
Lecture 15:
The Church-Turing Thesis

Lecture Outline

• Turing-Computable Functions

• The Church-Turing Thesis

• Turing-Computability of Partial Recursive Functions

• The Partial Recursiveness of Turing Machines

Reading

Chapter 4.3 of Brookshear

Chapter 13of Martin, 2nd ed. (slightly different treatment)

N.J. Cutland Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, Cambridge, 1980. Chapters 1-2.

Matt Fairtlough page 1 of 15 November 2, 2003

Turing-Computable Functions

• In the same way that Turing machines have been conjectured to have
equivalent or greater computing power than any computing machine
(Turing’s thesis), the class of partial recursive functions has been con-
jectured to contain all computable functions.

This conjecture is known as Church’s thesis after the American lo-
gician Alonzo Church who did much of the early work in recursive
function theory.

• A natural question to ask is: How do Church’s thesis and Turing’s thesis
relate?

• To formulate this question more precisely we first need to see how
Turing machines can be used to compute functions.

• A Turing machine can be viewed as computing a function from its ini-
tial tape configuration to its final tape configuration.

More precisely we say a Turing machine M = (S,Σ,Γ, δ, ι, h) computes
the partial function f : Σ∗

m → Σ∗
n

1 , where Σ1 is a subset of the non-
blank symbols in Γ, if for each (w1, . . . , wm) in Σ∗

m

starting M with tape
configuration

∆w1∆w2∆ · · ·∆wm∆∆∆

has the following results:

1. if f(w1, . . . , wm) is defined then M halts with tape configuration
∆v1∆v2∆ · · ·∆vn∆∆∆ where (v1, . . . , vn) = f(w1, . . . , wm);

2. if f(w1, . . . , wm) is undefined then M never halts (though it may
abnormally terminate).

Any partial function that is computed by a Turing machine is said to be
Turing-computable.

Matt Fairtlough page 2 of 15 November 2, 2003

Turing-Computable Functions (cont)

• Since partial recursive functions are functions f : Nm → Nn we need
a convention for representing n-tuples of integers on a TM’s tape, if it
is to compute these functions.

We use binary representations of the integers and blank-delimit them
as before. E.g. the tape configuration

∆10∆11∆111∆∆

would represent the triple
(2, 3, 7).

• Note that while we have not insisted that the machine halt with its
head over the leftmost cell is easy to add this requirement without
altering the class of functions computed.

Matt Fairtlough page 3 of 15 November 2, 2003

The Church-Turing Thesis

• Now that we have precisely defined what it is for a Turing machine to
compute a function, we can ask how the class of Turing-computable
functions relates to the classes of recursive functions we have been
examining.

• As it turns out, the class of Turing-computable functions is exactly the
same as the class of partial recursive functions.

To prove this we need to prove two propositions:

Every partial recursive function is Turing-computable.

Every Turing-computable function is partial recursive.

• It follows that Turing’s thesis and Church’s thesis are equivalent – hence
they are frequently collectively referred to as the Church-Turing the-
sis.

Both propose formally equivalent limits as to what can be calculated
by an algorithm or effective procedure.

Matt Fairtlough page 4 of 15 November 2, 2003

Turing-Computability of Partial Recursive Functions

Proposition 15.1 Every partial recursive function is Turing-computable.

Proof
The first step is to show that each of the initial functions is Turing-computable.

D
D

D

LLSLD

j−1 timesi times i−j times

A machine to compute

A machine to compute

A machine to compute

D

0

R 0 L

D

RD
D

L

D

1

∆

ζ

σ

0 L

1

0

1 L

1 L∆LRS∆∆ RLR

πij

Matt Fairtlough page 5 of 15 November 2, 2003

Turing-Computability of Partial Recursive Functions (cont)

Given that the initial functions are Turing-computable we now need to
show that partial functions constructed from them using combination, com-
position, primitive recursion and minimalization are Turing-computable.

1. Combination. Suppose we have TM’s M1 and M2 that compute the
partial functions f1 and f2 respectively.

Design a three-tape TM M to compute f1 × f2 as follows:

(a) M starts by copying its input from tape 1 to tape 2 and to tape 3;

(b) M then simulates M1 using tape 2 and M2 using tape 3;

(c) if each of the simulations halts M erases tape 1 then copies the
output on tape 2 to tape 1 writes a blank and then follows it with
the output from tape 3.

2. Composition. Suppose we have TM’s M1 and M2 that compute the
partial functions f1 and f2 respectively. ProvidedM1 finishes by leaving
its tape head over the leftmost cell (it can always be modified to do this
without altering the function it computes) then the machine→ M1M2

computes f2 ◦ f1.

3. Primitive recursion. Suppose f is defined by

f(x̄, 0) = g(x̄)

f(x̄, y + 1) = h(x̄, y, f(x̄, y))

where TM’s M1 and M2 compute the partial functions g and h respec-
tively and return their tape heads to the leftmost tape cell before halt-
ing.

f can be computed by a TM designed to proceed as follows:

Matt Fairtlough page 6 of 15 November 2, 2003

Turing-Computability of Partial Recursive Functions
(cont)

(a) if the last component of the input is 0 erase it, return the tape head
to the leftmost cell and simulate M1;

(b) if the last component of the input is not 0 then the tape contains a
sequence of the form: ∆, x̄,∆, y + 1,∆,∆ · · · for some y ∈ N:

i. Using the copying and subtracting machines introduced in Lec-
ture 10 transform the tape contents into the sequence:

∆, x̄,∆y,∆, x̄,∆, y − 1,∆, x̄,∆, · · · ,∆, x̄,∆, 0,∆, x̄,∆,∆ · · ·
Position the tape head over the cell following the 0 and simu-
late M1.

ii. The tape will now contain

∆, x̄,∆y,∆, x̄,∆, y − 1,∆, x̄,∆, · · · ,∆, x̄,∆, 0,∆, g(x̄),∆,∆ · · ·
which is equivalent to

∆, x̄,∆y,∆, x̄,∆, y−1,∆, x̄,∆, · · · ,∆, x̄,∆, 0,∆, f(x̄, 0),∆,∆ · · ·
Position the tape head over the ∆ preceding the last x̄ and sim-
ulate M2..
The tape will now contain

∆, x̄,∆y,∆, x̄,∆, y − 1,∆, x̄,∆, · · · ,∆, x̄,∆, 1,
∆, h(x̄, 0, f(x̄, 0)),∆,∆ · · ·

which is equivalent to

∆, x̄,∆y,∆, x̄,∆, y−1,∆, x̄,∆, · · · ,∆, x̄,∆, 1,∆, f(x̄, 1),∆,∆ · · ·
iii. Repeat the application of M2 to the end portion of the tape

until M2 is applied to

∆, x̄,∆y,∆, f(x̄, y),∆,∆ · · ·
and the tape is reduced to the form:

∆, h(x̄, y, f(x̄, y)),∆,∆ · · ·
which is equivalent to ∆, f(x̄, y + 1),∆,∆.

Matt Fairtlough page 7 of 15 November 2, 2003

Turing-Computability of Partial Recursive Functions
(cont)

4. Minimalization. Suppose we have a TM M that computes g and we
wish to compute µy[g(x̄, y) = 0].

Design a three tape TM which proceeds as follows:

(a) writes a 0 on tape 2;

(b) copies x̄ from tape 1 onto tape 3 followed by the contents of tape
2;

(c) simulates M using tape 3;

(d) if tape 3 contains a 0, erases tape 1, copies tape 2 to tape 1 and
halts; otherwise, increments the value on tape 2 by 1, erases tape
3, and returns to step (b) .

Thus we have shown that Turing machines have the power to compute
any partial recursive function.

Matt Fairtlough page 8 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines
– Introduction

• Rather than showing that Turing-computable functions (as we have de-
fined them) are partial recursive we show something even more gen-
eral – that every computation carried out by a Turing machine can be
viewed as the computation of partial recursive function.

From this it follows that every Turing-computable function is partial
recursive.

• To do this we first describe a convention that allows us to interpret the
contents of the tape of any Turing machine as a single integer.

• With this convention every Turing machine can viewed as computing a
function f : N→ N from the integer corresponding by our convention
to the contents of its tape when it starts to the integer corresponding
to the contents of its tape when it halts.

• We show that any such f is partial recursive by showing that the be-
haviour of a Turing machine can be precisely modeled by partial recur-
sive functions, i.e. that there are partial recursive functions that mimic
the behaviour of the machine and compute precisely what it does.

Matt Fairtlough page 9 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines
– Introduction (cont)

• How do we interpret the tape contents of a Turing machine as an inte-
ger?

Suppose M is the Turing machine

M = (S,Σ,Γ, δ, ι, h)

We assign each symbol in Γ a unique integer in the range 0 to |Γ| (the
number of symbols in Γ), reserving 0 for ∆ (which we have assumed
occurs in every Γ).

We then interpret the tape contents of M as an integer base |Γ| written
backwards.

For example if Γ = {a, b, c,∆} then by interpreting ∆ as 0, a as 1, b as
2, c, as 3, a tape containing

∆ab∆∆cba∆∆ . . .

would be equivalent to

01200321000 . . .

which when written backwards is

. . . 12300210

which is the base 4 (|Γ| = 4) representation of

0+(1×4)+(2×16)+(0×64)+(0×256)+(3×1024)+(2×4096)+(1×16384)

or 27684 in decimal notation.

We interpret the tape contents as a number written backwards, because
if we interpreted them as a number written forwards then since we are
interpreting the ∆ as 0 this would give us meaningless infinitely large
numbers (as the infinitely extended unused tape to the right is filled
with ∆’s).

Matt Fairtlough page 10 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines (cont)

Proposition 15.2 Every Turing machine computation is the computation of a
partial recursive function.

Proof
Let M = (S,Σ,Γ, δ, ι, h) be a Turing machine and let f : N → N be the
partial function defined by the computation that M carries out for each
n ∈ N when given n written backwards in its base b = |Γ| representation
and interpreting the tape contents similarly when the machine halts. f is
not defined when M either does not halt or terminates abnormally.

We show that f is partial recursive.
Proceed as follows:

1. Assign an integer between 0 and k−1 to each state of M where k = |S|
(the number of states in M), reserving 1 for the start state and 0 for
the halt state.

Note that we now have an integer code for each state in S and each
symbol in Γ.

2. Now define these functions which describe M ’s behaviour. We under-
stand p′ to be the uncoded form of state p, x′ to be the uncoded form
of tape symbol x, etc.

mov(p, x) =



















2 if δ(p′, x′) = (q′, R)
1 if δ(p′, x′) = (q′, L)
0 otherwise

sym(p, x) =







y if δ(p′, x′) = (q′, y′), for y′ ∈ Γ
x otherwise

state(p, x) =







q if δ(p′, x′) = (q′, y′), y′ ∈ Γ ∪ {L,R}
k if p = 0 or (p, x) is not a valid state/symbol pair

Note that all these functions are partial recursive since they are tabular
functions which we showed to be primitive recursive in Lecture 14.

Matt Fairtlough page 11 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines (cont)

3. The configuration of M at any point in a computation may be repre-
sented by a triple (w, p, n) where

• w is the coded (integer) representation of the tape;

• p is the coded (integer) representation of the machine’s current
state;

• n is an integer representing the position of the tape head (number
of tape cells from the left, numbering from 1)

Given this representation we can define a function that given such
a coded representation of the current configuration will return the
(coded representation of the) current symbol under the tape head.

cursym(w, p, n) = quo(w, bn−1)
.− mult(b, quo(w, bn))

Note that this function is primitive recursive since it is built up from
primitive recursive functions using composition only.

Example: If as before Γ = {a, b, c,∆} and we interpret ∆ as 0, a as 1, b
as 2, c, as 3 then a tape containing ∆ab∆∆cba∆∆ . . . would be equiv-
alent to 01200321000 . . . which when written backwards is . . . 12300210

So, suppose w = 12300210 and we want to work out the 6-th symbol
on the tape – 3 or c. Recall b = 4.

cursym(12300210, p, 6) = quo(12300210, 45)
.− mult(4, quo(12300210, 46))

= 123
.− mult(4, 12)

= 123
.− 120

= 3

Matt Fairtlough page 12 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines (cont)

4. The tools assembled now enable us to define functions which work on
the integer coded representations of the machine and tape to tell us,
given a triple representing the current configuration, what the next
tape head position will be, the next state, and the new tape contents:

nexthead(w, p, n) = n
.−eq(mov(p, cursym(w, p, n)), 1) +

eq(mov(p, cursym(w, p, n)), 2)

nextstate(w, p, n) = state(p, cursym(w, p, n)) +

mult(k,¬nexthead(w, p, n))

nexttape(w, p, n) = (w
.−mult(bn, cursym(w, p, n))) +

mult(bn, sym(p, cursym(w, p, n)))

In words:

nexthead(w, p, n) works out the next integer tape head position either
subtracting 1, if it’s a move to the left, or adding 1, if it’s a move
to the right, or staying the same if there is no move.

nextstate(w, p, n) works out the next integer state code by supplying
the state function with the current tape symbol – it will be an
illegal state code (> k) if the tape head position ever goes to 0
(abnormal termination).

nexttape(w, p, n) works out the next integer representation of the tape
contents by removing the current symbol from the coded repre-
sentation and replacing it with the new symbol as computed by
the sym function.

Note again that nexthead, nextstate and nexttape are all primitive re-
cursive.

Matt Fairtlough page 13 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines (cont)

5. By combining the functions nexthead, nextstate and nexttape we can
define a new function step that given the current configuration of the
machine returns the next configuration of the machine, i.e. a function
that simulates a single step of the machine:

step(w, p, n) = nexttape× nextstate× nexthead (w, p, n)

step is primitive recursive since it is defined from primitive recursive
functions using combination.

6. Using step and primitive recursion we can define a function run(w, p, n, t)
that given a configuration triple (w, p, n) and an integer t produces the
configuration triple describing the machine’s configuration after it has
executed t steps – i.e. it mimics t transitions.

In the base case, t = 0, the configuration does not change:

run(w, p, n, 0) = (w, p, n)

After t + 1 transitions the machine will be one step beyond where it
was after t transitions:

run(w, p, n, t+ 1) = step(run(w, p, n, t))

run is primitive recursive since it is defined from primitive recursive
functions using primitive recursion.

Matt Fairtlough page 14 of 15 November 2, 2003

The Partial Recursiveness of Turing Machines (cont)

7. The output of the function computed by the Turing machine is the
value on the tape when the machine halts, i.e. when state 0 (in our
coded representation scheme) is reached.

The number of transitions or steps required to reach this state is the
smallest t such that the second element in the triple computed by
run(w, p, n, t) is 0 (i.e. such that the halt state is reached). This can be
expressed as

µt[π3
2(run(w, p, n, t)) = 0]

So, we can define a partial recursive function stoptime that tells us the
number of steps from the start state with input w to the halt state:

stoptime(w) = µt[π3
2(run(w, 1, 1, t)) = 0]

8. Finally, f , the function that M computes will be the function

f(w) = π3
1(run(w, 1, 1, stoptime(w)))

i.e. what is left on the tape after the machine is run with input w for
stoptime(w) transitions.

Clearly f is partial recursive.

Matt Fairtlough page 15 of 15 November 2, 2003

