
Lecture 4:
Regular Expressions

Lecture Outline

• Definition of Regular Expressions

• Regular Expressions and Their Relation to Regular Languages

• Summary of Results on Finite Automata, Regular Grammars and Reg-
ular Expressions

Reading

Chapters 1,3 and 4 of Martin

Chapter 1 of Brookshear

Chapter 3 of Revesz

Part I, Chapter 4 of Cohen

Chapter 4 of Floyd & Beigel

Matt Fairtlough page 1 of 15 October 7, 2003



Definition of Regular Expressions

• Finite automata and regular grammars offer two ways of describing
formal languages.

• A third approach is to specify more complex languages in terms of op-
erations on simpler languages – regular expressions provide a means
of doing this.

• Given an alphabet Σ, simple languages are ∅, the empty language, and
the languages {x} for each symbol x ∈ Σ.

• From these simple languages more complex languages are built ac-
cording to three operations:

1. union: if L1 and L2 are languages then L1 ∪ L2 is the language
containing those strings which occur either in L1 or in L2.
E.g. if L1 = {x, zyz, yy} and L2 = {x, zz, yzy} then

L1 ∪ L2 = {x, zyz, yy, zz, yzy}

2. concatenation: if L1 and L2 are languages then L1 ◦ L2 is the
language obtained by concatenating a string from the L1 with a
string from L2.
E.g. if L1 = {x, zyz} and L2 = {zz, yzy} then

L1 ◦ L2 = {xzz, xyzy, zyzzz, zyzyzy}

3. Kleene star: if L is a language then L∗ is the language obtained
by concatenating zero or more strings from L.
E.g. if L = {x, zyz} then

L∗ = {λ, x, xx, xxx, . . . , zyz, zyzzyz, . . . , xzyz, xxzyz,
. . . , zyzx, zyzxx, . . .}

Matt Fairtlough page 2 of 15 October 7, 2003



Definition of Regular Expressions (cont)

• Formally, a regular expression over an alphabet Σ is defined by:

1. ∅ is a regular expression;

2. each member of Σ is a regular expression;

3. if p and q are regular expressions then so is p ∪ q;
4. if p and q are regular expressions then so is p ◦ q;
5. if p is a regular expression then so is p∗.

• A regular expression r is said to represent a language, denoted L(r),
as follows:

1. if r = ∅ then L(r) = ∅;
2. if r ∈ Σ then L(r) = {r};
3. if r = p ∪ q then L(r) = L(p) ∪ L(q);

4. if r = p ◦ q then L(r) = L(p) ◦ L(q);

5. if r = p∗ then L(r) = L(p)∗.

E.g. ((x ◦ y)∗ ∪ z∗) represents the language consisting of strings of zero
or more xy’s together with strings of zero or more z’s.

Matt Fairtlough page 3 of 15 October 7, 2003



Relation Between Regular Languages and Regular
Expressions

Proposition 0.1 (Kleene’s Theorem) Given an alphabet Σ, the regular lan-
guages over Σ are exactly the languages that are represented by regular ex-
pressions over Σ.

Proof

The regular languages are just those that are accepted by deterministic
finite automata. However, since we have already shown that the languages
accepted by deterministic finite automata are the same as those accepted
by nondeterministic finite automata, we may work with finite automata of
either sort in the following without any loss of generality.

Thus, we need to show that

1. for any regular expression r there is a finite automaton M such that
the language L(r) represented by r is just the language L(M) accepted
by M ; and

2. for any finite automaton M the language L(M) accepted by M may be
represented by a regular expression r.

Matt Fairtlough page 4 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

Part 1 Consider the first case. Suppose r is a regular expression. Then r
has one of the five forms indicated above. We proceed as follows:

1. If r = ∅ then L(r) = ∅.
We must construct a FA M such that L(M) = ∅.

x

This automaton has no accept state and there-
fore accepts the language ∅.

2. If r = x for some x ∈ Σ then L(r) = {x}.
We must construct a FA M such that L(M) = {x}.

x

This automaton accepts the lan-
guage {x}.

3. If r = p∪q for some regular expressions p and q then L(r) = L(p)∪L(q).

Given two FA’s Mp and Mq such that L(Mp) = L(p) and L(Mq) = L(q)
we must construct a FA M such that L(M) = L(Mp) ∪ L(Mq).

To take an example suppose Mp and Mq are as follows:

Matt Fairtlough page 5 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

x

y

x

y

To find an automaton that accepts all and only the strings accepted by
each of these individually, it will not do to simply merge initial states.
E.g.

x

y

y
x

This automaton accepts xyx which neither of the original two do.

Matt Fairtlough page 6 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

Instead:

(a) create a new initial state and cancel initial status of existing initial
states;

(b) if and only if either of the previous initial states was an accept
state, make the new initial state an accept state;

(c) to each state which is the destination of an arc from a previous
initial state, draw an arc from the new initial state with the same
label.

Applying this to our example we get:

x

y

x

y

x

y

y

x

This automaton accepts all and only the strings accepted by either of
the initial two automata.

Matt Fairtlough page 7 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

4. If r = p◦q for some regular expressions p and q then L(r) = L(p)◦L(q).

Given two FA’s Mp and Mq such that L(Mp) = L(p) and L(Mq) = L(q)
we must construct a FA M such that L(M) = L(Mp) ◦ L(Mq).

Proceed as follows:

(a) from each accept state in Mp draw an arc to each state in Mq to
which an arc extends from the initial state of Mq and label these
arcs with the labels of the arcs in Mq;

(b) remove the accept state designation from accept states in Mp;

(c) allow accept states in Mp to remain accepts states in M if and only
if the initial state in Mq was an accept state;

(d) remove the initial state designation from the initial state of Mq.

For example from the two automatons:

x

y

x

y

x

y

the automaton accepting the concatenation of all strings from the first
with strings from the second is:

Matt Fairtlough page 8 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

x x

x

y y

y

xy

5. If r = p∗ for some regular expression p then L(r) = L(p)∗.

Given a FA Mp such that L(Mp) = L(p) we must construct a FA M such
that L(M) = L(Mp)

∗.

In building an automaton M to accept the Kleene star of a regular lan-
guage the basic intuition is to build an automaton which concatenates
the original back on itself.

However M must also accept the empty string λ (definition of Kleene
star). To do this we cannot just designate the initial state an accept
state since there may be arcs originating and ending in the initial state.

E.g. in this diagram, making the initial state an accept state would
allow x to be accepted – this is not in the Kleene star of the regular
language accepted by the automaton.

x

y

Matt Fairtlough page 9 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

Thus:

(a) create a new initial state and cancel initial status of existing initial
states; make this new initial state an accept state;

(b) to each state which is the destination of an arc from the previous
initial state, draw an arc from the new initial state with the same
label;

(c) from each accept state draw an arc to each state which is the desti-
nation of an arc from the previous initial state with the same label
as the corresponding arc from the old initial state.

x

y

x

y

x

y

Thus we have shown that for the regular expressions ∅ and the members
of Σ, the languages they represent are regular (are accepted by a finite
automaton). And we have shown that if the languages represented by two
regular expressions p and q are regular then the languages represented by
p ∪ q, p ◦ q and p∗ are regular too.

Matt Fairtlough page 10 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

Part 2 Now consider the second part of the proposition: for any finite au-
tomata M the language L(M) accepted by M may be represented by a
regular expression r.

The proof here proceeds by induction on the number of states in the
transition diagram T for M .

There are two preliminaries:

1. The proof employs transition diagrams which allow arcs to be labelled
with regular expressions where we understand these to mean the au-
tomaton must read a pattern compatible with the expression on arc in
order to traverse it.

E.g. if an arc is labelled with the expression (x◦y)∗∪z then to traverse
the arc a pattern matching z or xy, xyxy, xyxyxy, . . . must be read.

Since these diagrams are more general than conventional ones, if our
proof holds for these it will hold for the simpler diagrams; i.e. if lan-
guages accepted by these new diagrams can be represented by regular
expressions then languages accepted by the older form of diagram will
also be representable by regular expressions.

2. We assume T has only one accept state. Otherwise we could make a
copy of T for each accept state with only that one accept state, find
a regular expression which represented the language accepted by the
copy and then form the union of all these regular expressions to obtain
a regular expression for T as a whole.

Matt Fairtlough page 11 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

Base Step Assume T is a generalised transition diagram with only one ac-
cept state and assume that every state in T is either an initial state or an
accept state.

There are two possibilities.

1. There is just one state which is both an accept state and an initial state.

In this case the regular expression representing the language accepted
by this transition diagram is the Kleene star of the union of the regular
expressions occurring on the arcs of T .

2. There are two states one an initial state, the other an accept state.

If there are multiple arcs from either state back to itself then replace
these with one arc whose label is the union of the regular expressions
occurring on the original arcs.

There are now only four possible arcs:

r
s

t

u

Matt Fairtlough page 12 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

The regular expression associated with T is arrived at as follows:

(a) If s is not present then the regular expression is ∅ since there is no
way to get to the accept state.

(b) If s is present then

i. if u is not present then the regular expression is ((r∗ ◦ s) ◦ t∗)
where r and t are replaced by ∅ if they are not present (the
expression can be read any number of r’s followed by an s fol-
lowed by any number of t’s);

ii. if u is present then the regular expression is

(((r∗ ◦ s) ◦ t∗) ◦ (u ◦ ((r∗ ◦ s) ◦ t∗))∗)

where again r and t are replaced by ∅ if they are not present.

Matt Fairtlough page 13 of 15 October 7, 2003



Regular Languages / Regular Expressions (cont)

Inductive Step Suppose that the language accepted by a generalised tran-
sition diagram T with no more than n states which are not initial or final
states can be represented by a regular expression.

We must show that the language accepted by a generalised transition
diagram T with no more than n + 1 states which are not initial or final
states can be represented by a regular expression.

Proceed as follows:

1. select a state s0 in T that is not an accept state or an initial state;

2. remove s0 from T and remove all arcs starting or ending at s0;

3. for each removed arc p which ended at s0 and each removed arc q
which started at s0 add an arc from p’s origin state to q’s destination
state with label ((p ◦ r∗) ◦ q) where r is the union of the labels on arcs
starting and ending at s0 or ∅ if there were no such arcs.

p

r

q

s0

((p o r*) o q)

The resulting diagram is another generalised transition diagram which will
accept the same language as T , but has only n states, and to which there
therefore corresponds, by the hypothesis of induction, a regular expression
representing the language it accepts.

Matt Fairtlough page 14 of 15 October 7, 2003



Summary of Results on Finite Automata, Regular
Grammars and Regular Expressions

• Finite automata are abstract machines that can be used to recognise
or to generate possibly infinite sets of strings.

• Finite automata come in two flavours: deterministic and nondeter-
ministic.

The languages (sets of strings) that can be accepted by these two types
of finite automata are identical. These languages are called regular
languages.

• Not all languages are regular languages, e.g xnyn.

• Languages can also be specified using abstract devices called phrase
structure grammars. These specify allowable strings over an alphabet
by means of rewrite rules.

Phrase structure grammars whose rewrite rules are constrained to the
two forms

nonterminal → terminal

nonterminal → terminal nonterminal

are called regular grammars.

• The languages accepted by regular grammars are precisely the regular
languages, i.e. those accepted by finite automata.

• A third way of specifying languages is by means of expressions built out
of applications of the union, concatenation and Kleene star operators
on simpler expressions, ultimately expressions representing symbols in
the alphabet. Such expressions are called regular expressions.

• The languages represented by regular expressions are precisely the reg-
ular languages.

Matt Fairtlough page 15 of 15 October 7, 2003


