
1  Introduction
This paper accompanies a talk for the 2005 Libre
Software Meeting in Dijon, France. It provides an
introduction to the Coyotos/BitC project. Coyotos
is the name of a new operating system – the suc-
cessor to the EROS kernel. BitC is a new program-
ming language that we are using to construct Coy-
otos  so  that  we  can  apply  software  verification
technology.
In a narrow sense, Coyotos is simply the successor
to the EROS operating system.1 In the larger view,
the Coyotos project is attempting to fundamentally
change the way high assurance systems are con-
structed  and  maintained.  Just  as  open  source  is
changing  the  economics  of  software  production,
we believe that “open proofs” can change the eco-
nomics of high-assurance system construction. In
this paper we will try to provide some motivation
and context for the Coyotos project, explain the es-

1 Information on the EROS project is available at
 www.eros-os.org

sential technical difficulties, and describe the ap-
proach that we plan to take.
The Coyotos/BitC project is still in its early stages,
and much of what we think can be accomplished
still remains to be demonstrated. In contrast to our
other paper at this meeting, this paper describes a
research  effort that has not yet shown major re-
sults.  So far, the work has shown only very pre-
liminary success, and most of this success would
be meaningful only to someone who was knowl-
edgeable about software verification. However, we
hope that this will change very shortly with the re-
lease of the first BitC compiler.
While  verification  is  frequently  used  in  critical
software  systems,  attempts  to  construct  verified
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general-purpose  operating  systems  have  not  yet
succeeded. This paper discusses in detail why we
believe that the Coyotos effort may make greater
progress then previous attempts.
The Coyotos  effort inherits two useful successes
from the EROS effort:

� A verification proof that the architecture can en-
force  a  security  property  known  as  “confine-
ment.”2 Confinement can be used as a universal
foundation for information flow based security
policies. This verification means that if we can
succeed in verifying the  operating  system im-
plementation, we will actually have an “end to
end”  verification  of  security  policy  enforce-
ment.

� Our successful experience with model checking
certain properties of the implementation itself.3

It is this work that suggested to us that full veri-
fication might be feasible in connection with the
EROS kernel.

One of the authors, Scott Doerrie, has nearly com-
pleted an effort to automate the confinement  proof
using  the  TWELF  theorem prover.  In collabora-
tion with Eric  Northup, Scott has also identified
the essential elements needed to prove the correct-
ness of the address translation algorithm in EROS,
which is by far the most complex algorithm in that
kernel.
Given these early results, and the level of under-
standing of the problem that they have allowed us
to establish, we are now confident that it is feasible
to verify substantial security and correctness prop-
erties for the Coyotos kernel.

2  The Coyotos Architecture
From an architectural perspective, Coyotos is try-
ing very hard to be a conceptually small step from
the EROS architecture. Our goal is to simplify and
regularize certain aspects of the EROS design, and

2 Jonathan S. Shapiro and Sam Weber. “Verifying the EROS
Confinement Mechanism.” 2000 IEEE Symposium on Securi-
ty and Privacy, Oakland, CA, 2000.

3 Hao Chen and Jonathan S. Shapiro, “Using Build-Integrated
Static Checking to Preserve Correctness Invariants,” Proc
11th ACM Conference on Computer and Communications Se-
curity,  Washington, D.C., 2004

to  resolve some  important  issues  relative  to  the
EROS interprocess communication (IPC) mecha-
nism. In this section we briefly summarize the dif-
ferences between the two systems. Readers inter-
ested  in  a  more comprehensive treatment  of  the
EROS  architecture  may  wish  to  read  EROS:  A
Fast Capability  System.4 and also  Design  Evolu-
tion of the EROS Single-Level Store.5

2.1  Minor Differences

There  are  several  minor  differences  between
EROS  and  Coyotos.  In our  view,  each  of  these
changes  is  a  small  refinement  to  the  existing
EROS system, and does not introduce significant
new architectural or conceptual challenges.

2.1.1  Virtual Registers

One of the challenges in an efficient invocation in-
terface is the need to manage registers. Any invo-
cation arguments must be specified by the applica-
tion.  The  argument  descriptor  vector  is  large
enough that it does not fit in registers on the Pen-
tium family, and on other architectures it would be
inconvenient to unload a large number of registers
for this purpose.
Coyotos therefore borrows a design idea from L4,
and extends the hardware data registers with soft-
ware-defined “virtual registers.” These “registers”
are a per-process data area (a page) that is memory
mapped into the process address space at a virtual
address specified by the process. The kernel maps
this  page independently,  and  does not rely on a
valid application virtual address for references.
From the kernel implementation perspective, a sig-
nificant benefit of the virtual register design is that
the kernel does not need to perform address vali-
dation before referencing these values. While the
EROS implementation  was  able  to  optimize this
validation check efficiently, the larger invocation
descriptor used by Coyotos will not be able to eas-
ily support the same optimization. In addition, the

4 J.S. Shapiro, J. M. Smith, and D. J. Farber. “EROS: A Fast
capability System.” Proc. 17th  ACM Symposium on Operat-
ing Systems Principles. Published as Operating Systems Re-
view, 34(5):170-185. Dec, 1999.

5 J. S. Shapiro and J. Adams. “Design Evolution of the EROS
Single-Level Store.” Proc. 2002 USENIX Annual Technical
Conference. Monterey, CA, 2002.
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EROS strategy complicated the page fault path in a
way that was difficult to explain and maintain.
Coyotos virtual registers are used both to describe
the arguments to an invocation and to provide a
small region of “auxiliary registers” for return of
data values from the kernel. The design goal is to
ensure that all data results returned by the kernel
can be returned in virtual registers without requir-
ing an outgoing string operation.  This eliminates
the complications of validating the destination ad-
dresses of outgoing strings in the kernel path.
Virtual  data  registers  provide a  second  practical
advantage. Consider a call such as

fd->write(offset, count, buf);

our measurements indicate that it is very important
for the content of the buf argument to be received
at a carefully aligned address in the server that im-
plements files. If incoming buffer alignment can-
not  be  achieved,  an  additional  copy  of  the  file
block is required within the file server, which re-
duces file server performance by nearly a factor of
two.
The difficulty is that the offset and count argu-
ments must  also  be transferred.  On  architectures
like the IA-32, there aren’t enough hardware regis-
ters to transfer these values. They must be added
to  the  “string” argument,  destroying  the  desired
alignment. The introduction of virtual registers in
Coyotos eliminates this problem in most cases.

2.1.2  Capability Address Spaces

In EROS, every process had a limited number (32)
of software-defined capability “registers.” This de-
sign model was inherited from the KeyKOS sys-
tem.6 The idea in KeyKOS was that protection do-
mains (processes) should be small, and that a small
protection domain should not require access to a
large number of resources.
KeyKOS implemented 16 capability registers per
process. We found in EROS that this number was
too small: it did not provide a sufficient number of
capabilities to efficiently support  a standard run-
time environment for  processes.  To address this,
we increased this number  to 32 capability regis-

6 Information about the KeyKOS system may be found at
www.cis.upenn.edu/~KeyKOS.

ters. The basic model of KeyKOS, where process-
es should have a small number of capabilities, re-
mained unchanged. From the standpoint of imple-
mentation, the register model was very convenient,
and provided for an efficient capability invocation
path. The ability to perform parallel validation of
capability register indexes in the capability invoca-
tion path was one of the reasons the REOS imple-
mentation competed favorably with other high per-
formance IPC implementations, most notably L4.
As  EROS  matured,  we  found  that  the  register
model was limiting in several regards.
Scratch Registers. A small number of library op-
erations required the use of “scratch registers” for
intermediate capability values during computation.
Because the EROS process model did not define a
capability address space, it is not possible to save
capability registers to a “capability stack.” In con-
sequence,  these  library  routines  effectively  im-
posed global register allocation constraints.
Shared  Object  Servers As  the  EROS  project
started to implement a more complete system, we
found that certain object servers needed to retain
capabilities  to  the  objects  they  manage.  This  is
necessary in some cases to support object destruc-
tion.  Here again,  it  became necessary to  have a
large  space  of  capabilities.  Initially,  we  imple-
mented a library to manipulate a tree of capabili-
ties by hand. This is an excellent example of a li-
brary that requires two global capability registers:
one to point to the top of the tree  and the other
used for tree traversal.

Changes in Coyotos Late in the EROS design cy-
cle,  we added support for a kernel-supported ad-
dress space, but this was never  part of the process
model, and was never integrated into the invoca-
tion path.
In Coyotos, we initially decided to abandon capa-
bility registers and use a capability address space
instead. Subsequent consideration of how to sim-
plify the kernel interface, implementation, and ver-
ification has convinced us that the Coyotos process
model should include both capability registers and
a capability address space.
Preserving capability registers in the architecture
eliminates all of the cases where the kernel must
traverse a user address space in order to return a
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kernel result, which simplifies address space man-
agement within the kernel. Capability space traver-
sal  must  still  be  performed  for  incoming argu-
ments, but never for capability return values.

2.1.3  Mapping Structures

The EROS system used a software-defined hierar-
chical  mapping  structure  to  describe  address
spaces. Address spaces are defined as a tree (actu-
ally, a lattice) of “nodes” whose leaves are pages.
Sharing is permitted at any level of the  software
hierarchy.  The  implementation  guarantees  that
hardware page tables are shared wherever the per-
mission mechanisms of the hardware permit cor-
rect  sharing  to occur.  Optimizations  exist  in the
representation  to  allow  redundant  layers  of  the
translation tree to be eliminated in some cases, but
the structure is, in hindsight, relatively inefficient.
Like EROS, Coyotos uses a software-defined ad-
dress space structure, but the structure has been re-
designed to provide faster and more efficient trans-
lation. Where EROS uses a lattice of nodes, Coy-
otos uses a lattice of prefixed address translation
trees (PATTs).  Each PATT encodes the height  h
of the sub-space that it dominates. The valid byte
addresses within the subspace are from 0 to 2h-1.
Each PATT also encodes a residual value r, which
describes the  size  2r of  the  “holes”  beneath this
PATT.  Thus,  each  individual  PATT  completely
translates the bit positions h:r within an address.
The interesting part about the PATT design is that
PATTs are  fully associative. PATT translation is
accomplished by pattern matching rather than in-
dexing.  Each  PATT contains  16  capability  slots
that name  sub-spaces  (or,  at  the  bottom,  pages).
These are paired with a vector of 16 patterns that
select the appropriate capability slot during traver-
sal. In order to be matchable, a pattern must be a
multiple  of  2r (that is,  the  least  significant  r bits
must be zero) and must be less than  2h (that is,
must  match  some address whose value does  not
exceed h significant bits).
The fully-associative property of the PATT struc-
ture  is  expected  to  provide  significant  improve-
ments  in  address  translation  efficiency.  Coyotos
processes broadly divide into two categories: pro-
cesses with a very small total number of pages (of-

ten less than 16), which can be described by a sin-
gle  PATT,  or  more  conventional  processes  that
consist  of  sparse,  densely  populated  clusters  of
pages. PATTs are efficient for describing both the
sparse  and  the dense part  of  such  structures.  In
modern  instruction  sets,  the  pattern  comparison
can be unrolled and pipelined so that it is nearly as
efficient  (on  some  architectures,  more efficient)
than an indexing computation. Since full associa-
tivity  reduces  the  total  number  of  PATTs  tra-
versed, this is expected to provide an improvement
in  translation performance.  Clever  abuses  of  the
pattern values also allow us to encode user-level
fault handlers and background spaces without any
need for the “wrapper” nodes of the EROS transla-
tion system.

2.2  Major Changes

There are two major architectural changes in the
Coyotos architecture as compared to EROS.

2.2.1  Endpoints

The EROS and KeyKOS invocation mechanisms
are strongly oriented to interprocess procedure call
rather than generalized message send. One of the
important results of the EROS effort was the con-
clusive demonstration that this was a mistake. As
discussed  in  Vulnerabilities in Synchronous  IPC
Designs,7 there  are  a  variety  of  ways  that  syn-
chronous interprocess communication systems can
be exploited wherever two parties are not mutually
trusting. A broader consequence of that work was
the  realization  that  one  particular  feature  of  the
EROS/KeyKOS  design,  resume capabilities,  was
an  unnecessary  complication  given  the  need  for
higher level diligence in the usage model. This is
very helpful, because resume capabilities were in-
convenient to implement.
Where  the  EROS  interprocess  communication
used capabilities that directly name the destination
of an IPC, Coyotos replaces this with a first class
communication endpoint abstraction. The sending
process performs a send to an endpoint write de-
scriptor. The receiving process performs a receive
on an endpoint read descriptor. In comparison to

7 J. S. Shapiro, “Vulnerabilities in Synchronous IPC Designs.”
Proc. 2003 Symposium on Security and Privacy, Oakland,
CA. 2003.
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the EROS design, this requires one additional ar-
gument  to  the  receive  phase  of  the  invocation
mechanism (to describe the receive descriptor), but
in exchange we gain the ability to build services
using multiple threads or multiple processes effi-
ciently.  Endpoints  also  allow  the  set  of  serving
threads to be shrunk or expanded transparent to the
client.  Finally,  a  server  can use multiple receive
endpoints to deal with distinct service classes or
services.
This  change introduces  minor  modifications  into
the Coyotos exception handling protocol. It is ex-
pected that the L4ng (“next generation”) architec-
ture will also use an endpoint-based design.

2.2.2  Non-Blocking Notification

The  EROS  invocation  mechanism  was  syn-
chronous  and  blocking.  It  provided  no  simple
means for one process to say to another “when you
get around to it, there is some data waiting for pro-
cessing  in  some  previously  established  shared
buffer.” Constructing this mechanism at user level
requires the introduction of additional threads  of
control and associated context switches. Our work
on high-performance networking indicates that the
absence  of  an  atomic  notification  incurs  a  15%
penalty  on  overall  gigabit  networking  perfor-
mance.8

Coyotos incorporates a signal-like event mask into
the  endpoint  architecture.  Like  UNIX  signals,
these  should  be  imagined  as  a  software-defined
edge-triggered event mechanism. In contrast to the
UNIX design, Coyotos events are not preemptive;
they do not interrupt the normal flow of execution
in the receiving process. Instead, events are deliv-
ered to the process as a kernel-formulated message
when the process next performs a receive opera-
tion.

2.2.3  Open Issues

An open issue in the design of the Coyotos inter-
face is the need for per-process watchdog timers.
There  are  many  circumstances  where  processes
would like to receive a preemptive timer notifica-

8 Anshumal Sinha, Sandeep Sarat, and Jonathan S. Shapiro,
“Network Subsystems Reloaded: A High-Performance, De-
fensible Network Subsystem.” Proc. 2004 USENIX Annual
Technical Conference.

tion.  A scheduler activation design similar to the
one used in Nemesis is under consideration.9 It is
unclear how well this approach will integrate with
the  Coyotos  invocation  mechanism,  and  it  may
turn out that the use case is rare enough that this
function should not be directly supported by the
process model.

2.3  Summary

While the differences between Coyotos and EROS
imply  the  need for a completely new kernel  de-
sign,  the  only  large  change  from  a  conceptual
point of view is the introduction of the endpoint
architecture.  The verification  of  the  confinement
property for EROS should hold equally  well  for
Coyotos, which was a primary objective of the re-
vision. Also, Coyotos retains the “atomic kernel”
restriction of the EROS design. As we will discuss
below,  this restriction is  critical  for  successfully
verifying the implementation.

3  The Challenge of High Assurance
Since the early 1980’s, attempts have been made
to produce high-assurance operating systems and
applications.  While  three operating systems exist
that meet the A-1 certification criteria of the U.S.
Trusted  Computer  Systems  Evaluation  Criteria
(TCSEC)  standard,  none  were  certified  or  de-
ployed for general-purpose use, and one was can-
celed without ever coming to market.
With the exception of the Coyotos project, we are
aware of no current attempt to produce a  general
purpose system that could be certified at the EAL7
level  or  better  under  the  Common  Criteria.
Michael Hohmuth is leading an effort to create a
verified  implementation  of  L4  in  collaboration
with the NICTA group at the University of New
South Wales,  but  we  do  not know whether  that
project is part of a larger effort to deliver a com-
plete, certifiable system. Until recently, there were
two publicly acknowledged efforts in the United
States to produce an EAL7 system for specialized

9 I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D.
Evers, R. Fairbairns and E. Hyden. “The Design and Imple-
mentation of an Operating System to Support Distributed
Multimedia Applications.” Proc. IEEE Journal on Selected
Areas in Communications. 14(7):1280-1297. September
1996.
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applications  –  one  being  constructed  by  Green
Hills,  Inc.  and  the other by a  team at the  Naval
Postgraduate  School  in  Monterey,  California.
There are at least two additional projects underway
that  are  not  publicly  acknowledged.  Of  these
projects,  Coyotos  and  L4  are  the  only  ones  at-
tempting a verified implementation.
In early 2005, the EAL7 design objective for the
Green  Hills,  Inc.  kernel  intended  to  support  the
U.S. Joint Strike Fighter (JSF) program has been
reduced after concluding that an EAL7-certifiable
system  cannot  be  cost-effectively  achieved  in  a
timely fashion. It is now alleged in hindsight that
high assurance was not really required in the JSF
project,  but  the  scale  of  the  software integration
challenge,  the  amount of  software reuse, and the
large number of software developers involved sug-
gests that this is wishful thinking, and private dis-
cussions with several parties involved suggest that
this is a case of “post hoc, propter hoc.” In reality,
the Green Hills effort was approached unrealisti-
cally and simply cannot achieve any credible high
assurance certification. Faced with a choice of re-
ducing  objectives  or  (further)  delays  to  the  JSF
program, the decision was made to reduce the ob-
jectives.
If high-assurance systems are important, it seems
useful to ask why they have not appeared in the
market. In particular, does the failure lie in the ab-
sence of a market, the absence of a technology, re-
strictions of export control,  or the absence of an
economically  feasible  path  for  a  maintainable
product deployment?

3.1  Non-Impediments

Until 2000, U.S. export controls on secure operat-
ing systems effectively guaranteed that they would
not  be  produced. Software vendors  operate  in a
global marketplace. Since 2000, the responsibility
for export approval concerning high-assurance op-
erating  systems  has been  controlled by  the  U.S.
Department  of  Commerce.10 Today,  there  is  no

10 The original 2000 export control revision considered only the
liberalization of encryption software, which was restricted
under U.S. munitions export control provisions. The same
provisions restricted the export of any operating system en-
forcing mandatory access controls. Comments on the draft
regulations by Shapiro led to an initial decision that operating
systems enforcing mandatory control would be evaluated as

meaningful impediment to the export of a secure
operating  system,  provided  that  is  either  open
source or a “shrink wrapped” (commodity) prod-
uct. In practical terms, this means that no propri-
etary secure operating system is likely to succeed,
but an open source effort could be made widely
available.11 The challenge today  is  to get such a
system released before the export rules are tight-
ened.
In the absence of any generally-available product
offering, one can only speculate about whether a
market for high-assurance systems actually exists.
In the view of consumers, the major impediment
will be issues of software compatibility, but there
exist many applications where this is not (yet) a re-
quirement.  In particular,  the  convergence of  cell
phones, PDAs, MP3 players, and similar devices
still has no strongly defined application base, and
digital content providers might very well prefer to
deploy content on secure devices.  There are also
markets for distributed applications that cannot be
exploited effectively in the absence of an attested
platform running an operating system with mean-
ingful security guarantees.

3.2  Real Impediments

The real  impediments to high assurance systems
are a combination of technical, economic, and so-
cial factors.
In my discussions with Brian Snow (formerly with
the  U.S.  National  Security  Agency)  and  several
people associated with the U.S. National Informa-
tion Assurance Program (NIAP), the  cost of certi-
fying an EAL7 operating system has been consis-
tently estimated in the range of $7 Million (USD).
While this number is high, the real problem is that
it is not a one-time cost.

“encryption items” under the revised rules. The rules were
later extended to explicitly permit export of secure operating
systems as long as these are either open source or commodity
systems.

11 A proprietary, shrink wrapped product would need to be sold
through consumer channels, where it would be forced to
compete with Microsoft Windows and/or Linux. Given the
significantly higher cost associated with current high-assur-
ance development practices, and the fact that this product
would be incompatible with existing operating systems, it is
unlikely that it could compete successfully in a retail sales
environment.
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In current standards such as the Common Criteria,
(CC) the highest specified level of assurance calls
for a formally specified security policy and system
model, and a formal verification that the model en-
forces the policy. In 1985, when TCSEC was codi-
fied, verifying the actual implementation of an op-
erating system was significantly beyond the state
of the art. This was still true when the content of
CC was frozen. In consequence, CC requires only
that  the  implementation  of  the  system  must  be
“semi-formally”  validated  in  relationship  to  the
model.  The term “semi-formal” is not adequately
defined in the standard, but is generally taken to
mean  “with  mathematical  rigor,  but  with  corre-
spondence arguments made using semi-formal hu-
man language rather than mathematics.”
The difficulty with semi-formal correspondence is
that certification cannot be automated. In particu-
lar, the last step of correspondence must be vali-
dated by human analysis, which is both expensive
and  prone  to  error.  Seemingly  innocent,  local
changes  in  code  can  have  significant  non-local
consequences. Because of this, each new release of
the system requires an expensive re-evaluation and
re-certification. The “assurance maintenance” pro-
cess is certainly not as expensive as the initial ef-
fort, but it  adds sufficient cost (and more impor-
tantly,  delay)  to  the  process  to  make  a  product
non-competitive. Imagine that before each new re-
lease  of  an  operating  system,  the  vendor  had  to
pay for an expensive and uncertain six month re-
certification process whose outcome might add a
year  of  development  effort  before  the  product
could  be  released,  to  accomplish  objectives  that
were not part of the product specification and had
limited value to customers. This was typical in the
TCSEC  evaluation  process,  and  continues  (to  a
lesser degree) in the CC evaluation system.
Imagine  further  that  the  results  of  this  process
could be shockingly arbitrary. In the TCSEC pro-
cess, ambiguities in the standards themselves, cou-
pled with the fact that the evaluators are not (as a
rule) experienced software engineers, caused sig-
nificant and expensive differences in opinion about
what the  standards  actually mean and whether  a
given product satisfies the  requirements.  It  is  in-
structive  to  read  Marv  Shaeffer’s  retrospective
comments  on  the  shortcomings  of  the  TCSEC

evaluation processes. In the United States, at least,
potential vendors of high-assurance systems con-
cluded that the evaluation process was inconsistent
with cost-effective or timely product delivery.

3.3  The Essential Issues

Much of the problem can ultimately be traced to
three issues:

� The  absence  of  a  viable  software  verification
technology.

� A flawed  incentive structure  in the  evaluation
process.

� The assumption that the source code of a secure
operating system must be proprietary, and

A few years ago, I co-developed with David Chiz-
madia a course on high-assurance software devel-
opment. In addition to being an experienced high-
assurance evaluator. David was the editor and pri-
mary author of  the  TCSEC “Pink Book,”  which
defined  the  process  for  assurance  maintenance.
The process was educational on both sides, but one
conclusion from our effort stands out:

Unless the implementation of the system can be
verified  to  meet  requirements,  both  time  to
market  and  life  cycle  maintenance  costs  are
prohibitive.

Advances  in  automated  theorem  provers  since
1985 may now have crossed the threshold of via-
bility for fully verified implementations.12 If high-
assurance validation can be effectively automated
through verification, the entire structure of the cur-
rent assurance certification process becomes obso-
lete for high-assurance systems.
In particular, the economic incentives of the cur-
rent evaluation process are badly flawed. Today,
the vendor pays the evaluator. At least in the Unit-
ed States, the qualify of evaluation under CC has
progressively  decayed,  because  the  vendors  are
able to “bid down” the demands of the certification
process by making evaluation companies compete
for business. What is needed is a system in which

12 See, in particular: J. D. Guttman, J. D. Ramsdell, and V.
Swarup. “The VLISP Verified Scheme System.” Lisp and
Symbolic Computation, 8(1-2), 1995, pp. 33-110.
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the  customer pays for the evaluation – or at least
can  independently  check the result  at  reasonable
cost.
The current evaluation system is designed around
the assumption that software is highly proprietary.
This  assumption  seemed  plausible  in  1985,  but
must now be called into question. Today, there ex-
ists a thriving ecology of open source and “source
available”  software  systems,  including  operating
systems. In 1985, it was assumed that direct vali-
dation  by  the  customer  was  economically  pro-
hibitive, and the CC evaluation guidelines do not
require that customer re-evaluation be enabled. On
the contrary,  the trend in the US evaluation pro-
cess  has  been to  accept  an  increasing  degree of
non-disclosure. Today,  even the requirements list
need not be disclosed! The customer must accept
the word of a certifying agency paid by the vendor
who says that a system meets undisclosed require-
ments and is therefore trustworthy. This is simply
absurd.

3.4  An Alternative Approach

Consider, however, how this market might operate
under  revised  assumptions.  Suppose  we  assume
that:

� The source code of the system, including verifi-
cation objectives, theorem database, and verifi-
cation system are cheaply available to the cus-
tomer,

� The assurance objectives are required to be pub-
lic, and

� The process of re-executing a verification, given
the theorem database and the verification sys-
tem, is largely automated.

Under these conditions, it becomes possible to re-
structure  the  assurance problem. The role  of  the
certifier is now to certify the proof objectives and
the system design13 rather than the implementation.
Given these, it is possible for a customer to direct-
ly  verify  the  implementation,  and  even  to apply
limited local repairs without fear of violating secu-
rity requirements. It is also possible for the vendor
to  make  changes,  revisions,  and  enhancements

13 And, of course, the existence of at least one proof.

within fairly broad parameters. Time to market is
no longer impeded by a recurring and arbitrary hu-
man process. Total life cycle costs go dramatically
down because  verified  software  is  dramatically
less prone to flaws than conventional software.
In short, I am proposing that the best path to realis-
tic high assurance is to extend the concept of open
source with “open proofs.” Not only must the soft-
ware itself  be  openly  available,  but  its  formally
stated  requirements,  theorem  database  and  the
“proof trail” that demonstrates its correctness (with
respect to these requirements) must also be openly
available.  Strictly speaking this could be accom-
plished with a  “source available” approach, but I
do not believe that a half measure of this sort is
likely to succeed in the marketplace.
Many  readers  of  my column  Understanding  the
Windows EAL4 Evaluation14 have noted correctly
that the column is not so much a criticism of the
Windows evaluation as an indictment of the CC
assurance process. The practical demonstration of
software verification in the context of high-assur-
ance creates an interesting dilemma. There is over-
whelming evidence that existing low assurance ap-
proaches simply do not work at all. Existing lega-
cy systems, including Windows, Linux, the BSD
systems, and MacOS X, will not be within reach of
software verification technology for at least anoth-
er 30 years – and will not survive the process of
verification without change.
The overall objective of the Coyotos project is to
demonstrate  that  this  “open  proofs”  approach  is
practically  feasible,  and  to  provide  an  operating
system built around this concept.

4  The Need for BitC
If  we  are  going  to  verify  properties  about  pro-
grams, it is necessary to know what the programs
mean. That is, it is necessary to know in a mathe-
matical sense how every expression or statement is
evaluated and what effect it has on the program’s
execution state.

14 J. S. Shapiro, “Understanding the Windows EAL4 Evalua-
tion,” IEEE Computer, February 2003, pp. 103-105.
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4.1  The Problem with C/C++

Regrettably,  verification  is  impossible  in  C  or
C++.  Both  language  standards  acknowledge  a
large  number  of  semantic  ambiguities  in  their
specifications. For example, the order of argument
evaluation during procedure call is not specified,
and  the  behavior  of  the  operators  ++ and  – is
largely left as an exercise for the compiler writer.
Issues such as these can be avoided to some extent
by  programming in a  restricted language subset,
but this is not entirely satisfactory. The optimizer
is entitled to exploit the ambiguities in the specifi-
cation for purposes of optimization, and is free to
rearrange code as long as the result does not vio-
late the language specification.
More problematically, neither C nor C++ are type
safe. There is no guarantee that a pointer of type
T* actually points to a memory location containing
an object of type  T. Worse, there is no guarantee
that the object is still a well-formed object of type
T after any other pointer operation. In any code se-
quence of the form:

char *s;
T *t;
...
s[3] = ‘a’;
use t->x

it is impossible to know in general whether x is a
valid member of  t unless we can establish that  s
and t point to non-overlapping locations. Because
we cannot rely on the C type system, this must be
accomplished  by  reasoning  about  memory  loca-
tions. Unfortunately, the layout of objects in mem-
ory is one of the things that is not adequately spec-
ified  by  the  C and  C++  programming  language
standards.
Michael Hohmuth is attempting to define a seman-
tics  for  a  sufficiently  restricted  subset  of  C and
C++ for use in the L4ng (“next generation”) capa-
bility system. It will be interesting to see how well
he succeeds,  and whether the result  can be used
successfully  by  C  programmers  who  are  accus-
tomed to relying on unsafe idioms.
An  alternative  approach  has  been  taken  by  the
SPARK Ada system, which relies on a restricted,
unambiguous subset of the Ada programming lan-
guage. This language has been successfully used in

a  number  of  critical  applications  such  as  flight
control systems. Unfortunately, the restrictions im-
posed  include  removing  pointers  and  recursion
from the language. After a great deal of thought,
we  concluded  that  a  Coyotos  kernel  written  in
SPARK  would  be  difficult  to  maintain.  Also,  it
would rely on a  closed proof  system that would
make  our  “open  proofs”  objective  difficult  to
demonstrate.  Ultimately,  the  success  of  SPARK
builds on the fact that SPARK is targeted at a nar-
rowly  selected  (and  important)  class  of  applica-
tions. For Coyotos, we wanted to build on some-
thing more general.

4.2  Why Not ML?

If there is one programming language for which a
large body of successful verifications exists, it is
ML – or more precisely, the purely functional sub-
set of ML. ML has a precisely defined semantics, a
horrible  syntax,  and a  large number of  powerful
programming  features  including  strong  typing,
first-class procedures, and closures.
Regrettably, ML is unsuited to systems program-
ming.  It  has  no  mechanism  for  specifying  the
memory representation of data structures and weak
mechanisms  for  dealing  with  mutable  fields  in
these data  structures.  ML simply  cannot  express
some things that are essential in operating system
codes – such as the layout of a page table entry.
Adding the necessary features to an ML-like lan-
guage raises subtle  and difficult  language design
issues.
At  the  runtime  level,  ML  relies  strongly  on
garbage collection to avoid certain semantic diffi-
culties arising from explicit storage management.
Garbage collection may be a tool whose time has
come for general purpose programming, but there
exists no concurrent, real-time collector today with
a high enough mutator rate to be appropriate for
kernel and low level systems programming. Fur-
ther, all of the real-time collectors we know about
have unusual cases where their real-time guaran-
tees are violated. Our sense as system builders is
that we  want garbage collection for many of the
applications we plan to build, but that we also re-
quire the ability to write programs such as the ker-
nel that rely on managed storage. As we will short-
ly see, this is a demanding challenge.
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At the implementation level, some of the semantic
requirements  of  ML  cannot  be  efficiently  ex-
pressed in C. In particular,  ML requires “proper
tail  recursion,” so that looping constructs can be
expressed using recursion without requiring a very
large stack.  Unfortunately, generalized tail  recur-
sion cannot be implemented efficiently in C.15 Be-
cause we want to use C as an optimizing assembly
language for our early compilers, this requirement
needs to be relaxed.
Finally, the ML surface syntax is not designed to
be  embeddable.  Because  software  verification  is
an essential part of our effort, it is important to be
able to write programs about other programs. To
do  this,  it  is  exceptionally  convenient to  have a
syntax in which a  program fragment  can  be ex-
pressed  as data,  but written in a  notation that  is
convenient to the programmer. Current ML-based
theorem  provers  such  as  Isabelle/HOL  have  at-
tempted to achieve this type of syntactic embed-
ding for ML. The results are singularly unpleasant
to use.
Historically, the language family that has excelled
in this regard is the LISP family of languages, but
we require a language that is statically typed. One
way to view the  BitC programming  language  is
that it is a reworked ML that provides explicit con-
trol  over  representation  and  mutability,  adds  a
richer base of fixed-precision integer and floating
point types, and presents a LISP-like surface syn-
tax  to  better  support  embedding.  BitC  does  not
quite  achieve  the  degree  of  transparency  that  is
achieved in LISP, but there is a direct, immediate,
and unambiguous translation from the BitC surface
syntax to the corresponding AST syntax, and BitC
(like Scheme and ML) has a small enough number
of syntactic forms to make reasoning feasible.

4.3  Assembly Language

With all of this discussion about programming lan-
guages, a word should be said about the issue of
assembly language code.

15 See J.F. Bartlett. Scheme!C: A Portable Scheme-to-C
      Compiler. Technical Report WRL Research Report 89/1, Dig-

ital, Western Research Laboratory, Jan 1989.
Also:  D. Tarditi, P. Lee, A. Acharya. “No Assembly Re-
quired: Compiling Standard ML to C.” Letters on Program-
ming Languages and Systems. June 1992.

As UNIX demonstrated, there is a very small por-
tion of any kernel that must be written in assembly
language. EROS and Coyotos have even less as-
sembly  code  than  UNIX  does.  These  assembly
language  fragments  consist  exclusively  of  short,
straight-line  sequences  with  very  simple  control
flow.  For  example,  the  register  save  sequence
saves the machine registers and branches immedi-
ately to code in a higher-level language. In most
cases these  sequences are quite  short – no more
than 40 instructions. In each case, the required be-
havior is dictated precisely by the specification of
the microprocessor’s exception handling interface.
In principle, it is possible to analyze such restrict-
ed assembly code for correctness.16 We do not plan
to do so. The ultimate purpose of verification is to
establish confidence in the correctness of a system.
We believe that short, straight-line assembly lan-
guage fragments  can be adequately  validated by
human inspection.

5  Verification and Coyotos
Coyotos is a capability-based microkernel. It is the
successor to the EROS microkernel,17 and inherits
from the EROS kernel both high performance and
high security.
For the purposes of this paper, the structure of the
Coyotos system as a whole is not greatly impor-
tant. In this section, we focus on selected architec-
tural properties of Coyotos that make it friendly to
verification.

5.1  Mostly-Static Allocation

The Coyotos kernel does not perform dynamic al-
location of  data structures in the  style  of typical
kernels. At system startup time, the size of system
memory is determined and an initial allocation of
data structures is performed. Once this initializa-
tion-time allocation is established, the total number
of  data structures of  each type is (mostly)  fixed,
and is not (generally)  altered.  The kernel proper
does not contain calls to either  malloc() or free().

16 See, for example, Steve Crocker’s dissertation or some of the
assembly language algorithm verifications performed by
Computational Logic, Inc.

17 J. S. Shapiro, Jonathan M. Smith, and David J. Farber.
“EROS: A Fast Capability System.” Proc. 17th ACM Sympo-
sium on Operating Systems Principles. Charleston, SC. 1999
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When  data  structures  are  reclaimed,  they  are
placed on a type-specific free list.
The reason this is important is that there exist al-
gorithms that iterate  over all  kernel resources  of
some type T, and it is necessary to know that these
algorithms terminate. The simplest way to demon-
strate termination for these algorithms is to show
that (a) there existed at the start of the algorithm a
bounded number of  resources of  type  T,  (b) this
bound did not grow during the operation, and (c)
the  algorithm  visited  each  of  these  resources  at
most k times (for some bound k).
Of course, when the problem is described in this
way it seems obvious that the algorithm must ter-
minate.  Note,  however,  that  these  requirements
can very easily be violated if the kernel performs
general dynamic allocation. For example, if a net-
work  stack  dynamically  allocates  a  new  packet
buffer,  then the  set of  packet buffers has grown
during the current operation. Unfortunately, mem-
ory  allocation  tends  to  trigger  aging  algorithms,
and  aging  algorithms  tend  to  iterate  over  re-
sources,  so  the  addition  of  a  new packet  buffer
causes the strategy for establishing termination to
fail.
There are a small number of cases where Coyotos
allows  run-time  changes  to  the  system resource
configuration,  primarily involving  the  configura-
tion of cards that provide a memory-mapped inter-
face. For example, a memory region descriptor for
the  frame  buffer  is  inserted  dynamically  by  the
video  driver,  and  this  has  the  effect  of  adding
“pages” (which are a kernel resource) to the over-
all  system image long after initialization is com-
pleted. In a similar way, resources may be erased
by removal of a “hot plug” device.
The Coyotos kernel handles isolates these opera-
tions into carefully restricted system call paths to
ensure that they do not cause a termination bound
to be violated. For example, there is no operation
that adds a page and also modifies any page in the
same operation.

5.1.1  Verification Implications

It is tempting to think that the absence of dynamic
allocation (or more precisely,  the  absence of dy-
namic free) in the Coyotos kernel simplifies verifi-

cation. The absence of malloc() and free() does re-
move the need to consider memory allocation fail-
ure, and it eliminates problems of type safety (be-
cause the type of storage does not alter when an
object is reclaimed) and certain issues of termina-
tion.  However, it does  not eliminate problems of
alias analysis. No object can be reallocated until it
is known that there are no live pointers to the pre-
vious object that occupied the same data structure.
This turns out to be the essential impediment for
verification of managed storage.
However, because storage is typed we need only
consider as candidates those pointers that are type
compatible with the object being freed.  Also, the
atomic structure of the Coyotos kernel greatly sim-
plifies the aliasing problem by largely eliminating
the need to consider pointers from the stack to the
heap (see below).

5.2  Capabilities

Coyotos is a  capability system. A capability is a
protected pair consisting of a resource name and a
set of authorized operations (typically described as
“permissions”).  In Coyotos, these capabilities are
the  only permissions  mechanism recognized  and
enforced by the kernel.

5.2.1  Representation

Inside the kernel, capabilities have two representa-
tions: the “object on disk” format, in which the ca-
pability contains the unique object ID of the object
that it names, and the “in memory” format, where
the capability points directly to the in-memory ob-
ject. All capabilities to an in-memory object reside
on a circular list that is rooted at the target object.
This  means  that  if  the  target  object  is  removed
from memory or explicitly destroyed, it is possible
to efficiently locate all of the outstanding pointers
to the object.18

Indeed,  all of the kernel data structures have the
property that they can be pointed to from a very
small number of locations, and most of the kernel
data structures have the property that they reside in

18 To improve capability copy efficiency, we are considering an
alternative design similar to the Smalltalk object table design.
This would change several data structures in the kernel, but
would not eliminate the ability to efficiently invalidate capa-
bility-embedded pointers.
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some form of circular list that allows these point-
ers to be efficiently eliminated if the object needs
to be freed. As we will discuss below, this is an
important property for verification in the fact of
managed storage.

5.2.2  Access Checking

The basic rule for determining permission in a ca-
pability system may be stated as follows:

In order to perform an operation on an object,
an application must designate a capability that
it  holds,  the  capability must name the object,
and the requested operation must be permitted
by that capability.

Coyotos extends this rule slightly, because it im-
plements a capability address space with an unusu-
al access right (the “weak” right). In Coyotos, the
permissions rule is therefore augmented:

In order to perform an operation on an object,
an application must designate a capability (by
giving  an  address)  contained  in the  applica-
tion’s address space. The capability must name
the object. The  effective permissions are com-
puted by taking the permissions encoded in the
capability  and  applying  any  restrictions  ex-
pressed along the path. The requested operation
must be permitted under the resulting effective
permissions.

While there are other ways of expressing permis-
sions,  capabilities are a very pleasant mechanism
to reason about. The permissions rule given above
can be expressed formally as a path traversal in a
graph, which is easy to specify formally. Because
the code must actually visit each capability in the
path,  it is  relatively straightforward to show that
the path restriction is satisfied by the implementa-
tion.
A  Coyotos  kernel  operation  accesses only  those
objects that are designated by the invocation. This
designation is always explicit – even the traversal
of the invoking application’s address space is di-
rected  by  some  application-specified  address.
When an invocation is made on an object that is
directly  implemented  by the kernel,  at  most two
objects are modified: the object that is actually in-
voked by the operation,  and the process  that re-
ceives the result from the kernel.

Interprocess communication may modify a larger
number  of  objects,  because  string  transmission
may involve up to 64 kilobytes of contiguous data.
However, each modified receiver page is designat-
ed by a receiver-specified address range, and each
page address within the receive range names a ca-
pability (and an address space path) that permits
modification.
Surprisingly, the confinement verification does not
rely on any property other than this type of path-
based  restriction.  The  most  difficult  part  of  the
Coyotos kernel verification is showing the correct-
ness of the memory management mechanism, not
the basic enforcement of permissions.

5.2.3  Verification Implications

From a verification perspective, a capability-based
system is extremely helpful. Capability access re-
strictions are defined by path traversals in a graph.
Conceptually, this is a problem class for which we
have a wealth of formal modeling experience. One
of the major previous verification efforts,  PSOS,
was  also  constructed  on  a  capability-based  de-
sign.19

From the standpoint of verifying the  implementa-
tion of Coyotos, a path-based model is convenient.
The relationship between the resources and capa-
bilities traversed  and the algorithms used  to  tra-
verse them is fairly direct. In particular, it is very
easy to show that the resources traversed were all
“legal” in the view of the permissions system.
This description identifies a significant difference
between  verification  of  security  properties  and
verification  of  total  correctness.  It  is  relatively
straightforward  to  show  that  the  resources  tra-
versed in a given operation were permitted by the
permissions  system.  It  is  considerably  harder  to
show  that  the  correct resources  were  traversed.
The distinction lies in the fact that the access check
does not care which path is traversed, so long as it
is legal – an “all paths” analysis is sufficient (and
necessary). The correctness check requires a much
stronger specification of what constitutes the “cor-
rect” path, and a more careful analysis of the algo-
rithm to ensure that this path was actually visited.

19 R. Feiertag and P. Neumann. “The Foundations of a Provably
Secure Operating System.” Proc. 1979 National Computer
Conference. pp. 379-334, 1979.
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While  we ultimately plan to verify selected cor-
rectness properties in the Coyotos implementation,
our  initial  focus  will  be  on  security properties.
That is, we will initially show that the Coyotos im-
plementation is safe, even where it is not necessar-
ily correct. Later, we plan to extend our model of
the system to allow the definition and verification
of total correctness properties.

5.3  Atomicity

Like EROS, Coyotos is designed around the no-
tion of atomic operations. Every kernel operation
is indivisible, and the externally visible effects of a
kernel operation either happen completely or not at
all.20 Every kernel invocation has two clearly sepa-
rated phases: the setup phase and the action phase.

5.3.1  The Setup Phase

During the setup phase, preconditions are checked,
locks are acquired, and objects to be modified are
marked dirty. Data structures that have alternative
representations may be converted from one repre-
sentation to another. Internal caches may be modi-
fied by loading and flushing entries. All necessary
permissions are checked. If necessary, these activi-
ties  may  trigger  the  aging  logic  of  the  kernel
and/or initiate the fault-in of objects (conceptually
equivalent to reloading pages from the swap area).
However, during the setup phase, no semantically
observable modification to system state is permit-
ted. No error or result codes can be issued during
this phase, because no operation has logically oc-
curred.
During the setup phase, it is possible to initiate ac-
tivities such as aging or object loads that cause the
requesting process to block. In Coyotos, processes
that are blocked do not sleep with an active per-
process kernel stack. On wakeup, a sleeping pro-
cess  restarts  its  entire  system  call  from  scratch.
This implies that a sleeping process holds no locks
and  retains  no  pointers  to  kernel  resources.  A
pleasant  side  effect  of  this  design  is  that  kernel
deadlock is impossible.

20 Atomicity cannot be perfectly achieved for system calls in-
volving behavior that is dependent on real-world time or cer-
tain processor features such as global performance monitor-
ing, where values may be returned that are not based on ob-
servably deterministic behavior.

5.3.2  The Action Phase

On  every  control  flow  path  through  the  kernel,
there  is an  explicit  place  where the  setup  phase
ends and the action phase begins. We refer to this
point  as  the  “commit  point.”  After  the  commit
point,  the operation in progress must complete –
either by executing successfully or by returning an
error code. Additional resource acquisition is  not
permitted after the commit point. A resource error
during this phase is necessarily a design error in
the kernel, and results in a kernel halt.

5.3.3  Verification Implications

The atomic kernel design has two extremely useful
properties  for  verification  purposes:  the  empty
stack property and a degree of freedom from diffi-
cult aliasing problems.

Empty Stack  Because sleeping processes do not
retain a per-process kernel stack, an atomic kernel
design has a property that is very useful for verifi-
cation purposes: at the beginning and end of each
kernel invocation there is no live state on the ker-
nel stack, because the kernel stack is empty.
This  property  simplifies  reasoning  about  actions
such as object destruction and/or pageing. If  we
can show that an object is not referenced from the
heap (including globals), and we can show that an
object  is not referenced  by the remainder  of  the
current kernel invocation, it is safe to delete or re-
move it.

Alias Freedom  There are many difficult types of
analyses that arise in verification as a consequence
of “aliasing.” Aliasing is simply the existence of
multiple pointers (or references) to an object. It is
very easy for aliases of an object to come into ex-
istence, and it is very difficult to determine from
static analysis whether two pointers may point to
the  same  object.  This  becomes a  problem when
there is some sequence of control flow of the form:

ptr1->establishConstraint();
... // intervening procedure calls
ptr2->maybeInvalidateConstraint();
ptr1->actionRequiringConstraint();

That is, a sequence where some requirement is es-
tablished by a call using one pointer, a second call
is later made that might cause this constraint to be
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violated,  and then an operation is performed that
requires the constraint to still be in force. An obvi-
ous  example is paging  in  an object followed  by
running the kernel cleaning logic. The difficulty is
to establish that  ptr2 cannot name the same ob-
ject as ptr1. This is known to compiler writers as
“alias analysis.” In some cases, non-aliasing can be
difficult  to  establish  even  within a  single  proce-
dure.  It  is  extremely difficult to establish the ab-
sence of aliasing over a whole program, and prag-
matically  impossible  when  there  exists  a  large
number of global pointers that might point to these
objects.
However, the problem is largely eliminated in an
atomic action kernel by other means.  Operations
that  might  invalidate  a  constraint  are  permitted
only during the setup phase, and are divided into
two categories:

� Invalidating operations that are not permitted on
any object that is required by the current invo-
cation (e.g. Aging).

� Operations that cause the current invocation to
be restarted from scratch, guaranteeing that no
subsequent reliance on the constraint occurs.

In  either  case,  the  original  motivation  for  alias
analysis is eliminated.

5.4  Bounded Storage and Time

All operations in the Coyotos kernel have constant
bounds on both storage and time. There are no un-
bounded recursions in the kernel code, and no al-
gorithms that operate over more than a small con-
stant number of  objects.  This guarantees that  all
kernel  operations  terminate,  and  that  the  worst-
case depth of the kernel stack can be computed. In
principle,  the kernel code could be automatically
transformed to eliminate the need for a stack en-
tirely; the stack exists as a convenience to support
higher-level programming languages.

6  Challenges in Verification
Software verification is generally considered to be
difficult. It is especially difficult for programs (like
operating  systems)  that  make  extensive  use  of
global state. More precisely, it is difficult for pro-

grams  that  cannot  be  viewed  as  relatively  pure
state  machines.  Microprocessor  designs are  pure
state  machines,  and  there  have  been  some  very
large,  very  successful  verifications  of  micropro-
cessor  designs.  Similarly,  critical  flight  control
systems are typically designed as state machines,
and there have been successful verifications in this
domain as well. Both types of systems are charac-
terized by atomic action designs, and the issues in
verifying these systems are problems of specifica-
tion and scale.
Current  commodity  operating  systems  typically
are not viewed as state machines. If a kernel oper-
ation can block with a retained kernel stack, then
the behavior of the kernel can no longer be charac-
terized as a pure state machine. Instead, it must be
characterized by concurrent, communicating push-
down automata with significant amounts of shared
state, and we believe that this is the essential rea-
son why verifying their implementation has been
intractable.  Verification  of  concurrent  programs
remains in its infancy, and the combination of con-
currency and shared state raises the complexity of
verification by several orders of magnitude.
An  atomic  kernel  very  carefully  straddles  the
boundary between the pure state machine and the
communicating pushdown automata view: there is
a stack, but it is temporary (and could, in principle,
be eliminated by automated program transforma-
tion). There is statically shared state in the multi-
processor case, but there is no semantically impor-
tant dynamic sharing because of locking discipline.

6.1  Formal Specification

For  any  successful  verification,  both  the  system
state  and  the  meaning  of  the  operations  on  that
state must be formally specified.

6.1.1  Specifying System State

In the context of operating systems, specifying the
system state is not unusually difficult, but there are
some aspects that may not be obvious.
In particular, the Coyotos specification will  need
to very carefully deal with the difference between
“semantically observable” kernel state and internal
kernel  state.  By  “semantically  observable,”  we
mean “state that can alter the result of a kernel in-
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vocation.”  This  excludes  internal  state  changes
such as modifications to software caches that are
not exposed by the kernel interface specification.
However,  the  definition  of  “exposed”  is  a  bit
tricky, because things like cache modifications are
visible as changes in latency. The presence or ab-
sence of an entry in a software cache changes the
kernel control flow, and we will need to show that
in all cases these paths return the same answer.
Further, we will need to deal with the observability
of blocking. If a process sleeps in the kernel, this
has observable latency. It may also cause the be-
havior of  other processes  to  change as  a  conse-
quence of queuing: process A invokes process B,
and blocks until process B is in a receiving state.
Finally, there are elements of the processor such as
the cycle counter and performance monitoring reg-
isters that may give different answers when an op-
eration is restarted.
Because of these issues, we anticipate that defining
formally our notion of “observable  system state”
will prove to be challenging.

6.1.2  Specifying the Meaning of Operations

In order to answer questions about correctness, we
must first define some standard. That is, “correct-
ness  with  respect  to  what.”  Each  operation  per-
formed  by  the kernel  must  be  formally  defined,
and the proper range of outputs for each operation
under various conditions must be established. This
is tricker than it appears, because there are opera-
tional results that cannot be defined in terms of the
externally visible system state.
For example, if an operation uses an address, then
an address space must be traversed. Suppose that
somewhere in the traversal we encounter an object
that we must bring in from the disk. Suppose fur-
ther that the sector of the disk has become dam-
aged so that the object cannot be recovered.  We
must  formalize  this situation in order to  account
for one of the error codes that might occur from
this operation. At the same time, we would like to
know that this error can only arise if the broken
object is actually referenced by the operation.
And yet, the external system specification does not
really  have  any  notion  of  disk  sectors,  which

means  that  we  cannot  specify  these  conditions
without appealing to knowledge of the implemen-
tation – exactly the kind of thing that a specifica-
tion should not do. One possibility is to formalize
the  notion  of  disk  storage.  Another  is  to  add  a
boolean  value  to  each object  indicating  whether
the object has become “broken.” Deciding where
to stop in this type of modeling can be an interest-
ing challenge.

6.2  Termination and State

In most software verification efforts, it is critical to
show that programs terminate. Typically,  this re-
quirement arises with recursive algorithms, and it
is dealt with by showing that (a) the input is finite,
(b) each recursive step solves a smaller problem,
and (c) eventually, there must be some step at the
bottom that generates a result for the minimal case.
That is, the strategy is to show that there is an in-
ductive bound on the recursion depth.
Because all of the algorithms in the Coyotos kernel
have constant bounded space and time, it would be
relatively straightforward to show the existence of
such bounds. Unfortunately, operating system ker-
nels rely very heavily on the presence of mutable
state, and this forces us to make a difficult choice
in our verification approach:

� We could transform the kernel for verification
purposes into a “monadic” kernel, in which the
global state of the kernel is carried and returned
as a procedure argument.

� We can use a “small step” evaluation logic, and
examine how the state of the kernel evolves in-
ductively as the steps of the execution proceed.

This is a difficult choice. The monadic transform
approach would allow us to use verification tech-
niques that are in some respects simpler, and it re-
duces the search space that must be examined by
the verifier search engine. Unfortunately, the cor-
respondence  of  the  transformed  program  to  the
original is not obvious to the eye, and we are con-
cerned about maintainability under this approach.
The small step approach is the approach that we
have decided to take, primarily because it is better
suited to the  verification of programs with state.
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This  approach  will  certainly  work,  but  it  must
search a relatively large space of system state.
We are hopeful that the atomic operation nature of
the  Coyotos  kernel  will  significantly  reduce  the
search space that must be examined by the verifier,
Whether this will turn out to be true in practice re-
mains to be seen.

6.3  Proof Objectives

One  reason  that  software  verification  is difficult
has to do with the types of things that people are
attempting  to  prove.  Typical  verification  efforts
have focused on showing “total correctness” prop-
erties. The term “total correctness” means showing
that (a) the answer is correct, and (b) the algorithm
terminates. A second type of verification is “partial
correctness,”  where  the  verification  shows  only
that if the program terminates it returns the correct
result.  In kernels like  the Linux kernel (or Win-
dows, or FreeBSD), showing termination is diffi-
cult because of deadlock and concurrency issues.
In atomic action kernels,  showing termination is
generally simple.
However, defining correct behavior is more chal-
lenging, and we plan to approach our verification
efforts in three stages:

1. Show that  certain control  flow properties are
honored. For  example that  there is a  commit
point on every path and that no call is restarted
after the commit point.  These properties have
simple  specifications,  and we know from our
earlier model checking work that they can be
accomplished.

2. Show that memory safety and type safety are
preserved.

3. Show that access checks are performed and in-
formation flow restrictions are enforced. This is
also relatively simple to specify and check.

4. Begin to look at broader correctness properties
(total correctness).

The first set of properties can be achieved using
pure  control  flow  reasoning.  This  allows  us  to
check certain global properties of the implementa-
tion that are difficult to validate by hand. The sec-

ond class comes “for free” from our use of BitC,
though it requires us to demonstrate that BitC is
type safe.  The distinction between (3) and (4)  is
that in (3) we are not concerned with the question
“Is the answer correct?” We are only concerned to
determine  whether  authorized  data  sources  are
consulted as input to the computation.  In (4) we
must  define  precisely  what  the  correct  answer
should be.
Our observation from our previous work on model
checking is that a great deal of confidence can be
obtained from the first three categories. In particu-
lar, demonstrations of total correctness are not re-
quired to verify security properties. This raises the
question “where should verification stop?” It may
turn out that security properties should be shown
by verification  and correctness properties should
be shown by conventional testing.

7  A Look at BitC
Since we have now mentioned BitC several times,
it may be useful to give some sense of what BitC
looks like. Originally, our goal was to have a lan-
guage that a C programmer might look at and say
to themselves “I may not like the syntax but I un-
derstand  how to write  efficient  programs in this
language.” We hope that this is still possible, but
as we proceeded deeper into the design of BitC the
coherency of the language forced us into choices
that may not be comfortable to C programmers.
From the programmer perspective,  BitC is really
two  languages  that  are  mixed  together  in  the
source code. BitC/P is the programming language.
This is the language that is used to write programs.
BitC/L  is  the  logic language,  which  is  used  to
write  statements  about programs.  The  two  lan-
guages  share  a  common syntactic  framework  so
that they can be mixed in a fairly natural way.
Today, the definition of BitC/P is fairly complete.
We are in the process of formalizing its type sys-
tem  and  semantics,  after  which  we  will  define
BitC/L. The examples of BitC/L given here should
be taken as suggestive – the language may change
at any time.
Developers  interested  in  taking  an  early  look  at
BitC can obtain a copy of Swaroop Sridhar’s boot-
strap compiler from the Coyotos website.

16



7.1  A Simple Example

To give a simple example of BitC/P, here is the C
implementation  of  a  quasi-factorial  using  fixed
precision integer arithmetic:
int qfact(int x)
{
  if (x < 0)
    return -qfact(-x);
  if (x == 0)
    return 1;
  return x * qfact(x – 1);
}

The equivalent BitC code would be:
(define (qfact x:int32)
  (cond ((< x 0) (qfact (- 0 x)))
        ((= x 0) 1)
        (#t (* x (qfact (- x 1))))))

Like ML, BitC makes extensive use of type infer-
ence. The result  type of  qfact must be  int32,
because the input argument is of type int32, and
in  consequence the  only  possible  type selections
for the remaining variables and operations must be
int32. It is possible for the programmer to quali-
fy an arbitrary expression by declaring what its re-
sult type must be, but allowing the compiler to in-
fer the types helps to automate the propagation of
changes when types are revised.
In  practice,  of  course,  we  would  not implement
this algorithm recursively. In C, we would write:
int qfact(int x)
{
  int result = (x < 0) ? -1 : 1;
  x = abs(x);
  while (x > 0)
    result *= x--;
  return result;
}
In BitC, the inner loop is accomplished using tail
recursion:
(define (qfact x:int32)
  (letrec
    ((qfact1
      (lambda (x result)
        (if (= x 0)
            result
            (qfact1 (- x 1)
                    (* result x)))))
    (qfact1 (abs x)
            (if (< x 0) -1 1))))

But  in  practice  this  would  be  written  using  the
“named let” convenience syntax:
(define (qfact x:int32)
  (let loop ((x (abs x))
             (result
               (if (< x 0) -1 1)))
    (if (= x 0)
       result
       (loop (- x 1) (* x result)))))

The generated code is just as efficient as the C ver-
sion.

7.2  Differences from C

Ignoring issues of  syntax, BitC can be used in a
fashion that is quite similar to C. There are three
differences relative to C:

� BitC implements  tagged  unions,  and  makes it
syntactically impossible to use the wrong tag.

� BitC is polymorphic, which has an effect similar
to C++ templates,  but with stronger and more
general type checking.

� BitC has first-class, higher-order procedures.

Polymorphism and  higher-order  procedures  tend
to  introduce  a  need  for  garbage  collection.  The
BitC compiler has a mode in which restrictions are
imposed on the escape of higher-order procedures
to ensure that no inadvertent storage allocation is
performed.
One  particular  issue in  BitC is  the  need  to  deal
with managed storage. It is important to know that
when an object is destroyed there are no live point-
ers to it remaining in the program. We do not ex-
pect that such verifications will be feasible in gen-
eral,  and we are  not  attempting to  design a  lan-
guage that can accomplish this. Instead, BitC pro-
grams can be compiled in two modes:

� A mode that relies on garbage collection to en-
sure type safety and object reference safety.

� A mode that allows use of managed storage, but
where the compiler requires a human-supplied
proof that every object destruction is “safe.”
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The  proofs  required  in  the  second  category  are
generally  considered  to  be  extremely  difficult.
Much of the motivation for region-based memory
allocation in languages like Cyclone is the desire
to  avoid  these  verifications  where  possible.  Be-
cause of its atomic system call structure, and be-
cause  the  circular  linkage structures  provide ex-
plicit pointer traceability, we are hopeful that these
proof  obligations  can  be successfully  discharged
for Coyotos in particular.21

7.3  Representation

In contrast to Scheme or ML, BitC can be used to
describe data structures that require explicit con-
trol  over  representation.  For  example,  the  IA32
GDT structure can be declared as:
(defstruct SegDescriptor
  loLimit     : (fixint 16 32 #f)
  loBase      : (fixint 16 32 #f)
  midBase     : (fixint 8  32 #f)
  type        : (fixint 4  32 #f)
  system      : (fixint 1  32 #f)
  dpl         : (fixint 2  32 #f)
  present     : (fixint 1  32 #f)
  hiLimit     : (fixint 4  32 #f)
  avail       : (fixint 1  32 #f)
  zero        : (fixint 1  32 #f)
  size        : (fixint 1  32 #f)
  granularity : (fixint 1  32 #f)
  hiBase      : (fixint 4  32 #f))

Where  the  fixint form  indicates  the  size  and
alignment (in bits) of  the  field and whether it  is
signed. Given  this  structure  declaration,  one can
write code that manipulates the bit-level fields of
the hardware segment descriptors. For data struc-
tures like these whose alignment restrictions can-
not  be  described  within  the  language,  BitC pro-
vides a  mechanism to declare  variables as exter-
nally defined. This mechanism is considered un-
safe, and incurs an obligation for visual (human)
inspection of correspondence.

21 When a size-classified allocator can be assumed, Mark Miller
has identified a “fat pointer” based design that allows reliable
use of managed storage without requiring garbage collection.
This approach eliminates the problem of unsafe references at
the cost of introducing the possibility of runtime exceptions
by using versioned storage allocation in a fashion similar to
EROS “allocation counts.”

7.4  The Logic Language

The BitC compiler is both a compiler and a theo-
rem prover. In consequence, it is possible in BitC
to  write  judgments  in  the  BitC  logic  language
BitC/L. A BitC program is a combination of pro-
gram declarations written in BitC/P and proof obli-
gations (judgments) state in BitC/L.
There are three types of judgments that can be ex-
pressed in BitC:

1. Judgments about things that are stateless, such
as  procedures  that  do  not  reference  mutable
global variables.

2. Judgments  about  state-dependent  code  that
should be true for all programs.

3. Judgments about the evolution of state in some
particular program.

For example, suppose we have the standard defini-
tion of lists and lengths of lists:
; List with elements of like type:
(defunion (list ‘a):ref
  (cons ‘a (list ‘a))
  nil)

(define (first l)
  (case l
    ((nil nil))
    ((cons x y) x)))

(define (rest l)
  (case l
    ((nil nil))
    ((cons x y) y)))

(define (length l)
  (if (= l nil)
      0
      (+ 1 (length (rest l)))

These procedures  make  no  reference to  mutable
global variables, so they fall into the first category
of theorem. It is possible to write things like:
; theorem: length of rest <=
; length of list:
(defthm sublist-le
  (>= (length l)
      (length (rest l))))
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; theorem: rest of non-empty list
; is smaller than list
(defthm nonempty-less-smaller
  (implies (> (length l) 0)
           (> (length l)
              (length (rest l)))))

As an example of a theorem that should hold for
all  programs,  we  might  write  a  theorem  about
linked list elements:
(defthm safety-preserved
  (forall s:(state-of
              ‘(main ?argc ?argv))
    (implies
      (eval-result ‘(safe-state?) s)
      (eval-result ‘(safe-state?)
        (eval `(do-invoke ,?msg) s)))))

That is, for all states s that are valid states for the
program invoked by the expression:

(main argc argv)

(for any arguments), and for all messages, if evalu-
ating the procedure safe-state? yields true for
the  initial  state,  then  evaluating  the  procedure
safe-state? will yield true after the next kernel
invocation  is performed.  That  is,  operations per-
formed by the kernel are safety preserving.
These examples are admittedly contrived, and the
exact syntax for stating theorems in BitC/L is not
yet defined. However, this type of theorem intro-
duction and discharge can  be built  up into  very
powerful statements about overall  execution,  and
also constraints about intended execution contexts.
Systems like ACL2 and Isabelle/HOL have made
it possible to reason about stateless programs (and
in the case of ACL2, restricted stateful programs)
for some time. The novel aspect of BitC/L is that it
integrates into the  compiler the  ability to reason
about  stateful programs in unmodified form. The
programmer is therefore provided with three alter-
natives  for implementation  purposes  that can  be
mixed according to need:

� Restrict programs to constructs that are known
to be safe, but may not be suitable for some re-
quirements.

� Use  features  that  are  not  obviously  safe  from
the perspective of the compiler, but structure the
application in such a way that the safety of these

idioms can  be  independently demonstrated by
the programmer.

� Use the ability to introduce theorems to supply
global program invariants that restrict the use of
a  type  or  an  algorithm,  providing  additional
checks of correctness and/or usage.

To our knowledge, BitC is the first attempt to inte-
grate general purpose theorem proving into a pro-
gramming language in a way that provides a con-
tinuum of engineering choices for the developer.

8  Conclusion
It is too early to know whether the general verifi-
cation aspects of the Coyotos/BitC project will be
successful.  At a minimum, we should be able to
verify security  properties subject  to  the  assump-
tion of type safety, we should be able to reason un-
ambiguously  about  global  control  flow,  and  we
should be able to achieve the same degree of veri-
fication  capability  that  exists  in  systems  like
ACL2.  We should also be able  to  define a  lan-
guage for systems programs where the developer
can use unsafe idioms and managed storage, sub-
ject to the requirement that these idioms must later
be shown to be used in a safe way. If this is all that
we accomplish,  it  will  be  a  substantial  step  for-
ward  toward  demonstrably  robust  system  con-
struction.
Ultimately, the test of Coyotos and BitC will be to
learn  whether  we can establish a  logic  language
that is rich enough to enable a fairly complete sys-
tem specification, prove properties with respect to
this specification, and establish a mostly automat-
ed verification of correspondence between the sys-
tem model and the implementation. Coyotos itself
has several design and architectural properties that
merit optimism, and our discussions with several
people  more experienced  in verification  than we
are  confirm  that  these  properties  simultaneously
increase the  feasibility of verification and reduce
the scale of what must be verified.
Ideally, it will be possible to deeply restructure the
process of high assurance evaluation, placing the
customer back in a reasonable state of control over
the acquisition of high assurance and high reliabil-
ity systems.
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Further information on Coyotos can be found on-
line at www.coyotos.org.
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