COM 2030 Exercise sheet 1: Finite Automata and Regular Languages

1. Consider the following regular grammar with start symbol A :

$$
\begin{aligned}
& A \rightarrow a B \\
& A \rightarrow a \\
& B \rightarrow b C \\
& B \rightarrow b \\
& C \rightarrow c B \\
& C \rightarrow c
\end{aligned}
$$

(a) Derive a transition diagram for a nondeterministic finite automaton that accepts the language generated by this grammar using the technique suggested in the proof of Proposition 3.1 and formally define the associated automaton.
(b) Formally define a deterministic finite automaton that will accept the same strings as this nondeterministic finite automaton using the technique of Proposition 2.4 and draw a transition diagram for the derived deterministic finite automaton.
(c) Derive a regular expression representing the language generated by this grammar using the technique suggested in the proof of Proposition 4.1.
2. (a) Write a regular expression that represents the language of zero or more a 's followed by one or more b 's followed by zero or more a 's.
(b) Write a regular expression that represents the language consisting of one or more pairs $a b$ where between any two instances of $a b$ exactly one c may or may not occur.
(c) Draw a transition diagram for a finite automaton that accepts
i. the language in (a);
ii. the language in (b);
iii. the Kleene star of the union of the languages in (a) and (b) - this automaton should be constructed according to the principles for constructing automata corresponding to regular expressions demonstrated in Part 1 of the proof for Proposition 4.1.
(d) Using the technique of Proposition 3.1 derive a regular grammar that generates the same language as that accepted by the automaton in (c) iii.
3. (a) Show that if L_{1} and L_{2} are regular languages then $L_{1} \cap L_{2}$ is regular.
(b) Show that if L_{1} and L_{2} are regular languages then $L_{1} \backslash L_{2}$ is regular.
(c) Show that if L is a regular language then the language obtained from writing the strings of L backwards is also regular.

Due This exercise should be completed by 9am on Monday, October 20th, since the solutions will be disclosed in that morning's tutorial.

