
Lecture 12:
Coding Schemes for Turing Machines,

Universal Turing Machines,
The Halting Problem

Lecture Outline

• A Coding System for Turing Machines

• A Non-Phrase Structure Language

• Universal Turing Machines

• Acceptable and Decidable Languages

• The Halting Problem

Reading

Chapter 3.4 - 3.6 of Brookshear

Chapter 9 and 12 of Martin, 2nd ed.

Chapter 6.4 of Revesz

Chapter 29 of Cohen

Chapter 8 of Hopcroft and Ullman

Matt Fairtlough page 1 of 14 November 2, 2003

A Coding System for Turing Machines

• It is possible to completely describe a Turing machine M with alpha-
bet Σ and tape symbols Σ ∪ {∆} by using a coding scheme consisting
entirely of 0’s and 1’s.

• Proceed as follows:

1. Arrange M ’s states in a list with the start state first and halt state
second and other states following. This permits each state of M to
be assigned a number, based on position in the list. Represent the
j-th state of M by a string of j 0’s.

2. Arrange the symbols of Σ in a list. Represent the left transition
symbol L by 0, the right transition symbol R by 00, the first symbol
in the list of symbols in Σ by 000, and in general the jth symbol in
this list by (j + 2) 0’s.

3. Represent the blank by the empty string

4. Represent a transition δ(p, x) = (q, y) as a string of 0’s and 1’s of
the form

p’s code 1 x’s code 1 q’s code 1 y’s code

E.g. using 1’s to delimit strings of 0’s, the transition δ(ι, x) = (h,R)
would be represented as

ι
︷︸︸︷

0 1

x
︷ ︸︸ ︷

000 1

h
︷︸︸︷

00 1

R
︷︸︸︷

00

Here we have assumed x is coded as 000 – i.e as the first symbol in
the list of symbols of Σ.

5. represent a Turing machine as a sequence of coded transitions with
an extra 1 at the beginning and a 1 at the end and a 1 separating
each pair of transitions.

Matt Fairtlough page 2 of 14 November 2, 2003

A Coding System for Turing Machines (cont)

• In order to regularise the procedure of coding any particular TM the
following additional conventions are adopted:

1. transitions are listed ordered by the state from which they origi-
nate, i.e. transitions originating from state 0 are listed first, then
those from state 000 (recall state 00 is the halt state), state 0000,
and so on.

2. transitions originating from the same state are listed ordered by
the symbol required on the current tape cell, i.e. the transition
requiring the blank is listed first, that requiring the symbol whose
code is 000 second (recall L and R are coded 0 and 00), that
requiring the symbol whose code is 0000 third, and so on.

• A simple TM

h

x / R

/ x

ι

∆

which can be represented according to our coding scheme as:

10110010001010001001001

i.e.,

1

Transition1
︷ ︸︸ ︷

ι
︷︸︸︷

0 1
∆
︷︸︸︷ 1

h
︷︸︸︷

00 1

x
︷ ︸︸ ︷

000 1

Transition2
︷ ︸︸ ︷

ι
︷︸︸︷

0 1

x
︷ ︸︸ ︷

000 1

h
︷︸︸︷

00 1

R
︷︸︸︷

00 1

Matt Fairtlough page 3 of 14 November 2, 2003

A Non-Phrase Structure Language

• We can now use this coding scheme to demonstrate the existence of
non-phrase structure languages.

• We have seen how every TM with alphabet Σ and tape symbols Σ∪{∆}
can be represented as a string of 0’s and 1’s.

These strings can be interpreted as nonnegative binary numbers.

Thus, if we started at 0 and counted upwards in binary we would even-
tually arrive at the binary number representing any given TM with tape
symbols Σ ∪ {∆}.
Of course many of the binary numbers we would encounter are not
valid representations of any machine.

If we agree to associate with each of these non-well-formed represen-
tations some trivial TM such as:

hι

∆

∆

then we can define a function from N onto the Turing Machines with
alphabet Σ and tape symbols Σ ∪ {∆}.
We represent the TM which is the value of this function at the integer
i by M(i).

• Based on this function we can construct another function, from Σ∗ onto
the set of TM’s with alphabet Σ and tape symbols Σ ∪ {∆}.
For any string w in Σ∗ we map w onto the TM Mi where i is the length
|w| of w. We denote the machine associated thus with w by M|w| or
more simply Mw.

Matt Fairtlough page 4 of 14 November 2, 2003

A Non-Phrase Structure Language (cont)

• For any string w in Σ∗ the symbols of w are in the alphabet of Mw.

Thus, we can supply w to Mw as an input string and see whether or not
Mw halts.

We define L0 as the subset of Σ∗ {w | Mw does not accept w}. That is,
L0 consists of all those strings whose corresponding machines do not
accept them.

• We now argue that L0 is not Turing-acceptable.

• Suppose L0 is Turing-acceptable. Then there is some TM with alphabet
Σ and tape symbols Σ ∪ {∆} that accepts it (by the argument above
showing ∆ is the only tape symbol needed in addition to those in Σ).

Since every TM is Mw for some string w in Σ∗ it follows that the TM
that accepts L0 must be Mw0

for some w0 in Σ∗.

Therefore, L0 = L(Mw0
).

• Is w0 in L(Mw0
) ?

If w0 ∈ L(Mw0
) then since L0 is defined as {w |Mw does not accept w}

it follows that w0 6∈ L0.

If w0 6∈ L(Mw0
) then since L0 is defined as {w |Mw does not accept w}

it follows that w0 ∈ L0.

• But L0 = L(Mw0
). Thus w0 ∈ L(Mw0

) implies w0 6∈ L(Mw0
) and vice

versa.

• This is contradictory. Therefore, our supposition that L0 is Turing-
acceptable must be false, i.e. L0 is not Turing-acceptable.

Matt Fairtlough page 5 of 14 November 2, 2003

Universal Turing Machines

• A universal Turing machine is a Turing machine that is able to simu-
late the behaviour of any other Turing machine.

• A universal Turing machine (UTM) executes a program stored on its
tape.

It may be thought of as a ‘programmable’ TM – an abstract analogue
of today’s general purpose digital computers which fetch and execute
stored programs.

• A program for a UTM is just a coded TM which performs the task which
we want the UTM to perform.

That is, to get a UTM to do some particular task, we define a TM to do
that task, code it according to our earlier coding scheme, then supply
this coded TM as a program to our UTM which decodes it and executes
the instructions as if it were the specific TM from which the program
was derived.

• In order to use a UTM not only must we be able to present a coded TM
as a program to it, we must also be able to present it with the input the
specific TM would be asked to process.

Recall that symbols in the alphabet Σ may be coded as strings of three
or more 0’s – we introduced this as part of our coding scheme for tran-
sitions.

So, we can code an input string as a string of substrings of 0’s each
representing a symbol in the input string, separated by 1’s acting as
symbol delimiters.

We also start and end the entire coded input string with a 1.

Matt Fairtlough page 6 of 14 November 2, 2003

Universal Turing Machines (cont)

• Thus our UTM will be presented with a string of 0’s and 1’s representing
a specific TM for it to simulate, plus a string of 0’s and 1’s representing
the input the machine is to process.

We adopt the convention of placing these strings on the UTM’s input
tape as follows:

1. the leftmost cell remains blank

2. starting in the second cell is the coded version of the specific TM
to be simulated (the ‘program’)

3. immediately following the coded version of the TM to be simulated
is the coded input

• Note that no confusion can occur between ‘instructions’ (transitions)
and ‘data’ (input) because the last transition ends with a 1 and the
beginning of the data is marked with a 1.

Since transitions must begin with a 0, any attempt to interpret the data
as yet another instruction must fail.

• For example here is a coded TM with input data, as they might be
presented to a UTM:

CodedMachine
︷ ︸︸ ︷

1 011001000
︸ ︷︷ ︸

Transition1

1 01000100100
︸ ︷︷ ︸

Transition2

1
CodedData

︷ ︸︸ ︷

1 000
︸ ︷︷ ︸

Symbol1

1 00000
︸ ︷︷ ︸

Symbol2

1 0000
︸ ︷︷ ︸

Symbol3

1

Matt Fairtlough page 7 of 14 November 2, 2003

Universal Turing Machines (cont)

• Given such a representation of a coded machine and coded data , there
are numerous ways a UTM could be designed.

One approach is to build a machine with three tapes, the first for the
program, the input data, and any output, the second as a work tape for
manipulating input and the third for keeping track of the current state
of the simulated machine.

Brookshear p. 182-184 provides a complete specification for a UTM
using this approach.

• Such a UTM proceeds as follows:

1. find the beginning of the coded input string and copy onto tape 2

2. place the code for the initial state on tape 3

3. search the coded transitions (the ‘program’) on tape 1 until an
applicable transition is found.

4. simulate the transition on tape 2

5. update the current state code on tape 3 to be the new simulated
state

6. if the simulated state becomes the halt state, erase tape 1, copy
tape 2 onto tape 1, position the tape head on tape 1 where the
tape head was on tape 2 when the halt state was reached, and
halt.

• While this a three-tape machine, the result about multiple tape TM’s
ensures us that a one-tape machine can be constructed which will sim-
ulate the three-tape machine.

Matt Fairtlough page 8 of 14 November 2, 2003

Acceptable and Decidable Languages

• Using a UTM we can construct a TM which accepts the complement of
the language L0 which we showed above to be not Turing acceptable.

Recall L0 was defined as {w |Mw does not accept w}.
The complement of L0 therefore is the language {w |Mw accepts w}.

• First, construct a TM Mpre which preprocesses an input string w ∈ Σ∗

as follows:

1. generates a coded representation of the machine Mw – recall Mw

will either be the default machine if the binary representation of
|w| is not a valid TM representation, or the binary representation
of |w| otherwise.

2. places the result on its tape followed by the coded representation
of w.

• Suppose we denote our UTM by MU . A machine which accepts the
complement of L0 is the composite machine:

→Mpre →MU

Given an input w this machine effectively applies Mw to w and halts if
and only if Mw would halt when given w.

Therefore this machine accepts {w | Mw accepts w}, i.e. it accepts the
complement of L0.

Matt Fairtlough page 9 of 14 November 2, 2003

Acceptable and Decidable Languages (cont)

• We have just shown that there are languages which may be Turing-
acceptable, but whose complements are not.

• One effect of this is that there are languages L for which

1. we can build a TM which when given strings w will respond by
writing a Y on its tape if w ∈ L

2. we cannot build a TM which when given strings w will respond by
writing a Y on its tape if w ∈ L and a N on its tape if w 6∈ L.

• Languages whose strings are accepted by some TM are called Turing
acceptable.

Languages whose strings are accepted by some TM which is also ca-
pable of rejecting strings not in the language, e.g. by writing a N
message, are called Turing-decidable languages.

(so all Turing-decidable languages are Turing acceptable, but the con-
verse is not true).

• This distinction is important practice. Suppose we are working with
a language L which is known to be merely Turing acceptable. Now
suppose we are given a string w to test for membership in L. If the
machine fails to halt after any finite amount of processing time then
we cannot know whether w ∈ L and we have just not processed long
enough or whether w 6∈ L.

• One class of languages which is Turing-decidable is the class of context-
free languages.

• The Turing-acceptable languages are also called the recursively enu-
merable languages.

Matt Fairtlough page 10 of 14 November 2, 2003

• The Turing-decidable languages are also called the recursive languages.

Matt Fairtlough page 11 of 14 November 2, 2003

The Halting Problem

• Recall that any TM can be coded as a string of 0’s and 1’s.

• We denote the coded version of a TM M by ρ(M).

• Restricting ourselves to machines with alphabet {0, 1} and tape sym-
bols {0, 1,∆}, we can consider what M does if ρ(M) (itself in coded
form) is supplied to it as input.

• If a machine M halts with ρ(M) as input we call it self-terminating.

Otherwise M is non-self-terminating.

Note that every TM M with alphabet {0, 1} and tape symbols {0, 1,∆}
is either self-terminating or non-self-terminating.

• Define a language Lh to be {ρ(M) |M is self-terminating}.
I.e. Lh is the language consisting of coded representations of self-
terminating Turing Machines.

• Is Lh Turing-decidable ?

• Lh is Turing-decidable if it is possible to design a TM which can deter-
mine whether or not a given string of 0’s and 1’s is the coded represen-
tation of a Turing Machine which halts when applied to itself.

Hence this problem is called the halting problem.

Matt Fairtlough page 12 of 14 November 2, 2003

The Halting Problem (cont)

Lh is not Turing-decidable. We show this as follows:

• Suppose it is Turing-decidable. Then there must exist a TM Mh which
decides it.

• Define a TM M ′
h just like Mh except that M ′

h halts with a 1 on its tape
when Mh halts with a Y and M ′

h halts with a 0 on its tape when Mh

halts with a N .

• Note that the tape symbols of M ′
h need only be in {0, 1,∆} (as we saw

above).

• UsingM ′
h we can specify another machineM0 with tape symbols {0, 1,∆}

as:

M’ R Rh
1

M0 halts only if M ′
h halts with output 0 – otherwise it loops forever.

Matt Fairtlough page 13 of 14 November 2, 2003

The Halting Problem (cont)

• Is M0 self-terminating ?

• Suppose M0 is self-terminating.

Since M ′
h halts with output 1 when given the coded representation of

a self-terminating machine, M ′
h must halt with output 1 when given

ρ(M0) as input.

But then M0 would not halt with input ρ(M0) since it loops forever if
M ′

h halts with output 1. I.e. it is not self-terminating.

• Suppose M0 is not self-terminating.

Then M ′
h must halt with output 0 when given ρ(M0) as input.

But in this case M0 would halt when given ρ(M0) as input. I.e. it is a
self-terminating machine.

• Either M0 is or is not self-terminating. Hence we have arrived at a con-
tradiction and so our assumption that Lh was Turing-decidable must
be false.

• Thus, we have now identified two non-Turing-decidable languages –
Lh and L0.

Matt Fairtlough page 14 of 14 November 2, 2003

