Chapter Ten
 DISCRETE UNIVARIATE DISTRIBUTIONS

1. INTRODUCTION.

1.1. Goals of this chapter.

We will provide the reader with some generators for the most popular famllies of discrete distributions, such as the geometrlc, binomial and Polsson distributions. These distributions are the fundamental bullding blocks in discrete probability. It is impossible to cover most distributions commonly used in practice. Indeed, there is a strong tendency to work more and more with so-called generalized distributions. These distributions are elther defined constructively by combling more elementary distrlbutlons, or analytlcally by providing a multiparameter expression for the probabllity vector. In the latter case, random varlate generation can be problematic since we cannot fall back on known distributlons. Users are sometlmes reluctant to design thelr own algorithms by mimicking the designs for similar distributlons. We therefore include a short section with unlversal algorlthms. These are in the splrlt of chapter VII: the algorlthms are very slmple albelt not extremely fast, and very importantly, thelr expected time performance is known. Armed with the unlversal algorlthms, the worked out examples of this chapter and the table methods of chapter VIII, the users should be able to handle most dlstributions to thelr satisfaction.

We assume throughout thls chapter that the discrete random varlables are all integer-valued.

1.2. Generating functions.

Let X be an lnteger-valued random varlable with probabillty vector

$$
p_{i}=P(X=i) \quad(i \text { integer })
$$

An important tool in the study of discrete distributions is the moment generating function

$$
m(s)=E\left(e^{s X}\right)=\sum_{i} p_{i} e^{s i}
$$

It is possible that $m(s)$ is not finite for some or all values $s>0$. That of course is the main difference with the characteristic function of X. If $m(s)$ is finite in some open interval containing the origin, then the coefflcient of $s^{n} / n!$ in the Taylor serles expansion of $m(s)$ is the n-th moment of X.

A related tool is the factorial moment generating function, or slmply generating function,

$$
k(s)=E\left(s^{X}\right)=\sum_{i} p_{i} s^{i}
$$

which is usually only employed for nonnegative random varlables. Note that the serles in the deflintion of $k(s)$ is convergent for $|s| \leq 1$ and that $m(s)=k\left(e^{s}\right)$. Note also that provided that the n-th factorial moment (i.e., $E(X(X-1) \cdots(X-n+1)))$ of X is flnlte, we have

$$
k^{(n)}(1)=E(X(X-1) \cdots(X-n+1)) .
$$

In particular $E(X)=k^{\prime}(1)$ and $\operatorname{Var}(X)=k^{\prime \prime}(1)+k^{\prime}(1)-k^{\prime 2}(1)$. The generating function provides us often with the slmplest method for computing moments.

It is clear that if X_{1}, \ldots, X_{n} are independent random variables with moment generating functions m_{1}, \ldots, m_{n}, then $\sum X_{i}$ has moment generating function Πm_{i}. The same property remalns valld for the generating function.

Example 1.1. The binomial distribution.

A Bernoulli (p) random variable is a $\{0,1\}$-valued random variable taking the value 1 with probabllity p. Thus, it has generating function $1-p+p s$. A binomial (n, p) random variable is defined as the sum of n IId Bernoulll (p) random variables. Thus, it has generating function $(1-p+p s)^{n}$.

X.1.INTRODUCTION

Example 1.2. The Poisson distribution.

Often it is easy to compute generating functions by explicitly computing the convergent Inflnte serles $\sum s^{i} p_{i}$. Thls will be lllustrated for the Polsson and geometrlc distrlbutions. X is Poisson (λ) when $P(X=i)=\frac{\lambda^{i}}{i!} e^{-\lambda} \quad(i \geq 0)$. By summing $s^{i} p_{i}$, we see that the generating function is $e^{-\lambda+\lambda s} \cdot X$ is geometric (p) when $P(X=i)=(1-p)^{i} p \quad(i \geq 0)$. The corresponding generating function is $p /(1-(1-p) s)$.

If one is shown a generating function, then a careful analysis of its form can provide valuable clues as to how a random varlable with such generating function can be obtalned. For example, if the generating function is of the form

$$
g(k(s))
$$

where g, k are other generating functions, then it suffces to take $X_{1}+\cdots+X_{N}$ where the X_{i} 's are ild random varlables with generating function k, and N is an Independent random varlable with generating function g. This follows from

$$
\begin{aligned}
& g(k(s))=\sum_{n=0}^{\infty} P(N=n) k^{n}(s) \quad \text { (definition of } g \text {) } \\
& =\sum_{n=0}^{\infty} P(N=n) \sum_{i=0}^{\infty} P\left(X_{1}+\cdots+X_{n}=i\right) s^{i} \\
& =\sum_{i=0}^{\infty}\left(s^{i} \sum_{n=0}^{\infty} P(N=n) P\left(X_{1}+\cdots+X_{n}=i\right)\right) \\
& =\sum_{i=0}^{\infty} s^{i} P\left(X_{1}+\cdots+X_{N}=i\right) .
\end{aligned}
$$

Example 1.3.

If X_{1}, \ldots are Bernoulll (p) random varlables and N is Polsson (λ), then $X_{1}+\cdots+X_{N}$ has generating function

$$
e^{-\lambda+\lambda(1-p+p s)}=e^{-\lambda p+\lambda p s}
$$

1.e. the random sum is Polsson (λp) distributed (we already knew this - see chapter VI).

A compound Poisson distribution is a distribution with generating functlon of the form $e^{-\lambda+\lambda k(s)}$, where k is another generating function. By taking
$k(s)=s$, we see that the Polsson distribution Itself is a compound Polsson distribution. Another example is given below.

Example 1.4. The negative binomial distribution.

We define the negative binomial distribution with parameters (n, p) ($n \geq 1$ is integer, $p \in(0,1)$) as the distribution of the sum of n Ind geometrlc random varlables. Thus, it has generating function

$$
\left(\frac{p}{1-(1-p) s}\right)^{n}=e^{-\lambda+\lambda k(s)}
$$

where $\lambda=n \log \left(\frac{1}{p}\right)$ and

$$
\begin{aligned}
& k(s)=\frac{\log (1-(1-p) s)}{\log (p)} \\
& =-\frac{1}{\log (p)} \sum_{i=1}^{\infty} \frac{(1-p)^{i}}{i} s^{i}
\end{aligned}
$$

The function $k(s)$ is the generating function of the logarithmic series distribution with parameter $1-p$. Thus, we have just shown that the negative binomial distribution is a compound Polsson distribution, and that a negative binomlal random varlable can be generated by summing a Polsson (λ) number of lid logarithmic serles random varlables (Quenoullle, 1948).

Another common operation is the mixture operation. Assume that given Y, X has generating function $k_{Y}(s)$ where Y is a parameter, and that Y itself has some (not necessarily discrete) distribution. Then the unconditional generating function of X is $E\left(k_{Y}(s)\right)$. Let us mliustrate this once more on the negative binomial distribution.

Example 1.5. The negative binomial distribution.

Let Y be gamma ($n, \frac{1-p}{p}$), and let k_{Y} be the Poisson (Y) generating functlon. Then

$$
\begin{aligned}
& E\left(k_{Y}(s)\right)=\int_{0}^{\infty} \frac{y^{n} e^{-\frac{p y}{1-p}}}{\Gamma(n)\left(\frac{1-p}{p}\right)^{n}} e^{-y+y s} d y \\
& =\left(\frac{p}{1-(1-p) s}\right)^{n}
\end{aligned}
$$

We have discovered yet another property of the negative binomial distribution with parameters (n, p), l.e. it can be generated as a Polsson (Y) random variable where Y in turn is a gamma $\left(n, \frac{1-p}{p}\right)$ random varlable. This property will be of great use to us for large values of n, because unlformly fast gamma and Polsson generators are \ln abundant supply.

1.3. Factorials.

The evaluation of the probabilltles p_{i} frequently involves the computation of one or more factorlals. Because our maln worry is with the complexity of an algorithm, it is important to know just how we evaluate factorlals. Should we evaluate them explicitly, l.e. should $n!$ be computed as $\prod_{i=1}^{n} i$, or should we use a good approximation for $n!$ or $\log (n!)$? In the former case, we are faced with time complexity proportional to n, and with accumulated round-off errors. In the latter case, the time complexity is $O(1)$, but the price can be steep. Stirling's serles for example is a divergent asymptotic expansion. This means that for flxed n, taking more terms in the serles is bad, because the partlal sums in the serles actually diverge. The only good news is that it is an asymptotic expansion: for a flxed number of terms in the serles, the partlal sum thus obtalned is $\log (n!)+o(1)$ as $n \rightarrow \infty$. An algorlthm based upon Stlrling's serles can only be used for n larger than some threshold n_{0}, which in turn depends upon the desired error margin.

SInce our model does not allow Inaccurate computatlons, we should elther evaluate factorlals as products, or use squeeze steps based upon Stirling's serles to avold the product most of the time, or avold the product altogether by using a convergent serres. We refer to sectlons X. 3 and X. 4 for worked out examples. At issue here is the tightness of the squeeze steps: the bounds should be so tlght that the contribution of the evaluation of products in factorials to the total expected complexity is $O(1)$ or $o(1)$. It is therefore helpful to recall a few facts about approximatlons of factorlals (Whlttaker and Watson, 1927, chapter 12). We will state everything in terms of the gamma function since $n!=\Gamma(n+1)$.

Lemma 1.1. (Stirling's series, Whittaker and Watson, 1927.)
For $x>0$, the value of $\log (\Gamma(x))-\left(x-\frac{1}{2}\right) \log (x)+x-\frac{1}{2} \log (2 \pi)$ always lies between the n-th and $n+1$-st partial sums of the serles

$$
\sum_{i=1}^{\infty} \frac{(-1)^{i-1} B_{i}}{2 i(2 i-1) x^{2 i-1}}
$$

where B_{i} is the i-th Bernoull number deflned by

$$
B_{n}=4 n \int_{0}^{\infty} \frac{t^{2 n-1}}{e^{2 \pi t}-1} d t
$$

In partıcular, $B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, B_{3}=\frac{1}{42}, B_{4}=\frac{1}{30}, B_{5}=\frac{5}{86}, B_{6}=\frac{691}{2730}, B_{7}=\frac{7}{6}$.
We have as special cases the inequallities

$$
\begin{aligned}
& \left(x+\frac{1}{2}\right) \log (x+1)-(x+1)+\frac{1}{2} \log (2 \pi) \leq \log (\Gamma(x+1)) \\
& \leq\left(x+\frac{1}{2}\right) \log (x+1)-(x+1)+\frac{1}{2} \log (2 \pi)+\frac{1}{12(x+1)} .
\end{aligned}
$$

Stirling's serles with the Whittaker-Watson lower and upper bounds of Lemma 1.1 is often sufficlent in practice. As we have polnted out earller, we will stlll have to evaluate the factorial expllictly no matter how many terms are considered in the serles, and in fact, things could even get worse if more terms are consldered. Luckily, there is a convergent series, attributed by Whittaker and Watson to Binet.

Lemma 1.2. (Binet's series for the log-gamma function.)

For $x>0$,

$$
\log (\Gamma(x))=\left(x-\frac{1}{2}\right) \log (x)-x+\frac{1}{2} \log (2 \pi)+R(x)
$$

where

$$
R(x)=\frac{1}{2}\left(\frac{c_{1}}{(x+1)}+\frac{c_{2}}{2(x+1)(x+2)}+\frac{c_{3}}{3(x+1)(x+2)(x+3)}+\cdots\right),
$$

In which

$$
c_{n}=\int_{0}^{1}(u+1)(u+2) \cdots(u+n-1)(2 u-1) u d u
$$

In particular, $c_{1}=\frac{1}{8}, c_{2}=\frac{1}{3}, c_{3}=\frac{59}{60}$, and $c_{4}=\frac{227}{60}$. All terms in $R(x)$ are positive; thus, the value of $\log (\Gamma(x))$ is approached monotonically from below as we consider more terms in $R(x)$. If we consider the first n terms of $R(x)$, then the error is at most

$$
C \frac{x+1}{x}\left(\frac{x+1}{x+n+1}\right)^{x},
$$

where $C=\frac{5}{48} \sqrt{4 \pi} e^{1 / 6}$. Another upper bound on the truncation error is provided by

$$
C\left(1+a+\frac{1}{x+1}\right)\left(\frac{a}{1+a}+\frac{1}{x+1}\right)^{n+1}+C \frac{x+1}{x}\left(\frac{1}{1+a}\right)^{x} .
$$

where $a \in(0,1]$ is arbitrary (when x is large compared to n, then the value $\frac{n+1}{x} \log \left(\frac{x}{n+1}\right)$ Is suggested).

Proof of Lemma 1.2.

Blnet's convergent serles is given for example in Whittaker and Watson (1927, p. 253). We need only establlsh upper bounds for the tall sum in $R(x)$ beginning with the $n+1$-st term. The integrand $\ln c_{i}$ is positive for $u>\frac{1}{2}$. Thus, the i-th term is at most

$$
\begin{aligned}
& \frac{1 / 2}{2 i(x+1) \cdots(x+i)}=\frac{5(i-1)!}{48(1+x) \cdots(i+x)} \\
& =\frac{5 \Gamma(i) \Gamma(x+1)}{48 \Gamma(i+x+1)} \\
& \leq \frac{5}{48} \sqrt{\frac{2 \pi(x+i+1)}{i(x+1)}} e^{\frac{1}{12 i}+\frac{1}{12(x+1)}\left(\frac{i}{x+i+1}\right)^{i}\left(\frac{x+1}{x+i+1}\right)^{x+1}}
\end{aligned}
$$

(by Lemma 1.1)

$$
\leq C\left(\frac{i}{x+i+1}\right)^{i}\left(\frac{x+1}{x+i+1}\right)^{x+1}
$$

where $C=\frac{5}{48} \sqrt{4 \pi} e^{1 / 6}$ (use the facts that $x>0, i \geq 1$). We obtain a first bound for the sum of all tall terms starting with $i=n+1$ as follows:

$$
\begin{aligned}
& \sum_{i=n+1}^{\infty} C\left(\frac{i}{x+i+1}\right)^{i}\left(\frac{x+1}{x+i+1}\right)^{x+1} \leq \sum_{i=n+1}^{\infty} C\left(\frac{x+1}{x+i+1}\right)^{x+1} \\
& \leq \int_{n}^{\infty} C\left(\frac{x+1}{x+t+1}\right)^{x+1} d t \\
& =C \frac{x+1}{x}\left(\frac{x+1}{x+n+1}\right)^{x}
\end{aligned}
$$

Another bound is obtained by choosing a constant $a \in(0,1)$, and splitting the tall sum into a sum from $i=n+1$ to $i=m=\lceil a(x+1)\rceil$, and a right-infinite sum starting at $i=m+1$. The first sum does not exceed

$$
\begin{aligned}
& \sum_{i=n+1}^{m} C\left(\frac{i}{x+i+1}\right)^{i} \leq \sum_{i=n+1}^{\infty} C\left(\frac{m}{x+m+1}\right)^{i}=C \frac{x+m+1}{x+1}\left(\frac{m}{x+m+1}\right)^{n+1} \\
& \leq C\left(1+a+\frac{1}{x+1}\right)\left(\frac{a}{1+a}+\frac{1}{x+1}\right)^{n+1}
\end{aligned}
$$

Adding the two sums gives us the following upper bound for the remainder of the serles starting with the $n+1$-st term:

$$
C\left(1+a+\frac{1}{x+1}\right)\left(\frac{a}{1+a}+\frac{1}{x+1}\right)^{n+1}+C \frac{x+1}{x}\left(\frac{1}{1+a}\right)^{x}
$$

The error term given in Lemma 1.2 can be made to tend to 0 merely by keeping n fixed and letting x tend to ∞. Thus, Binet's serles is also an asymptotlc expansion, just as Stirling's serles. It can be used to bypass the gamma function (or factorlals) altogether if one needs to decide whether $\log (\Gamma(x)) \leq t$ for some real number t. By taking n terms in Binet's serles, we have an interval $\left[a_{n}, b_{n}\right]$ to which we know $\log (\Gamma(x))$ must belong. Since $b_{n}-a_{n} \rightarrow 0$ as $n \rightarrow \infty$, we know that when $t \neq \log (\Gamma(x))$, from a given n onwards, t will fall outside the interval, and the approprlate decision can be made. The convergence of the serles is thus essentlal to insure that this method halts. In our applications, t is usually a unform or exponentlal random varlable, so that equallty $t=\log (\Gamma(x))$ occurs with probability 0 . The complexity analysis typically bolls down to computing the expected number of terms needed in Binet's serles for fixed x. A quantlty useful in thls respect is

$$
\sum_{n=0}^{\infty} n\left(b_{n}-a_{n}\right) .
$$

X.1.INTRODUCTION

Based upon the error bounds of Lemma 1.2, it can be shown that thls sum is o (1) as $x \rightarrow \infty$, and that the sum is unlformly bounded over all $x \geq 1$ (see exerclse 1.2). As we will see later, this implles that for many rejection algorlthms, the expected time spent on the decision is uniformly bounded in x. Thus, it is almost as if we can compute the gamma function in constant tlme, Just as the exponential and logarithmic functlons. In fact, there is nothing that keeps us from adding the gamma function to our list of constant time functlons, but unless explicitly mentloned, we will not do so. Another collection of inequallties useful in dealing with factortals via Stirling's serles is given in Lemma 1.3:

Lemma 1.3. (Knopp, 1964, pp. 543,548)

For integer n, we have

$$
\log (n!)=\left(n+\frac{1}{2}\right) \log (n)-n+\log (\sqrt{2 \pi})+\sum_{j=1}^{k} \frac{(-1)^{j-1} B_{j} n^{-(2 j-1)}}{(2 j-1)(2 j)}+R_{k, n}
$$

where B_{1}, B_{2}, are the Bernoulll numbers and

$$
\left|R_{k, n}\right| \leq \frac{4(2 k-1)!}{2 \pi(2 \pi n)^{2 k}}
$$

is a residual factor.

1.4. A universal rejection method.

Even when the probabilltes p_{i} are explicitly given, it is often hard to come up with an efficient generator. Quantltles such as the mode, the mean and the varlance are known, but a useful dominating curve for use in a rejection algorithm is generally not known. The purpose of this section is to go through the mechanics of derlving one acceptable rejection algorithm, which will be useful for a huge class of distributlons, the class of all unlmodal distributions on the integers for which three quantitles are known:

1. m, the location of the mode. If the mode is not unlque, i.e. several adjacent Integers are all modes, m is allowed to be any real number between the leftmost and rightmost modes.
2. M, an upper bound for the value of p_{i} at a mode i. If possible, M should be set equal to this value.
3. s^{2}, an upper bound for the second moment about m. Note that if the varlance σ^{2} and mean μ are known, then we can take $s^{2}=\sigma^{2}+(m-\mu)^{2}$.
The universal algorithm derived below is based upon the following inequalities:

Theorem 1.1.

For all unimodal distributions on the integers,

$$
p_{i} \leq \min \left(M, \frac{3 s^{2}}{|i-m|^{3}}\right) \quad(i \text { integer })
$$

In addition, for all Integer i and all $x \in\left[i-\frac{1}{2}, i+\frac{1}{2}\right]$,

$$
p_{i} \leq g(x)=\min \left(M, \frac{3 s^{2}}{\left(|x-m|-\frac{1}{2}\right)_{+}^{3}}\right)
$$

Furthermore,

$$
\int g=M+3\left(3 s^{2}\right)^{\frac{1}{3}} M^{\frac{2}{3}}
$$

Proof of Theorem 1.1.

Note that for $i>m$,

$$
\begin{aligned}
& s^{2}=\sum_{j=-\infty}^{\infty}(j-m)^{2} p_{j} \geq \sum_{i \geq j \geq m}(j-m)^{2} p_{i} \\
& \geq p_{i} \int_{m}(u-m)^{2} d u=p_{i} \frac{(i-m)^{3}}{3} .
\end{aligned}
$$

This establishes the first inequality. The bounding argument for g uses a standard tool for making the transition from discrete probabllities to densitles: we consider a histogram-shaped density on the real line with height p_{i} on $\left[i-\frac{1}{2}, i+\frac{1}{2}\right.$). This density is bounded by $g(x)$ on the interval in question. Note the adjustment by a translation term of $\frac{1}{2}$ when compared with the first discrete bound. Thls adjustment is needed to insure that g dominates p_{i} over the entire Interval.

Finally, the area under g is easy to compute. Define $\rho=\left(3 s^{2}\right)^{1 / 3} M^{2 / 3}$, and observe that the M term in g is the minimum term on $\left[m-\frac{1}{2}-\frac{\rho}{M}, m+\frac{1}{2}+\frac{\rho}{M}\right]$. The area under this part is thus $M+2 \rho$. Integrating the two talls of g gives the value ρ.

To understand our algorithm, it helps to go back to the proof of Theorem 1.1. We have turned the problem into a continuous one by replacing the probablllty vector p_{i} with a histogram-shaped denslty of helght p_{i} on $\left[i-\frac{1}{2}, i+\frac{1}{2}\right)$. Slnce
this histogram is dominated by the function g given in the algorithm, it is clear how to proceed. Note thät if Y is a random varlable with the sald histogramshaped density, then round (Y) is discrete with probabllity vector p_{i}.

Universal rejection algorithm for unimodal distributions

[SET-UP]
Compute $\rho \leftarrow\left(3 s^{2}\right)^{\frac{1}{3}} M^{\frac{2}{3}}$.
[GENERATOR]
REPEAT
Generate U, W uniformly on $[0,1]$ and V uniformly on $[-1,1]$.
IF $U<\frac{\rho}{3 \rho+M}$
THEN

$$
\begin{aligned}
& Y \leftarrow m+\left(\frac{1}{2}+\frac{\rho}{M \sqrt{|V|}}\right) \operatorname{sign}(V) \\
& X \leftarrow \operatorname{round}(Y) \\
& T \leftarrow W M|V|^{\frac{3}{2}}
\end{aligned}
$$

ELSE

$$
Y \hookleftarrow m+\left(\frac{1}{2}+\frac{\rho}{M}\right) V
$$

$X \leftarrow \operatorname{round}(Y)$
$T \leftarrow W M$
UNTIL $T \leq p_{X}$
RETURN X

In the universal algorthm, no care was taken to reuse unused portions of unlform random varlates. This is done malnly to show where independent unlform random varlates are precisely needed. The expected number of Iterations in the algorithm is precisely $M+3 \rho$. Thus, the algorithm is unlformly fast over a class Q of unimodal distributions with unlformly bounded ($1+s$) M if p_{i} can be evaluated in time independent of i and the distribution.

Example 1.6.

For the binomial distribution with parameters n, p, it is known (see section N.4) that the mean μ is $n p$, and that the varlance σ^{2} is $n p(1-p)$. Also, for fixed $p, M \sim 1 /(\sqrt{2 \pi} \sigma)$, and for all $n, p, M \leq 2 /(\sqrt{2 \pi} \sigma)$. A mode is at $m=\lfloor(n+1) p\rfloor$. stace $|\mu-m| \leq \min (1, n p)$ (exercise 1.4), we can take $s^{2}=\sigma^{2}+\min (1, n p)$. We can verlfy that

$$
\rho^{3} \leq \frac{6}{\pi}\left(1+\frac{\min (1, n p)}{n p(1-p)}\right),
$$

and this is uniformly bounded over $n \geq 1,0 \leq p \leq \frac{1}{2}$. This implles that we can generate blnomial random varlates unlformly fast provided that the binomlal probabilties can be evaluated in constant time. In section X.4, we will see that even thls is not necessary, as long as the factorlals are taken care of approprlately. We should note that when p remains flxed and $n \rightarrow \infty, \rho \sim(3 /(2 \pi))^{1 / 3}$. The expected number of iterations $\sim 3 \rho$, which is about 2.4. Even though this is far from optimal, we should recall that besides the unimodality, virtually no propertles of the blnomial distribution were used in deriving the bounds.

There are important sub-famllies of distrlbutions for which the algorithm given here is uniformly fast. Consider for example all distributions that are sums of ild integer-valued random varlables with maximal probability p and finite varlance σ^{2}. Then the sum of n such random varlables has varlance $n \sigma^{2}$. Also, $M \leq \frac{1}{\sqrt{n(1-p)}}$ (Rogozin (1861); see Petrov (1975, p. 56)). Thus, if the n-sum is unimodal, Theorem 1.1 is applicable. The rejection constant is

$$
3 \rho+M \leq 3\left(\frac{3 \sigma^{2}}{1-p}\right)^{1 / 3}+1
$$

unlformly over all n. Thus, we can handle unimodal sums of ild random varlables in expected time bounded by a constant not depending upon n. This assumes that the probabilities can all be evaluated in constant time, an assumptlon which except in the simplest cases is difficult to support. Examples of such familles are the binomial family for flxed p, and the Polsson family.

Let us close this section by noting that the rejection constant can be reduced in special cases, such as for monotone distributions, or symmetric unimodal distributions.

1.5. Exercises.

1. The discrete distributions considered in the text are all lattice distributions. In these distributions, the intervals between the atoms of the distribution are all integral multiples of one quantity, typically 1. Non-lattice distributions can be considerably more difficult to handle. For example, there are discrete distrlbutions whose atoms form a dense set on the positive real line. One such distribution is defined by

$$
P\left(X=\frac{i}{j}\right)=\frac{(e-1)^{2}}{\left(e^{i+j}-1\right)^{2}},
$$

where i and j are relatively prlme positive integers (Johnson and Kotz, 1989, p. 31). The atoms in thls case are the rationals. Discuss how you could
efflclently generate a random varlate with this distribution.
2. Using Lemma 1.2, show that if ϵ_{n} is a bound on the error committed when using Binet's series for $\log (\Gamma(x))$ with $n \geq 0$ terms, then

$$
\sup _{x \geq 1} \sum_{n=0}^{\infty} n \epsilon_{n}<\infty
$$

and

$$
\lim _{x \rightarrow \infty} \sum_{n=0}^{\infty} n \epsilon_{n}=0
$$

3. Assume that all p_{i} 's are at most equal to M, and that the variance is at most equal to σ^{2}. Derive useful bounds for a unlversal refection algorlthm whlch are slmilar to those given In Theorem 1.1. Show that there exists no dominating curve for thls class which has area smaller than a constant times $\sigma \sqrt{M}$, and show that your dominating curve is therefore close to optimal. Give the detalls of the rejection algorithm. When applled to the binomial distribution with parameters n, p varying in such a way that $n p \rightarrow \infty$, show that the expected number of Iterations grows as a constant times $(n p)^{\frac{1}{4}}$ and conclude that for this class the universal algorlthm is not unlformly fast.
4. Prove that for the binomlal distribution with parameters n, p, the mean μ and the mode $m=\lfloor(n+1) p\rfloor$ differ by at most $\min (1, n p)$.
5. Replace the Inequalitles of Theorem 1.1 by new ones when Instead of s^{2}, we are glven the r-th absolute moment about the mean ($r \geq 1$), and value of the mean. The unlmodallty is stlll understood, and values for m, M are as in the Theorem.
6. How can the rejection constant ($\int g$) in Theorem 1.1 be reduced for monotone distrlbutions and symmetric unimodal distributions?
7. The discrete Student's t distribution. Ord (1988) Introduced a discrete distribution with parameters $m \geq 0$ (m is Integer) and $a \in[0,1], b \neq 0$:

$$
p_{i}=K \prod_{j=0}^{m} \frac{1}{(j+a+i)^{2}+b^{2}} \quad(-\infty<i<\infty)
$$

Here K is a normalization constant. This distribution on the integers has the remarkable property that all the odd moments are zero, yet it is only symmetric for $a=0, a=\frac{1}{2}$ and $a=1$. Develop a uniformly fast generator for the case $m=0$.
8. Arfwedson's distribution. Arfwedson (1951) introduced the distribution deflned by

$$
p_{i}=\binom{k}{i} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\left(\frac{i-j}{k}\right)^{n} \quad(i \geq 0)
$$

where k, n are positive Integers. See also Johnson and Kotz (1989, p. 251). Compute the mean and varlance, and derlve an inequally consisting of a flat center plece and two decreasing polynomlal or exponentlal talls having the property that the sum of the upper bound expressions over all i is unfformly bounded over k, n.
9. Knopp (1984, p. 553) has shown that

$$
\sum_{n=1}^{\infty} \frac{1}{c\left(4 n^{2} \pi^{2}+t^{2}\right)}=1
$$

where $c=\frac{1}{2 t}\left(\frac{1}{e^{t}-1}-\frac{1}{t}+\frac{1}{2}\right)$ and $t>0$ is a parameter. Give a unlformly fast generator for the family of discrete probabllity vectors deflned by this sum.

2. THE GEOMETRIC DISTRIBUTION.

2.1. Definition and genesis.

X is geometrically distributed with parameter $p \in(0,1)$ when

$$
P(X=i)=p(1-p)^{i-1} \quad(i \geq 1)
$$

The geometric distribution is important in statistics and probability because it is the distrlbution of the waiting time untll success in a sequence of Bernoulll trials. In other words, if U_{1}, U_{2}, \ldots are lid unfform $[0,1]$ random variables, and X is the index of the first U_{i} for which $U_{i} \leq p$, then X is geometrlc with parameter p. This property can of course be used to generate X, but to do so has some serlous drawbacks because the algorithm is not unlformly fast over all values of $p:$ just consider that the number of uniform random varlates needed is itself geometric (p), and the expected number of unlform random varlates required is

$$
E(X)=\frac{1}{p}
$$

For $p \geq \frac{1}{3}$, the method is probably difflcult to beat in any programming environment.

X.2.THE GEOMETRIC DISTRIBUTION

2.2. Generators.

The experimental method described in the prevlous section is summarized below:

Experimental method for geometric random variates

$X \leftarrow 0$
REPEAT
Generate a uniform $[0,1]$ random variate U.

$$
X \leftarrow X+1
$$

UNTIL $U \leq p$
RETURN X

This method requires on the average $\frac{1}{p}$ uniform random varlates and $\frac{1}{p}$ comparlsons and additions. The number of unlform random varlates can be reduced to 1 If we use the inversion method (sequentlal version):

Inversion by sequential search for geometric random variates

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 1$
Sum↔p
Prod↔p
WHLLE $U>$ Sum DO
Prod \leftarrow Prod $(1-p)$
Sum+Sum+Prod
$X \leftarrow X+1$
RETURN X

Unfortunately, the expected number of additions is now $\frac{2}{p}-2$, the expected number of comparisons remains $\frac{1}{p}$, and the expected number of products is $\frac{1}{p}-1$. Inversion in constant time is possible by truncation of an exponential random varlate. What we use here is the property that

$$
F(i)=P(X \leq i)=1-\sum_{j>i} p(1-p)^{j-1}=1-(1-p)^{i}
$$

Thus, if U is uniform $[0,1]$ and E is exponentlal, it is clear that

$$
\left\lceil\frac{\log (U)}{\log (1-p)}\right\rceil
$$

and

$$
\left\lceil\frac{-E}{\log (1-p)}\right\rceil
$$

are both geometric (p).
If many geometric random varlates are needed for one flxed value of p, extra speed can be found by ellminating the need for an exponentlal random varlate and for truncation. Thls can be done by splltting the distrlbution into two parts, a tall carrying small probability, and a maln body. For the main body, a fast table method is used. For the tall, we can use the memoryless property of the geometric distribution: glven that $X>i, X-i$ is agaln geometric (p) distributed. This property follows directly from the genesis of the distribution.

2.3. Exercises.

1. The quantity $\log (1-p)$ is needed in the bounded time inversion method. For small values of p, there is an accuracy problem because 1-p is computed before the logarthm. One can create one's own new function by basing an approximation on the serles

$$
-\left(p+\frac{1}{2} p^{2}+\frac{1}{3} p^{3}+\cdots\right) .
$$

Show that the following more quickly convergent series can also be used:

$$
\frac{2}{r}\left(1+\frac{1}{3} r^{-2}+\frac{1}{5} r^{-4}+\cdots\right),
$$

where $r=1-\frac{2}{p}$.
2. Compute the varlance of a geometric (p) random varlable.

3. THE POISSON DISTRIBUTION.

3.1. Basic properties.

X is sald to be Poisson (λ) distributed when

$$
P(X=i)=\frac{\lambda^{i}}{i!} e^{-\lambda} \quad(i \geq 0)
$$

$\lambda>0$ is the parameter of the distribution. We do not have to convince the readers that the Polsson distrlbution plays a key role in probabllity and statistics. It is thus rather important that a simple uniformly fast Polsson generator be avallable In any nontrivial statistical software package. Before we tackle the development of such generators, we will brlefly revlew some properties of the Polsson distrlbutlon. The Polsson probabllities are unimodal with one mode or two adjacent modes. There is always a mode at $\lfloor\lambda\rfloor$. The tall probabillties drop off faster than the tall of the exponential density, but not as fast as the tall of the normal density. In the design of algorithms, it is also useful to know that as $\lambda \rightarrow \infty$, the random varlable $(X-\lambda) / \sqrt{\lambda}$ tends to a normal random varlable.

Lemma 3.1.

When X is Polsson (λ), then X has characteristic function

$$
\phi(t)=E\left(e^{i t X}\right)=e^{\lambda\left(e^{t}-1\right)} .
$$

It has moment generating function $E\left(e^{t X}\right)=\exp \left(\lambda\left(e^{t}-1\right)\right.$), and factorial moment generating function $E\left(t^{X}\right)=e^{\lambda(t-1)}$. Thus,

$$
E(X)=\operatorname{Var}(X)=\lambda
$$

Also, if X, Y are independent Polsson (λ) and Polsson (μ) random varlables, then $X+Y$ is Polsson $(\lambda+\mu)$.

Proof of Lemma 3.1.

Note that

$$
E\left(e^{i t X}\right)=\sum_{j=0}^{\infty} e^{-\lambda} \frac{\left(\lambda e^{i t}\right)^{j}}{j!}=e^{-\lambda+\lambda e^{t}}
$$

The statements about the moment generating function and factorlal moment generating functlon follow directly from this. Also, if the factorlal moment generatIng function is called k, then $k^{\prime}(1)=E(X)=\lambda$ and $k^{\prime \prime}(1)=E(X(X-1))=\lambda^{2}$. From this we deduce that $\operatorname{Var}(X)=\lambda$. The statement about the sum of two Independent Polsson random varlables follows directly from the form of the characteristlc function.

3.2. Overview of generators.

The generators proposed over the years can be classlfled into several groups:

1. Generators based upon the connection with homogeneous Poisson processes (Knuth, 1080). These generators are very simple, but run in expected time proportional to λ.
2. Inversion methods. Inversion by sequential search started at 0 runs in expected time proportlonal to λ (see below). If the sequentlal search is started at the mode, then the expected time is $O(\sqrt{\lambda})$ (Fishman, 1976). Inversion can always be sped up by storing tables of constants (Atkinson, 1979).
3. Generators based upon recursive propertles of the distrlbution (Ahrens and Dleter, 1974). One such generator is known to take expected time proportlonal to $\log (\lambda)$.
4. Rejection methods. Rejection methods seem to lead to the simplest uniformly fast algorlthms (Atkinson, 1979; Ahrens and Dleter, 1980; Devroye, 1981; Schmelser and Kachltvichyanukul, 1981).
5. The acceptance-complement method with the normal distribution as starting distribution. See Ahrens and Dleter (1982). This approach leads to efficient uniformly fast algorlthms, but the computer programs are rather long.
We are undoubtedly omitting a large fraction of the literature on Poisson random varlate generation. The early papers on the subject often proposed some approximate method for generating Polsson random varlates which was typlcally based upon the closeness of the Polsson distribution to the normal distribution for large values of λ. It is pointless to give an exhaustive historlcal survey. The algorithms that really matter are those that are elther simple or fast or both. The definition of "fast" may or may not include the set-up time. Also, slnce our comparisons cannot be based upon actual implementations, it is important to distinguish between computational models. In particular, the avallabllity of the factorial in constant time is a cruclal factor.

3.3. Simple generators.

The connection between the Polsson distrlbution and exponentlal interarrival times in a homogeneous point process is the following.

Lemma 3.2.

If E_{1}, E_{2}, \ldots are ild exponential random varlables, and X is the smallest integer such that

$$
\sum_{i=1}^{X+1} E_{i}>\lambda
$$

then X is Polsson (λ).

Proof of Lemma 3.2.

Let f_{k} be the gamma (k) density. Then,

$$
P(X \leq k)=P\left(\sum_{i=1}^{k+1} E_{i}>\lambda\right)=\int_{\lambda}^{\infty} f_{k+1}(y) d y
$$

Thus, by partial integration,

$$
\begin{aligned}
& P(X=k)=P(X \leq k)-P(X \leq k-1) \\
& =\int_{\lambda}^{\infty}\left(f_{k+1}(y)-f_{k}(y)\right) d y \\
& =\int_{\lambda}^{\infty}(y-k) \frac{y^{k-1}}{k!} e^{-y} d y \\
& =\frac{1}{k!} \int_{\lambda}^{\infty} d\left(-y^{k} e^{-y}\right) \\
& =e^{-\lambda} \frac{\lambda^{k}}{k!}
\end{aligned}
$$

The algorlthm based upon this property Is:

Poisson generator based upon exponential inter-arrival times
$X \leftarrow 0$
Sum $\leftarrow 0$
WHILE True DO
Generate an exponential random variate E.
Sum \leftarrow Sum $+E$
IF Sum<
THEN $X \leftarrow X+1$
ELSE RETURN X

Using the fact that a uniform random variable is distributed as e^{-E}, it is easy to see that Lemma 3.2 is equivalent to Lemma 3.3, and that the algorithm shown above is equivalent to the algorithm following Lemma 3.3:

Lemma 3.3.

Let U_{1}, U_{2}, \ldots be Ild uniform $[0,1]$ random varlables, and let X be the smallest integer such that

$$
\prod_{i=1}^{X+1} U_{i}<e^{-\lambda} .
$$

Then X is Poisson (λ).

Poisson generator based upon the multiplication of uniform random variates
$X \leftarrow 0$
Prod-1
WHILE True DO
Generate a uniform $[0,1]$ random variate U.
Prod+Prod U
IF Prod $>e^{-\lambda}$ (the constant should be computed only once)
THEN $X \leftarrow X+1$
ELSE RETURN X

The expected number of lterations is the same for both algorlthms. However, an addition and an exponentlal random varlate are replaced by a multipllcation and a unlform random varlate. Thls replacement usually works in favor of the multlpllcative method. The expected complexity of both algorlthms grows llnearly with λ.

Another simple algorithm requiring only one uniform random varlate is the inversion algorithm with sequentlal search. In vlew of the recurrence relation

$$
\frac{P(X=i+1)}{P(X=i)}=\frac{\lambda}{i+1} \quad(i \geq 0)
$$

this gives

Poisson generator based upon the inversion by sequential search

$$
\begin{aligned}
& X \leftarrow 0 \\
& \text { Sum } \leftarrow e^{-\lambda}, \text { Prod } \leftarrow e^{-\lambda} \\
& \text { Generate a uniform }[0,1] \text { random variate } U . \\
& \text { WHILE } U>\text { Sum DO } \\
& \quad X \leftarrow X+1 \\
& \quad \text { Prod } \leftarrow \frac{\lambda}{X} \text { Prod } \\
& \quad \text { Sum } \leftarrow \text { Sum }+ \text { Prod } \\
& \text { RETURN } X
\end{aligned}
$$

This algorlthm too requires expected tlme proportional to λ as $\lambda \rightarrow \infty$. For large λ, round-off errors prollferate, which provides us with another reason for avolding large values of λ. Speed-ups of the inversion algorithm are possible if sequential search is started near the mode. For example, we could compare U first with $b=P(X \leq\lfloor\lambda\rfloor)$, and then search sequentlally upwards or downwards. If b is avallable in time $O(1)$, then the algorithm takes expected time $O(\sqrt{\lambda})$ because $E(|X-\lfloor\lambda\rfloor|)=O(\sqrt{\lambda})$. See Flshman (1976). If b has to be computed first, thls method is hardly competitive. Atkinson (1978) describes varlous ways in which the Inversion can be helped by the judlclous use of tables. For small values of λ, there is no problem. He then custom bullds fast table-based generators for all λ 's that are powers of 2 , starting with 2 and ending with 128 . For a given value of λ, a sum of independent Polsson random variates is needed with parameters that are elther powers of 2 or very small. The speed-up comes at a tremendous cost in terms of space and programming effort.

3.4. Rejection methods.

To see how easy it is to Improve over the algorithms of the previous section, it helps to get an Idea of how the probabllitles vary with λ. First of all, the peak at $\lfloor\lambda\rfloor$ varles as $1 / \sqrt{\lambda}$:

Lemma 3.4.

The value of $P(X=\lfloor\lambda\rfloor)$ does not exceed

$$
\frac{1}{\sqrt{2 \pi\lfloor\lambda]}},
$$

and $\sim 1 / \sqrt{2 \pi \lambda}$ as $\lambda \rightarrow \infty$.

Proof of Lemma 3.4.

We apply the inequallty $i!\geq i^{i} e^{-i} \sqrt{2 \pi i}$, valld for all integer $i \geq 1$. Thus,

$$
\begin{aligned}
& e^{-\lambda} \frac{\lambda\lfloor\lambda\rfloor}{\lambda!} \leq e^{-(\lambda-\lfloor\lambda\rfloor)}\left(\frac{\lambda}{\lfloor\lambda]}\right)^{\lfloor\lambda\rfloor} \frac{1}{\sqrt{2 \pi[\lambda]}} \\
& \leq \frac{1}{\sqrt{2 \pi\lfloor\lambda]}}
\end{aligned}
$$

Furthermore, by Stirling's approximation, it is easy to establish the asymptotic result as well.

We also have the following inequally by monotoniclty:

Lemma 3.5.

$$
P(X=\lfloor\lambda\rfloor \pm i) \leq \frac{2(\sqrt{\lambda}+1)}{i(i+1)} \quad(i>0)
$$

Proof of Lemma 3.5.

We will argue for the positive side only. Writing p_{i} for $P(X=i)$, we have by unimodallty,

$$
\begin{aligned}
& \sqrt{\lambda}+1 \geq E(|X-\lambda|)+1 \\
& \geq E(|X-\lfloor\lambda\rfloor|) \geq \sum_{j \geq\lfloor\lambda\rfloor}|j-\lfloor\lambda\rfloor| p_{j} \\
& \geq p_{i+\lfloor\lambda\rfloor} \sum_{j=0}^{i} j
\end{aligned}
$$

$$
=\frac{i(i+1)}{2} p_{i+\lfloor\lambda\rfloor} .
$$

If we take the minimum of the constant upper bound of Lemma 3.4 and the quadratically decreasing upper bound of Lemma 3.5 , it is not difflcult to see that the cross-over point is near $\lambda \pm c \sqrt{\lambda}$ where $c=(8 \pi)^{1 / 4}$. The area under the bounding sequence of numbers is O (1) as $\lambda \rightarrow \infty$. It is unlformly bounded over all values $\lambda \geq 1$. We do not imply that one should design a generator based upon this dominating curve. The point is that it is very easy to construct good bounding sequences. In fact, we already knew from Theorem 1.1 that the universal rejectlon algorithm of section 1.4 is unlformly fast. The dominating curves of Theorem 1.1 and Lemmas 3.4 and 3.5 are similar, both having a flat center part. Atkinson (1979) proposes a logistic majorizing curve, and Ahrens and Dleter (1980) propose a double exponentlal majorizing curve. Schmeiser and Kachitvlchyanukul (1981) have a rejection method with a trlangular hat and two exponentlal talls. We do not descrlbe these methods here. Rather, we will describe an algorlthm of Devroye (1981) which is based upon a normal-exponentlal dominating curve. Thls has the advantage that the rejection constant tends to 1 as $\lambda \rightarrow \infty$. In addition, we will Illustrate how the factorial can be avolded most of the tlme by the judicious use of squeeze steps. Even if factorlals are computed in llnear tlme, the overall expected time per random varlate remalns unlformly bounded over λ. For large values of λ, we will return a truncated normal random varlate with large probabllity.

Some Inequalltles are needed for the development of tight Inequalltles for the Poisson probabilities. These are collected in the next Lemma:

Lemma 3.6.
Assume that $u \geq 0$ and all the arguments of the logarithms are positive in the llst of inequalltles shown below. We have:
(1) $\log (1+u) \leq u$
(11) $\log (1+u) \leq u-\frac{1}{2} u^{2}+\frac{1}{3} u^{3}$
(III) $\log (1+u) \geq u-\frac{1}{2} u^{2}$
(iv) $\log (1+u) \geq \frac{2 u}{2+u}$
(v) $\log (1-u) \leq-\sum_{i=1}^{k} \frac{1}{i} u^{i} \quad(k \geq 1)$
(v1) $\log (1-u) \geq-\sum_{i=1}^{k-1} \frac{1}{i} u^{i}-\frac{u^{k}}{k(1-u)} \quad(k \geq 2)$

- Most of these Inequallites are well-known. The other ones can be obtalned without difficulty from Taylor's theorem (Whittaker and Watson, 1927, is a good source of information). We assume that $\lambda \geq 1$. Since we will use rejection algorlthms, it can't harm to normallze the Polsson probabllitles. Instead of the probabllitles p_{i}, we will use the normallzed \log probabilities

$$
q_{j}=\log \left(p_{\mu+j}\right)+\log (\mu!)-\mu \log (\lambda)+\lambda
$$

where $\mu=\lfloor\lambda\rfloor$. This can convenlently be rewritten as follows:

$$
\begin{aligned}
& q_{j}=j \log \left(\frac{\lambda}{\mu}\right)+j \log (\mu)-\log \left(\frac{(\mu+j)!}{\mu!}\right) \\
& =j \log \left(\frac{\lambda}{\mu}\right)+ \begin{cases}-\log \left(\prod_{i=1}^{j}\left(1+\frac{i}{\mu}\right)\right) & (j>0) \\
0 \quad & (j=0) \\
-\log \left(\prod_{i=0}^{-j-1}\left(1-\frac{i}{\mu}\right)\right) & (j<0)\end{cases}
\end{aligned}
$$

Lemma 3.7.

Let us use the notation j_{+}for $\max (j, 0)$. Then, for all Integer $j \geq-\mu$,

$$
q_{j} \leq \frac{j_{+}}{\mu}-\frac{j(j+1)}{2 \mu+j_{+}}
$$

Proof of Lemma 3.7.

Use (iv) and (v) of Lemma 3.6, together with the Identlty

$$
\sum_{i=1}^{j} i=\frac{j(j+1)}{2}
$$

The Inequallty of Lemma 3.7 can be used as the starting point for the development of tight dominating curves. The last term on the right hand side in the upper bound is not in a famillar form. On the one hand, it suggests a normal bounding curve when j is small compared to μ. On the other hand, for large values of $|j|$, an exponentlal bounding curve seems more approprlate. Recall that the Polsson probabillties cannot be tucked under a normal curve because they drop off as $e^{-c j \log (j)}$ for some c as $j \rightarrow \infty$. In Lemma 3.8 we tuck the Polsson probabllitles under a normal maln body and an exponentlal rlght tall.

Lemma 3.8.

Assume that $\mu \geq 8$ and that δ is an integer satisfying $0 \leq \delta \leq \mu$.

Then

$$
\begin{aligned}
& q_{j} \leq-\frac{j(j+1)}{2 \mu} \leq-\frac{j^{2}}{2 \mu} \quad(j \leq 0) \\
& q_{0} \leq 0 \\
& q_{1} \leq \frac{1}{\mu(2 \mu+1)} \leq \frac{1}{78} \\
& q_{j} \leq-\frac{(j-1)^{2}}{2 \mu+\delta}+\frac{1}{2 \mu+\delta} \quad(0 \leq j \leq \delta) \\
& q_{j} \leq-\frac{\delta}{2 \mu+\delta}\left(\frac{j}{2}+1\right) \quad(j \geq \delta) .
\end{aligned}
$$

Proof of Lemma 3.8.

The frst three inequalltles follow without work from Lemma 3.7. For the fourth Inequallty, we observe that for $2 \leq j \leq \delta$,

$$
\begin{aligned}
& q_{j} \leq \frac{j+\frac{j}{2}}{\mu+\frac{j}{2}}-\frac{j(j+1)}{2\left(\mu+\frac{j}{2}\right)} \quad(\text { since } j \leq \delta \leq \mu) \\
& =\frac{2 j-j^{2}}{2 \mu+j} \\
& \leq \frac{2 j-j^{2}}{2 \mu+\delta} \quad(\text { since } 2 \leq j \leq \delta)
\end{aligned}
$$

The fourth inequality is also valld for $j=0$. For $j=1$, a quick check shows that $1 / \mu(2 \mu+1) \leq 1 /(2 \mu+\delta)$ because $\delta \leq \mu$. This leaves us with the fifth and last inequallty. We note that $\delta \geq 8 \geq \frac{4 \mu}{\mu-2}$. Thus,

$$
\begin{aligned}
& q_{j} \leq \frac{j}{\mu}-\frac{\delta}{2 \mu+\delta}(j+1) \\
& =-\frac{\delta}{2 \mu+\delta}+j\left(\frac{1}{\mu}-\frac{\delta}{2 \mu+\delta}\right) \\
& \leq-\frac{\delta}{2 \mu+\delta}\left(1+\frac{j}{2}\right)
\end{aligned}
$$

Based on these inequallties, we can now glve a first Polsson algorithm:

Rejection method for Poisson random variates

[SET-UP]
$\mu \leftarrow\lfloor\lambda\rfloor$
Choose δ integer such that $6 \leq \delta \leq \mu$.
$c_{1} \leftarrow \sqrt{\pi \mu / 2}$
$c_{2} \leftarrow c_{1}+\sqrt{\pi(\mu+\delta / 2) / 2} e^{\frac{1}{2 \mu+\delta}}$
$c_{3} \leftarrow c_{2}+1$
$c_{4}-c_{3}+e^{\frac{1}{78}}$
$c \leftarrow c_{4}+\frac{2}{\delta}(2 \mu+\delta) e^{-\frac{\delta}{2 \mu+\delta}\left(1+\frac{\delta}{2}\right)}$
[NOTE]
The function q^{*} is defined as $q_{j}-j \log \left(\frac{\lambda}{\mu}\right)=j \log (\mu)-\log ((\mu+j)!/ \mu!)$.
[GENERATOR]

REPEAT

Generate a uniform $[0, c]$ random variate U and an exponential random variate E. Accept \leftarrow False.

CASE
$U \leq c_{1}:$
Generate a normal random variate N.
$Y \longleftarrow|N| \sqrt{\mu}$
$X \leftarrow\lfloor Y\rfloor$
$W \leftarrow-\frac{N^{2}}{2}-E-X \log \left(\frac{\lambda}{\mu}\right)$
IF $X \geq-\mu$ THEN $W \leftarrow \infty$
$c_{1}<U \leq c_{2}$:
Generate a normal random variate N.
$Y \leftarrow 1+|N| \sqrt{\mu+\frac{\delta}{2}}$
$X \leftarrow\lceil Y\rceil$
$W \leftarrow \frac{-Y^{2}+2 Y}{2 \mu+\delta}-E-X \log \left(\frac{\lambda}{\mu}\right)$
IF $X \leq \delta$ THEN $W \leftarrow \infty$
$c_{2}<U \leq c_{3}$:
$X \leftarrow 0$
$W \longleftarrow-E$
$c_{3}<U \leq c_{4}:$
$X \leftarrow 1$
$W \leftarrow-E-\log \left(\frac{\lambda}{\mu}\right)$
$c_{1}<U:$
Generate an exponential random variate V.

$$
\begin{aligned}
& \qquad \begin{array}{l}
Y \leftarrow \delta+V \frac{2}{\delta}(2 \mu+\delta) \\
X \\
\\
\\
W \leftarrow\lceil Y\rceil \frac{\delta}{2 \mu+\delta}\left(1+\frac{Y}{2}\right)-E-X \log \left(\frac{\lambda}{\mu}\right) \\
\text { Accept } \leftarrow[W \leq q *] \\
\text { UNTIL Accept } \\
\text { RETURN } X+\mu
\end{array}
\end{aligned}
$$

Observe the careful use of the floor and celling functions in the algorithm to insure that the continuous dominating curves exceed the Polsson stalrcase functhon at every polnt of the real llne, not just the Integers : The monotoniclty of the dominating curves is explolted of course. The function

$$
q_{x}=x \log (\lambda)-\log \left(\frac{(\mu+x)!}{\mu!}\right)
$$

is evaluated in every iteration at some point x. If the logarithm of the factorial is avallable at unlt cost, then the algorlthm can run in unlformly bounded time provided that δ is carefully picked. Thus, the first issue to be dealt with is that of the relationshlp between the expected number of iterations and δ.

Lemma 3.9.

If δ depends upon λ in such a way that

$$
\delta=o(\mu), \frac{\delta}{\sqrt{\mu}} \rightarrow \infty
$$

then the expected number of iterations $E(N)$ tends to one as $\lambda \rightarrow \infty$. In particular, the expected number of iterations remalns unlformly bounded over $\lambda \geq 6$.

Furthermore,

$$
\inf _{\delta} E(N)=1+(1+o(1)) \sqrt{\frac{\log (\mu)}{32 \mu}} \text { as } \lambda \rightarrow \infty
$$

where the inflmum is reached if we choose

$$
\delta \sim \sqrt{2 \mu \log \left(\frac{128 \mu}{\pi}\right)}
$$

Proof of Lemma 3.9.

In a prellminary computation, we have to evaluate

$$
\sum_{j \geq-\mu} e^{q_{j}}
$$

since this is the total welght of the normalized Polsson probabllitles. It is easy to see that thls glves

$$
\begin{aligned}
& \sum_{j=0}^{\infty} p_{j} e^{\lambda} \mu!\lambda^{-\mu} \\
& \sim e^{\lambda}\left(\frac{\mu}{e \lambda}\right)^{\mu} \sqrt{2 \pi \mu} \\
& \sim \sqrt{2 \pi \mu}
\end{aligned}
$$

where we used the fact that $\log (\lambda / \mu)=\log (1+(\lambda-\mu) / \mu)=(\lambda-\mu) / \mu+O\left(\mu^{-2}\right)$. Thus, the expected number of iterations is the total area under the dominating curve (with the atoms at 0 and 1 having areas one and $e^{\frac{1}{78}}$ respectively) divided by $(1+o(1)) \sqrt{2 \pi \mu}$. The area under the dominating curve is, taking the five contrlbutors from left to right,

$$
\sqrt{\pi \mu / 2}+1+e^{\frac{1}{78}}+\sqrt{\pi\left(\mu+\frac{\delta}{2}\right) / 2} e^{\frac{1}{2 \mu+\delta}}+\frac{2(2 \mu+\delta)}{\delta} e^{-\frac{\delta}{2 \mu+\delta}\left(\frac{\delta}{2}+1\right)} .
$$

If δ is not $o(\mu)$, this can not $\sim \sqrt{2 \pi \mu}$. If $\delta \leq c \sqrt{\mu}$ for some constant c, then the last term is at least $\sim \frac{4}{c} e^{-c^{2} / 4} \sqrt{\mu}$, while it should really be $o(\sqrt{\mu})$. Thus, the conditions imposed on δ are necessary for $E(N) \rightarrow 1$. That they are also sufficlent can be seen as follows. The fifth term in the area under the dominating curves is $o(\sqrt{\mu})$, and so are the constant second and third terms. The fourth term $\sim \sqrt{\pi \mu / 2}$, which establishes the result.

To minimize $E(N)-1$ in an asymptotically optimal fashion, we have to consider some sort of expansion of the area in terms of decreasing asymptotic importance. Using the Taylor serles expansion for $\sqrt{1+u}$ for u near 0 , we can write the first four terms as

$$
\sqrt{\pi \mu / 2}\left(1+O\left(\mu^{-\frac{1}{2}}\right)+1+\frac{\delta}{4 \mu}+O\left(\left(\frac{\delta}{\mu}\right)^{2}\right)\right) .
$$

The main term in excess of $\sqrt{2 \pi \mu}$ is

$$
\sqrt{\pi \mu / 2} \frac{\delta}{4 \mu} .
$$

We can also verify easily that the contribution from the exponential tall is

$$
\frac{4 \mu}{\delta}(1+o(1)) e^{-\frac{\delta^{2}}{2(2 \mu+\delta)}}
$$

To obtaln a first (but as we will see, good) guess for δ, we will minimize

$$
\sqrt{\pi \mu / 2} \frac{\delta}{4 \mu}+\frac{4 \mu}{\delta} e^{-\frac{\delta^{2}}{2(2 \mu+\delta)}}
$$

This is equivalent to solving

$$
\left(2+\frac{4 \mu}{\delta^{2}}\right) e^{-\frac{\delta^{2}}{4 \mu}}=\sqrt{\frac{\pi}{32 \mu}}
$$

If we lgnore the $o(1)$ term $\frac{4 \mu}{\delta^{2}}$, we can solve this explicitly and obtaln

$$
\delta=\sqrt{2 \mu \log \left(\frac{128 \mu}{\pi}\right)}
$$

A plugback of this value in the original expression for the area under the domInatling curve shows that it Increases as

$$
\sqrt{2 \pi \mu}+(1+o(1)) \frac{\sqrt{\pi}}{4} \sqrt{\log (\mu)}
$$

The constant terms are absorbed in $O(1)$; the exponentlal tall contribution is $O(1 / \sqrt{\log (\mu)})$. If we replace δ by $\delta(1+\epsilon)$ where ϵ is allowed to vary with μ but is bounded from below by $c>0$, then the area is asymptotically larger because the $\sqrt{\log (\mu)}$ term should be multiplied by at least $1+c$. If we replace δ by $\delta(1-\epsilon)$, then the contribution from the exponential tall is at least $\Omega\left(\mu^{c / 2} / \sqrt{\log (\mu)}\right)$. This concludes the proof of the Lemma.

We have to insure that δ falls within the limits imposed on it when the domInating curves were derlved. Thus, the following cholce should prove fallsafe in practlce:

$$
\delta=\max \left(6, \min \left(\mu, \sqrt{\left.2 \mu \log \left(\frac{128 \mu}{\pi}\right)\right)}\right)\right.
$$

We have now in detall dealt with the optimal design for our Polsson generator. If the log-factorial is avallable at unit cost, the rejection algorithm is uniformly fast, and asymptotically, the rejection constant tends to one. δ was plcked to insure that the convergence to one takes place at the best possible rate. For the optimal δ, the algorithm basically returns a truncated normal random varlate most of the time. The exponential tall becomes asymptotically negligible.

We may ask what would happen to our algorithm if we were to compute all products of successive integers explicitly ? Disregarding the horrible accuracy problems inherent in all repeated multiplications, we would also face a breakdown in our complexity. The computation of

$$
q_{X}=X \log \left(\frac{\lambda}{\mu}\right)+X \log (\mu)-\log \left(\frac{(X+\mu)!}{\mu}!\right)
$$

can be done in time proportional to $1+|X|$. Now, X is with high probability normal with mean 0 and varlance approximately equal to $\sqrt{\mu}$. Since q is computed only once with probabllity tending to one, it is clear that the expected time complexity now grows as $\sqrt{\mu}$. If we had perfect squeeze curves, 1.e. squeeze curves in which the top and bottom bounds are equal, then we would get our unlform speed back. The same is true for very tight but imperfect squeeze curves. A class of such squeeze curves is presented below. Note that we are no longer concerned with the dominating curves. The squeeze curves given below are also not derived from the Inequalitles for Stlirling's serles or Binet's serles for the log gamma functlon (see section 1). We could have used those, but it is Instructive to show yet another method of derlving good bounds. See however exerclse 3.9 for the appllcation of Stlrling's serles \ln squeeze curves for Polsson probabilltles.

Lemma 3.10.
Defline

$$
t_{j}=q_{j}-j \log \left(\frac{\lambda}{\mu}\right)+\frac{j(j+1)}{2 \mu} .
$$

Then for integer $j \geq 0$,

$$
t_{j}\left\{\begin{array}{l}
\geq \max \left(0, \frac{j(j+1)(2 j+1)}{12 \mu^{2}}-\frac{j^{2}(j+1)^{2}}{12 \mu^{3}}\right) \\
\leq \frac{j(j+1)(2 j+1)}{12 \mu^{2}}
\end{array}\right.
$$

Furthermore, for integer $-\mu \leq j \leq 0$, the converse is almost true:

$$
t_{j}\left\{\begin{array}{l}
\geq \frac{j(j+1)(2 j+1)}{12 \mu^{2}}-\frac{j^{2}(j+1)^{2}}{12 \mu^{2}(\mu+j+1)} \\
\leq \min \left(0, \frac{j(j+1)(2 j+1)}{12 \mu^{2}}\right)
\end{array}\right.
$$

Proof of Lemma 3.10.

The proof is based upon Lemma 3.6, the Identities

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2}, \sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}, \sum_{i=1}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

and the fact that q_{j} can be rewritten as follows:

$$
q_{j}-j \log \left(\frac{\lambda}{\mu}\right)= \begin{cases}-\log \left(\prod_{i=1}^{j}\left(1+\frac{i}{\mu}\right)\right) & (j>0) \\ 0 & (j=0) \\ \log \left(\prod_{i=0}^{j-1}\left(1-\frac{i}{\mu}\right)\right) & (j<0)\end{cases}
$$

The algorithm requires of course little modification. Only the line

$$
\text { Accept }-\left[W \leq q_{x}^{*}\right]
$$

needs replacing. The replacement looks like this:

$$
\begin{aligned}
& T \leftarrow \frac{X(X+1)}{2 \mu} \\
& \text { Accept } \leftarrow[W \leq-T] \cap[X \geq 0] \\
& \text { IF NOT Accept THEN } \\
& \quad Q-T\left(\frac{2 X+1}{6 \mu}-1\right) \\
& \quad P-Q-\frac{T^{2}}{3\left(\mu+(X+1)_{-}\right)} \\
& \quad \text { Accept } \leftarrow[W \leq Q] \\
& \text { IF NOT Accept AND }[W \leq P] \text { THEN Accept } \leftarrow\left[W \leq q^{*}\right]
\end{aligned}
$$

It is interesting to go through the expected complexity proof in thls one example because we are no longer counting iterations but multiplications.

Lemma 3.11.

The expected time taken by the modifled Polsson generator is uniformly bounded over $\lambda \geq \theta$ when δ is chosen as in Lemma 3.10, even when factorials are explicitly evaluated as products.

Proof of Lemma 3.11.

It sufflces to establish the unlform boundedness of

$$
E\left(|X| I_{|Q<W<P|}\right)
$$

where we use the notation of the algorlthm. Note that this statement implicitly uses Wald's equatlon, and the fact that the expected number of Iterations is unlformly bounded. The expression involving $|X|$ is arrived at by looking at the time needed to evaluate q_{X}^{*}. The expected value will be spllt into five parts according to the flve components in the distribution of X. The atomlc parts

X.3.THE POISSON DISTRIBUTION

$X=0, X=1$ are easy to take care of. The contribution from the normal portions can be bounded from above by a constant times

$$
E(|X|(P-Q)) \leq E\left(|X| \frac{X^{2}(X+1)^{2}}{12 \mu^{2}(\mu+(X+1))}\right) .
$$

Here we have used the fact that W consists of a sum of some random variable and an exponential random varlable. When $X \geq 0$, the last upper bound is in turn not greater than a constant times $E\left(|X|^{5}\right) / \mu^{3}=O\left(\mu^{-1 / 2}\right)$. The case $X<0$ is taken care of simllarly, provided that we first spllt off the case $X<-\frac{\mu}{2}$. The split-off part is bounded from above by

$$
O\left(\mu^{3}\right) P\left(X<-\frac{\mu}{2}\right) \leq O\left(\mu^{3}\right) \frac{E\left(X^{2}\right)}{\mu^{2}}=O(1)
$$

For the exponential tall part, we need a uniform bound for

$$
E\left(|X|{ }^{5} \mu^{-3}\right)(\log (\mu))^{-\frac{1}{2}}
$$

where we have used a fact shown in the proof of Lemma 3.10, l.e. the probabillty that X is exponentlal decreases as a constant tlmes $\log ^{-1 / 2}(\mu)$. Verify next that given that X is from our exponentlal tall, $E\left(|X|^{5}\right)=O\left(\delta^{5}\right)$. Combining all of this shows that our expression in question is

$$
O\left(\frac{\log ^{2}(\mu)}{\sqrt{\mu}}\right)
$$

This concludes the proof of Lemma 3.11.

The computations of the previous Lemma reveal other interesting facets of the algorithm. For example, the expected tlme contrlbution of the evaluations of ractorlals is $O\left(\frac{\log ^{2}(\mu)}{\sqrt{\mu}}\right)$. In other words, it is asymptotically negllglble. Even so, the main contribution to this o (1) expected time comes from the exponentlal tall. This suggests that it is possible to obtain a new value for δ which would minimize the expected time spent on the evaluation of factorlals, and that thls value will differ from that obtained by minimizing the expected number of iterations.

3.5. Exercises.

1. Atkinson (1878) has developed a Polsson (λ) generator based upon rejection from the logistlc denslty

$$
f(x)=\frac{1}{b} e^{-\frac{x-a}{b}}\left(1+e^{-\frac{x-a}{b}}\right)^{-2},
$$

where $a=\lambda$ and $b=\sqrt{3 \lambda} / \pi$. A random varlate with this denstty can be generated as $X \leftarrow a+b \log \left(\frac{1-U}{U}\right)$ where U is uniform $[0,1]$.
A. Find the distribution of $\left\{X+\frac{1}{2}\right\rfloor$.
B. Prove that X has the same mean and variance as the Polsson distributhon.
C. Determine a rejection constant c for use with the distribution of part A.
D. Prove that c is unlformly bounded over all values of λ.
2. A recursive generator. Let n be an integer somewhat smaller than λ, and let G be a gamma (n) random varlable. Show that the random varlable X deflned below is Polsson (λ): if $G>\lambda, X$ is binomial $(n-1, \lambda / G)$; if $G \leq \lambda$, then X is n plus a Polsson ($\lambda-G$) random varlable. Then, taking $n=\lfloor 0.875 \lambda\rfloor$, use this recursive property to develop a recurslve Polsson generator. Note that one can leave the recursive loop elther when at one point $G>\lambda$ or when λ falls below a fixed threshold (such as 10 or 15). By taking n a flxed fraction of λ, the value of λ falls at a geometrlc rate. Show that in vlew of this, the expected time complexity is $O(1+\log (\lambda))$ if a constant expected time gamma generator is used (Ahrens and Dleter, 1974).
3. Prove all the inequallties of Lemma 3.6.
4. Prove that for any λ and any $c>0, \lim _{j \rightarrow \infty} p_{j} / e^{-c j^{2}}=\infty$. Thus, the Poisson curve cannot be tucked under any normal curve.
5. Poisson variates in batches. Let X_{1}, \ldots, X_{n} be a multinomial (Y, p_{1}, \ldots, p_{n}) random vector (i.e., the probabillty of attalning the value i_{1}, \ldots, i_{n} is 0 when $\sum i_{j}$ is not Y and is

$$
\frac{Y!}{i_{1}!\cdots i_{n}!} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}
$$

otherwise. Show that if Y is Polsson (λ), then X_{1}, \ldots, X_{n} are Independent Polsson random variables with parameters $\lambda p_{1}, \ldots, \lambda p_{n}$ respectively. (Moran, 1951; Patll and Seshadrl, 1984; Bolshev, 1965; Tadikamalla, 1979).
6. Prove that as $\lambda \rightarrow \infty$, the distribution of $(X-\lambda) / \sqrt{\lambda}$ tends to the normal distribution by proving that the characteristle function tends to the characteristlic function $e^{-t^{2} / 2}$ of the normal distribution.
7. Show that for the refection method developed in the text, the expected time complexity is $O(\sqrt{\lambda})$ and $\Omega(\sqrt{\lambda})$ as $\lambda \rightarrow \infty$ when no squeeze steps are used and the factorial has to be evaluated expllitily.
8. Glve a detalled rejection algorithm based upon the constant upper bound of Lemma 3.4 and the quadratically decreasing talls of Lemma 3.5.
9. Assume that factorlals are avolded by using the zero-term and one-term Stirlling approximations (Lemma 1.1) as lower and upper bounds in squeeze steps (the difference between the zero-term and one-term approximations of $\log (\Gamma(n))$ is the term $1 /(12 n))$. Show that this suffices for the following rejection algorithms to be unlformly fast:
A. The unlversal algorithm of section 1.
B. The algorlthm based upon Lemmas 3.4 and 3.5 (and developed in Exercise 8).
C. The normal-exponential rejection algorithm developed in the text.
10. Repeat exercise 9, but assume now that factorials are avolded altogether by evaluating an Increasing number of terms in Blnet's convergent serles for the log gamma function (Lemma 1.2) untll an acceptance or rejection decision can be made. Read first the text following Lemma 1.2.
11. The matching distribution. Suppose that n cars are parked in front of Hanna's rubber skin sult shop, and that each of Hanna's satlsfled customers leaves in a randomly plcked car. The number N of persons who leave in thelr own car has the matching distribution with parameter n :

$$
P(N=i)=\frac{1}{i!} \sum_{j=0}^{n-i} \frac{(-1)^{j}}{j!} \quad(0 \leq i \leq n)
$$

A. Show this by invoking the inclusion exclusion princlple.
B. Show that $\operatorname{llm}_{n \rightarrow \infty} P(N=i)=\frac{1}{e i!}$, l.e. that the Polsson (1) dlstribution is the limit (Barton, 1958).
C. Show that $P(N=i) \leq \frac{1}{i!}$, i.e. rejection from the Polsson (1) distributlon can be used with rejection constant e not depending upon n.
D. Show that the algorithm given below is valld, and that its expected complexity is unlformly bounded in n.

WHILE True DO

Generate a Poisson (1) random variate X, and a uniform [0,1] random variate U. IF $X \leq n$ THEN

$$
\begin{aligned}
& k \leftarrow 1, j \leftarrow 0, s \leftarrow 1 \\
& \text { WHILE } j \leq n-X \text { AND } U \leq s \text { DO } \\
& \qquad j \leftarrow j+1, k \leftarrow-j k, s \leftarrow s+\frac{1}{k} \\
& \operatorname{IF} j \leq n-X \text { AND } U<s \\
& \quad \text { THEN RETURN } X \\
& \quad \text { ELSE } j \leftarrow j+1, k \leftarrow j k, s \leftarrow s+\frac{1}{k}
\end{aligned}
$$

12. The Borel-Tanner distribution. A distrlbution Important in queuing theory, with parameters $n \geq 1$ (n integer) and $\alpha \in(0,1)$ was discovered by Borel and Tanner (Tanner, 1951). The probabllitles p_{i} are defined by

$$
p_{i}=\frac{n}{(i-n)!} i^{i-n-1} \alpha^{i-n} e^{-\alpha i} \quad(i \geq n)
$$

Show that the mean is $\frac{n}{1-\alpha}$ and that the varlance is $\frac{n \alpha}{(1-\alpha)^{3}}$. The distribution has a very long positive tall. Develop a unlformly fast generator.

4. THE BINOMLAL DISTRIBUTION.

4.1. Properties.

X is binomially distributed with parameters $n \geq 1$ and $p \in[0,1]$ if

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad(0 \leq i \leq n)
$$

We will say that X is binomial (n, p).

Lemma 4.1. (Genesis.)
Let X be the number of successes in a sequence of n Bernoulll trials with success probabllity p, i.e.

$$
X=\sum_{i=1}^{n} I_{\left\{U_{i}<p\right\}}
$$

where U_{1}, \ldots, U_{n} are ild uniform $[0,1]$ random varlables. Then X is blnomial (n, p).

Lemma 4.2.

The binomlal distribution with parameters n, p has generating function $(1-p+p s)^{n}$. The mean is $n p$, and the varlance is $n p(1-p)$.

Proof of Lemma 4.2.

The factorial moment generating function of X (or simply generating functlon) is

$$
k(s)=E\left(s^{X}\right)=\prod_{i=1}^{n} E\left(s^{I_{\left[U_{i}<p\right]}}\right)
$$

where we used the Lemma 4.1 and its notation. Each factor in the product is obviously equal to $1-p+p s$. This concludes the proof of the first statement. Next, $E(X)=k^{\prime}(1)=n p$, and $E(X(X-1))=k^{\prime \prime}(1)=n(n-1) p^{2}$. Hence, $\operatorname{Var}(X)=E\left(X^{2}\right)-E^{2}(X)=E(X(X-1))+E(X)-E^{2}(X)=n p(1-p)$.

From Lemma 4.1, we can conclude without further work:

Lemma 4.3.

If X_{1}, \ldots, X_{k} are independent blnomial (n_{1}, p) , $\ldots,\left(n_{k}, p\right)$ random varlables, then $\sum_{i=1}^{k} X_{i}$ is binomial $\left(\sum_{i=1}^{k} n_{i}, p\right)$.

Lemma 4.4.(First waiting time property.)

Let G_{1}, G_{2}, \ldots be lld geometric (p) random variables, and let X be the smallest Integer such that

$$
\sum_{i=1}^{X+1} G_{i}>n
$$

Then X is blnomial (n, p).

Proof of Lemma 4.4.

G_{1} is the number of Bernoull trials up to and Including the first success. Thus, by the independence of the G_{i} 's, $G_{1}+\cdots+G_{X+1}$ is the number of Bernoulli trials up to and including the $X+1$-st success. This number is greater than n if and only if among the first n Bernoulll trials there are at most X successes. Thus,

$$
\left.P(X \leq k)=P\left(\sum_{i=1}^{k+1} G_{i}>n\right)=\sum_{j=0}^{k}\binom{n}{j} p^{j}(1-p)^{n-j} \quad \text { (Integer } k\right)
$$

Lemma 4.5. (Second waiting time property.)

Let E_{1}, E_{2}, \ldots be lld exponentlal random variables, and let X be the smallest Integer such that

$$
\sum_{i=1}^{X+1} \frac{E_{i}}{n-i+1}>-\log (1-p)
$$

Then X is binomial (n, p).

Proof of Lemma 4.5.

Let $E_{(1)}<E_{(2)}<\cdots<E_{(n)}$ be the order statistics of an exponentlal distribution. Clearly, the number of $E_{(i)}$ s smaller than $-\log (1-p)$ is binomially distributed with parameters n and $P\left(E_{1}<-\log (1-p)\right)=1-e^{\log (1-p)}=p$. Thus, if X is the smallest integer such that $E_{(X+1)} \geq-\log (1-p)$, then X is binomial (n, p). Lemma 4.5 now follows from the fact (section V.2) that ($\left.E_{(1)}, \ldots, E_{(n)}\right)$ is distributed as

$$
\left(\frac{E_{1}}{n}, \frac{E_{1}}{n}+\frac{E_{2}}{n-1}, \ldots, \frac{E_{1}}{n}+\frac{E_{2}}{n-1}+\cdots+\frac{E_{n}}{1}\right) . \square
$$

4.2. Overview of generators.

The binomial generators can be partitioned into a number of classes:
A. The simple generators. These generators are based upon the direct application of one of the lemmas of the previous section. Typlcally, the expected complexity grows as n or as $n p$, the computer programs are very short, and no additional workspace is required.
B. Uniformly fast generators based upon the refection method (Fishman (1979), Ahrens and Dleter (1980), Kachltvlchyanukul (1982), Devroye and Naderisamanl (1080)). We will not bother with older algorithms which are not untformly fast. Flshman's method is based upon rejection from the Polsson distribution, and is explored in exercise 4.1. The universal rejection algorithm derived from Theorem 1.1 is also uniformly fast, but slnce it was not speciflcally designed for the binomial distribution, it is not competitive with tallor-made rejection algorlthms. To save space, only the algorlthm of Devroye and Naderisamant (1080) will be developed in detall. Although this algorithm may not be the fastest on all computers, it has two desirable propertles: the dominating curve is asymptotically tight because it exploits convergence to the normal distribution, and it does not require a subprogram for computing the log factorial in constant time.
C. Table methods. The finite number of values make the binomial distribution a good candldate for the table methods. To obtaln unlformly fast speed, the table size has to grow in proportion to n, and a set-up time proportional to n is needed. It is generally accepted that the marginal execution tlmes of the allas or allas-urn methods are difficult to beat. See sectlons III. 3 and III. 4 for detalls.
D. Generators based upon recursion (Relles (1972), Ahrens and Dleter (1974)). The problem of generating a binomlal (n, p) random varlate is usually reduced in constant time to that of generating another binomial random varlate with much smaller value for n. Thls leads to $O(\log (n))$ or $O(\log \log (n))$ expected time algorlthms. In view of the superior performance of the generators in classes B and C, the princlple of recursion will be described very brlefly, and most detalls can be found in the exerctses.

4.3. Simple generators.

Lemma 4.1 leads to the

Coin flip method

$X \leftarrow 0$
FOR $i:=1$ TO n DO
Generate a random bit B (B is 1 with probability p, and can be obtained by generating a uniform $[0,1]$ random variate U and setting $\left.B=I_{(U \leq p)}\right)$.

$$
X \leftarrow X+B
$$

RETURN X

This slmple method requires time proportional to n. One can use n unlform random varlates, but it is often preferable to generate Just one uniform random variate and recycle the unused portion. This can be done by noting that a random blt and an independent unlform random varlate can be obtalned as $\left(I_{(U<p)} \min \left(\frac{U}{p}, \frac{1-U}{1-p}\right)\right.$). The coln flip method with recycling of unlform random varlates can be rewritten as follows:
[NOTE: We assume that $p \leq 1 / 2$.]
$X \leftharpoondown 0$
Generate a uniform $[0,1]$ random variate U.
FOR $i:=1$ TO n DO
$B \leftarrow I_{|U>1-p|}$
$U \leftarrow \frac{U-(1-p) B}{p B+(1-p)(1-B)}$ (reuse the uniform random variate)
$X \leftarrow X+B$
RETURN X

For the important case $p=\frac{1}{2}$, it suffices to generate a random uniformly distributed computer word of n blts, and to count the number of ones in the word. In machine language, this can be implemented very efficlently by the standard bit operations.

Inversion by sequential search takes as we know expected time proportional to $E(X)+1=n p+1$. We can avold tables of probabmilles because of the recurrence relatlon

$$
p_{i+1}=p_{i} \frac{(n-i) p}{(i+1)(1-p)} \quad(0 \leq i<n)
$$

where $p_{i}=P(X=i)$. The algorlthm will not be glven here. It suffices to mentlon that for large n, the repeated use of the recurrence relation could also lead to accuracy problems. These problems can be avolded if one of the two walting time algorthms (based upon Lemmas 4.4 and 4.5) is used:

First waiting time algorithm

$X--1$
Sum $\leftarrow 0$
REPEAT
Generate a geometric (p) random variate G.
Sum \leftarrow Sum $+G$
$X-X+1$
UNTIL Sum $>n$
RETURN X

Second waiting time method

[SET-UP]
$q \leftarrow-\log (1-p)$
[GENERATOR]
$X \leftarrow 0$
Sum $\leftarrow 0$
REPEAT
Generate an exponential random variate E.
Sum \leftarrow Sum $+\frac{E}{n-X}$ (Note: Sum is allowed to be ∞.)
$X-X+1$
UNTIL Sum $>q$
RETURN $X \leftarrow X-1$

Both walting time methods have expected time complexitles that grow as $n p+1$.

4.4. The rejection method.

To develop good dominating curves, it helps to recall that by the central limit theorem, the blnomial distribution tends to the normal distribution as $n \rightarrow \infty$ and p remalns fixed. When p varles with n in such a way that $n p \rightarrow c$, a positive constant, then the binomlal distribution tends to the Polsson (c) distribution, which in turn is very close to the normal distribution for large values of c. It seems thus reasonable to consider the normal density as our dominating curve. Unfortunately, the blnomial probabllitles do not decrease quickly enough for one single normal density to be useful as a dominating curve. We cover the blnomial talls with exponentlal curves and make use of Lemma 3.6. To keep things slmple, we assume:

1. $\lambda=n p$ is a nonzero integer.
2. $p \leq \frac{1}{2}$.

So as not to confuse p with $p_{i}=P(X=i)$, we use the notation

$$
b_{i}=\binom{n}{i} p^{i}(1-p)^{n-i} \quad(0 \leq i \leq n)
$$

The second assumption is not restrictive because a binomial (n, p) random varlable is distributed as n minus a binomial ($n, 1-p$) random variable. The first assumption is not limiting in any sense because of the following property.

Lemma 4.6.

If Y is a binomial $\left(n, p^{\prime}\right)$ random variable with $p^{\prime} \leq p$, and if conditional on Y, Z is a binomial $\left(n-Y, \frac{p-p^{\prime}}{1-p^{\prime}}\right)$ random varlable, then $X \leftarrow Y+Z$ is binomlal (n, p).

Proof of Lemma 4.6.

The lemma is based upon the decomposition

$$
X=\sum_{i=1}^{n} I_{\left[U_{i} \leq p\right]}=\sum_{i=1}^{n} I_{\left[U_{i} \leq p^{\prime}\right]}+\sum_{i=1}^{n} I_{\left[p^{\prime}<U_{i} \leq p\right]}=Y+Z
$$

where U_{1}, \ldots, U_{n} are ild uniform $[0,1]$ random variables.

To recapltulate, we offer the following generator for general values of n, p, but $0<p \leq \frac{1}{2}$:

Splitting algorithm for binomial random variates

[NOTE: t is a fixed threshold, typically about 7. For $n p \leq t$, one of the waiting time algorithms is recommended. Assume thus that $n p>t$.]
$p^{\prime} \leftarrow \frac{1}{n}\lfloor n p\rfloor$
Generate a binomial (n, p^{\prime}) random variate Y by the rejection method in uniformly bounded expected time.
Generate a binomial ($n-Y, \frac{p-p^{\prime}}{1-p^{\prime}}$) random variate Z by one of the waiting time methods. RETURN $X \leftarrow Y+Z$

The expected time taken by this generator when $n p>t$ is bounded from above by $c_{1}+c_{2} n \frac{p-p^{\prime}}{1-p^{\prime}} \leq c_{1}+2 c_{2}$ for some universal constants c_{1}, c_{2}. Thus, it can't harm to impose assumption 1 .

Lemma 4.7.

For integer $0 \leq i \leq n(1-p)$ and Integer $\lambda=n p \geq 1$, we have

$$
\log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right) \leq-\frac{i(i-1)}{2 n(1-p)}-\frac{i(i+1)}{2 n p+i}
$$

and

$$
\log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right)+\frac{i^{2}+((1-p)-p) i}{2 n p(1-p)}\left\{\begin{array}{l}
\leq s \\
\geq s-t
\end{array}\right.
$$

where

$$
s=\frac{i(i+1)(2 i+1)}{12 n^{2} p^{2}}-\frac{(i-1) i(2 i-1)}{12 n^{2}(1-p)^{2}}
$$

and

$$
t=\frac{i^{2}(i-1)^{2}}{12 n^{2}(1-p)^{2}(n(1-p)-i+1)}+\frac{i^{2}(i+1)^{2}}{12 n^{3} p^{3}}
$$

For all Integer $0 \leq i \leq n p, \log \left(\frac{b_{\lambda-i}}{b_{\lambda}}\right)$ satisfles the same Inequallities provided that p is replaced throughout by $1-p$ in the varlous expressions.

Proof of Lemma 4.7.

For $i=0$, the statements are obvlously true because equally is reached. Assume thus that $0<i \leq n(1-p)$. We have

$$
\begin{aligned}
& \frac{b_{\lambda+i}}{b_{\lambda}}=\frac{\binom{n}{\lambda+i} p^{\lambda+i}(1-p)^{n-\lambda-i}}{\binom{n}{\lambda} p^{\lambda}(1-p)^{n-\lambda}}=\left(\frac{p}{1-p}\right)^{i} \frac{\binom{n}{\lambda+i}}{\binom{n}{\lambda}} \\
& =\left(\frac{p}{1-p}\right)^{i} \frac{(n-\lambda)!\lambda!}{(n-\lambda-i)!(\lambda+i)!} \\
& =\frac{\prod_{j=0}^{i-1}\left(1-\frac{j}{n(1-p)}\right)}{\prod_{j=0}^{i}\left(1+\frac{j}{n p}\right)} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right)=\sum_{j=0}^{i-1} \log \left(1-\frac{j}{n(1-p)}\right)-\sum_{j=0}^{i} \log \left(1+\frac{j}{n p}\right) \\
& \leq-\sum_{j=0}^{i-1} \frac{j}{n(1-p)}-\sum_{j=0}^{i} \frac{2 j}{2 n p+j} \\
& \leq-\frac{i(i-1)}{2 n(1-p)}-\frac{i(i+1)}{2 n p+i} .
\end{aligned}
$$

Here we used Lemma 3.6. This proves the first statement of the lemma. Again by Lemma 3.6, we see that

$$
\begin{aligned}
& \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right) \leq \sum_{j=0}^{i-1}\left(-\frac{j}{n(1-p)}-\frac{j^{2}}{2 n^{2}(1-p)^{2}}\right)+\sum_{j=0}^{i}\left(-\frac{j}{n p}+\frac{j^{2}}{2 n^{2} p^{2}}\right) \\
& =-\frac{i^{2}+((1-p)-p) i}{2 n p(1-p)}+s .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right) \geq \sum_{j=0}^{i-1}\left(-\frac{j}{n(1-p)}-\frac{j^{2}}{2 n^{2}(1-p)^{2}}-\frac{j^{3}}{3 n^{3}(1-p)^{3}\left(1-\frac{i-1}{n(1-p)}\right)}\right) \\
& \quad+\sum_{j=0}^{i}\left(-\frac{j}{n p}+\frac{j^{2}}{2 n^{2} p^{2}}-\frac{j^{3}}{3 n^{3} p^{3}}\right) \\
& =-\frac{i^{2}+((1-p)-p) i}{2 n p(1-p)}+s-t .
\end{aligned}
$$

This concludes the proof of the first part of Lemma 4.7. For integer $0<i \leq n p$,
we have

$$
\begin{aligned}
& \frac{b_{\lambda-i}}{b_{\lambda}}=\left(\frac{p}{1-p}\right)^{-i} \frac{\binom{n}{\lambda-i}}{\binom{n}{\lambda}} \\
& =\frac{\prod_{j=0}^{i-1}\left(1-\frac{j}{n p}\right)}{\prod_{j=0}^{i}\left(1+\frac{j}{n(1-p)}\right)} .
\end{aligned}
$$

This is formally the same as an expresslon used as starting point above, provided that p is replaced throughout by $1-p$.

Lemma 4.7 is used in the construction of a useful function $g(x)$ with the property that for all $x \in[i, i+1)$, and all allowable $i(-n p \leq i \leq n(1-p)$),

$$
g(x) \geq \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right)
$$

The algorithm is of the form:

REPEAT

Generate a random variate Y with density proportional to e^{ρ}.
Generate an exponential random variate E.
$X \leftarrow\lfloor Y\rfloor$ (this is truncation to the left, even for negative values of Y)
UNTIL $[-n p \leq X \leq n(1-p)]$ AND $\left[g(Y) \leq \log \left(\frac{b_{\lambda+X}}{b_{\lambda}}\right)+E\right]$
RETURN $X \leftarrow \lambda+X$

The normal-exponential dominating curve e^{g} suggested earller is defined in Lemma 4.8:

Lemma 4.8.

Let $\delta_{1} \geq 1, \delta_{2} \geq 1$ be given integers. Define furthermore

$$
\begin{aligned}
\sigma_{1} & =\sqrt{n p(1-p)}\left(1+\frac{\delta_{1}}{4 n p}\right) \\
\sigma_{2} & =\sqrt{n p(1-p)}\left(1+\frac{\delta_{2}}{4 n(1-p)}\right) \\
c & =\frac{2 \delta_{1}}{n p}
\end{aligned}
$$

Then the function g can be chosen as follows:

$$
g(x)=\left\{\begin{array}{ll}
c-\frac{x^{2}}{2 \sigma_{1}^{2}} & \left(0 \leq x<\delta_{1}\right) \\
\frac{\delta_{1}}{n(1-p)} & \frac{\delta_{1} x}{2 \sigma_{1}^{2}} \\
\left(\delta_{1}<x\right) \\
-\frac{x^{2}}{2 \sigma_{2}^{2}} & \left(-\delta_{2}<x<0\right) \\
-\frac{\delta_{2} x}{2 \sigma_{2}^{2}} & \left(x \leq-\delta_{2}\right)
\end{array} .\right.
$$

Proof of Lemma 4.8.

For $i=0$ we need to show that $c \geq 1 /\left(2 \sigma_{1}{ }^{2}\right)$. This follows from

$$
2 c \sigma_{1}^{2}=\frac{4 \delta_{1}}{n p} n p(1-p)\left(1+\frac{\delta_{1}}{4 n p}\right)^{2} \geq 4 \delta_{1}(1-p) \geq 2 \delta_{1} \geq 2
$$

When $0<i<\delta_{1}$, we have

$$
\begin{aligned}
& -\frac{i(i-1)}{2 n(1-p)} \leq-\frac{(x-1)(x-2)}{2 n(1-p)} \\
& -\frac{i(i+1)}{2 n p+i} \leq-\frac{x(x-1)}{2 n p+\delta_{1}}
\end{aligned}
$$

By Lemma 4.7,

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{(x-1)(x-2)}{2 n(1-p)}-\frac{x(x-1)}{2 n p+\delta_{1}} \\
& =-\left(\frac{1}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}\right) x^{2}+\left(\frac{3}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}\right) x-\frac{1}{n(1-p)} \\
& \leq-\left(\frac{1}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}\right) x^{2}+\frac{2 \delta_{1}}{n p} \\
& \leq-\frac{x^{2}}{2{\sigma_{1}}^{2}}+\frac{2 \delta_{1}}{n p} .
\end{aligned}
$$

The last step follows by appllcation of the Inequality $\sqrt{1+u}<1+\frac{u}{2}$, valld for $u>0$, in the following chaln of Inequallties:

$$
\begin{aligned}
& \frac{1}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}=\frac{1+\frac{\delta_{1}}{2 n}}{2 n p(1-p)\left(1+\frac{\delta_{1}}{2 n p}\right)} \\
& \geq \frac{1}{2 n p(1-p)\left(1+\frac{\delta_{1}}{2 n p}\right)} \\
& \geq \frac{1}{\left(\sqrt{\left.2 n p(1-p)\left(1+\frac{\delta_{1}}{4 n p}\right)\right)}{ }^{2}\right.}=\frac{1}{2 \sigma_{1}^{2}} .
\end{aligned}
$$

When $i \geq \delta_{1}$, we have

$$
-\frac{i(i-1)}{2 n(1-p)} \leq-\frac{\delta_{1}(x-2)}{2 n(1-p)} ;-\frac{i(i+1)}{2 n p+i} \leq-\frac{\delta_{1} x}{2 n p+\delta_{1}} .
$$

By Lemma 4.7,

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{\delta_{1}(x-2)}{2 n(1-p)}-\frac{\delta_{1} x}{2 n p+\delta_{1}} \\
& =-\left(\frac{1}{2 n p}+\frac{1}{2 n p+\delta_{1}}\right) \delta_{1} x+\frac{\delta_{1}}{n(1-p)} \\
& \leq-\frac{\delta_{1} x}{2{\sigma_{1}}^{2}}+\frac{\delta_{1}}{n(1-p)} .
\end{aligned}
$$

When $0>i \geq-\delta_{2}$, we have

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{i(i+1)}{2 n p}-\frac{i(i-1)}{2 n(1-p)-i} \\
& =-\left(\frac{1}{2 n p}+\frac{1}{2 n(1-p)+\delta_{2}}\right) i^{2}-\frac{i}{2 n p}+\frac{i}{2 n(1-p)+\delta_{2}} \\
& \leq-\left(\frac{1}{2 n p}+\frac{1}{2 n(1-p)+\delta_{2}}\right) x^{2} \\
& \leq-\frac{x^{2}}{2 \sigma_{2}{ }^{2}}
\end{aligned}
$$

Finally, when $i<-\delta_{2}$, we see that

$$
\begin{aligned}
& -\frac{i(i+1)}{2 n p} \leq \frac{\delta_{2} x}{2 n p} \\
& -\frac{i(i-1)}{2 n(1-p)-i} \leq \frac{\delta_{2}(i-1)}{2 n(1-p)+\delta_{2}} \leq \frac{\delta_{2}(x-1)}{2 n(1-p)+\delta_{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{\delta_{2} x}{2 n p}+\frac{\delta_{2}(x-1)}{2 n(1-p)+\delta_{2}} \\
& =\left(\frac{1}{2 n p}+\frac{1}{2 n(1-p)+\delta_{2}}\right) \delta_{2} x-\frac{\delta_{2}}{2 n(1-p)+\delta_{2}} \\
& \leq \frac{\delta_{2} x}{2 \sigma_{2}^{2}}
\end{aligned}
$$

The dominating curve e^{g} suggested by Lemma 4.8 consists of four pleces, one plece per interval. The integrals of e^{g} over these intervals are needed by the generator. These are easy to compute for the exponentlal talls, but not for the normal center intervals. Not much will be lost if we replace the two normal pleces by halfnormals on the positive and negative real line respectively, and reject when the normal random variates fall outside $\left[-\delta_{2}, \delta_{1}\right]$. This at least allows us to work with the integrals of halfnormal curves. We will call the areas under the different components of $e^{g} a_{i} \quad(1 \leq i \leq 4)$. Thus,

$$
\begin{aligned}
& a_{1}=\int_{0}^{\infty} e^{c-\frac{x^{2}}{2 \sigma_{1}{ }^{2}}} d x=\frac{1}{2} e^{c} \sigma_{1} \sqrt{2 \pi}, \\
& a_{2}=\frac{1}{2} \sigma_{2} \sqrt{2 \pi}, \\
& a_{3}=\int_{\delta_{1}}^{\infty} e^{\frac{\delta_{1}}{n(1-p)}-\frac{\delta_{1} x}{2 \sigma_{1}{ }^{2}}} d x=e^{\frac{\delta_{1}}{n(1-p)}} \frac{2 \sigma_{1}{ }^{2}}{\delta_{1}} e^{-\frac{\delta_{1}{ }^{2}}{2 \sigma_{1}{ }^{2}}}, \\
& a_{4}=\frac{2 \sigma_{2}{ }^{2}}{\delta_{2}} e^{-\frac{\delta_{2}{ }^{2}}{2 \sigma_{2}^{2}}}
\end{aligned}
$$

We can now summarize the algorithm:

A rejection algorithm for binomial random variates

[SET-UP]

$$
\begin{aligned}
& \sigma_{1} \leftarrow \sqrt{n p(1-p)}\left(1+\delta_{1} /(4 n p)\right), \sigma_{2} \leftarrow \sqrt{n p(1-p)}\left(1+\delta_{2} /(4 n(1-p))\right), c \leftarrow 2 \delta_{1} /(n p) \\
& a_{1} \leftarrow \frac{1}{2} e^{c} \sigma_{1} \sqrt{2 \pi}, a_{2} \leftarrow \frac{1}{2} \sigma_{2} \sqrt{2 \pi} \\
& a_{3} \leftarrow e^{\frac{\delta_{1}}{n(1-p)}} \frac{2 \sigma_{1}{ }^{2}}{\delta_{1}} e^{-\frac{\delta_{1}{ }^{2}}{2 \sigma_{1}{ }^{2}}} \\
& a_{4} \leftarrow \frac{2 \sigma_{2}{ }^{2}}{\delta_{2}} e^{-\frac{\delta_{2}{ }^{2}}{2 \sigma_{2}{ }^{2}}} \\
& s \leftarrow a_{1}+a_{2}+a_{3}+a_{4} \\
& \text { [GENERATOR] } \\
& \text { REPEAT }
\end{aligned}
$$

Generate a uniform $[0, s]$ random variate U.
CASE

$$
U \leq a_{1}:
$$

Generate a normal random variate $N ; Y-\sigma_{1}|N|$
Reject $-\left[Y \geq \delta_{1}\right]$
IF NOT Reject THEN $X \leftarrow\lfloor Y\rfloor, V \leftarrow-E-\frac{N^{2}}{2}+c$ where E is an exponential random variate.
$a_{1}<U \leq a_{1}+a_{2}$:
Generate a normal random variate $N ; Y-\sigma_{2}|N|$
Reject $\leftarrow\left[Y \geq \delta_{2}\right]$
IF NOT Reject THEN $X \leftarrow\lfloor-Y\rfloor, V \leftarrow E-\frac{N^{2}}{2}$ where E is an exponential random variate.
$a_{1}+a_{2}<U \leq a_{1}+a_{2}+a_{3}:$
Generate two iid exponential random var: eses E_{1}, E_{2}.
$Y \leftarrow \delta_{1}+2 \sigma_{1}{ }^{2} E_{1} / \delta_{1}$
$X \leftarrow\lfloor Y\rfloor, V \leftarrow-E_{2}-\delta_{1} Y /\left(2 \sigma_{1}{ }^{2}\right)+\delta_{1} /(n(1-z$
Reject \leftarrow False
$a_{1}+a_{2}+a_{3}<U:$
Generate two iid exponential random vari:es $E_{1} . E_{2}$.
$Y \leftarrow \delta_{2}+2 \sigma_{2}^{2} E_{1} / \delta_{2}$
$X \leftarrow\lfloor-Y\rfloor, V \leftarrow-E_{2}-\delta_{2} Y /\left(2 \sigma_{2}{ }^{2}\right)$
Reject - False
Reject \leftarrow Reject $\operatorname{OR}[X<-n p]$ OR $[X>n(1-p)]$
Reject \leftarrow Reject $\operatorname{OR}\left[V>\log \left(b_{n p+} x / b_{n p}\right)\right]$
UNTIL NOT Reject
RETURN X

We need only choose δ_{1}, δ_{2} so that the expected number of iterations is approximately minimal. This is done in Lemma 4.9.

Lemma 4.9.

Assume that $p \leq \frac{1}{2}$ and that as $\lambda=n p \rightarrow \infty$, we have unlformly in p, $\delta_{1}=o(\lambda), \delta_{2}=o(n), \delta_{1} / \sqrt{\lambda} \rightarrow \infty, \delta_{2} / \sqrt{n p} \rightarrow \infty$. Then the expected number of iterations is unlformly bounded over $n \geq 1,0 \leq p \leq \frac{1}{2}$, and tends to 1 uniformly in p as $\lambda \rightarrow \infty$.

The conditions on δ_{1}, δ_{2} are satlsfled for the following (nearly optimal) cholces:

$$
\begin{aligned}
& \delta_{1}=\left\lfloor\max \left(1, \sqrt{n p(1-p) \log \left(\frac{128 n p}{81 \pi(1-p)}\right)}\right\rfloor\right. \\
& \delta_{2}=\left\{\max \left(1, \sqrt{n p(1-p) \log \left(\frac{128 n(1-p)}{\pi p}\right)}\right)\right\rfloor .
\end{aligned}
$$

Proof of Lemma 4.9.

We first observe that under the stated conditlons on δ_{1}, δ_{2}, we have

$$
\begin{aligned}
& \sigma_{1}=\sqrt{n p(1-p)(1+o(1)), \sigma_{2}=\sqrt{n p(1-p)}(1+o(1))} \\
& c=o(1) \\
& a_{1}=\sqrt{\frac{\pi n p(1-p)}{2}}(1+o(1)), a_{2}=\sqrt{\frac{\pi n p(1-p)}{2}}(1+o(1)), \\
& a_{3}=\frac{2 n p(1-p)}{\delta_{1}}(1+o(1)) e^{-\frac{\delta_{1}^{2}(1+o(1))}{2 n p(1-p)}} \\
& a_{4}=\frac{2 n p(1-p)}{\delta_{2}}(1+o(1)) e^{-\frac{\delta_{2}^{2}(1+o(1))}{2 n p(1-p)}} \\
& a_{1}+a_{3} \sim a_{1}, a_{2}+a_{4} \sim a_{2} \\
& a_{1}+a_{2}+a_{3}+a_{4} \sim \sqrt{2 \pi n p(1-p)} .
\end{aligned}
$$

The expected number of iterations in the algorithm is $\left(a_{1}+a_{2}+a_{3}+a_{4}\right) b_{n p} \sim \sqrt{2 \pi n p(1-p)} / \sqrt{2 \pi n p(1-p)}=1$. All o (.) and \sim symbols inherlt the unlformity with respect to p, as long as $\lambda \rightarrow \infty$. The unlform boundedness of the expected number of iterations follows from this.

The partlcular cholces for δ_{1}, δ_{2} are easlly seen to satisfy the convergence conditions. That they are nearly optimal (with respect to the minimization of the expected number of iterations) is now shown. The minimization of $a_{1}+a_{3}$ would provide us with a good value for δ_{1}. In the asymptotic expanstons for a_{1}, a_{3}, it is
now necessary to consider the first two terms, not Just the main term. In particular, we have

$$
\begin{aligned}
& a_{1}=\sqrt{\frac{\pi n p(1-p)}{2}} e^{c}\left(1+\frac{\delta_{1}}{4 n p}\right)=\sqrt{\frac{\pi n p(1-p)}{2}}\left(1+\frac{(9+o(1)) \delta_{1}}{4 n p}\right), \\
& a_{3}=\frac{2 n p(1-p)}{\delta_{1}} e^{-\frac{(1+o(1)) \delta_{1}{ }^{2}}{2 n p(1-p)}} \approx \frac{2 n p(1-p)}{\delta_{1}} e^{-\frac{\delta_{1}{ }^{2}}{2 n p(1-p)}}
\end{aligned}
$$

Setting the derlvative of the sum of the two right-hand-side expressions equal to zero glves the equation

$$
\frac{\delta_{1}{ }^{2}}{n p(1-p)} e^{\frac{\delta_{1}{ }^{2}}{2 n p(1-p)}}=\left(1+\frac{\delta_{1}{ }^{2}}{n p(1-p)}\right) \sqrt{n p(1-p)} \frac{8 \sqrt{2}}{8(1-p) \sqrt{\pi}}
$$

Disregarding the term " 1 " with respect to $\frac{\delta_{1}{ }^{2}}{n p(1-p)}$ and solving with respect to δ_{1} gives

$$
\delta_{1}=\sqrt{n p(1-p) \log \left(\frac{128 n p}{81 \pi(1-p)}\right)}
$$

A sultable expression for δ_{2} can be obtalned by a slmllar argument. Indeed,

$$
\begin{aligned}
a_{2}+a_{4}= & \sqrt{\frac{\pi n p(1-p)}{2}}\left(1+\frac{\delta_{2}}{4 n(1-p)}\right) \\
& +(1+o(1)) \frac{2 n p(1-p)}{\delta_{2}} e^{-\frac{(1+o(1)) \delta_{2}^{2}}{2 n p(1-p)}}
\end{aligned}
$$

Disregard the o (1) term, and set the derivative of the resulting expression with respect to δ_{2} equal to zero. This gives the equation

$$
\frac{e^{\frac{\delta_{2}^{2}}{2 n p(1-p)}}}{4 n(1-p)}=2\left(n p(1-p)+\delta_{2}^{2}\right) \sqrt{\frac{2}{\pi n p(1-p)}} \sim \sqrt{\frac{8}{\pi n p(1-p)} \delta_{2}^{2}}
$$

If \sim is replaced by equallty, then the solution with respect to δ_{2} is

$$
\delta_{2}=\sqrt{n p(1-p) \log \left(\frac{128 n(1-p)}{\pi p}\right)}
$$

Lemma 4.9 is cruclal for us. For large values of $n p$, the rejection constant is nearly 1. Also, slnce δ_{1} and δ_{2} are large compared to the standard deviation $\sqrt{n p(1-p)}$ of the distribution, the exponential talls float to inflnity as $n p \rightarrow \infty$. In other words, we exit most of the time with a properly scaled normal random varlate. At thls point we leave the algorithm. The interested readers can find more information in the exercises. For example, the evaluation of $b_{n p+i} / b_{n p}$
takes time proportional to $1+|i|$. This implles that the expected complexity grows as $\sqrt{n p(1-p)}$ when $n p \rightarrow \infty$. It can be shown that the expected complexity Is unlformly bounded if we do one of the following:
A. Use squeeze steps suggested in Lemma 4.7, and evaluate $b_{n p+i} / b_{n p}$ expllcitly when the squeeze steps fall.
B. Use squeeze steps based upon Stlyling's serles (Lemma 1.1), and evaluate $b_{n p+i} / b_{n p}$ explicitly when the squeeze steps fall.
C. Make all decisions involving factorials based upon sequentlally evaluating more and more terms in Binet's convergent serles for factorials (Lemma 1.2).
D. Assume that the log gamma function is a unlt cost function.

4.5. Recursive methods.

The recursive methods are all based upon the connection between the blnomial and beta distributions given in Lemma 4.6. This is best visualized by considering the order statistics $U_{(1)}<\cdots<U_{(n)}$ of ild uniform [0,1] random variables, and noting that the number of $U_{(i)} \mathrm{s}$ in $[0, p]$ is binomial (n, p). Let us call this quantlty X. Furthermore, $U_{(i)}$ Itself is beta ($i, n+1-i$) distributed. Because $U_{(i)}$ is approximately $\frac{i}{n+1}$, we can begin with generating a beta $(i, n+1-i)$ random varlate Y with $i=\lfloor(n+1) p\rfloor$. Y should be close to p. In any case, we have gone a long way toward solving our problem. Indeed, if $Y \leq p$, we note that X is equal to i plus the number of $U_{(j)}$'s in the interval (Y, p), which we know is binomial $\left(n-i, \frac{p-Y}{1-Y}\right.$) distributed. By symmetry, if $Y>p, X$ is equal to i minus a binomial $\left(i-1, \frac{Y-p}{Y}\right.$) random variate. Thus, the following recurslve program can be used:

Recursive binomial generator

[NOTE: n and p will be destroyed by the algorithm.]
$X \leftarrow 0, S \leftarrow+1$ (S is a sign)
REPEAT IF $n p<t$ (t is a design constant)

THEN
Generate a binomial (n, p) random variate B by a simple method such as the waiting time method.
RETURN $X \leftarrow X+S B$
ELSE
Generate a beta $(i, n+1-i)$ random variate Y with $i=\lfloor(n+1) p\rfloor$.
$X \leftarrow X+S i$
IF $Y \leq p$
THEN $n \leftarrow n-i, p \leftarrow \frac{p-Y}{1-Y}$
ELSE $S \leftarrow-S, n \leftarrow i-1, p \leftarrow \frac{Y-p}{Y}$
UNTIL False

In this slmple algorithm, we use a unlformly iast beta generator. The simple blnomial generator alluded to should be such that its expected time is $O(n p)$. Note however that it is not cruclal: the algorithm works fine even if we set $t=0$ and thus bypass the slmple binomial generator. The algorlthm halts when $n=0$, which happens with probabllity one.

Let us give an informal outline of the proof of the clalm that the expected time taken by the algorithm is bounded by a constant times $\log (\log (n))$. By the propertles of the beta distribution, $Y-p$ is of the order of $\sqrt{\frac{i(n-i)}{n^{3}}}$, i.e. It is approximately $\sqrt{p(1-p) / n}$. Since Y itself is close to p, we see that the new values for (n, p) are elther about $(n(1-p), \sqrt{p /((1-p) n)})$ or about $(n p, \sqrt{(1-p) /(p n)})$. The new product $n p$ is thus of the order of magnitude of $\sqrt{n p(1-p)}$. We see that $n p$ gets replaced at worst by about $\sqrt{n p}$ in one lteratlon. In k Iterations, we have about

$$
(n p)^{2^{-k}}
$$

Slnce we stop when this reaches t, our constant, the number of iterations should be of the order of magnitude of

$$
\log \left(\frac{\log (n p)}{\log (t)}\right)
$$

This argument can be formallzed, and the mathematically inclined reader is urged to do so (exercise 4.7). Since the loglog function increases very slowly, the recursive method can be competltive depending upon the beta generator. It was preclsely the latter polnt, poor speed of the pre-1875 beta generators, whlch prompted Relles (1972) and Ahrens and Dleter (1974) to propose slightly different recursive generators in which i is not chosen as $\lfloor(n+1) p\rfloor$, but rather as $(n+1) / 2$ when n is odd. This implies that all beta random varlates needed are symmetric beta random varlates, whlch can be generated quite efficiently. Because n gets halved at every iteration, thelr algorlthm runs $\ln O(\log (n))$ time.

4.6. Symmetric binomial random variates.

The purpose of this section is to polnt out that in the case $p=\frac{1}{2}$ a single normal dominating curve suffces in the rejection algorithm, and to present and analyze the following simple rejection algorithm:

Rejection method for symmetric binomial random variates
[NOTE: This generator returns a binomial ($2 n, \frac{1}{2}$) random variate.]
[SET-UP]
$s \leftarrow 1 / \sqrt{2\left(n^{-1}-\left(2 n^{2}\right)^{-1}\right)}, \sigma \leftarrow s+\frac{1}{4}, c \leftarrow 2 /(1+8 s)$
[GENERATOR]
REPEAT
Generate a normal random variate N and an exponential random variate E.

$$
Y \leftarrow \sigma N, X \leftarrow \operatorname{round}(Y)
$$

$$
T \longleftarrow E+c-\frac{1}{2} N^{2}+\frac{1}{n} X^{2}
$$

$$
\text { Reject } \leftarrow[|X|>n]
$$

IF NOT Reject THEN
Accept $\leftarrow\left[T<-\frac{X^{4}}{6 n^{3}\left(1-\left(\frac{|X|-1}{n}\right)^{2}\right)}\right]$
IF NOT Accept THEN
Reject $-\left\lfloor T>\frac{X^{2}}{2 n^{2}}\right]$
IF NOT Reject THEN

$$
\text { Accept } \leftarrow\left[T>\log \left(\frac{b_{n+X}}{b_{n}}\right)+\frac{X^{2}}{n}\right]
$$

UNTIL NOT Reject AND Accept
RETURN $X \leftarrow n+X$

The algorthm has one quick acceptance step and one quick rejection step designed to reduce the probability of having to evaluate the final acceptance step which involves computing the logarithms of two binomial probablilties. The valldity of the algorlthm follows from the following Lemma.

Lemma 4.10.
Let $b_{0}, \ldots, b_{2 n}$ be the probabilitles of a binomlal $(2 n, p)$ distribution. Then, for any $\sigma>s$,

$$
\left.\log \left(\frac{b_{n+i}}{b_{n}}\right) \leq c-\frac{\left(|i|+\frac{1}{2}\right)^{2}}{2 \sigma^{2}} \quad \text { (Integer } i,|i| \leq n\right)
$$

where $c=1 /\left(8\left(\sigma^{2}-s^{2}\right)\right)$. Also, for all $n>i>0$,

$$
-\frac{i^{4}}{6 n^{3}\left(1-\left(\frac{i-1}{n}\right)^{2}\right)} \leq \log \left(\frac{b_{n+i}}{b_{n}}\right)+\frac{i^{2}}{n} \leq \frac{i^{2}}{2 n^{2}} .
$$

Proof of Lemma 4.10.

We will use repeatedly the following fact: for $1>x>0$,

$$
\begin{aligned}
& -2 x-\frac{2 x^{3}}{3\left(1-x^{2}\right)}<\log \left(\frac{1-x}{1+x}\right)<-2 x-\frac{2 x^{3}}{3} \\
& -\frac{1}{2} x^{2}<\log (1+x)-x<0
\end{aligned}
$$

The first lnequality follows from the fact that $\log \left(\frac{1-x}{1+x}\right)$ has serles expansion $-2\left(x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots\right)$. Thus, for $n>i>0$,

$$
\begin{aligned}
& \log \left(\frac{b_{n+i}}{b_{n}}\right)=\log \left(\frac{n!n!}{(n+i)!(n-i)!}\right)=\log \left(\prod_{j=1}^{i-1} \frac{1-\frac{j}{n}}{1+\frac{j}{n}} \frac{1}{1+\frac{i}{n}}\right) \\
& =\sum_{j=1}^{i-1}\left(\log \left(\frac{1-\frac{j}{n}}{1+\frac{j}{n}}\right)+\frac{2 j}{n}\right)-\left(\log \left(1+\frac{i}{n}\right)-\frac{i}{n}\right)-\frac{i^{2}}{n} \\
& =c_{i}+d_{i}-\frac{i^{2}}{n} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& 0+\frac{1}{2}\left(\frac{i}{n}\right)^{2} \geq c_{i}+d_{i} \\
& \geq-\sum_{j=1}^{i-1} \frac{2}{3}\left(\frac{j}{n}\right)^{3}\left(1-\left(\frac{j}{n}\right)^{2}\right)^{-1}+0 \\
& \geq-\frac{2}{3}\left(1-\left(\frac{i-1}{n}\right)^{2}\right)^{-1} \sum_{j=1}^{i-1}\left(\frac{j}{n}\right)^{3}
\end{aligned}
$$

$$
\geq-\frac{2}{3}\left(1-\left(\frac{i-1}{n}\right)^{2}\right)^{-1} \frac{i^{4}}{4 n^{3}}
$$

Thus,

$$
\log \left(\frac{b_{n+i}}{b_{n}}\right) \leq-\frac{i^{2}}{n}+\frac{i^{2}}{2 n^{2}}=-\frac{i^{2}}{2 s^{2}} \leq c-\frac{\left(|i|+\frac{1}{2}\right)^{2}}{2 \sigma^{2}} \quad(|i| \leq n)
$$

where

$$
c=\sup _{u>0} \frac{\left(u+\frac{1}{2}\right)^{2}}{2 \sigma^{2}}-\frac{u^{2}}{2 s^{2}}
$$

Assuming that $\sigma>s$, this supremum is reached for

$$
u=\frac{s^{2}}{2\left(\sigma^{2}-s^{2}\right)}, c=\frac{1}{8\left(\sigma^{2}-s^{2}\right)}
$$

The dominating curve suggested by Lemma 4.11 is a centered normal density with varlance σ^{2}. The best value for σ is that for which the area $\sqrt{2 \pi} \sigma e^{c}$ is minimal. Setting the derlvative with respect to σ of the logarithm of this expresslon equal to 0 gives the equation

$$
\sigma^{2}-\frac{1}{2} \sigma-s^{2}=0
$$

The solution is $\sigma=\frac{1}{4}+s \sqrt{1+1 /\left(18 s^{2}\right)}=\frac{1}{4}+s+o$ (1). It is for thls reason that the value $\sigma=s+\frac{1}{4}$ was taken in the algorithm. The corresponding value for c is $2 /(1+8 s)$.

The expected number of Iterations is $b_{n} \sqrt{2 \pi} \sigma e^{c} \sim \frac{1}{\sqrt{\pi n}} \sqrt{2 \pi} \sqrt{\frac{n}{2}}=1$ as $n \rightarrow \infty$. Assuming that b_{n+i} / b_{n} takes time $1+|i|$ when evaluated explicitly, it Is clear that without the squeeze steps, we would have obtained an expected time which would grow as \sqrt{n} (because the i is distributed as σ times a normal random variate). The efflclency of the squeeze steps is highlighted in the following Lemma.

Lemma 4.11.

The algorithm shown above is unlformly fast in n when the quick acceptance step is used. If in addition a quick rejection step is used, then the expected time due to the explicit evaluation of b_{n+i} / b_{n} is $O(1 / \sqrt{n})$.

Proof of Lemma 4.11.

Let $p(x)$ be the probability that the inequallty in the quick acceptance step is not satisfled for fixed $X=x$. We have $P(|X| \geq 1+n \sqrt{5 / 8})=O\left(r^{-n}\right)$ for some $r>1$. For $|x| \leq 1+n \sqrt{5 / 8}$, we have in vlew of $\left|Y^{2}-x^{2}\right| \leq\left(|x|+\frac{1}{2}\right) / 2$,

$$
\begin{aligned}
& p(x) \leq P\left(-E+c-\frac{\left(x^{2}-\frac{1}{4}-\frac{|x|}{2}\right)}{2 \sigma^{2}}+\frac{x^{2}}{n}>-\frac{x^{4}}{n^{3}}\right) \\
& \leq P\left(E<c+\frac{1}{8 \sigma^{2}}+\frac{|x|}{4 \sigma^{2}}+x^{2}\left(\frac{1}{n}-\frac{1}{2 \sigma^{2}}\right)+\frac{x^{4}}{n^{3}}\right) \\
& \leq 2 c+\frac{|x|}{4 \sigma^{2}}+x^{2}\left(\frac{1}{n}-\frac{1}{2 \sigma^{2}}\right)+\frac{x^{4}}{n^{3}} \\
& =O\left(n^{-\frac{1}{2}}\right)+|x| O\left(n^{-1}\right)+x^{2} O\left(n^{-\frac{3}{2}}\right)+x^{4} O\left(n^{-3}\right) .
\end{aligned}
$$

Thus, the probabllity that a couple (X, E) does not satisfy the quick acceptance condition is $E(p(X))$. Since $E(|X|)=O(\sigma)=O(\sqrt{n}), E\left(X^{2}\right)=O(n)$ and $E\left(X^{4}\right)=O\left(n^{2}\right)$, we conclude that $E(p(X))=O(1 / \sqrt{n})$. If every time we rejected, we were to start afresh with a new couple (X, E), the expected number of such couples needed before halting would be $1+O(1 / \sqrt{n})$. Using this, it is also clear that in the algorithm without quick rejection step, the expected time is bounded by a constant times $1+E(|X| p(X))$. But

$$
\begin{aligned}
& E(|X| p(X)) \leq E\left(|X| I_{||X|>1+n \sqrt{5 / 6 \mid}}\right)+E(|X|) O\left(n^{-\frac{1}{2}}\right) \\
& +E\left(X^{2}\right) O\left(n^{-1}\right)+E\left(|X|^{3}\right) O\left(n^{-\frac{3}{2}}\right)+E\left(|X|^{5}\right) O\left(n^{-3}\right) \\
& =O(1)
\end{aligned}
$$

This concludes the proof of the first statement of the Lemma. If a quick rejection step is added, and $q(x)$ is the probabillty that for $X=x$, both the quick acceptance and refection steps are falled, then, argulng as before, we see that for $|x| \leq 1+n \sqrt{5 / \theta}$,

$$
q(x) \leq \frac{x^{4}}{n^{3}}+\frac{x^{2}}{n^{2}} .
$$

Thus, the probability that both Inequalitles are violated is

$$
E(q(X)) \leq \frac{E\left(X^{4}\right)}{n^{3}}+\frac{E\left(X^{2}\right)}{n^{2}}+P(|X| \geq 1+n \sqrt{5 / 8})=O\left(\frac{1}{n}\right) .
$$

The expected time spent on explicitly evaluating factorials is bounded by a constant times $1+E(|X| q(X))=O(1 / \sqrt{n})$.

4.7. The negative binomial distribution.

In sectlon X.1, we introduced the negative binomial distribution with parameters (n, p), where $n \geq 1$ is an integer and $p \in(0,1)$ is a real number as the distributlon of the sum of n lld geometric random varlables. It has generating function

$$
\left(\frac{p}{1-(1-p) s}\right)^{n}
$$

Using the binomial theorem, and equating the coefflcients of s^{i} with the probabllitles p_{i} for all i shows that the probabllitles are

$$
P(X=i)=p_{i}=\binom{-n}{i} p^{n}(-1+p)^{i}=\binom{n+i-1}{i} p^{n}(1-p)^{i} \quad(i \geq 0)
$$

When $n=1$, we obtain the geometric (p) distribution. For $n=1, X$ is distributed as the number of fallures in a sequence of independent experiments, each having success probabllity p, before the n-th success is encountered. From the propertles of the geometric distribution, we see that the negative binomial distributipn has mean $\frac{n(1-p)}{p}$ and varlance $\frac{n(1-p)}{p^{2}}$.

Generation by summing n Ild geometric p random varlates ylelds at best an algorithm taking expected time proportional to n. The situation is even worse if we employ Example 1.4, In which we showed that it suffices to sum N Ild logarlthmic serles ($1-p$) random varlates where N itself is Polsson (λ) and $\lambda=n \log \left(\frac{1}{p}\right)$. Here, at best, the expected time grows as $E(N)=n \log \left(\frac{1}{p}\right)$.

The property that one can use to construct a unlformly fast generator is obtalned in Example 1.5: a negative binomlal random varlate can be generated as a Polsson (Y) random varlate where Y in turn is a gamma ($n, \frac{1-p}{p}$) random varlate. The same can be achleved by designing a uniformly fast rejection algorithm from scratch.

4.8. Exercises.

1. Binomial random variates from Poisson random variates. This exerclse is motlvated by an Idea first proposed by Fishman (1979), namely to generate binomlal random varlates by rejectlon from Poisson random varlates. Let b_{i} be the probabllity that a binomlal (n, p) random varlable takes the value i, and let p_{i} be the probabllity that a Polsson $((n+1) p)$ random varlable takes the value i.
A. Prove the cruclal inequally $\sup _{i} b_{i} / p_{i} \leq e^{1 /(12(n+1))} / \sqrt{1-p}$, valld for all n and p. Since we can without loss of generallty assume that $p \leq \frac{1}{2}$, this implles that we have a uniformly fast binomial generator if
we have a unlformly fast Polsson generator, and if we can handle the evaluation of b_{i} / p_{i} in unlformly bounded time. To prove the inequallty, start with Inequalitles for the factorlal given In Lemma 1.1, write i as $(n+1) p+x$, note that $x \leq(n+1)(1-p)$, and use the inequallty $1+u \geq e^{u /(1+u)}$, valld for all $u>-1$.
B. Give the detalls of the rejection algorithm, in which factorlals are squeezed by using the zero-term and one-term bounds of Lemma 1.1, and are expllcitly evaluated as products when the squeezing falls.
C. Prove that the algorlthm given in B is unlformly fast over all $n \geq 1, p \leq 1 / 2$ if Polsson random varlates are generated in unlformly bounded expected tlme (not worst case tlme).
2. Bounds for the mode of the binomial distribution. Consider a blnomial (n, p) distribution \ln which $n p$ is integer. Then the mode m is at $n p$, and

$$
\binom{n}{m} p^{m}(1-p)^{n-m} \leq \frac{e^{\frac{1}{12(n+1)}+\frac{1}{n^{2} p(1-p)+n+1}}}{\sqrt{2 \pi n p(1-p)}} \leq \frac{2}{\sqrt{2 \pi n p(1-p)}}
$$

Prove this inequallty by using the Stirilng-Whittaker-Watson inequallty of Lemma 1.1, and the inequalities $e^{u /(1+u)} \leq 1+u \leq e^{u}$, valld for $u \geq 0$ (Devroye and Naderisamanl, 1980).
3. Add the squeeze steps suggested in the text to the normal-exponential algorithm, and prove that with thls addltion the expected complexity of the algorithm is unformly bounded over all $n \geq 1,0<p \leq \frac{1}{2}, n p$ integer (Devroye and Naderisamanl, 1980).
4. A continuation of the previous exercise. Show that for flxed $p \leq \frac{1}{2}$, the expected time spent on the expllcit evaluation of $b_{n p+i} / b_{n p}$ is $O(1 / \sqrt{n p(1-p)})$ as $n \rightarrow \infty$. (This implles that the squeeze steps of Lemma 4.7 are very powerful Indeed.)
5. Repeat exerclse 3 but use squeeze steps based upon bounds for the log gamma function given in Lemma 1.1.
8. The.hypergeometric distribution. Suppose an urn contalns N balls, of which M are white and $N-M$ are black. If a sample of n balls is drawn at random without replacement from the urn, then the number (X) of white balls drawn is hypergeometrically distrlbuted with parameters n, M, N. We have

$$
P(X=i)=\frac{\binom{M}{i}\binom{N-M}{n-i}}{\binom{N}{n}} \quad(\max (0, n-N+M) \leq i \leq \min (n, M))
$$

X.4.THE BINOMIAL DISTRIBUTION

Note that the same distribution is obtalned when n and M are interchanged. Note also that if we had sampled with replacement, we would have obtalned the binomial ($n, \frac{M}{N}$) distribution.
A. Show that if a hypergeometric random varlate is generated by rejection from the binomlal ($n, \frac{M}{N}$) distribution, then we can take $\left(1-\frac{n}{N}\right)^{-n}$ as rejection constant. Note that this tends to 1 as $n^{2} / N \rightarrow 0$.
B. Using the facts that the mean is $n \frac{M}{N}$, that the varlance σ^{2} is $\left\{\begin{array}{l}\frac{N-n}{N-1} n \frac{M}{N}\left(1-\frac{M}{N}\right) \text {, and that the distribution is unimodal with a mode at } \\ (n+1) \frac{M+1}{N+2}\end{array}\right\}$, give the detalls for the universal rejection algorithm of section X.1. Comment on the expected tlme complexity, i.e. on the maximal value for $(\sigma B)^{2 / 3}$ where B is an upper bound for the value of the distribution at the mode.
C. Find a function $g(x)$ consisting of a constant center plece and two exponential talls, having the propertles that the area under the function is uniformly bounded, and that the function has the property that for every i and all $x \in\left[i-\frac{1}{2}, i+\frac{1}{2}\right), g(x) \geq P(X=i)$. Glve the correspondIng rejection algorithm (hint: recall the universal rejection algorithm of section X.1) (Kachltvichyanukul, 1982; Kachltvichyanukul and Schmelser, 1985).
7. Prove that for all constant $t>0$, there exists a constant C only depending upon t. such that the expected time needed by the recursive binomlal algorithm given in the text is not larger than $C \log (\log (n+10))$ for all n and p. The term "10" is added to make sure that the loglog function is always strictly positive. Show also that for a fixed $p \in(0,1)$ and a flxed $t>0$, the expected time of the algorithm grows as a constant times $c \log (\log (n))$ as $n \rightarrow \infty$, where c depends upon p and t only. If tlme is equated with the number of beta random varlates needed before halting, determine c.

5. THE LOGARITHMIC SERIES DISTRIBUTION.

5.1. Introduction.

A random varlable X has the logarithmic series distribution with parameter $p \in(0,1)$ If

$$
P(X=i)=p_{i}=\frac{a}{i} p^{i} \quad(i=1,2, \ldots)
$$

where $a=-1 / \log (1-p)$ is a normallzation constant. In the tall, the probabllitles decrease exponentlally. Its generating function is

$$
a \sum_{i=1}^{\infty} \frac{1}{i} p^{i} s^{i}=\frac{\log (1-p s)}{\log (1-p)} .
$$

From this, one can easily find the mean $a p /(1-p)$ and second moment $a p /(1-p)^{2}$.

5.2. Generators.

The materlal in this section is based upon the fundamental work of Kemp (1981) on logarithmic serles distrlbutions. The problems with the logarithmic serles distribution are best highlighted by noting that the obvious inversion and rejection methods are not unlformly fast.

If we were to use sequential search in the inversion method, using the recurrence relation

$$
p_{i}=\left(1-\frac{1}{i}\right) p p_{i-1} \quad(i \geq 2)
$$

the inversion method could be implemented as follows:

Inversion by sequential search

[SET-UP]
Sum $\leftarrow-p / \log (1-p)$
[GENERATOR]
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 1$
WHILE $U>$ Sum DO

$$
\begin{aligned}
& U \leftarrow U-\operatorname{Sum} \\
& X \leftarrow X+1 \\
& \operatorname{Sum} \leftarrow \operatorname{Sum} \frac{p(X-1)}{X}
\end{aligned}
$$

RETURN X

The expected number of comparisons required is equal to the mean of the distribution, $a p /(1-p)$, and this quantlty increases monotonlcally from $1(p \downarrow 0)$ to $\infty(p \uparrow \infty)$. For $p<0.95$, it is difficult to beat this simple algorithm in terms of expected time. Interestingly, if rejection from the geometric distribution $(1-p) p^{i}(i \geq 1)$ is used, the expected number of geometrlc random varlates required is again equal to the same mean. But because the geometric random
varlates themselves are rather costly, the sequentlal search method is to be preferred at this stage.

We can obtaln a one-llne generator based upon the following distributional property:

Theorem 5.1. (Kendall (1948), Kemp (1981))

Let U, V be lid uniform $[0,1]$ random varlables. Then

$$
X \leftarrow\left\{1+\frac{\log (V)}{\log \left(1-(1-p)^{U}\right)}\right\}
$$

has the logarlthmic serles distribution with parameter p.

Proof of Theorem 5.1.

The logarithmic serles distribution is the distrlbution of a geometric (1-Y) random varlate X (..e. $P(X=i \mid Y)=Y(1-Y)^{i-1}(i \geq 1)$), provlded that Y has distribution function

$$
F(y)=\int_{0}^{y} \frac{1}{(z-1) \log (1-p)} d z=\frac{\log (1-y)}{\log (1-p)} \quad(0 \leq y \leq p)
$$

This can be seen from the Integral

$$
\int_{0}^{p} \frac{s(1-y)}{(1-y s)(y-1) \log (1-p)} d y=\frac{\log (1-p s)}{\log (1-p)}
$$

and from the fact that the generating function of a geometric ($1-Y$) random varlate is $\frac{s(1-Y)}{(1-Y s)}$. A random variable Y with distribution function F can be obtained by the inversion method as $Y \leftarrow 1-(1-p)^{U}$ where U is a uniform $[0,1]$ random varlable.

Kemp (1981) has suggested two clever tricks for accelerating the algorlthm suggested by Theorem 5.1. First, when $V>p$, the value $X \leftarrow 1$ is dellvered because

$$
V>p \geq 1-(1-p)^{U} .
$$

For small p, the savings thus obtalned are enormous. We summarize:

Kemp's generator with acceleration
[SET-UP]
$r \leftarrow \log (1-p)$
[GENERATOR]
$X \leftarrow 1$
Generate a uniform $[0,1]$ random variate V.
IF $V \geq p$
THEN RETURN X ELSE

Generate a uniform $[0,1]$ random variate U.
$\operatorname{RETURN} X \leftarrow\left\{1+\frac{\log (V)}{\log \left(1-e^{r U}\right)}\right\}$

Kemp's second trick involves taking care of the values 1 and 2 separately. He notes that $X=1$ if and only if $V \geq 1-e^{r U}$, and that $X \in\{1,2\}$ if and only if $V \geq\left(1-e^{r U}\right)^{2}$ where r is as in the algorithm shown above. The algorithm incorporating this is given below.

Kemp's second accelerated generator

[SET-UP]
$r \leftarrow \log (1-p)$
[GENERATOR]
$X \leftarrow 1$
Generate a uniform $[0,1]$ random variate V.
IF $V \geq p$
THEN RETURN X
ELSE
Generate a uniform $[0,1]$ random variate U.
$q \leftarrow 1-e^{r U}$
CASE

$$
\begin{aligned}
& V \leq q^{2}: \operatorname{RETURN} X \leftarrow\left\{1+\frac{\log (V)}{\log (q)}\right\} \\
& q^{2}<V \leq q: \operatorname{RETURN} X-1 \\
& V>q: \operatorname{RETURN} X \leftarrow 2
\end{aligned}
$$

5.3. Exercises.

1. The following logarithmic serles generator is based upon rejection from the geometric distribution:

Logarithmic series generator based upon rejection

REPEAT

Generate a uniform $[0,1]$ random variate U and an exponential random variate E.

$$
X \leftarrow\left\lceil-\frac{E}{\log (p)}\right\rceil
$$

UNTIL $U X<1$
RETURN X

Show that the expected number of exponentlal random varlates needed is equal to the mean of the logarithmic serles distribution, i.e. $-p /((1-p) \log (1-p))$. Show furthermore that this number increases monotonlcally to ∞ as $p \uparrow 1$.
2. The generalized logarithmic series distribution. Patel (1881) has proposed the following generallzation of the logarithmic serles distribution with parameter p :

$$
p_{i}=\frac{p^{i}(1-p)^{b i-i} \Gamma(b i)}{-i \log (1-p) \Gamma(i) \Gamma(b i-i+1)} \quad(i \geq 1)
$$

Here $b \geq 1$ is a new parameter satisfying the Inequallty

$$
0<p b\left(\frac{b-b p}{b-1}\right)^{b-1}<1
$$

Suggest one or more efficient generators for this two-parameter famlly.
3. Consider the following discrete distribution:

$$
p_{i}=\frac{1}{c i} \quad(1 \leq i \leq k)
$$

where the integer k can be considered as a parameter, and c is a normalizatlon constant. Show that the following bounded workspace algorithm generates random varlates with this distribution:

REPEAT
Generate iid uniform $[0,1]$ random variates U, V.

$$
\begin{aligned}
& Y \leftarrow(k+1)^{v} \\
& X \leftarrow\lfloor Y\rfloor
\end{aligned}
$$

UNTIL $2 V X<Y$
RETURN X

Analyze the expected number of lterations as a function of k. Suggest at least one effectlve Improvement.

6. THE ZIPF DISTRIBUTION.

6.1. A simple generator.

In linguistics and soclal sclences, the Zipf distribution is frequently used to model certain quantities. Thls distribution has one parameter $a>1$, and is deflned by the probabilities

$$
p_{i}=\frac{1}{s(a) i^{a}} \quad(i \geq 1)
$$

where

$$
\varsigma(a)=\sum_{i=1}^{\infty} \frac{1}{i^{a}}
$$

Is the Rlemann zeta function. Simple expressions for the zeta function are known in special cases. For example, when a is integer, then

$$
\varsigma(2 a)=\frac{2^{2 a-1} \pi^{2 a}}{(2 a)!} B_{a}
$$

where B_{a} is the $a-t h$ Bernoull number (Titchmarsh, 1951, p. 20). Thus, for $a=2,4,6$ we obtaln the probabillty vectors $\left\{6 /(\pi i)^{2}\right\},\left\{90 /(\pi i)^{4}\right\}$ and $\left\{945 /(\pi i)^{6}\right\}$ respectively.

To generate a random Zipf variate in unlformly bounded expected time, we propose the rejection method. Consider for example the distribution of the random varlable $Y \leftarrow\left\{U^{-1 /(a-1)}\right\}$ where U is uniformly distributed on $[0,1]$:

$$
P(Y=i)=\frac{1}{(i+1)^{a-1}}\left(\left(1+\frac{1}{i}\right)^{a-1}-1\right) \quad(i \geq 1)
$$

This distribution is a good candidate because the probabilities vary as $(a-1) i^{-a}$ as $i \rightarrow \infty$. For the sake of slmpliclty, let us deflne $q_{i}=P(Y=i)$. First, we note that the rejection constant c is

$$
c=\sup _{i \geq 1} \frac{p_{i}}{q_{i}}=\frac{p_{1}}{q_{1}}=\frac{2^{a-1}}{\varsigma(a)\left(2^{a-1}-1\right)} .
$$

Hence, the following rejection algorithm can be used:

A Zipf generator based upon rejection

```
[SET-UP]
```

$b \leftarrow 2^{a-1}$
[GENERATOR]
REPEAT
Generate ild uniform $[0,1]$ random variates U, V.

$$
\begin{aligned}
& X \leftarrow\left\lfloor U^{-\frac{1}{a-1}}\right\rfloor \\
& T \leftarrow\left(1+\frac{1}{X}\right)^{a-1}
\end{aligned}
$$

UNTIL $V X \frac{T-1}{b-1} \leq \frac{T}{b}$
RETURN X

Lemma 6.1.

The rejectlon constant c in the rejection algorithm shown above satlsfles the following properties:
A. $\sup _{a \geq 2} c \leq \frac{12}{\pi^{2}}$.
B. $\sup _{1<a \leq 2} c \leq \frac{2}{\log (2)}$
C. $\lim _{a \rightarrow \infty} c=1$.
D. $\quad \lim _{a \downarrow 1} c=\frac{1}{\log (2)}$.

Proof of Lemma 6.1.

Part A follows from

$$
c \leq \frac{2^{a-1}}{2^{a-1}-1} \frac{6}{\pi^{2}} \leq \frac{12}{\pi^{2}} .
$$

Part B follows from

$$
\begin{aligned}
& c \leq \frac{2^{a-1}}{\left(2^{a-1}-1\right) \int_{1}^{\infty} x^{-a} d x}=\frac{(a-1) 2^{a-1}}{2^{a-1}-1} \\
& \leq \frac{(a-1) 2^{a-1}}{(a-1) \log (2)}=\frac{2^{a-1}}{\log (2)} \leq \frac{2}{\log (2)}
\end{aligned}
$$

Part C follows by observing that $\varsigma(a) \rightarrow 1$ as $a \uparrow \infty$. Finally, part D uses the fact that $s(a) \sim \frac{1}{a-1}$ as $a \downarrow 1$ (In fact, $s(a)-\frac{1}{a-1} \rightarrow \gamma$, Euler's constant (Whittaker and Watson, 1827, p. 271).

6.2. The Planck distribution.

The Planck distribution is a two-parameter distribution with density

$$
f(x)=\frac{b^{a+1}}{\Gamma(a+1) \varsigma(a+1)} \frac{x^{a}}{e^{b x}-1} \quad(x>0)
$$

Here $a>0$ is a shape parameter and $b>0$ is a scale parameter (Johnson and Kotz, 1970). The density f can be written as a mlxture:

$$
f(x)=\sum_{i=1}^{\infty} \frac{1}{i^{a+1} \leftrightarrows(a+1)} \frac{x^{a} e^{-i b x}(i b)^{a+1}}{\Gamma(a+1)}
$$

In vlew of this, the following algorithm can be used to generate a random varlate with the Planck distrlbution.

Planck random variate generator

Generate a gamma ($a+1$) random variate G.
Generate a Zipf $(a+1)$ random variate Z.
RETURN $X \leftarrow \frac{G}{b Z}$.

6.3. The Yule distribution.

SImon $(1954,1960)$ has suggested the Yule distribution as a better approximation of word frequencles than the Zipf distribution. He deffined the discrete distribution by the probabllitles

$$
p_{i}=c(a) \int_{0}^{1}(1-u)^{i-1} u^{a-1} d u \quad(i \geq 1)
$$

where $c(a)$ is a normalization constant and $a>1$ is a parameter. Using the fact that this is a mixture of the geometric distribution with parameter $e^{-Y /(a-1)}$ where Y is exponentlally distributed, we conclude that a random varlate X with the Yule distribution can be generated as

$$
X \leftarrow\left\lceil-\frac{E}{\log \left(1-e^{-\frac{E *}{a-1}}\right)}\right\rceil
$$

where $E, E *$ are lld exponentlal random varlates.

6.4. Exercises.

1. The digamma and trigamma distributions. Slbuya (1979) Introduced two distributions, termed the digamma and trigamma distributions. The dlgamma distrlbution has two parameters, a, c satisfying $c>0, a>-1$, $a+c>0$. It is defined by

$$
p_{i}=\frac{1}{\psi(a+c)-\psi(c)} \frac{a(a+1) \cdots(a+i-1)}{i(a+c)(a+c+1) \cdots(a+c+i-1)} \quad(i \geq 1)
$$

Here ψ is the derlvative of the log gamma function, 1.e. $\psi=\Gamma^{\prime} / \Gamma$. When we let $a \downarrow 0$, the trigamma distrlbution with parameter $c>0$ is obtalned:

$$
p_{i}=\frac{1}{\psi^{\prime}(c)} \frac{(i-1)!}{i c(c+1) \cdots(c+i-1)} \quad(i \geq 1)
$$

For $c=1$ this is a zeta distribution. Discuss random varlate generation for this famlly of distributions, and provide a uniformly fast rejection algorithm.

