
COM 2030 Exercises 1:
Finite Automata and Regular Languages

Solutions

1. Consider the following regular grammar with start symbol A:

A → aB

A → a

B → bC

B → b

C → cB

C → c

(a) Derive a transition diagram for a finite automaton that accepts the language generated
by this grammar using the technique suggested in the proof of Proposition 3.1.
Proposition 3.1: For each alphabet Σ,

{L(G) : G is a regular grammar over Σ} =
{L(M) : M is a finite automata over Σ}

Let the G be the grammar (ΣN ,ΣT , A,R) where ΣN = {A,B,C}, ΣT = {a, b, c} and R
is the set of rewrite rules above.
Define an equivalent grammar G′ by replacing all rewrite rules in G of the form X → P
where P is a terminal, by two rules X → PY and Y → λ where Y is a new nonterminal.
So in this case we get:

A → aB

A → aX

X → λ

B → bC

B → bX

C → cB

C → cX

Then, define M to be the nondeterministic finite automaton (S,Σ, ρ, ι, F) where

i. S is the set of nonterminals in G′;
ii. ι is the start symbol in G′;

iii. F is the set of nonterminals of G′ that appear on the left of a λ-rule;
iv. ρ consists of the triples (P, x,Q) for which G′ contains the a rewrite rule of the form

P → xQ.

Thus:

Matt Fairtlough page 1 of 12 December 9, 2003

b

cb

c

a

a

B C

XA

(b) Formally define a deterministic finite automaton that will accept the same strings as this
nondeterministic finite automaton using the technique of Proposition 2.4 and draw a
transition diagram for the derived deterministic finite automaton.
The solution relies on the construction in the proof of Proposition 2.4: for each nonde-
terministic finite automaton M there is a deterministic finite automaton M ′ that accepts
exactly the same language.
Following the construction in the proof let M ′ = (S′,Σ, δ, ι′, F ′) be a DFA constructed in
the following way from M of part (a).

i. S′ = P(S) (the powerset of S);
ii. ι′ = {ι};

iii. F ′ is the set of subsets of S that contain at least state in F ;
iv. δ is a function from S′ × Σ into S′ such that for each symbol x ∈ Σ and each state

s′ ∈ S′, δ(s′, x) is the set of all s ∈ S such that (u, x, s) ∈ ρ for some u ∈ s′ (so,
δ(s′, x) is the set of all states in S that can be reached from a state in s′ over an arc
labelled x).

The transition diagram for M ′ looks like this, where the empty state in S′ is not shown
and all transitions not shown are to the empty state.

Matt Fairtlough page 2 of 12 December 9, 2003

CBX

ABCX

ABX

ACB

C

BX

CX

B

AC

BC

AB

A

AX

X

ACX

a

a

c,a c

c,a

c
b

c,a
ca

a
c,ac

b b

b b

bb

By eliminating nonreachable states, we get the following deterministic automaton:

c

b

a BX

CX

A

(c) Derive a regular expression representing the language generated by this grammar using
the technique suggested in the proof of Proposition 4.1.
Proposition 4.1: Given an alphabet Σ, the regular languages over Σ are exactly the
languages that are represented by regular expressions over Σ. The proof provides a
construction for generating a regular expression from a transition diagram for a finite
automaton M . The proof involves using generalised FA’s in which transitions may be
labelled with REs. It proceeds by reducing the number of states in M one at a time,
increasing the complexity of the RE’s in the transitions until there is a two-state FA when
the final RE may be read off.
The construction requires we work with a transition diagram with only one accept state.
If there is more than one we take copies of the original but with one accept state each
then find the RE for each and then take the union of the RE’s.
To eliminate a state X proceed as follows. First, replace all arcs which orginate in X and
terminate in X with a single arc whose label is the union of the REs on the original arcs.

Matt Fairtlough page 3 of 12 December 9, 2003

Call this RE r. Next, for each arc terminating in X whose label is the RE p and each arc
originating in X whose label is the RE q replace this pair of arcs with a single arc from
the originating state of the first arc to the terminating state of the second arc with the
RE ((p ◦ r∗) ◦ q).
The following sequence shows the elimination of states C and B.

Matt Fairtlough page 4 of 12 December 9, 2003

a

XA

X

B

A

C

X

B

A

U U

S

b

(a o (b o c)*) o (b o c) (a o (b o c)*) o ba

a

(a o (b o c)*) o b

(a o (b o c)*) o (b o c)

a

b

b o c

b o c

a

a

c

c

b

A

Matt Fairtlough page 5 of 12 December 9, 2003

When only the start and end states remain, then in this simple scenario we take the
union of the REs on the arcs from the start state to the accept state.
Thus, the RE for M and hence for the language in 1. is

a ∪ ((a ◦ (b ◦ c)∗) ◦ b) ∪ ((a ◦ (b ◦ c)∗) ◦ (b ◦ c))

Matt Fairtlough page 6 of 12 December 9, 2003

2. (a) Write a regular expression that represents the language of zero or more a’s followed by
one or more b’s followed by zero or more a’s.

a∗ ◦ (b ◦ b∗) ◦ a∗

(b) Write a regular expression that represents the language consisting of one or more pairs
ab where between any two instances of ab exactly one c may or may not occur.

(a ◦ b) ◦ ((a ◦ b) ∪ (c ◦ (a ◦ b)))∗

(c) Draw a transition diagram for a finite automaton that accepts

i. the language in (a);
ii. the language in (b);

iii. the Kleene star of the union of the languages in (a) and (b) – this automaton should
be constructed according to the principles for constructing automata corresponding
to regular expressions demonstrated in Part 1 of the proof for Proposition 4.1.

i

ii.

a b

ab

a

b

a

a

a

c

Matt Fairtlough page 7 of 12 December 9, 2003

F

A

iii. union of i. and ii.

b

a

S

B

a

a

b

b

a

a

b

c

a

a

D

C

E

a

Matt Fairtlough page 8 of 12 December 9, 2003

b

b

a

a

F

D

E

CBA

S

a

iii Kleene star of union of i. and ii.

a

a

a

c

a

b

a

b

a b

aab

a

Matt Fairtlough page 9 of 12 December 9, 2003

(d) Using the technique of Proposition 3.1 derive a regular grammar that generates the same
language as that accepted by the automaton in (c) iii.

S → λ

S → aA

S → bB

S → aD

A → aA

A → bB

B → aA

B → bB

B → bC

B → aD

B → λ

C → aA

C → bB

C → aC

C → aD

C → λ

D → bE

E → aD

E → cF

E → aA

E → bB

E → λ

F → aD

For each transition in the transition diagram from state X to state Y with arc label z add a rule
X → zY . For each accept state Z add a rule Z → λ.

This grammar generates the same strings as the automaton accepts since for each path
through the automaton to the an accept state there is a corresponding derivation from this
grammar of the string labelling the automaton’s path.

3. (a) Show that if L1 and L2 are regular languages then L1 ∩ L2 is regular.
Since L1 and L2 are regular there are deterministic finite automata M1 and M2 such
that L(M1) = L1 and L(M2) = L2. We assume that δ1 and δ2 are total; i.e., for every
state s1 ∈ S1 and every symbol x1 ∈ Σ1, δ1(s1, x1) is defined and is in S1 (similarly for
δ2). The transition diagram for any machine can be transformed into one which depicts
a total function by adding, if necessary, a dummy state at which all arcs from each state
which have not been specified in the original diagram terminate.
Let M1 = (S1,Σ1, δ1, ι1, F1) and M2 = (S2,Σ2, δ2, ι2, F2).

Matt Fairtlough page 10 of 12 December 9, 2003

Define a new machine M = (S,Σ, δ, ι, F) where

S = S1 × S2

Σ = Σ1 ∩ Σ2

ι = (ι1, ι2)
F = {(h1, h2) ∈ S | h1 ∈ F1 and h2 ∈ F2}
δ = {(((p1, p2), x), (q1, q2)) | (p1, p2), (q1, q2) ∈ S, x ∈ Σ,

δ1(p1, x) = q1 and δ2(p2, x) = q2}

If a string is accepted by both M1 and M2 then we can write down two sequences of
transitions corresponding to the paths through each machine such that if we pair the
states at the same position in each transition sequence we get a path through M which
terminates at a paired state each of whose component states is an accept state in the
corresponding original machine and which is therefore an accept state in M . Hence
each string accepted by M1 and M2 is accepted by M .
If a string is accepted by M then given the sequence of transitions through M we can
write down two sequences of transitions one corresponding to a sequence of transitions
through M1 the other to one through M2 ending in each case in an accept state of the
relevant machine. Hence each string accepted by M is accepted by both M1 and M2.
It follows that L(M) = L(M1) ∩ L(M2) = L1 ∩ L2 Since M is a finite automaton L(M)
is regular; i.e. L1 ∩ L2 is regular.

(b) Show that if L1 and L2 are regular languages then L1 − L2 is regular.
Since L1 and L2 are regular there are deterministic finite automata M1 and M2 such that
L(M1) = L1 and L(M2) = L2. Let M1 = (S1,Σ1, δ1, ι1, F1) and M2 = (S2,Σ2, δ2, ι2, F2).
Make the same assumption about δ1 and δ2 being total as in part (a).
Define a new machine M = (S,Σ, δ, ι, F) where

S = S1 × S2

Σ = Σ1

ι = (ι1, ι2)
F = {(h1, h2) ∈ S | h1 ∈ F1 and h2 6∈ F2}
δ = {(((p1, p2), x), (q1, q2)) | (p1, p2), (q1, q2) ∈ S, x ∈ Σ,

δ1(p1, x) = q1 and δ2(p2, x) = q2}

If a string is accepted by M1 and not by M2 then we can write down a sequence of
transitions corresponding to the path through M1 and ending in an accept state in M1

and a sequence of transitions from M2 which does not end in an accept state. This pair
of sequences corresponds to a path through M which terminates in an accept state of M
since the accept states of M will be those states whose compound labels name an accept
state of M1 and states of M2 that are not accept states. Hence if a string is accepted by
M1 and not by M2 then it will be accepted by M .
If a string is accepted by M then given the sequence of transitions through M we can
write down the two sequences of transitions through M1 and M2 which these machines
would perform on being presented with the string. Note that each accept state in M
contains an accept state in M1 but not one in M2. Hence each string accepted by M is
accepted by M1 but not by M2.

Matt Fairtlough page 11 of 12 December 9, 2003

It follows that L(M) = L(M1)− L(M2) = L1 − L2 Since M is a finite automaton L(M)
is regular; i.e. L1 − L2 is regular.

(c) Show that if L is a regular language then the language obtained from writing the strings
of L backwards is also regular.
Since L is regular there is a finite automaton M such that L(M) = L. M = (S,Σ, δ, ι, F).
From M we can construct a new automaton M ′ as follows:

i. reverse the direction of all the arcs in M ;
ii. create a new start state ι′ for M ′, remove all of M ’s accept states and draw an arc

from ι′ to each state in M ′ from which an arc leading to an accept state in M had
originated and label it with the same symbol it had in in M ;

iii. change ι into the single accept state of M ′.

M ′ accepts exactly the strings that M accepted written backwards. Since M ′ is a finite
automaton it follows that the language it accepts is regular. Therefore the language
obtained by writing the strings of L backwards is regular.

Matt Fairtlough page 12 of 12 December 9, 2003

