
The Change Problem

"The Change Store" was an old SNL skit (a pretty dumb
one...) where they would say things like, "You need change for
a 20? We'll give you two tens, or a ten and two fives, or four
fives, etc."

If you are a dorky minded CS 2 student, you might ask
yourself (after you ask yourself why those writers get paid so
much for writing the crap that they do), "Given a certain
amount of money, how many different ways are there to make
change for that amount of money?"

Let us simplify the problem as follows:

Given a positive integer n, how many ways can we make
change for n cents using pennies, nickels, dimes and quarters?

Recursively, we could break down the problem as follows:

To make change for n cents we could:
1) Give the customer a quarter. Then we have to make change
for n-25 cents
2) Give the customer a dime. Then we have to make change for
n-10 cents
3) Give the customer a nickel. Then we have to make change
for n-5 cents
4) Give the customer a penny. Then we have to make change
for n-1 cents.

If we let T(n) = number of ways to make change for n cents, we
get the formula

T(n) = T(n-25)+T(n-10)+T(n-5)+T(n-1)

Is there anything wrong with this?

If you plug in the initial condition T(1) = 1, T(0)=1, T(n)=0 if
n<0, you'll find that the values this formula produces are
incorrect. (In particular, for this recurrence relation T(6)=3,
but in actuality, we want T(6)=2.)

So this can not be right. What is wrong with our logic? In
particular, it can been seen that this formula is an
OVERESTIMATE of the actual value. Specifically, this counts
certain combinations multiple times. In the above example, the
one penny, one nickel combination is counted twice. Why is
this the case?
The problem is that we are counting all combinations of coins
that can be given out where ORDER matters. (We are
counting giving a penny then a nickel separately from giving a
nickel and then a penny.)

We have to find a way to NOT do this. One way to do this is
IMPOSE an order on the way the coins are given. We could do
this by saying that coins must be given from most value to least
value. Thus, if you "gave" a nickel, afterwards, you would only
be allowed to give nickels and pennies.

Using this idea, we need to adjust the format of our recursive
computation:

To make change for n cents using the largest coin d, we could

1)If d is 25, give out a quarter and make change for n-25 cents
using the largest coin as a quarter.
2)If d is 10, give out a dime and make change for n-10 cents
using the largest coin as a dime.
3)If d is 5, give out a nickel and make change for n-5 cents
using the largest coin as a nickel.

4)If d is 1, we can simply return 1 since if you are only allowed
to give pennies, you can only make change in one way.

Although this seems quite a bit more complex than before, the
code itself isn't so long. Let's take a look at it:

public static int makeChange(int n, int d) {

 if (n < 0)
 return 0;
 else if (n==0)
 return 1;
 else {
 int sum = 0;
 switch (d) {
 case 25: sum+=makeChange(n-25,25);
 case 10: sum+=makeChange(n-10,10);
 case 5: sum += makeChange(n-5,5);
 case 1: sum++;
 }
 return sum;
 }
}

There's a whole bunch of stuff going on here, but one of the
things you'll notice is that the larger n gets, the slower and
slower this will run, or maybe your computer will run out of
stack space. Further analysis will show that many, many
method calls get repeated in the course of a single initial
method call.

In dynamic programming, we want to AVOID these
reoccuring calls. To do this, rather than making those three
recursive calls above, we could store the values of each of those
in a two dimensional array.

Our array could look like this

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4
10 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6
25 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6

Essentially, each row label stands for the number of cents we
are making change for and each column label stands for the
largest coin value allowed to make change.

Now, let us try to write some code that would emulate building
this table by hand, from left to right.

 public static int makeChangedyn(int n, int d) {

 // Take care of simple cases.
 if (n < 0)
 return 0;
 else if ((n>=0) && (n < 5))
 return 1;

 // Build table here.
 else {

 int[] denominations = {1, 5, 10, 25};
 int[][] table = new int[4][n+1];

 // Initialize table
 for (int i=0; i<n+1;i++)
 table[0][i] = 1;
 for (int i=0; i<5; i++) {
 table[1][i] = 1;
 table[2][i] = 1;
 table[3][i] = 1;
 }
 for (int i=5;i<n+1;i++) {
 table[1][i] = 0;
 table[2][i] = 0;
 table[3][i] = 0;
 }

 // Fill in table, row by row.
 for (int i=1; i<4; i++) { // Iterate through 3 rows
 for (int j=5; j<n+1; j++) { // Iterate through all cols
 for (int k=0; k<=i; k++) { // Iterate through all
 // coin possibilities.

 // Only add if the coin isn't too big, also
 // prevents array out of bounds errors.
 if (j >= denominations[k])
 table[i][j] += table[k][j - denominations[k]];
 }
 }
 }
 return table[lookup(d)][n];
 }
 }

Longest Increasing Sequence

Consider the following problem:

Given a sequence of numbers a1, a2, a3, ... an, find the length of
the longest subsequence of numbers b1, b2, ... bm such that ab1,
ab2, ab3, ... abm, is a strictly increasing sequence with b1 < b2 <
b3 < ... < bm.

Here is an outline to a recursive solution:

Method prototype:

public static int maxincseq(int [] numbers, int index, int min);

This method should return the longest increasing sequence in
the array numbers that starts from index index with all values
greater than or equal to min.

For example, given the array numbers [8, 2, 4, 6, 12, 9, 5, 8],
and index of 2 and a min of 5 as parameters, the method
should return 2 because the longest increasing sequence with a
minimum value greater than 5 in it starting from array index 2
is the sequence 6, 12. (This is tied with 6, 9, and 6, 8.)

Can you think of a way to solve this problem assuming we have
a solution to the LCS problem?

Here we are given one sequence, but the LCS problem takes in
two sequences as input. Can you think of a second sequence to
generate along with the given sequence to input into the LCS
problem? Why does this work?

The idea shown above is an example of a reduction. A
reduction is where you show that one problem is solvable,
given that you have a solution to another problem. (This is a
simplification, but one that will do for introducing the idea.)

Now, let's consider solving the problem on its own using a
recursive solution:

The maximum sequence either includes numbers[index] or
does NOT include numbers[index]. (Note that it can only
include numbers[index] if numbers[index] > min.)

If it does include numbers[index], then the maximum length
sequence has the length

1 + maxincseq(numbers, index+1, numbers[index]).

If it does NOT include numbers[index], then the maximum
length sequence has the length

maxincseq(numbers,index+1,min);

Now that we have this characterization, we can generate the
following:

public static int maxincseq(int[] numbers, int index, int min) {

 if (index >= numbers.length)
 return 0;
 else if (numbers[index] <= min)
 return maxincseq(numbers, index+1, min);
 else
 return max(maxincseq(numbers, index+1, min),
 1+maxincseq(numbers, index+1, numbers[index]);
}

Use this recursive solution to come up with a dynamic
programming solution to the problem. Your dynamic
programming solution should only take in one parameter: the
array.

