
Chapter Ten 
DISCRETE UNWARIATE DISTRIBUTIONS 

1. INTRODUCTION. 

1.1. Goals of this chapter, 
We wlll provide the reader wlth some generators for the most popular faml- 

lles of dlscrete dlstrlbutlons, such as the geornetrlc, blnomlal and Polsson dlstrl- 
butlons. These dlstrlbutloiis are the fundamental bulldlng blocks In dlscrete pro- 
bablllty. It 1s lmposslble to cover most dlstrlbutlons commonly used In practlce. 
Indeed, there Is a strong tendency to work more and more wlth so-called general- 
lzed distributions. These dlstrlbutlons are either deflned constructlvely by com- 
blnlng more elementary dlstrlbutlons, or analytlcally by provldlng a multl- 
parameter expresslon for the probablllty vector. In the latter case, random varl- 
ate generatlon can be problematlc slnce we cannot fall back on known dlstrlbu- 
tlons. Users are sometlines reluctant to deslgn thelr own algorlthms by mlmlcklng 
the deslgns for slmllar dlstrlbutlons. We therefore lnclude a short sectlon wlth 
universal algorlthins. These are in the splrlt of chapter VII: the algorlthms are 
very slmple albelt not extremely fast, and veiy linportantly, thelr expected tlme 
performance 1s known. Armed wlth the unlversal algorlthms, the worked out 
examples of thls chapter and the table methods of chapter VIII, the users should 
be able t o  handle most dlstrlbutlons to thelr satlsfactlon. 

We assume throughout thls chapter that the dlscrete randoin varlables are 
all Integer-valued. 
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1.2. Generating functions. 
Let be an integer-valued random varlable wlth probability vector 

p i  = P ( S = i )  (i Integer) . 

An lmportant tool In the study of dlscrete distrlbutlons 1s the moment generat- 
ing function 

m (s ) = E ( e S X )  = cpi e a ;  . 
1 

It 1s gosslble that n z  (s ) Is not finite for some or all values s >O. That of course is 
the inaln dlfference wlth the characteristic function of x'. If n2 (s ) is flnlte in 
some open Interval contalnlng the orlgln, then the coefflclent of s /n ! in the 
Taylor serles expaiislon of 172 (s ) is the n -th moment of X.  

A related tool 1s the factorial moment generating function, or slmply 
generatlng functlon, 

k ( s )  = E ( s  X ) = c p j s *  , 
1 

whlch 1s usually only employed for iioiinegatlve random varlables. Note that the 
serles In the deflnltlon of k ( s  ) 1s convergent for I s I 51 and that 
??a (s ) = k (e ). Note also that provlded that the n -th factorlal moment (l.e., 
E (X(X-1) ' (X-?t +1))) of X 1s flnlte, we have 

k('L)(l) = E (X(X--1) ' * ( X - n  +1)) . 

In partlcular E (X)=k'(l) and var (X)=k"(1)+k'(1)-kf2(1). The generatlng 
fuiictlon provldes us often wlth the simplest method for computlng moments. 

It 1s clear that if X,, . . . , x, are lndependent random varlables wlth 
moment generatlng functlons 9 n 1 ,  . . . , m, , then EX, has moment generating 
functlon nmi. The same property remalns valid for the generatlng functlon. 

Example 1.1. The binomial distribution. 
A Bernoulli ( p  ) random variable 1s a (0,l)-valued random varlable tak- 

lng the value 1 wlth probablllty p . Thus, I t  has generatlng function 1-p +ps . A 
binomial ( n  ,p  ) random variable 1s deflned as the sum of n lld Bernoulll (p ) 
random varlables. Thus, I t  has generatlng functlon (1-p +ps )" . 1 
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Example 1.2. The Poisson distribution. 
Often I t  Is easy to compute generating functlons by explicitly computing the 

convergent Iiifliilte serles Cs p i .  Thls wlll be lllustrated for the Polsson and 

geometrlc dlstrlbutlons. X Is Poisson (A)  when P(X=i)=-e-’ x i  
summlng s i  p i ,  we see that the generatlng functlon Is e-””. 2 !  x 1s geometric (i 20). By 

( p  ) when P (x=i)=(l-p ) i  p (i LO). The correspondlng generatlng functlon 1s 
P /(1-(1-P 1s 1- I 

If one 1s shown a generatlng functlon, then a careful analysls of Its form can 
provlde valuable clues as to how a random varlable wlth such generatlng functlon 
can be obtalned. For example, If the generatlng functlon 1s of the form 

g ( r l -  (s 1) 

where g ,IC are other geiieratlng functlons, then I t  sumces to take X,+ +XN 
where the Xi’s are lld random varlables wlth generatlng functlon IC , and N 1s an 
lndependent random varlable wlth generatlng functlon 9 . Tlils follows from 

00 

g ( I C  ( s  )) = P ( N  = n  )kn (s ) (deflnltlon of g ) 
n =O 

00 00 

n =O i =O 

= P ( N = n ) C P ( X , +  - * * +Xn=i)s’ 

co 03 

i =O n =o 
00 

= s ’P(X ,+  * * +Xp/=i).  
i =O 

Example 1.3. 

XI+ 
If x,, ... are Bernoulll ( p )  random varlables and N 1s Polsson (A), then 

* * +XN has generatlng functlon 
e -X+X(1-p +ps ) = e - x p  +Xpe 

1.e. the random sum 1s Polsson ( X p  ) dlstrlbuted (we already knew thls - see 
chapter VI). 

A compound Poisson distribution 1s a dlstrlbutlon wlth generatlng func- 
where IC 1s another generatlng functlon. By taklng tl0n of the form e 
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I; (s )=s , we see that the Polsson dlstrlbutlon Itself 1s a compoulid Polsson dlstrl- 
butlon. Another example 1s glven below. , 

Example 1.4. The negative binomial distribution. 
We defliie the negative binomial distribution wltb parameters ( n  , p  ) 

( n  > 1  1s Integer, p f(0,l)) as the dlstrlbutlon of the sum of n Ild geornetrlc ran- 
dom varlables. Thus, I t  lias generatlng functlon 

n 
-X+Xk ( 8  ) ) = e  P 

l--(l--p )s ( 

where A = nlog(-) 1 and 
P 
log( 1-( 1-21 )s ) 

W P  ) 
k ( S )  = 

The functlon k (s ) 1s the generatlng Punctlon of the logarithmic series distri- 
bution wlth parameter 1-p . Thus, we have just shown that the negatlve blno- 
mlal dlstrlbutlon 1s a compound Poisson dlstrlbutlon, and that a negatlve blno- 
mlal random varlable can be generated by summlng a Polsson (A)  number of lld 
logarlthmlc serles random varlables (Quenoullle, 1949). 

, 

Another common operatlon 1s the mlxture operatlon. Assume that glven Y ,  
x has generatlng functlon k y ( s  ) where Y 1s a parameter, and that Y ltself has 
some (not necessarlly discrete) dlstrlbutlon. Then the unconditlonal generatlng 
Punctlon of X is E (ky (s )) . Let us lllustrate thls once more on the negatlve blno- 
nilal dlstrlbutlon. 

Example 1.5. The negative binomial distribution. 
1-P 

P 
Let 1' be gainina (n ,-), and let k y  be the Polsson ( Y )  generatlng func- 

tlon. Then 
PY 

y n  e 1-P 
-- 

00 

e-Y +Y5 dy E ( k y ( s  1) = J 
0 r(?l 

P 
n 

1 '  
1-( 1-p )s = (  
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We have dlscovered yet another property of the negatlve blnomlal dlstrlbutlon 
wlth parameters ( n  ,p ), 1.e. l t  can be generated as a Polsson ( Y )  random varlable 
where Y in turn 1s a gamma ( n  ,-) 1-P random varlable. Thls property wlll be of 

great use to us for large values of n , because unlformly fast gamma and Polsson 
generators are In abundant supply. 

P 

1.3. Factorials. 
The evaluatlon of the probabllltles p i  frequently lnvolves the computatlon of 

one or more factorlals. Because our maln worry 1s wlth the complexlty of an algo- 
rlthm, I t  1s lmportant to know Just how we evaluate factorlals. Should we evalu- 

a te  them expllcltly, 1.e. should n ! be computed as n i ,  or  should we use a good 

approxlmatlon for n ! or log(n !)? In the former case, we are faced wlth tlme corn- 
plexlty proportlonal to n ,  and wlth accumulated round-off errors. In the latter 
case, the tlme complexlty 1s 0 (l), but the prlce can be steep. Stlrllng’s serles for 
example 1s a dlvergent asymptotlc expanslon. Thls means that  for Axed n , talclng 
more terms In the serles 1s bad, because the partlal sums In the serles actually 
dlverge. The only good news 1s that I t  1s an asyrnptotlc expanslon: for a Axed 
number of terms In the serles, the partlal sum thus obtalned 1s log(n ! )+o (1) as 
n +oo. An algorlthm based upon Stlrllng’s serles can only be used for n larger 
than some threshold no, whlch In turn depends upon the deslred error margln. 

Slnce our model does not allow lnaccurate computatlons, we should elther 
evaluate factorlals as products, or use squeeze steps based upon Stlrllng’s series to 
avold the product most of the tlme, or avold the product altogether by uslng a 
convergent sertes. We refer to sectlons X.3 and X.4 for worked out  examples. At 
lssue here 1s the tlghtness of the squeeze steps: the bounds should be so t lght  that  
the contrlbutlon of the evaluatlon of products In factorlals to the total expected 
complexlty 1s 0 (1) or o (1). It 1s therefore helpful to recall a few facts about 
approxlmatlons of factorlals (Whlttaker and Watson, 1927, chapter 12). We wlll 
state everythlng In terms of the gamma functlon slnce n !=r(n +I).  

n 

i=1 

i I 
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Lemma 1.1. (Stirling's series, Whittaker and Watson, 1927.) 

between the n - t h  and n +1-st partlal sums of the serles 

where Bi 1s the k-th Bernoulll number defined by 

t 2 n - 1  

ezat  -1 
B n  = 4 n J  dt . 

1 1 1 1 5 69 1 7 
6 30 42 30 66 2730 

In partlcular, B l=-,B 2=-,B3=-,B4=- ,B 5 = - , ~  6 = - , ~  ,= 
We have as speclal cases the  lnequalltles 

Stlrllng's serles wlth the Wblttaker-Watson lower and upper bounds of 
Lemma 1.1 1s often sufilclent in practlce. As we have polnted out earller, we wlll 
stlll have to evaluate the factorlal expllcltly no matter how many terms are con- 
sldered In the serles, and In fact, thlngs could even get worse If more terms are 
consldered. Lucklly, there 1s a convergent serles, attrlbuted by Whittaker and 
Watson to Blnet. 
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Lemma 1.2. (Binet's series for the log-gamma function.) 
For x >0, 

where 

c 3  

3(x + l ) (x  + 2 ) ( ~  +3) 
+ 1 c 1  c 2  

(' 
= ? -+ 2(x + l ) ( X  4-2) 

In w 111 c 
1 

c, = j ' (u  +I>(u + 2 )  . . . ( u  +n-i)(2u - i ) u  du 
0 

, and cq=- 227.  AII terms In R ( a : )  are In partlcular, c 1=- 

posltlve: thus, the value of log(I'(a: )) 1s approached rnonotonlcally from below as 
we conslder more terms In R ( a : ) .  If we conslder the flrst n terms of R (x), then 
the error Is at most 

59 , c3=- 
1 1 
6 '  "=- 3 60 60 

x + l  x + l  
C-( IZ 9 x x + n + 1  

5 
48 

where c=--&e ' I6 .  Another upper bound on the truncatlon error 1s provlded 

by 
x + l  1 +C-(-)Z. C ( l + a  +-)(-+-)>" +l  

1 a 1 
x + l  l + a  X + l  x l + a  

where a E(O,l] 1s arbitrary (when a: 1s large compared to n ,  then the value 
X 

) Is suggested). 
X 

Proof of Lemma 1.2. 
Blnet's convergent serles Is glven for example In Whlttaker and Watson 

(1927, p. 253). We need only establlsh upper bounds for the tall sum In R ( a : )  
beglnnlng wlth the n +l-st term. The lntegrand I n  ci 1s posltlve for u >-. 
Thus, the i - t h  term 1s at most 

1 
2 

1 

i ! J (2u -1)u du 
- 5( i -l)! - 1/2 

2 i ( x + l ) .  . * ( Z + i )  48(1+x) * * ( i + x )  
- 5r(i ) r ( x  + I )  

48r(i +a: +I) 
- 

1 1 
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(by Lemma 1.1 ) 

5 
48 

where c=- f ie  (use the facts that x >O,i 21). We obtaln a flrst bound 

for the sum of all tall terms startlng wltli z=n +1 as follows: 

x +1 ) " + I  
x + a  3-1 

03 x + 1  ) " + I  < - 
i=n+l  x + i  +1 i=n+l  

03 

1" . 
X + l  X + l  = c-( 

x x + n + 1  

Another bound Is obtalned by chooslng a constant a E(O,l), and spllttlng the tall 
sum lnto a sum from z'=n +1 to i=m = [ a  (x +1)1, and a rlght-lnflnlte sum 
startlng at i =m +1. The flrst sum does not exceed 

m )n+1  ( 
) i  < 5 C (  ) ' = C  x +m +I 

x + i + 1  - i=n+l x + m + 1  x + l  x + m + 1  5 C (  
i = n + 1  

1 a 1 
x + l  l + a  x + l  

5 C(l+a+- )(-+-)>"+l . 

Addlng the two sums glves us the  followlng upper bound for the remalnder of the 
serles startlng wltli the n +l-st term: 

1 U 1 x + 1  1 
x + l  l + U  x + l  x l + a  c ( l + U  +-)(-+-), +l  +C-(-y .. 

The error term glven In Lemma 1.2 can be made to tend to 0 merely by 
keeplng n Axed and lettlng x tend to 00. Thus, Blnet's serles is also an asymp- 
totlc expanslon, Just as Stlrllng's serles. It can be used to bypass the gamma 
functlon (or factorlals) altogether If one needs to declde whether log(r(x ))L t for 
some real number t .  By taklng n terms In Blnet's serles, we have an lnterval 
[un ,6n ] to whlch we know log(r(x )) must belong. Slnce 6, -a, +O as n +oo, we 
know that when t +log(F(x)), from a glven n onwards, t wlll fall outslde the 
lnterval, and the approprlate declslon can be made. The convergence of the serles 
Is thus essentlal to lasure that thls method halts. In our appllcatlons, t 1s usually 
a unlform or  exponentlal random varlable, so that equallty t =log(r(x )) occurs 
wlth probablllty 0. The complexity analysls typlcally bolls down to computlng 
the expected number of terms needed In Blnet's serles for Axed x .  A quantlty 
useful In thls respect Is 

03 

n (6, -a,$) . 
n =o 
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Based upon the error bounds of Lemma 1.2, I t  can be shown that thls sum 1s o (1) 
as z +m, and that the sum 1s unlformly bounded over all z 2 1 (see exerclse 1.2). 
As we wlll see later, thls lmplles that for inany reJectlon algorlthms, the expected 
tlme spent on the declslon 1s unlformly bounded In z .  Thus, I t  1s almost as If we 
can compute the gamma functlon In constant tlme, Just ac; the exponentlal and 
logarlthmlc functlons. In fact, there 1s nothlng that keeps ‘CIS from addlng the 
gamma functlon to our llst of constant tlme functlons, but unless expllcltly men- 
tloned, we wlll not do so. Another collectlon of lnequalltles useful In deallng wlth 
Pactorlals via Stlrllng’s serles 1s glven In Lemma 1.3: 

Lemma 1.3. (Knopp, 1964, pp. 543,548) 
For lnteger n , we have 

where B1,B2, . . . are the Bernoulll numbers and 
4(2k -l)! 

27r(27r?2 ) Z k  
I R k , n  I L 

1s a resldual factor. 

1.4. A universal rejection method. 
Even when the probabllltles p i  are expllcltly glven, I t  1s often hard to come 

up wlth an efflclent generator. Quantltles such as the mode, the mean and the 
varlance are known, but  a useful domlnatlng curve for use In a reJectlon algo- 
rlthm 1s generally not known. The purpose of thls sectlon Is to go through the 
rnechanlcs of derlvlng one acceptable reJectlon algorithm, whlch wlll be useful for 
a huge class of dlstrlbutlons, the class of all unlmodal dlstrlbutlons on the 
llltegers for whlch three quantltles are known: 
1. m , the location of the mode. If the mode 1s not unlque, 1.e. several adJacent 

lntegers are all modes, m 1s allowed to be any real number between the left- 
most and rlghtmost modes. 
Ad, an upper bound for the value of p i  at a mode z’ . If posslble, kf should 
be set equal to thls value. 
S 2 ,  an  upper bound for the second moment about ?n . Note that If the varl- 
ance o2 and mean p are known, then we can take .s 2=a2+(??2  EL)^. 

2. 

3. 

The unlversal algorlthm derlved below 1s based upon the followlng lnequalltles: 
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Theorem 1.1. 
For all unlmodal dlstrlbutlons on the Integers, 

1 1 
2 2 

In addltlon, for all liiteger i and all 5 E[i--,i +-I, 

I Furthermore, 

Proof of Theorem 1.1. 
Note that for i >m , 

00 

$ 2  = ( j - m  I 2 P j  2 c ( j - m  I2Pi  

> - p;J (u -m)2  du = p i  

j -  --00 i > j > m  
1 

( i - m  )3 

m 

Thls establlshes the flrst lnequallty. The boundlng argument for g uses a stan- 
dard tool for malclng the transltlon from dlscrete probabllltles to densltles: we 
conslder a hlstogram-shaped denslty on the real llne wlth helght p i  on 
[i--,i +-). Thls denslty 1s bounded by g ( z )  on the lnterval In questlon. Note 1 1 

2 2 
1 the adJustment by a translatlon term of - when compared wlth the flrst dlscrete 

bound. Thls adJustment 1s needed to lnsure that g domlnates p i  over the entlre 
lnte rval . 

Flnally, the area under g 1s easy t o  compute. Deflne ~ = ( 3 s ~ ) ' / ~ M ~ / ~ ,  and 

2 

observe that the A4 terin In g 1s the mlnlmum term on [m---- P ,m+-+-I. 1 P  
2 M  2 M  

The area under thls part 1s thus M+2p. Integratlng the two talls of g glves the 
value p. 

To understand our algorlthm, I t  helps to go back to the proof of Theorem 
1.1. We have turned the problem lnto a contlnuous one by replaclng the probabll- 
lty vector pi wlth a hlstogram-shaped denslty of helght p i  on [i--,i +-). Slnce 1 1 

2 2 



X.1.INTRODUCTION 495 

thls hlstogram 1s domlnated by the functlon g glven in the algorlthm, i t  Is clear 
how to proceed. Note that If Y Is a random varlable wlth the sald hlstogram- 
shaped denslty, then round( Y )  1s dlscrete wlth probablllty vector p i .  

Universal rejection algorithm for unimodal distributions 

[ SET-UP) 
L Z  

Compute p t ( 3 8  2, M 3. 
(GENEFtATOR] 
REPEAT 

Generate u ,w  uniformly on [0,1] and v uniformly n [-1, 

IF u<- P 
3p+M 

THEN 

Y+-m +(-+ 1 r7f7 )sign( V )  

X tround( Y)  

T+WM 1 V I 
8 - 

ELSE 
Y t r n  +(-+-)V 1 P  

2 M  
X+round( Y )  
T-WM 

UNTIL T,<px 
RETURN x 

I. 

In the unlversal algorlthm, no care was taken to reuse unused portlons of 
unlform random varlates. Thls 1s done malnly to show where lndependent unl- 
form random varlates are preclsely needed. The expected number of Iteratlons In 
the algorlthm Is preclsely hf +3p. Thus, the algorlthm 1s unlformly f a s t  over a 
class Q of unlmodal dlstrlbutlons wlth unlforrnly bounded (l+s )M If pi can be 
evaluated In tlme lndependent of 2 and the dlstrlbutlon. 

Example 1.6. 
For the blnomlal dlstrlbutlon wlth parameters n ,p  , I t  Is known (see sectlon 

s-4) that the mean p 1s np , and that the varlance a2 1s np (1-p ). Also, for Axed 
P .  -\~-l/(&o), and for all n ,p  , Ad 52/(&o). A mode Is at m = [ (n  + l ) p  J. 
51~v.x I p-m I <mln(l ,np - ) (eserclse 1.41, we can talce .s'=o'+mln(i,np ). We 
l'3n verlfy that 



496 X.1.INTRODUCTION 

1 
2 

and thls 1s unlformly bounded over ?a 2 1 , O S p  5-. Thls lmplles that we can 

generate blnomlal random varlates unlformly f a s t  provlded that the blnomlal pro- 
babllltles can be evaluated In constant tlme. In sectlon X.4, we wlll see that even 
thls 1s not necessary, as long as the factorlals are taken care of approprlately. We 
should note that when p renialns Axed and n+m, ~-(3/(27r))'/~. The expected 
number of lteratlons -3p, whlch 1s about 2.4. Even though thls 1s far from 
optlmal, we should recall that besldes the unlmodallty, vlrtually no propertles of 
the blnomlal dlstrlbutlon were used In derlvlng the bounds. 

There are lmportant sub-famllles of dlstrlbutlons for whlch the algorlthm 
glven here 1s unlformly fast. Conslder for example all dlstrlbutlons that are sums 
of lld lnteger-valued random varlables wlth maxlmal probablllty p and Anlte 
varlance a2. Then the sum of n such random varlables has varlance n o 2 .  Also, 

M <  (Rogozln (1961); see Petrov (1975, p. 56)). Thus, If the n-sum 1s --daiZi 
unlmodal; Theorem 1.1 1s appllcable. The rejectlon constant 1s 

unlformly over all n .  Thus, we can handle unlmodal sums of lld random varl- 
ables In expected tlnie bounded by a constant not dependlng upon n .  Thls 
assumes that the probabllltles can all be evaluated In constant tlme, an assump- 
tlon whlch except In the slmplest cases 1s dlmcult to support. Examples of such 
famllles are the blnomlal famlly for Axed p , and the Polsson famlly. 

Let us close thls sectlon by notlng that the rejectlon constant can be reduced 
In speclal cases, such as for monotone dlstrlbutlons, or symrnetrlc unlmodal dls- 
t rl butlons. 

1.5. Exercises. 
1. The dlscrete dlstrlbutlons consldered In the text are all lattlce dlstrlbutlons. 

In these dlstrlbutlons, the lntervals between the atoms of the dlstrlbutlon are 
all lptegral inultlples of one quantlty, typlcally 1. Non-lattlce dlstrlbutlons 
can be conslderably more dlmcult to handle. For example, there are dlscrete 
dlstrlbutlons whose atoms form a dense set on the posltlve real llne. One 
such dlstrlbutlon 1s defined by 

where i and j are relatively prlme posltlve lntegeys (Johnson and Kotz, 
1969, p. 31). The atoms In thls case are the ratlonals. Dlscuss how you could 
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efflclently generate a random varlate wlth thls dlstrlbutlon. 
Uslng Lemma 1.2, show that If E, 1s a bound on the error comrnltted when 
uslng Blnet’s serl’es for log(r(a:)) wlth n 20 terms, then 

2. 

00 

3. 

and 
00 

Assume that all pi’s are at most equal to  Ad, and that the varlance 1s at 
most equal t o  u2. Derlve useful bounds for a unlversal rejectlon algorlthm 
whlch are slmllar to  those glven In Theorem 1.1. Show that there exlsts no 
domlnatlng curve for thls class whlch has area smaller than a constant tlmes 
bm, and show that your domlnatlng curve 1s therefore close to optlmal. 
Glve the detalls of the reJectlon algorlthm. When applled to  the blnomlal 
dlstrlbutlon wlth parameters n ,p varylng In such a way that np -+m, show 

that the expected number of lteratlons grows as a constant tlmes (np ) and 
conclude that for thls class the unlversal algorlthm 1s not unlformly fast. 

1 - 

4. 

5. 

Prove that for the blnomlal dlstrlbutlon wlth parameters n , p  , the mean p 
and the mode m = [(n +l)p]  dlffer by at most mln(1,np ). 
Replace the lnequalltles of Theorem 1.1 by new ones when Instead of s2,  we 
are glven the r-th absolute moment about the mean ( r  zl), and value of 
the mean. The unlmodallty 1s stlll understood, and values for m ,M are as In 
the Theorem. 
How can the rejectlon constant ( s g  ) In Theorem 1.1 be reduced for mono- 
tone dlstrlbutlons and symmetrlc unlmodal dlstrlbutlons ? 

6. 

7. The discrete Student’s t distribution. Ord (1968) lntroduced a dlscrete 
dlstrlbutlon wlth parameters m 20 ( m  1s Integer) and a E[O,l] ,b #O: 

m 

Here I< 1s a normallzatlon constant. Thls dlstrlbutlon on the lntegers has 
the remarkable property that all the odd moments are zero, yet I t  1s only 
symmetrlc for a=O,a =- and a = i .  Develop a unlformly fa s t  generator 

for the case m =O. 

deflned by 

1 
2 

8. Arfwedson’s distribution. Arfkedson (1951) Introduced the dlstrlbutlon 
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where k , n  are posltlve Integers. See also Johnson and Kotz (1969, p. 251). 
Compute the mean and varlance, and derlve an lnequallty conslstlng of a flat 
center plece and two decreaslng polynomlal or exponentlal talls havlng the 
property that the sum of the upper bound expresslons over all z' 1s unlformly 
bounded over k ,n . 
Knopp (1964, p. 553) has shown that 9. 

1 00 

= 1 ,  c 2 2 t 2  n=1 c (472 T + ) 

1 1  1 1  
2 t  e t - 1  t 2 

where c =-(---+-) and t > O  1s a parameter. Glve a unlformly fa s t  

generator for the famlly of discrete probablllty vectors defined by thls sum. 

2. THE GEOMETRIC DISTRIBUTION. 

2.1. Definition and genesis. 
X IS geometrically distributed wlth parameter p E(0,l) when 

P ( X = i )  = p (1-p )'-l ( i L 1 ) .  

The geornetrlc dlstrlbutlon 1s lmportant In statlstlcs and probablllty because I t  1s 
the dlstrlbutlon of the waltlng tlme until success In a sequence of Bernoulll trlals. 
In other words, lf U1,U2,  ... are lld unlform [0,1] random varlables, and x 1s the 
lndex of the first Vi for whlch Vi < p ,  then X 1s geornetrlc wlth parameter p . 
Thls property can of course be used to generate X ,  but to  do so has some serlous 
drawbacks because the algorlthm 1s not unlformly fast over all values of p : Just 
conslder that the number of unlform random varlates needed 1s ltself geometrlc 
(p ), and the expected number of unlform random varlates requlred 1s 

1 

P 
E ( X )  = - . 
1 
3 

For p 3-, the method 1s probably dlfflcult t o  beat In any programmlng envlron- 

ment. 
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2.2. Generators. 

below: 
The experlmental method descrlbed In the prevlous sectlon 1s summarlzed 

Experimental method for geometric random variates 

x+-0 

REPEAT 
Generate a uniform [ O , l ]  random variate U .  
X t X + l  

UNTIL U s p  
RETURN x 

1 1 

P P 
Thls method requlres on the average - unlform random varlates and - corn- 

parlsons and addltlons. The number of unlform random varlates can be reduced 
to  1 If we use the liiverslon method (sequentlal verslon): 

Inversion by sequential search for geometric random variates 

Generate a uniform [O,l] random variate U . 
x+-1 

S u m t p  
Prod-p 
WHILE U >Sum DO 

Prod+Prod( 1-p ) 

SumtSum+Prod 
xtx+1 

RETURN x 

2 

P 
Unfortunately, the expected number of addltlons 1s now --2, the expected 

number of comparlsons remalns -, and the expected number of products 1s --1. 

Inverslon In constant tlme 1s posslble by truncatlon of an exponentlal random 
varlate. What we use here 1s the property that 

1 1 

P P 

F ( i ) = P ( X S i ) =  l -Ep( l -p ) -+1=1- (1 -p )*  . 
j > i  
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Thus, If U 1s unlforni [0,1] and E 1s exponentlal, I t  1s clear that 
r 

and 

are both geometrlc ( p  ). 
If many geometrlc random varlates are needed for one Axed value of p , extra 

speed can be found by ellmlnatlng the need for an exponentlal randoin varlate 
and for truncatlon. Thls can be done by spllttlng the dlstrlbutlon lnto two parts, 
a tall carrylng small probablllty, and a maln body. For the maln body, a fast  
table method 1s used. For the tall, we can use the memoryless property of the 
geometrlc dlstrlbutlon: glven that x > i , X-z' 1s agaln geometrlc ( p  ) dlstrlbuted. 
Thls property follows dlrectly from the genesls of the dlstrlbutlon. 

2.3. Exercises, 
1. The quantlty log(1-p ) 1s needed In the bounded tlme lnverslon method. For 

small values of p ,  there 1s an accuracy problem because 1-p 1s computed 
before the logarlthm. One can create one's own new functlon by baslng an 
approxlmatlon on the serles 

Show that the following more qulckly convergent serles can also be used: 

2 
P 

where r=1--. 

Compute the varlance of a geometrlc ( p  ) random varlable. 2. 
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3. THE POISSON DISTRIBUTION. 

3.1. Basic properties. 
X Is sald to be Poisson (A)  distributed when 

x i  e - X  
P ( X = i )  = - ( i  20) i !  

h>O 1s the parameter of the distribution. We do not have to convince the readers 
that the Polsson dlstrlbution plays a key role in probablllty and statlstlcs. I t  Is 
thus rather lmportant that a simple uniformly fast Poisson generator be avallable 
In any nontrlvlal statistical software package. Before we tackle the development 
of such generators, we wlll briefly review some properties of the Poisson dlstrlbu- 
tlon. The Polsson probabllltles are unlmodal wlth one mode or two adjacent 
modes. There Is always a inode at 1x1. The tall probabllltles drop off faster 
than the tall of the exponential denslty, but not as fast  as the tall of the normal 
density. In the deslgn of algorlthms, I t  Is also useful to know that as x-too, the 
random variable (X-x)/f i  tends to a normal random varlable. 

Lemma 3.1. 
When X Is Polsson (A), then x has characterlstlc functlon 

i t X )  - - e i ( e ’ f - l )  w 1 = E ( e  

It has moment generatlng functlon E ( e  tX)=exp(X(e -1)), and factorlal moment 
generatlng functlon E ( t X ) = e  i(t-l) .  Thus, 

E (X)  = Val. ( X )  = x . 

Also, If X , Y  are independent Polsson (A) and Poisson ( p )  random varlables, 
then X +  Y Is Polsson (x+p).  

Proof of Lemma 3.1. 
Note that 

The statements about the moment generatlng functlon and factorlal moment gen- 
eratlng functlon follow directly’ from thls. Also, If the factorlal moment generat- 
Ing function Is called k , then Ic’(l)=E (X)=x and k”(l)=E (x(x-1))=x2. 
From thls we deduce that V u r ( X ) = x .  The statement about the sum of two 
lndependent Polsson random varlables follows dlrectly from the form of the 
characterlstlc functlon. 
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3.2. Overview of generators. 
The generators proposed over the years can be classlfled lnto several groups: 
Generafors based upon the connectlon wlth homogeneous Polsson processes 
(Knuth, 1969). These generators are very slmple, but run In expected tlme 
proportlonal to A. 

2. Inverslon methods. Inverslon by sequentlal search started at 0 runs In 
expected tlme proportlonal to A (see below). If the sequentlal search 1s 
started at the mode, then the expected tlme 1s o ( 6 )  (Flshman, 1976). 
Inverslon can always be sped UP by storlng tables of constants (Atklnson, 

Generators based upon recurslve propertles of the dlstrlbutlon (Ahrens and 
Dleter, 1974). One such generator is known to take expected tlme propor- 
tional to log(X). 

4. ReJectlon methods. ReJectlon methods seem to lead to the slmplest unl- 
formly fast algorlthms (Atklnson, 1979; Ahrens and Dleter, 1Q80; Devroye, 
1981; Schmelser and Kachltvlchyanukul, 1981). 

The acceptance-complement method wlth the normal dlstrlbutlon as startlng 
dlstrlbutlon. See Ahrens and Dleter (1982). Thls approach leads to efllclent 
unlformly fast  algorlthms, but the computer programs are rather long. 

We are undoubtedly omlttlng a large fractlon of the llterature on Polsson random 
varlate generatlon. The early papers on the subJect often proposed some approxl- 
mate method for generatlng Polsson random varlates whlch was typlcally based 
upon the closeness of the Polsson dlstrlbutlon to the normal dlstrlbutlon for large 
values of A. It 1s pointless to glve an exhaustlve hlstorlcal survey. The algorlthms 
that really matter are those that are elther slmple or f a s t  or both. The deAnltlon 
of "fast" may or may not lnclude the set-up tlme. Also, slnce our comparlsons 
cannot be based upon actual lmplementatlons, I t  1s lmportant to dlstlngulsh 
between computatlonal models. In partlcular, the avallablllty of the factorlal In 
constant tlme 1s a cruclal factor. 

1. 

1979). 

3. 

5. 

3.3. Simple generators. 

arrlval tlmes In a homogeneous polnt process 1s the followlng. 
The connectlon between the Polsson dlstrlbutlon and exponentlal lnter- 
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Lemma 3.2. I 
If J ! ? ~ , J ! ? ~ , . . .  are lld exponential random varlables, and X 1s the smallest 

lnteger such that  
x+l 
CEj > A ,  

I =1 

then X Is Polsson (A). 

1 

Proof of Lemma 3.2. 
Let f k  be the gamma ( k  ) denslty. Then, 

Thus, by partlal Integration, 

00 k -1 

= j ( y - k ) -  e-Y dy x k !  

The algorltlim based upon thls property 1s: 
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Poisson generator based upon exponential inter-arrival times 

x+-0 

SumcO 
WHILE True DO 

Generate an exponential random variate E .  
S u m t S u m + E  
IF Sum<X 

THEN X+-X+1 
ELSE RETURN x 

Uslng the fact that a unlform random varlable 1s dlstrlbuted as e - E ,  I t  1s 
easy t o  see that Lemma 3.2 1s equlvalent to Lemma 3.3, and that the algorlthm 
shown above 1s equlvalent to  the algorlthm followlng Lemma 3.3: 

Lemma 3.3. 

lest lnteger such that 
Let U1,u2,  ... be lld unlform [0,1] random varlables, and let X be the smal- 

I x+l 
Ui<e- l  . 

I Then X 1s Poisson (A). 

Poisson generator based upon the multiplication of uniform random variates 

x t o  
P r o d e l  
WHILE True DO 

Generate a uniform [O,l] random variate U. 
ProdtProd u 
IF Prod>c-’ (the constant should be computed only once) 

THEN X+X+l 
ELSE RETURN x 
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The expected number of lteratlons 1s the same for both algorlthms. However, an 
addltlon and an exponentlal random varlate are replaced by a multlpllcatlon and 
a unlform random varlate. Thls replacement usually works In favor of the multl- 
pllcatlve method. The expected complexlty of both algorlthms grows llnearly wlth 
A. 

Another slmple algorlthm requlrlng only one unlform random varlate 1s the 
lnverslon algorlthm wlth sequentlal search. In vlew of the recurrence relatlon 

(i 20) 9 

x - -- P(X=i+l)  
P ( X = i )  2 +1 

thls glves 

Poisson generator based upon the inversion by sequential search 

x+-0 
Sum+-e-’,Prod+e-’ 
Generate a uniform [0,1] random variate u . 
WHILE U >Sum DO 

X+-X+l 
x Prod+--Prod X 

Sum+-Sum+Prod 
RETURN x 

Thls algorlthrn too requlres expected tlme proportlonal to h as h+m. For large 
A, round-off errors prollferate, whlch provldes us wlth another reason for avoldlng 
large values of A. Speed-ups of the lnverslon algorlthm are posslble If sequentlal 
search 1s started near the mode. For example, we could compare U flrst wlth 
b =P ( X  5 1x1 ), and then search sequentlally upwards or  downwards. If b 1s 
avallable In tlme 0 (l), then the algorlthm takes expected tlme 0 (6) because 
E ( I X -  11 J I )=0 (6). See Flshman (1976). If b has to be computed flrst, thls 
method 1s hardly competltlve. Atklnson (1979) descrlbes varlous ways In whlch 
the lnverslon can be helped by the Judlclous use of tables. For small values of h , 
there 1s no problem. He then custom bullds fast  table-based generators for all x’s 
that are powers of 2, startlng wlth 2 and endlng wlth 128. For a glven value of 1, 
a sum of lndependent Poisson random varlates 1s needed wlth parameters that 
are elther powers of 2 or very small. The speed-up comes at a tremendous cost In 
terms of space and prograinmlng effort. 
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3.4. Rejection methods. 
To see how easy I t  1s to lmprove over the algorlthms of the prevlous sectlon, 

I t  helps to get an ldea of how the probabllltles vary wlth A. Flrst of all, the peak 
at LA J varles as 1 / 6 :  

Lemma 3.4. 
The value of P (x = 1x1 ) does not exceed 

1 
J S J ’  

and - 1/m as x+m. 

Proof of Lemma 3.4. 
We apply the lnequallty e’ ! 2 i e -i & , valld for all lnteger e‘ 2 1. Thus, 

Furthermore, by Stlrllng’s approxlmatlon, I t  1s easy to establish the asymptotic 
result as well. 

We also have the followlng lnequallty by monotonlclty: 

Lemma 3.5. 

Proof of Lemma 3.5. 

by unlmodallty, 
We will argue for the posltlve slde only. Wrltlng pi for P (X=i  ), we have 

dX+l 2 E (  I x-x I )+1 
2E(IX-IXJ I ) ?  c I . A X J  I P J  

L P i +  1x1 c .i 
j >  1x1 

i 

j =O 
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If we take the mlnlmum of the constant upper bound of Lemma 3.4 and the 
quadratlcally decreaslng upper bound of Lemma 3.5, i t  1s not dlmcult t o  see that 
the cross-over polnt 1s near h f c  6 where c =(8r)'I4. The area under the bound- 
lng sequence of numbers 1s 0 (1) as h+m. It 1s unlformly bounded over all values 
h 2 l .  We do not lmply that  one should deslgn a generator based upon thls dom- 
lnatlng curve. The polnt 1s that I t  1s very easy to  construct good boundlng 
sequences. In fact, we already knew from Theorem 1.1 that the unlversal reJec- 
tlon algorlthm of sectlon 1.4 1s unlformly fast. The domlnatlng curves of Theorem 
1.1 and Lemmas 3.4 and 3.5 are slmllar, both havlng a flat center part. Atklnson 
(1979) proposes B loglstlc maJorlzlng curve, and Ahrens and Dleter (1980) propose 
a double exponentlal maJorlzlng curve. Schmelser and Kachltvlchyanukul (1981) 
have a reJectlon method wlth a trlangular hat and two exponentlal talls. We do 
not descrlbe these methods here. Rather, we wlll descrlbe an algorlthm of Dev- 
roye (1981) whlch 1s based upon a normal-exponentlal domlnatlng curve. Thls has 
the advantage that the reJectlon constant tends t o  1 as h-too. In addltlon, we 
wlll lllustrate how the factorlal can be avolded most of the tlme by the Judlclous 
use of squeeze steps. Even If factorlals are computed In llnear tlme, the overall 
expected tlme per random varlate remalns unlformly bounded over h. For large 
values of A, we wlll return a truncated normal random varlate wlth large proba- 
blllty. 

Some lnequalltles are needed for the development of tlght lnequalltles for the 
Polsson probabllltles. These are collected In the next Lemma: 
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Lemma 3.6. 

the  llst of lnequalltles shown below. We have: 
Assume that  u 2 0  and all the arguments of the logarlthms are posltlve In 

(1) 1 0 g ( l + u )  5 u 1 (11) log( l+u)  5 u--u2+-u3 1 1 
2 3 
1 
2 

(111) log( l+u)  2 u--u2 

2u 
2+u 

1 (lv) log(l+u)  3 - 
k 1  i (v) log(1-u) 5 - -u ( I C  21) 

. a  
1 E l  

. Most of these lnequalltles are well-known. The other ones can be obtalned 
wlthout dlmculty from Taylor’s theorem (Whlttaker and Watson, 1927, 1s a good 
source of Information). We assume that  xzl. Slnce we wlll use reJectlon algo- 
rlthms, I t  can’t harm to normallze the Polsson probabllltles. Instead of the proba- 
bllltles p i ,  we wlll use the normallzed log probabllltles 

q j  = log(P p+ j )+log(P!)-Plog(x)+X 

where p= 1x1. Thls can convenlently be rewrltten as follows: 

( j  =o> 
- j - 1  

-log( n (I--$ ( j  <o) 
i=o  I.L 

x 
P 

= jlog(-) + 
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- I Lemma 3.7. 

Let us use the notatlon j +  for m a x ( j  ,O). Then, for all lnteger j >-p, 

Proof of Lemma 3.7. 
Use (lv) and (v) of Lemma 3.6, together wlth the ldentlty 

The lnequallty of Lemma 3.7 can be used as the startlng polnt for the 
development of tlght domlnatlng curves. The last term on the rlght hand slde In 
the upper bound 1s not In a famlllar form. On the one hand, I t  suggests a normal 
boundlng curve when j 1s small compared t o  p.  On the other hand, for large 
values of I j 1 ,  an exponentlal boundlng curve seems more approprlate. Recall 
that  the Polsson probabllltles cannot be tucked under a normal curve because 
they drop off as e - ' j l o g ( j )  for some c as i 4 m .  In Lemma 3.8 we tuck the Pols- 
son probabllltles under a normal maln body and an exponentlal rlght .tall. 

Lemma 3.8. 
Assume that p z S  and that 6 1s an lnteger satlsfylng 

6 5 6 5 p .  

Then 

9 0  L 0 
1 < -  

" ' /..~(2p+1) - 78 
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Proof of Lemma 3.8. 

fourth lnequallty, we observe that for 2 < j  <6, 
The flrst three lnequalltles follow wlthout work from Lemma 3.7. For the 

- -  
j +- j 
P+Z j 2 ( P + Y )  j 

q j  L-- j ( j + l )  (slnce j S S S ~ )  

- 2 j - j 2  - 
2 ~ +  j 

The fourth lnequallty 1s also valld for j =O. For j =1, a qulck check shows that 
l / p ( 2 , ~ + 1 ) ~ 1 / ( 2 p + & )  because 6511. Thls leaves us wlth the Afth and last lne- 

quallty. We note that  &>S>*. - -  Thus, 
P-2 

+ j (--- I & I  6 - - -- 
2P+S P 2P+6 

r 

Based on these lnequalltles, we can now glve a flist Polsson algorlthm: 
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Rejection method for Poisson random variates 

(SET-UP] 

C'+ lx 1 

C p-!/67z 
c 2 t c  ,+\lr(p+6/2)/2e 2fi+6 

c 3 t c  2 + l  

c,+-c,+e 

c + e , + z ( z p + 6 ) e  2@+6 ('+y) 
6 

[NOTE] 

The function q$ is deflned as q j  -i log(-)=j log(p)-log((p+j ) ! / I & ! ) .  

[GENERATOR] 
REPEAT 

Choose 6 integer such that 6565~. 

1 - 

1 - 
6 6  -- 

x 
CL 

Generate a uniform [ o , c ]  random variate u and an exponential random variate E .  
Accept +- False. 
CASE 

use,: 
Generate a normal random variate N .  
Y-lN 14 
x- LYJ 

N 2  x 
E -xlOg(I1) wt--- 

2 
1~x2-p THEN W t m  

c u 4 e 2: 

Generate a normal random variate N .  

I F X S 6 T H E N  W + m  

x +o 
W +-E 

x-1 
W +-E -log( -) 

e 2< u 5 c 9: 

c 3 <  u 5 c ,: 

x 
P 

c , < U :  
Generate an exponential random variate I/. 
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2 
6 

Y 4 - t  V-(?p+6) 

A’- r y i  
w ---(I+,)-E 6 Y -Xlog(-) x 

?p+6 P 
A c c e p t  -[ w 5 4%) 

UNTIL A c c e p t  

RETURN X+p 

Observe the careful use of the floor and celllng functlons In the algorlthm to 
lnsure that the contlnuous domlnatlng curves exceed the Polsson stalrcase func- 
tlon at every polnt of the real llne, not Just the lntegers ! The monotonlclty of 
the domlnatlng curves 1s explolted of course. The functlon 

= 5 logo\)-log( ( P + X  >! ) 
p!  Qz 

1s evaluated In every lteratlon at some pOlnt 2. If the logarithm of the factorlal 1s 
avallable at unlt cost, then the algorlthm can run In unlformly bounded time pro- 
vlded that  6 1s carefully plcked. Thus, the flist lssue to be dealt wlth 1s that of 
the relatlonshlp between the expected number of lteratlons and 6. 

~- 

Lemma 3.9. 
If 6 depends upon 1 In such a way that 

then the expected number of lteratlons E ( N )  tends to  one as X- too .  In partlcu- 
Iar, the expected number of lteratlons remalns unlformly bounded over A>& - 

Furthermore, 

I where the lnflmum Is reached If we choose 
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Proof of Lemma 3.9. 
In a prellmlnary computatlon, we have to evaluate 

slnce thls 1s the total welght of the normallzed Polsson probabllltles. It 1s easy to 
see that thls glves 

j =O 

-dzp 
where we used the fact that log(X/p) = log(l+(h-p)/p) = (X-p)/p+o (p-’). 
Thus, the expected number of lteratlons 1s the total area under the domlnatlng 

curve ( wlth the atoms at 0 and 1 liavlng areas one and e 78 respectlvely ) 
dlvlded by ( l+o  ( 1 ) ) G .  The area under the domlnatlng curve Is, taklng the 
flve contrlbutors from left to rlght, 

1 - 

If 6 1s not o ( p ) ,  thls can not - 6. If 6 < - c 4 for some constant c , then 
the last term 1s at least - -e -‘*I4fi, whlle I t  should really be o (4). Thus, the 

condltlons lmposed on 6 are necessary for E(N)-+l. That they are also sumclent 
can be seen as follows. The fifth term In the area under the domlnatlng curves 1s 
o (G), and so are the constant second and third terms. The fourth term - m, whlch establlshes the result. 

To mlnlmlze E ( N ) - 1  In an asymptotlcally optlmal fashlon, we have to con- 
slder some sort of expanslon of the area In terms of decreaslng asymptotlc lmpor- 
tance. Uslng the Taylor serles expanslon for d G -  for u near 0, we can wrlte 
the flrst four terms as 

C 

The main term In excess of 6 1s 
m b .  

4 p  

We can also verify easily that t h e  contrlbutlon from the exponentlal tall 1s 
6? -- 

*(l+o (1))e 2 ( 2 ~ + 6 )  . 
6 
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To obtaln a A r s t  (but as we wlll see, good) guess for 6, we wlll 

Thls 1s equlvalent to solvlng 

@+%)e -- 4 p  = de 
If we Ignore the o (1) term n, 4P 

DISTRIBUTION 

mlnlmlze 

we can solve thls expllcltly and obtaln 

A plugback of thls value l a  the orlglnal expresslon for the area under the dom- 
lnatlng curve shows that I t  lncreases as 

4 

The constant terms are absorbed In o(1); the exponentlal tall contrlbutlon 1s 
0 (l/d-). If we replace 6 by 6 ( l + ~ )  where E 1s allowed to vary wlth p but 1s 
bounded from below by c >0, then the area 1s asymptotlcally larger because the 
d m  term should be multlplled by at least l + c .  If we replace 6 by 6(1-~),  
then the contrlbutlon from the exponentlal tall 1s at least Sl(pc l2/m). Thls 
concludes the proof of the Lemma. 

We have to lnsure that 6 falls wlthln the llmlts lmposed on I t  when the dom- 
lnatlng curves were derlved. Thus, the followlng cholce should prove fallsafe In 
practlce: 

6 = max(b,mln(p, J-1) 2p log(- * 

7r 

We have now In detall dealt wlth the optlmal design for our Polsson genera- 
tor. If the log-factorlal ls avallable at unlt cost, the reJectlon algorlthm ls unl- 
formly fast, and asyinptotlcally, t h e  reJectlon constant tends to one. 6 was plclced 
t o  lnsure that the convergence to one takes place at the best posslble rate. For 
the optlmal 6, the algorlthm baslcally returns a truncated normal random varlate 
most of the tlme. The exponentlal tall becomes asymptotlcally negllglble. 

We may ask what would happen to our algorlthm If we were to  compute all 
products of successlve lntegers expllcltly ? Dlsregardlng the horrlble accuracy 
problems lnhereiit In all repeated multlpllcatlons, we would also face a break- 
down In our complexlty. The coinputatlon of 

x (X+P)! !) qx = x log( -)+S log(p)-log( 
P P 
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can be done In tline proportlonal to 1+ I x 1 . Now, X 1s wlth hlgh probablllty 
normal wlth mean 0 and varlance approxlmately equal to 4. Slnce (I 1s com- 
puted only once wlth probablllty teiidlng to one, I t  1s clear that the expected tlme 
complexlty now grows as &. If we had perfect squeeze curves, 1.e. squeeze curves 
In whlch the top and bottom bounds are equal, then we would get our unlform 
speed back. The same 1s true for very tlght but lmperfect squeeze curves. A class 
of such squeeze curves 1s presented below. Note that we are no longer concerned 
wlth the domlnatlng curves. The squeeze curves glven below are also not derived 
from the lnequalltles for Stlrllng’s serles or Blnet’s serles for the log gamma func- 
tlon (see sectlon 1). We could have used those, but I t  1s lnstructlve to show yet 
another method of derlvlng good bounds. See however exerclse 3.9 for the appll- 
catlon of Stlrllng’s serles In squeeze curves for Polsson probabllltles. 

Lemma 3.10. 
Deflne 

j(j+l) t j  = ( I j  - j  log( -)+ 
/4 2/4 

Then for lnteger j LO, 

Furthermore, for lnteger -1-11 j’ 10, the converse 1s almost true: 

Proof of Lemma 3.10. 
The proof 1s based upon Lemma 3.6, the ldentltles 

k . k ( k + l )  , x i 2 =  k (k +1)(21c +1> , x i 3 =  k 2 ( k  + I ) ~  9 E2 = A n A -i 
1 = I  0 : =1 ;5 i = 1  

and the fact that q j  can be rewrltten as follows: 

qj-jlog(-) x = 

/4 
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The algorlthm requlres of course llttle modlflcatlon. Only the llne 

A c c e p t  -1 MI 5 q % ]  

needs replaclng. The replacement looks llke thls: 

x (A’ + 1) T -  

A c c e p t  -[ W <-T]n[X>o]  
IF NOT A c c e p t  TH%N 

, 2P 

1) &--T(-- aX+1 
611 

T2 P+&- 
3 ( p + ( x  +1)-) 

A c c e p t  --[ W 5 Q J 
IF NOT A c c e p t  AND I V s P ]  THEN A c c e p t  --[ W sq%] 

It  1s lnterestlng to go through the expected conplexlty proof ln thls one 
example because we are no longer countlng lteratlons but multlpllcatlons. 

Lemma 3.11. 
The expected tlme taken by the modlfled Polsson generator Is unlformly 

bounded over A 2 8  when 6 1s chosen as In Lemma 3.10, even when factorlals are 
expllcltly evaluated as products. 

i I 

Proof of Lemma 3.11. 
It sufllces to establlsh the unlform boundedness of 

Jv IX I I[Q<M’<P]) 

where we use the notatloii of the algorlthm. Note that  tlils stateinelit 1mpllcltlY 
uses Wald’s equatlon, and the fact that  the expected number of lteratlons 1s unl- 
formly bounded. The expresslon liivolvlng I X I Is arrlved at by loolclng at the 
tlme needed to evaluate 4%. The expected value wlll be spllt lnto flve parts 
accordlng to the flve components ln the dlstrlbutlon of X .  The atomlc parts 
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X=O,X=l are easy to take care of. The contrlbutlon from the normal portlons 
can be bounded from ,above by a constant tlmes 

Here we have used the fact that W conslsts of a sum of some random varlable 
and an exponentlal random varlable. When X LO, the last upper bound 1s In turn 
not greater than a constant tlmes E ( I X I 5 ) / p 3  = 0 (p- l I2) .  The case X <o 1s 
taken care of slmllarly, provlded that we flrst spllt off the case X<-- .  The 

spllt-off part 1s bounded from above by 

P 
2 

0 (p3)P ( X  <-5) 5 0 (/A3) E ( X 2 )  = 0 ( 1 )  
P2 

For the exponentlal tall part, we need a unlform bound for 
1 

E (, I  X 1 5p-3)(10g(p))-T 

where we have used a fact shown In the proof of Lemma 3.10, 1.e. the probablllty 
that X Is exponentlal decreases as a constant tlmes log-'I2(p). Verlfy next that 
glven that X 1s from our exponentlal tall, E ( I X I 5)=0 (S5). Comblnlng all of 
thls shows that our expresslon In questlon 1s 

Thls coiicludes the proof of Lemma 3.11. 

The computatloiis of the prevlous Lemma reveal other lnterestlng facets of 
the algorlthm. For example, the expected tlme contrlbutlon of the evaluatlons of 

log2(') ). In other words, I t  1s asyrnptotlcally negllglble. Even so, factorlals 1s 0 ( 

the maln contrlbutlon to thls o ( 1 )  expected tlme comes from the exponentlal tall. 
Thls suggests that I t  1s posslble to obtaln a new value for 6 whlch would mlnlmlze 
the expected tline spent on the evaluatlon of factorlals, and that thls value wlll 
dlffer from that obtained by mlnlmlzlng the expected number of lteratlons. 

4-J 
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3.5. Exercises. 
1. Atklnson (1979) has developed a Polsson ( A )  generator based upon rejectloll 

from the loglstlc density 

- e  ' ( l + e  ' , 

where a =X and 6 =m/7r. A random varlate wlth thls denslty can be gen- 

erated as S e n  +6 log(-) where U 1s unlform [o ,~ ] .  

A. Flnd the dlstrlbutlon of x+- . 

B. 

C. 

1- u 
u 

i :i 
Prove that S has the same mean and varlance as the Polsson dlstrlbu- 
tlon. 
Deternilne a rejectlon constant c for use wlth the dlstrlbutlon of part 
A. 

D. 
2. A recursive generator. Let n be an lnteger somewhat smaller than A, 

and let G be a gamma ( n  ) random varlable. Show that the random varlable 
X deflned below 1s Polsson (A): If G >A, X 1s blnomlal (n- l ,A/G ); If 
G <A, - then X 1s n plus a Polsson (A-G) random varlable. Then, taklng 
n = 10.8751 1, use thls recurslve property t o  develop a recursive Polsson 
generator. Note that one can leave the recurslve loop elther when at one 
polnt G > A  or when A falls below a Axed threshold (such as 10 or 15). By 
taklng n a Axed fractlon of A, the value of A falls at a geometrlc rate. Show 
that in vlew of thls, the expected tlme complexlty 1s 0 (i+log(h)) If a con- 
stant expected tlme gamma generator Is used (Ahrens and Dleter, 1974). 

Prove all the lnequalltles of Lemma 3.6. 
Prove that for any 1 and any c >0, llm pj /e-cil = 00. Thus, the Polsson 

curve cannot be tucked under any normal curve. 
5. Poisson variates in batches. Let X , ,  . . . , X ,  be a multlnomlal 

(Y ,p  1, . . . , pn ) random vector (l.e., the probablllty of attalnlng the value 
i,, . . . , in 1s 0 when Cij 1s not Y and 1s 

Prove that c 1s unlforinly bounded over all values of A. 

3. 

4. 
j 4 0 0  

Y !  . p l i l  . . . 'n ' 
P n  i,!. . . 2, ! 

otherwlse. Show that If Y 1s Polsson (A), then X, ,  . . . , X ,  are lndependent 
Polsson random varlables wlth parameters A p , ,  . . . , Ap, respectlvely. 
(Moran, 1951; Pat11 and Seshadrl, 1964; Bolshev, 1965; Tadlkamalla, 1979). 

Prove that as x-+oo, the dlstrlbutlon of (x-A)/fi tends t o  the normal dls- 
trlbutlon by provlng that the characterlstlc functlon tends to  the charac- 
terlstlc functlon 

0. 

of the normal dlstrlbutlon. 
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7. Show that for the reJectlon method developed In the text, the expected tlme 
complexlty 1s O ( 6 )  and n(6) as X-EO when no squeeze steps are used 
and the factorlal has to be evaluated expllcltly. 
Glve a detalled reJectlon algorlthm based upon the constant upper bound of 
Lemma 3.4 and the quadratlcaliy decreaslng talls of Lemma 3.5. 
Assume that factorlals are avoided by uslng the zero-term and one-term Stlr- 
llng approxlmatlons (Lemma 1.1) as lower and upper bounds ln squeeze steps 
(the dlfference between the zero-term and one-term approxlmatlons of 
log(r(n)) 1s the term 1/(12?2)). Show that thls sufflces for the followlng 
reJectlon algorltlims to be unlformly fast: 
A. The unlversal algorlthm of sectlon 1. 

B. The aigorlthm based upon Lemmas 3.4 and 3.5 (and developed In Exer- 
clse 8). 

C. The normal-exponentlal reJectlon algorlthm developed In the text. 
10. Repeat exerclse 9, but assume now that factorlals are avolded altogether by 

evaluatlng an lncreaslng number of terms In Blnet’s convergent serles for the 
log gamma function (Lemma 1.2) untll an acceptance or reJectlon declslon 
can be made. Read fli.st the text followlng Lemma 1.2. 

11. The matching distribution. Suppose that n cars are parked In front of 
Hanna’s rubber sliln sult shop, and that each of Hanna’s satlsfled customers 
leaves In a randomly plcked car. The number N of persons who leave In 
thelr own car has the matchlng dlstrlbutlon wlth parameter n : 

8. 

9. 

A. 

B. 

Show thls by lnvoklng the lncluslon excluslon prlnclple. 

Show that Ilm P ( N = i ) = -  , Le. that the Polsson (1) dlstrlbutlon 
n --*m e i !  

1s the llmlt (Barton, 1958). 
1 Show that P ( N = i ) I - ,  1.e. reJectlon from the Polsson (1) dlstrlbu- i !  

tlon can be used wlth rejection constant e not dependlng upon n . 

complexlty 1s unlformly bounded In n . 

C. 

D. Show that  the algorlthm glven below 1s valld, and that Its expected 
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WHILE True DO 
Generate a Poisson (1) random variate X , and a uniform [0,1] random 
variate U .  
I F X < n  THEN 

k + - i , j t 0 , 6  t i  

W H I L E j s n - A ? A N D  u<6 DO 
1 j -j - t - l ,k  6 - j k  ,6 -6 +- 
k 

IF j 5 n - X  AND u<s 
THEN RETURN x 

1 ELSE j - j  +l,k +- j k  ,8 +6 +- 
k 

12. The Borel-Tanner distribution. A dlstrlbutlon lmportant In queulng 
theory, wlth parameters n 21 (n  Integer) and a€(0 ,1)  was dlscovered by 
Bore1 and Tanner (Tanner, 1951). The probabllltles p i  are deflned by 

(i Ln 1 n i i - n - 1  i-n a 
(i-n)! P i  = 

n n a  Show that the mean 1s - and that the varlance 1s - . The dlstrlbu- 

tlon has a very long posltlve tall. Develop a unlformly fast  generator. 
1-fl! ( 1 4 3  

4. THE BINOMIAL DISTRIBUTION. 

4.1. Properties. 
X 1s binomially distributed wlth parameters n > i  and p E [ o , i ]  If 

We wlll say that X Is blnomlal ( ? I  , p  ). 



521 X.4.THE BINOMIAL DISTRIBUTION 

. 

Lemma 4.1. (Genesis.) 

success probablllty p , 1.e. 
Let x be the number of successes In a sequence of n Bernoulll trials wlth 

If XI, . . , Xk are lndependent blnomlal ( n  ) ?...( (nk ,p  random varl- 
k k 

ables, then Xi 1s blnomlal ( ni , p  ). 
:=1 t 1 2 1  

i = l  

where u,, . . . , un are lld unlform [0,1] random varlables. Then X 1s blnomlal 
(n ,P 1. 

Lemma 4.2. 

(1-p  + p s  )” . The mean Is np , and the varlance 1s np (1-p ). 
The blnomlal dlstrlbutlon wlth parameters n ,p has generatlng functlon 

Proof of Lemma 4.2. 
The factorlal moment generatlng functlon of X (or slmply generatlng func- 

tlon) Is 

where we used the Lemma 4.1 and Its notatlon. Each factor In the product Is 
obvlously equal to 1 - p f p s  . Thls concludes the proof of the flrst statement. 
Next, E ( X )  = k’(1) = np,  and E(X(X-1)) = k ” ( 1 )  = n(n- l )p2 .  Hence, 
Vur ( X )  = E ( X 2 ) - E 2 ( X )  = E(X(X-i))+E(X)-E2(X) = np ( I - p )  . 

From Lemma 4.1, we can conclude wlthout further work  

Lemma 4.3. I 

I 
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[Lemma 4.4.(First waiting time property.) 
~~ -1 

Let G1,G2,  ... be lld geometrlc ( p )  random varlables, and let X be the smal- 
lest lnteger such that 

X+1 
C G i  > n .  

i=1 

Then X Is blnomlal ( n  , p  ). 

Proof of Lemma 4.4. 
G ,  1s the number of Bernoulll trlals up to  and lncludlng the Arst success. 

Thus, by the lndependence of the Gi's, Gl+ . . +Gx+, 1s the number of Ber- 
noulli trlals up to  and lncludlng the X+l-st success. Thls number 1s greater than 
n lf and only If among the flrst n Bernoulll trlals there are at most X successes. 
Thus, 

k +i 

i=l j =O 

P ( X < k )  = P( Gi > n )  = 6 [ 51 p j (1-p ),-j (Integer k ) .I 

Lemma 4.5. (Second waiting time property.) 

lnteger such that 
Let Bl,B2,... be lld exponentlal random varlables, and let x be the smallest 

X + l  Ei 
> -log(l-p ) . 

i=1 n - i + 1  

1 Then X 1s blnomlal (n  , p  ). I 
Proof of Lemma 4.5. 

<E(, )  be the order statlstlcs of an exponentlal dlstrl- 
butlon. Clearly, the number of )'s smaller than -log(l-p ) Is blnomlally dlstrl- 

the smallest lnteger such that E(x+l)>.-log(l-p ), then X 1s blnomlal (n , p  ). 
Lemma 4.5 now follows from the fact (sectlon V.2) that (E(ll, . . . , E,,)) 1s dls- 
trlbuted as 

Let E(1)<E(2)< 

buted wlth parameters n and P (E,<-log(l-p ))=1-e ' 'g('-p)=p . Thus, If x IS 

En + * * * +-) .a E l  E2 , . . . , -+- El E ,  E2 
(-,-+- 

1 n n n-1 n n-1 
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4.2. Overview of generators. 

A. 
The blnomlal generators can be partltloned lnto a number of classes: 
The slmple generators. These generators are based upon the dlrect appllca- 
tlon of one of the lemmas of the prevlous sectlon. Typlcally, the expected 
complexlty grows as n or as np , the computer programs are very short, and 
no addltlonal worlcspace 1s requlred. 
Unlformly fast  generators based upon the reJectlon method (Flshman (1979), 
Ahrens and Dleter (1980), Kachltvlchyanukul (1982), Devroye and Nader- 
lsamanl (1980)). We wlll not bother wlth older algorlthms whlch are not unl- 
formly fast. Flshman’s method 1s based upon reJectlon from the Polsson dls- 
trlbutlon, and 1s explored In exerclse 4.1. The unlversal rejectlon algorlthm 
derived from Theorem 1.1 1s also unlformly fast, but slnce I t  was not 
speclflcally deslgned for the blnomlal dlstrlbutlon, I t  1s not competltlve wlth 
tallor-made rejectlon algorithms. Td save space, only the algorlthm of Dev- 
roye and Naderlsainanl (1980) wlll be developed In detall. Although thls 
algorlthm may not be the fastest on all computers, I t  has two deslrable pro- 
pertles: the domlnatlng curve 1s asymptotlcally t lght because I t  explolts con- 
vergence to the normal dlstrlbutlon, and I t  does not requlre a subprogram 
for coniputlng the log factorlal in constant tlme. 
Table methods. The flnlte number of values make the blnomlal dlstrlbutlon 
a good candldate for the table methods. To obtaln unlformly fa s t  speed, the 
table slze has to grow In proportlon to  n ,  and a set-up tlme proportlonal to 
n 1s needed. It 1s generally accepted that  the marglnal executlon tlmes of the 
allas or allas-urn methods are dlfflcult to beat. See sectlons 111.3 and 111.4 for 
det alls. 
Generators based upon recurslon (Relles (1972), Ahrens and Dleter (1974)). 
The problem of generatlng a blnomlal ( n  , p )  random varlate 1s usually 
reduced In constant tline to that of generatlng another blnomlal random 
varlate wlth much smaller value for n .  Thls leads to 0 ( log(n))  or 
0 (loglog(n )) expected tlme algorlthms. In vlew of the superlor performance 
of the generators In classes B and C, the prlnclple of recurslon wlll be 
descrlbed very brlefly, and most detalls can be found In the exerclses. 

B. 

C. 

D. 

4.3. Simple generators. 
Lemma 4.1 leads to the 

! 
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Coin flip method 

x-0 
FOR i :=1 TO n DO 

Generate a random bit B ( B  is 1 with probability p , and can be obtained by gen- 
erating a uniform [0,1) random variate u and setting B 
X+X+B 

RETURN x' 

Thls slmple method requires tlme proportlonal to n . One can use n unlforin ran- 
dom varlates, but l t  1s often preferable to generate Just one unlform'random varl- 
a te  and recycle the unused portlon. Thls can be done by notlng that a random 
blt and an lndependent unlform random varlate can be obtalned as 

u 1-u ( I [ U . . ~  I,mln(-,-)). The coln fllp method wlth recycllng of unlform random 
P 1-P 

varlates can be rewrltten as follows: 

[NOTE: We assume that p <1/2.] 

X t o  
Generate a uniform [ O , i ]  random variate u 
FOR i:=1 TO n DO 

B +IIU > I - p ,  

U t  u-il-p lB  (reuse the uniform random variate) 
pB+(l-p N1-B 

X-X+B 
RETURN X 

1 
2 

For the Important case p =-, I t  suffices to generate a random unlformly dlstrl- 

buted computer word of n blts, and to count the number of ones In the word. In 
machlne language, this can be lmplemented very emclently by the standard blt 
operatlons. 

Inverslon by sequentlal search takes as we know expected tlme proportlonal 
to E(X)+l = np $1. We can avold tables of probabllltles because of the 
recurrence relatlon 
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where p i  = P ( x = i ) .  The algorlthm wlll not be glven here. It sumces to men- 
tlon that for large n ,  the repeated use of the recurrence relatlon could also lead 
to accuracy problems. These problems can be avolded If one of the two waltlng 
tlme algorlthms (based upon Lemmas 4.4 and 4.5) 1s used: 

First waiting time algorithm 

x *-1 
Sum -0 

REPEAT 
Generate a geometric ( p  ) random variate G 
Sum + - S u m  +G 
x-x+1 

UNTIL, Sum >n 

RETURN x 

Second waiting time method 

[SET-UP] 
q +-log(1-p ) 
[GENERATOR] 
x-0 
Sum t-0 

REPEAT 
Generate an exponential random variate E .  
Sum + Sum +- (Note: Sum is allowed to be 00.) E 

n -X 
X+-X+l 

UNTIL, Sum > q  
RETURN X-X-1 

Both waltlng tlme methods have expected tlme complexltles that grow as np +1. 
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4.4. The rejection method. 
To develop good domlnatlng curves, i t  helps to  recall that by the central 

llmlt theorem, the blnomlal dlstrlbutlon tends to  the normal dlstrlbutlon 
n -00 and p remalns Axed. When p varles wlth n In such a way that np -c  , a 
posltlve constant, then the blnomlal dlstrlbutlon tends to  the Polsson ( c  ) dlstrl- 
butlon, whlch In turn 1s very close to  the normal dlstrlbutlon for large values of 
c .  It seems thus reasonable to conslder the normal denslty as our domlnatlng 
curve. Unfortunately, the blnomlal probabllltles do not decrease qulckly enough 
for one slngle normal denslty to  be useful as a domlnatlng curve. 
blnomlal talk wlth exponentlal curves and make use of Lemma 
thlngs slmple, we assume: 
1. X = np 1s a nonzero Integer. 
2. ps2. I 

So as not t o  confuse p wlth pi =P ( X = i ) ,  we use the notatlon 

bi = [ ; ] p i ( l - p ) n - i  (05; Ln) . 
The second assumptlon Is not restrlctlve because a blnomlal ( n  , p  ) 

We cover the 
3.6. To keep 

random varl- 
able 1s dlstrlbuted as n mlnus a blnomlal (n ,1-p)  random varlable. The A r s t  
assumptlon Is not llmltlng ln any sense because of the followlng property. 

Lemma 4.6. 
If Y 1s a blnomlal ( n  ,p’) random varlable wlth p ’ s p ,  and If condltlonal on 

Y ,  Z 1s a blnomlal (n-Y,--- ’-” ) random varlable, then X t Y + Z  1s blnomlal 
1-p‘ 

( n  ?P )* 

Proof of Lemma 4.6. 
The lemma 1s based upon the decomposltlon 

n n n 

i==l i=i i = I  
x = c q r J , < p 1  = c I[rJ,<p‘] + c I [ p / < c r , < p l  = y+z  ’ 

where U,, , . . , V, are lld unlforiii [0,1] random varlables. 

To recapltulate, we offer the followlng generator for general values of n ,p , 
but O<p SA: 

2 

I 
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Splitting algorithm for binomial random variates 

[NOTE: t is a fixed threshold. typically about 7. For np st, one of the waiting time algo- 
rithms is recommended. Assume thus that np > t .] 
PI+- LvJ n 
Generate a binomial (n , p ' )  random variate Y by the rejection method in uniformly bound- 
ed expected time. 

1 

Generate a binomial (n -Y,-) P -2)' random variate Z by one of the waiting time methods. 
1-P 

RETURN x+Y+z 

The expected tlme taken by thls generator when np >t  1s bounded from above 
by c l+c2n- 5 c ,+2c for some unlversal constants c l,c 2. Thus, I t  can't 

harm to lmpose assumptlon 1. 

P -P' 
1-P 

Lemma 4.7. 
For lnteger O S i  ,<n (1-p ) and lnteger X=np 21, we have 

and 

where 
2 (i +1)(2i +1) - (i -1)i (2i -1) 

12?2"2 12ny1-p )2 
s =  

and 
i2(i -1)2 + i2(i+1)2 t =  

1.272 2(1-p 12(n (1-p 1-i +I) 12n3p 

b A-i For all lnteger 05; F n p  , l o g ( b )  satlsfles the same lnequalltles provlded that 

p Is replaced throughout by 1-p In the varlous expresslons. 
x 

I 
I 

.....___ 
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Proof of Lemma 4.7. 

Assume thus that O<i sn (1-p ). We have 
For i = O ,  the statements are obvlously true because equallty 1s reached. 

i -1 a 

Thus, 

i (i-1) - i (i +1) < -  
- 2 n ( l - p )  2np+i  e 

Here we used Lemma 3.6. Thls proves 'the flrst statement of the lemma. Agaln 
by Lemma 3.6, we see that 

Furthermore, 

+ B - t  . i2+((1-p )-p )i 
2nP (1-P ) 

- -  

Thls concludes the proof of the flrst part of Lemma 4.7. For integer O<i Lnp , 
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we have 

Thls 1s formally the same as an expresslon used as startlng polnt above, provlded 
that p 1s replaced throughout by 1-p . 

Lemma 4.7 1s used In the constructlon of a useful functlon g ( a : )  wlth the 
property tha t  for all 5 F.[i , z  +1), and all allowable i ( - n p  5 i < n  ( 1 - p  ) ), 

The algorlthm Is of the form: 

REPEAT 
Generate a random variate Y with density proportional to c . 
Generate an exponential random variate E .  
X- LYJ (this is truncation to the left, even for negative values of Y ) 

)+E 1 UNTIL [-np _ < X < n ( l - p ) ]  AND [ g ( Y ) l l O g ( r  b x+x 
x 

RETURN X-h+X 

The normal-exponentlal dominatlng curve e suggested earller 1s defined In 
Lemma 4.8: 
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~~ 

Lemma 4.8. 
Let 6,L 1, 6,L 1 be glven lntegers. Deflne furthermore 

Then the functlon g can be chosen as follows: 

Proof of Lemma 4.8. 
For i =O we need to show that c >1/(2aI2). Thls follows from 

When O<i <6,, we have 

By Lemma 4.7, 

1 1 + >x - 
1 1 3 = -( 

L 4 

212 (1-p + 2np +s, 2 n  (1-p 2np +6, n (1-p 

2 n  (1-p + 2np +6, 
1 261 )x2+- 

np 
x 2  261 

20,2 7 v  
< - --+-. 
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The last  step follows by appllcatlon of the lnequallty 

u >0, In the followlng chaln of Inequalltles: 
< 1 + 2 ,  valld for 

2 

61 

- l+Zn - 1 + 
2 n  (1-p ) 2np +6, 

1 

4 
2np 

2np (1-P M+-) 
1 > - 4 

2np (1-P )(1+-) 
2np 

1 - 1 
2 - - *  

> - 
61 2a,2 (JW (1-P )(1+-)) 

4np 

When i >6,, we have 

By Lemma 4.7, 

When O>z >-6,, we have 

bnp +i  i ( 2  +1) - i (i -1) 

b,P 
-(-+ 1 1 )i 2-- i 

' 5 -  2np 2 n  ( I - p  )-i log( - 
i + 

2np 2 n  ( I - p  )+S2 2np 2 n  (1-p )+S, 

>x 
1 + 1 < -(- 

- 2np 2n(1-p)+S2 

Flnally, when i <-S,, we see that  

i ( i+ l )  6 2 s  - < - ;  
2np - 2np 
i ( i - 1 )  < 6,(i -1)  - 

212 (1-p )-i - 212 (1-p )+S, 
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Therefore, 

The domlnatlng curve e g  suggested by Lemma 4.8 conslsts of four pleces, 
one plece per lnterval. The lntegrals of e g  over these lntervals are needed by the 
generator. These are easy to compute for the exponentlal talls, but not for the 
normal center lntervals. Not much wlll be lost If we replace the two normal 
pleces by halfnormals on the posltlve and negatlve real llne respectlvely, and 
reject when the normal random varlates fall outslde [-6,,6,]. Thls at least allows 
us to work wlth the lntegrals of halfnormal curves. We wlll call the areas under 
the dlfferent components of e a; (1 5 i 5 4 ) .  Thus, 

1 
2 

' 2 2  

20,1 
00 c-- 

dx = - e C a , & ,  a ,  = J e  

a 2  = -a2&, 

0 

1 
2 

We can now summarlze the algorlthm: 
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A rejection algorithm for binomial random variates 

[SET-UP] 

8 +a,+a,+a,+a, 

[GENERATOR] 
REPEAT 

Generate a uniform [O,s ] random variate U . 
CASE 

ULiZ,: 
Generate a normal random variate N; Y-cl I N 1 
Reject +[Y >bl] 

IF NOT Reject THEN X+ LYJ,V+-E--+c N 2  where E is an ex- 
2 

ponential random variate. 

Generate a normal random variate N: Y-u, I N I 
Reject + - [ Y 2 6 , ]  

a 1 < u 5 a a 2: 

IF NOT Reject THEN X- L-YJ,V-Z-- :v2 where E is an ex- 
2 

ponential random variate. 

Generate two iid exponential random variz.+s E 1 , E 2 .  
Y +6,+2u12E Jb1 

Reject + False 

a 1 + a , < U _ < a 1 + a 2 + a , :  

x+ LYl ,V+-E,-6, Y/(2Ul2)+6l/(la (1-? 

a , + a , + a , <  u :  
Generate two iid exponential random vaii;:+s E l  .E2 .  
Y +62+2u22E JS2 

Reject - False 
x + 1- YJ , v +-E2-6, Y /(2u$) 

Reject - Reject OR [X < - n p  ] OR [X > n (1-p )] 

Reject + Reject OR [V>log(bnp+,~/bnp)]  
UNTIL NOT Reject 

RETURN S 
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We need only choose 6,,6, so that the expected number of lteratlons is 
approximately mlnlmal. Tlils 1s done In Lemma 4.9. 

- 
Lemma 4.9. 

1 Assume that p <- and that as h=np 400, we have unlformly In p , 
2 

Then the expected number of fil=o (h),6,=0 ( n  ), 6, / f i -m0,  b 2 / 6 $  400.  

lteratlons 1s unlformly bounded over n > l , O < p  <L, and tends to 1 unlformly In 

The condltlons on 6,,6,' are satlsfled for the followlng (nearly optlmal) 

- 2  
p asx--too. 

cholces: 
I 1 I 

))J . 128n (1-p ) 6, = max(1, I =p 

Proof of Lemma 4.9. 
We flrst observe that under the stated condltlons on 6,,b2, we have 

a ,  = J-(l+o ( 1 ) )  , a2 = J-(l+o ( 1 ) )  , 

a l + a 3  - a , ,  a2+a4 - a 2 ,  

a 1+a2+n3+~4  - J2.rrnp (1-p . 

The expected number of lteratlons In the algorlthm is 
( a , + a Z + a 3 + a 4 ) b n p  - d2nnp  (1-1) ) /d27fnp  (1-p ) = 1 . All o (.) and - symbols 
lnherlt the  unlformlty wlth respect to p , as long as 1400. The unlform bounded- 
ness of the expected number of lteratlons follows from this. 

The partlcular chokes for 6,,6, are easily seen to  satlsfy the convergence con- 
dltlons. That they are nearly optlmal (wlth respect to the mlnlmlzatlon of the 
expected number of lteratlons) 1s now shown. The mlnlmlzatlon of a , + a 3  would 
provlde us wlth a good value for 6,. In the asymptotlc expanslons for a 1 , a 3 ,  I t  1s 
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now necessary to conslder the flrst two terms, not Just the maln term. In partlcu- 
lar, we have 

- ( I S 0  (1))612 - 6,2 
2nP (1-P e O n p ( 1 - p )  * 2np (1-P e 2 n p  (I-p . a 3  = 
4 6, 

Settlng the derlvatlve of the sum of the two rlght-hand-slde expresslons equal to 
zero glves the equatlon 

6. 
Dlsregardlng the term "1" wlth respect to 

6, glves 

-1 and solvlng wlth respect to 
nP (1-P 

A sultable expresslon for 6, can be obtalned by a slmllar argument. Indeed, 

Dlsregard the o ( 1 )  term, and set the derlvatlve of the resultlng expresslon wlth 
respect to 6, equal to zero. Thls glves the equatlon 

6e2 

If - 1s replaced by equallty, then the solutlon wlth respect to 6, 1s 

Lemma 4.9 1s cruclal for us. For large values of np , the rejection constant 1s 
nearly 1. Also, slnce 6,  and 6, are large compared to the standard devlatlon 

of the dlstrlburlon, the exponentlal talls float to lnflnlty as np -00. 

In other words, we exlt most of the tlme wlth a properly scaled normal random 
varlate. At  thls polnt we leave the algorlthm. The lnterested readers can And 
more lnformatlon In the  eserclses. For example, the evaluatlon of b n p + i / b n p  
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takes tlme proportlonal to  1+ 1 2  I .  Thls lmplles that the expected complexlty 
grows as when np -00. It can be shown that the expected complexlty 
1s unlformly bounded If we do one of the followlng: 
A. Use squeeze steps suggested In Lemma 4.7, and evaluate b n p + i / b n p  expll- 

cltly when the squeeze steps fall, 

B. Use squeeze steps based upon Stlrllng's serles (Lemma 1.l), and evaluate 
b,, +i /6np expllcltly when the squeeze steps fall. 

C. Make all declslons lnvolvlng factorlals based upon sequentlally evaluatlng 
more and more terms In Blnet's convergent serles for factorlals (Lemma 1.2). 

D. Assume that the log gamma functlon 1s a unlt cost functlon. 

4.5. Recursive methods. 
The recurslve methods are all based upon the connectlon between the blno- 

mlal and beta dlstrlbutlons given In Lemma 4.6. Thls 1s best vlsuallzed by consld- 
erlng the order statlstlcs U(l)<  < U(n) of lld unlform [0,1] random varlables, 
and notlng that the nuinber of U(i ) ' s  In [ O , p ]  1s blnoinlal (n  , p  ). Let us call thls 
quantlty X .  Furthermore, U ( j )  ltself 1s beta ( 2  ,n +1-i) dlstrlbuted. Because U ( i )  
1s approxlmately - , we can begin wlth generatlng a beta (i ,n +1-i)  random 
varlate Y wlth i = L(n + l ) p ] .  Y should be close to p . In any case, we have 
gone a long way toward solvlng our problem. Indeed, If Y < p  , we note that X 1s 
equal to  i plus the number of U ( j ) ' s  In the lnterval ( Y , p ] ,  whlch we know 1s 

blnomlal ( n - i , e )  dlstrlbuted. By symmetry, If Y > p ,  X 1s equal to 2 mlnus 

a blnomlal (i -1,-) random varlate. Thus, the followlng recurslve program 

can be used: 

* 

i 
n +1 

' - T - p  
Y 
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Recursive binomial generator 

[NOTE: n and p will be destroyed by the algorithm.] 
X+O,St+l (S is a sign) 
REPEAT 

IF np < t ( t  is a design constant) 
THEN 

Generate a binomial (n , p  ) random variate B by a simple method such 
as the waiting time method. 
RETURN X-X+SB 

Generate a beta (i ,n +1-i) random variate Y with i =  [(n + l ) p J .  
ELSE 

x t x + s i  

IF Y l P  
. p-Y THEN n t n  -t .p +- 

1- Y 
y-P 
Y ELSE S +-5’ ,n t i  -1,p t- 

UNTIL False 

In  this slmple algorlthm, we use a unlformly f a s t  beta generator. The slmple 
blnomlal generator alluded to should be such that Its expected tlme 1s 0 (np ). 
Note however that I t  1s not cruclal: the algorlthm works Ane even If we set t =O 
and thus bypass the slmple blnomlal generator. The algorlthm halts when n=O, 
whlch happens wlth probablllty one. 

Let us glve an lnformal outilne of the proof of the clalm that the expected 
tlme taken by the algorlthm 1s bounded by a constant tlmes log(log(n)). By the 

propertles of the beta dlstrlbutlon, Y-p 1s of the order of 4 7 , I . e .  a ( n - z )  I t  1s 

approxlmately dp ( I - p  )/n . Slnce Y ltself 1s close to p , we see that the new 
values for (n ,p ) are elther about (n (1-p ) ,dp  / ( ( l - p  )n )) or about 
(np d ( 1 - p ) / ( p n ) ) .  The new product np Is thus of the order of magnltude of m. We see that np gets replaced at worst by about 6 f n  one Itera- 
tlon. In k lteratlons, we have about 

Slnce we stop when thls reaches t , our constant, the number of lteratlons should 
he of the order of magnltude of 



538 X.4.THE BINOMIAL DISTRIBUTION 

Thls argument can be formallzed, and the mathernatlcally lncllned reader 1s 
urged to do so (exerclse 4.7). Slnce the loglog functlon lncreases very slowly, the 
recurslve method can be competltlve dependlng upon the beta generator. It was 
preclsely the latter polnt, poor speed of the pre-1975 beta generators, whlch 
prompted Relles (1972) and Ahrens and Dleter (1974) to propose sllghtly dlfferent 
recurslve generators In whlch t' 1s not chosen as L(n+l)pJ ,  but rather as 
(n  +1)/2 when n 1s odd. Thls linplles that  all beta random varlates needed are 
symrnetrlc beta random varlates, whlch can 'be generated qulte emclently. 
Because n gets halved at every lteratlon, thelr algorlthm runs In 0 (log(n )) tlme. 

4.6. Symmetric binomial random variates. 
1 
2 

The purpose of thls section 1s to polnt out tha t  In the case p =- a slngle 

normal domlnatlng curve sumces In the reJectlon algorlthm, and to present and 
analyze the followlng slmple reJectlon algorlthm: 
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Rejection method for symmetric binomial random variates 

[NOTE: This generator returns a binomial ( 2 n  ,--) 1 random variate.] 

[SET-UP] 

9 c1/~2(n-'-(211.2)-'),aes +--, 1 e +2/(1+88 ) 
4 

[GENERATOR] 
REPEAT 

Generate a normal random variate N and an exponential random variate E .  
Y +aN, X+round( Y )  
T +-E + C  1 - -N2+-X2 1 

2 n 
Reject --[ I X I > n ]  
IF NOT Reject THEN 

1 Accept +[T <- X' 
6n 3 ( 1 - - ( U y 1  

n 
IF NOT Accept THEN 

X2 
Reject --[ T > 

IF NOT Reject THEN 
2 n  

b,+x X 2  
Accept --[ T >log(-)+-] 

bn n 

UNTIL NOT Reject AND Accept 

RETURN X t n  +X 

530 

The algorithm has one qulck acceptance step and one qulck rejection step 
deslgned to reduce the probability of havlng to evaluate the Anal acceptance step 
which involves computing the logarithms of two blnomial probabilities. The vall: 
dlty of the algorithm follows from the following Lemma. 
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Lemma 4.10. I 
Let bo, . . . , 6 2n  be the probablllties of a blnomlal (2n ,p  ) dlstrlbutlon. 

Then, for any a > s  , 

I where c =l/(8(a2-s2)).  Also, for all n > i  >0, I 

Proof of Lemma 4.10. 
We wlll use repeatedly the following fact: for 1 > 5 >0, 

1-x 2 s  
3(1-x2) l + x  3 

< log(-) < -2x -- , 2 s  
-2x - 

1 
2 

--x2 < log(l+x)-z < 0 .  

The flrst lnequallty follows from the fact that  log( -) 1-x 

-2(x+--s3+-z5+ 1 1 . . ). Thus, for n > i  >0, 

has series expanslon 
l + x  

3 5 
3 1-- i - 1  1 

1 ) - log( n -- i bn (n  + i  ) ! (n  -i )! j = 1 1 + L  I+- 

n ! n !  bn +i log(-) = log( 

n n 
3 1-- 
n 2 j  i i i 2  

)+ - )-(log(1+ - I-; 1-T 
n n 

i 2  
n 

= c i  +di-- . 

We have 
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Thus, 

541 

where 
1 @+TI2 u 2  

c = sup -- 
U = - Q  2a2 2s2 

Assumlng tha t  a > s  , thls supremum 1s reached for 

, c  = .I S 2  u =  
2(a% 2 )  8(a2-s 2, 

The domlnatlng curve suggested by Lemma 4.11 1s a centered normal den- 
sity wlth variance 02. The best value for a 1s that for whlch the area &&ec 1s 
mlnlmal. Settlng the  derlvatlve wlth respect to a of the logarlthm of thls expres- 
slon equal to 0 glves the equatlon 

1 
4 4 

The solutlon 1s a = I + s  = -+s +o (1). It is for thls reason that 
1 the value a=s +- was taken In the algorlthm. The correspondlng value for c 1s 

2/(1+8s ). 
4 

I 

The expected number of lteratlons 1s 6, f i a e  - - 
2 

n -00. Assumlng that 6,+i /6,1 takes tlme 1+ I i I when evaluated expllcltly, I t  
Is clear that wlthout the squeeze steps, we would have obtalned an expected tlme 
Jvhlch would grow as &- (because the z' 1s dlstrlbuted as a tlmes a normal ran- 
dom varlate). The efflclency of the squeeze steps is blghllghted In the followlng 
Lemma. 

~ ~~ 

Lemma 4.11. 
The algorithm shown above 1s uniformly fast In n when the qulck accep- 

tance step 1s used. If In addltlon a qulck reJectlon step 1s used, then the expected 
tlme due t o  the expllclt evaluatlon of 6,+i / 6 ,  1s 0 ( 1 / 6  ). I 
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Proof of Lemma 4.11. 

1s not satlsfled for Axed X=x. We have P (  1 X 1 > i + n  m ) = O  
Let p (x ) be the probablllty that the lnequallty In the qulck acceptance step 

) for 
some T >1. For I x I <1+n m, we have In vlew of I Y2-x2 I I( I x I + T ) / 2 ,  1 

x 2  x 4  
202 n n 3  

(x 2 --- 1”1) 
4 2  

p ( x )  5 P(-E+c-  +->--) 

3 -- 1 -- 
= O (n )+ I x 1 O (n-’)+x20 (n ) + x 4 0  (n-3) . 

Thus, the probablllty that a couple ( X , E )  does not satlsfy the qulck acceptance 
coiidltlon Is E ( p  (x)). Slnce E ( I x I )=O (a)=O (fi ),E ( X 2 ) = o  (n ) and 
E (X4)=0 ( n  2), we conclude that E ( p  (X) )=O (1/& ). If every tlme we 
reJected, we were to start  afresh wlth a new couple ( X , E ) ,  the expected number 
of such couples needed before haltlng would be 1+0 (1/&-). Uslng thls, I t  Is 
also clear that In the algorlthm wlthout qulck reJectlon step, the expected tlme 1s 
bounded by a constant tlmes 1+E ( 1 X I p ( X ) ) .  But 

1 -- 
J w X  M X ) )  L E ( I X  IqlxI>I+nfl])+E(IX I)Ob 2 ,  

3 -- 
+E ( X 2 ) 0  (n-’)+E ( I X I 3)0 (n 2 ) + E  ( I X I ’10 

= O(1) . 

Thls concludes the proof of the flrst statement of the Lemma. If a qulck reJectlon 
step 1s added, and q (x ) 1s the probablllty that for X = x ,  both the qulck accep- 
tance and reJectlon steps are falled, then, argulng as before, we see that for 
I x I < l - t - n m ,  

x 4  x 2  
n n 2  

q ( x )  L 3+-. 

Thus, the probablllty that both lnequalltles are vlolated 1s 

The expected tlme spent on expllcltly evaluatlng factorlals Is bounded by a con- 
s tant  tlmes I+E ( / x I q (x))=o (I/& >. 
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4.7. The negative binomial distribution. 
In sectlon X.1, we lntroduced the negatlve blnomlal dlstrlbutlon wlth param- 

eters (n  , p  ), where n >1 1s an lnteger and p E(0,i) 1s a real number as the dlstrl- 
button of the sum of n lld geometrlc random varlables. It has generatlng functlon 

( 1-( 1-p )s 1 " .  

Uslng the blnomlal theorem, and equatlng the coemclents of s '  wlth the proba- 
bllltles p i  for all i shows that the probabllltles are 

When n = l ,  we obtaln the geometrlc ( p )  dlstrlbutlon. For n=1,  X 1s dlstrl- 
buted as the number of fallures In a sequence of lndependent experlments, each 
havlng success probablllty p , before the n -th success 1s encountered. From the 
propertles of the geometrlc dlstrlbutlon, we see that the negatlve blnomlal dlstrl- - 

butlpn has mean (l-' and varlance n (1-P 1 
P P 2  

Generatlon by summlng n lld geometrlc p random varlates ylelds at best an 
algorlthm taklng expected tlme proportlonal to n . The sltuatlon 1s even worse If 
we employ Example 1.4, In whlch we showed that I t  sufflces to sum N lld loga- 
rlthmlc serles (1-p) random varlates where N ltself 1s Polsson (A) and 
A = n log(-). Here, at best, the  expected tlme grows as E ( N )  = n log(-). 1 1 

P P 
The property that one can use to construct a unlformly f a s t  generator 1s 

obtalned In Example 1.5: a negatlve blnomlal random varlate can be generated as 
a Polsson ( Y )  random variate where Y In turn Is a gamma (n  ,-) random 

varlate. .The same can be achleved by deslgnlng a unlformly fast rejectlon algo- 
rlthm from scratch. 

1-P 
P 

4.8. Exercises. 
1. Binomial random variates from Poisson random variates. Thls exer- 

clse 1s motlvated by an ldea flrst proposed by Flshman (1979), namely to 
generate blnomlal random varlates by reJectlon from Polsson random varl- 
ates. Let 6i be the probablllty that a blnomlal (n  , p  ) random varlable takes 
the value if and let p i  be the probablllty that a Polsson ((n + l )p  ) random 
varlable takes the value i . 
A. Prove the cruclal lnequallty sup 6;  / p i  5 e 1'(12(n+1))/G, valld for 

all n and p .  Slnce we can wlthout loss of generallty assume tha t  
1 

p I-, thls lmplles that we have a unlformly fast blnomlal generator If 
2 

2 

I 
I 

-- 
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we have a unlforrnly fast Polsson generator, and If we can handle the 
evaluatlon of bi /pi In unlformly bounded tlme. To prove the Inequality, 
start  wlth lnequalltles for the factorlal glven In Lemma 1.1, wrlte i 
(n + l )p  +a: , note that x _<(n +l)(l-p ), and use the lnequality 
1+u > e  - '"'+'), valld for all u >-1. 

B. Glve the detalls of the rejection algorlthm, In whlch factorials are 
squeezed by uslng the zero-term and one-term bounds of Lemma 1.1, 
and are expllcltly evaluated as products when the squeezlng falls. 

C. Prove that the algorlthm glven In B 1s unlformly fas t  oves all 
12 - > l , p  <1/2 - If Polsson random varlates are generated In unlforrnly 
bounded expected tlme (not worst case tlme). 

Bounds for the mode of the binomial distribution. Conslder a blno- 
mlal (n , p  ) dlstrlbutlon In whlch np 1s Integer. Then the mode rn 1s at np , 
and 

2. 

~~ +- 
2 e 12(n 1-11 n2p (1-p )+n +1 < 

J2nnp (1-P 1 - J ~ ~ n p ( 1 - p )  
[;) P r n  (1-P 5 

Prove thls lnequallty by uslng the Stlrllng-Whlttaker-Watson lnequallty of 
Lemma 1.1, and the lnequalltles e ' '(isu)<l+u < e  I, valld for u 2 0  (Dev- 
roye and Naderlsamanl, 1980). 

Add the squeeze steps suggested In the text t o  the normal-exponentlal algo- 
rlthm, and prove that wlth thls addltlon the expected complexlty of the 

- - 

3. 

algorlthm 1s unlformly bounded oves all n 21, O < p  <', np integer (Dev- 

roye and Naderlsamanl, 1980). 
- 2  

4. A contlnuatlon of the prevlous exerclse. Show that for Axed p <A,  the 

expected tlme spent on the expllclt evaluatlon of b n p + i / b n p  1s 
0(1/-) as n 4 w .  (Thls lmplles that the squeeze steps of Lemma 
4.7 are very powerful indeed.) 

5. Repeat exerclse 3 but use squeeze steps based upon bounds for the log 
gamma functlon glven In Lemma 1.1. 

6. The. hypergeometric distribution. Suppose an urn contalns N balls, of 
whlch kf are whlte and N-M are black. If a sample of 72 balls 1s drawn at 
random wlthout replacement from the urn, then the number ( X )  of whlte 
balls drawn 1s hypergeometrlcally dlstrlbuted wlth parameters n ,M ,N. We 
have 

2 

P ( X = i )  = (max(0,n -N +M)<i  Lmin(n  ,M)) . 
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7. 

Note that the same dlstrlbutlon 1s obtalned when n and M are lnter- 
changed. Note also that If we had sampled wlth replacement, we would have 
obtalned the blnomlal ( n  ,-) dlstrlbutlon. 

A. 

M 
N 

Show that If a hypergeometrlc random varlate 1s generated by rejectlon 
from the blnomlal (n  ,-) dlstrlbutlon, then we can take (I--)-" as 
reJectlon constant. Note that thls tends to 1 as n2 /N-+o .  

that the varlance a2 1s 
N-n  M M - n-(1--), and that the dlstrlbutlon 1s unlmodal wlth a mode at 

r i : l ) N E l ,  glve the detalls for the unlversal rejectlon algorlthm of 

sectlon X.1. Comment on the expected tlme complexlty, 1.e. on the max- 
lmal value for  OB)^'^ where B 1s an upper bound for the value of the 
dlstrlbutlon at the mode. 
Flnd a functlon g (x ) conslstlng of a constant center plece and two 
exponentlal talk,  havlng the propertles that the area under the functlon 
1s uiilformly bounded, and that the functlon has the property that for 
every t' and all x E[i--,t'+-), g ( x ) Z P  ( X = i ) .  Glve the correspond- 

lng reJectlon algorlthm (hlnt: recall the unlversal reJectlon algorlthm of 
sectlon X.l) (Kachltvlchyanukul, 1982; Kachltvlchyanukul and 
Schmelser, 1985). 

Prove that for all constant t >0, there exlsts a constant c only dependlng 
upon t such that the expected tlme needed by the recurslve blnomlal algo- 
rlthm glven In the text 1s not larger than C log(log(n +lo)) for all n and p . 
The term "lo" 1s added to  make sure that the loglog functlon 1s always 
strlctly posltlve. Show also that for a Axed p E(0,l) and a Axed t >0, the 
expected tlme of the algorlthm grows as a constant tlmes c log(log(n)) as 
n ' 0 0 ,  where c depends upon p and t only. If tlme 1s equated 'wlth the 
number of beta random varlates needed before haltlng, determlne c . 

M n 
N N 

M B. Uslng the facts that the mean 1s n- " 

C. 

1 1 
2 2 

5. THE LOGARITHMIC SERIES DISTRIBUTION. 

5 .l. Introduction. 

Parameter p €((),I) If 
A random varlable X has the logarithmic series distribution wlth 

P ( X = i )  = p i  = - a p i  (i =1,2, ...) , 
2 
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where u =-l/log(l-p ) 1s a normallzatlon constant. In the tall, the probabllltles 
decrease exponentlally. Its generatlng functlon 1s 

From thls, one can easlly And the mean up / ( l -p)  and second moment 
ap 12. 

5.2. Generators. 
The rnaterlal In thls sectlon 1s based upon the fundamental work of Kemp 

(1981) on logarlthrnlc serles dlstrlbutlons. The problems wlth the logarlthmlc 
serles dlstrlbutlon are best hlghllghted by notlng that the obvlous lnverslon and 
rejection methods are not unlformly fast. 

If we were t o  use sequentlal search In the lnverslon method, uslng the 
recurrence relatlon 

1 
p i  = (1-k)ppi-l ( 2  22) 9 

the lnverslon method could be lmplemented as follows: 

Inversion by sequential search 

[SET-UP] 
Sum +-p llog(1-p ) 

[GENERATOR] 
Generate a uniform [O,l]  random variate U. 

X t l  
WHILE U > Sum DO 

U-U-  Sum 
X+-X+l 

RETURN x 

The expected number of cornparlsons requlred 1s equal t o  the mean of the 
dlstrlbutlon, up /(l-p ), and thls quantlty lncreases rnonotonlcally from 1 ( p  io)  to 
oo ( p  too). For p C0.95, I t  1s dlmcult to  beat thls slmple algorlthm In terms of 
expected tlme. Interestlngly, If reJectlon from the geometrlc dlstrlbutlon 
(1-p ) p  * (i 21) 1s used, the expected number of geometrlc random varlates 
requlred 1s again equal to  the same mean. But because the geometrlc random 



X.5.THE LOGARITHMIC SERIES DISTRIBUTION 647 

varlates themselves are rather costly, the sequentlal search method 1s to be pre- 
ferred at thls stage. 

We can obtaln a one-llne generator based upon the following dlstrlbutlonal 
property: 

Theorem 5.1. (Kendall (1948), Kemp (1981)) 
Let U , V  be lld unlform [OJ] random varlables. Then 

has the logarlthmlc serles dlstrlbutlon wlth parameter p . 

Proof of Theorem 5.1. 
The logarlthmlc serles dlstrlbutlon 1s the dlstrlbutlon of a geometrlc (1-Y) 

random varlate X (1.e. P ( X = i  I Y)=Y(l-Y)'-' (i >l)),  provlded that Y has 
dlstrlbutlon functlon 

Thls can be seen from the lntegral 
P 

s (1-Y ) log(l-ps S (1-ys )( y -l)log(l-p ) dy = log( 1-p ) 
, 

and from the fact that the generatlng functlon of a geometrlc (1-Y) random 
varlate 1s '(l-'). A random varlable Y wlth dlstrlbutlon functlon $' can be 
obtalned by the lnverslon method as Y t l - (1-p )' where U 1s a unlform [0,1) 
random varlable. 

(1-Ys ) 

Kemp (1981) has suggested two clever trlcks for acceleratlng the algorlthm 
suggested by Theorem 5.1. Flrst, when V > p  , the value X t l  1s dellvered 
because 

v > p >l-(l-p)U . 
For small p , the savlngs thus obtalned are enormous. We summarlze: 
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Kemp's generator with acceleration 

[SET-UP] 
r +-log( 1-p ) 

[GENERATOR] 
X+l  
Generate a uniform [0,1] random variate V. 
IF V > P  

THEN RETURN X 
ELSE 

Generate a uniform [O,i] random variate U 

R E T U R N X ' ~  I+ log( V )  
log(i-e I 

Kemp's second trlck lnvolves taklng care of the values 1 and 2 separately. He 
notes that  X=1 If and only If V 2 1 - e  and tha t  XE{1,2} If and only If 
V z(1-e r u ) 2  where r 1s as In the algorlthm shown above. The algorlthm lncor- 
poratlng thls Is glven below. 

Kemp's second accelerated generator 

[SET-UP] 
r +log( 1-p ) 

[GENERATOR] 
X t l  
Generate a uniform [O,l] random variate v. 
IF V Y P  

THEN RETURN x 
ELSE 

Generate a uniform [0,1] random variate U . 
q t l - e  

CASE 
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5.3. Exercises. 
1. The followlng logarlthmlc serles generator Is based upon reJectlon from the 

geoinetrlc dlstrlbutlon: 

Logarithmic series generator based upon rejection 

REPEAT 
Generate a uniform [0,1] random variate u and an exponential random 
variate E .  

r .. 

UNTIL UX < 1 
RETURN x 

Show that the expected number of exponentlal random varlates needed Is 
equal to the mean of the logarlthmlc series dlstrlbutlon, 1.e. 
-p /((l-p )log(l-p )). Show furthermore that thls number lncreases monotonl- 
cally to 00 as p t i .  

2. The generalized logarithmic series distribution. Pate1 (1981) has pro- 
posed the followlng generallzatlon of the logarlthmlc serles dlstrlbutlon wlth 
parameter p : 

Here 6 21 1s a new parameter satlsfylng the lnequallty 
b -6p o<p6 (- ) < l .  6 -1 

Suggest one or more emclent generators for thls two-parameter family. 
Conslder the followlng dlscrete dlstrlbutlon: 3. 

where the integer k can be consldered as a parameter, and c 1s a normallza- 
tlon constant. Show that the followlng bounded workspace algorlthm gen- 
erates random varlates wlth thls dlstrlbutlon: 
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REPEAT 
Generate iid uniform [0,1] random variates U , v. 
Y '(k + 1 ) U  

X+ IYJ 
UNTIL 2 m < Y  
RETURN x 

Analyze the expected number of lteratlons as a function of IC. Suggest at 
least one effectlve Improvement. 

6. THE Z I P F  DISTRIBUTION. 

6.1. A simple generator. 
In llngulstlcs and soclal sclences, the Zipf distribution 1s frequently used to 

model certaln quantltles. TBls dlstrlbutlon has one parameter a >1, and 1s 
deflned by the probabllltles 

where 

1s the Rlemann zeta function. Slmple expresslons for the zeta functlon are known 
In speclal cases. For example, when a Is Integer, then 

2 2 a - l + a  

d 2 a )  = Ba ( 2 a  )! 

where Ba Is the a - t h  Bernoulll number (Tltchmarsh, 1951, p. 20).  Thus, for 
a =2,4,6 we obtaln the probablllty vectors {6/(7ri )2},{90/(nt '  )'} and {945/(7ri ) 6 }  

respectively. 
To generate a random Zlpf varlate in unlformly bounded expected tlme, we 

propose the reJectlon method. .Consider for example the dlstrlbutlon of the ran- 
dom varlable Y t  \U-l/(a-l)] where U 1s unlformly dlstrlbuted on [0,1]: 

1 
(i +1)@-l a 

((l+-)a-l-l) (i 21) . 1 P ( Y = i )  = 
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Thls dlstrlbutlon 1s a good candldate because the probabllltles vary as ( a  -l)z-a 
as i+m. For the sake of slmpllclty, let us deflne q i = P ( Y = z ) .  Flrst, we note 
that  the reJectlon constant c 1s 

Hence, the followlng reJectlon algorlthm can be used: 

A Zipf generator based upon rejection 

[SET-UP] I 

b 4-2'-' 
[GENERATOR] 
REPEAT 

Generate lid uniform [ O , l ]  random variates .ut v. 

0-1 

T +(l+y) 
T-1 T UNTIL VX-5- 
b - 1  b 

RETURN x 

Lemma 6.1. 

followlng properties: 
The rejectlon constant c In the reJectlon algorlthm shown above satlsfles the 

12 A. SUP c 5 - . 
a 2 2  n2 

B. SUP c 5 - 
1 < a  5 2  log(2) 

2 

C. llm c = 1 
a -co 
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Proof of Lemma 6.1. 
Part A follows from 

Part B follows from 
0 4  -1 
Y ( a  -1)2a -1 - 

00 24 -1-1 
c L  

(2a -l-i)J da: 
1 
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Part C follows by observlng that S(a)+1 as a too. Flnally, part D uses the fact 
as a 11 (In fact, S(a)---tr, Euler's constant (Whlttaker that  I(a ) - - 

and Watson, 1927, p. 271). 

1 1 
a -1 a -1 

6.2. The Planck distribution. 
The Planck dlstrlbutlon 1s a two-parameter dlstrlbutlon wlth denslty 

Here a > O  1s a shape parameter and 6 >O 1s a scale parameter (Johnson and 
Kotz, 1970). The denslty f can be wrltten as a mlxture: 

In vlew of thls, the followlng algorlthm can be used to generate a random varlate 
wlth the Planck dlstrlbutlon. 

Planck random variate generator 

Generate a gamma ( a  + 1) random variate G . 
Generate a Zipf ( a  4-1) random variate 2 .  

G RETURN X+- b Z '  
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6.3. The Yule distribution. 
Slmon (1954,1980) has suggested the Yule dlstrlbutlon as a better approxl- 

matlon of word frequencles than the Zlpf dlstrlbutlon. He denned the dlscrete dls- 
trlbutlon by the probabllltles 

1 

p i  = c ( a ) j ( l - u )  i -1  u a - i  du ( i > l ) ,  
0 

where c (a ) 1s a normallzatlon constant and a >1 1s a parameter. Uslng the fact 
that  thls 1s a mlxture of the geometrlc dlstrlbutlon wlth parameter e-‘/(‘‘-’) 
where Y 1s exponentlally dlstrlbuted, we conclude that a random varlate x wlth 
the Yule dlstrlbutlon can be generated as 

r 

where E ,E* are lld exponentlal random varlates. 

6.4. Exercises. 
1. The digamma and trigamma distributions. Slbuya (1979) lntroduced 

two dlstrlbutlons, termed the dlgamma and trlgamma dlstrlbutlons. The 
dlgamma dlstrlbutlon has two parameters, a ,c satlsmlng c >O,a >-1, 
a +c >O. I t  1s defined by 

(i 21). 
1 a ( a  +1) . . (a +i-1) 

+(a +c )-+(c ) i (a +c  ) (a  +c +1) . . (a +c +i-1) 
Pj = 

Here ?) 1s the derlvatlve of the log gamma functlon, 1.e. $=I”/??. When we 
let a 10, the trlgamma dlstrlbutlon wlth parameter c > O  1s obtalned: 

( i  2 1 ) .  
1 (i -l)! 

p i  = rn ic (c +1) . * . (c +i-1) 

For c =1 thls 1s a zeta dlstrlbutlon. Dlscuss random varlate generatlon for 
thls famlly of dlstrlbutlons, and provlde a uniformly fas t  reJectlon algorlthm. 


