichard K. Power Programming: Motif. O’Reilly
& Associates, ew York, USA, 2 edition, 1994.

• L. Mui and E. Pearce. Volume Eight: X Window System Administra-
tor’s Guide. O’Reilly & Associates, Sebastopol, CA, USA, 1992.

• A. Nye (Ed.). Volume 0: X Protocol Reference Manual, O’Reilly &
Associates, Sebastopol, CA, USA, 3 edition, 1992.

• A. Nye (Ed.). Volume Two: Xlib Reference Manual. O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 3 edition, 1992.

• J. Newmarch. The X Window System and Motif: A Fast Track Ap-
proach, Addison Wesley, New York, USA, 1992.

• A. Nye and T. O’Reilly. Volume Four: X Toolkit Intrinsics Program-
ming Manual (Motif Edition). O’Reilly & Associates, Sebastopol, CA,
USA, 1992.

• A. Nye. Volume One: Xlib Programming Manual, O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 3 edition, 1992.

• Open Software Foundation, London, UK. OSF/Motif Style Guide, 1993.

• Open Software Foundation, London, UK. OSF/Motif 2.0 Programming
Manual, 1995.

• Open Software Foundation, London, UK. OSf/Motif 2.0 Reference Man-
ual, 1995.

• Open Software Foundation, London, UK. OSF/Motif Widget Writer’s
Guide, 1995.

• V. Quercia and T. O’Reilly. Volume Three: X Window System User’s
Guide. O’Reilly & Associates, Sebastopol, CA, USA, 1990.

• V. Quercia and T. O’Reilly. Volume Three: X Window System User’s
Guide (Motif Edition). O’Reilly & Associates, Sebastopol, CA, USA,
1991.

61.2. MOTIF/X WINDOW PROGRAMMING 953

• R.K Rost. X and Motif Quick Reference Guide. Digital Press, New
York, USA, 2 edition, 1993.

• L. Reiss and J. Radin. k X Window: Inside and Out, McGraw Hill,
New York, USA, 1992.

61.2.2 Motif distribution

Various components of X/Motif are distributed by the OSF, the X Consor-
tium, the Open Group and by a number of independent vendors for a variety
of platforms. Section 35.6.1 gives details on these matters.

61.2.3 WWW and Ftp Access

The main WWW source of information for motif is MW3: Motif on the
World Wide Web (URL: http://www.cen.com/mw3/). From the home page
you can connect to a wealth of resources for Motif and X Window System
development. MW3 presently contains over 700 links. Virtually all aspects
of Motif are covered here.

Other useful WWW links include:

• http://www.rahul.net/kenton/xsites — Good source of X information
and links to many related sites.

• http://www.landfield.com/faqs/faqsearch.html — The best frequently
asked questions (FAQ) search interface (Usenet Hypertext FAQ Archive).

• X, Xt and Motif FAQ are also archived at:

– Utrecht University (http://www.cs.ruu.nl/wais/html/na-dir/),

– Oxford University (http://www.lib.ox.ac.uk/internet/news/faq/),

– SUNSite Northern Europe (http://src.doc.ic.ac.uk/usenet/usenet-
by-hierarchy/comp/windows/x/).

The Motif FAQ is available via ftp also at:

• Century Computing Inc, USA — The file is available in raw text and
compressed formats: ftp://ftp.cen.com/pub/Motif-FAQ,
ftp://ftp.cen.com/pub/Motif-FAQ.Z and ftp://ftp.cen.com/pub/Motif-
FAQ.gz.

954CHAPTER 61. FURTHER READING, INFORMATION AND REFERENCES

• MIT — The Motif FAQ is available in 9 parts: ftp:// rtfm.mit.edu/pub/usenet-
by-group/comp.windows.x.motif.

• X Consortium — ftp://ftp.x.org/contrib/faqs/Motif-FAQ.

61.2.4 Valuable Information Resources

Other sources of information on the Internet are provided via mailing lists
and news groups. Mailing lists are sent via email and serve as discussion
groups and avenues for news announcements for particular topics. News
groups can be read by specific news reader applications and broadly serve as
discussion groups. Mailing lists and news groups do not necesarily require
a WWW browser for reading although browsers such as Netscape Navigator
do provide specific access to news groups and email.

Mailing lists

The following public mailing lists are maintained by the X Consortium for
the discussion of issues relating to the X Window System. All are hosted
@x.org.

xpert A mailing list that discuses many X related issues. This list is gate-
wayed to the newsgroup comp.windows.x (see below).

To subscribe to this mailing list, send mail to the request address. In
general this is specified by adding -request to the name of the desired
list. Thus, to add yourself to the xpert mailing list:

To: xpert-request@x.org

Subject: (none needed)

subscribe

To unsubscribe:

To: xpert-request@x.org

Subject: (none needed)

unsubscribe

61.2. MOTIF/X WINDOW PROGRAMMING 955

To add an address to a specific list, or to add a specific user, you
can specify options to the subscribe or unsubscribe command. This
example adds dave@widget.uk to the xpert mailing list:

To: xpert-request@x.org

Subject: (none needed)

subscribe xpert dave@widget.uk

xannounce This is a moderated mailing list for announcing releases of non-
commercial X related software, and other issues concerning the X Win-
dow System.

This mailing list is gatewayed to the newsgroup comp.windows.x.announce.

Subscription requests should be sent to xannounce-request@x.org.

News groups

The news group comp.windows.x.motif is the main news group for Motif
related issues. The following news groups exist for the discussion of other
issues related to the X Window System:

comp.windows.x — This news group is gatewayed to the xpert mailing
list (see above).

comp.windows.x.announce This group is moderated by the staff of X
Consortium, Inc. Traffic is limited to major X announcements, such as
X Consortium standards, new releases, patch releases, toolkit releases
and X conferences, exhibitions, or meetings.

comp.windows.x.apps — This news group is concerned with X applica-
tions.

comp.windows.x.intrinsics — This news group is concerned with Xt toolkit.

comp.windows.x.pex — This news group is concerned with the 3D graph-
ics extension to X.

alt.windows.cde — The news group dedicated to Common Desktop Envi-
ronment issues.

956CHAPTER 61. FURTHER READING, INFORMATION AND REFERENCES

Most of the above news groups have a frequently asked question section
posted regularly to the news group which provide valuable information for
the novice and discuss common problems. The comp.windows.x.motif are
also accessible from many of the WWW sites listed in Section 61.2.3

61.3 C++

There are many books on C++, Here are a few good general programming
guides:

• The C++ Programming Language, B. Stroustrup, Addison Wesley,
1997.

• Learning C++, Neill Graham, Mcgraw Hill, 1991.

• Learning C++: A Hands on Approach, E. Nagler, West Publishing,
1993.

• Introduction to C++, D. Dench and B. Proir, Chapmann Hall, 1994.

Some books which are more advances and deal with Object Oriented
Design with C++:

• C++ Programming Style, T. Cargill, Addison Wesley, 1992.

• From Chaos to Classes: Object Oriented Software Development in C++,
D. Duffy, McGraw-Hill, 1995.

• Object Oriented Software in C++, M. Smith, Chapmann Hall, 1993.

Thhe major C++ Web repository is:
http://www.austinlinks.com/CPlusPlus/

Appendix A

C Compiler Options and the
GNU C++ compiler

This appendix gives some common compiler options and some details on the
GNU C/C++ compiler.

A.1 Common Compiler Options

Here we list common C Compiler options. They can be tagged on to the
compiler directive. Some take an additional argument.

E.g.

cc -c -o prog prog.c

The -o option needs an argument, -c does not.

-c Suppress linking with ld(1) and produce a .o file

for each source file. A single object file can be

named explicitly using the -o option.

-C Prevent the C preprocessor from removing

comments.

-D Define symbols either as identifiers (-Didentifer) or as values

(-Dsymbol=value}) in a similar fashion as the #define preprocessor

command.

957

958APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

-E Run the source file through the C preprocessor,

only. Sends the output to the standard output, or

to a file named with the -o option. Includes the

cpp line numbering information. (See also, the -P

option.)

-g Produce additional symbol table information for

dbx(1) and dbxtool(1). When this option is given,

the -O and -R options are suppressed.

-help Display helpful information about compiler.

-Ipathname

Add pathname to the list of directories in which

to search for #include files with relative

filenames (not beginning with slash /). The

preprocessor first searches for #include files in

the directory containing sourcefile, then in

directories named with -I options (if any), and

finally, in /usr/include.

-llibrary Link with object library library (for ld(1)).

This option must follow the sourcefile arguments.

-Ldirectory

Add directory to the list of directories contain-

ing object-library routines (for linking using

ld(1).

-M Run only the macro preprocessor on the named C

programs, requesting that it generate makefile

dependencies and send the result to the standard

output (see make(1) for details about makefiles

and dependencies).

-o outputfile

A.1. COMMON COMPILER OPTIONS 959

Name the output file outputfile. outputfile must

have the appropriate suffix for the type of file

to be produced by the compilation (see FILES,

below). outputfile cannot be the same as source-

file (the compiler will not overwrite the source

file).

-O[level] Optimize the object code. Ignored when either -g

or -a is used. -O with the level omitted is

equivalent to -O2. level is one of:

1 Do postpass assembly-level optimization

only.

2 Do global optimization prior to code

generation, including loop optimiza-

tions, common subexpression elimination,

copy propagation, and automatic register

allocation. -O2 does not optimize refer-

ences to or definitions of external or

indirect variables.

If the optimizer runs out of memory, it tries to

recover by retrying the current procedure at a

lower level of optimization and resumes subsequent

procedures at the original level.

-P Run the source file through the C preprocessor,

only. Puts the output in a file with a .i suffix.

Does not include cpp-type line number information

in the output

960APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

A.2 GCC - The GNU C/C++ Compiler

A.2.1 Introduction to GCC

Information in the section was taken from the GNU CC web site and GNU
CC supporting documentation distrubuted with the GNU CC compiler. For
more complete and up to date information readers are urgent to consult these
sources.

The GNU CC web site URL is: http://www.gnu.ai.mit.edu/software/gcc/gcc.html

GCC was developed by GNU to provide a free compiler for the GNU
system. GCC is distributed under the terms of the GNU General Public
License(20k characters) (GNU GPL for short).

GCC can compile programs written in C, C++, Objective C, Ada 95,
Fortran 77, and Pascal (see compiling other languages).

GCC is a full featured compiler, providing everything you need in a C
compiler. GCC is updated to support new features and new platforms. The
GNU project also provides many companion tools, such as GNU make and
GDB (GNU Debugger).

GCC is short for the GNU C Compiler; we also sometimes use the name
GNU CC.

’gcc’ is also the command name used to invoke the compiler. The reason
for this name is that the compiler initially supported only the C language.
Now, ’gcc’ will invoke the proper compiler files for C++ files if their names
end in ’.C’, ’.cc’, ’.cpp’, or ’.cxx’. The ’gcc’ command also recognizes Objec-
tive C, Pascal, Fortran and Ada files based on their file names.

A.2.2 Languages compiled by GCC

The main GCC distribution includes the source for the C, C++, and Ob-
jective C front ends, giving gcc the ability to compile programs in these
languages. Additional front ends for Ada 95, Fortran 77, and Pascal are
distributed separately. (Note: The front end for Ada is not distributed by
the Free Software Foundation, because it is written in Ada and therefore has
to be distributed together with binaries for bootstrapping.)

G++ is the C++ compiler. G++ is a compiler, not merely a preprocessor;
G++ builds object code directly from your C++ program source. There is
no intermediate C version of the program.

A.2. GCC - THE GNU C/C++ COMPILER 961

Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU
debugger, GDB, works with this information in the object code to give you
comprehensive C++ source-level editing capabilities.

A.2.3 Portability and Optimization

GCC is a fairly portable optimizing compiler which performs many optimiza-
tions.

Portability :

GCC supports full ANSI C, traditional C, and GNU C extensions (in-
cluding: nested functions support, nonlocal gotos, and taking the ad-
dress of a label).

GCC can generate a.out, COFF, ELF, and OSF-Rose files when used
with a suitable assembler. It can produce debugging information in
these formats: BSD stabs, COFF, ECOFF, ECOFF with stabs, and
DWARF and DWARF 2. Position-independent code is generated for
the Clipper, Hitachi H8/300, HP-PA (1.0 & 1.1), i386/i486/Pentium,
m68k, m88k, SPARC, and SPARClite.

GCC can open-code most arithmetic on 64-bit values (type ’long long
int’). It supports extended floating point (type ’long double’) on the
68k and ix86; other machines will follow. GCC generates code for
many CPUs. Using the configuration scheme for GCC, building a cross-
compiler is as easy as building a native compiler.

Optimizations :

Automatic register allocation Common sub-expression elimination (CSE)
(including a certain amount of CSE between basic blocks). Invari-
ant code motion from loops Induction variable optimizations Constant
propagation and copy propagation Delayed popping of function call ar-
guments Tail recursion elimination Integration of in-line functions and
frame pointer elimination Instruction scheduling Loop unrolling Filling
of delay slots Leaf function optimization Optimized multiplication by
constants The ability to assign attributes to instructions Many local
optimizations automatically deduced from the machine description

962APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

A.2.4 GNU CC Distribution Policy

GCC is distributed under the terms of the GNU General Public License
(GPL).

Under the GNU GPL, any modified version of GCC, any program that
contains any of the code of GCC, must be released as free software–to do
otherwise is copyright infringement.

It is permissible to compile non-free programs with GCC. Compiling a
program with GCC and distributing the binary does not require you to make
the program free software or release its source code. This is because the run-
time library included with GCC comes with special permission to link it with
your compiled programs without restriction. The legal rules for using the
output from GCC are the determined by the program that you are compiling,
not by GCC.

However, making programs free software is the right thing to do on general
ethical principles, regardless of what compiler you use.

A.2.5 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated; the
GNU C compiler can compile programs written in C, C++, or Objective C.

”GCC” is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when the
emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler
”G++”. Since there is only one compiler, it is also accurate to call it ”GCC”
no matter what the language context; however, the term ”G++” is more
useful when the emphasis is on compiling C++ programs.

We use the name ”GNU CC” to refer to the compilation system as a
whole, and more specifically to the language-independent part of the com-
piler. For example, we refer to the optimization options as affecting the
behavior of ”GNU CC” or sometimes just ”the compiler”.

Front ends for other languages, such as Ada 9X, Fortran, Modula-3, and
Pascal, are under development. These front-ends, like that for C++, are
built in subdirectories of GNU CC and link to it. The result is an integrated
compiler that can compile programs written in C, C++, Objective C, or any
of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and

A.2. GCC - THE GNU C/C++ COMPILER 963

C++ compilers and those of the GNU CC core. Consult the documentation
of the other front ends for the options to use when compiling programs written
in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code
directly from your C++ program source. There is no intermediate C version
of the program. (By contrast, for example, some other implementations use
a program that generates a C program from your C++ source.) Avoiding
an intermediate C representation of the program means that you get better
object code, and better debugging information. The GNU debugger, GDB,
works with this information in the object code to give you comprehensive
C++ source-level editing capabilities.

A.2.6 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation,
assembly and linking. The ”overall options” allow you to stop this process
at an intermediate stage. For example, the ’-c’ option says not to run the
linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other options
control the assembler and linker; most of these are not documented here,
since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description for
a particular option does not mention a source language, you can use that
option with all supported languages.

See section Compiling C++ Programs, for a summary of special options
for compiling C++ programs.

The gcc program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options may
not be grouped: ’-dr’ is very different from ’-d -r’.

You can mix options and other arguments. For the most part, the order
you use doesn’t matter. Order does matter when you use several options of
the same kind; for example, if you specify ’-L’ more than once, the directories
are searched in the order specified.

Many options have long names starting with ’-f’ or with ’-W’—for exam-
ple, ’-fforce-mem’, ’-fstrength-reduce’, ’-Wformat’ and so on. Most of these

964APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

have both positive and negative forms; the negative form of ’-ffoo’ would be
’-fno-foo’. This manual documents only one of these two forms, whichever
one is not the default.

Here is a summary of all the options, grouped by type. Explanations are
in the following sections.

Overall Options

See section Options Controlling the Kind of Output.

-c -S -E -o file -pipe -v -x language

C Language Options

See section Options Controlling C Dialect.

-ansi -fallow-single-precision -fcond-mismatch -fno-asm

-fno-builtin -fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char -fwritable-strings

-traditional -traditional-cpp -trigraphs

C++ Language Options

See section Options Controlling C++ Dialect.

-fall-virtual -fdollars-in-identifiers -felide-constructors

-fenum-int-equiv -fexternal-templates -fhandle-signatures

-fmemoize-lookups -fno-default-inline -fno-gnu-keywords

-fnonnull-objects -foperator-names -fstrict-prototype

-fthis-is-variable -nostdinc++ -traditional +en

Warning Options

See section Options to Request or Suppress Warnings.

-fsyntax-only -pedantic -pedantic-errors

-w -W -Wall -Waggregate-return -Wbad-function-cast

-Wcast-align -Wcast-qual -Wchar-subscript -Wcomment

-Wconversion -Wenum-clash -Werror -Wformat

-Wid-clash-len -Wimplicit -Wimport -Winline

-Wlarger-than-len -Wmissing-declarations

-Wmissing-prototypes -Wnested-externs

A.2. GCC - THE GNU C/C++ COMPILER 965

-Wno-import -Woverloaded-virtual -Wparentheses

-Wpointer-arith -Wredundant-decls -Wreorder -Wreturn-type -Wshadow

-Wstrict-prototypes -Wswitch -Wsynth -Wtemplate-debugging

-Wtraditional -Wtrigraphs -Wuninitialized -Wunused

-Wwrite-strings

Debugging Options

See section Options for Debugging Your Program or GNU CC.

-a -dletters -fpretend-float

-g -glevel -gcoff -gdwarf -gdwarf+

-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+

-p -pg -print-file-name=library -print-libgcc-file-name

-print-prog-name=program -print-search-dirs -save-temps

Optimization Options

See section Options That Control Optimization.

-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks

-fdelayed-branch -fexpensive-optimizations

-ffast-math -ffloat-store -fforce-addr -fforce-mem

-finline-functions -fkeep-inline-functions

-fno-default-inline -fno-defer-pop -fno-function-cse

-fno-inline -fno-peephole -fomit-frame-pointer

-frerun-cse-after-loop -fschedule-insns

-fschedule-insns2 -fstrength-reduce -fthread-jumps

-funroll-all-loops -funroll-loops

-O -O0 -O1 -O2 -O3

Preprocessor Options

See section Options Controlling the Preprocessor.

-Aquestion(answer) -C -dD -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

966APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

-M -MD -MM -MMD -MG -nostdinc -P -trigraphs

-undef -Umacro -Wp,option

Assembler Option

See section Passing Options to the Assembler.

-Wa,option

Linker Options

See section Options for Linking.

object-file-name -llibrary

-nostartfiles -nodefaultlibs -nostdlib

-s -static -shared -symbolic

-Wl,option -Xlinker option

-u symbol

Directory Options

See section Options for Directory Search.

-Bprefix -Idir -I- -Ldir

Target Options

See section Specifying Target Machine and Compiler Version.

-b machine -V version

Machine Dependent Options

See section Hardware Models and Configurations.

M680x0 Options

-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881

-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield

-mrtd -mshort -msoft-float

VAX Options

-mg -mgnu -munix

A.2. GCC - THE GNU C/C++ COMPILER 967

SPARC Options

-mapp-regs -mcypress -mepilogue -mflat -mfpu -mhard-float

-mhard-quad-float -mno-app-regs -mno-flat -mno-fpu

-mno-epilogue -mno-unaligned-doubles

-msoft-float -msoft-quad-float

-msparclite -msupersparc -munaligned-doubles -mv8

SPARC V9 compilers support the following options

in addition to the above:

-mmedlow -mmedany

-mint32 -mint64 -mlong32 -mlong64

-mno-stack-bias -mstack-bias

Convex Options

-mc1 -mc2 -mc32 -mc34 -mc38

-margcount -mnoargcount

-mlong32 -mlong64

-mvolatile-cache -mvolatile-nocache

AMD29K Options

-m29000 -m29050 -mbw -mnbw -mdw -mndw

-mlarge -mnormal -msmall

-mkernel-registers -mno-reuse-arg-regs

-mno-stack-check -mno-storem-bug

-mreuse-arg-regs -msoft-float -mstack-check

-mstorem-bug -muser-registers

ARM Options

-mapcs -m2 -m3 -m6 -mbsd -mxopen -mno-symrename

M88K Options

-m88000 -m88100 -m88110 -mbig-pic

-mcheck-zero-division -mhandle-large-shift

-midentify-revision -mno-check-zero-division

-mno-ocs-debug-info -mno-ocs-frame-position

-mno-optimize-arg-area -mno-serialize-volatile

-mno-underscores -mocs-debug-info

968APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

-mocs-frame-position -moptimize-arg-area

-mserialize-volatile -mshort-data-num -msvr3

-msvr4 -mtrap-large-shift -muse-div-instruction

-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options

-mcpu=cpu type

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mno-powerpc

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mnew-mnemonics -mno-new-mnemonics

-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc

-msoft-float -mhard-float -mmultiple -mno-multiple

-mstring -mno-string -mbit-align -mno-bit-align

-mstrict-align -mno-strict-align -mrelocatable -mno-relocatable

-mtoc -mno-toc -mtraceback -mno-traceback

-mlittle -mlittle-endian -mbig -mbig-endian

RT Options

-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs

-mfull-fp-blocks -mhc-struct-return -min-line-mul

-mminimum-fp-blocks -mnohc-struct-return

MIPS Options

-mabicalls -mcpu=cpu type -membedded-data

-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64

-mgpopt -mhalf-pic -mhard-float -mint64 -mips1

-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy

-mmips-as -mmips-tfile -mno-abicalls

-mno-embedded-data -mno-embedded-pic

-mno-gpopt -mno-long-calls

-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats

-mrnames -msoft-float

-m4650 -msingle-float -mmad

-mstats -EL -EB -G num -nocpp

i386 Options

A.2. GCC - THE GNU C/C++ COMPILER 969

-m486 -m386 -mieee-fp -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib

-mno-wide-multiply -mrtd -malign-double

-mreg-alloc=list -mregparm=num

-malign-jumps=num -malign-loops=num

-malign-functions=num

HPPA Options

-mdisable-fpregs -mdisable-indexing -mfast-indirect-calls

-mgas -mjump-in-delay -mlong-millicode-calls -mno-disable-fpregs

-mno-disable-indexing -mno-fast-indirect-calls -mno-gas

-mno-jump-in-delay -mno-millicode-long-calls

-mno-portable-runtime -mno-soft-float -msoft-float

-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime -mschedule=list

Intel 960 Options

-mcpu type -masm-compat -mclean-linkage

-mcode-align -mcomplex-addr -mleaf-procedures

-mic-compat -mic2.0-compat -mic3.0-compat

-mintel-asm -mno-clean-linkage -mno-code-align

-mno-complex-addr -mno-leaf-procedures

-mno-old-align -mno-strict-align -mno-tail-call

-mnumerics -mold-align -msoft-float -mstrict-align

-mtail-call

DEC Alpha Options

-mfp-regs -mno-fp-regs -mno-soft-float

-msoft-float

Clipper Options

-mc300 -mc400

H8/300 Options

-mrelax -mh

System V Options

-Qy -Qn -YP,paths -Ym,dir

970APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Code Generation Options

See section Options for Code Generation Conventions.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -finhibit-size-directive

-fno-common -fno-ident -fno-gnu-linker

-fpcc-struct-return -fpic -fPIC

-freg-struct-return -fshared-data -fshort-enums

-fshort-double -fvolatile -fvolatile-global

-fverbose-asm -fpack-struct +e0 +e1

Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper,
assembly and linking, always in that order. The first three stages apply to an
individual source file, and end by producing an object file; linking combines
all the object files (those newly compiled, and those specified as input) into
an executable file.

For any given input file, the file name suffix determines what kind of
compilation is done:

file.c

C source code which must be preprocessed.

file.i

C source code which should not be preprocessed.

file.ii

C++ source code which should not be preprocessed.

file.m

Objective-C source code. Note that you must link with the library ’l

file.h

C header file (not to be compiled or linked).

file.cc

file.cxx

A.2. GCC - THE GNU C/C++ COMPILER 971

file.cpp

file.C

C++ source code which must be preprocessed. Note that in ’.cxx’, the last tw

refers to a literal capital C.

file.s

Assembler code.

file.S

Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with
no recognized suffix is treated this way.

You can specify the input language explicitly with the ’-x’ option:

-x language

Specify explicitly the language for the following input files (rather than l

suffix). This option applies to all following input files until the next ’-x

c objective-c c++

c-header cpp-output c++-cpp-output

assembler assembler-with-cpp

-x none

Turn off any specification of a language, so that subsequent files are handl

has not been used at all).

If you only want some of the stages of compilation, you can use ’-x’ (or
filename suffixes) to tell gcc where to start, and one of the options ’-c’, ’-S’, or
’-E’ to say where gcc is to stop. Note that some combinations (for example,
’-x cpp-output -E’ instruct gcc to do nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply

object file for each source file.

By default, the object file name for a source file is made by replacing the

972APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Unrecognized input files, not requiring compilation or assembly, are

-S Stop after the stage of compilation proper; do not assemble. The output

non-assembler input file specified.

By default, the assembler file name for a source file is made by rep

Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The

sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file

Place output in file file. This applies regardless to whatever sort

object file, an assembler file or preprocessed C code.

Since only one output file can be specified, it does not make sense

are producing an executable file as output.

If ’-o’ is not specified, the default is to put an executable file i

its assembler file in ’source.s’, and all preprocessed C source on s

-v Print (on standard error output) the commands executed to run the stages

compiler driver program and of the preprocessor and the compiler pro

-pipe Use pipes rather than temporary files for communication between the v

systems where the assembler is unable to read from a pipe; but the G

Compiling C++ Programs

C++ source files conventionally use one of the suffixes ’.C’, ’.cc’, ’cpp’, or
’.cxx’; preprocessed C++ files use the suffix ’.ii’. GNU CC recognizes files
with these names and compiles them as C++ programs even if you call the
compiler the same way as for compiling C programs (usually with the name
gcc).

However, C++ programs often require class libraries as well as a compiler

A.2. GCC - THE GNU C/C++ COMPILER 973

that understands the C++ language–and under some circumstances, you
might want to compile programs from standard input, or otherwise without
a suffix that flags them as C++ programs. g++ is a program that calls
GNU CC with the default language set to C++, and automatically specifies
linking against the GNU class library libg++. (1) On many systems, the
script g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any language;
or command-line options meaningful for C and related languages; or options
that are meaningful only for C++ programs. See section Options Control-
ling C Dialect, for explanations of options for languages related to C. See
section Options Controlling C++ Dialect, for explanations of options that
are meaningful only for C++ programs.

Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C,
such as C++ and Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C,

predefined macros such as unix and vax that identify the type of system you

used ANSI trigraph feature, and disallows ’$’ as part of identifiers.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ con

not want to use them in an ANSI C program, of course, but it is useful to pu

compilations done with ’-ansi’. Alternate predefined macros such as __unix__

’-ansi’.

The ’-ansi’ option does not cause non-ANSI programs to be rejected gratuitou

’-ansi’. See section Options to Request or Suppress Warnings.

The macro __STRICT_ANSI__ is predefined when the ’-ansi’ option is used. Som

from declaring certain functions or defining certain macros that the ANSI st

any programs that might use these names for other things.

The functions alloca, abort, exit, and _exit are not builtin functions when

974APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

-fno-asm

Do not recognize asm, inline or typeof as a keyword, so that code ca

__asm__, __inline__ and __typeof__ instead. ’-ansi’ implies ’-fno-as

In C++, this switch only affects the typeof keyword, since asm and i

’-fno-gnu-keywords’ flag instead, as it also disables the other, C++

-fno-builtin

Don’t recognize builtin functions that do not begin with two leading

abs, alloca, cos, exit, fabs, ffs, labs, memcmp, memcpy, sin, sqrt,

GCC normally generates special code to handle certain builtin functi

single instructions that adjust the stack directly, and calls to mem

smaller and faster, but since the function calls no longer appear as

change the behavior of the functions by linking with a different lib

The ’-ansi’ option prevents alloca and ffs from being builtin functi

meaning.

-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-da

-traditional

Attempt to support some aspects of traditional C compilers. Specific

All extern declarations take effect globally even if th

implicit declarations of functions.

The newer keywords typeof, inline, signed, const and vo

alternative keywords such as __typeof__, __inline__, and so o

Comparisons between pointers and integers are always al

Integer types unsigned short and unsigned char promote

Out-of-range floating point literals are not an error.

A.2. GCC - THE GNU C/C++ COMPILER 975

Certain constructs which ANSI regards as a single invalid prepr

expressions instead.

String ’’constants’’ are not necessarily constant; they are sto

allocated separately. (This is the same as the effect of ’-fwritable-

All automatic variables not declared register are preserved by

automatic variables not declared volatile may be clobbered.

The character escape sequences ’\x’ and ’\a’ evaluate as the li

’-traditional’, ’\x’ is a prefix for the hexadecimal representation o

In C++ programs, assignment to this is permitted with ’-traditi

also has this effect.)

You may wish to use ’-fno-builtin’ as well as ’-traditional’ if your program

functions for other purposes of its own.

You cannot use ’-traditional’ if you include any header files that rely on A

systems with ANSI C header files and you cannot use ’-traditional’ on such s

headers.

In the preprocessor, comments convert to nothing at all, rather than to a sp

In preprocessing directive, the ’#’ symbol must appear as the first characte

In the preprocessor, macro arguments are recognized within string constants

though without additional quote marks, when they appear in such a context).

end at a newline.

The predefined macro __STDC__ is not defined when you use ’-traditional’, bu

__GNUC__ indicates are not affected by ’-traditional’). If you need to write

whether ’-traditional’ is in use, by testing both of these predefined macros

traditional GNU C, other ANSI C compilers, and other old C compilers. The pr

defined when you use ’-traditional’. See section ’Standard Predefined Macros

these and other predefined macros.

The preprocessor considers a string constant to end at a newline (unless the

976APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

’-traditional’, string constants can contain the newline character a

-traditional-cpp

Attempt to support some aspects of traditional C preprocessors. This

none of the other effects of ’-traditional’.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second an

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is ei

default.

Ideally, a portable program should always use signed char or unsigne

But many programs have been written to use plain char and expect it

machines they were written for. This option, and its inverse, let yo

The type char is always a distinct type from each of signed char or

one of those two.

-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to ’-fno-unsigned-char’, which is the n

’-fno-signed-char’ is equivalent to ’-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned, when

default, such a bitfield is signed, because this is consistent: the

However, when ’-traditional’ is used, bitfields are all unsigned no

-fwritable-strings

A.2. GCC - THE GNU C/C++ COMPILER 977

Store string constants in the writable data segment and don’t uniquize them

assume they can write into string constants. The option ’-traditional’ also

Writing into string constants is a very bad idea; ’’constants’’ should be co

-fallow-single-precision

Do not promote single precision math operations to double precision, even wh

Traditional K&R C promotes all floating point operations to double precision

architecture for which you are compiling, single precision may be faster tha

but want to use single precision operations when the operands are single pre

compiling with ANSI or GNU C conventions (the default).

Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful
for C++ programs; but you can also use most of the GNU compiler options
regardless of what language your program is in. For example, you might
compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C
In this example, only ’-felide-constructors’ is an option meant only for

C++ programs; you can use the other options with any language supported
by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control

Turn off all access checking. This switch is mainly useful for working aroun

-fall-virtual

Treat all possible member functions as virtual, implicitly. All member funct

member operators) are treated as virtual functions of the class where they a

This does not mean that all calls to these member functions will be made thr

circumstances, the compiler can determine that a call to a given virtual fun

in any case.

-fcheck-new

978APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Check that the pointer returned by operator new is non-null before a

Paper requires that operator new never return a null pointer, so thi

-fconserve-space

Put uninitialized or runtime-initialized global variables into the c

cost of not diagnosing duplicate definitions. If you compile with th

completed, you may have an object that is being destroyed twice beca

-fdollars-in-identifiers

Accept ’$’ in identifiers. You can also explicitly prohibit use of ’

C++ allows ’$’ by default on some target systems but not others.) Tr

identifiers. However, ANSI C and C++ forbid ’$’ in identifiers.

-fenum-int-equiv

Anachronistically permit implicit conversion of int to enumeration t

the other way around.

-fexternal-templates

Cause template instantiations to obey ’#pragma interface’ and ’imple

according to the location of the template definition. See section Wh

-falt-external-templates

Similar to -fexternal-templates, but template instances are emitted

section Where’s the Template?, for more information.

-fno-gnu-keywords

Do not recognize classof, headof, signature, sigof or typeof as a ke

You can use the keywords __classof__, __headof__, __signature__, __s

’-fno-gnu-keywords’.

-fno-implicit-templates

Never emit code for templates which are instantiated implicitly (i.e

Where’s the Template?, for more information.

-fhandle-signatures

Recognize the signature and sigof keywords for specifying abstract t

recognize them. See section Type Abstraction using Signatures.

A.2. GCC - THE GNU C/C++ COMPILER 979

-fhuge-objects

Support virtual function calls for objects that exceed the size representabl

default; if you need to use it, the compiler will tell you so. If you compil

your code with this flag (including libg++, if you use it).

This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled

errors if these functions are not inlined everywhere they are called.

-fmemoize-lookups

-fsave-memoized

Use heuristics to compile faster. These heuristics are not enabled by defaul

input files compile more slowly.

The first time the compiler must build a call to a member function (or refer

class implements member functions of that name; (2) resolve which member fun

of type conversions need to be made); and (3) check the visibility of the me

compilation. Normally, the second time a call is made to that member functio

the same lengthy process again. This means that code like this:

cout << ’’This ’’ << p << ’’ has ’’ << n << ’’ legs.\n’’;

makes six passes through all three steps. By using a software cache, a ’’hit

cache introduces another layer of mechanisms which must be implemented, and

enables the software cache.

Because access privileges (visibility) to members and member functions may d

need to flush the cache. With the ’-fmemoize-lookups’ flag, the cache is flu

’-fsave-memoized’ flag enables the same software cache, but when the compile

compiled would yield the same access privileges of the next function to comp

defining many member functions for the same class: with the exception of mem

member function has exactly the same access privileges as every other, and t

The code that implements these flags has rotted; you should probably avoid u

-fstrict-prototype

980APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Within an ’extern ’’C’’’ linkage specification, treat a function dec

the function to take no arguments. Normally, such a declaration mean

as in C. ’-pedantic’ implies ’-fstrict-prototype’ unless overridden

This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects

Don’t assume that a reference is initialized to refer to a valid obj

references, some old code may rely on them, and you can use ’-fno-no

At the moment, the compiler only does this checking for conversions

-foperator-names

Recognize the operator name keywords and, bitand, bitor, compl, not,

’-ansi’ implies ’-foperator-names’.

-fthis-is-variable

Permit assignment to this. The incorporation of user-defined free st

anachronism. Therefore, by default it is invalid to assign to this w

a member function of class X as a non-lvalue of type ’X *’. However,

’-fthis-is-variable’.

-fvtable-thunks

Use ’thunks’ to implement the virtual function dispatch table (’vtab

vtables was to store a pointer to the function and two offsets for a

store a single pointer to a ’thunk’ function which does any necessar

This option also enables a heuristic for controlling emission of vta

be emitted in the translation unit containing the first one of those

-nostdinc++

Do not search for header files in the standard directories specific

option is used when building libg++.)

-traditional

For C++ programs (in addition to the effects that apply to both C an

See section Options Controlling C Dialect.

A.2. GCC - THE GNU C/C++ COMPILER 981

In addition, these optimization, warning, and code generation options have meanings

-fno-default-inline

Do not assume ’inline’ for functions defined inside a class scope. See secti

-Wenum-clash

-Woverloaded-virtual

-Wtemplate-debugging

Warnings that apply only to C++ programs. See section Options to Request or

+en Control how virtual function definitions are used, in a fashion compatible with

Conventions.

Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not
inherently erroneous but which are risky or suggest there may have been an
error.

You can request many specific warnings with options beginning ’-W’, for
example ’-Wimplicit’ to request warnings on implicit declarations. Each of
these specific warning options also has a negative form beginning ’-Wno-’ to
turn off warnings; for example, ’-Wno-implicit’. This manual lists only one
of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by
GNU CC:

-fsyntax-only

Check the code for syntax errors, but don’t do anything beyond that.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all progra

Valid ANSI standard C programs should compile properly with or without this

However, without this option, certain GNU extensions and traditional C featu

rejected.

’-pedantic’ does not cause warning messages for use of the alternate keyword

warnings are also disabled in the expression that follows __extension__. How

982APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

escape routes; application programs should avoid them. See section A

This option is not intended to be useful; it exists only to satisfy

the ANSI standard.

Some users try to use ’-pedantic’ to check programs for strict ANSI

they want: it finds some non-ANSI practices, but not all--only those

A feature to report any failure to conform to ANSI C might be useful

work and would be quite different from ’-pedantic’. We recommend, ra

C and disregard the limitations of other compilers. Aside from certa

less reason ever to use any other C compiler other than for bootstra

-pedantic-errors

Like ’-pedantic’, except that errors are produced rather than warnin

-w Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ’#import’.

-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of

some machines.

-Wcomment

Warn whenever a comment-start sequence ’/*’ appears in a comment.

-Wformat

Check calls to printf and scanf, etc., to make sure that the argumen

specified.

-Wimplicit

Warn whenever a function or parameter is implicitly declared.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when th

or when operators are nested whose precedence people often get confu

A.2. GCC - THE GNU C/C++ COMPILER 983

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int

return-value in a function whose return-type is not void.

-Wswitch

Warn whenever a switch statement has an index of enumeral type and lacks a c

enumeration. (The presence of a default label prevents this warning.) case l

warnings when this option is used.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused

Warn whenever a variable is unused aside from its declaration, whenever a fu

label is declared but not used, and whenever a statement computes a result t

To suppress this warning for an expression, simply cast it to void. For unus

(see section Specifying Attributes of Variables).

-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they req

optimizing. If you don’t specify ’-O’, you simply won’t get these warnings.

These warnings occur only for variables that are candidates for register all

declared volatile, or whose address is taken, or whose size is other than 1

unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to comp

computations may be deleted by data flow analysis before the warnings are pr

These warnings are made optional because GNU CC is not smart enough to see a

appearing to have an error. Here is one example of how this can happen:

{

int x;

984APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

switch (y)

{

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized,

{

int save_y;

if (change_y) save_y = y, y = new_y;

...

if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functio

Attributes of Functions.

-Wenum-clash

Warn about conversion between different enumeration types. (C++ only

-Wreorder (C++ only)

Warn when the order of member initializers given in the code does no

struct A {

int i;

int j;

A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for ’i’ and

A.2. GCC - THE GNU C/C++ COMPILER 985

members.

-Wtemplate-debugging

When using templates in a C++ program, warn if debugging is not yet fully av

-Wall All of the above ’-W’ options combined. These are all the options which perta

believe is easy to avoid, even in conjunction with macros.

The remaining ’-W...’ options are not implied by ’-Wall’ because they warn about co

occasion, in clean programs.

-W Print extra warning messages for these events:

A nonvolatile automatic variable might be changed by a call to

in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where long

it at any point in the code. As a result, you may get a warning even

cannot in fact be called at the place which would cause a problem.

A function can return either with or without a value. (Falling

returning without a value.) For example, this function would evoke su

foo (a)

{

if (a > 0)

return a;

}

An expression-statement contains no side effects.

An unsigned value is compared against zero with ’<’ or ’<=’.

A comparison like ’x<=y<=z’ appears; this is equivalent to ’(x<

interpretation from that of ordinary mathematical notation.

Storage-class specifiers like static are not the first things i

is obsolescent.

986APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

If ’-Wall’ or ’-Wunused’ is also specified, warn about

An aggregate has a partly bracketed initializer. For ex

because braces are missing around the initializer for x.h:

struct s { int f, g; };

struct t { struct s h; int i; };

struct t x = { 1, 2, 3 };

-Wtraditional

Warn about certain constructs that behave differently in traditional

Macro arguments occurring within string constants in th

traditional C, but are part of the constant in ANSI C.

A function declared external in one block and then used

A switch statement has an operand of type long.

-Wshadow

Warn whenever a local variable shadows another local variable.

-Wid-clash-len

Warn whenever two distinct identifiers match in the first len charac

certain obsolete, brain-damaged compilers.

-Wlarger-than-len

Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith

Warn about anything that depends on the ’’size of’’ a function type

convenience in calculations with void * pointers and pointers to fun

-Wbad-function-cast

Warn whenever a function call is cast to a non-matching type. For ex

-Wcast-qual

A.2. GCC - THE GNU C/C++ COMPILER 987

Warn whenever a pointer is cast so as to remove a type qualifier from the ta

to an ordinary char *.

-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the targ

an int * on machines where integers can only be accessed at two- or four-byt

-Wwrite-strings

Give string constants the type const char[length] so that copying the addres

warning. These warnings will help you find at compile time code that can try

been very careful about using const in declarations and prototypes. Otherwis

make ’-Wall’ request these warnings.

-Wconversion

Warn if a prototype causes a type conversion that is different from what wou

prototype. This includes conversions of fixed point to floating and vice ver

a fixed point argument except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted

assignment x = -1 if x is unsigned. But do not warn about explicit casts lik

-Waggregate-return

Warn if any functions that return structures or unions are defined or called

elicits a warning.)

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the argument ty

without a warning if preceded by a declaration which specifies the argument

-Wmissing-prototypes

Warn if a global function is defined without a previous prototype declaratio

provides a prototype. The aim is to detect global functions that fail to be

-Wmissing-declarations

Warn if a global function is defined without a previous declaration. Do so e

option to detect global functions that are not declared in header files.

-Wredundant-decls

988APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Warn if anything is declared more than once in the same scope, even

nothing.

-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline

Warn if a function can not be inlined, and either it was declared as

-Woverloaded-virtual

Warn when a derived class function declaration may be an error in de

definitions of virtual functions must match the type signature of a

compiler warns when you define a function with the same name as a vi

any declarations from the base class.

-Wsynth (C++ only)

Warn when g++’s synthesis behavior does not match that of cfront. Fo

struct A {

operator int ();

A& operator = (int);

};

main ()

{

A a,b;

a = b;

}

In this example, g++ will synthesize a default ’A& operator = (const

=’.

-Werror

Make all warnings into errors.

A.2. GCC - THE GNU C/C++ COMPILER 989

Options for Debugging Your Program or GNU CC

GNU CC has various special options that are used for debugging either your
program or GCC:

-g Produce debugging information in the operating system’s native format (stabs, CO

this debugging information.

On most systems that use stabs format, ’-g’ enables use of extra debugging i

information makes debugging work better in GDB but will probably make other

you want to control for certain whether to generate the extra information, u

’-gdwarf+’, or ’-gdwarf’ (see below).

Unlike most other C compilers, GNU CC allows you to use ’-g’ with ’-O’. The

occasionally produce surprising results: some variables you declared may not

you did not expect it; some statements may not be executed because they comp

hand; some statements may execute in different places because they were move

Nevertheless it proves possible to debug optimized output. This makes it rea

have bugs.

The following options are useful when GNU CC is generated with the capabilit

-ggdb Produce debugging information in the native format (if that is supported), in

-gstabs

Produce debugging information in stabs format (if that is supported), withou

most BSD systems. On MIPS, Alpha and System V Release 4 systems this option

understood by DBX or SDB. On System V Release 4 systems this option requires

-gstabs+

Produce debugging information in stabs format (if that is supported), using

(GDB). The use of these extensions is likely to make other debuggers crash o

-gcoff Produce debugging information in COFF format (if that is supported). This is

prior to System V Release 4.

-gxcoff

Produce debugging information in XCOFF format (if that is supported). This i

990APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

RS/6000 systems.

-gxcoff+

Produce debugging information in XCOFF format (if that is supported)

debugger (GDB). The use of these extensions is likely to make other

assemblers other than the GNU assembler (GAS) to fail with an error.

-gdwarf

Produce debugging information in DWARF format (if that is supported)

4 systems.

-gdwarf+

Produce debugging information in DWARF format (if that is supported)

debugger (GDB). The use of these extensions is likely to make other

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gdwarflevel

Request debugging information and also use level to specify how much

Level 1 produces minimal information, enough for making backtraces i

includes descriptions of functions and external variables, but no in

Level 3 includes extra information, such as all the macro definition

expansion when you use ’-g3’.

-p Generate extra code to write profile information suitable for the analys

the source files you want data about, and you must also use it when

-pg Generate extra code to write profile information suitable for the analy

the source files you want data about, and you must also use it when

-a Generate extra code to write profile information for basic blocks, which

the basic block start address, and the function name containing the

start of the basic block will also be recorded. If not overridden by

A.2. GCC - THE GNU C/C++ COMPILER 991

file ’bb.out’.

This data could be analyzed by a program like tcov. Note, however, that the

GNU gprof should be extended to process this data.

-dletters

Says to make debugging dumps during compilation at times specified by letter

names for most of the dumps are made by appending a word to the source file

are the possible letters for use in letters, and their meanings:

’M’ Dump all macro definitions, at the end of preprocessing, and write no ou

’N’ Dump all macro names, at the end of preprocessing.

’D’ Dump all macro definitions, at the end of preprocessing, in addition to

’y’ Dump debugging information during parsing, to standard error.

’r’ Dump after RTL generation, to ’file.rtl’.

’x’ Just generate RTL for a function instead of compiling it. Usually used w

’j’ Dump after first jump optimization, to ’file.jump’.

’s’ Dump after CSE (including the jump optimization that sometimes follows C

’L’ Dump after loop optimization, to ’file.loop’.

’t’ Dump after the second CSE pass (including the jump optimization that som

’f’ Dump after flow analysis, to ’file.flow’.

’c’ Dump after instruction combination, to the file ’file.combine’.

’S’ Dump after the first instruction scheduling pass, to ’file.sched’.

’l’ Dump after local register allocation, to ’file.lreg’.

’g’ Dump after global register allocation, to ’file.greg’.

’R’ Dump after the second instruction scheduling pass, to ’file.sched2’.

’J’ Dump after last jump optimization, to ’file.jump2’.

’d’ Dump after delayed branch scheduling, to ’file.dbr’.

’k’ Dump after conversion from registers to stack, to ’file.stack’.

’a’ Produce all the dumps listed above.

’m’ Print statistics on memory usage, at the end of the run, to standard err

’p’ Annotate the assembler output with a comment indicating which pattern an

-fpretend-float When running a cross-compiler, pretend that the target machi

machine. This causes incorrect output of the actual floating constants, but

as GNU CC would make when running on the target machine.

-save-temps Store the usual ’’temporary’’ intermediate files permanently; pl

992APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

the source file. Thus, compiling ’foo.c’ with ’-c -save-temps’ would

-print-file-name=library Print the full absolute name of the library

anything else. With this option, GNU CC does not compile or link any

-print-prog-name=program Like ’-print-file-name’, but searches for a

-print-libgcc-file-name Same as ’-print-file-name=libgcc.a’.

This is useful when you use ’-nostdlib’ or ’-nodefaultlibs’ but you

gcc -nostdlib files... ’gcc -print-libgcc-file-name’

-print-search-dirs Print the name of the configured installation dir

search--and don’t do anything else.

This is useful when gcc prints the error message ’installation probl

directory’. To resolve this you either need to put ’cpp’ and the oth

you can set the environment variable GCC_EXEC_PREFIX to the director

section Environment Variables Affecting GNU CC.

Options That Control Optimization

These options control various sorts of optimizations:

-O

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot mo

Without ’-O’, the compiler’s goal is to reduce the cost of compilati

Statements are independent: if you stop the program with a breakpoin

variable or change the program counter to any other statement in the

source code.

Without ’-O’, the compiler only allocates variables declared registe

produced by PCC without ’-O’.

With ’-O’, the compiler tries to reduce code size and execution time

A.2. GCC - THE GNU C/C++ COMPILER 993

When you specify ’-O’, the compiler turns on ’-fthread-jumps’ and ’-fdefer-p

’-fdelayed-branch’ on machines that have delay slots, and ’-fomit-frame-poin

even without a frame pointer. On some machines the compiler also turns on ot

-O2 Optimize even more. GNU CC performs nearly all supported optimizations that do

does not perform loop unrolling or function inlining when you specify ’-O2’

compilation time and the performance of the generated code.

’-O2’ turns on all optional optimizations except for loop unrolling and func

machines where doing so does not interfere with debugging.

-O3 Optimize yet more. ’-O3’ turns on all optimizations specified by ’-O2’ and also

-O0 Do not optimize.

If you use multiple ’-O’ options, with or without level numbers, the last su

Options of the form ’-fflag’ specify machine-independent flags. Most flags
have both positive and negative forms; the negative form of ’-ffoo’ would be
’-fno-foo’. In the table below, only one of the forms is listed–the one which is
not the default. You can figure out the other form by either removing ’no-’
or adding it.

-ffloat-store

Do not store floating point variables in registers, and inhibit other option

from a register or memory.

This option prevents undesirable excess precision on machines such as the 68

more precision than a double is supposed to have. For most programs, the exc

rely on the precise definition of IEEE floating point. Use ’-ffloat-store’ f

-fno-default-inline

Do not make member functions inline by default merely because they are defin

when you specify ’-O’, member functions defined inside class scope are compi

’inline’ in front of the member function name.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function retu

994APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

function call, the compiler normally lets arguments accumulate on th

-fforce-mem

Force memory operands to be copied into registers before doing arith

memory references potential common subexpressions. When they are not

eliminate the separate register-load. I am interested in hearing abo

-fforce-addr

Force memory address constants to be copied into registers before do

’-fforce-mem’ may. I am interested in hearing about the difference t

-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t

frame pointers; it also makes an extra register available in many fu

machines.

On some machines, such as the Vax, this flag has no effect, because

pointer and nothing is saved by pretending it doesn’t exist. The mac

whether a target machine supports this flag. See section Register Us

-fno-inline

Don’t pay attention to the inline keyword. Normally this option is u

Note that if you are not optimizing, no functions can be expanded in

-finline-functions

Integrate all simple functions into their callers. The compiler heur

integrating in this way.

If all calls to a given function are integrated, and the function is

assembler code in its own right.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the functi

callable version of the function.

-fno-function-cse

Do not put function addresses in registers; make each instruction th

explicitly.

A.2. GCC - THE GNU C/C++ COMPILER 995

This option results in less efficient code, but some strange hacks that alte

performed when this option is not used.

-ffast-math

This option allows GCC to violate some ANSI or IEEE rules and/or specificati

example, it allows the compiler to assume arguments to the sqrt function are

are NaNs.

This option should never be turned on by any ’-O’ option since it can result

exact implementation of IEEE or ANSI rules/specifications for math functions

The following options control specific optimizations. The ’-O2’ option
turns on all of these optimizations except ’-funroll-loops’ and ’-funroll-all-
loops’. On most machines, the ’-O’ option turns on the ’-fthread-jumps’ and
’-fdelayed-branch’ options, but specific machines may handle it differently.

You can use the following flags in the rare cases when ”fine-tuning” of
optimizations to be performed is desired.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of iter

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location

found. If so, the first branch is redirected to either the destination of th

depending on whether the condition is known to be true or false.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when the

For example, when CSE encounters an if statement with an else clause, CSE wi

false.

-fcse-skip-blocks

This is similar to ’-fcse-follow-jumps’, but causes CSE to follow jumps whic

encounters a simple if statement with no else clause, ’-fcse-skip-blocks’ ca

if.

-frerun-cse-after-loop

996APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Re-run common subexpression elimination after loop optimizations has

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensiv

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions

instructions.

-fschedule-insns

If supported for the target machine, attempt to reorder instructions

This helps machines that have slow floating point or memory load ins

result of the load or floating point instruction is required.

-fschedule-insns2

Similar to ’-fschedule-insns’, but requests an additional pass of in

This is especially useful on machines with a relatively small number

one cycle.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered by

registers around such calls. Such allocation is done only when it se

This option is enabled by default on certain machines, usually those

-funroll-loops

Perform the optimization of loop unrolling. This is only done for lo

time or run time. ’-funroll-loop’ implies both ’-fstrength-reduce’ a

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all loo

’-funroll-all-loops’ implies ’-fstrength-reduce’ as well as ’-frerun

-fno-peephole

Disable any machine-specific peephole optimizations.

A.2. GCC - THE GNU C/C++ COMPILER 997

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file
before actual compilation.

If you use the ’-E’ option, nothing is done except preprocessing. Some
of these options make sense only together with ’-E’ because they cause the
preprocessor output to be unsuitable for actual compilation.

-include file

Process file as input before processing the regular input file. In effect, t

options on the command line are always processed before ’-include file’, reg

the ’-include’ and ’-imacros’ options are processed in the order in which th

-imacros file

Process file as input, discarding the resulting output, before processing th

file is discarded, the only effect of ’-imacros file’ is to make the macros

Any ’-D’ and ’-U’ options on the command line are always processed before ’-

they are written. All the ’-include’ and ’-imacros’ options are processed in

-idirafter dir

Add the directory dir to the second include path. The directories on the sec

found in any of the directories in the main include path (the one that ’-I’

-iprefix prefix

Specify prefix as the prefix for subsequent ’-iwithprefix’ options.

-iwithprefix dir

Add a directory to the second include path. The directory’s name is made by

specified previously with ’-iprefix’. If you have not specified a prefix yet

compiler is used as the default.

-iwithprefixbefore dir

Add a directory to the main include path. The directory’s name is made by co

’-iwithprefix’.

-isystem dir

Add a directory to the beginning of the second include path, marking it as a

998APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

treatment as is applied to the standard system directories.

-nostdinc

Do not search the standard system directories for header files. Only

current directory, if appropriate) are searched. See section Options

By using both ’-nostdinc’ and ’-I-’, you can limit the include-file

-undef Do not predefine any nonstandard macros. (Including architecture fla

-E Run only the C preprocessor. Preprocess all the C source files specified

output file.

-C Tell the preprocessor not to discard comments. Used with the ’-E’ option

-P Tell the preprocessor not to generate ’#line’ directives. Used with the

-M Tell the preprocessor to output a rule suitable for make describing the

preprocessor outputs one make-rule whose target is the object file n

#include header files it uses. This rule may be a single line or may

printed on standard output instead of the preprocessed C program.

’-M’ implies ’-E’.

Another way to specify output of a make rule is by setting the envir

Environment Variables Affecting GNU CC).

-MM Like ’-M’ but the output mentions only the user header files included w

’#include <file>’ are omitted.

-MD Like ’-M’ but the dependency information is written to a file made by r

is in addition to compiling the file as specified---’-MD’ does not i

In Mach, you can use the utility md to merge multiple dependency fil

’make’ command.

-MMD Like ’-MD’ except mention only user header files, not system header fi

A.2. GCC - THE GNU C/C++ COMPILER 999

-MG Treat missing header files as generated files and assume they live in the same

must also specify either ’-M’ or ’-MM’. ’-MG’ is not supported with ’-MD’ or

-H Print the name of each header file used, in addition to other normal activities

-Aquestion(answer)

Assert the answer answer for question, in case it is tested with a preproces

#question(answer)’. ’-A-’ disables the standard assertions that normally des

-Dmacro

Define macro macro with the string ’1’ as its definition.

-Dmacro=defn

Define macro macro as defn. All instances of ’-D’ on the command line are pr

-Umacro

Undefine macro macro. ’-U’ options are evaluated after all ’-D’ options, but

-dM Tell the preprocessor to output only a list of the macro definitions that are i

option.

-dD Tell the preprocessing to pass all macro definitions into the output, in their

-dN Like ’-dD’ except that the macro arguments and contents are omitted. Only ’#def

-trigraphs

Support ANSI C trigraphs. The ’-ansi’ option also has this effect.

-Wp,option

Pass option as an option to the preprocessor. If option contains commas, it

Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option

Pass option as an option to the assembler. If option contains commas, it is

1000APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Options for Linking

These options come into play when the compiler links object files into an
executable output file. They are meaningless if the compiler is not doing a
link step.

object-file-name

A file name that does not end in a special recognized suffix is cons

distinguished from libraries by the linker according to the file con

linker.

-c

-S

-E If any of these options is used, then the linker is not run, and object

Controlling the Kind of Output.

-llibrary

Search the library named library when linking.

It makes a difference where in the command you write this option; th

they are specified. Thus, ’foo.o -lz bar.o’ searches library ’z’ aft

functions in ’z’, those functions may not be loaded.

The linker searches a standard list of directories for the library,

uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories

Normally the files found this way are library files--archive files w

scanning through it for members which define symbols that have so fa

is an ordinary object file, it is linked in the usual fashion. The o

name is that ’-l’ surrounds library with ’lib’ and ’.a’ and searches

-lobjc You need this special case of the ’-l’ option in order to link an Ob

-nostartfiles

Do not use the standard system startup files when linking. The stand

-nodefaultlibs is used.

A.2. GCC - THE GNU C/C++ COMPILER 1001

-nodefaultlibs

Do not use the standard system libraries when linking. Only the libraries yo

startup files are used normally, unless -nostartfiles is used.

-nostdlib

Do not use the standard system startup files or libraries when linking. No s

passed to the linker.

One of the standard libraries bypassed by ’-nostdlib’ and ’-nodefaultlibs’ i

that GNU CC uses to overcome shortcomings of particular machines, or special

to GNU CC Output, for more discussion of ’libgcc.a’.) In most cases, you nee

standard libraries. In other words, when you specify ’-nostdlib’ or ’-nodefa

well. This ensures that you have no unresolved references to internal GNU CC

to ensure C++ constructors will be called; see section collect2.)

-s Remove all symbol table and relocation information from the executable.

-static

On systems that support dynamic linking, this prevents linking with the shar

-shared

Produce a shared object which can then be linked with other objects to form

-symbolic

Bind references to global symbols when building a shared object. Warn about

link editor option ’-Xlinker -z -Xlinker defs’). Only a few systems support

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-sp

how to recognize.

If you want to pass an option that takes an argument, you must use ’-Xlinker

argument. For example, to pass ’-assert definitions’, you must write ’-Xlink

does not work to write ’-Xlinker ’’-assert definitions’’’, because this pass

not what the linker expects.

-Wl,option

Pass option as an option to the linker. If option contains commas, it is spl

1002APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

-u symbol

Pretend the symbol symbol is undefined, to force linking of library

different symbols to force loading of additional library modules.

Options for Directory Search

These options specify directories to search for header files, for libraries and
for parts of the compiler:

-Idir Add the directory directory to the head of the list of directories to

header file, substituting your own version, since these directories

more than one ’-I’ option, the directories are scanned in left-to-ri

-I- Any directories you specify with ’-I’ options before the ’-I-’ option a

are not searched for ’#include <file>’.

If additional directories are specified with ’-I’ options after the

(Ordinarily all ’-I’ directories are used this way.)

In addition, the ’-I-’ option inhibits the use of the current direct

directory for ’#include ’’file’’’. There is no way to override this

directory which was current when the compiler was invoked. That is n

but it is often satisfactory.

’-I-’ does not inhibit the use of the standard system directories fo

-Ldir Add directory dir to the list of directories to be searched for ’-l’.

-Bprefix

This option specifies where to find the executables, libraries, incl

The compiler driver program runs one or more of the subprograms ’cpp

each program it tries to run, both with and without ’machine/version

Version).

For each subprogram to be run, the compiler driver first tries the ’

specified, the driver tries two standard prefixes, which are ’/usr/l

A.2. GCC - THE GNU C/C++ COMPILER 1003

those results in a file name that is found, the unmodified program name is s

environment variable.

’-B’ prefixes that effectively specify directory names also apply to librari

options into ’-L’ options for the linker. They also apply to includes files

options into ’-isystem’ options for the preprocessor. In this case, the comp

The run-time support file ’libgcc.a’ can also be searched for using the ’-B

standard prefixes above are tried, and that is all. The file is left out of

Another way to specify a prefix much like the ’-B’ prefix is to use the envi

Environment Variables Affecting GNU CC.

Specifying Target Machine and Compiler Version

By default, GNU CC compiles code for the same type of machine that you
are using. However, it can also be installed as a cross-compiler, to compile
for some other type of machine. In fact, several different configurations of
GNU CC, for different target machines, can be installed side by side. Then
you specify which one to use with the ’-b’ option.

In addition, older and newer versions of GNU CC can be installed side
by side. One of them (probably the newest) will be the default, but you may
sometimes wish to use another.

-b machine

The argument machine specifies the target machine for compilation. This is u

cross-compiler.

The value to use for machine is the same as was specified as the machine typ

example, if a cross-compiler was configured with ’configure i386v’, meaning

you would specify ’-b i386v’ to run that cross compiler.

When you do not specify ’-b’, it normally means to compile for the same type

-V version

The argument version specifies which version of GNU CC to run. This is usefu

example, version might be ’2.0’, meaning to run GNU CC version 2.0.

1004APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

The default version, when you do not specify ’-V’, is the last versi

The ’-b’ and ’-V’ options actually work by controlling part of the file
name used for the executable files and libraries used for compilation. A
given version of GNU CC, for a given target machine, is normally kept in
the directory ’/usr/local/lib/gcc-lib/machine/version’.

Thus, sites can customize the effect of ’-b’ or ’-V’ either by changing the
names of these directories or adding alternate names (or symbolic links). If in
directory ’/usr/local/lib/gcc-lib/’ the file ’80386’ is a link to the file ’i386v’,
then ’-b 80386’ becomes an alias for ’-b i386v’.

In one respect, the ’-b’ or ’-V’ do not completely change to a different
compiler: the top-level driver program gcc that you originally invoked con-
tinues to run and invoke the other executables (preprocessor, compiler per
se, assembler and linker) that do the real work. However, since no real work
is done in the driver program, it usually does not matter that the driver
program in use is not the one for the specified target and version.

The only way that the driver program depends on the target machine is
in the parsing and handling of special machine-specific options. However,
this is controlled by a file which is found, along with the other executables,
in the directory for the specified version and target machine. As a result, a
single installed driver program adapts to any specified target machine and
compiler version.

The driver program executable does control one significant thing, how-
ever: the default version and target machine. Therefore, you can install
different instances of the driver program, compiled for different targets or
versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for
version 2.1 is installed as gcc, then the command gcc will use version 2.1 by
default, while ogcc will use 2.0 by default. However, you can choose either
version with either command with the ’-V’ option.

Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU
CC operates. They work by specifying directories or prefixes to use when
searching for various kinds of files.

Note that you can also specify places to search using options such as
’-B’, ’-I’ and ’-L’ (see section Options for Directory Search). These take

A.2. GCC - THE GNU C/C++ COMPILER 1005

precedence over places specified using environment variables, which in turn
take precedence over those specified by the configuration of GNU CC. See
section Controlling the Compilation Driver, ’gcc’.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GNU

compilation which is to be used as input to the next stage: for example, the

compiler proper.

GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the

when this prefix is combined with the name of a subprogram, but you can spec

If GNU CC cannot find the subprogram using the specified prefix, it tries lo

The default value of GCC_EXEC_PREFIX is ’prefix/lib/gcc-lib/’ where prefix i

’configure’ script.

Other prefixes specified with ’-B’ take precedence over this prefix.

This prefix is also used for finding files such as ’crt0.o’ that are used fo

In addition, the prefix is used in an unusual way in finding the directories

directories whose name normally begins with ’/usr/local/lib/gcc-lib’ (more p

GNU CC tries replacing that beginning with the specified prefix to produce a

CC will search ’foo/bar’ where it would normally search ’/usr/local/lib/bar

the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much li

when searching for subprograms, if it can’t find the subprograms using GCC_E

LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much lik

CC tries the directories thus specified when searching for special linker fi

using GNU CC also uses these directories when searching for ordinary librari

’-L’ come first).

C_INCLUDE_PATH

1006APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each va

PATH. When GNU CC searches for header files, it tries the directorie

directories specified with ’-I’ but before the standard header file

DEPENDENCIES_OUTPUT

If this variable is set, its value specifies how to output dependenc

This output looks much like the output from the ’-M’ option (see sec

separate file, and is in addition to the usual results of compilatio

The value of DEPENDENCIES_OUTPUT can be just a file name, in which c

name from the source file name. Or the value can have the form ’file

using target as the target name.

Running Protoize

The program protoize is an optional part of GNU C. You can use it to add
prototypes to a program, thus converting the program to ANSI C in one
respect. The companion program unprotoize does the reverse: it removes
argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as
command line arguments. The conversion programs start out by compiling
these files to see what functions they define. The information gathered about
a file foo is saved in a file named ’foo.X’.

After scanning comes actual conversion. The specified files are all eligible
to be converted; any files they include (whether sources or just headers) are
eligible as well.

But not all the eligible files are converted. By default, protoize and
unprotoize convert only source and header files in the current directory. You
can specify additional directories whose files should be converted with the
’-d directory’ option. You can also specify particular files to exclude with the
’-x file’ option. A file is converted if it is eligible, its directory name matches
one of the specified directory names, and its name within the directory has
not been excluded.

Basic conversion with protoize consists of rewriting most function defini-
tions and function declarations to specify the types of the arguments. The
only ones not rewritten are those for varargs functions.

A.2. GCC - THE GNU C/C++ COMPILER 1007

protoize optionally inserts prototype declarations at the beginning of the
source file, to make them available for any calls that precede the function’s
definition. Or it can insert prototype declarations with block scope in the
blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function dec-
larations to remove any argument types, and rewriting function definitions
to the old-style pre-ANSI form.

Both conversion programs print a warning for any function declaration
or definition that they can’t convert. You can suppress these warnings with
’-q’.

The output from protoize or unprotoize replaces the original source file.
The original file is renamed to a name ending with ’.save’. If the ’.save’ file
already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the pro-
gram and collect information about the functions it uses. So neither of these
programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and unprotoize.
Each option works with both programs unless otherwise stated.

-B directory

Look for the file ’SYSCALLS.c.X’ in directory, instead of the usual director

prototype information about standard system functions. This option applies o

-c compilation-options

Use compilation-options as the options when running gcc to produce the ’.X’

passed in addition, to tell gcc to write a ’.X’ file.

Note that the compilation options must be given as a single argument to prot

gcc options, you must quote the entire set of compilation options to make th

There are certain gcc arguments that you cannot use, because they would prod

’-O’, ’-c’, ’-S’, and ’-o’ If you include these in the compilation-options,

-C Rename files to end in ’.C’ instead of ’.c’. This is convenient if you are conve

to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at

is called in the file and was not declared. These declarations precede the f

1008APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

function. This option applies only to protoize.

-i string

Indent old-style parameter declarations with the string string. This

unprotoize converts prototyped function definitions to old-style fun

argument list and the initial ’{’. By default, unprotoize uses five

space instead, use ’-i ’’ ’’’.

-k Keep the ’.X’ files. Normally, they are deleted after conversion is fini

-l Add explicit local declarations. protoize with ’-l’ inserts a prototype

function without any declaration. This option applies only to protoi

-n Make no real changes. This mode just prints information about the conver

-N Make no ’.save’ files. The original files are simply deleted. Use this o

-p program

Use the program program as the compiler. Normally, the name ’gcc’ is

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ’-v’ for gcc.

A.3 Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C.
(The ’-pedantic’ option directs GNU CC to print a warning message if any
of these features is used.) To test for the availability of these features in con-
ditional compilation, check for a predefined macro GNUC , which is always
defined under GNU CC.

These extensions are available in C and Objective C. Most of them are
also available in C++. See section Extensions to the C++ Language, for
extensions that apply only to C++.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1009

Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression
in GNU C. This allows you to use loops, switches, and local variables within
an expression.

Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;

if (y > 0) z = y;

else z = - y;

z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression fol-
lowed by a semicolon; the value of this subexpression serves as the value of
the entire construct. (If you use some other kind of statement last within
the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions ”safe” (so
that they evaluate each operand exactly once). For example, the ”maximum”
function is commonly defined as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the
operand has side effects. In GNU C, if you know the type of the operands
(here let’s assume int), you can define the macro safely as follows:

#define maxint(a,b) \

({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit field, or the initial
value of a static variable.

If you don’t know the type of the operand, you can still do this, but you
must use typeof (see section Referring to a Type with typeof) or type naming
(see section Naming an Expression’s Type).

1010APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Locally Declared Labels

Each statement expression is a scope in which local labels can be declared.
A local label is simply an identifier; you can jump to it with an ordinary goto
statement, but only from within the statement expression it belongs to.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ’({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label
itself. You must do this in the usual way, with label:, within the statements
of the statement expression.

The local label feature is useful because statement expressions are often
used in macros. If the macro contains nested loops, a goto can be useful for
breaking out of them. However, an ordinary label whose scope is the whole
function cannot be used: if the macro can be expanded several times in one
function, the label will be multiply defined in that function. A local label
avoids this problem. For example:

#define SEARCH(array, target) \

({ \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \

value = -1; \

found: \

value; \

})

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1011

Labels as Values

You can get the address of a label defined in the current function (or a
containing function) with the unary operator ’&&’. The value has type void
*. This value is a constant and can be used wherever a constant of that type
is valid. For example:

void *ptr;

...

ptr = &&foo;

To use these values, you need to be able to jump to one. This is done
with the computed goto statement, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.
One way of using these constants is in initializing a static array that will

serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds — array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the switch
statement. The switch statement is cleaner, so use that rather than an array
unless the problem does not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded code for
super-fast dispatching.

You can use this mechanism to jump to code in a different function. If
you do that, totally unpredictable things will happen. The best way to avoid
this is to store the label address only in automatic variables and never pass
it as an argument.

1012APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Constructing Function Calls

Using the built-in functions described below, you can record the arguments
a function received, and call another function with the same arguments,
without knowing the number or types of the arguments.

You can also record the return value of that function call, and later return
that value, without knowing what data type the function tried to return (as
long as your caller expects that data type).

__builtin_apply_args ()

This built-in function returns a pointer of type void * to data desc

passed to the current function.

The function saves the arg pointer register, structure value address

function into a block of memory allocated on the stack. Then it retu

__builtin_apply (function, arguments, size)

This built-in function invokes function (type void (*)()) with a cop

*) and size (type int).

The value of arguments should be the value returned by __builtin_app

stack argument data, in bytes.

This function returns a pointer of type void * to data describing ho

data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The va

data that should be pushed on the stack and copied from the incoming

__builtin_return (result)

This built-in function returns the value described by result from th

returned by __builtin_apply.

Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration
with an initializer. Here is how to define name as a type name for the type
of exp:

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1013

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature. Here

’’maximum’’ macro that operates on any arithmetic type:

#define max(a,b) \

({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \

_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for a and b. Eventually we hope to design
a new form of declaration syntax that allows you to declare variables whose
scopes start only after their initializers; this will be a more reliable way to
prevent such conflicts.

Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax
of using of this keyword looks like sizeof, but the construct acts semantically
like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression
or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that
of the values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in ANSI

C programs, write typeof instead of typeof. See section Alternate Key-
words.

1014APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

A typeof-construct can be used anywhere a typedef name could be used.
For example, you can use it in a declaration, in a cast, or inside of sizeof or
typeof.

This declares y with the type of what x points to.

typeof (*x) y;

This declares y as an array of such values.

typeof (*x) y[4];

This declares y as an array of pointers to characters:

typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be
a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1015

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lval-
ues provided their operands are lvalues. This means that you can take their
addresses or store values into them.

Standard C++ allows compound expressions and conditional expressions
as lvalues, and permits casts to reference type, so use of this extension is
deprecated for C++ code.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are equivalent:

(a, b) += 5

a, (b += 5)

Similarly, the address of the compound expression can be taken. These
two expressions are equivalent:

&(a, b)

a, &b

A conditional expression is a valid lvalue if its type is not void and the true
and false branches are both valid lvalues. For example, these two expressions
are equivalent:

(a ? b : c) = 5

(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment
whose left-hand side is a cast works by converting the right-hand side first
to the specified type, then to the type of the inner left-hand side expression.
After this is stored, the value is converted back to the specified type to
become the value of the assignment. Thus, if a has type char *, the following
two expressions are equivalent:

(int)a = 5

(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ’+=’ applied to a cast
performs the arithmetic using the type resulting from the cast, and then con-
tinues as in the previous case. Therefore, these two expressions are equiva-
lent:

1016APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

(int)a += 5

(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its ad-
dress would not work out coherently. Suppose that &(int)f were permitted,
where f has type float. Then the following statement would try to store an
integer bit-pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do — that would
convert 1 to floating point and store it. Rather than cause this inconsistency,
we think it is better to prohibit use of ’&’ on a cast.

If you really do want an int * pointer with the address of f, you can
simply write (int *)&f.

Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the
first operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful is when the first operand does, or may (if
it is a macro argument), contain a side effect. Then repeating the operand
in the middle would perform the side effect twice. Omitting the middle
operand uses the value already computed without the undesirable effects of
recomputing it.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1017

Double-Word Integers

GNU C supports data types for integers that are twice as long as long int.
Simply write long long int for a signed integer, or unsigned long long int for
an unsigned integer. To make an integer constant of type long long int, add
the suffix LL to the integer. To make an integer constant of type unsigned
long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Ad-
dition, subtraction, and bitwise boolean operations on these types are open-
coded on all types of machines. Multiplication is open-coded if the machine
supports fullword-to-doubleword a widening multiply instruction. Division
and shifts are open-coded only on machines that provide special support.
The operations that are not open-coded use special library routines that
come with GNU CC.

There may be pitfalls when you use long long types for function argu-
ments, unless you declare function prototypes. If a function expects type int
for its argument, and you pass a value of type long long int, confusion will
result because the caller and the subroutine will disagree about the number
of bytes for the argument. Likewise, if the function expects long long int and
you pass int. The best way to avoid such problems is to use prototypes.

subsubsectionComplex Numbers
GNU C supports complex data types. You can declare both complex

integer types and complex floating types, using the keyword complex .
For example,

__complex__ double x;

declares x as a variable whose real part and imaginary part are both of
type double.

__complex__ short int y;

declares y to have real and imaginary parts of type short int; this is not
likely to be useful, but it shows that the set of complex types is complete.

To write a constant with a complex data type, use the suffix ’i’ or ’j’
(either one; they are equivalent). For example, 2.5fi has type complex

float and 3i has type complex int. Such a constant always has a pure
imaginary value, but you can form any complex value you like by adding one
to a real constant.

1018APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

To extract the real part of a complex-valued expression exp, write real

exp. Likewise, use imag to extract the imaginary part.
The operator ’∼’ performs complex conjugation when used on a value

with a complex type.
GNU CC can allocate complex automatic variables in a noncontiguous

fashion; it’s even possible for the real part to be in a register while the imag-
inary part is on the stack (or vice-versa). None of the supported debugging
info formats has a way to represent noncontiguous allocation like this, so
GNU CC describes a noncontiguous complex variable as if it were two sepa-
rate variables of noncomplex type. If the variable’s actual name is foo, the
two fictitious variables are named foorealandfooimag. You can examine and
set these two fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat
them as a single variable with a complex type.

Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last
element of a structure which is really a header for a variable-length object:

struct line {

int length;

char contents[0];

};

{

struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which means
either you waste space or complicate the argument to malloc.

Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are
declared like any other automatic arrays, but with a length that is not a

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1019

constant expression. The storage is allocated at the point of declaration and
deallocated when the brace-level is exited. For example:

FILE *

concat_fopen (char *s1, char *s2, char *mode)

{

char str[strlen (s1) + strlen (s2) + 1];

strcpy (str, s1);

strcat (str, s2);

return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; you get an error message for
it.

You can use the function alloca to get an effect much like variable-length
arrays. The function alloca is available in many other C implementations
(but not in all). On the other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated
with alloca exists until the containing function returns. The space for a
variable-length array is deallocated as soon as the array name’s scope ends.
(If you use both variable-length arrays and alloca in the same function, deal-
location of a variable-length array will also deallocate anything more recently
allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry

tester (int len, char data[len][len])

{

...

}

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use
a forward declaration in the parameter list–another GNU extension.

struct entry

tester (int len; char data[len][len], int len)

1020APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

{

...

}

The ’int len’ before the semicolon is a parameter forward declaration, and
it serves the purpose of making the name len known when the declaration of
data is parsed.

You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the last
one must end with a semicolon, which is followed by the ”real” parameter
declarations. Each forward declaration must match a ”real” declaration in
parameter name and data type.

Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a
function can. The syntax for defining the macro looks much like that used
for a function. Here is an example:

#define eprintf(format, args...) \

fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as many
as the call contains. All of them plus the commas between them form the
value of args, which is substituted into the macro body where args is used.
Thus, we have this expansion:

eprintf (’’%s:%d: ’’, input_file_name, line_number)

==>

fprintf (stderr, ’’%s:%d: ’’ , input_file_name, line_number)

Note that the comma after the string constant comes from the definition
of eprintf, whereas the last comma comes from the value of args.

The reason for using ’##’ is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this case, the
second comma in the definition becomes an embarrassment: if it got through
to the expansion of the macro, we would get something like this:

fprintf (stderr, ’’success!\n’’ ,);

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1021

which is invalid C syntax. ’##’ gets rid of the comma, so we get the
following instead:

fprintf (stderr, ’’success!\n’’);

This is a special feature of the GNU C preprocessor: ’##’ before a rest
argument that is empty discards the preceding sequence of non-whitespace
characters from the macro definition. (If another macro argument precedes,
none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last
preceding sequence of non-whitespace characters; in fact, we may someday
change this feature to do so. We advise you to write the macro definition
so that the preceding sequence of non-whitespace characters is just a single
token, so that the meaning will not change if we change the definition of this
feature.

Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary
’&’ operator is not. For example, this is valid in GNU C though not valid in
other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}

Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers
to void and on pointers to functions. This is done by treating the size of a
void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function
types, and returns 1.

The option ’-Wpointer-arith’ requests a warning if these extensions are
used.

1022APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an
example of an initializer with run-time varying elements:

foo (float f, float g)

{

float beat_freqs[2] = { f-g, f+g };

...

}

Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the
cast, containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo and
structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

{

struct foo temp = {x + y, ’a’, 0};

structure = temp;

}

You can also construct an array. If all the elements of the constructor
are (made up of) simple constant expressions, suitable for use in initializers,
then the constructor is an lvalue and can be coerced to a pointer to its first
element, as shown here:

char **foo = (char *[]) { ’’x’’, ’’y’’, ’’z’’ };

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1023

Array constructors whose elements are not simple constants are not very
useful, because the constructor is not an lvalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower than a switch statement, while the latter does
the same thing an ordinary C initializer would do. Here is an example of
subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also al-
lowed, but then the constructor expression is equivalent to a cast.

Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed or-
der, the same as the order of the elements in the array or structure being
initialized.

In GNU C you can give the elements in any order, specifying the ar-
ray indices or structure field names they apply to. This extension is not
implemented in GNU C++.

To specify an array index, write ’[index]’ or ’[index] =’ before the element
value. For example,

int a[6] = { [4] 29, [2] = 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write ’[first ... last] =
value’. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.
In a structure initializer, specify the name of a field to initialize with ’field-

name:’ before the element value. For example, given the following structure,

1024APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

struct point { int x, y; };

the following initialization

struct point p = { y: yvalue, x: xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is ’.fieldname =’., as shown
here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the
period-equal syntax) when initializing a union, to specify which element of
the union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second element.
By contrast, casting 4 to type union foo would store it into the union as the
integer i, since it is an integer. (See section Cast to a Union Type.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that does not
have a label applies to the next consecutive element of the array or structure.
For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the
indices are characters or belong to an enum type. For example:

int whitespace[256]

= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1025

Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels,
one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed
wrong when you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified
is a union type. You can specify the type either with union tag or with a
typedef name. A cast to union is actually a constructor though, not a cast,
and hence does not yield an lvalue like normal casts. (See section Constructor
Expressions.)

The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:

union foo { int i; double d; };

int x;

double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable of

union type is equivalent to storing in a member of the union:

1026APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

union foo u;

...

u = (union foo) x == u.i = x

u = (union foo) y == u.d = y

You can also use the union cast as a function argument:

void hack (union foo);

...

hack ((union foo) x);

Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program
which help the compiler optimize function calls and check your code more
carefully.

The keyword attribute allows you to specify special attributes when
making a declaration. This keyword is followed by an attribute specification
inside double parentheses. Eight attributes, noreturn, const, format, section,
constructor, destructor, unused and weak are currently defined for functions.
Other attributes, including section are supported for variables declarations
(see section Specifying Attributes of Variables) and for types (see section
Specifying Attributes of Types).

You may also specify attributes with ’ ’ preceding and following each
keyword. This allows you to use them in header files without being con-
cerned about a possible macro of the same name. For example, you may use
noreturn instead of noreturn.

noreturn
A few standard library functions, such as abort and exit, cannot return.

GNU CC knows this automatically. Some programs define their own func-
tions that never return. You can declare them noreturn to tell the compiler
this fact. For example,

void fatal () __attribute__ ((noreturn));

void

fatal (...)

{

... /* Print error message. */ ...

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1027

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot
return. It can then optimize without regard to what would happen if fatal
ever did return. This makes slightly better code. More importantly, it helps
avoid spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored
before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

The attribute noreturn is not implemented in GNU C versions earlier
than 2.5. An alternative way to declare that a function does not return,
which works in the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const
Many functions do not examine any values except their arguments, and

have no effects except the return value. Such a function can be subject to
common subexpression elimination and loop optimization just as an arith-
metic operator would be. These functions should be declared with the at-
tribute const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than
the program says.

The attribute const is not implemented in GNU C versions earlier than
2.5. An alternative way to declare that a function has no side effects, which
works in the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

1028APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

This approach does not work in GNU C++ from 2.6.0 on, since the
language specifies that the ’const’ must be attached to the return value.

Note that a function that has pointer arguments and examines the data
pointed to must not be declared const. Likewise, a function that calls a non-
const function usually must not be const. It does not make sense for a const
function to return void.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf or scanf style
arguments which should be type-checked against a format string. For exam-
ple, the declaration:

extern int

my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my printf for consis-
tency with the printf style format string argument my format.

The parameter archetype determines how the format string is interpreted,
and should be either printf or scanf. The parameter string-index specifies
which argument is the format string argument (starting from 1), while first-
to-check is the number of the first argument to check against the format
string. For functions where the arguments are not available to be checked
(such as vprintf), specify the third parameter as zero. In this case the com-
piler only checks the format string for consistency.

In the example above, the format string (my format) is the second argu-
ment of the function my print, and the arguments to check start with the
third argument, so the correct parameters for the format attribute are 2 and
3.

The format attribute allows you to identify your own functions which
take format strings as arguments, so that GNU CC can check the calls to
these functions for errors. The compiler always checks formats for the ANSI
library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf
and vsprintf whenever such warnings are requested (using ’-Wformat’), so
there is no need to modify the header file ’stdio.h’.

section (’’section-name’’)

Normally, the compiler places the code it generates in the text section.
Sometimes, however, you need additional sections, or you need certain par-
ticular functions to appear in special sections. The section attribute specifies
that a function lives in a particular section. For example, the declaration:

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1029

extern void foobar (void) __attribute__ ((section (’’bar’’)));

puts the function foobar in the bar section.
Some file formats do not support arbitrary sections so the section at-

tribute is not available on all platforms. If you need to map the entire
contents of a module to a particular section, consider using the facilities of
the linker instead.

constructor/destructor
The constructor attribute causes the function to be called automatically

before execution enters main (). Similarly, the destructor attribute causes
the function to be called automatically after main () has completed or exit
() has been called. Functions with these attributes are useful for initializing
data that will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective C.
unused
This attribute, attached to a function, means that the function is meant

to be possibly unused. GNU CC will not produce a warning for this function.
weak
The weak attribute causes the declaration to be emitted as a weak symbol

rather than a global. This is primarily useful in defining library functions
which can be overridden in user code, though it can also be used with non-
function declarations. Weak symbols are supported for ELF targets, and also
for a.out targets when using the GNU assembler and linker.

alias (’’target’’)

The alias attribute causes the declaration to be emitted as an alias for
another symbol, which must be specified. For instance,

void __f () { /* do something */; }

void f () __attribute__ ((weak, alias (’’__f’’)));

declares ’f’ to be a weak alias for ’ f’. In C++, the mangled name for
the target must be used.

You can specify multiple attributes in a declaration by separating them
by commas within the double parentheses or by immediately following an
attribute declaration with another attribute declaration.

Some people object to the attribute feature, suggesting that ANSI
C’s #pragma should be used instead. There are two reasons for not doing
this.

1030APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

• It is impossible to generate #pragma commands from a macro.

• .There is no telling what the same #pragma might mean in another
compiler.

These two reasons apply to almost any application that might be proposed
for #pragma. It is basically a mistake to use #pragma for anything.

Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later
old-style non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */

#if __STDC__

#define P(x) x

#else

#define P(x) ()

#endif

/* Prototype function declaration. */

int isroot P((uid_t));

/* Old-style function definition. */

int

isroot (x) /* ??? lossage here ??? */

uid_t x;

{

return x == 0;

}

Suppose the type uid t happens to be short. ANSI C does not allow this
example, because subword arguments in old-style non-prototype definitions
are promoted. Therefore in this example the function definition’s argument
is really an int, which does not match the prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is portable to
traditional C compilers, because the programmer does not know whether the
uid t type is short, int, or long. Therefore, in cases like these GNU C allows
a prototype to override a later old-style definition. More precisely, in GNU

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1031

C, a function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the latter type
before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int

isroot (uid_t x)

{

return x == 0;

}

Note: GNU C++ does not support old-style function definitions, so this
extension is irrelevant.

Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because
many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify
’-traditional’. On a few systems they are allowed by default, even if you do
not use ’-traditional’. But they are never allowed if you specify ’-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For example:

#define foo(a) #a

#define lose(b) foo (b)

#define test$

lose (test)

The Character ESC in Constants

You can use the sequence ’\e’ in a string or character constant to stand for
the ASCII character ESC.

1032APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Inquiring on Alignment of Types or Variables

The keyword alignof allows you to inquire about how an object is
aligned, or the minimum alignment usually required by a type. Its syntax is
just like sizeof.

For example, if the target machine requires a double value to be aligned
on an 8-byte boundary, then alignof (double) is 8. This is true on many
RISC machines. On more traditional machine designs, alignof (double)
is 4 or even 2.

Some machines never actually require alignment; they allow reference to
any data type even at an odd addresses. For these machines, alignof

reports the recommended alignment of a type.
When the operand of alignof is an lvalue rather than a type, the value

is the largest alignment that the lvalue is known to have. It may have this
alignment as a result of its data type, or because it is part of a structure and
inherits alignment from that structure. For example, after this declaration:

struct foo { int x; char y; } foo1;

the value of alignof (foo1.y) is probably 2 or 4, the same as alignof

(int), even though the data type of foo1.y does not itself demand any align-
ment.

A related feature which lets you specify the alignment of an object is
alignof ((aligned (alignment))); see the following section.

Specifying Attributes of Variables

The keyword attribute allows you to specify special attributes of vari-
ables or structure fields. This keyword is followed by an attribute speci-
fication inside double parentheses. Eight attributes are currently defined
for variables: aligned, mode, nocommon, packed, section, transparent union,
unused, and weak. Other attributes are available for functions (see section
Declaring Attributes of Functions) and for types (see section Specifying At-
tributes of Types).

You may also specify attributes with ’ ’ preceding and following each
keyword. This allows you to use them in header files without being con-
cerned about a possible macro of the same name. For example, you may use
aligned instead of aligned.

aligned (alignment)

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1033

This attribute specifies a minimum alignment for the variable or structure
field, measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte bound-
ary. On a 68040, this could be used in conjunction with an asm expression
to access the move16 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to
create a double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that
forces the union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment
of functions is determined by the machine’s requirements and cannot be
changed. You cannot specify alignment for a typedef name because such a
name is just an alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or structure
field. Alternatively, you can leave out the alignment factor and just ask the
compiler to align a variable or field to the maximum useful alignment for the
target machine you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute spec-
ification, the compiler automatically sets the alignment for the declared vari-
able or field to the largest alignment which is ever used for any data type on
the target machine you are compiling for. Doing this can often make copy
operations more efficient, because the compiler can use whatever instructions
copy the biggest chunks of memory when performing copies to or from the
variables or fields that you have aligned this way.

The aligned attribute can only increase the alignment; but you can de-
crease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inher-
ent limitations in your linker. On many systems, the linker is only able to
arrange for variables to be aligned up to a certain maximum alignment. (For

1034APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

some linkers, the maximum supported alignment may be very very small.) If
your linker is only able to align variables up to a maximum of 8 byte align-
ment, then specifying aligned(16) in an attribute will still only provide
you with 8 byte alignment. See your linker documentation for further infor-
mation.

mode (mode)
This attribute specifies the data type for the declaration–whichever type

corresponds to the mode mode. This in effect lets you request an integer or
floating point type according to its width.

You may also specify a mode of ’byte’ or ’ byte ’ to indicate the mode
corresponding to a one-byte integer, ’word’ or ’ word ’ for the mode of
a one-word integer, and ’pointer’ or ’ pointer ’ for the mode used to
represent pointers.

nocommon
This attribute specifies requests GNU CC not to place a variable ”com-

mon” but instead to allocate space for it directly. If you specify the ’-fno-
common’ flag, GNU CC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initializa-
tion of zeros. A variable may only be initialized in one source file.

packed
The packed attribute specifies that a variable or structure field should

have the smallest possible alignment–one byte for a variable, and one bit for
a field, unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately
follows a:

struct foo

{

char a;

int x[2] __attribute__ ((packed));

};

section (”section-name”)
Normally, the compiler places the objects it generates in sections like

data and bss. Sometimes, however, you need additional sections, or you
need certain particular variables to appear in special sections, for example to
map to special hardware. The section attribute specifies that a variable (or
function) lives in a particular section. For example, this small program uses
several specific section names:

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1035

struct duart a __attribute__ ((section (’’DUART_A’’))) = { 0 };

struct duart b __attribute__ ((section (’’DUART_B’’))) = { 0 };

char stack[10000] __attribute__ ((section (’’STACK’’))) = { 0 };

int init_data_copy __attribute__ ((section (’’INITDATACOPY’’))) = 0;

main()

{

/* Initialize stack pointer */

init_sp (stack + sizeof (stack));

/* Initialize initialized data */

memcpy (&init_data_copy, &data, &edata - &data);

/* Turn on the serial ports */

init_duart (&a);

init_duart (&b);

}

Use the section attribute with an initialized definition of a global variable,
as shown in the example. GNU CC issues a warning and otherwise ignores
the section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global
definition because of the way linkers work. The linker requires each object
be defined once, with the exception that uninitialized variables tentatively go
in the common (or bss) section and can be multiply ”defined”. You can force
a variable to be initialized with the ’-fno-common’ flag or the nocommon
attribute.

Some file formats do not support arbitrary sections so the section at-
tribute is not available on all platforms. If you need to map the entire
contents of a module to a particular section, consider using the facilities of
the linker instead.

transparent union

This attribute, attached to a function argument variable which is a union,
means to pass the argument in the same way that the first union member
would be passed. You can also use this attribute on a typedef for a union
data type; then it applies to all function arguments with that type.

unused

1036APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

This attribute, attached to a variable, means that the variable is meant
to be possibly unused. GNU CC will not produce a warning for this variable.

weak
The weak attribute is described in See section Declaring Attributes of

Functions.
To specify multiple attributes, separate them by commas within the dou-

ble parentheses: for example,

__attribute__ ((aligned (16), packed))

Specifying Attributes of Types

The keyword attribute allows you to specify special attributes of struct
and union types when you define such types. This keyword is followed by
an attribute specification inside double parentheses. Three attributes are
currently defined for types: aligned, packed, and transparent union. Other
attributes are defined for functions (see section Declaring Attributes of Func-
tions) and for variables (see section Specifying Attributes of Variables).

You may also specify any one of these attributes with ’ ’ preceding and
following its keyword. This allows you to use these attributes in header files
without being concerned about a possible macro of the same name. For
example, you may use aligned instead of aligned.

You may specify the aligned and transparent union attributes either in a
typedef declaration or just past the closing curly brace of a complete enum,
struct or union type definition and the packed attribute only past the closing
brace of a definition.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of

the specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8));

typedef int more_aligned_int __attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each variable whose
type is struct S or more aligned int will be allocated and aligned at least on
a 8-byte boundary. On a Sparc, having all variables of type struct S aligned
to 8-byte boundaries allows the compiler to use the ldd and std (doubleword
load and store) instructions when copying one variable of type struct S to
another, thus improving run-time efficiency.

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1037

Note that the alignment of any given struct or union type is required by
the ANSI C standard to be at least a perfect multiple of the lowest common
multiple of the alignments of all of the members of the struct or union in
question. This means that you can effectively adjust the alignment of a
struct or union type by attaching an aligned attribute to any one of the
members of such a type, but the notation illustrated in the example above is
a more obvious, intuitive, and readable way to request the compiler to adjust
the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given struct or union
type. Alternatively, you can leave out the alignment factor and just ask the
compiler to align a type to the maximum useful alignment for the target
machine you are compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute spec-
ification, the compiler automatically sets the alignment for the type to the
largest alignment which is ever used for any data type on the target machine
you are compiling for. Doing this can often make copy operations more ef-
ficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables which
have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size
of the entire struct S type is 6 bytes. The smallest power of two which is
greater than or equal to that is 8, so the compiler sets the alignment for the
entire struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone ob-
jects of that type, the compiler’s ability to select a time-efficient alignment
is primarily useful only when you plan to create arrays of variables having
the relevant (efficiently aligned) type. If you declare or use arrays of vari-
ables of an efficiently-aligned type, then it is likely that your program will
also be doing pointer arithmetic (or subscripting, which amounts to the same
thing) on pointers to the relevant type, and the code that the compiler gen-
erates for these pointer arithmetic operations will often be more efficient for
efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can de-
crease it by specifying packed as well. See below.

1038APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

Note that the effectiveness of aligned attributes may be limited by inher-
ent limitations in your linker. On many systems, the linker is only able to
arrange for variables to be aligned up to a certain maximum alignment. (For
some linkers, the maximum supported alignment may be very very small.) If
your linker is only able to align variables up to a maximum of 8 byte align-
ment, then specifying aligned(16) in an attribute will still only provide
you with 8 byte alignment. See your linker documentation for further infor-
mation.

packed
This attribute, attached to an enum, struct, or union type definition,

specified that the minimum required memory be used to represent the type.
Specifying this attribute for struct and union types is equivalent to speci-

fying the packed attribute on each of the structure or union members. Speci-
fying the ’-fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.

You may only specify this attribute after a closing curly brace on an enum
definition, not in a typedef declaration.

transparent union
This attribute, attached to a union type definition, indicates that any

variable having that union type should, if passed to a function, be passed in
the same way that the first union member would be passed. For example:

union foo

{

char a;

int x[2];

} __attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within the dou-
ble parentheses: for example,

__attribute__ ((aligned (16), packed))

An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that
function’s code into the code for its callers. This makes execution faster by

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1039

eliminating the function-call overhead; in addition, if any of the actual ar-
gument values are constant, their known values may permit simplifications
at compile time so that not all of the inline function’s code needs to be in-
cluded. The effect on code size is less predictable; object code may be larger
or smaller with function inlining, depending on the particular case. Inlin-
ing of functions is an optimization and it really ”works” only in optimizing
compilation. If you don’t use ’-O’, no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like
this:

inline int

inc (int *a)

{

(*a)++;

}

(If you are writing a header file to be included in ANSI C programs, write
inline instead of inline. See section Alternate Keywords.)

You can also make all ”simple enough” functions inline with the option ’-
finline-functions’. Note that certain usages in a function definition can make
it unsuitable for inline substitution.

Note that in C and Objective C, unlike C++, the inline keyword does
not affect the linkage of the function.

GNU CC automatically inlines member functions defined within the class
body of C++ programs even if they are not explicitly declared inline. (You
can override this with ’-fno-default-inline’; see section Options Controlling
C++ Dialect.)

When a function is both inline and static, if all calls to the function are
integrated into the caller, and the function’s address is never used, then the
function’s own assembler code is never referenced. In this case, GNU CC does
not actually output assembler code for the function, unless you specify the
option ’-fkeep-inline-functions’. Some calls cannot be integrated for various
reasons (in particular, calls that precede the function’s definition cannot be
integrated, and neither can recursive calls within the definition). If there
is a nonintegrated call, then the function is compiled to assembler code as
usual. The function must also be compiled as usual if the program refers to
its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume
that there may be calls from other source files; since a global symbol can

1040APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated. Therefore, a
non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the
definition is used only for inlining. In no case is the function compiled on its
own, not even if you refer to its address explicitly. Such an address becomes
an external reference, as if you had only declared the function, and had not
defined it.

This combination of inline and extern has almost the effect of a macro.
The way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lacking inline and extern)
in a library file. The definition in the header file will cause most calls to the
function to be inlined. If any uses of the function remain, they will refer to
the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear
whether it is better to inline or not, in this case, but we found that a correct
implementation when not optimizing was difficult. So we did the easy thing,
and turned it off.

Alternate Keywords

The option ’-traditional’ disables certain keywords; ’-ansi’ disables certain
others. This causes trouble when you want to use GNU C extensions, or
ANSI C features, in a general-purpose header file that should be usable by
all programs, including ANSI C programs and traditional ones. The keywords
asm, typeof and inline cannot be used since they won’t work in a program
compiled with ’-ansi’, while the keywords const, volatile, signed, typeof and
inline won’t work in a program compiled with ’-traditional’.

The way to solve these problems is to put ’ ’ at the beginning and end
of each problematical keyword. For example, use asm instead of asm,
const instead of const, and inline instead of inline.

Other C compilers won’t accept these alternative keywords; if you want
to compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:

#ifndef __GNUC__

#define __asm__ asm

#endif

A.3. EXTENSIONS TO THE C LANGUAGE FAMILY 1041

’-pedantic’ causes warnings for many GNU C extensions. You can pre-
vent such warnings within one expression by writing � extension before the
expression. extension has no effect aside from this.

Incomplete enum Types

You can define an enum tag without specifying its possible values. This
results in an incomplete type, much like what you get if you write struct foo
without describing the elements. A later declaration which does specify the
possible values completes the type.

You can’t allocate variables or storage using the type while it is incom-
plete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum
more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.

Function Names as Strings

GNU CC predefines two string variables to be the name of the current func-
tion. The variable FUNCTION is the name of the function as it appears in
the source. The variable PRETTY FUNCTION is the name of the function
pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++ function
they may be different. For example, this program:

extern ’’C’’ {

extern int printf (char *, ...);

}

class a {

public:

sub (int i)

{

printf (’’__FUNCTION__ = %s\n’’, __FUNCTION__);

printf (’’__PRETTY_FUNCTION__ = %s\n’’, __PRETTY_FUNCTION__);

}

};

1042APPENDIX A. C COMPILER OPTIONS AND THE GNU C++ COMPILER

int

main (void)

{

a ax;

ax.sub (0);

return 0;

}

gives this output:

__FUNCTION__ = sub

__PRETTY_FUNCTION__ = int a::sub (int)

