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Abstract

The programming language, Prolog, was born of a project aimed not at producing a
programming language but at processing natural languages; in this case, French.  The
project gave rise to a preliminary version of Prolog at the end of 1971 and a more
definitive version at the end of 1972.  This article gives the history of this project and
describes in detail the preliminary and then the final versions of Prolog.  The authors also
felt it appropriate to describe the Q-systems since it was a language which played a
prominent part in Prolog’s genesis.
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Introduction

As is well known, the name “Prolog” was invented in Marseilles in 1972.   It was Philippe
Roussel chose the name as an abbreviation for “PROgrammation en LOGique” to refer to the
software tool designed to implement a man-machine communication system in natural
language.  It can be said that Prolog was the offspring of a successful marriage between
natural language processing and automated theorem-proving.  The idea of using a natural
language like French to reason and communicate directly with a computer seemed like a crazy
idea, yet this was the basis of the project set up by Alain Colmerauer in the summer of ‘70.
Alain had some experience in the computer processing of natural languages and wanted to
expand his research.

We have now presented the two co-authors of this article – Alain Colmerauer and Philippe
Roussel – but clearly, as in any project of this kind, many other people were involved.  To
remain objective in our account of how Prolog – a language which is now already twenty years
old – came to be, we took a second look at all the documents still in our possession, and
played the part of historians.  To begin with, we followed the chronology in order to present
the facts and describe the participants over the time from the summer of ‘70 until the end of
‘76.  This constitutes the first part of the article.  The other parts are of a more technical
nature.  They are devoted to three programming languages which rapidly succeeded one
another:  Q-systems, conceived for machine translation; the preliminary version of Prolog,
created at the same time as its application; and the definitive version of Prolog, created
independently of any application.

This paper is not the first to be written about the history of Prolog.  We must mention the
paper written by Jacques Cohen [1988], which directly concerns Prolog, and the paper by
Robert Kowalski [1988] about the birth of “Logic Programming” as a discipline.  Also worthy
of attention are the history of automated theorem-proving as described by Donald Loveland
[1984] and the prior existence of the Absys language, a possible competitor with Prolog in the
opinion of E. Elcock [1988].

Part I. The history

At the beginning of July ‘70, Robert Pasero and Philippe arrived in Montreal. They had been
invited by Alain who was then Assistant Professor of Computer Science at the University of
Montreal and was leading the automatic translation project, TAUM (Traduction Automatique
de l'Université de Montréal).  All were at turning points in their careers. Robert and Philippe
were then 25 years old and had just been awarded teaching positions in Computer Science at
the new Luminy Science Faculty.  Alain was 29 years old and, after a 3-year stay in Canada,
was soon to return  to France.

During their two-month stay in Montreal, Robert and Philippe familiarized themselves with
the computer processing of natural languages.  They wrote several non-deterministic context-
free analyzers in Algol 60 and a French paraphrase generator using Q-systems, the
programming language which Alain had developed for the translation project (see Part II).
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At the same time, Jean Trudel, a Canadian researcher and a doctoral student of Alain's, had
chosen to work on automated theorem-proving. His point of reference was Alan Robinson’s
article [1965] on the resolution principle.  It was a difficult article to understand in 1970 but
Jean had the advantage of having taken a course in logic given by Martin Davis in New York.
He had already developed a complete theorem prover in which unification was written in an
up-to-date programming style: all the computations consisted in modifying pointers.

1971: The first steps

At the beginning of 1971, everyone was back in Marseilles.  Alain had obtained a teaching
position in Computer Science (maître de conférence) and Jean Trudel had been able to
accompany him, thanks to a two-year grant from Hydro-Quebec.  The aim of the project was
to make deductions based on texts written in French.  The work was divided up as follows:
Jean Trudel and Philippe worked on the deduction part, Robert Pasero and Alain on the
natural language part.

We had access to a machine at the Marseilles university computing center: an IBM 360-44
installed in our department, offering approximately 900Kb of internal memory and equipped
with an operating system without virtual memory. By means of an interactive monitor
developed by Jean Trudel and by using the machine at night to take advantage of all the
available memory, we were able to work in conditions which, in France at that time, were
exceptionally good: practically 1Mb of memory to execute the programs and an interactive
mode for communications between users and programs via the operator’s console.

Jean Trudel improved his prover and then, beginning in May, Philippe produced a whole
series of provers written in Algol-W. A primitive natural-language communication system was
then developed by the entire team [Colmerauer, 71]. The interfaces between the logical
formulæ and French consisted of 50 Q-system rules for the input and 17 Q-system rules for the
output.  The reasoning part was implemented through one of Philippe’s provers.  It was thus
possible to have the following conversation with the computer:

User
Cats kill mice.
Tom is a cat who does not like mice who eat cheese.
Jerry is a mouse who eats cheese.
Max is not a mouse.
What does Tom do?
Computer
Tom does not like mice who eat cheese.
Tom kills mice.
User
Who is a cat?
Computer
Tom.
User
What does Jerry eat?
Computer



Cheese.
User
Who does not like mice who eat cheese?
Computer
Tom.
User
What does Tom eat?
Computer
What cats who do not like mice who eat cheese eat.

The logical formulæ created made use of: (i) constants representing elements,

Tom, Jerry, Max, Cheese;

(ii) constants representing sets,

Cats, Mice, MiceWhoEatCheese, CatsWhoDoNotLikeMiceWhoEatCheese;

(iii) constants representing binary relations between sets,

Kill, DoesNotLike, Eat;

(iv) a functional symbol of arity 1 and two relational symbols of arity 2 and 3,

The, Subset, True.

A term of the form The(a) was taken to represent the set consisting only of the element a.  A
formula of the form Subset(x,y) expressed the inclusion of set x in set y and a formula of the
form True(r,x,y) expressed that the sets x and y were in the relation r.  To the clauses that
encode the sentences, Jean Trudel added four clauses relating the three symbols The,
Subset, True:

(∀ x)[Subset(x,x)],
(∀ x)(∀ y)(∀ z)[Subset(x,y)�Subset(y,z)  Subset(x,z)],
(∀ a)(∀ b)[Subset(The(a),The(b))  Subset(The(b),The(a))],
(∀ x)(∀ y)(∀ r)(∀ x')(∀ y')
[True(r,x,y)�Subset(x,x')�Subset(y,y') � True(r,x',y')].

The main problem was to avoid untimely production of inferences due to the transitivity and
reflexivity axioms of the inclusion relation Subset.

While continuing his research on automated theorem-proving, Jean Trudel came across a
very interesting method: SL-resolution [Kowalski 1971].  He persuaded us to invite one of its
inventors, Robert Kowalski, who came to visit us for a week in June 1971.  It was an
unforgettable encounter.  For the first time,  we talked to a specialist in automated theorem-
proving who was able to explain the resolution principle, its variants and refinements.  As for
Robert Kowalski, he met people who were deeply interested in his research and who were
determined to make use of it in natural language processing.
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While attending an IJCAI convention in September ‘71 with Jean Trudel, we met Robert
Kowalski again and heard a lecture by Terry Winograd on natural language processing.  The
fact that he did not use a unified formalism left us puzzled.  It was at this time that we learned
of the existence of Carl Hewitt’s programming language, Planner [Hewitt, 1969].  The lack of
formalization of this language, our ignorance of Lisp and, above all, the fact that we were
absolutely devoted to logic meant that this work had little influence on our later research.

1972: The application that created Prolog

The year 1972 was the most fruitful one.  First of all, in February, the group obtained a grant
of 122,000 FF (at that time about $20,000) for a period of 18 months from the Institut de
Recherche d'Informatique et d'Automatique, a computer research institution affiliated with the
French Ministry of Industry.  This contract made it possible for us to purchase a teletype
terminal (30 characters per second) and to connect it to the IBM 360-67 (equipped with the
marvelous operating system CP-CMS, which managed virtual machines) at the University of
Grenoble using a dedicated 300 baud link.  For the next three years, this was to be by far the
most convenient computing system available to the team; everyone used it, including the many
researchers who visited us.  It took us several years to pay Grenoble back the machine-hour
debt thus accumulated.  Finally, the contract also enabled us to hire a secretary and a
researcher, Henry Kanoui, a post-graduate student who would work on the French
morphology. At his end, Kowalski obtained funding from NATO, which financed numerous
exchanges between Edinburgh and Marseilles.

Of all the resolution systems implemented by Philippe, the SL-resolution of R. Kowalski
and D. Kuehner seemed to be the most interesting.  Its stack type operating mode was similar
to the management of procedure calls in a standard programming language and was thus
particularly well-suited to processing non-determinism by backtracking à la Robert Floyd
[1967] rather than by copying and saving the resolvents.  SL-resolution then became the focus
of Philippe's thesis on the processing of formal equality in automated theorem-proving
[Roussel, 1972].  Formal equality is less expressive than standard equality but it can be
processed more efficiently.  Philippe’s thesis would lead to the introduction of the dif
predicate (for ?) into the very first version of Prolog.

We again invited Robert Kowalski but this time for a longer period; April and May.
Together, we then all had more computational knowledge of automated theorem-proving.  We
knew how to axiomatize small problems (addition of integers, list concatenation, list reversal,
etc.) so that an SL-resolution prover computed the result efficiently.  We were not, however,
aware of the Horn clause paradigm; moreover Alain did not yet see how to do without Q-
systems as far as natural language analysis was concerned.

After the departure of Robert, Alain ultimately found a way of developing powerful
analyzers.  He associated a binary predicate N(x,y) with each non-terminal symbol N of the
grammar, signifying that x and y are terminal strings for which the string u defined by x = uy
exists and can be derived from N.  By representing x and y by lists, each grammar rule can then
be encoded by a clause having exactly the same number of literals as occurrences of non-



terminal symbols.  It was thus possible to do without list concatenation.  (This technique is
now known as the difference lists technique).  Alain also introduced additional parameters into
each non-terminal to propagate and compute information.   As in Q-systems, the analyzer not
only verified that the sentence is correct but also extracted a formula representing the
information that it contains.  Nothing now stood in the way of the creation of a man-machine
communication system entirely in “logic”.

A draconian decision was made: at the cost of incompleteness, we chose linear resolution
with unification only between the heads of clauses. Without knowing it, we had discovered the
strategy which is complete when only Horn clauses are used.  Robert Kowalski [1973]
demonstrated this point later and together with Maarten van Emden he would go on to define
the modern fixed point semantics of Horn clause programming [Kowalski, 1974].

During the fall of 1972, the first Prolog system was implemented by Philippe in Niklaus
Wirt’s language Algol-W;  in parallel, Alain and Robert Pasero created the eagerly awaited
man-machine communication system in French [Colmerauer, 1972a].  There was constant
interaction between Philippe, who was implementing Prolog, and Alain and Robert Pasero,
who programmed in a language which was being created step by step. This preliminary version
of Prolog is described in detail in Part III of this paper.  It was also at this time that the
language received its definitive name following a suggestion from Philippe's wife based on
keywords which had been given to her.

The man-machine communication system was the first large Prolog program ever to be
written [Colmerauer, 1972].  It had 610 clauses: Alain wrote 334 of them, mainly the analysis
part; Robert Pasero 162, the purely deductive part, and Henry Kanoui wrote a French
morphology in 104 clauses, which makes possible the link between the singular and plural of
all common nouns and all verbs, even irregular ones, in the third person singular present tense.
Here is an example of a text submitted to the man-machine communication system in 1972:

Every psychiatrist is a person.
Every person he analyzes is sick.
Jacques is a psychiatrist in Marseille.
Is Jacques a person?
Where is Jacques?
Is Jacques sick?

and here are the answers obtained for the three questions at the end:

Yes.
In Marseille.
I don't know.

The original text followed by the three answers was in fact as follows:

TOUT PSYCHIATRE EST UNE PERSONNE.
CHAQUE PERSONNE QU'IL ANALYSE, EST MALADE.
*JACQUES EST UN PSYCHIATRE A *MARSEILLE.
EST-CE QUE *JACQUES EST UNE PERSONNE?
OU EST *JACQUES?
EST-CE QUE *JACQUES EST MALADE?
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OUI. A MARSEILLE. JE NE SAIS PAS.

All the inferences were made from pronouns (he, she, they, etc.), articles (the, a, every, etc.),
subjects and complement structures with or without prepositions (from, to, etc.).  In fact, the
system knew only about pronouns, articles and prepositions (the vocabulary was encoded by
164 clauses), it recognized proper nouns from the mandatory asterisk which had to precede
them as well as the verbs and common nouns on the basis of the 104 clauses for French
morphology.

In November, together with Robert Pasero, we undertook an extensive tour of the
American research laboratories after a visit in Edinburgh.  We took with us a preliminary
report on our natural language communication system and our very first Prolog. We left copies
of the report almost everywhere.  Jacques Cohen welcomed us in Boston and introduced us at
MIT, where we received a warm welcome and talked with Minsky, Charniak, Hewitt and
Winograd.  We also visited Woods at BBN.  We then went to Stanford, visited the SRI and
John McCarthy's AI laboratory, met Cordell Green, presented our work to a very critical J.
Feldman and spent Thanksgiving at Robert Floyd's home.

1973: The final Prolog

At the beginning of the year or, to be exact, in April, our group attained official status.  The
CNRS recognized us as an “associated research team” entitled “Man-machine dialogue in
natural language” and provided financial support in the amount of 39,000 FF (about $6,500)
for the first year.  This sum should be compared to the 316,880 FF (about $50,000) we
received in October from IRIA to renew the contract for “man-machine communication in
natural language with automated deduction” for a period of two and a half years.

Users of the preliminary version of Prolog at the laboratory had now done sufficient
programming for their experience to serve as the basis for a second version of Prolog, a
version firmly oriented toward a programming language and not just a kind of automated
deductive system. Besides the communication system in French in 1972, two other
applications had been developed using this initial version of Prolog: a symbolic computation
system [Bergman, 1973a, 1973b; Kanoui 1973a] and a general problem-solving system called
Sugiton [Joubert, 1974].  Also, Robert Pasero continued to use it for his work on French
semantics, leading to the successful completion of his thesis in May [Pasero, 1973].

Between February and April 1973, at the invitation of Robert Kowalski, Philippe visited the
School of Artificial Intelligence at the University of Edinburgh, which was within the
Department of Computational Logic directed by Bernard Meltzer.  Besides the many
discussions with the latter and with David Warren, Philippe also met Roger Boyer and Jay
Moore.  They had constructed an implementation of resolution using an extremely ingenious
method based on a structure-sharing technique to represent the logical formulæ generated
during a deduction.  The result of this visit and the laboratory’s need to acquire a true
programming language prompted our decision to lay the foundations for a second Prolog.



In May and June 1973, we laid out the main lines of the language, in particular the choice of
syntax, basic primitives and the interpreter’s computing methods, all of which tended toward a
simplification of the initial version.  From June to the end of the year, Gérard Battani,
Henry Méloni and René Bazzoli, postgraduate students at the time, wrote the interpreter in
Fortran and its supervisor in Prolog.

As the reader will see from the detailed description of this new Prolog in Part IV of this
paper, all the new basic features of current Prologs were introduced.   We observe in passing
that this was also the time when the “occur check” disappeared as it was found to be too
costly.

1974 and 1975: The distribution of Prolog

The interactive version of Prolog which operated at Grenoble using teletype was in great
demand.  David Warren, who stayed with us from January to March, used it to write his plan
generation system, Warplan [Warren 1974].  He notes:

“The present system is implemented partly in Fortran, partly in Prolog itself and,
running on an IBM 360-67, achieves roughly 200 unifications per second.”

Henry Kanoui and Marc Bergman used it to develop a symbolic manipulation system of quite
some size called Sycophante [Bergman, 1975; Kanoui 1976].  Gérard Battani and Henry
Meloni used it to develop a speech recognition system enabling questions to be asked of the
IBM operating system CP-CMS at Grenoble [Battani, 1975b; Meloni, 1975].  The interface
between the acoustic signal and the sequence of phonemes it represented was borrowed from
the CNET at Lannion and was obviously not written in Prolog.

Early in 1975, Alain Colmerauer had completely rewritten the supervisor keeping the infix
operator declarations in Prolog but adding a compiler of the so-called “metamorphosis”
grammars.  This time, in contrast to René Bazzoli, he used a top-down analyzer to read the
Prolog rules.  This was a good exercise in meta-programming. David Warren later included
grammar rules of this sort in his compiled version of Prolog [Warren, 1977] and together with
Fernando Pereira rechristened a simplified variant of metamorphosis grammars with the name,
“definite clause grammars” [Pereira, 1980].  Metamorphosis grammars enabled parameterized
grammar rules to be written directly as they were in Q-systems.  The supervisor compiled
these rules into efficient Prolog clauses by adding two additional parameters.  To prove the
efficiency and expressiveness of the metamorphosis grammars, Alain wrote a small model
compiler from an Algol-style language to a fictitious machine language and a complete man-
machine dialogue system in French with automated deductions.  All this work was published
[Colmerauer, 1975], along with the theoretical foundations of the metamorphosis grammars.

Gérard Battani and Henry Meloni were kept very busy with the distribution of Prolog.
They sent it to Budapest, Warsaw, Toronto, Waterloo (Canada) and traveled to Edinburgh to
assist David Warren in installing it on a PDP 10.  A former student, Hélène Le Gloan, installed
it at the University of Montreal. Michel Van Caneghem did the same at the IRIA in Paris
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before coming to work with us.  Finally,  Maurice Bruynooghe took Prolog to Leuven
(Belgium) after a three-month stay in Marseilles (October through December 1975).

 Indeed, as David Warren has pointed out, Prolog spread as much, or more, by people
becoming interested and taking away copies either directly from Marseilles or from
intermediaries such as Edinburgh. Thus, Prolog was not really distributed; rather it “escaped”
and “multiplied”.

During 1975, the whole team carried out the porting of the interpreter onto a 16-bit mini-
computer: the T1600 from the French company, Télémécanique.  The machine only had 64K
bytes and so a virtual memory management system had to be specially written.  Pierre Basso
undertook this task and also won the contest for the shortest instruction sequence that
performs an addressing on 32 bits while also testing the page default.  Each laboratory member
then received two pages of Fortran to translate into machine language.  The translated
fragments of program were reassembled and it worked!  After 5 years, we at last had our very
own machine and, what is more, our cherished Prolog ran; slowly, but it ran all the same.

Part II. A forerunner of Prolog, the Q-systems

The history of the birth of Prolog thus comes to a halt at the end of 1975.  We now turn to
more technical aspects and, first of all, describe the Q-systems, the result of a first gamble: to
develop a very high-level programming language, even if the execution times it entailed might
seem bewildering [Colmerauer, 1970b]. That gamble, and the experience acquired in
implementing the Q-systems was determinative for the second gamble:  Prolog.

One-way unification

A Q-system consists of a set of rewriting rules dealing with sequences of complex symbols
separated by the sign +.  Each rule is of the form

e1 + e2 + .... + em →  f1 + f2 + .... + fn

and means: in the sequence of trees we are manipulating, any sub-sequence of the form
e1 + e2 + .... + em can be replaced by the sub-sequence f1 + f2 + .... + fn.  The ei’s and the fi’s
are parenthesized expressions representing trees, with a strong resemblance to present Prolog
terms but using three types of variables. Depending on whether the variable starts with a letter
in the set {A,B,C,D,E,F}, {I,J,K,L,M,N} or {U,V,W,X,Y,Z} it denotes either a label, a tree or a
(possibly empty) sequence of trees separated by commas.  For example, the rule

P + A*(X*,I*,Y*) →  I* + A*(X*,Y*)

(variables are followed by an asterisk) applied to the sequence

P + Q(R,S,T) + P



produces three possible sequences

R + Q(S,T) + P,
S + Q(R,T) + P,
T + Q(R,S) + P.

The concept of unification was therefore already present but it was one-way only; the variables
appeared in the rules but never in the sequence of trees which was being transformed.
However, unification took account of the associativity of the concatenation and, as in the
above example, could produce several results.

Rule application strategy

This relates to the unification part. Concerning the rule application strategy, Alain Colmerauer
[1970b] wrote:

“It is difficult to use a computer to analyze a sentence.  The main problem is
combinatorial in nature: taken separately, each group of elements in the sentence
can be combined in different ways with other groups to form new groups which
can in turn be combined again and so on.  Usually, there is only one correct way of
grouping all the elements but to discover it, all the possible groupings must be
tried.  To describe this multitude of groupings in an economical way, I use an
oriented graph in which each arrow is labeled by a parenthesized expression
representing a tree.  A Q-system is nothing more than a set of rules allowing such a
graph to be transformed into another graph.  This information may correspond to
an analysis, to a sentence synthesis or to a formal manipulation of this type.”

For example the sequence

A + A + B + B + C + C

is represented by the graph

A A B B C C

and the application of the 4 rules

A + B + C →  S
A + S + X + C →  S
X + C →  C + X
B + B →  B + X

produces the graph
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A A B B C C

B X

C X

S X

S

C

One retains all the paths that lead from the entry point to the end point and do not contain any
arrows used in the production of other arrows.  One thus retains the unique arrow

S

i.e. the sequence reduced to the single symbol S.

This procedure is relatively efficient, since it retains the maximum number of common parts
in all the sequences.  Another aspect of the Q-systems is that they can be applied one after the
other.  Each one takes as input the graph resulting from the previous system.  This technique
was widely used in the automatic translation project, where an English sentence would
undergo no fewer than fifteen Q-systems before being translated into French.  Two Q-systems
dealt with morphology, another with the analysis of English, two more with the transfer from
an English structure to a French structure, one with the synthesis of French, and nine with
French morphology  [TAUM 71].

Let us draw attention to the reversibility of the Q-systems.  The rewriting sign that we have
represented by →  was in fact written == and, depending on which specified option was chosen
at the start of the program, it was interpreted as either a rewriting from left to right or from
right to left. That is, the same program could be used to describe a transformation and its
reverse transformation such as the analysis and the synthesis of a sentence.

It is interesting to note that in contrast to the analyzers written in Prolog that used a top-
down strategy, the analyzers written in Q-systems used a bottom-up strategy.  In fact, Alain
had extensive experience with this type of strategy.  The subject of his thesis done in Grenoble
(France) had been bottom-up analyzers  which, however, operated by backtracking
[Colmerauer, 1970a].  Non-determinism was then reduced by precedence relations very similar
to those of Robert Floyd [1963].  In addition, just before developing the Q-systems, and still as
part of the automatic translation project, Alain had written an analyzer and a general
synthesizer for W-grammars, the formalism introduced by A. van Wijngarden to describe Algol



68 [Wijngarden, 1968].  Here again a bottom-up analyzer was used to find the structure of
complex symbols (defined by a meta-grammar) as well as a second bottom-up analyzer for
analysis of the text itself [Chastellier, 1969].

Implementation

The Q-systems were written in Algol by Alain Colmerauer and were operational by October
‘69.  Michel van Caneghem and François Stellin, then completing a master's degree, developed
a Fortran version, and Gilles Steward developed an ultra-fast version in machine language for
the CDC 6400 computer of the University of Montreal.

These Q-systems were used by the entire TAUM project team to construct a complete
chain of automatic English-French translations.  The English morphology was written by Brian
Harris, Richard Kittredge wrote a substantial grammar for the analysis of English, Gilles
Stewart wrote the transfer phase, Jules Danserau wrote the grammar for the French synthesis
and Michel van Caneghem developed a complete French morphology [Taum 71].  The Q-
systems were also used a few years later to write the METEO system, a current industrial
version of which produces daily translations of Canadian weather forecasts from English into
French.

Part III. The preliminary Prolog

Let us now turn to the preliminary version of Prolog which was created in the fall of ‘72 in
connection with the development of the man-machine communication system [Colmerauer,
1972].

Recall that the objective we had set for ourselves was extremely ambitious: to have a tool
for the syntactic and semantic analysis of natural language, by considering first order logic not
only as a programming language but also as a knowledge representation language. In other
words, the logical formulation was to serve not only for the different modules of the natural
language dialogue system but also for the data exchanged between them, including the data
exchanged with the user.

The choice having settled on first order logic (in clausal form) and not on a higher order
logic, it then seemed that we were faced with an insurmountable difficulty in wanting programs
to be able to manipulate other programs.  Of course, this problem was solved using non-logical
mechanisms.   In fact, this initial version of Prolog was conceived more as an application tool
than as a universal programming language.  Nevertheless, the basis for such a language was
already there.

Reasons for the choice of resolution method
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The success of the project hinged on the decision concerning the choice of the logic system
and on the basic inference mechanism to be adopted.  Although Robinson’s resolution
principle naturally suggested itself by the simplicity of its clausal form, the uniqueness of the
inference rule and its similarity with procedure calls in standard languages, it was difficult to
decide what type of adaptation was necessary to fulfill our requirements.   Among the
considerations to be taken into account were the validity and logical completeness of the
system, the problems for implementation on the machine, and, especially, the risks of
combinatorial explosion, which we were well aware of from our experiments.

Among the question-answering systems and the problem-solving techniques which we had
explored, there were those of D. Luckham [1971] and N.J. Nilson, of J.L. Darlington [1969]
and of Cordell Green [1969].  Our exploration, the tests by Jean Trudel and Robert Pasero
using experimental versions of Philippe's provers, Alain's research on the logical formulation of
grammars and numerous discussions with Robert Kowalski: all these elements led us to view
the resolution principle from a point of view different from the prevailing one.  Rather than
demonstrating a theorem by reduction ad absurdum, we wanted to calculate an “interesting”
set of clauses that were deducible from a given set of clauses.  Since, to our way of thinking,
such sets constituted programs, we would thus have programs generating other programs.
This idea constantly underlay the conception of this preliminary version of the language as it
did the realization of the application.

The final choice was an adaptation of the resolution method similar to those of the
subsequent Prologs but comprising some very novel elements, even compared with modern
Prologs.  Each execution was performed with a set of clauses constituting the “program” and a
set of clauses constituting the “questions”.  Both of them produced a set of clauses
constituting the “answers”.  The clauses’ literals were ordered from left to right and the
resolution was performed between the head literal of the resolvent and the head literal of one
of the program clauses.  The novelty resided in the fact that in each clause a part of the literals,
separated by the “/” sign, was not processed during the proof.  Instead, they were accumulated
to produce one of the answer clauses at the end of deduction. In addition, certain predicates
(such as DIF) were processed by delayed evaluation and could also be transmitted as an
answer.  Finally, it was decided that non-determinism should be processed by backtracking,
meaning that only a single branch of the search tree was stored at any given time in the
memory.

Formally, the chosen deduction method can be described by the three deduction rules
below, where “question”, “chosen clause” and “answer” denote three clauses taken
respectively from the sets “questions”, “program” and “answers” while “resolvent” denotes the
current list of goals.

Deduction initialization rule

question:  L1 ... Lm / R1 ... Rn
resolvent:  L1 ... Lm / R1 ... Rn

Basic deduction rule



resolvent:  L0 L1 ... Lm / R1 ... Rn,     chosen clause:  L’0 L’1 ... L’m ’ / R’1 ... R’n’
resolvent:  σ(L’1) ... σ(L’m’) σ(L1) ... σ(Lm) / σ(R’1) ... σ(R’n’) σ(R1) ... σ(Rn)

End of deduction rule

resolvent:  / R1 ... Rn
answer:  R1 ... Rn

where of course, L0 and L'0 are complementary unifiable literals and σ is the most general
substitution that unifies them. (An example is given later.)

The first reason for choosing this linear resolution technique with a predefined order of
literal selection was its simplicity and the fact that we could produce clauses that were logically
deducible from the program which thus guaranteed in a way the validity of the results.  To a
large extent, we were inspired by Robert Kowalski’s SL-Resolution which Philippe had
implemented for his thesis on formal equality.  However, despite its stack-like functioning
analogous to procedure calling in standard languages, we knew that this method introduced
computations which were certainly necessary in the general case but unnecessary for most of
our examples.  We therefore adopted the extremely simplified version of SL-Resolution
described by the three rules above, which continues to serve as the basis for all Prologs.

The choice of the treatment of non-determinism was basically a matter of efficiency.  By
programming a certain number of methods, Philippe had shown that one of the crucial
problems was combinatorial explosion and a consequent lack of memory.  Backtracking was
selected early on for management of non-determinism, in preference to a management system
of several branch calculations simultaneously resident in memory, whose effect would have
been to considerably increase the memory size required for execution of the deductions.  Alain
had a preference for this method, introduced by Robert Floyd [1967] to process non-
deterministic languages, and was teaching it to all his students.  Although, certainly, the use of
backtracking led to a loss of completeness in deductions comprising infinite branches, we felt
that, given the simplicity of the deduction strategy (the execution of literals from left to right
and the choice of clauses in the order they were written), it was up to the programmer to make
sure that the execution of his program terminated.

Characteristics of the preliminary Prolog

Apart from the deduction mechanism we have already discussed, a number of built-in
predicates were added to the system as Alain and Robert Pasero required them: predicates to
trace an execution, COPY to copy a term, BOUM to split an identifier into a list of characters or
reconstitute it and DIF to process the symbolic (i.e. syntactic) equality of Philippe’s thesis.  It
should be noted that we refused to include input-output predicates in this list as they were
considered to be too far removed from logic.  Input-output, specification of the initial
resolvents, and chaining between programs were specified in a command language applied to
sets of clauses (read, copy, write, merge, prove, etc.). This language, without any control
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instructions, allowed chainings to be defined only statically but had the virtue of treating
communications uniformly by way of sets of clauses.  It should be emphasized that this first
version already included lazy evaluation (or co-routined evaluation, if you prefer) of certain
predicates; in this case DIF and BOUM. The DIF predicate was abandoned in the next version
but reappeared in modern Prologs.  The only control operators were placed at the end of
clauses as punctuation marks, and their function was to perform cuts in the search space. The
annotations:

.. performed a cut after the head of the clause,

.; performed a cut after execution of the whole rule,
;. performed a cut after production of at least one answer,
;; had no effect.

These extra-logical operators were exotic enough to cause their users problems and were
therefore subsequently abandoned. Curiously, this punctuation had been introduced by Alain
following his discovery of the optional and mandatory transformation rules of the linguist,
Noam Chomsky [1965].

On the syntactic level, the terms were written in functional form although it was possible to
introduce unary or binary operators defined by precedences as well as an infixed binary
operator that could be represented by an absence of sign (like a product in mathematics and
very useful in string input-output).  Here is an example of a sequence of programs that
produced and wrote a set of clauses defining the great-nephews of a person named MARIE :

READ
RULES
+DESC(*X,*Y) -CHILD(*X,*Y);;
+DESC(*X,*Z) -CHILD(*X,*Y) -DESC(*Y,*Z);;
+BROTHERSISTER(*X,*Y) -CHILD(*Z,*X) -CHILD(*Z,*Y) -DIF (*X,*Y);;
AMEN

READ
FACTS
+CHILD(PAUL,MARIE);;
+CHILD(PAUL,PIERRE);;
+CHILD(PAUL,JEAN);;
+CHILD(PIERRE,ALAIN);;
+CHILD(PIERRE,PHILIPPE);;
+CHILD(ALAIN,SOPHIE);;
+CHILD(PHILIPPE,ROBERT);;
AMEN

READ
QUESTION
-BROTHERSISTER(MARIE,*X) -DESC(*X,*Y) / +GREATNEPHEW(*Y) -MASC(*Y)..
AMEN

CONCATENATE(FAMILYTIES,RULES,FACTS)

PROVE(FAMILYTIES,QUESTION,ANSWER)



WRITE(ANSWER)

AMEN

The output from this program was thus not a term but instead the following set of binary
clauses:

+GREATNEPHEW(SOPHIE) -MASC(SOPHIE);.
+GREATNEPHEW(ROBERT) -MASC(ROBERT);.

The READ command read a set of clauses preceded by a name x and ending with AMEN and
assigned it the name x.  The command CONCATENATE(y,x1,...,xn) computed the union y
of  the sets of clauses x1,...,xn.  The command PROVE(x,y,z) was the most important
one; it started a procedure where the program is x, the initial resolvent is y and the set of
answers is z.  Finally, the command WRITE(x) printed the set of clauses x .

The man-machine communication system operated in four phases and made use of 4
programs, i.e. 4 sets of clauses:

- C1 to analyze a text T0 and produce a deep structure T1,
- C2 to find in T1 the antecedents of the pronouns and produce a logical form T2,
- C3 to split the logical formula T2 into a set T3 of elementary information,
- C4 to carry out deductions from T3 and produce the answers in French T4.

The sequence of commands was therefore

PROVE(C1,T0,T1)
PROVE(C2,T1,T2)
PROVE(C3,T2,T3)
PROVE(C4,T3,T4),

where T0, the French text to process, and T4, the answers produced, were represented by
elementary facts over lists of characters.

Implementation of the preliminary Prolog

Since the Luminy computing center had been moved, the interpreter was implemented by
Philippe in Algol-W, on the IBM 360-67 machine of the University of Grenoble computing
center, equipped with the CP-CMS operating system based on the virtual machine concept.
We were connected to this machine via a special telephone line.  The machine had two unique
characteristics almost unknown at this time, characteristics that were essential for our work: it
could provide a programmer with a virtual memory of 1Mb if necessary (and it was), and it
allowed us to write interactive programs.  So it was, that, on a single console operating at 300
baud, we developed not only the interpreter but also the question-answering system itself. The
choice of Algol-W was imposed on us, since it was the only high level language we had
available that enabled us to create structured objects dynamically while also being equipped
with garbage collection.
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The basis for the implementation of the resolution was an encoding of the clauses into inter-
pointing structures with anticipated copying of each rule used in a deduction.  Non-
determinism was managed by a backtracking stack and substitutions were performed only by
creating chains of pointers.  This approach eliminated the copying of terms during unifications,
and thus greatly improved the computing times and memory space used.  The clause analyzer
was also written in Algol-W, in which the atoms were managed by a standard "hash-code"
technique.  This analyzer constituted a not insignificant part of the system which strengthened
Alain’s desire to solve these syntax problems in Prolog itself.   However, experience was still
lacking on this topic, since the purpose of the first application was to reveal the very principles
of syntactic analysis in logic programming.

Part IV. The final Prolog

Now that we have described the two forerunners at length, it is time to lay out the fact sheet
on the definitive Prolog of 1973.  Our major preoccupation after the preliminary version, was
the reinforcement of Prolog’s programming language aspects by minimizing concepts and
improving its interactive capabilities in program management.  Prolog was becoming a
language based on the resolution principle alone and on the provision of a set of built-in
predicates (procedures) making it possible to do everything in the language itself.  This set was
conceived as a minimum set enabling the user to:

- create and modify programs in memory,
- read source programs, analyze them and load them in memory,
- interpret queries dynamically with a structure analogous to other elements of the

language,
- have access dynamically to the structure and the elements of a deduction,
- control program execution as simply as possible.

Resolution strategy

The experience gained from the first version led us to use a simplified version of its resolution
strategy.  The decision was based not only on suggestions from the first programmers but also
on criteria of efficiency and on the choice of Fortran to program the interpreter which forced
us to manage the memory space. The essential differences with the previous version were:

- no more delayed evaluation (DIF , BOUM),
- replacement of the BOUM predicate by the more general UNIV predicate,
- the operations assert and retract, at that time written AJOUT and SUPP, are used

to replace the mechanism that generates clauses as the result of a deduction,
- a single operator for backtracking management, the search space cut operator “!” , at

that time written “/”,
- the meta-call concept to use a variable instead of a literal,



- use of the predicates ANCESTOR and STATE, which have disappeared in present Prologs,
to access ancestor literals and the current resolvent (considered as a term), for
programmers wishing to define their own resolution mechanism.

 Backtracking and ordering the set of clauses defining a predicate were the basic elements
retained as a technique for managing non-determinism.  The preliminary version of Prolog was
quite satisfactory in this aspect.  Alain’s reduction of backtracking control management to a
single primitive (the cut), replacing the too numerous concepts in the first version produced an
extraordinary simplification of the language.  Not only could the programmer reduce the
search space size according to purely pragmatic requirements but also he could process
negation in a way, which, although simplified and reductive in its semantics, was extremely
useful in most common types of programming.

In addition, after a visit to Edinburgh, Philippe had in mind the basis for an architecture that
is extremely simple to implement from the point of view of memory management and much
more efficient in terms of time and space, if we maintained the philosophy of managing non-
determinism by backtracking.  In the end, all the early experiences of programming had shown
that this technique allowed our users to incorporate non-determinism fairly easily as an added
dimension to the control of the execution of the predicates.

Concerning the processing of the implicit “or” between literals inside a clause, sequentiality
imposed itself there again as the most natural interpretation of this operator since, in formal
terms, the order of goal execution has no effect at all on the set of results (modulo the pruning
of infinite branches), as Robert Kowalski had proved concerning SL-resolution.

To summarize, these two choices concerning the processing of “and” and “or”, were fully
justified by the required objectives:

- employ a simple and predictable strategy that the user can control, enabling any extra-
logical predicate (such as input-output) to be given an operational definition,

- provide an interpreter capable of processing deductions with thousands or tens of
thousands of steps (an impossible objective in the deductive systems existing at that
time).

Syntax and Primitives

On the whole, the syntax retained was the same as the syntax of the preliminary version of the
language.  On the lexical level, the identifier syntax was the same as that of most languages
and therefore lower-case letters could not be used (the keyboards and operating systems at
that time did not systematically allow this).  It should be noted that among the basic primitives
for processing morphology problems, one single primitive UNIV was used to create
dynamically an atom from a character sequence, to construct a structured object from its
elements, and, conversely, to perform the inverse splitting operations.  This primitive was one
of the basic tools used to create programs dynamically and to manipulate objects whose
structures are unknown prior to the execution of the program.
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Enabling the user to define his own unary and binary operators by specifiying numeric
precedences proved very useful and flexible although it complicated somewhat the clause
analyzers.  It still survives as such in the different current Prologs.

In the preliminary version of Prolog, it was possible to create clauses that were logically
deducible from other clauses.  Our experience with this version had showed us that sometimes
it was necessary to manipulate clauses for purposes very far removed from first order logic:
modeling of temporal type reasoning, management of information persisting for an uncertain
lifetime, or simulation of exotic logics.  We felt that much research would still be needed in the
area of semantics in order to model the problems of updating sets of clauses.  Hence we made
the extremely pragmatic decision to introduce extra-logical primitives acting by side effect to
modify a program (ADD, DELETE).  This choice seems to have been the right one since these
functions have all been retained.

One of the missing features of the preliminary Prolog was a mechanism that could compute
a term that could then be taken as a literal to be resolved. This is an essential function needed
for meta-programming such as a command interpreter; this feature is very easy to implement
from a syntactic point of view. In any event, a variable denoting a term can play the role of a
literal.

 In the same spirit – and originally intended for specialists in computational logic – various
functions giving access to the current deduction by considering it as a Prolog object appeared
in the basic primitives (STATE, ANCESTOR).  Similarly, the predicate “ / ” (pronounced “cut ” by
Edinburghers) became parametrizable in a very powerful manner by access to ancestors.

A programming example

To show the reader what an early Prolog program looked like, we introduce an old example
dealing with flights between cities. From a base of facts which describes direct flights, the
program can calculate routes which satisfy some scheduling constraints.

Direct flights are represented by unary clauses under the following format:

+FLIGHT(<departure city>,<arrival city>,
        <departure time>,<arrival time>,<flight identifier>)

where time schedules are represented by pairs of integers under the format
<hours>:<minutes>.  All flights are supposed to be completed in the same day.

The following predicate will be called by the user to plan a route.

PLAN(<departure city>,<arrival city>,<departure time>,<arrival time>,
     <departure min time>,<arrival max time>)



It enumerates (and outputs as results) all pairs of cities connected by a route which can be a
direct flight or a sequence of flights.  Except for circuits, the same city cannot be visited more
than once.  Parameters <departure min time>  and <arrival max time> denote
constraints given by the user about departure and arrival times. The first flight of the route
should leave after <departure min time>  and the last one should arrive before <arrival
max time>.

In order to calculate PLAN, several predicates are defined. The predicate:

ROUTE(<departure city>,<arrival city>,<departure time>,<arrival time>,
    <plan>, <visits>, <departure mini time>,<arrival maxi time>)

is similar to the PLAN predicate, except for two additional parameters:  the input parameter
<visits> is given represents the list (Ck.Ck-1...C1.NIL) of already visited cities (in inverse
order), the output parameter <plan> is the list (F1....Fk.NIL) of calculated flight names.
The predicates BEFORE(<t1>,<t2>) and ADDTIMES(<t1>,<t2>,<t3>) deal with arithmetic
aspects of time schedules.  The predicate WRITEPLAN writes the sequence of flight names.
Finally, NOT(<literal>) defines negation by failure, and  ELEMENT(<element>,<elements)
succeeds if <element> is among the list <elements>.

Here then is the complete program, including data and the saving and execution commands.

* INFIXED OPERATORS
--------------------.

-AJOP( ".", 1, "(X|X)|X")  -AJOP(":",  2, "(X|X)|X") !

* USER PREDICATE
-----------------.

+PLAN(*DEPC, *ARRC, *DEPT, *ARRT, *DEPMINT, *ARRMAXT)
-ROUTE(*DEPC, *ARRC, *DEPT, *ARRT, *PLAN, *DEPC.NIL, *DEPMINT, 
                                                         *ARRMAXT)
-SORM("------------------------------------------------")
-LIGNE
-SORM("FLYING ROUTE BETWEEN:  ")
-SORT(*DEPC)
-SORM(" AND: ")
-SORT(*ARRC)
-LIGNE
-SORM("------------------------------------------------")
-LIGNE
-SORM(" DEPARTURE TIME:   ")
-SORT(*DEPT)
-LIGNE
-SORM("ARRIVAL TIME:      ")
-SORT(*ARRT)
-LIGNE
-SORM(" FLIGHTS:    ")
-WRITEPLAN(*PLAN) -LIGNE -LIGNE.

* PRIVATE PREDICATES
--------------------.
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+ROUTE(*DEPC, *ARRC, *DEPT, *ARRT, *FLIGHTID.NIL, *VISITS, *DEPMINT,
                                                                *ARRMAXT)

-FLIGHT(*DEPC, *ARRC, *DEPT, *ARRT, *FLIGHTID)
-BEFORE(*DEPMINT, *DEPT)
-BEFORE(*ARRT, *ARRMAXT).

+ROUTE(*DEPC,*ARRC, *DEPT,*ARRT, *FLIGHTID.*PLAN, *VISITS,*DEPMINT,
                                                                *ARRMAXT)

-FLIGHT(*DEPC, *INTC, *DEPT, *INTT, *FLIGHTID)
  -BEFORE(*DEPMINT, *DEPT)

-ADDTIMES(*INTT, 00:15, *INTMINDEPT)
-BEFORE(*INTMINDEPT, *ARRMAXT)
-NOT( ELEMENT(*INTC, *VISITS)
-ROUTE(*INTC,*ARR,*INTDEPT,*HARR, *PLAN, *INTC.*VISITS, *INTMINDEPT,

*ARRMAXT).

+BEFORE(*H1:*M1, *H2:*M2) -INF(H1, H2).
+BEFORE(*H1:*M1, *H1:*M2) -INF(M1, M2).

+ADDTIMES(*H1:*M1, *H2:*M2, *H3:*M3)
-PLUS(*M1, *M2, *M)
-RESTE(*M, 60, *M3)
-DIV(*M, 60,*H)
-PLUS(*H, *H1, *HH)
-PLUS(*HH,*H2,*H3).

+WRITEPLAN( *X. NIL) -/ -SORT(*X).
+WRITEPLAN( *X.*Y) -SORT(*X) -ECRIT(-) -WRITEPLAN(*Y).

+ELEMENT(*X, *X.*Y).
+ELEMENT(*X, *Y.*Z) -ELEMENT(*X, *Z).

+NOT(*X) -*X -/ -FAIL.
+NOT(*X).

* LIST OF FLIGHTS
-----------------.

+FLIGHT(PARIS, LONDON, 06:50, 07:30, AF201).
+FLIGHT(PARIS, LONDON, 07:35, 08:20, AF210).
+FLIGHT(PARIS, LONDON, 09:10, 09:55, BA304).
+FLIGHT(PARIS, LONDON, 11:40, 12:20, AF410).

+FLIGHT(MARSEILLES, PARIS, 06:15, 07:00, IT100).
+FLIGHT(MARSEILLES, PARIS, 06:45, 07:30, IT110).
+FLIGHT(MARSEILLES, PARIS, 08:10, 08:55, IT308).
+FLIGHT(MARSEILLES, PARIS, 10:00, 10:45, IT500).

+FLIGHT(MARSEILLES, LONDON, 08:15, 09:45, BA560).

+FLIGHT(MARSEILLES, LYON, 07:45, 08:15, IT115).

+FLIGHT(LYON, LONDON, 08:30, 09:25, TAT263).

* SAVING THE PROGRAM
--------------------.



-SAUVE!

* QUERYING
----------.

-PLAN(MARSEILLES, LONDON, *HD, *HA, 00:00, 09:30)!

This is the ouput of the program:

------------------------------------------------
 FLYING ROUTE BETWEEN:   MARSEILLES  AND: LONDON
------------------------------------------------
DEPARTURE TIME:  06:15
ARRIVAL TIME:   08:20
FLIGHTS: IT100-AF210

------------------------------------------------
 FLYING ROUTE BETWEEN:   MARSEILLES  AND: LONDON
------------------------------------------------
DEPARTURE TIME:  07:45
ARRIVAL TIME:   09:25
FLIGHTS: IT115-TAT263

Implementation of the interpreter

The resolution system, in which non-determinism was managed by backtracking, was
implemented using a very novel method for representing clauses, halfway between the
technique based on structure sharing used by Robert Boyer and Jay Moore in their work on
the proofs of programs [Boyer, 1972; Moore, 1974] and the backtracking technique used in
the preliminary version of Prolog.  Philippe came up with this solution during his stay in
Edinburgh after many discussions with Robert Boyer.  In this new approach, the clauses of a
program were encoded in memory as a series of templates, which can be instantiated without
copying, several times in the same deduction, by means of contexts containing the substitutions
to be performed on the variables.  This technique had many advantages compared to those
normally used in automated theorem-proving:

- in all known systems, unification was performed in times which were, at best, linear in
relation to the size of the terms unified.  In our system, most of the unifications could be
performed in constant time, determined not by the size of the data, but by that of the
templates brought into action by the clauses of the called program. As a result, the
concatenation of two lists was performed in a linear time corresponding to the size of the
first and not in quadratic time as in all other systems based on copying techniques;

- in the same system, the memory space required for one step in a deduction is not a
function of the data, but of the program clause used.  Globally therefore, the
concatenation of two lists used only a quantity of memory space proportional to the size
of the first list;

- the implementation of non-determinism did not require a sophisticated garbage collector
in the first approach but simply the use of several stacks synchronized on the
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backtracking, thus facilitating rapid management and yet remaining economical in the use
of interpreter memory.

Concerning the representation of the templates in memory, we decided to use prefix
representation (the exact opposite of Polish notation).  The system consisted of the actual
interpreter (i.e., the inference machine equipped with a library of built-in predicates), a loader
to read clauses in a restricted syntax, and a supervisor written in Prolog.  Among other things,
this supervisor contained a query evaluator, an analyzer accepting extended syntax and the
high level input-output predicates.

 Alain, who like all of us disliked Fortran, succeeded nonetheless in persuading the team to
program the interpreter in this language.  This basic choice was based primarily on the fact that
Fortran was widely distibuted on all machines and that the machine we had access to at that
time supported no other languages adapted to our task. We hoped in that way to have a
portable system, a prediction which proved to be quite correct.

Under Philippe's supervision, Gérard Battani [Battani 1973] and Henri Meloni developed
the actual interpreter between June 1973 and October 1973 on a CII 10070 (variant of the
SIGMA 7) while René Bazzoli, under Alain’s direction, was given the task of writing the
supervisor in the Prolog language itself. The program consisted of approximately 2000
instructions, of roughly the same size as the Algol-W program of the initial version.

The machine had a batch operating system with no possibility of interaction via a terminal.
Hence, data and programs were entered by means of punched cards.  That these young
researchers could develop as complex a system as this under such conditions and in such short
time is especially remarkable in light of the fact that none of them had ever written a line of
Fortran before in their lives. The interpreter was finally completed in December 1973 by
Gérard Battani and Henry Meloni after porting it onto the IBM 360-67 machine at Grenoble,
thus providing somewhat more reasonable operating conditions.  Philippe Roussel wrote the
reference and user's manual for this new Prolog two years later [Roussel 1975].

Conclusion

After all these vicissitudes and all the technical details, it might be interesting to take a step
back and to place the birth of Prolog in a wider perspective. The article published by Alan
Robinson in January 1965, “A machine-oriented logic based on the resolution principle”,
contained the seeds of the Prolog language.  This article was the source of an important stream
of works on automated theorem-proving and there is no question that Prolog is essentially a
theorem prover “à la Robinson”.

Our contribution was to transform that theorem prover into a programming language.  To
that end, we did not hesitate to introduce purely computational mechanisms and restrictions
that were heresies for the existing theoretical model.  These modifications, so often criticized,
assured the viability and thus the success of Prolog.  Robert Kowalski’s contribution was to



single out the concept of the “Horn clause”, which legitimized our principal heresy:  a strategy
of linear demonstration with backtracking and with unifications only at the heads of clauses.

Prolog is so simple that one has the sense that sooner or later someone had to discover it.
Why did we discover it rather than anyone else?  First of all, Alain had the right background
for creating a programming language.  He belonged to the first generation of Ph.D.s in
computer science in France and his specialty was language theory. He had gained valuable
experience in creating his first programming language, Q-systems, while on the staff of the
machine translation project at the University of Montreal.  Then our meeting, Philippe's
creativity and the particular working conditions at Marseilles did the rest.  We benefitted from
freedom of action in a newly created scientific center and, having no outside  pressures, we
were able to fully devote ourselves to our project.

Undoubtedly, this is why that period of our lives remains one of the happiest in our
memories.  We have had the pleasure of recalling it for this paper over fresh almonds
accompanied by a dry martini.
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