
The Bossa Framework for Scheduler Development

Julia Lawall, DIKU, University of Copenhagen

Gilles Muller, OBASCO Group, Ecole des Mines de Nantes-INRIA, LINA

1



Target domain: Kernel process scheduling

Process scheduling: How an OS selects a process for the CPU.

I Many scheduling policies (round-robin, RM, EDF, etc.).

I No policy is perfect for all applications.

Implementing a scheduler requires:

I Understanding the scheduling policy.
I Understanding the target OS.

I Any error can crash the machine.

2



Our proposal: Bossa

A Run-Time System for integrating scheduling policies into a
legacy OS

I Generates event notifications.

I Defines a model of kernel scheduling requirements.

A Domain-Specific Language for implementing scheduling policies.

I DSL: A language dedicated to a particular domain.

I Provides high-level domain-specific abstractions that
I Hide technical details.

I Simplify programming.

I Enable verifications, optimizations.

3



Overview

I The process scheduling problem.

I The Bossa DSL.

I Preparing Linux for use with Bossa.

I Verification.

I Performance.

I Conclusion, ongoing work.

4



The process scheduling problem

CPU:

Other processes:

A process arrives.

5



The process scheduling problem

CPU:

Other processes:

A process arrives.

5



The process scheduling problem

CPU:

Other processes:

The process is elected.

5



The process scheduling problem

CPU:

Other processes:

Another process arrives.

5



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

The red process blocks.

5



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

The blue process is elected.

5



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

Another process arrives.

5



The process scheduling problem

CPU:

Other processes:

The red process unblocks.

5



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

The blue process blocks.

5



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

Which process is elected next?

5



Scheduling concepts

I Process states (running, ready, blocked, etc.).

I Election criteria.

I OS events (blocking, unblocking, etc.).

6



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



The Bossa DSL, by example

scheduler EDF = {
process = {

time period;
time wcet;
time current deadline;
timer period timer;

}
states = {

RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

}
ordering criteria = { lowest current deadline }
handler (event e) { ... }

}

7



Bossa event handlers

handler (event e) {
On block.* { e.target => blocked; }

On unblock.preemptive {
e.target => ready;
if (!empty(running) && e.target > running) {
running => ready;

}
}

On bossa.schedule {
select() => running;

}
...

}

8



Bossa event handlers

handler (event e) {
On block.* { e.target => blocked; }

On unblock.preemptive {
e.target => ready;
if (!empty(running) && e.target > running) {
running => ready;

}
}

On bossa.schedule {
select() => running;

}
...

}

8



Other features

Timers

I Used in EDF to wake a process at the beginning of its period.

Interface functions

I Used in EDF to pause a process at the end of its computation.

Attach/detach functions

I Used in EDF to check schedulability.

9



Preparing Linux for use with Bossa

Verifier &
Compiler

elected process

bossa.schedule

event

scheduler state
Standard

kernel
with

Bossa
events

Bossa
scheduler

kernel
module

Bossa
DSL policy

Linux Kernel

10



Problem: adding Bossa event notifications to Linux

Traditional approach: Modify code and create a patch file.

I Tedious and error-prone.

I Only applies to one version of the OS.

I Non-modular.

11



Problem: adding Bossa event notifications to Linux

Our approach:

Aspect-Oriented Programming (AOP)

I Where: e.g., around call to try to wakeup.

I What: e.g., call Bossa event rts unblock.

I Independent of line numbers and code details.

I Portable across multiple versions.

Components

I Describe the interface between the OS and the Bossa policy.

I Interface augmented with aspect rules.

12



Limitations of traditional aspect systems

Traditional aspect systems:

I Put code before, after, and around functions and variables.

I No mechanism for referring to code sequences.

Linux schedule function:

schedule (void) {
spin lock irq(&runqueue lock);
... process election ...
spin unlock irq(&runqueue lock);
... context switch ...

}

Extend AOP with Temporal Logic to describe code sequences.

Implemented using CIL and applied to Linux 2.4.18 and 2.4.24.

13



Limitations of traditional aspect systems

Traditional aspect systems:

I Put code before, after, and around functions and variables.

I No mechanism for referring to code sequences.

Linux schedule function:

schedule (void) {
spin lock irq(&runqueue lock);
... process election ...
spin unlock irq(&runqueue lock);
... context switch ...

}

Extend AOP with Temporal Logic to describe code sequences.

Implemented using CIL and applied to Linux 2.4.18 and 2.4.24.

13



Verification

A Bossa policy must respect the scheduling requirements of the
target OS.

Event types:

I Model of OS behavior.

I Created by the OS expert who integrates Bossa event
notifications into the OS.

I Example: unblock.preemptive for Linux.

[tgt in BLOCKED] -> [tgt in READY]

[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]

[tgt in RUNNING] -> []

[tgt in READY] -> []

14



Event type checking

unblock.preemptive for Linux.

[tgt in BLOCKED] -> [tgt in READY]

[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]

[tgt in RUNNING] -> []

[tgt in READY] -> []

Example definition:

On unblock.preemptive {
if (e.target in blocked) {

e.target => ready;
if (!empty(running) && e.target > running) {
running => ready;

}
}

}

Incorrect for Linux!
15



Event type checking

unblock.preemptive for Linux.

[tgt in BLOCKED] -> [tgt in READY]

[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]

[tgt in RUNNING] -> []

[tgt in READY] -> []

Example definition:

On unblock.preemptive {
if (e.target in blocked) {
e.target => ready;
if (!empty(running) && e.target > running) {
running => ready;

}
}

}

Incorrect for Linux!
15



Performance: lat ctx, context switch time
x

array size (KB)
processes

0
2

4 8 163264 0
4

4 8 163264 0
8

4 8 163264 0
16

4 8 163264 0
24

4 8 163264 0
32

4 8 163264 0
64

4 8 163264 0
96

4 8 163264

cycles
60000

40000

20000

0

Linux
Bossa

1

16



Performance: lat ctx, increase as compared to Linux

x

array size (KB)
processes

0
2

4 8 163264 0
4

4 8 163264 0
8

4 8 163264 0
16

4 8 163264 0
24

4 8 163264 0
32

4 8 163264 0
64

4 8 163264 0
96

4 8 163264

140%

130%

120%

110%

100%

90%

1

17



Conclusions

Specialized process schedulers needed for demanding applications,
but schedulers are not easy to implement in existing OSes.

Bossa provides:

I A DSL to ease the programming of scheduling policies.

I A Run-Time System implementing a scheduling interface.

I Verifications checking that a scheduling policy meets OS
requirements.

Availability:

I Several versions of Linux 2.4.

I Teaching lab, based on Knoppix.

18



Ongoing work

I Modular Bossa [GPCE05], with a modular type system.

I Development of verified schedulers within the B framework.

I BossaBox: PVR with programmable scheduling.

I Coccinelle: automated support for device driver evolution
[ACP4IS].

19



More information

I Framework [HASE 2005]

I Aspects and components [SIGOPS 2004]

I Verification [GPCE 2004]

I Generalization to a scheduler hierarchy [PEPM 2004]

http://www.emn.fr/x-info/bossa/

20


