
In short: just say NO TO DRUGS and maybe
you won’t end up like the Hurd people.

-- Linus
Torvalds

 Table of Contents

 Introduction
 Operating Systems
 The GNU project

 Operating Systems Design
 Monolithic
 Microkernels

 The GNU Hurd
 What it is
 The microkernel: GNU Mach
 Translators
 Security with GNU/Hurd
 Memory and GNU/Hurd

 The future	
 L4 (what it is, security, ...)

 Questions

 Introduction

 What’s an operating system ?
 Historical reasons
 Batch processing
 Unix and time-sharing
 Hardware abstraction layer
 Resource sharing
 Security infrastructure

 The GNU project
 Free Software
 Freedom 0: freedom to use
 Freedom 1: freedom to modify
 Freedom 2: freedom to distribute
 Freedom 3: freedom to distribute modified versions
 Birth of the GNU project
 Goals of the GNU project

 What is a kernel ?

 Many programs don’t need to access hardware directly.

 To increase security, and allow programs to share resources, protections are
needed at the hardware level.

 Hardware must at least provide two execution levels :
 Kernel mode, where everything is allowed
 User mode, where some instructions are forbidden or restricted

 So, we define two spaces at the software level:
 Kernel space : code running in kernel mode
 User space : other programs

 Monolithic kernel based systems

 Traditional design of Unix systems

 Every part common to each program is in kernel space :
 File systems
 Scheduler
 Memory handling
 Device drivers
 Network stacks

 Many system calls provided

 Problems :
 Coding in kernel space is hard
 Bugs can have strong side-effects
 Modularity problems

 Micro-kernel based systems

 Only parts which really require to be in a privileged mode are in kernel space :
 IPC (Inter-Process Communication)
 Basic scheduler
 Basic memory handling
 Basic I/O primitives

 Many critical parts are now running in user space :
 Scheduler
 Memory handling
 File systems
 Network stacks

 Interlude : Remote Procedure Calls

 Definitions
 RPC = Remote Procedure Call
 Two processes are involved: a client, and a server

 How it works
 The clients sends a message to the server (IPC), specifying which function it

wants to call, and with which parameters
 The server does his own computations
 The server then does another IPC to convey the result to the client if needed

 Stubs
 Stubs allow to call RPCs like normal function calls
 They encode and decode parameters and results (marshalling)
 Stubs are generated by programs like MiG, IDL4

 Monoserver systems

 One user-space program (server) handles everything that belonged to the kernel

 Examples :
 MachOS
 L4Linux

 Gains :
 More hardware independence
 Easier development
 Security slightly increased

 Problems :
 Still not modular
 Side effects still present

 Multi-servers systems

 All features are now split into a set of communicating processes

 Gains :
 Far more modular
 Far better fault-tolerance
 Development really easier

 Problems :
 IPCs between servers can be slow
 Well-defined interfaces needed

 The GNU Hurd

 Definition
 A set of servers, libraries and interfaces
 Vocabulary :
 The Hurd : the set of servers, neither an OS nor a kernel
 GNU or GNU/Hurd: the complete operating system

 The Hurd’s goals :
 Core of the GNU project
 The GNU manifesto
 URL : http://www.gnu.org/gnu/manifesto.html
 Give back freedom to users
 Stay compatible, but overthrow limits
 Interfaces clearly defined, and fixed
 Allow to replace parts of the system
 Suppress compatibility problems
 Examples: anonymous file creation, notification
 It is possible : we have the experience of Unices

 History

 1983 : Richard Stallman starts the GNU project
 1988 : Mach 3 is chosen as micro-kernel
 1991 : Mach 3 is released under a Free license
 1991 : Thomas Bushnell, BSG, founds the Hurd
 1994 : GNU/Hurd boots for the first time
 1997 : The Hurd version 0.2 is released
 1998 : Marcus Brinkmann creates Debian GNU/Hurd
 2002 : Debian GNU/Hurd is now 4 CDs
 2002 : Port of the Hurd to L4 is started
 2002 : POSIX threads are now supported
 2003 : L4Ka:;Pistachio 0.1 is released
 2004 : Ext2fs without the 2gb limit reach release candidate
 2005 : Ext2fs without the 2gb in Debian GNU/Hurd
 2005 : First program running on L4Hurd
 2005 : Initial Gnome port

 The Mach micro-kernel : history

 One of the first micro-kernel
 Project of Carnegie-Mellon to implement a relatively new theory
 A lot of new concepts
 IPC
 Designed for multiprocessor systems, and even clusters
 External pagers
 First system to clearly define tasks, threads, ...
 First micro-kernel to be successful, taken and improved by OSF/1 and other

research groups

 MachOS base
 Mono-server (UX being BSD-compatible)
 Still developed with xMach, but going farther from µ-kernels

 The Mach micro-kernel

 What Mach does
 Tasks being containers
 Complex IPC
 VMM: LRU decision algorithm
 Basic scheduler
 Device drivers

 GNU Mach
 GNU Mach 1.3
 GNU Mach 2.0
 OSKit based
 Slow, and buggy

 Ports
 Asynchronous IPC
 Receive right, send right

 Translators

 Problems : how to get a port ?
 Usually : naming services
 Problems
 Permissions handling
 Servers need to register
 Not so flexible

 Idea of the Hurd :
 We use the VFS as the naming service
 file_name_lookup() function
 Usage in ‘crash’

 Properties of a translator
 Program running like any other, with the identity and rights of the user launching

it
 Highly multi-threaded to answer different requests simultaneously
 Answer RPCs :
 File handling RPCs: io_*, dir_*, ...
 Others if needed: proc_*, ...

 Translator example

 (mmenal@drizzt, 42) ~ $ id
 uid=1004(mmenal) gid=1004(mmenal) groups=1004(mmenal),40(src),50(staff),100(users),518(friends),642(hurdfr)

 (mmenal@drizzt, 43) ~ $ settrans -cgap ftp /hurd/hostmux /hurd/ftpfs /
 (mmenal@drizzt, 44) ~ $ cd ftp
 (mmenal@drizzt, 45) ~/ftp $ ls
 (mmenal@drizzt, 46) ~/ftp $ cd ftp.fr.debian.org
 (mmenal@drizzt, 47) ~/ftp/ftp.fr.debian.org $ ls
 debian debian-cd debian-non-US

 (mmenal@drizzt, 48) ~/ftp/ftp.fr.debian.org $ ls debian/
 README README.mirrors.html README.non-US dists indices ls-lR.gz pool tools README.CD-manufacture
README.mirrors.txt README.pgp doc ls-lR ls-lR.patch.gz project

 (mmenal@drizzt, 49) ~/ftp/ftp.fr.debian.org $ head -n 2 debian/README
 See http://www.debian.org/ for information about Debian GNU/Linux.
 Three Debian releases are available on the main site:

 (mmenal@drizzt, 50) ~/ftp/ftp.fr.debian.org $ cd ..
 (mmenal@drizzt, 51) ~/ftp $ ls
 ftp.fr.debian.org

 (mmenal@drizzt, 52) ~/ftp $

 Security

 Authentication tokens
 What’s a token ?
 The ‘auth’ server
 Gift, destruction and creation of tokens

 POSIX compatibility
 UIDs : one kind of tokens
 Possibility to have many UIDs
 Possibility to gain and lose UIDs
 The ‘addauth’ program
 Suid programs and non-root translators

 Password server
 Principle
 Application : ssh or ftp server

 ’noauth’ programs
 The login shell
 Useful for untrusted content: gs, browser, ...

 Interlude: virtual memory (1)

 Virtual address space
 Allow kernels to implement protection
 Allow code to be loaded at arbitrary positions
 Allow to easily share memory between applications
 Translation done by hardware (MMU)

 Segmentation
 A memory address is now an SEG:OFFS couple
 A segment has a base, a size, and a protection mode
 Standard segments can be made transparent (code, data, stack)
 Allow to "swap" a full segment when there is a lack of memory

 Problems
 Granularity not small enough
 Physical memory fragmentation
 ;		Programs must be aware of segments

 Interlude: virtual memory (2) - paging

 Paging
 The virtual address space is linear and contiguous
 Memory is divided in small pages (4K on ia-32)
 Allows a far better granularity
 Transparent for programs

 A page can be :
 Active and mapped into a physical location (green)
 Disabled, and transferred to side-storage (yellow)
 Invalid (red)
 When a program tries to use a non-mapped page, it triggers a ‘page fault’

 Pagination with Mach (1)

 Principles
 Mach chooses which page to keep or discard
 The ‘pagers’ are in user-space
 When a program faults an IPC is sent to its ‘pager’

 Pagination with Mach (2)

 Usages
 Using different backing stores
 Transparent shared memory inside a cluster of computers

 Main usage in the Hurd: diskfs
 Principle of diskfs and ext2fs
 The famous 2GB limit
 Possible solutions
 Map all metadata through a tree of ‘smart’ pagers
 To have a mapping cache
 Ognyan solution: a mapping cache, with a static mapping of fixed metadata

 Current state

 It works...
 Those slides were displayed using GNU/Hurd
 Debian GNU/Hurd now fills 9 CDs
 We have POSIX threads, ...

 ... but it’s still being developed
 Many features are missing, and some limitations are still present
 There are still bugs: we need more testers
 Mach brings many limitations

 It’s slow
 Mostly because of Mach
 The code is still far from being optimized

 The future: L4

 L4Ka philosophy
 Defining basic and orthogonal concepts
 Only provide the most basic mechanisms
 Make the smallest possible micro-kernel (nano-kernel)
 Hazelnut: 12K once booted !
 Always keep performances issues in mind

 Very fast IPCs
 Synchronous IPCs but asynchronous RPCs
 Smaller code: less pollution of cache lines
 Optimization technics (address space multiplexing, ...)

 Very few things inside the kernel
 IPC primitives
 Scheduling primitives
 Memory handling primitives
 I/O primitives
 The whole Hazelnut: around 11 system calls

 L4 security (1)

 Principles
 With L4, every sensitive operation is done using IPCs
 Controlling IPCs allow to control the application

 Clans & Chiefs
 One clan = all the tasks created by the same one task
 The task creating a clan is called the chief
 A process can only speak directly to :
 a member of his own clan (a brother)
 his chief (his father)
 a member of the clan he created (a son)
 Others IPCs must travel through a chain of chiefs, who can drop or alter the

message

 L4 security (2)

 The new system : IPC redirect
 Principle
 Each thread can have a redirector controlling incoming and/or outgoing IPCs
 Redirectors can be changed at run-time
 Why a new system ?
 Clans & Chiefs was too complex and slow
 It was a decision upon OS policy, and thus shouldn’t be inside the kernel
 It is possible to implement Clans & Chiefs on top of it

 Possibilities
 Application monitoring (debugging, security, ...)
 Sand-boxing
 Allow to execute untrusted native code directly
 Applications: web, interactive content

 Conclusion

 References
 GNU
 http://www.gnu.org
 The GNU Hurd
 http://hurd.gnu.org
 Debian GNU/Hurd
 http://www.debian.org/ports/hurd
 HurdFr
 http://hurdfr.org
 #hurdfr on irc.freenode.net
 L4
 http://www.l4ka.org

 Thanks

 Copyright (c) Gaºl Le Mignot <kilobug@hurdfr.org>, 2002-2005
 Document available under the term of the GNU FDL on :
 http://kilobug.free.fr/hurd/pres-en/

 Questions ?

