
Lecture 16:
A Minimal Programming Language

Lecture Outline

• A Minimal Programming Language: MIN

• Partial Recursive Functions are MIN-computable

• MIN-computable Functions are Partial Recursive

Reading

Chapter 4.3-4.4 of Brookshear

N.J. Cutland Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, Cambridge, 1980. Chapters 1-2.

Matt Fairtlough page 1 of 12 December 9, 2003



A Minimal Programming Language: MIN

• How can we know if our favourite programming language is incapable
of computing the solutions to certain problems ?

How can we tell if one programming language is superior to another
in terms of what is can compute ?

• In order to study these problems we can define a minimal program-
ming language and explore its computing power.

Any language which contains at least the constructs of our minimal
language must then be capable of computing at least as much.

• We shall develop a minimal language which we we call MIN and then
show it is capable of computing any partial recursive function.

It then follows, if we accept the Church-Turing thesis, that it, and con-
sequently any language at least powerful, is capable of expressing the
solution to any algorithmically solvable problem.

Matt Fairtlough page 2 of 12 December 9, 2003



A Minimal Programming Language: MIN (cont)

• Since MIN is to compute partial recursive functions, it requires only
one data type: nonnegative integers.

• We define identifiers to be alphanumeric strings, starting with a letter.

Therefore, we need no type declarations (since there is only data type
and since constants can easily be distinguished from identifiers).

• MIN contains just three statement types:

1. incr varname;

This increments the value named by the identifier varname.

2. decr varname;

This decrements the value named by the identifier varname.

3. while varname 6= 0 do;
...
end;

This repeats the statements occurring between the while and the
end until the value named by the identifier varname is 0.

Matt Fairtlough page 3 of 12 December 9, 2003



A Minimal Programming Language: MIN (cont)

• Using these basic statement types we can immediately define more
powerful statement types that make programming in MIN much easier.

These more powerful statement types we view as analogous to macros
in many ‘real’ programming languages – statements that a preprocessor
converts into their more verbose equivalents.

• There are two additional statement types:

1. clear varname;

This is an abbreviation of

while varname 6= 0 do;

decr varname;

end;

This statement type has the effect of assigning 0 to varname.

2. varname1 ← varname2;

This is an abbreviation of

clear aux;

clear varname1;

while varname2 6= 0 do;

incr aux;

decr varname2;

end;

while aux 6= 0 do;

incr varname1;

incr varname2;

decr aux;

end;

This has the effect of nondestructively assigning the value of vari-
able varname2 to variable varname1.
It achieves this by transferring varname2’s value to the auxiliary
variable aux, then using transferring the value from aux to each of
varname1 and varname2.

Matt Fairtlough page 4 of 12 December 9, 2003



A Minimal Programming Language: MIN – Example

Write a MIN program that computes f : N→ N defined by

f(x) =







1 if x is even
0 otherwise

Assume x is made available in x1 and that f(x) is left in z1.

aux ← x1;

clear z1;

clear even;

clear tmp;

incr even;

while aux 6= 0 do;

decr aux;

incr tmp ;

while even 6= 0 do;

decr even;

decr tmp;

end;

while tmp 6= 0 do;

decr tmp;

incr even;

end;

end;

while even 6= 0 do;

decr even;

incr z1;

end;

even is always 1 if the main loop has been executed an even number of
times; 0 if it has been executed an odd number of times.

Matt Fairtlough page 5 of 12 December 9, 2003



Partial Recursive Functions are MIN-computable

• We want to show that any partial recursive function f : Nm → Nn is
MIN-computable.

• We start with establishing the convention that the input m-tuples will
be held in the variables x1,x2, ..., xm and the output will be pro-
duced in variables z1, z2, ..., zn.

• First we construct programs for the three initial functions:

1. ζ is computed by clear z1;
2. σ is computed by

z1 ← x1;

incr z1;

3. πmj is computed by z1 ← xj;

• Next we need to show that programs can be created that compute par-
tial recursive functions which are built up using the operations of com-
bination, composition, primitive recursion, and minimalization from
the initial functions.

There are four cases to consider:

1. Combination. We assume that we have MIN programs F and G
that compute the partial recursive functions f : Nk → Nm and
g : Nk → Nn respectively.
To compute f×g we concatenate programG to the end of program
F

(a) modifying G to assign its output to zm+1, ..., zm+n

(b) modifying F , if necessary, to insure it does not destroy its input
values before G begins.

(c) renaming any common auxiliary variables in F and G so that
they have different names.

Matt Fairtlough page 6 of 12 December 9, 2003



Partial Recursive Functions are MIN-computable
(cont)

2. Composition. Again we assume that we have MIN programs F
and G that compute the partial recursive functions f : Nk → Nm

and g : Nm → Nn respectively.
To compute g◦f we concatenate program G to the end of program
F

(a) modifying the output variables of F to be identical to the input
variables of G

(b) renaming any common auxiliary variables in F and G so that
they have different names.

3. Primitive recursion. Suppose we have programs G and H which
compute the partial recursive functions g : Nk → Nm and
h : Nk+m+1 → Nm. Suppose also that the function f : Nk+1 → Nm

is defined by primitive recursion as:

f(x̄, 0) = g(x̄)

f(x̄, y + 1) = h(x̄, y, f(x̄, y))

then f can be calculated by the following program, assuming G
and H do not have nasty side effects:

G
aux ← xk+1;

clear xk+1;

while aux 6= 0 do;

xk+2 ← z1;

xk+3 ← z2;
...
xk+m+1 ← zm;

H
incr xk+1;

decr aux;

end;

Matt Fairtlough page 7 of 12 December 9, 2003



Partial Recursive Functions are MIN-computable
(cont)

4. Minimalization. Suppose we have a program G which computes
the partial recursive function g : Nn+1 → N. Further, suppose f is
defined by minimalization as

f(x̄) = µy[g(x̄, y) = 0]

f can be calculated by the following program:

clear xn+1;

G
while z1 6= 0 do;

incr xn+1;

G
end;

z1 ← xn+1

This program computes g(x̄, 0), g(x̄, 1), · · · until a 0 output (z1 is
reached, at which point it stops.

• Thus, we have shown that MIN is capable of computing any partial
recursive function, and hence, by the Church-Turing thesis is capable
of expressing the solution to any algorithmically solvable problem.

• It follows that all we need in a programming language is the nonneg-
ative integer data type together with the operations of incrementing,
decrementing, and while-looping: any other features in a program-
ming language are for ease of use and do not effect the computational
power of the language.

Matt Fairtlough page 8 of 12 December 9, 2003



MIN-computable Functions are Partial Recursive

• Of course we would not expect MIN to allow us to compute anything
more than partial recursive functions – if it did we would have dis-
proved the Church-Turing thesis !

• We can assure ourselves of this with several observations.

• First observe that any MIN program must contain k identifiers where
k > 0 (k > 0 since every program contains at least one statement and
every statement type contains an identifier).

Any MIN program P may therefore be viewed as a function fromNk →
Nk where the input k-tuple is the value of its k identifiers when the
program starts and the output k-tuple is the value of the k identifiers
when the program stops

Note: if it does not stop then it is undefined for the given input.

• To show any such function computed by P is partial recursive we per-
form an induction on the number of statements in P :

1. Basis step. Suppose P has only one statement. Then P is either an
incr, decr or while statement.
incr computes σ and so is partial recursive.
decr computes pred and so is partial recursive.

while varname 6= 0 do;

end;

computes the function

f(varname) =







0 if varname = 0
undefined otherwise

Matt Fairtlough page 9 of 12 December 9, 2003



MIN-computable Functions are Partial Recursive
(cont)

2. Induction step. Suppose P has n statements, n > 1, and assume
that any program with fewer than n statements computes a partial
recursive function.
There are two cases to consider:

(a) The program is not one large while loop.
In this case it is the concatenation of two shorter programs,
each of which by the hypothesis of induction computes a partial
recursive function.
However the longer program computes the composition of the
functions computed by the two shorter functions and hence it
too computes a partial recursive function.

(b) The program is one large while loop and so has the form
while varname 6= 0 do;

B
end;

Since B has fewer than n statements we may assume, by the
hypothesis of induction, that it computes a partial recursive
function h from Nk → Nk, where its k identifiers form the
input and output k-tuples of the function it computes.

Matt Fairtlough page 10 of 12 December 9, 2003



MIN-computable Functions are Partial Recursive
(cont)

varname must either
i. be one of the identifiers B manipulates or,

ii. if not, B can never terminate once started since it does not
alter the loop controlling variable.

Suppose
i. Then varname is the j-th identifier manipulated by B, for

some j, 1 ≤ j ≤ k.
Define the function f : Nk+1 → Nk by primitive recursion
as:

f(x̄, 0) = ident(x̄)

f(x̄, y + 1) = h(f(x̄, y))

where ident is the identity function, ident(x̄) = x̄ (this func-
tion can be defined as a combination of projections and so
is primitive recursive).

Recalling that h is the partial recursive function computed
by B, the value of f(x̄, y) is the k-tuple computed by the
loop if B’s k input variables are initialised to x̄ and the loop
is executed y times.

The number of times the body of the while loop will actu-
ally be performed is (recall j is the loop control variable)

µy[πkj ◦ f(x̄, y) = 0].

Thus the function computed by the while structure is:

g(x̄) = f(x̄, µy[πkj ◦ f(x̄, y) = 0])

which is partial recursive.
ii. In this case the whole while loop computes the partial re-

cursive function which is the identity function when varname =
0 and is undefined for all other inputs.

Matt Fairtlough page 11 of 12 December 9, 2003



Summary

• A simple programming language MIN can be defined which consists of

– the single data type non-negative integers

– identifiers made up of alphanumeric strings whose first character
is alphabetic

– three statement types – increment, decrement and while-loop

• MIN suffices to compute all the partial recursive functions.

This is established by showing the three initial primitive recursive func-
tions are MIN-computable and showing the four function-building op-
erations required to build partial recursive functions can be carried out
by MIN programs.

• Any function computed by a MIN program (viewed as a mapping from
all of its identifiers before it runs to after it halts) is partial recursive.

• MIN shows that any programming language with at least its three sim-
ple constructs is as powerful as any conventional computational model
(Turing machines, partial recursive functions).

Matt Fairtlough page 12 of 12 December 9, 2003


