COM 2030 Exercise sheet 4: Recursive Functions

1. (a) Show that the function f defined by

$$f(x, y, z) = \begin{cases} x & \text{if } z \text{ is even} \\ y & \text{if } z \text{ is odd} \end{cases}$$

is primitive recursive. You may assume that the functions *plus*, *eq*, *quo*, *monus* and *mult* have been shown to be primitive recursive, if you find it useful to do so.

(b) Show that for any $n \ge 1$ the function $ADD_n : \mathbf{N}^n \to \mathbf{N}$ defined by

$$ADD_n(x_1,\ldots,x_n) = x_1 + \cdots + x_n$$

is primitive recursive.

- 2. Show that the function $gcd : \mathbb{N}^2 \to \mathbb{N}$, where gcd(x, y) is the greatest common divisor of x and y, is partial recursive.
- 3. Using the simple while language introduced in Lecture 16
 - (a) write a program that computes the function $f : \mathbf{N} \to \mathbf{N}$ defined by

$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{otherwise} \end{cases}$$

(b) show how to simulate the programming structure

if x = 0 then ${\cal S}_1$ else ${\cal S}_2$

where S_1 and S_2 represent program segments.