
Lecture 6:
Pushdown Automata and Context-Free Grammars

Lecture Outline

• Quick Review of Pushdown Automata and Context-Free Grammars

• Leftmost and Rightmost Derivations

• Constructing a PDA from a CFG

Reading

Chapter 2 of Brookshear

Chapters 6,7 of Martin, 2nd ed.

Chapter 6 of Revesz

Part II of Cohen.

Chapters 4,5,6 Hopcroft and Ullman

Matt Fairtlough page 1 of 10 October 17, 2003

Leftmost and Rightmost Derivations

• Given a context-free grammar there may be several ways of rewriting
its nonterminals to arrive at precisely the same string.

• For example, consider the grammar 〈ΣN ,ΣT , S, R〉, where ΣN = {S,A,B},
ΣT = {a, b, c} and R is given by:

S → aABb

A → bAb

A → c

B → aB

B → b

• The string abcbabb could be derived:

S ⇒ aABb⇒ abAbBb⇒ abcbBb⇒ abcbaBb⇒ abcbabb

following a rule that always expands the leftmost nonterminal first.

Such a derivation is a called a leftmost derivation.

• The string abcbabb could be also derived:

S ⇒ aABb⇒ aAaBb⇒ aAabb⇒ abAbabb⇒ abcbabb

following a rule that always expands the rightmost nonterminal first.

Such a derivation is a called a rightmost derivation.

• Note that there are other derivations that are neither leftmost nor
rightmost.

Matt Fairtlough page 2 of 10 October 17, 2003

Parse Trees

• Derivations in generative grammars can be represented as parse trees.

• The derivation of the string abcbabb according to the previous grammar
can be represented by the tree:

a bB

b a B

bc

b A

S

A

• Note that the leftmost derivation corresponds to the construction of the
parse tree left-branch-first while the rightmost derivation corresponds
to the construction of the tree right-branch-first.

• However, both derivations result in precisely the same tree.

Further, any derivation of this string from this grammar would result
in the same parse tree.

• Thus the order of application of the rewrite rules does not affect the
set of strings that are generated.

So, if a string can generated by any derivation then it can be generated
a leftmost derivation of the string.

Matt Fairtlough page 3 of 10 October 17, 2003

Parse Trees – Ambiguity

• Some grammars permit different parse trees to be constructed for the
same string. Such strings are said to be ambiguous with respect to the
grammar.

• For example, consider the trivial grammar:

S → aBc

S → abC

B → b

C → c

This grammar permits two parse trees to be constructed for the string
abc:

S

C

c

ba

S

a c

b

B

• In such cases different rules are being used in the two derivations.

Contrast this with the previous example of leftmost vs. rightmost
derivations where in both cases the rules used are the same and simply
the order of rule application is different.

• Ambiguity is a pervasive feature of natural language. Consider sen-
tences such as:

He saw the boy with a telescope.
Time flies like an arrow.
Flying planes made her duck.

These exemplify both structural ambiguity (what modifies what) and
lexical ambiguity (which of several word meanings is intended).

Matt Fairtlough page 4 of 10 October 17, 2003

Constructing a PDA from a CFG

• One of the central results of automata theory is the following:

The languages generated by context free-grammars are exactly
the languages accepted by pushdown automata.

• This claim may be broken down into two simpler claims:

1. For any CFG G there is a PDA M such that L(M) = L(G).

2. For any PDA M there is a CFG G such that L(G) = L(M).

• The first of these claims is of practical interest because the proof of
it will give us a means of constructing a machine for recognising a
language given a grammar for the language.

Such machines (parsers) are a key component of compilers for pro-
gramming languages.

• We introduce a slight modification to the notation for transitions to
allow single transitions to push multiple symbols onto the stack.

E.g.
(p, a, s; q, xyz)

where this is taken to mean that z, y and x are to be pushed onto the
stack, in that order (so after the transition x is on top of the stack, with
y under it and z beneath it).

This does not enhance the power of our PDAs since any transition of
this form could be written as the sequence of transitions:

(p, a, s; q1, z), (q1, λ, λ; q2, y), (q2, λ, λ; q, x)

Matt Fairtlough page 5 of 10 October 17, 2003

Constructing a PDA from a CFG (cont)

Proposition 6.1 For any context-free grammar G there is a pushdown au-
tomaton M such that L(M) = L(G).

Proof Given a CFG G = (ΣN ,ΣT , S, R) construct a PDA (Q,Σ,Γ, T, ι, F) as
follows:

1. Let Σ = ΣT , i.e. let the machine’s alphabet be grammar’s terminal
symbols.

2. Let Γ = ΣT ∪ ΣN ∪ {#}, i.e. let the machine’s stack symbols be gram-
mar’s terminal and nonterminal symbols plus the bottom of stack sym-
bol (assume # 6∈ ΣT ∪ ΣN).

3. Let the states of M , Q = {ι, p, q, f} where ι is the initial state and f is
only accept state (so F = {f}).

4. Let T contain the following transitions:

(a) (ι, λ, λ; p,#);

(b) (p, λ, λ; q, S);

(c) for each grammar rule N → w ∈ G a transition of the form
(q, λ,N ; q, w) (note that w may contain 0 or more terminals and
nonterminals);

(d) for each terminal x in G a transition of the form (q, x, x; q, λ);

(e) (q, λ,#; f, λ).

Matt Fairtlough page 6 of 10 October 17, 2003

Constructing a PDA from a CFG (cont)

The behaviour of the automaton may be described as follows:

1. First, it marks the bottom of the stack with #.

2. Then it pushes S, the start symbol of the grammar onto the stack and
enters state q.

3. Until # returns to the top of the stack the automaton either

(a) pops a nonterminal from the top of the stack and replaces it with
the righthand side of a rewrite rule for this nonterminal; or

(b) pops a terminal from the top of the stack while reading the same
terminal from the input.

4. When # returns to the top of the stack the automaton shifts into its
accept state.

The symbols making up the right hand side of a rewrite rule are pushed
onto the stack from right to left (i.e. rightmost symbol will be bottommost).

Thus, if the rule contains nonterminals, the leftmost one will come to the
top of the stack first, and will in turn be replaced by the righthand side of a
rewrite rule.

So, the machine performs a leftmost derivation according to the rules of
the grammar G. Since if there is any derivation of a string in G there is a
leftmost derivation, it follows that M accepts exactly the same language as
generated by G.

Matt Fairtlough page 7 of 10 October 17, 2003

Constructing a PDA from a CFG – Example

• Recall the grammar

S → aABb

A → bAb

A → c

B → aB

B → b

• An automaton constructed according to the procedure defined above
looks like:

f

λ,λ;# a,a;λ

λ,B;b

λ,B;aB

λ,A;cλ,A;bAb

c,c;λ

b,b;λ

λ,S;aABb

λ,#;λ

i

λ,λ;S

qp

Matt Fairtlough page 8 of 10 October 17, 2003

Constructing a PDA from a CFG – Example (cont)

In analysing the string abcbabb the machine’s behaviour could be repre-
sented thus (top of stack is at the left).

Contents Remaining Transition
of Stack Input Executed

λ abcbabb (ι, λ, λ; p,#)
abcbabb (p, λ, λ; q, S)

S# abcbabb (q, λ, S; q, aABb)
aABb# abcbabb (q, a, a; q, λ)
ABb# bcbabb (q, λ, A; q, bAb)

bAbBb# bcbabb (q, b, b; q, λ)
AbBb# cbabb (q, λ, A; q, c)
cbBb# cbabb (q, c, c; q, λ)
bBb# babb (q, b, b; q, λ)
Bb# abb (q, λ, B; q, aB)
aBb# abb (q, a, a; q, λ)
Bb# bb (q, λ, B; q, b)
bb# bb (q, b, b; q, λ)
b# b (q, b, b; q, λ)
λ (q, λ,#; f, λ)

Matt Fairtlough page 9 of 10 October 17, 2003

Constructing a CFG from a PDA

Proposition 6.2 For any pushdown automaton there is aM context-free gram-
mar G such that L(G) = L(M).

The proof is somewhat involved and is traditionally omitted from courses
on machines and languages. The details may be found in Martin or Brook-
shear.

Summary

• The same string may be derived in multiple ways from a CFG.

Consistently expanding the leftmost nonterminal first leads to a left-
most derivation.

Consistently expanding the rightmost nonterminal first leads to a right-
most derivation.

• If the same string may be derived in multiple ways using different sets
of rules in the grammar (not just changing the order of their applica-
tion) then the string is ambiguous with respect to the grammar.

• For each CFG there is a PDA which accepts just the strings that the CFG
generates.

• Such a PDA can be constructed by pushing the righthand side of rewrite
rules from the grammar onto the stack and then

1. if the top symbol on the stack is a nonterminal, pushing the RHS
of a further rule onto the stack;

2. if the top symbol on the stack is a terminal, reading a matching
terminal from the input and popping the stack.

Matt Fairtlough page 10 of 10 October 17, 2003

