
Lecture 9:
Introduction to Turing Machines

Lecture Outline

• Summary of Machine/Language Results So Far

• What is a Turing Machine ?

• A Bit of History: What was Turing Trying to Do ?

Reading

Chapter 3.1 - 3.3 of Brookshear

Chapter 6.4 of Revesz

Chapter 24 of Cohen.

Chapter 7 of Hopcroft and Ullman

Hodges, A. (1992) Alan Turing: The Enigma. Vintage, London.

Matt Fairtlough page 1 of 10 October 26, 2003



Summary of Language/Machine Results So Far

• Regular Grammars/Finite Automata

1. For any RG G there is a FA M such that L(M) = L(G).

2. For any FA M there is a RG G such that L(G) = L(M).

The languages accepted by deterministic finite automata are exactly
those accepted by nondeterministic finite automata.

There are languages which are not regular – e.g. xnyn.

• Context-free Grammars/Pushdown Automata

1. For any CFG G there is a PDA M such that L(M) = L(G).

2. For any PDA M there is a CFG G such that L(G) = L(M).

The languages accepted by deterministic pushdown automata (DPDA)
are NOT the same as those accepted by nondeterministic pushdown
automata (PDA).

The languages accepted by deterministic pushdown automata with
empty stack are NOT the same as those accepted by deterministic
pushdown automata.

There are languages which are not context-free – e.g. xnynzn.

Matt Fairtlough page 2 of 10 October 26, 2003



Summary of Language/Machine Results So Far

LANGUAGE RECOGNISING DEVICE

with empty stack
deterministic PDAs
accepted by
Languages

languages
context-free
Deterministic

Languages
Context-free

General Languages ???

PDAs

Deterministic PDAs

Deterministic PDAs
with empty stack

Finite AutomataRegular Languages

Matt Fairtlough page 3 of 10 October 26, 2003



What is a Turing Machine ?

A Turing machine (named for its inventor Alan Matheson Turing) has both
similarities and dissimilarities to finite automata and pushdown automata.

Similarities:

• it consists of

1. a finite state control mechanism,
2. a tape with a fixed left end but stretching indefinitely to the

right,
3. a tape head;

• there is a finite alphabet of input symbols in which any input to
the machine must be coded;

• there is an initial state.

Head

Read/Write

s4

s3
s2

s1

h
ι

Head moves either way

 Tape

State Indicator

Control Mechanism

Matt Fairtlough page 4 of 10 October 26, 2003



What is a Turing Machine ? (cont)

Dissimilarities:

• A Turing machine may write to its tape as well as read from it (FAs
and PDAs may only read from their input tape).

This means that there is no need for a stack, since the tape serves
the dual purpose of input device and auxiliary storage.

Further the TM is not limited to pushing and popping symbols on
a stack: it can scan the tape reading and/or modifying symbols in
any position.

• There is a single halt state, distinct from the initial state, in which,
if reached, computation ceases.
By contrast, recall:

1. FAs and PDAs have a set of accept states any of which may be
identical to the initial state;

2. FAs and PDAs may or may not cease computation when they
reach an accept state.

• The set of tape symbols includes the input alphabet and additional
symbols that the machine can use for internal purposes (like the
stack symbols of the PDA which include input symbols and special
stack markers).

In particular we assume the blank symbol is in the tape alphabet,
but not in the input alphabet, and we denote it by ∆.

All cells on the tape not otherwise specified are assumed to contain
blanks.

Matt Fairtlough page 5 of 10 October 26, 2003



Transitions in a Turing Machine

• Turing machines have two sorts of operations only:

1. write operations: replace a symbol on a tape with another one and
shift to a new state (without moving the tape head);

2. move operations: move tape head right and shift to new state or
move tape head left and shift to a new state.

• At any time the machine’s behaviour is determined by the current state
and the current symbol under the tape head.

• Letting

1. S be a set of states,

2. h ∈ S be the halt state,

3. Γ be a set of tape symbols

4. L (left) and R (right) be two symbols not in Γ

then a Turing machine’s transition function is a function

δ : (S − {h} × Γ)→ (S × (Γ ∪ {L,R}))

.
• There are three possibilities here which we interpret as follows:

1. δ(p, x) = (q, y) means
If the machine is in state p and the current tape symbol is x then
replace x with y and shift to state q

2. δ(p, x) = (q, L) means
If the machine is in state p and the current tape symbol is x then
move the tape head one cell to the left and shift to state q

3. δ(p, x) = (q, R) means
If the machine is in state p and the current tape symbol is x then
move the tape head one cell to the right and shift to state q

Matt Fairtlough page 6 of 10 October 26, 2003



Transition Diagrams for Turing Machines

• As with FAs and PDAs, a Turing machine’s transitions may be repre-
sented diagrammatically using a transition diagram.

• These diagrams differ from those for FAs and PDAs in one respect – the
arc labels take the form s/A, where s is the symbol read off the tape
and A is the action to be performed:

– if A is t then s is to be replaced by t on the tape;

– if A is L then the tape head is to move left;

– if A is R then the tape head is to move right.

• Here is a transition diagram for a simple Turing machine that reads a’s
and b’s, moving right after each read, until it encounters a blank (∆)
at which point it rewrites the blank with a blank and then halts in that
cell.

a/R

b/R

∆/∆

Matt Fairtlough page 7 of 10 October 26, 2003



A Formal Definition of a Turing Machine

• Since transitions in a Turing machine are defined by a function, it
follows that the machine is deterministic: given any state (except the
halt state) and a tape symbol there is only one possible transition.

• Normally a Turing machine starts in its initial state and executes tran-
sitions until its halt state is reached.

Note:

1. the halt state may never be reached because the machine goes into
a nonterminating loop;

2. the machine may terminate abnormally if it tries to move its tape
head off the left hand end of the tape.

• Formally, a Turing Machine is defined as a sextuple

(S,Σ,Γ, δ, ι, h)

where:

1. S is a finite collection of states;

2. Σ is a finite set of nonblank symbols called the machine’s alphabet;

3. Γ is a finite set of symbols, including the symbols in Σ, called the
machine’s tape symbols;

4. δ is the machine’s transition function (as described above);

5. ι ∈ S is the machine’s initial state;

6. h ∈ S is the machine’s halt state

Matt Fairtlough page 8 of 10 October 26, 2003



Turing Machines – An Example

Design a Turing machine with tape symbols x, y, and ∆ that will search its
tape for the pattern xyxy and halt if and only if that pattern is found.

Matt Fairtlough page 9 of 10 October 26, 2003



A Bit of History: What was Turing Trying to Do ?

• Turing presented his ideas about computing machines in 1936.

This work predates work on finite automata and pushdown automata.

• He was not trying to extend simpler models, as we have been doing,
but rather was trying to express in the simplest way the essence of
computation.

• Turing’s model was a human being with pencil and paper attempting
to carry out a computation.

– Such person could concentrate on a limited section of the paper at
a given time on which the marks written could be viewed as single
symbol.

– The person could distinguish only a finite number of such symbols.
– At any time the person could either modify a section of paper on

which they had written or move to a new section of paper.
– What the person did would depend on the symbol in the current

section and on the person’s state of mind.
– The person could be assumed to be capable of only a finite number

of states of mind.
– To avoid artificial restriction, the amount of paper available for the

computation could be assumed to be unlimited.

• No one has since discovered a more powerful model of computation
and the consensus is that there is none:

Turing’s Thesis: The computational power of Turing machines is as great
as any possible computational system.

• Most interestingly, Turing’s ideas predated the invention of the digital
computer and it was directly from his mathematical models that the
first computers were built.

This is a powerful vindication of the value of theoretical work.

Matt Fairtlough page 10 of 10 October 26, 2003


