
The Change Problem 
 

"The Change Store" was an old SNL skit (a pretty dumb 
one...) where they would say things like, "You need change for 
a 20? We'll give you two tens, or a ten and two fives, or four 
fives, etc." 
 
If you are a dorky minded CS 2 student, you might ask 
yourself (after you ask yourself why those writers get paid so 
much for writing the crap that they do), "Given a certain 
amount of money, how many different ways are there to make 
change for that amount of money?" 
 
Let us simplify the problem as follows: 
 
Given a positive integer n, how many ways can we make 
change for n cents using pennies, nickels, dimes and quarters? 
 
Recursively, we could break down the problem as follows: 
 
To make change for n cents we could: 
1) Give the customer a quarter. Then we have to make change 
for n-25 cents 
2) Give the customer a dime. Then we have to make change for 
n-10 cents 
3) Give the customer a nickel. Then we have to make change 
for n-5 cents 
4) Give the customer a penny. Then we have to make change 
for n-1 cents. 
 
If we let T(n) = number of ways to make change for n cents, we 
get the formula 
 
T(n) = T(n-25)+T(n-10)+T(n-5)+T(n-1) 



Is there anything wrong with this? 
 
If you plug in the initial condition T(1) = 1, T(0)=1, T(n)=0 if 
n<0, you'll find that the values this formula produces are 
incorrect. (In particular, for this recurrence relation T(6)=3, 
but in actuality, we want T(6)=2.) 
 
So this can not be right. What is wrong with our logic? In 
particular, it can been seen that this formula is an 
OVERESTIMATE of the actual value. Specifically, this counts 
certain combinations multiple times. In the above example, the 
one penny, one nickel combination is counted twice. Why is 
this the case? 
The problem is that we are counting all combinations of coins 
that can be given out where ORDER matters. (We are 
counting giving a penny then a nickel separately from giving a 
nickel and then a penny.) 
 
We have to find a way to NOT do this. One way to do this is 
IMPOSE an order on the way the coins are given. We could do 
this by saying that coins must be given from most value to least 
value. Thus, if you "gave" a nickel, afterwards, you would only 
be allowed to give nickels and pennies. 
 
Using this idea, we need to adjust the format of our recursive 
computation: 
 
To make change for n cents using the largest coin d, we could 
 
1)If d is 25, give out a quarter and make change for n-25 cents 
using the largest coin as a quarter. 
2)If d is 10, give out a dime and make change for n-10 cents 
using the largest coin as a dime. 
3)If d is 5, give out a nickel and make change for n-5 cents 
using the largest coin as a nickel. 



4)If d is 1, we can simply return 1 since if you are only allowed 
to give pennies, you can only make change in one way. 
 
Although this seems quite a bit more complex than before, the 
code itself isn't so long. Let's take a look at it: 
 
public static int makeChange(int n, int d) { 
 
    if (n < 0) 
        return 0; 
    else if (n==0) 
        return 1; 
    else  { 
        int sum = 0; 
        switch (d) { 
            case 25: sum+=makeChange(n-25,25); 
    case 10: sum+=makeChange(n-10,10); 
            case 5: sum += makeChange(n-5,5); 
            case 1: sum++; 
         } 
         return sum; 
     } 
} 
 
There's a whole bunch of stuff going on here, but one of the 
things you'll notice is that the larger n gets, the slower and 
slower this will run, or maybe your computer will run out of 
stack space.  Further analysis will show that many, many 
method calls get repeated in the course of a single initial 
method call. 
 
In dynamic programming, we want to AVOID these 
reoccuring calls. To do this, rather than making those three 
recursive calls above, we could store the values of each of those 
in a two dimensional array.  



 
Our array could look like this 
 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 
10 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 
25 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 
 
 
Essentially, each row label stands for the number of cents we 
are making change for and each column label stands for the 
largest coin value allowed to make change. 
 
Now, let us try to write some code that would emulate building 
this table by hand, from left to right. 
 
  public static int makeChangedyn(int n, int d) { 
 
      // Take care of simple cases. 
      if (n < 0) 
          return 0; 
      else if ((n>=0) && (n < 5)) 
          return 1; 
     
       // Build table here. 
       else { 
 
            int[] denominations = {1, 5, 10, 25}; 
            int[][] table = new int[4][n+1]; 
     
 
 
 
 



            // Initialize table 
            for (int i=0; i<n+1;i++) 
                table[0][i] = 1; 
            for (int i=0; i<5; i++) { 
                table[1][i] = 1; 
                table[2][i] = 1; 
                table[3][i] = 1; 
            } 
            for (int i=5;i<n+1;i++) { 
                table[1][i] = 0; 
                table[2][i] = 0; 
                table[3][i] = 0; 
            } 
 
           // Fill in table, row by row.  
           for (int i=1; i<4; i++) { // Iterate through 3 rows 
                for (int j=5; j<n+1; j++) { // Iterate through all cols 
                    for (int k=0; k<=i; k++) { // Iterate through all 
                // coin possibilities. 
 
                        // Only add if the coin isn't too big, also  
                        // prevents array out of bounds errors. 
                        if ( j >= denominations[k]) 
                             table[i][j] += table[k][j - denominations[k]]; 
                    }  
                } 
            }         
            return table[lookup(d)][n];  
       } 
  } 
 



Longest Increasing Sequence 
 

Consider the following problem: 
 
Given a sequence of numbers a1, a2, a3, ... an, find the length of 
the longest subsequence of numbers b1, b2, ... bm such that ab1, 
ab2, ab3, ... abm, is a strictly increasing sequence with b1 < b2 < 
b3 < ... < bm. 
 
Here is an outline to a recursive solution: 
 
Method prototype: 
 
public static int maxincseq(int [] numbers, int index, int min); 
 
This method should return the longest increasing sequence in 
the array numbers that starts from index index with all values 
greater than or equal to min. 
 
For example, given the array numbers [8, 2, 4, 6, 12, 9, 5, 8], 
and index of 2 and a min of 5 as parameters, the method 
should return 2 because the longest increasing sequence with a 
minimum value greater than 5 in it starting from array index 2 
is the sequence 6, 12. (This is tied with 6, 9, and 6, 8.) 
 
Can you think of a way to solve this problem assuming we have 
a solution to the LCS problem? 
 
Here we are given one sequence, but the LCS problem takes in 
two sequences as input. Can you think of a second sequence to 
generate along with the given sequence to input into the LCS 
problem? Why does this work? 
 
 



The idea shown above is an example of a reduction. A 
reduction is where you show that one problem is solvable, 
given that you have a solution to another problem. (This is a 
simplification, but one that will do for introducing the idea.) 
 
Now, let's consider solving the problem on its own using a 
recursive solution: 
 
The maximum sequence either includes numbers[index] or 
does NOT include numbers[index]. (Note that it can only 
include numbers[index] if numbers[index] > min.)  
 
If it does include numbers[index], then the maximum length 
sequence has the length 
 
1 + maxincseq(numbers, index+1, numbers[index]). 
 
If it does NOT include numbers[index], then the maximum 
length sequence has the length 
 
maxincseq(numbers,index+1,min); 
 
Now that we have this characterization, we can generate the 
following: 
 
public static int maxincseq(int[] numbers, int index, int min) { 
 
     if (index >= numbers.length) 
          return 0; 
     else if (numbers[index] <= min) 
          return maxincseq(numbers, index+1, min); 
      else 
          return max(maxincseq(numbers, index+1, min), 
   1+maxincseq(numbers, index+1, numbers[index]); 
} 



Use this recursive solution to come up with a dynamic 
programming solution to the problem. Your dynamic 
programming solution should only take in one parameter: the 
array. 
 


