
Jonathan S. Shapiro LSM, July 6, 20051

A Look at the EROS Operating System
Part I: A High Level View

Jonathan S. Shapiro

Managing Director,
The EROS Group, LLC and

Assistant Professor
Department of Computer Science
Johns Hopkins University

Jonathan S. Shapiro LSM, July 6, 20052

Copyright © 2005, Jonathan S. Shapiro.

Verbatim copying and distribution of this document in
any medium are permitted without royalty or fee,
provided that this copyright notice is preserved.

These slides were first presented as part of the
Libre Software Meeting, Dijon France, July 2005.

Jonathan S. Shapiro LSM, July 6, 20053

EROS Derivatives

EROS

Ended
June 2005 Coyotos

Research successor to EROS
Systems Research Laboratory,
Johns Hopkins University
www.coyotos.org

L4ng
Capability-based successor to L4x2
Karlsruhe, TU-Dresden, UNSW

CapROS
Building directly from the current
EROS source code (SourceForge)
www.capros.org

http://www.coyotos.org/
http://www.capros.org/

Jonathan S. Shapiro LSM, July 6, 20054

Goal: Defensible, Robust, Sound OS

Robust: uptime measured in years

Defensible:

Operates from a secure base

Provide mechanisms that allow applications to build on and
extend this base.

Provide a system structure in which secure design is the de-
fault behavior, not an extended effort.

Sound:

Based on a formally effective access control model

Ability to verify that security policy is enforceable
Enforceable, not enforced, because implementation is unverified.

Jonathan S. Shapiro LSM, July 6, 20055

Invert the Problem

How Would You Build a Vulnerable OS?

Suppose the goal were to maximize
compatibility for viruses and worms.

Jonathan S. Shapiro LSM, July 6, 20056

1. Maximize Authority

Give every program access to everything

Network

Shared file system

Awareness of other processes

Do not let the user have any control

Make every process run with the entire authority of the user

Use an access control system that mathematically
doesn’t work: ACLs [HRU 1976]

Later, try to rescue it with one that isn’t manageable
and still doesn’t work: SE-Linux (RBAC)

Jonathan S. Shapiro LSM, July 6, 20057

2. Impose No Resource Controls

Make quotas hard to use

This way, they will be disabled.

Make them second-class (a quota should be a resource)

Have it default to “no limits.”

Do not provide accounting for in-memory resources
(residency, #processes, CPU schedule)

Design resource controls so that they are relative
(priority based), rather than absolute.

More processes => more resources

No limits on fork()

Jonathan S. Shapiro LSM, July 6, 20058

3. Put Policy in Kernel

Standardizes methods for how to get the OS to help
compromise other programs.

When combined with relative resource controls, this is
extremely helpful to the attacker.

Allows each developer to invent their own, bad, incon-
sistent mechanism.

Jonathan S. Shapiro LSM, July 6, 20059

4. Have an “ admin” or “ root” role
Concentrates total authority at a single point of vul-
nerability.

Even better if anybody can become root because the
protection system is flawed [HRU 1976]

Make sure that root can violate all policies and all
guarantees!

Supports administrator error

Maximizes employment for expensive consultants

Jonathan S. Shapiro LSM, July 6, 200510

5. Maximize Communication

If two arbitrary processes are running on the same
machine, make sure that it is possible for them to
communicate without additional permissions

For example:

Create named pipe

Grant world RW permission

Both open

Use read/write to send data

Use ioctl(..., I_SENDFD, ...) to send descriptors!

Cumbersome, but effective

Jonathan S. Shapiro LSM, July 6, 200511

6. Use Scripting Everywhere

Make sure that most programs run scripting or config-
uration code (java, VB, javascript, but also .exrc,
/bin/sh, .emacs)

Ensure that programs are written in unsafe languages.

Provide no isolation.

Jonathan S. Shapiro LSM, July 6, 200512

7. Disable Authentication

Sometimes, my program relies on the fact that it is
supported by an authentic implementation of some
service.

Example:

I cannot keep a secret unless I know that the containing pages
are private to me

I cannot know that the pages are private unless I know that
they are allocated from an authentic storage allocator (one
which guarantees exclusivity)

Not an issue in UNIX. Critical issue in a capability
based multiserver system.

Especially for confinement (as we will shortly see)

Jonathan S. Shapiro LSM, July 6, 200513

8. Now Run Internet Explorer

Jonathan S. Shapiro LSM, July 6, 200514

8(b) ... or FireFox

Jonathan S. Shapiro LSM, July 6, 200515

Why are IE/Firefox Dangerous?

They obey hostile code

Run with total authority

Not just the user’s authority – UNIX and Windows are theo-
retically undefendable!!!

Executes on a system with no structural defenses

Windows/UNIX defense model is boundary defense

No effective runtime resource controls

No code safety, no verification...

No principled security design

Good programs cannot defend themselves

Jonathan S. Shapiro LSM, July 6, 200516

IE/FireFox, but also...

Emacs

GCC

OpenOffice

X-Windows

Java

Most Gnome/KDE Apps

Nautilus

Evolution

CVS

Java

CGI Scripts

Apache

IMAPD

NONE of these programs needs to be
vulnerable in order to function!!!

Jonathan S. Shapiro LSM, July 6, 200517

The (Sad) Objective Reality

UNIX-based operating systems are just as inse-
cure as Windows.

Open source is no defense

The “many eyeballs” theory (ESR) is wrong

Not all bugs are shallow

When inspecting, malice != error

Security is a problem of architecture

Neither Windows nor UNIX were architected to be secure.

You can have compatibility or security, but not both.

Jonathan S. Shapiro LSM, July 6, 200518

EROS

Jonathan S. Shapiro LSM, July 6, 200519

Essential Features

A pure, capability-based operating system

It is an object-based, not a client-server architecture

High performance invocation (includes IPC)

Transparent persistence

Built on a decidable access model

Questions of policy enforceability are decidable (and the out-
come is good)

Confinement mechanism is verified

Implementation is not (and won't be)

Jonathan S. Shapiro LSM, July 6, 200520

Term “capability” is due to Dennis and van Horn, 1966,
Programming Semantics for Multiprogrammed Compu-
tations

A capability is an (object name, access rights pair)

The term “object name,” in this context, has been
commonly (mis)understood to mean “the global name
of some system resource.”

A capability system is a pure object system

Capability: Classical Definition

Jonathan S. Shapiro LSM, July 6, 200521

History

GNOSIS start 1968 Tymshare, Inc.
GNOSIS 1972 Tymshare, Inc.
KeyKOS 1978 Key Logic, Inc.
EROS version 0 1991 Shapiro, Hardy Synergistic Computing Associates
EROS research 1 1999 Shapiro University of Pennsylvania
EROS research 2 2004 Johns Hopkins University
EROS version 1 2005 The EROS Group, LLC

Hardy et al.
Hardy et al.
Hardy et al.

Shapiro et al.
Shapiro et al.

Jonathan S. Shapiro LSM, July 6, 200522

Formal Models and Results

Anita K. Jones, 1973

Protection in Programmed
Systems

Harrison, Ruzzo, Ullman,
1976

Protection in Operating
Systems

Jones, Lipton Snyder,
1976

A Linear-Time Algorithm
for Deciding Security

Neumann, Boyer, et al.,
1980

A Provably Secure Operat-
ing System: The System,
Its Applications, and
Proofs

Shapiro, Weber, 2000

Verifying the EROS Con-
finement Mechanism

Notably not:

Lampson, Protection

Static snapshots reveal
very little about the evolu-
tion of dynamic systems

Jonathan S. Shapiro LSM, July 6, 200523

Higher-Level Features

Resource pools are first class

“Type-of” mechanism for capabilities

Supports capability identification

Explicit mapping structures

Supports user-level memory management

Supports Copy-On-Write

Hierarchical mechanism for resource allocation

User account gets a “space bank”

This is subdivided for programs that the user runs

Jonathan S. Shapiro LSM, July 6, 200524

Design Philosophy

Authority is explicit in capabilities

Kernel protected (object ID, permission) pair

All communication must occur over channels that are
described by capabilities

Authority propagation by introduction ⇒ transitive closure

Processes have no initial authority

All authority is explicitly granted.

No intrinsic access to file system, network, process list

No intrinsic right to memory pages, CPU, process creation

Applications divided into multiple processes

No “logical” kernel policy (well, very very little)

No root/admin concept

Jonathan S. Shapiro LSM, July 6, 200525

Key Ideas in EROS

Capabilities

Can they be fast on commodity hardware?

Are they an effective unifying mechanism for resource man-
agement

Persistence – is transparent persistence useful/good?

Confinement

Is confinement an effective basic building block in
robust/secure systems?

If so, can it be used pervasively enough

Kernel as extended microprocessor (state machine)

Design rests on an abstract formal access model and
op. semantics

Jonathan S. Shapiro LSM, July 6, 200526

Structuring Application Security

Divide Programs into two types

Programs that act (purely) for the user, and must be trusted

Applications (untrusted)

Ensure that when an application does something risky,
it must always act with user consent.

Really: user or reference monitor

Jonathan S. Shapiro LSM, July 6, 200527

Your Basic Browser Consists
Of

File Edit
http://www.hackme.orgURL:

This is a story about the three little hackers.
...
We huffed, and we puffed, and we blew the living hell out of
your Windows XPbased eCommerce system. Then we exhaled.
...
All of Bill's horses, and all of Bill's men, couldn't put your
business together again.

Jonathan S. Shapiro LSM, July 6, 200528

An “ Application Shell”

File Edit
http://www.hackme.orgURL:

Jonathan S. Shapiro LSM, July 6, 200529

And a Content Renderer

This is a story about the three little hackers.
...
We huffed, and we puffed, and we blew the living hell out of
your Windows XPbased eCommerce system. Then we exhaled.
...
All of Bill's horses, and all of Bill's men, couldn't put your
business together again.

Jonathan S. Shapiro LSM, July 6, 200530

Which May Recurse

This is a story about the three little hackers.
...
We huffed, and we puffed, and we blew the living hell out of
your Windows XPbased eCommerce system. Then we exhaled.
...
All of Bill's horses, and all of Bill's men, couldn't put your
business together again.

(Recursively)

Jonathan S. Shapiro LSM, July 6, 200531

Concept: Gate Keeper

A small, trusted program (the gate keeper) stands
between a hostile program and a precious resource.
There is no way that the hostile program can bypass
the gate keeper.

A gate keeper can implement any test it wants:

Consult the user

Run a test case

Check for a virus

Verify that the regression suite has been run

Any decision whose answer is yes or no

The tests don't need to be simple, but simple tests of-
ten have a lot of power.

Jonathan S. Shapiro LSM, July 6, 200532

Example: SaveAs Gate Keeper
Windows “Save As”

Application says:
fileName := SaveFileDialog(...);
fd = open(fileName);
write(fd, ...);
close(fd);

Maybe it's safe, maybe there is a
virus: program could open any file.

User has no way to know.

EROS “Save As”

Application says:

int fd = SaveFileDialog(...);
write(fd, ...);
close(fd);

“SaveFile” is a separate program,
SaveFileDialog() is a wrapper that
invokes it

SaveFile has:

Access to my file system

Access to me (so I can click)

Application has access to SaveFile

There is no way the application can
write a file without talking to
SaveAs.

Challenge: try to design a
virus that can corrupt my
files when SaveAs is
implemented this way.

Jonathan S. Shapiro LSM, July 6, 200533

Virus/Worm Compatibility

System Compatibility
Windows Excellent
Linux Excellent
OS-X Excellent
BSD Excellent

EROS Poor

Jonathan S. Shapiro LSM, July 6, 200534

EROS Constructor

Untrusted Code
Set of Initial
Capabilities

Space Bank

Yield
(Confined Process)

Provided by
developer at

install-time

Provided by client
at run-time

Constructor
(Trusted)

Jonathan S. Shapiro LSM, July 6, 200535

Why is this “ Defense in Depth”

Suppose I hack your web server. What can I do? Suc-
cessful attacks do not grant the attacker a rich plat-
form from which to expand their control of the ma-
chine.

The attack that compromises component X does not
generalize to component X+1: need sequenced, spe-
cialized attacks to gain any substantive control.

Attacks must proceed through a narrowly specified,
type-checked channel (the capability dispatch loop).
This is automatically generated.

Deals with “well formedness” bugs, not concept bugs.

Facilitates tracing at the level of application semantics

Jonathan S. Shapiro LSM, July 6, 200536

Fastest, but also Oldest

This morning, many “design pattern” questions were
presented

Some: “How do I use capabilities effectively to do X?”

Others: “How do I re-think my design assumptions and
restrictions so that capabilities can be exploited effectively

EROS captures 38 years of uninterrupted experience
with high-performance capability-based design

We host an open mailing list for discussions about
capability systems in general (not just EROS):

cap-talk@eros-os.org

mailto:cap-talk@eros-os.org

Jonathan S. Shapiro LSM, July 6, 200537

Summary of EROS Results

Jonathan S. Shapiro LSM, July 6, 200538

EROS Accomplishments

First fast capability system on commodity hardware
Shapiro, Smith, Farber. “ EROS: A Fast Capability System.” SOSP 1999

First system to demonstrate performance and defense
in depth simultaneously

Sinha, Sarat, Shapiro. “ Network Subsystems Reloaded.” USENIX 2004

Shapiro, Vanderburgh, Northup, Chizmadia “ Design of the EROS Trusted Window
System.” USENIX Security, 2004

First verification of (overt) confinement
Shapiro, Webber, “ Verifying the EROS Confinement Mechanism” , IEEE Symposium
on Security and Privacy, 2000

Microkernel vulnerabilities analysis
Shapiro, “ Vulnerabilities in Synchronous IPC” , IEEE Symposium on Security and Pri-
vacy, 2004

Jonathan S. Shapiro LSM, July 6, 200539

In English:

It's as fast or faster than conventional operating
systems (comparable to L4)

The primitives provide engineering options we haven't
seen before that provide protection with performance.

The resulting system is both empirically and formally
securable in practical terms.

We are primarily concerned with day-to-day users.

We aren't very concerned with covert channels

We are very concerned about robustness

Jonathan S. Shapiro LSM, July 6, 200540

(Biased) Comparison to L4

It's as fast or faster than conventional operating sys-
tems (comparable to L4)

The primitives provide engineering options we haven't
seen before that provide protection with performance.

The resulting system is both empirically and formally
securable in practical terms.

We are primarily concerned with day-to-day users.

We aren't very concerned with covert channels

We are very concerned about robustness

✓

L4ng addresses most of these issues

Jonathan S. Shapiro LSM, July 6, 200541

What You Should Infer

Microkernel architecture is bloody hard.

There is a reason that there were 15 active research
microkernels in 1990 and only two today.

There has been a convergence in microkernel design.
The fundamentals of this area are now mature and
reasonably well understood.

L4ng and Coyotos may be the last fundamentally new
microkernel architectures.

Jonathan S. Shapiro LSM, July 6, 200542

Break!

Jonathan S. Shapiro LSM, July 6, 200543

A Look at the EROS Operating System
Part II: EROS Architecture

Jonathan S. Shapiro

Managing Director,
The EROS Group, LLC and

Assistant Professor
Department of Computer Science
Johns Hopkins University

Jonathan S. Shapiro LSM, July 6, 200544

Everything is an Object

Kernel Implemented

Pages (hold data)

Nodes (hold capabilities)

Wrappers

Processes

Void object

User Implemented

Implemented by some
user process

One process can imple-
ment multiple objects,
multiple interfaces, or mu-
tiple facets on a single ob-
ject

(type, object-id, permissions) (type, object-id, facet-id)

Jonathan S. Shapiro LSM, July 6, 200545

For the L4 Fans

EROS is an object-based system, L4 is a server-based
system.

In EROS, the idiom is that programs invoke objects.

In L4, the idiom is that clients send messages to servers.

EROS does not have anything comparable to
map/grant/unmap.

EROS has a different primary objective

L4: Performance Uber Alles

EROS: Security Uber Alles

Or as Jochen once put it: “Fast, ya. But correct? Eh.”

Jonathan S. Shapiro LSM, July 6, 200546

Persistence

Entire system is periodically checkpointed in the
background

Motivation: simplest path to secure bootstrap

Do not need to argue successful reduction of authority

Argue instead that saved state is successfully resumed

Argue that any saved state resulted from a correctness-pre-
serving sequence of operations proceeding from an initially
safe state

Check the base case separately
Via assurance (trusted components)

Via reachability (initial capabilities)

Jonathan S. Shapiro LSM, July 6, 200547

Capability Rescind

Allocation Count

Most capability types carry a version number: the alloca-
tion count.

Every object likewise carries a version number.

Version is incremented on object rescind.

No match => capability is void.

Call Count

Special mechanism for call/return. Similar to allocation count

Every node has a call count. Incremented by every call.

Call generates a resume key that contains call count for
node.

No match => capability is void

Jonathan S. Shapiro LSM, July 6, 200548

Application View of Process State

Process State (capabilities)

Address space capability

Scheduling Capability

Register Set

Keeper (fault handler)
capability

Operating Environment

Constituents node

Space bank (storage
allocator)

Process creator

Capability Register Set

CR0 Void Capability

CR1..CR31 application de-
fined

Certain conventions im-
posed by RT library

Jonathan S. Shapiro LSM, July 6, 200549

What an App Can Do

Only one system call: invoke capability

Three variants: call, return, send

Consequence: operating environment of a process is
entirely defined by the capabilities it can invoke.

There is no canonical set of system calls. It is all object
interfaces.

Capabilities are kernel-protected. Applications cannot
“invent” them.

Jonathan S. Shapiro LSM, July 6, 200550

Application Environment

Address SpaceProcess

Jonathan S. Shapiro LSM, July 6, 200551

Application Environment

Address SpaceProcess

Keeper

Keepers implement exception
handling policy, are named by
“ start capability”

Jonathan S. Shapiro LSM, July 6, 200552

Application Environment

Address SpaceProcess

Keeper

Address space metadata (mapping structures)
is “ first class.” SW-defined mapping structure.

Jonathan S. Shapiro LSM, July 6, 200553

Application Environment

Address Space

Keeper

Keeper

Process

Keeper

Memory objects can have
keepers too

Jonathan S. Shapiro LSM, July 6, 200554

Modern Page Tables

Page
Table

Page
Directory

(page frame, type, W|S|V)

Object Name Permissions

4MB
Page

Conventional page table entries are capabilities!

Jonathan S. Shapiro LSM, July 6, 200555

It works, Use It
Page Table Tree

(Hardware Page Table)
Node Tree

(Software Page Table) Demand
Translation

Reverse
Dependency

Tracking

Jonathan S. Shapiro LSM, July 6, 200556

Processes

From the kernel perspective, interesting process
state is capability state. For this reason, process state
is represented as an arrangement of Nodes

New capability type “number capability” to hold the register
bits.

Each process has “capability registers”

Jonathan S. Shapiro LSM, July 6, 200557

Process State Address Space

EROS Data Structures

Page

Node Node

NodeNodeNode

HW Mappings

Pg
Dir

Pg
Table

HW Process State

Process
Struct

Jonathan S. Shapiro LSM, July 6, 200558

Primordial Services

User stuff

EROS System Structure

Kernel

Process
Address
Spaces

Trivial
Capabilities

Scheduling

Storage
Allocation

Address Space
Policy

Confinement Instantiation

Jonathan S. Shapiro LSM, July 6, 200559

Primordial Services

Space Bank

Process Creator

Constructor

Virtual Copy Space Keeper (VCSK)

Implements Copy-On-Write spaces

Jonathan S. Shapiro LSM, July 6, 200560

Space Bank

Allocates nodes, pages

Arranged in hierarchy

Rooted at “prime bank”

All banks implemented
by a single server

Managed storage: bank
destroy reclaims all
allocated space

Contract: storage allocated
by a bank is exclusively held
by requester. Will not be given to anyone else.

Prime
Bank

Per-User
Bank

Per-Subsystem
Bank

Jonathan S. Shapiro LSM, July 6, 200561

Process Creator

Given a bank, returns
a process allocated from
that bank's storage

A Process Creator can
identify the processes
that it creates, because
they are “branded.”

This enables us to do
server authentication:

“Is this an official space bank?”

“Is this the object server I know I can rely on?”

Not just the desired interface, but the desired implementation.

Process
Creator

Space
Bank

New
Process

Jonathan S. Shapiro LSM, July 6, 200562

Constructor (Process Instantiation)
Constructs instances of
some program

Tests for confinement

By testing initial capabilities

New instance can only write
to client at creation time.

Any further permission must
come from client

Definition is recursive

Capability to constructor of
confined thing is considered
safe

Constructor can hold
caps that client doesn't

“ Foo”
Construc-

tor

Client

Yield

Space
Bank

Initial
Capabilities

Schedule,
Working Set

Jonathan S. Shapiro LSM, July 6, 200563

Constructor: Things to Notice
Resources are supplied
explicitly

Concrete resources (pages,
nodes)

Multiplexing authority
(frames, CPU)

Resource pools are
subdivisible, first-class

Confinement is recursive

Kill -9 ⇒ destroy subspace

“ Foo”
Construc-

tor

Client

Yield

Space
Bank

Initial
Capabilities

Schedule,
Working Set

Jonathan S. Shapiro LSM, July 6, 200564

Constructor: Other Operations

Authenticate: “Did you create this process?”

This can also be used for “identify”

Design pattern:

Your app must invoke a client-supplied capability that is sup-
posed to be an X object.

Problem: client may not have provided an X object. Safety re-
lies on knowing the implementation (not just the interface) of
the object

Solution: arrange that the app already holds (by prior
construction) a constructor to X

Observation: most of these checks turn out to be
unnecessary.

Jonathan S. Shapiro LSM, July 6, 200565

Security Underpinnings
Technical Features

Confinement. Applications start with essentially no authority and
must be given the authority they require. This means that applica-
tions cannot disclose anything unless you let them. Even a word pro-
cessor needs to be granted the authority to store files.

Capabilities: a token of authority. If you want a program to have
some authority, you grant a capability to it. No capability, no authori-
ty. There is no “back door” around this mechanism.

Persistence: programs run forever, and can therefore implement
application-aware security policies (guards)

Fault factoring: needed to allow guarded sharing of state

Extensibility
Applications can use the same mechanisms that the core system
components use.

In addition to security, “guards” provide a basis for integrity man-
agement

Mechanisms for componentwise test and upgrade management

Jonathan S. Shapiro LSM, July 6, 200566

Applications: Confinement

Running an untrusted applet
Don't know what it will do.

Need to keep it away from rest of
system

Guard sensitive data
Standard “KSAM” component (record collection)

Used to store the password database

Want to make sure their aren't any leaks

Browser Applet

Security Enforcing

Confined

Possibly hostile, restricted access rights

Password
Manager

(Instance of)
Generic
Record
Collection

Jonathan S. Shapiro LSM, July 6, 200567

Private File Systems

EROS does not have a primitive concept of a file system. There is no
kernel-implemented file system at all.

The normal functions of a file system are implemented by application
code. Anybody can start one of these applications and create a private
file system. Sharing of this file system is subject to the control of policy
enforcement tools such as gate keepers.

Properly used, this means that files in my development workspace can-
not be revealed to applications outside the development environment:

My files

Compiler

Editor

Editor

Not Possible

IDESH Repository

Repository
Objects

OpenCM
Server

OpenCM Client

Window System

Workspace Files

Jonathan S. Shapiro LSM, July 6, 200568

Example: SaveAs Guard
Windows “Save As”

Application says:

fileName := SaveFileDialog(...);
fd = open(fileName);
write(fd, ...);
close(fd);
Maybe it's safe, maybe there is
a virus: program could open any
file.

User has no way to know.

EROS “Save As”

Application says:

int fd = SaveFileDialog(...);
write(fd, ...);
close(fd);
“SaveFile” is a separate
program, SaveFileDialog() is a
wrapper that invokes it

SaveFile has:

Access to my file system

Access to me (so I can click)
Application has:

Access to SaveFile
There is no way the application
can write a file without talking to
SaveAs.

Jonathan S. Shapiro LSM, July 6, 200569

DMZ (App Shell)

Browser Defenses

HTML Render

User FS

Network

Open/
Save-As
Guard

Net
Guard

Storage
Mgr

COW
Mgr

Confinement
Utility

JPG
Render

PNG
Render

Flow
Engine

User

System

Hostile

FrameBuf
Compositor

Jonathan S. Shapiro LSM, July 6, 200570

Persistent User Session

Login/Session Relationships

NetworkNet
Guard

DMZ (App Shell)

HTML Render

User FS
Open/

Save-As
Guard

Storage
Mgr

COW
Mgr

Confinement
Utility

JPG
Render

PNG
Render

Flow
Engine

User

System

Hostile

FrameBuf
Compositor

Session

User
Net

Guard

FrameBuf
CompositorSystem Login Session

Login
Agent

User Database:

(authinfo, session)}*

Severable

Jonathan S. Shapiro LSM, July 6, 200571

Unidirectional Cut&Paste Channel

Paste
Constructor

Client

Format X
Converter
Instance

Format X
Converter

Constructor

Format X
Converter

Constructor

Format X
Converter

Constructor

Paste
Constructor

Format X
Paste

Content

Source
Paste

Content

Paste

Request
Format X

Jonathan S. Shapiro LSM, July 6, 200572

Window System Structure

Compositor can always
read window frame buffer,
else client has defected

Compositor maintains per-
client session

Main compositor operation
is BitBlt

Client has per-session top
level window

Client does all rendering,
notifies compositor of
“update region”

Second client thread per-
forms “WaitNextEvent()

X11 can be done as appli-
cation

Client FrameBuf
Compositor

Hardware
Frame
Buffer

Session
Frame
Buffer

(ro)(rw)

Control Functions

Jonathan S. Shapiro LSM, July 6, 200573

EROS Domain Factored Network

Client Application

Network Stack

Enet Layer

Data

Headers

Hardware

User Level

Kernel

T

R

I

T: Timeout Helper

R: Receive Helper

I : IRQ HelperShared Region

Jonathan S. Shapiro LSM, July 6, 200574

Jonathan S. Shapiro LSM, July 6, 200575

Jonathan S. Shapiro LSM, July 6, 200576

Jonathan S. Shapiro LSM, July 6, 200577

Jonathan S. Shapiro LSM, July 6, 200578

Jonathan S. Shapiro LSM, July 6, 200579

Mandatory Controls in EROS

A
pp

lic
at

io
n-

Le
ve

l R
ef

er
en

ce
 M

on
ito

r
(T

ru
st

ed
)

System High

TS <satphoto, humint, iraq>

Public

Secret <satphoto>

Secret <humint, iraq>

TS <sub deploy, sosus, nie>

Secret <sosus>

Secret <snie>

Sensitive/NOFORN <humint, iraq> Sensitive/NOFORN <snie>

Jonathan S. Shapiro LSM, July 6, 200580

What EROS Got Wrong

Jonathan S. Shapiro LSM, July 6, 200581

Architectural Issues

Weak support for multithreading

Needed first-class communication endpoints

No non-blocking event mechanism

Cost 15% of gigabit networking performance

Memory mapping structure could have been better

Coyotos: Nodes ⇒ PATTs

Jonathan S. Shapiro LSM, July 6, 200582

Planning/Acceptance/Security Issues

Underestimated the need for a UNIX layer

Did not want to repeat the Mach mistake

Failed to understand just how badly designed the autoconf
system really is

Didn’t start porting applications early enough!

Source verification wasn’t feasible in 1991

Jonathan S. Shapiro LSM, July 6, 200583

Future Directions

Jonathan S. Shapiro LSM, July 6, 200584

2004 L4 Summit Meeting

January 2004

L4ng will be a capability system

Now provides descriptors for all system resources

L4ng is borrowing substantially all of the things that
worked in EROS, independently arrived at some of
the same problems and solutions that we did.

Strong collaboration between EROS and L4 groups

Extended “team” includes several groups interested
in formal verification.

Jonathan S. Shapiro LSM, July 6, 200585

L4ng/Coyotos Status

L4ng/Coyotos largely have a common resource model

One remaining fundamental disagreement: Should
capabilities be value types

Impacts the security model (issue in capability authentica-
tion)

Impacts the revocation model (issue with untrusted inter-
mediary)

Impacts resource allocation and resource faults

Impacts time to completion (big change relative to L4)

Coyotos team has decided to stick with capabilities
as value types in this round

We are engaged in kernel refinement, not kernel rearchitec-
ture

Jonathan S. Shapiro LSM, July 6, 200586

Questions

