
Lecture 11:
Turing Machines as Language Acceptors

Lecture Outline

• Defining the Languages TM’s Accept

• Multiple Tape Turing Machines

• NonDeterministic Turing Machines

• The Equivalence of Turing Acceptable Languages and Phrase Structure
Languages

• The Existence of Non-Phrase Structure Languages

Reading

Chapter 3.3 - 3.4 of Brookshear

Chapter 9 Martin, 2nd ed.

Chapter 6.4 of Revesz

Chapter 24 of Cohen

Chapter 7 of Hopcroft and Ullman

Matt Fairtlough page 1 of 17 November 2, 2003

Defining the Languages TM’s Accept

• To specify the languages a Turing Machine accepts we must specify
how the string is to be presented to the machine.

• We suppose the string is recorded starting in the second cell from the
left end of the machine’s tape.

The tape is assumed to be all blank with the exception of the string to
be tested (recall that the blank is assumed not to be in the alphabet
from which the strings to be tested are drawn).

• The machine’s tape head is assumed to be initially positioned over the
leftmost cell on the tape and the machine started in the initial state.

• The machine is said to accept the string if starting from this initial
configuration it finds its way to a halt state.

x y z x∆ ∆ ∆

Control Mechanism

State Indicator

ι
h

s1
s2

s3

s4

Initial configuration for a TM testing the string xyzx.

Matt Fairtlough page 2 of 17 November 2, 2003

Defining the Languages TM’s Accept (cont)

• The language accepted by a Turing Machine M is denoted L(M).

A language L for which there is a Turing Machine M such that L(M) =
L is called a Turing-acceptable language.

• How does the class of Turing-acceptable languages relate to the other
classes of languages (those accepted by finite automata, or pushdown
automata) that we have studied ?

We shall see that they accept a larger class than the other automata we
have examined.

• It can be useful to insist that a TM write an acceptance message on its
tape before halting.

E.g. we might demand that a TM accept a string only by halting with
the tape configuration

∆Y∆∆∆ · · ·

where the Y signifies the response “yes”.

• Does the requirement to produce an acceptance message affect the
class of strings recognised ? No.

For every TM M which accepts strings simply by halting there is
another TM M ′ which accepts strings by halting with tape con-
figuration ∆Y∆∆∆ · · · such that L(M) = L(M ′).

Matt Fairtlough page 3 of 17 November 2, 2003

Defining the Languages TM’s Accept (cont)

• Given a machine M which accepts strings simply by halting, a machine
M ′ which accepts the same language but writes an accept message
before halting can be specified in the following way.

• Suppose we start with the configuration ∆w∆∆ · · · where w is the
string to be recognised.

Then M ′

1. starts by shifting the string one position to the right and writing a
before the blank prior its first symbol and a * after its last symbol
(assume # and * do not occur in the input alphabet)

2. simulates the behaviour of M precisely except when

(a) the # is encountered – as this would mean an abnormal termi-
nation for M , M ′ should abnormally terminate here by moving
the tape head one position further to the left;

(b) the * is encountered – this means the tape head is moving onto
previously unused tape; in this case the * should be moved
along one position further to the right.

3. when the simulation of M reaches M ’s halt state, finishes by eras-
ing that portion tape of the tape between the # and *, writing a Y
in position 2, then halting.

More precisely M ′ would be as follows, where M0 is the just like M
save for the two conditions 2 (a) and (b).

#

#

R Y L∆

L∆*R0MRL #∆R * LRS∆R

Matt Fairtlough page 4 of 17 November 2, 2003

Multiple-Tape Turing Machines

• Before considering other ways of characterising the languages accepted
by Turing machines, it is worth considering ways in which the power
of Turing Machines might be extended.

• One way in which we might suppose the power of a TM could be ex-
tended is to give the machine multiple tapes to write upon.

• A k-tape Turing machine, k > 1, is just like a 1-tape TM except:

1. the machine has k tapes each of which

– has a fixed left end and stretches indefinitely to the right
– has a read-write head;

2. transitions are dependent on the collection of current symbols on
each of the tapes (i.e. those under the read-write heads) together
with the current state of the machine;

3. the action resulting from a transition affects exactly one of the
tapes – either a symbol is written on it, or its tape head moves left
or right.

• To test a string with a k-tape machine, the string is written on the
machine’s first tape (as with a 1-tape machine), the other tapes are all
blank, and all tape heads are positioned in the leftmost cell of their
tapes.

If the machine halts when started in the initial state with this configu-
ration then the string is accepted.

• Surprisingly, this result holds:

Proposition 11.1 . For each multiple-tape Turing machine M there is a
single tape Turing machine M ′ such that L(M) = L(M ′).

Matt Fairtlough page 5 of 17 November 2, 2003

I.e. the class of languages accepted by TM’s is not affected by the
number of tapes.

Matt Fairtlough page 6 of 17 November 2, 2003

Nondeterministic Turing Machines

• Another way in which it might be thought the power of a TM could be
extended is to make the machine nondeterministic.

Recall that:

– nondeterministic finite automata are not more powerful than their
deterministic counterparts,

– nondeterministic pushdown automata are more powerful than de-
terministic pushdown automata.

• A nondeterministic Turing machine is just like a deterministic TM ex-
cept that there may be more than one transition for a given current
state/symbol pair.

Thus, instead of a transition function δ there is a transition relation ρ.

It follows that the class of deterministic TM’s is a subset of the class of
nondeterministic TM’s.

• A string is accepted by a nondeterministic TM if it is possible for the
machine to reach a halt state starting with the string in the standard
testing configuration.

That is, there must be some sequence of allowable transitions that al-
lows the machine to reach a halt state (though some other sequences
might not).

• Nondeterminism, however, does not increase the power of a TM:

Proposition 11.2 For each nondeterministic Turing machine N there is
a deterministic Turing machine D such that L(N) = L(D).

Matt Fairtlough page 7 of 17 November 2, 2003

Turing-Acceptable Languages and Phrase-Structure
Languages

• Recall our definition of phrase-structure grammars as four-tuples con-
sisting of:

1. a finite set of nonterminal symbols;

2. a finite set of terminal symbols (disjoint from the nonterminals);

3. a start symbol (one of the nonterminals);

4. a set of rewrite rules of the form A → P where A and P are
strings of nonterminals and terminals and A contains at least one
nonterminal.

• Different sorts of grammars can be specified by stipulating constraints
on the form of the rewrite rules:

1. Regular grammars impose the condition that in the rewrite rules
A had to be a single nonterminal and P had to be either a single
terminal followed by a single nonterminal, a single terminal, or
the empty string.

2. Context-free grammars impose the condition that in the rewrite
rules A had to be a single nonterminal and P was any string of
terminals and nonterminals.

In their most general form, however, the only constraint imposed by
phrase-structure grammars is that the lefthand side contain at least
one nonterminal.

• Any language that can be generated using a phrase-structure grammar
is called a phrase-structure language, reflecting the fact that it can
be specified in terms of a hierarchy of phrase structures.

Matt Fairtlough page 8 of 17 November 2, 2003

Turing-Acceptable Languages and Phrase-Structure
Languages (cont)

• We know there are languages that are not context-free:

{xnynzn | n ∈ N}.

• This language is generated by a phrase structure grammar:

S → xyNSz

S → λ

yNx → xyN

yNz → yz

yNy → yyN

Thus the class of phrase structure languages is strictly larger than the
class of context-free languages.

• Our final result about machine-class/language-class equivalence is to
show that the phrase structure languages are exactly equivalent to the
Turing acceptable languages.

• To establish this claim requires proving two propositions:

Proposition 11.3 Every Turing-acceptable language is a phrase-structure
language.

Proposition 11.4 Every phrase-structure language is a Turing-acceptable
language.

Matt Fairtlough page 9 of 17 November 2, 2003

The Equivalence of Turing-Acceptable and
Phrase-Structure Languages

• As a preliminary we define a notation for representing the entire con-
figuration of a TM at any point. We write

[x1 · · ·xi p xi+1 · · ·xn∆]

where

1. [indicates the left end of the machine’s tape

2. x1 · · ·xi is a string (possibly empty) of tape symbols located in cells
1 to i;

3. p denotes the current state of the machine;

4. i+ 1 is the cell over which the tape head is currently positioned;

5. xi+1 · · ·xn is a string (possibly empty) of tape symbols located in
cells i+ 1 to n;

6.] indicates that all cells further to the right are blank.

For example:

[∆xyypzy∆]

indicates the machine’s tape holds the symbols ∆xyyzy∆∆ · · ·, that the
current state is p and that the tape head is positioned over the first z.

• If a machine accepts a string by writing an acceptance message its
behaviour can be represented as a sequence of configurations of this
form starting, for a string w with

[ι∆w∆]

and finishing with
[h∆Y∆]

• Such a sequence, read backwards, corresponds to a grammatical deriva-
tion . . .

Matt Fairtlough page 10 of 17 November 2, 2003

The Equivalence of Turing-Acceptable and
Phrase-Structure Languages (cont)

Proposition 11.3 Every Turing-acceptable language is a phrase-structure lan-
guage.

Proof

Let L be a Turing-acceptable language and let M be a TM such that
L(M) = L and such that M accepts strings by halting with its tape config-
ured as ∆Y∆∆.

Define a grammar G as follows:

1. The start symbol of G is S.

2. The nonterminals of G are

(a) S, [,];

(b) symbols representing the states of M ;

(c) those tape symbols of M , including ∆ and Y , not in the input
alphabet of M .

3. The terminals of G are the symbols in the input alphabet of M .

4. The rewrite rules of G are:

(a) S → [h∆Y∆]
So the derivation will start with the halt configuration.

(b) ∆]→ ∆∆]
This allows the halt configuration to be expanded to any length.

(c) for each transition of the form δ(p, x) = (q, y) a rewrite rule
qy → px
E.g. [∆zqy∆] could be rewritten as [∆zpx∆] corresponding to
the transition of M from [∆zpx∆] to [∆zqy∆] by the transition
δ(p, x) = (q, y).

Matt Fairtlough page 11 of 17 November 2, 2003

The Equivalence of Turing-Acceptable and
Phrase-Structure Languages (cont)

(d) for each transition of the form δ(p, x) = (q, R) a rewrite rule
xq → px
E.g. [∆xqyz∆] could be rewritten as [∆pxyz∆].

(e) for each transition of the form δ(p, x) = (q, L) and each tape sym-
bol y of M a rewrite rule qyx→ ypx
E.g. [∆qyx∆] could be rewritten as [∆ypx∆].

(f) ι∆→ λ, ∆∆]→ ∆], ∆]→ λ

So if the derivation produces the initial configuration [ι∆xyz∆∆]
then the nonterminals could be removed to yield the string xyz.

Now we show L(M) = L(G). For, suppose w is a string in L(M). Then
there is a sequence of configurations of M starting with [ι∆w∆] and ending
with [h∆Y∆].

So, there is a derivation of w of the form:

S ⇒ [h∆Y∆]⇒ · · · ⇒ [ι∆w∆]⇒ w∆]⇒ w

First apply the rule S → [h∆Y∆], then apply the rule ∆] → ∆∆] as
many times as necessary to grow the string [h∆Y∆ · · ·∆] as long as any
configuration in the computation of M .

Next apply the transitions in the original computation sequence in re-
verse order until the pattern [ι∆w∆ · · ·∆] is obtained. Then reduce this to
w using the rules in 4 (f). It follows that w is in L(G).

Conversely, suppose w ∈ L(G). Then there is a derivation of w in L(G)
and this derivation can be used to construct a sequence of configurations
which would demonstrate how M could accept w. Thus, any w L(G) is also
in L(M).

Matt Fairtlough page 12 of 17 November 2, 2003

Example (Brookshear)

y / R

l

x / R

i

p

D/ L

D

Dy /

D/ y

/ RD

/ RD

y / R

h

r

s

t

Y / L

/ Y

x /

∆

q

Matt Fairtlough page 13 of 17 November 2, 2003

Grammar Machine Configuration Grammatical
Sequence Derivation

S → [h∆Y∆] [ι∆xxy∆] S ⇒ [h∆Y∆]
∆] → ∆∆] [∆lxxy∆] ⇒ [h∆Y∆∆]
[ι∆ → λ [∆xlxy∆] ⇒ [h∆Y∆∆∆]
∆∆] → ∆] [∆xxly∆] ⇒ [∆tY∆∆∆]
∆] → λ [∆xxyp∆] ⇒ [∆s∆∆∆∆]
h∆Y → ∆tY [∆xxqy∆] ⇒ [q∆∆∆∆∆]
hxY → xtY [∆xxr∆] ⇒ [∆r∆∆∆∆]
hyY → ytY [∆xqx∆] ⇒ [∆qx∆∆∆]
hY Y → Y tY [∆xr∆] ⇒ [∆xr∆∆∆]
tY → s∆ [∆qx∆] ⇒ [∆xqx∆∆]
qy → r∆ [∆r∆] ⇒ [∆xxr∆∆]
r∆ → qx [q∆] ⇒ [∆xxqy∆]
r∆ → qy [∆s∆] ⇒ [∆xxyp∆]
qy∆ → yp∆ [∆tY∆] ⇒ [∆xxly∆]
qx∆ → xp∆ [h∆Y∆] ⇒ [∆xlxy∆]
q∆∆ → ∆p∆ ⇒ [∆lxxy∆]
qy∆ → Y p∆ ⇒ [ι∆xxy∆]
yp → py ⇒ xxy∆]
yp → ly ⇒ xxy
xl → lx
∆l → ι∆

Matt Fairtlough page 14 of 17 November 2, 2003

The Equivalence of Turing-Acceptable Languages and
Phrase-Structure Languages (cont)

Proposition 11.4 Every phrase-structure language is a Turing-acceptable lan-
guage.

Proof

The proof relies on the propositions:

1. for every nondeterministic TM N there is a deterministic TM D such
that L(N) = L(D) (Proposition 11.2);

2. for every multiple tape nondeterministic TM M there is a one tape
nondeterministic TM M ′ such that L(M) = L(M ′) (follows from a
slight modification of the proof of Proposition 11.1).

We argue that for each grammar G there is a nondeterministic two-tape
TM N such that L(G) = L(M). It then follows by the above observations
that there is a deterministic one tape machine D such that L(G) = L(D).

Note that any rewrite rule A → P in the grammar can be implemented
by a TM: if the terminals and nonterminals making up A occur on the ma-
chine’s tape then by using the basic operations of left and right shifting and
writing the machine can replace A with P .

Matt Fairtlough page 15 of 17 November 2, 2003

The Equivalence of Turing-Acceptable Languages and
Phrase-Structure Languages (cont)

Construct a nondeterministic two-tape TM N that works as follows:

1. write the string to be tested on tape 1

2. write the grammar’s start symbol on tape 2

3. apply the rewrite rules of the grammar to the string on tape 2 in a
nondeterministic fashion – recall that there could be several applicable
rules for any nonterminal

4. if a string consisting solely of terminals appears on tape 2 compare the
string to the string on tape 1: if they are the same halt; otherwise move
a tape head to the left until abnormal termination occurs.

Note: this algorithm is a form of generate and test algorithm.

Any string derivable fromGmay be produced on tape 2. Hence if a string
w in L(G) is placed on tape 1 then it is possible for N to halt (the definition
of string acceptance for nondeterministic TM’s).

If a string w not derivable from G is placed on tape 1 then since only
strings derivable from G may occur on tape 2 then the string on tape 2 can
never match w and N cannot accept the string.

It follows that L(G) = L(N).

Matt Fairtlough page 16 of 17 November 2, 2003

The Existence of Non-Phrase Structure Languages

• Suppose L is a phrase structure language over alphabet Σ and M is a
TM such that L(M) = M . From M we can always derive a TM M ′ with
tape symbols Σ ∪ {∆} such that L(M) = L(M ′).

That is, ∆ is the only tape symbol needed aside from the symbols of
the alphabet Σ.

• To see this argue as follows. Let x be a symbol from Σ.

By arranging all nonblank tape symbols of M in a list and assigning x
to the first list entry, xx to the second, and so on, any tape symbol of
M can be represented by a unique string on x’s.

Any string of symbols of which occurs on M ’s tape can be represented
by these new strings of x’s separated by blanks, where genuine blanks
are now represented by two consecutive blanks.

M ′ is constructed so that it translates its input into this coded form,
then simulates M , halting if only if M halts.

Thus M ′ accepts exactly the strings that M does, but uses only the tape
symbols Σ ∪ {∆}.

• All Turing machines with tape symbols Σ ∪ ∆ can be systematically
listed by listing first those with two states (minimum number for TMs),
then those with three states, etc.

• However the number of strings in Σ∗ is infinite and the number of
languages over Σ is uncountably infinite (the power set theorem).

• Therefore there are more languages over Σ than there are Turing ma-
chines with tape symbols Σ ∪ {∆}.

• But since for every phrase structure language over Σ there is a TM
with tape symbols Σ ∪ {∆} which accepts it, it follows that there are
languages over Σ which are not phrase structure languages.

Matt Fairtlough page 17 of 17 November 2, 2003

