
Lecture 13:
Introduction to Recursive Function Theory

Lecture Outline

• Review of Language/Machine Class Equivalences: The Chomsky Hier-
archy

• Introduction to Recursive Function Theory

• Partial vs Total Functions

• Initial Functions

• Combination, Composition and Primitive Recursion

Reading

Chapter 4.1 of Brookshear

Chapter 13 of Martin (2nd ed)

N.J. Cutland Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, Cambridge, 1980. Chapters 1-2.

Matt Fairtlough page 1 of 14 November 2, 2003



Enhanced Chomsky Hierarchy

• The language/machine results we have studied so far can be presented
in a single diagram:

Finite Automata

languages

context−free

Deterministic

PDAs

Turing−decidable

Languages

Phrase−structure

Languages Turing Machines

Determinisitic PDAs

None ? (Turing’s Thesis)

Languages

Context−free

Context−sensitive

Languages

Turing Machines

Linear bounnded

automata

Languages

Non−phrase−structure

Regular Languages

LANGUAGE RECOGNISING DEVICE

• This is a variation of the Chomsky hierarchy, named after Noam
Chomsky who did pioneering work in formal language theory in the
1950’s.

He identified four language classes: regular, context-free, context-sensitive
and phrase-structure languages.

Matt Fairtlough page 2 of 14 November 2, 2003



(We have not investigated context-sensitive languages – they can be
recognised by a class of two stack pushdown automata called linear
bounded automata – automata whose amount of memory is bounded
by the length of their input).

Matt Fairtlough page 3 of 14 November 2, 2003



The Chomsky Hierarchy

• Recall again that the difference between classes of phrase structure
grammar are due to the form of their rules.

• The differences in form of rules between language classes in the Chom-
sky hierarchy may be summarised as follows.

A generative grammar G = 〈ΣN ,ΣT , S, R〉 is said to be of type i if:

1. i = 0: Every rule in R has the form

P → Q

where P and Q are in (ΣN ∪ ΣT )∗ and P contains at least one
symbol from ΣN (phrase structure grammars)

2. i = 1: Every rule in R has the form

Q1AQ2 → Q1PQ2

with Q1, Q2, P ∈ (ΣN ∪ ΣT )∗, A ∈ ΣN , and P 6= λ, except pos-
sibly for the rule A → λ which may occur in R in which case S
does not occur on the righthand side of the rules (context-sensitive
grammars)

3. i = 2: Every rule in R has the form

A→ P

where A ∈ ΣN and P ∈ (ΣN ∪ ΣT )∗ (context-free grammars)

4. i = 3: Every rule in R has the form

A→ PB or A→ P

where A,B ∈ ΣN and P ∈ ΣT (regular or finite state grammars).

• A language is then said to be of type i if it is generated by a grammar
of type i. The class of all languages of type i is denoted Li.

Matt Fairtlough page 4 of 14 November 2, 2003



• The following relationships have been proven to hold amongst the lan-
guage classes defined by the Chomsky hierarchy:

L3 ⊂ L2 ⊂ L1 ⊂ L0.

Thus, each of these language classes is a proper subset of the one
containing it – i.e. there are languages in each larger class that are not
in the class below.

Matt Fairtlough page 5 of 14 November 2, 2003



Introduction to Recursive Function Theory

• Turing’s thesis states that TM’s form a bound on what can be computed.

• This claim is supported by equivalent bounds which emerge in other
areas.

• One such equivalent bound is that imposed by phrase structure gram-
mars.

• Recursive function theory, the study of a particular class of integer
functions, provides another such equivalent bound.

• Rather than concentrate on designing a simple machine which serves
to embody the essence of computation (the Turing machine), recursive
function theory starts with a small class of self-evidently computable
functions, and then explores how large a class of functions can be built
up from these using certain simple operations.

• Using this approach recursive function theory aims to identify the class
of computable functions.

• One practical consequence of this approach is that programming lan-
guages that can be shown to be sufficiently powerful to implement the
simple functions underlying recursive function theory, and the means
for building new functions from them, can compute any function in the
class (and of course are equivalent to any other programming language
that can do this).

Matt Fairtlough page 6 of 14 November 2, 2003



Partial vs Total Functions

• Since any data can be represented as strings of 0’s and 1’s, any com-
putable function can be considered to be a function from non-negative
integers to non-negative integers.

• However, not every computable function has the form:

f : Nm → Nn n,m, integers

since some functions are not defined for every m-tuple.

E.g.
div(x, y) = integer part of x/y, for x, y ∈ N, y 6= 0

is not defined for y = 0 and hence is not a function of the form f :
N2 → N.

• Partial functions are functions which are only defined for a subset of
their domains.

Strictly partial functions are functions which are only defined for a
proper subset of their domains.

Total functions are functions which are defined for every value in their
domains.

E.g. div is a strictly partial function on N and plus(x, y) = x + y is a
total function on N. Both div and plus are partial functions on N.

Matt Fairtlough page 7 of 14 November 2, 2003



Initial Functions

• Recursive function theory supposes a stock of simple, self-evidently
computable functions, called initial functions, and some computable
mechanism(s) for building more complex functions from the initial
functions.

• A notational convention: we use x̄ to stand for the n-tuple (x1, . . . , xn)
when the details of the expanded form are not necessary.

• The initial functions are:

1. the zero function ζ. ζ maps the zero-tuple () to 0. I.e. ζ() = 0.
It corresponds to writing a 0 on a blank piece of paper, or initialis-
ing a tape cell, or a memory location to 0.

2. the successor function σ. Given an integer n, σ(n) = n+ 1.

3. the projection functions πmn . The collection of projection func-
tions map m-tuples onto the n-th component of the m-tuple.
E.g. π3

2(7, 11, 4) returns the 2nd element of the 3-tuple (7, 11, 4);
i.e., π3

2(7, 11, 4) = 11.
Similarly, π2

2(4, 6) = 6.
By convention πn0 (x̄) = (), for any arbitrary n-tuple x̄

• All of these functions are held to be obviously computable – certainly
they can be carried out in a mechanical fashion.

Matt Fairtlough page 8 of 14 November 2, 2003



Combination, Composition and Primitive Recursion

• Three basic techniques for constructing complex functions from the
initial functions are: combination, composition, and primitive re-
cursion.

Functions constructed from the initial functions by a finite number of
applications of combination, composition and primitive recursion are
called primitive recursive functions.

• The combination of the functions f : Nk → Nm and g : Nk → Nn,
where k,m, n ∈ N, is written f × g : Nk → Nm+n and is defined by

f × g(x̄) = (f(x̄), g(x̄)).

I.e. f × g takes k-tuples as input and produces m+ n-tuples where the
first m elements of the output are the output of f when applied to the
k-tuple and the next n elements of the output are the output of g when
applied to the k-tuple.

E.g.

π4
2 × π4

3(1, 5, 3, 7) = (π4
2(1, 5, 3, 7), π4

3(1, 5, 3, 7))

= (5, 3).

• If each of f and g is computable then clearly f × g is computable,
since it just involves computing f separately and g separately and then
combining their outputs into a single tuple.

Matt Fairtlough page 9 of 14 November 2, 2003



Composition

• The composition of the functions f : Nk → Nm and g : Nm → Nn,
where k,m, n ∈ N, is written g ◦ f : Nk → Nn and is defined by

g ◦ f(x̄) = g(f(x̄)).

I.e. to form the output of g ◦ f apply f to the input first, then apply g
to the output of f .

E.g.
σ ◦ ζ() = 1

since ζ() = 0 and σ(0) = 1.

• If each of f and g is computable then clearly f ◦ g is computable, since
we can compute f applied to the input first, the use the output of this
as input to g.

Matt Fairtlough page 10 of 14 November 2, 2003



Primitive Recursion

• A function f : Nk+1 → Nm is constructed from functions and g : Nk →
Nm and h : Nk+m+1 → Nm, where k,m, n ∈ N, using primitive recur-
sion if

f(x̄, 0) = g(x̄)

f(x̄, y + 1) = h(x̄, y, f(x̄, y))

where x̄ is an arbitrary k-tuple.

• This can be paraphrased as:

If the last component in the input k + 1-tuple is 0, f is computed by
applying g to the first k elements of the input k + 1-tuple.

If the last component in the input k + 1-tuple is not 0, then f is com-
puted by applying h to the k +m+ 1-tuple consisting of:

– the first k elements of the input k + 1-tuple (i.e. x̄)

– the predecessor of the last component of the input k+ 1-tuple (i.e.
y)

– the result of applying f to the k + 1-tuple obtained by subtracting
1 from the last element of the original k + 1 tuple (i.e. f(x̄, y)).

• The hallmarks of recursion are

1. the occurrence on the right hand side of the defining equation of
the function being defined on the left,

2. the step-by-step reduction of arbitrary cases to a base or initial
case.

Matt Fairtlough page 11 of 14 November 2, 2003



Primitive Recursion (cont)

E.g. the plus function can be defined via primitive recursion as follows:

plus(x, 0) = π1
1(x)

plus(x, y + 1) = σ ◦ π3
3(x, y, plus(x, y))

Letting f = plus, g = π1
1 and h = σ ◦ π3

3 we can see how this definition
of plus fits the form of definition, given on the previous page, required
for primitive recursion.

Note how we can compute plus(3, 2) for example:

plus(3, 2) = σ ◦ π3
3(3, 1, plus(3, 1))

= σ ◦ π3
3(3, 1, σ ◦ π3

3(3, 0, plus(3, 0)))

= σ ◦ π3
3(3, 1, σ ◦ π3

3(3, 0, π1
1(3)))

= σ ◦ π3
3(3, 1, σ ◦ π3

3(3, 0, 3))

= σ ◦ π3
3(3, 1, σ ◦ 3)

= σ ◦ π3
3(3, 1, 4)

= σ ◦ 4

= 5

• If each of g and h is computable then any function f defined from them
by primitive recursion will be computable since we can calculate any
f(x̄, y) by first computing f(x̄, 0) then f(x̄, 1), then f(x̄, 2) and so on
until we reach f(x̄, y).

• Note that since all the initial functions are total functions and since
the construction techniques of combination, composition and primitive
recursion yield total functions when applied to total functions, every
primitive recursive function of the form f : Nm → Nn is a total func-
tion.

Matt Fairtlough page 12 of 14 November 2, 2003



Primitive Recursion – Example

• Show that the function mult : N2 → N which returns the product of
two natural numbers is primitive recursive.

Define mult by

mult(x, 0) = ζ ◦ π1
0(x)

mult(x, y + 1) = plus ◦ (π3
1 × π3

3(x, y,mult(x, y)))

This has the form

f(x̄, 0) = g(x̄)

f(x̄, y + 1) = h(x̄, y, f(x̄, y))

where

f = mult

g = ζ ◦ π1
0

h = plus ◦ (π3
1 × π3

3)

Since each of f , g, and h is primitive recursive andmult is defined from
them by primitive recursion, it follows that mult is primitive recursive.

mult can be defined more readably as:

mult(x, 0) = 0

mult(x, y + 1) = plus(x,mult(x, y))

and we will shortly introduce conventions to allow us to do so.

Matt Fairtlough page 13 of 14 November 2, 2003



Summary

• Recursive function theory describes a class of integer functions built up
from initial functions using function-building operations.

• The initial functions are:

– zero function;

– successor function;

– projection functions.

• The function-building operations are:

– combination;

– composition;

– primitive recursion.

• The class of functions consisting of the three initial functions plus those
built up from them using the three function-building operations are
called primitive recursive functions (later we will extend this class
by adding an additional function-building operation).

Note: Not all primitive recursive functions use the function-building
operation of primitive recursion (e.g. the successor function σ).

• Since the initial functions are total and the three function-building op-
erations preserve totality, all primitive recursive functions are total.

Matt Fairtlough page 14 of 14 November 2, 2003


