
Legacy Reuse
and Improved System Dependability
via Virtual Machines

University of Karlsruhe, Germany
July 8, 2005

Joshua LeVasseur

© 2005 Univ ersity of Karlsruhe
1

Virtual Machine (VM)

• A software duplicate of the hardware

– Indistinguishable from real hardware

• Except for timing

• Statistically, most instructions execute
directly on real CPU

– Faster than full emulation

© 2005 Univ ersity of Karlsruhe
2

Basic VM Structure

Hypervisor + Virtual
Machine Monitor

Guest OS

Guest OS

L4 Microkernel

User-level VMM

Guest OS

Guest OS

© 2005 Univ ersity of Karlsruhe
3

Uses of VMs

Hypervisor

G
u

e
s
t
O

S

S
e

c
u
re

S
u

b
s
y
s
te

m

Hypervisor

G
u

e
s
t
O

S

R
e
a

l
T

im
e

S
u

b
s
y
s
te

m
Hypervisor

G
u
e
s
t
O

S

G
u
e
s
t
O

S

Server consolidation:

– Quality of service

– Strict isolation

– Incompatible software

– Fine grained restart

Hypervisor

G
u
e
s
t
O

S
G

u
e
s
t
O

S

© 2005 Univ ersity of Karlsruhe
4

Legacy Reuse

• VMs enhance legacy code

• Modular encapsulation

– Guest OS is nearly a black box

– Well defined interface (but sometimes buggy)

– Communication with the black box via platform
interfaces (network, disk, …)

• Traditionally, enhancement is via loadable
kernel modules

Current OS design is flawed.

The VM is a hack to fix the problems.

© 2005 Univ ersity of Karlsruhe
5

Virtualization Definitions

• Sensitive instruction:
– Destroys the illusion of virtualization

• Innocuous instruction:
– Safe to execute within a VM

• Privileged instruction:
– No side effects when executed at user level;

raises a fault

• Virtualizable ISA: all sensitive instructions
are privileged

© 2005 Univ ersity of Karlsruhe
6

Pure Virtualization

Hypervisor + VMM

Guest OS

Guest OS

mov ecx, cr3
pushf

virtual cr3

• Problems:

– Trapping is costly
(cycles, pipe flush)

– x86 isn’t fully
virtualizable

• VMware’s solution:

– Dynamic code
rewriting

– Difficult

© 2005 Univ ersity of Karlsruhe
7

Para-virtualization
• L4Linux, Denali, Xen

• Replace sensitive
instructions with hypercalls
– Avoids costs of trapping

– Batch state changes into
single hypercall

– Use apps unmodified

• Problems:
– Engineering effort

– Reduces trustworthiness of
guest OS

– Ties guest OS directly to a
single hypervisor

mov ecx, ebx
mov $1, eax
sysenter

push virtual_flags

mov ecx, cr3
pushf

Manual source
modifications

© 2005 Univ ersity of Karlsruhe
8

Pre-virtualization
OS source

code

Pre-virtualization

Instrumented
OS binary

Raw hardware

VMware

L4

Xen

LinuxWinNT

Runtime
migration

© 2005 Univ ersity of Karlsruhe
9

Pre-virtualization Basics

mov ecx, ebx
mov $1, eax
sysenter

push virtual_flags

mov ecx, cr3
pushf

Automated source
modifications

mov ecx, cr3
nop
nop

pushf
nop

Runtime
re-writing

© 2005 Univ ersity of Karlsruhe
10

Sensitive Memory and Pre-
virtualization

• Virtualization-sensitive state in memory:
– page tables, tss, idt, gdt, etc.

– memory mapped devices

• Use a profile-feedback loop to detect
– Instrument and annotate the instructions

that access sensitive memory

– Or compiler data-flow analysis?

© 2005 Univ ersity of Karlsruhe
11

In-Place Virtualization

Hypervisor + VMM

Guest OS

wedge

mov ecx, cr3
pushf

• The wedge creates a
virtual CPU

• Invokes hypercalls only
when necessary

• Frequent operations,
such as cli/sti,
emulated in the wedge

© 2005 Univ ersity of Karlsruhe
12

Driver Reuse

© 2005 Univ ersity of Karlsruhe
13

Support New OS Endeavors

• Unmodified device driver reuse:

– Binary or recompiled source

– Combine drivers from different OS’s

• Reuse without legacy constraints

• Isolate drivers

– Protect new OS from drivers

• Ex: 64+ CPU scalability

© 2005 Univ ersity of Karlsruhe
14

Overview

1. Motivation

2. Our solution

3. Virtualization issues

4. Evaluation

© 2005 Univ ersity of Karlsruhe
15

Motivation

• Building a new OS
– It needs device drivers

• Drivers are major component of OS
– Linux 2.4.21: 70% of code for ia32

• Implement new drivers
– Linux, BSD: device documentation

– Windows: many 3rd party drivers, no code

– Exotic or out-of-production hardware

© 2005 Univ ersity of Karlsruhe
16

VMM

Driver State Machine

Monolithic OS

© 2005 Univ ersity of Karlsruhe
17

Interface Categories

• Providing resources to drivers

– Pure virtualization API (e.g. VMware)

– Para-virtualization API (e.g. Xen)

• Passing requests to drivers

– Translation modules

© 2005 Univ ersity of Karlsruhe
18

VMMVMM

Resource Interfacing

Device
driver OS

Privileged mode hypervisorPrivileged mode hypervisor

ClientClient

© 2005 Univ ersity of Karlsruhe
19

Privileged mode hypervisorPrivileged mode hypervisor

Resource Interfacing

ClientClient

VMMVMM

Device
driver OS

• Pass-through memory

• Pass-through ports

• Virtual interrupts

© 2005 Univ ersity of Karlsruhe
20

Resource Interfacing

ClientClient

• Memory

• Scheduling

• Timer

• Address translation

• Interrupt control

• Cache attributes
VMMVMM

Device
driver OS

Privileged mode hypervisorPrivileged mode hypervisor

© 2005 Univ ersity of Karlsruhe
21

Resource Interfacing

Privileged mode hypervisorPrivileged mode hypervisor

ClientClient

VMMVMM

Device
driver OS

• Pass-through memory

• Virtual interrupts

© 2005 Univ ersity of Karlsruhe
22

Resource Interfacing

Privileged mode hypervisorPrivileged mode hypervisor

ClientClient

VMMVMM

Device
driver OS

• User-level device driver

• Address space isolation

• Reduced privileges

• Improved reliability

•via Isolation

• Improved availability

•via driver restart

• Modularity

•Integrates with new OS

• Legacy compatibility

•OS agnostic

• Simple engineering

© 2005 Univ ersity of Karlsruhe
23

Driver Interfacing

Device driver
OS Client

Device
driver OS

Mapper

Net

Disk

Mapper

producer

consumer

© 2005 Univ ersity of Karlsruhe
24

Recursive Driver Interfacing

Device driver
OS

Mapper

Device
driver OS

Mapper

Disk PCI

PCI

Net

DD/OS

Mapper

PCI

© 2005 Univ ersity of Karlsruhe
25

Virtualization Issues

1. DMA address translation

2. DMA and trust

3. Resource consumption

4. Timing

5. Shared hardware & recursion

© 2005 Univ ersity of Karlsruhe
26

DMA Address Translation

Client

Driver OS

VMM

Idempotent
pager

Physical
memory

Setup

DMA

How does the DD/OS

determine this physical

address?

Simple with para-virtualization: queries VMM

for translation.

phys_to_bus(addr) {

 if(paravirtualization)

 return hypervisor_phys_to_bus(addr);

 else

 return addr;

}

© 2005 Univ ersity of Karlsruhe
27

IO/MMU Address Translation

Client

Driver OS

VMM

Idempotent
pager

Physical
memory

Setup

physical virtual

IO/MMU

© 2005 Univ ersity of Karlsruhe
28

Careful DMA Address
Translation

Physical
memory

Driver OS

Driver OS

© 2005 Univ ersity of Karlsruhe
29

Timing

• DD/OS’s have virtualized time

• Devices unaware of virtual time

• Preemption could violate driver timing

• Heuristic: “obey” disabled interrupts

– Delay DD/OS preemption

– Hard preemption to avoid denial of service

© 2005 Univ ersity of Karlsruhe
30

Evaluation (w/ Para-virtualization)

L4Ka::Pistachio

L4Ka::Linux 2.6

Light weight para-
virtualization

L4Linux 2.4

Traditional L4Linux
port

VMM

© 2005 Univ ersity of Karlsruhe
31

Comparative Benchmarking

Device Driver
Linux

L4Ka::Pistachio

V
M

M

Device Driver
Linux

Device Driver
Linux

Client
Linux

benchmarksbenchmarksbenchmark

Native Linux

benchmarksbenchmarksbenchmark

© 2005 Univ ersity of Karlsruhe
32

Isolated Architecture

Device driver
OS

Mapper

Disk PCI

Client
Linux

block

net

Device
driver OS

Mapper
PCI

Net

DD/OS

Mapper

PCI

© 2005 Univ ersity of Karlsruhe
33

Consolidated Architecture

Device driver OS

Mapper

Disk

Client
Linux

block

net

Mapper

PCI Net

© 2005 Univ ersity of Karlsruhe
34

Device driver OS

Mapper

Address Mapping

Disk

Client Linux

Block kernel
address

physical
addresskernel

address

bus
address Page map

kernel
address

physical
address

© 2005 Univ ersity of Karlsruhe
35

Network Performance

Client
Linux

NetDevice driver
Linux

TTCP
benchmark

2.5% throughput loss,

1.46x CPU for send,

2.3x CPU for receive,

compared to native

Intel
gigabit

2.8 GHz

NIC
mapper

Net

© 2005 Univ ersity of Karlsruhe
36

Disk Performance

Client
Linux

blockDevice driver
Linux

Streaming
disk

benchmark

50.8 MB/s throughput,

0.9% std. deviation,

CPU 1.2-1.9x

2.8 GHz

block
mapper

block

Desktop
SATA

© 2005 Univ ersity of Karlsruhe
37

Disk CPU Utilization

0%

5%

10%

15%

20%

25%

30%

100 1000 10000 100000

readv(block size)

C
P
U

 u
ti
li
z
a
ti
o
n

isolated

consolidated

native

© 2005 Univ ersity of Karlsruhe
38

Memory Working Set

0

500

1000

1500

2000

2500

0 5 10 15

Time (s), 90 ms aggregate samples

KB

TTCP receive

TTCP send

kernel untar

steady state

© 2005 Univ ersity of Karlsruhe
39

Inherent CPU Utilization

© 2005 Univ ersity of Karlsruhe
40

PostMark Benchmark

PostMark

Internet mail
server

NFS

device driver
reuse

2.8 GHz1.4 GHz

343 second run time,

2.4% std deviation

© 2005 Univ ersity of Karlsruhe
41

PostMark NFS
CPU Utilization

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 50 100 150 200 250 300

Time (s), 10s sampling

C
P
U

 u
ti
li
z
a
ti
o
n

Native

Consolidated

Isolated

© 2005 Univ ersity of Karlsruhe
42

Engineering Effort: Network

Client
Linux

NetDevice driver
Linux

Intel
gigabit

NIC
mapper

Net 770 SLOC

1396 SLOC

7903 SLOC

© 2005 Univ ersity of Karlsruhe
43

Engineering Effort: Disk

Client
Linux

blockDevice driver
Linux block

mapper

block

Desktop
SATA

859 SLOC

546 SLOC

© 2005 Univ ersity of Karlsruhe
44

Conclusion

• Device driver reuse

– Binary drivers

– Source code drivers

• Run the original driver OS in a VM

– Isolated drivers

– Orthogonal design

• Little engineering effort for massive reuse

• Enhanced dependability

